
1

6

9
10
11
12

13
14
37
65

75
76
78
99

121
122
140

157
158
165
170
183
192

Copyright Page

Preface
Authors
Acknowledgments
Introduction

Fabric discovery
Initial fabric setup
Multi-Pod discovery
Device replacement

Management and core services
Overview
In-band and out-of-band management
Pod Policies — BGP RR / Date&Time / SNMP

Access policies
Overview
Troubleshooting workflow

Security policies
Overview
Tools
EPG to EPG
Preferred group
vzAny to EPG

200

209
210
213
222
249
267
297
305

315
316
323
341
369
385

395
396
397
410
422

431
432
434
440
453

Shared L3Out to EPG

Intra-Fabric forwarding
Overview
Tools
L2 forwarding: two endpoints in same BD — no unicast routing
L3 forwarding: two endpoints in different BDs
Multi-Pod forwarding
Intermittent drops
Interface drops

External forwarding
Overview
Adjacencies
Route advertisement
Contract and L3Out
Shared L3Out

VMM integration
Overview
vCenter connectivity
Host dynamic discovery
Hypervisor uplink load balancing

PBR (Policy-Based Redirect)
Overview
Service Graph deployment
Forwarding
Other traffic flow examples

469
470
471
481

490
491

501
502

Fabric upgrade
Overview
Pre-upgrade validations
During and POST upgrade verifications
FPGA / EPLD / BIOS
CIMC

Acronyms
Acronyms

6

Copyright Page

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS
MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE
ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY
PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING
PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE
PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE
UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT
YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program
developed by the University of California, Berkeley (UCB) as part of UCB's public domain
version of the UNIX operating system. All rights reserved. Copyright 1981, Regents of
the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND
SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO
AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM
A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT,
SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE
USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

©

7

Any Internet Protocol (IP) addresses and phone numbers used in this document are not
intended to be actual addresses and phone numbers. Any examples, command display
output, network topology diagrams, and other figures included in the document are
shown for illustrative purposes only. Any use of actual IP addresses or phone numbers
in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered
uncontrolled. See the current online version for the latest version. Cisco has more than
200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at
www.cisco.com/go/o�ceswww.cisco.com/go/o�ceswww.cisco.com/go/o�ces.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its
affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this
URL: www.cisco.com/go/trademarkswww.cisco.com/go/trademarkswww.cisco.com/go/trademarks. Third-party trademarks mentioned are the
property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

2019 Cisco Systems, Inc. All rights reserved.©

http://www.cisco.com/go/offices
http://www.cisco.com/go/trademarks

Preface

10 Preface

Authors

Domenico Dastoli - Cisco DCBG
Roland Ducomble - Cisco CX
Minako Higuchi - Cisco DCBG
Takuya Kishida - Cisco DCBG
Jessica Kurtz - Cisco CX
Joe LeBlanc - Cisco DCBG
Gabriel Monroy - Cisco CX
Austin Peacock - Cisco DCBG
Pieter Schoenmaekers - Cisco CX
Yuji Shimazaki - Cisco CX
Ramses Smeyers - Cisco CX
Joseph Young - Cisco CX

This book was written using the Book Sprints (https://www.booksprints.net/https://www.booksprints.net/https://www.booksprints.net/)
method, a strongly facilitated process for collaborative authorship of books.

https://www.booksprints.net/

Preface 11

Acknowledgments

While the book was produced and written by the authors, the knowledge and
experience leading to it are the result of the hard work and dedication of many
individuals inside Cisco who methodologically collected and wrote content since the
conception and release of ACI.

Special thanks to Cisco DCBG and CX leadership teams who supported the realization
of this book.

12 Preface

Introduction

To keep up with the massive influx of data and increased demands on the network,
networking professionals must learn to broker, connect, build, and govern not only in
the datacenter, but across a vast multicloud landscape. Cisco Application Centric
Infrastructure (ACI) is a major step forward in managing complexity, maximizing
business benefits, and deploying workloads in any location and on any cloud.

This book systematically describes operational troubleshooting of Cisco ACI,
highlighting best practices and workflows in troubleshooting an issue end-to-end. The
content described not only brings together procedures from multiple sources such as
Cisco Live, Cisco CX (formerly TAC) and Cisco DCBG, it also provides, where needed, an
in-depth description of the discussed features to further expand the knowledge of the
reader.

The authors of this book bring together 60 years of knowledge about operating and
troubleshooting ACI, assuring the latest and most relevant information available to
operate the ACI Infrastructure in the most efficient way. This book has been written
based on Cisco ACI version 4.2 and covers the most used product and serviceability
features. Most of the content, however, is applicable to older releases.

Fabric discovery

14 Fabric discovery

1

2

3

4

5

6

7

Initial fabric setup

Introduction

This chapter will cover the basic steps of the fabric discovery process, common
validations that can be performed during the process, and a sample of scenarios where
issues occur and how to address them.

Fabric discovery workflow
The ACI fabric discovery process follows a specific sequence of events. The basic steps
are as follows.

Connect to the KVM console of the first APIC and complete the setup script by
inputting values such as fabric name, APIC cluster size, and tunnel endpoint
(TEP) address pool.

Once completed, APIC1 will begin sending LLDP via its fabric ports. The LLDP
packets contain special TLVs with information such as the infra VLAN and its
role as an APIC (also referred to as the controller).

On reception of these LLDP packets from APIC1 the leaf will program the infra
VLAN on all ports where an APIC is detected.

The leaf begins sending DHCP Discovers on the now-known infra VLAN.

The user logs into the OOB IP of APIC1 via HTTPS and registers the first leaf
node in the Fabric Membership submenu.

Once the leaf is given a Node ID, APIC1 will respond with an IP address from the
configured TEP address pool and the DHCP process completes.

The registered leaf relays DHCP Discovers from other directly connected spines
which were discovered via LLDP to APIC1.

Fabric discovery 15

8

9

10

11

12

The user will see those dynamically discovered spines appear in the Fabric
Membership submenu and can register them.

Once the spines are registered, APIC1 responds with an IP address from the TEP
pool and DHCP completes for those nodes.

The spines relay DHCP Discovers from all other nodes of pod1. (This is assuming
there is a full-mesh between spines and leaf switches as is advised and is the
typical architecture).

Once the leaf nodes connected to the other APICs are registered, the APIC
cluster can be established via TCP communication amongst themselves. Make
sure to complete the setup dialog on APIC2 and APIC3.

Confirm all APICs have formed a cluster and are fully fit. If this is the case, fabric
discovery is complete.

Beginning in 4.2, a new CLI command is available on fabric nodes to assist in the
diagnosis of common discovery issues. The following sections will cover the checks
performed and provide additional validation commands to assist in troubleshooting
failures.

leaf101# show discoveryissues
Checking the platform type................LEAF!
Check01 - System state - in-service [ok]
Check02 - DHCP status [ok]
TEP IP: 10.0.72.67 Node Id: 101 Name: leaf101
Check03 - AV details check [ok]
Check04 - IP rechability to apic [ok]
Ping from switch to 10.0.0.1 passed
Check05 - infra VLAN received [ok]
infra vLAN:3967
Check06 - LLDP Adjacency [ok]
Found adjacency with SPINE
Found adjacency with APIC
Check07 - Switch version [ok]
version: n9000-14.2(1j) and apic version: 4.2(1j)
Check08 - FPGA/BIOS out of sync test [ok]
Check09 - SSL check [check]
SSL certificate details are valid
Check10 - Downloading policies [ok]
Check11 - Checking time [ok]
2019-09-11 07:15:53
Check12 - Checking modules, power and fans [ok]

16 Fabric discovery

Check01 — System state
When the leaf has been allocated a Node ID and registered to the fabric, it will begin to
download its bootstrap and then transition to an in-service state.

Check01 - System state - out-of-service [FAIL]

Check01 - System state - downloading-boot-script [FAIL]

To validate the current state of the leaf, the user can run moquery -c topSystem

leaf101# moquery -c topSystem
Total Objects shown: 1

top.System
address : 10.0.72.67
bootstrapState : done
...
serial : FDO20160TPS
serverType : unspecified
siteId : 1
state : in-service
status :
systemUpTime : 00:18:17:41.000
tepPool : 10.0.0.0/16
unicastXrEpLearnDisable : no
version : n9000-14.2(1j)
virtualMode : no

Check02 — DHCP status

Check02 - DHCP status [FAIL]
ERROR: node Id not configured
ERROR: Ip not assigned by dhcp server
ERROR: Address assigner's IP not populated
TEP IP: unknown Node Id: unknown Name: unknown

The leaf needs to receive a TEP address via DHCP from APIC1 and then establish IP
connectivity to the other APICs. The Physical TEP (PTEP) of the leaf is assigned to
loopback0. If no address is assigned, the user can validate the leaf is sending a DHCP

Fabric discovery 17

Discover with tpcdump utility. Notice for this we will use interface kpm_inb which
allows you to see all CPU inband control plane network traffic.

(none)# tcpdump -ni kpm_inb port 67 or 68
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on kpm_inb, link-type EN10MB (Ethernet), capture size 65535 bytes
16:40:11.041148 IP 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from a0:36:9f:c7:a1:0c, length 300
^C
1 packets captured
1 packets received by filter
0 packets dropped by kernel

The user can also validate dhcpd is running on the APIC and listening on the bond0
sub-interface. The bond interface represents the fabric facing APIC ports. We will use
the format bond0.<infra VLAN>.

apic1# ps aux | grep dhcp
root 18929 1.3 0.2 818552 288504 ? Ssl Sep26 87:19 /mgmt//bin/dhcpd.bin -f -4 -cf
/data//dhcp/dhcpd.conf -lf /data//dhcp/dhcpd.lease -pf /var/run//dhcpd.pid --no-pid bond0.3967
admin 22770 0.0 0.0 9108 868 pts/0 S+ 19:42 0:00 grep dhcp

Check03 — AV details

Check03 - AV details check [ok]

The leaf will validate if the registered APIC has an IP in a valid range for the TEP pool. If
no APIC information has been recorded yet, this check will pass. The user can see the
current APIC information from the leaf node's perspective via 'acidiag avread'
command. Notice in the below example that when the leaf/spine prompt is showing
(none)#, this is an indication the leaf/spine is not yet a member of the fabric.

(none)# acidiag avread
Cluster of 0 lm(t):0(zeroTime) appliances (out of targeted 0 lm(t):0(zeroTime)) with FABRIC_DOMAIN
name=Undefined Fabric Domain Name set to version= lm(t):0(zeroTime); discoveryMode=PERMISSIVE lm(t):0(zeroTime);
drrMode=OFF lm(t):0(zeroTime)

clusterTime=<diff=0 common=2019-10-01T18:51:50.315+00:00 local=2019-10-01T18:51:50.315+00:00 pF=<displForm=1
offsSt=0 offsVlu=0 lm(t):0(zeroTime)>>

18 Fabric discovery

leaf101# acidiag avread
Cluster of 3 lm(t):0(2019-09-30T18:45:10.320-04:00) appliances (out of targeted 3 lm(t):0(2019-10-
01T14:52:55.217-04:00)) with FABRIC_DOMAIN name=ACIFabric1 set to version=apic-4.2(1j) lm(t):0(2019-10-
01T14:52:55.217-04:00); discoveryMode=PERMISSIVE lm(t):0(1969-12-31T20:00:00.003-04:00); drrMode=OFF
lm(t):0(1969-12-31T20:00:00.003-04:00); kafkaMode=OFF lm(t):0(1969-12-31T20:00:00.003-04:00)
 appliance id=1 address=10.0.0.1 lm(t):2(2019-09-27T17:32:08.669-04:00) tep address=10.0.0.0/16
lm(t):1(2019-07-09T19:41:24.672-04:00) routable address=192.167.0.225 lm(t):2(2019-09-30T18:37:48.916-04:00) oob
address=0.0.0.0 lm(t):0(zeroTime) version=4.2(1j) lm(t):1(2019-09-30T18:37:49.011-04:00) chassisId=c67d1076-
a2a2-11e9-874e-a390922be712 lm(t):1(2019-09-30T18:37:49.011-04:00) capabilities=0X3EEFFFFFFFFF--0X2020--0X1
lm(t):1(2019-09-26T09:32:20.747-04:00) rK=(stable,absent,0) lm(t):0(zeroTime) aK=(stable,absent,0)
lm(t):0(zeroTime) oobrK=(stable,absent,0) lm(t):0(zeroTime) oobaK=(stable,absent,0) lm(t):0(zeroTime) cntrlSbst=
(APPROVED, FCH1929V153) lm(t):1(2019-10-01T12:46:44.711-04:00) (targetMbSn= lm(t):0(zeroTime), failoverStatus=0
lm(t):0(zeroTime)) podId=1 lm(t):1(2019-09-26T09:26:49.422-04:00) commissioned=YES lm(t):101(2019-09-
30T18:45:10.320-04:00) registered=YES lm(t):3(2019-09-05T11:42:41.371-04:00) standby=NO lm(t):0(zeroTime) DRR=NO
lm(t):101(2019-09-30T18:45:10.320-04:00) apicX=NO lm(t):0(zeroTime) virtual=NO lm(t):0(zeroTime) active=YES
 appliance id=2 address=10.0.0.2 lm(t):2(2019-09-26T09:47:34.709-04:00) tep address=10.0.0.0/16
lm(t):2(2019-09-26T09:47:34.709-04:00) routable address=192.167.0.226 lm(t):2(2019-09-05T11:45:36.861-04:00) oob
address=0.0.0.0 lm(t):0(zeroTime) version=4.2(1j) lm(t):2(2019-09-30T18:37:48.913-04:00) chassisId=611febfe-
89c1-11e8-96b1-c7a7472413f2 lm(t):2(2019-09-30T18:37:48.913-04:00) capabilities=0X3EEFFFFFFFFF--0X2020--0X7
lm(t):2(2019-09-26T09:53:07.047-04:00) rK=(stable,absent,0) lm(t):0(zeroTime) aK=(stable,absent,0)
lm(t):0(zeroTime) oobrK=(stable,absent,0) lm(t):0(zeroTime) oobaK=(stable,absent,0) lm(t):0(zeroTime) cntrlSbst=
(APPROVED, FCH2045V1X2) lm(t):2(2019-10-01T12:46:44.710-04:00) (targetMbSn= lm(t):0(zeroTime), failoverStatus=0
lm(t):0(zeroTime)) podId=1 lm(t):2(2019-09-26T09:47:34.709-04:00) commissioned=YES lm(t):101(2019-09-
30T18:45:10.320-04:00) registered=YES lm(t):2(2019-09-26T09:47:34.709-04:00) standby=NO lm(t):0(zeroTime) DRR=NO
lm(t):101(2019-09-30T18:45:10.320-04:00) apicX=NO lm(t):0(zeroTime) virtual=NO lm(t):0(zeroTime) active=YES
 appliance id=3 address=10.0.0.3 lm(t):3(2019-09-26T10:12:34.114-04:00) tep address=10.0.0.0/16
lm(t):3(2019-09-05T11:42:27.199-04:00) routable address=192.167.1.163 lm(t):2(2019-10-01T13:19:08.626-04:00) oob
address=0.0.0.0 lm(t):0(zeroTime) version=4.2(1j) lm(t):3(2019-09-30T18:37:48.904-04:00) chassisId=99bade8c-
cff3-11e9-bba7-5b906a49dc39 lm(t):3(2019-09-30T18:37:48.904-04:00) capabilities=0X3EEFFFFFFFFF--0X2020--0X4
lm(t):3(2019-09-26T10:18:13.149-04:00) rK=(stable,absent,0) lm(t):0(zeroTime) aK=(stable,absent,0)
lm(t):0(zeroTime) oobrK=(stable,absent,0) lm(t):0(zeroTime) oobaK=(stable,absent,0) lm(t):0(zeroTime) cntrlSbst=
(APPROVED, FCH1824V2VR) lm(t):3(2019-10-01T12:48:03.726-04:00) (targetMbSn= lm(t):0(zeroTime), failoverStatus=0
lm(t):0(zeroTime)) podId=2 lm(t):3(2019-09-26T10:12:34.114-04:00) commissioned=YES lm(t):101(2019-09-
30T18:45:10.320-04:00) registered=YES lm(t):2(2019-09-05T11:42:54.935-04:00) standby=NO lm(t):0(zeroTime) DRR=NO
lm(t):101(2019-09-30T18:45:10.320-04:00) apicX=NO lm(t):0(zeroTime) virtual=NO lm(t):0(zeroTime) active=YES

clusterTime=<diff=15584 common=2019-10-01T14:53:01.648-04:00 local=2019-10-01T14:52:46.064-04:00 pF=<displForm=0
offsSt=0 offsVlu=-14400 lm(t):21(2019-09-26T10:40:35.412-04:00)>>

Check04 — IP reachability to APIC
When the leaf has received an IP address, it will attempt to establish TCP sessions with
the APIC and begin the process of downloading its configuration. The user can validate
IP connectivity to the APIC using the 'iping' utility.

leaf101# iping -V overlay-1 10.0.0.1
PING 10.0.0.1 (10.0.0.1) from 10.0.0.30: 56 data bytes
64 bytes from 10.0.0.1: icmp_seq=0 ttl=64 time=0.651 ms
64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.474 ms

Fabric discovery 19

64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.477 ms
64 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=0.54 ms
64 bytes from 10.0.0.1: icmp_seq=4 ttl=64 time=0.5 ms

--- 10.0.0.1 ping statistics --- 5 packets transmitted, 5 packets received, 0.00% packet loss
round-trip min/avg/max = 0.474/0.528/0.651 ms

Check05 — Infra VLAN

Check05 - infra VLAN received [ok]

The infra VLAN check will only be successful if the node is connected to a Pod where an
APIC exists. If this is not the case, the user can ignore the message because the check is
expected to fail.

The leaf will determine the infra VLAN based on LLDP packets received from other ACI
nodes. The first one it receives will be accepted when the switch is in discovery.

(none)# moquery -c lldpInst
Total Objects shown: 1

lldp.Inst
adminSt : enabled
childAction :
ctrl :
dn : sys/lldp/inst
holdTime : 120
infraVlan : 3967
initDelayTime : 2
lcOwn : local
modTs : 2019-09-12T07:25:33.194+00:00
monPolDn : uni/fabric/monfab-default
name :
operErr :
optTlvSel : mgmt-addr,port-desc,port-vlan,sys-cap,sys-desc,sys-name
rn : inst
status :
sysDesc : topology/pod-1/node-101
txFreq : 30

bdsol-aci12-leaf1#

20 Fabric discovery

(none)# show vlan encap-id 3967

 VLAN Name Status Ports
 ---- -------------------------------- --------- -------------------------------
 8 infra:default active Eth1/1

 VLAN Type Vlan-mode
 ---- ----- ----------
 8 enet CE

If the infra VLAN has not been programmed on the switchport interfaces connected to
the APICs, check for wiring issues detected by the leaf.

(none)# moquery -c lldpIf -f 'lldp.If.wiringIssues!=""'
Total Objects shown: 1

lldp.If id : eth1/1
adminRxSt : enabled
adminSt : enabled
adminTxSt : enabled
childAction :
descr :
dn : sys/lldp/inst/if-[eth1/1]
lcOwn : local
mac : E0:0E:DA:A2:F2:83
modTs : 2019-09-30T18:45:22.323+00:00
monPolDn : uni/fabric/monfab-default
name :
operRxSt : enabled
operTxSt : enabled
portDesc :
portMode : normal
portVlan : unspecified
rn : if-[eth1/1]
status :
sysDesc :
wiringIssues : infra-vlan-mismatch

Check06 — LLDP adjacency

Check06 - LLDP Adjacency [FAIL]
Error: leaf not connected to any spine

In order to determine which ports connect to other ACI devices, the leaf must receive
LLDP from the other fabric nodes. To validate LLDP has been received, the user can
check 'show lldp neighbors'.

Fabric discovery 21

(none)# show lldp neighbors
Capability codes:
 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID Local Intf Hold-time Capability Port ID
apic1 Eth1/1 120 eth2-1
apic2 Eth1/2 120 eth2-1
switch Eth1/51 120 BR Eth2/32
switch Eth1/54 120 BR Eth1/25
Total entries displayed: 4

Check07 — Switch version

Check07 - Switch version [ok]
version: n9000-14.2(1j) and apic version: 4.2(1j)

If the APIC and leaf versions are not the same, fabric discovery could fail. To validate the
version running on the leaf, use 'show version' or 'vsh -c 'show version''.

(none)# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Documents: http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.html
Copyright (c) 2002-2014, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php

Software
 BIOS: version 07.66
 kickstart: version 14.2(1j) [build 14.2(1j)]
 system: version 14.2(1j) [build 14.2(1j)]
 PE: version 4.2(1j)
 BIOS compile time: 06/11/2019
 kickstart image file is: /bootflash/aci-n9000-dk9.14.2.1j.bin
 kickstart compile time: 09/19/2019 07:57:41 [09/19/2019 07:57:41]
 system image file is: /bootflash/auto-s
 system compile time: 09/19/2019 07:57:41 [09/19/2019 07:57:41]
...

22 Fabric discovery

The same command will also work on the APICs.

apic1# show version
Role Pod Node Name Version
---------- ---------- ---------- ------------------------ --------------------
controller 1 1 apic1 4.2(1j)
controller 1 2 apic2 4.2(1j)
controller 2 3 apic3 4.2(1j)
leaf 1 101 leaf101 n9000-14.2(1j)
leaf 1 102 leaf102 n9000-14.2(1j)
leaf 1 103 leaf103 n9000-14.2(1j)
spine 1 1001 spine1 n9000-14.2(1j)
spine 1 1002 spine2 n9000-14.2(1j)

Check08 — FPGA/EPLD/BIOS out of sync
The FPGA, EPLD and BIOS versions could affect the leaf node's ability to bring up the
modules as expected. If these are too far out of date, the interfaces of the switch could
fail to come up. The user can validate the running and expected versions of FPGA,
EPLD, and BIOS with the following moquery commands.

(none)# moquery -c firmwareCardRunning
Total Objects shown: 2

firmware.CardRunning
biosVer : v07.66(06/11/2019)
childAction :
descr :
dn : sys/ch/supslot-1/sup/running
expectedVer : v07.65(09/04/2018) interimVer : 14.2(1j)
internalLabel :
modTs : never
mode : normal
monPolDn : uni/fabric/monfab-default
operSt : ok
rn : running
status :
ts : 1970-01-01T00:00:00.000+00:00
type : switch
version : 14.2(1j)

firmware.CardRunning
biosVer : v07.66(06/11/2019)
childAction :
descr :
dn : sys/ch/lcslot-1/lc/running
expectedVer : v07.65(09/04/2018) interimVer : 14.2(1j)

Fabric discovery 23

internalLabel :
modTs : never
mode : normal
monPolDn : uni/fabric/monfab-default
operSt : ok
rn : running
status :
ts : 1970-01-01T00:00:00.000+00:00
type : switch
version : 14.2(1j)

(none)# moquery -c firmwareCompRunning
Total Objects shown: 2

firmware.CompRunning childAction :
descr :
dn : sys/ch/supslot-1/sup/fpga-1/running
expectedVer : 0x14 internalLabel :
modTs : never
mode : normal
monPolDn : uni/fabric/monfab-default
operSt : ok
rn : running
status :
ts : 1970-01-01T00:00:00.000+00:00
type : controller
version : 0x14

firmware.CompRunning
childAction :
descr :
dn : sys/ch/supslot-1/sup/fpga-2/runnin
expectedVer : 0x4
internalLabel :
modTs : never
mode : normal
monPolDn : uni/fabric/monfab-default
operSt : ok
rn : running
status :
ts : 1970-01-01T00:00:00.000+00:00
type : controller
version : 0x4

If the running FPGA version does not match the expected FPGA version, it can be
updated with the steps found in the chapter "Fabric discovery", section "Device
replacement" under scenario "Leaf/Spine EPLD/FPGA not correct, F1582".

24 Fabric discovery

Check09 — SSL check

Check09 - SSL check [check]
SSL certificate details are valid

SSL communication is used between all fabric nodes to ensure encryption of control
plane traffic. The SSL certificate used is installed during manufacturing and is
generated based on the serial number of the chassis. The format of the subject should
be as follows:

subject= /serialNumber=PID:N9K-C93xxxxx SN:FDOxxxxxxxx/CN=FDOxxxxxxxx

To validate SSL certificate during the discovery of a switch, use the following command.

(none)# cd /securedata/ssl && openssl x509 -noout -subject -in server.crt
subject= /serialNumber=PID:N9K-C93180YC-EX SN:FDO20432LH1/CN=FDO20432LH1

Note that the above will only work as non-root user if the switch node is still in
discovery.

The chassis serial number can be found with the following command.

(none)# show inventory
NAME: "Chassis", DESCR: "Nexus C93180YC-EX Chassis"
PID: N9K-C93180YC-EX , VID: V00 , SN: FDO20160TPS
...

Additionally, the certificate must be valid at the current time. To view the valid dates of
the certificate, use the '-dates' flag in the openssl command.

(none)# cd /securedata/ssl && openssl x509 -noout -dates -in server.crt
notBefore=Nov 28 17:17:05 2016 GMT
notAfter=Nov 28 17:27:05 2026 GMT

Fabric discovery 25

Check10 — Download policy

Check10 - Downloading policies [FAIL]
Registration to all PM shards is not complete
Policy download is not complete

Once the leaf has IP reachability to the APIC, it will download its configuration from the
APIC and the APIC will acknowledge that the download is complete. The status of this
process can be viewed with the following command.

(none)# moquery -c pconsBootStrap
Total Objects shown: 1

pcons.BootStrap
allLeaderAcked : no
allPortsInService : yes
allResponsesFromLeader : yes
canBringPortInService : no
childAction :
completedPolRes : no
dn : rescont/bootstrap
lcOwn : local
modTs : 2019-09-27T22:52:48.729+00:00
rn : bootstrap
state : completed
status :
timerTicks : 360
try : 0
worstCaseTaskTry : 0

Check11 — Time

Check11 - Checking time [ok]
2019-10-01 17:02:34

This check shows the user the current time. If there is too much delta between APIC
and switch time, discovery could fail. On the APIC, the time can be checked with the
date command.

26 Fabric discovery

apic1# date
Tue Oct 1 14:35:38 UTC 2019

Check12 — Module, PSU, fan check
For the switch to have connectivity to other devices, the modules need to be up and
online. This can be validated via 'show module' and 'show environment' commands.

(none)# show module

Mod Ports Module-Type Model Status
--- ----- ----------------------------------- ------------------ ----------
1 54 48x10/25G+6x40/100G Switch N9K-C93180YC-EX ok

Mod Sw Hw
--- -------------- ------
1 14.2(1j) 0.3050

Mod MAC-Address(es) Serial-Num
--- -------------------------------------- ----------
1 e0-0e-da-a2-f2-83 to e0-0e-da-a2-f2-cb FDO20160TPS

Mod Online Diag Status
--- ------------------
1 pass

(none)# show environment
Power Supply:
Voltage: 12.0 Volts

Power Actual Total
Supply Model Output Capacity Status
 (Watts) (Watts)
------- ------------------- ----------- ----------- --------------
1 NXA-PAC-650W-PI 0 W 650 W shut
2 NXA-PAC-650W-PI 171 W 650 W ok
 Actual Power
Module Model Draw Allocated Status
 (Watts) (Watts)
-------- ------------------- ----------- ----------- --------------
1 N9K-C93180YC-EX 171 W 492 W Powered-Up
fan1 NXA-FAN-30CFM-B N/A N/A Powered-Up
fan2 NXA-FAN-30CFM-B N/A N/A Powered-Up
fan3 NXA-FAN-30CFM-B N/A N/A Powered-Up
fan4 NXA-FAN-30CFM-B N/A N/A Powered-Up

N/A - Per module power not available

Power Usage Summary:

Fabric discovery 27

Power Supply redundancy mode (configured) Non-Redundant(combined)
Power Supply redundancy mode (operational) Non-Redundant(combined)

Total Power Capacity (based on configured mode) 650 W
Total Power of all Inputs (cumulative) 650 W
Total Power Output (actual draw) 171 W
Total Power Allocated (budget) N/A
Total Power Available for additional modules N/A

Fan:
--
Fan Model Hw Status
--
Fan1(sys_fan1) NXA-FAN-30CFM-B -- ok
Fan2(sys_fan2) NXA-FAN-30CFM-B -- ok
Fan3(sys_fan3) NXA-FAN-30CFM-B -- ok
Fan4(sys_fan4) NXA-FAN-30CFM-B -- ok
Fan_in_PS1 -- -- unknown
Fan_in_PS2 -- -- ok
Fan Speed: Zone 1: 0x7f
Fan Air Filter : Absent

Temperature:

Module Sensor MajorThresh MinorThres CurTemp Status
 (Celsius) (Celsius) (Celsius)

1 Inlet(1) 70 42 35 normal
1 outlet(2) 80 70 37 normal
1 x86 processor(3) 90 80 38 normal
1 Sugarbowl(4) 110 90 60 normal
1 Sugarbowl vrm(5) 120 110 50 normal

If a module is not coming online, reseat the module and check for FPGA, EPLD, or BIOS
mismatches.

Broken scenarios

First leaf does not appear in Fabric Membership
In this scenario, the user logs into APIC1 after completing the setup script and no
switches have appeared in Fabric Membership. For the discovery of first leaf to occur
successfully, the APIC should receive a DHCP Discover from the leaf in discovery phase.

28 Fabric discovery

Check that APIC1 is sending LLDP TLVs matching the parameters set in the setup script.

apic1# acidiag run lldptool out eth2-1
Chassis ID TLV
 MAC: e8:65:49:54:88:a1
Port ID TLV
 MAC: e8:65:49:54:88:a1
Time to Live TLV
 120
Port Description TLV
 eth2-1
System Name TLV
 apic1
System Description TLV
 topology/pod-1/node-1
Management Address TLV
 IPv4: 10.0.0.1
 Ifindex: 4
Cisco Port State TLV
 1
Cisco Node Role TLV
 0
Cisco Node ID TLV
 1
Cisco POD ID TLV
 1
Cisco Fabric Name TLV
 ACIFabric1
Cisco Appliance Vector TLV
 Id: 1
 IPv4: 10.0.0.1
 UUID: c67d1076-a2a2-11e9-874e-a390922be712
Cisco Node IP TLV
 IPv4:10.0.0.1
Cisco Port Role TLV
 2
Cisco Infra VLAN TLV
 3967
Cisco Serial Number TLV
 FCH1929V153
Cisco Authentication Cookie TLV
 1372058352
Cisco Standby APIC TLV
 0
End of LLDPDU TLV

Fabric discovery 29

Also validate that APIC1 is receiving LLDP from the directly connected leaf node.

apic1# acidiag run lldptool in eth2-1
Chassis ID TLV
 MAC: e0:0e:da:a2:f2:83
Port ID TLV
 Local: Eth1/1
Time to Live TLV
 120
Port Description TLV
 Ethernet1/1
System Name TLV
 switch
System Description TLV
 Cisco Nexus Operating System (NX-OS) Software 14.2(1j)
TAC support: http://www.cisco.com/tac
Copyright (c) 2002-2020, Cisco Systems, Inc. All rights reserved.
System Capabilities TLV
 System capabilities: Bridge, Router
 Enabled capabilities: Bridge, Router
Management Address TLV
 MAC: e0:0e:da:a2:f2:83
 Ifindex: 83886080
Cisco 4-wire Power-via-MDI TLV
 4-Pair PoE supported
 Spare pair Detection/Classification not required
 PD Spare pair Desired State: Disabled
 PSE Spare pair Operational State: Disabled
Cisco Port Mode TLV
 0
Cisco Port State TLV
 1
Cisco Serial Number TLV
 FDO20160TPS
Cisco Model TLV
 N9K-C93180YC-EX
Cisco Firmware Version TLV
 n9000-14.2(1j)
Cisco Node Role TLV
 1
Cisco Infra VLAN TLV
 3967
Cisco Node ID TLV
 0
End of LLDPDU TLV

30 Fabric discovery

If APIC1 is receiving LLDP from the directly connected leaf node, the leaf should
program the infra VLAN on the ports connected to the APIC. This VLAN programming
can be validated via the 'show vlan encap-id <x>' command where 'x' is the configured
infra VLAN.

(none)# show vlan encap-id 3967
VLAN Name Status Ports
---- -------------------------------- --------- -------------------------------
8 infra:default active Eth1/1

VLAN Type Vlan-mode
---- ----- ----------
8 enet CE

If the infra VLAN has not been programmed, check for wiring issues detected by the
leaf node.

(none)# moquery -c lldpIf -f 'lldp.If.wiringIssues!=""'
Total Objects shown: 1

lldp.If
id : eth1/1
adminRxSt : enabled
adminSt : enabled
adminTxSt : enabled
childAction :
descr :
dn : sys/lldp/inst/if-[eth1/1]
lcOwn : local
mac : E0:0E:DA:A2:F2:83
modTs : 2019-09-30T18:45:22.323+00:00
monPolDn : uni/fabric/monfab-default
name :
operRxSt : enabled
operTxSt : enabled
portDesc :
portMode : normal
portVlan : unspecified
rn : if-[eth1/1]
status :
sysDesc :
wiringIssues : infra-vlan-mismatch

When wiring issues attribute is set to 'infra-vlan-mismatch', the indication is that the
leaf has learned of a different infra VLAN than the value which the APIC is sending (the

Fabric discovery 31

APIC sent value can be verified using the command 'moquery -c lldpInst'). This scenario
can occur if the leaf receives LLDP from a node that was once a part of another fabric.
Essentially, a node in discovery will accept the first infra VLAN received via LLDP. To
resolve this, remove the connections between this leaf and the other ACI nodes, except
for the APIC, then clean reload the switch with 'acidiag touch clean' and 'reload'
commands. Once the switch has booted, verify the correct infra VLAN is programmed.
If this is true, connections can be restored to the other nodes and the user can proceed
further with the ACI fabric set up.

Other APICs do not join the cluster
In this scenario, all fabric nodes have been discovered but APIC2 and 3 have not yet
joined the APIC cluster.

Validate the setup script values across APICs. Values that must match are:

• Fabric domain

• Fabric ID

• TEP pool

• Infra VLAN

• GIPo

• Cluster size

• Firmware version

apic1# cat /data/data_admin/sam_exported.config
Setup for Active and Standby APIC

fabricDomain = ACIFabric1
fabricID = 1
systemName =apic1
controllerID = 1
tepPool = 10.0.0.0/16
infraVlan = 3967
GIPo = 225.0.0.0/15
clusterSize = 3
standbyApic = NO
enableIPv4 = Y

32 Fabric discovery

enableIPv6 = N
firmwareVersion = 4.2(1j)
ifcIpAddr = 10.0.0.1
apicX = NO
podId = 1
oobIpAddr = 10.48.22.69/24

Verify common issues with 'acidiag cluster' command on all 3 APICs.

apic1# acidiag cluster
Admin password:

Product-name = APIC-SERVER-M1
Serial-number = FCH1906V1XV
Running...

Checking Core Generation: OK
Checking Wiring and UUID: OK
Checking AD Processes: Running
Checking All Apics in Commission State: OK
Checking All Apics in Active State: OK
Checking Fabric Nodes: OK
Checking Apic Fully-Fit: OK
Checking Shard Convergence: OK
Checking Leadership Degration: Optimal leader for all shards
Ping OOB IPs:
APIC-1: 10.48.22.69 - OK
APIC-2: 10.48.22.70 - OK
APIC-3: 10.48.22.71 - OK
Ping Infra IPs:
APIC-1: 10.0.0.1 - OK
APIC-2: 10.0.0.2 - OK
APIC-3: 10.0.0.3 - OK
Checking APIC Versions: Same (4.2(1j))
Checking SSL: OK

Done!

Finally, use 'avread' to validate if these settings match across all APICs. Note that this is
a different command from the typical 'acidiag avread' which shows similar output, but it
is parsed for easier consumption.

Fabric discovery 33

apic1# avread
Cluster:

fabricDomainName ACIFabric1
discoveryMode PERMISSIVE
clusterSize 3
version 4.2(1j)
drrMode OFF
operSize 3

APICs:

 APIC 1 APIC 2 APIC 3
version 4.2(1j) 4.2(1j) 4.2(1j)
address 10.0.0.1 10.0.0.2 10.0.0.3
oobAddress 10.48.22.69/24 10.48.22.70/24 10.48.22.71/24
routableAddress 0.0.0.0 0.0.0.0 0.0.0.0
tepAddress 10.0.0.0/16 10.0.0.0/16 10.0.0.0/16
podId 1 1 1
chassisId 3c9e5024-.-5a78727f 573e12c0-.-6b8da0e5 44c4bf18-.-20b4f52& cntrlSbst_serial
(APPROVED,FCH1906V1XV) (APPROVED,FCH1921V1Q9) (APPROVED,FCH1906V1PW)
active YES YES YES
flags cra- cra- cra-
health 255 255 255
apic1#

Spine does not appear in Fabric Membership
In this scenario, the first leaf has been discovered in the fabric but no spines have
appeared for discovery under the Fabric Membership submenu.

Validate physical connectivity from leaf to spine. In the example below, the leaf switch
is connected to a spine via interface e1/49.

leaf101# show int eth1/49
Ethernet1/49 is up
admin state is up, Dedicated Interface
 Hardware: 1000/10000/100000/40000 Ethernet, address: 0000.0000.0000 (bia e00e.daa2.f3f3)
 MTU 9366 bytes, BW 100000000 Kbit, DLY 1 usec
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, medium is broadcast
 Port mode is routed
 full-duplex, 100 Gb/s
...

34 Fabric discovery

If the port is in an out-of-service status, check on the spine that LLDP has been
received from the directly connected leaf.

(none)# show lldp neighbors
Capability codes:
 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID Local Intf Hold-time Capability Port ID
leaf102 Eth2/27 120 BR Eth1/53
leaf103 Eth2/29 120 BR Eth1/49
leaf101 Eth2/32 120 BR Eth1/51
Total entries displayed: 3

Another validation is to verify that there is no version difference between leaf and
spine. If there is, remediate the situation by copying the newer version to /bootflash of
the spine. Then, configure the switch to boot to the software with the following
commands:

(none)# ls -alh /bootflash
total 3.0G
drwxrwxr-x 3 root admin 4.0K Oct 1 20:21 .
drwxr-xr-x 50 root root 1.3K Oct 1 00:22 ..
-rw-r--r-- 1 root root 3.5M Sep 30 21:24 CpuUsage.Log
-rw-rw-rw- 1 root root 1.7G Sep 27 14:50 aci-n9000-dk9.14.2.1j.bin
-rw-r--r-- 1 root root 1.4G Sep 27 21:20 auto-s
-rw-rw-rw- 1 root root 2 Sep 27 21:25 diag_bootup
-rw-r--r-- 1 root root 54 Oct 1 20:20 disk_log.txt
-rw-rw-rw- 1 root root 693 Sep 27 21:23 libmon.logs
drwxr-xr-x 4 root root 4.0K Sep 26 15:24 lxc
-rw-r--r-- 1 root root 384K Oct 1 20:20 mem_log.txt
-rw-r--r-- 1 root root 915K Sep 27 21:10 mem_log.txt.old.gz
-rw-rw-rw- 1 root root 12K Sep 27 21:17 urib_api_log.txt

(none)# setup-bootvars.sh aci-n9000-dk9.14.2.1j.bin
In progress
In progress
In progress
In progress
Done

If the new image is continuously removed from bootflash, ensure that the folder is less
than half full by removing older images or auto-s file; check the space utilization by
using 'df -h' on the switch.

Fabric discovery 35

After setting the boot variable, reload the switch and it should boot to the new version.

FPGA, EPLD, and BIOS validation might be required after the reload. Please refer to the
sub-section "Leaf/Spine EPLD/FPGA not correct, F1582" for further troubleshooting on
this matter.

After initial fabric discovery, cluster is flapping between fully-fit and degraded
If this is happening after a new fabric setup, it can be caused by incorrect cabling of the
APIC-M3 or APIC-L3 connecting into the fabric. You can confirm such incorrect cabling
by executing "show lldp neighbors" on both leaf switches connected to the APIC. You
will notice after executing this multiple times that both leaf switches are seeing the
same APIC interface.

The back of an APIC-M3/L3 server looks like the following:

Rear-view of APIC-M3/L3 server

Note that for an APIC-M3/L3, the VIC card has 4 ports: ETH2-1, ETH2-2, ETH2-3, and
ETH2-4, as seen below:

View of APIC VIC 1455 with labels

36 Fabric discovery

The rules to connect the APIC server to leaf switches are as follows:

• All ports must have the same speed, either 10-Gigabit or 25-Gigabit.

• ETH2-1 and ETH2-2 is one port-channel pair, corresponding to eth2-1 ('ifconfig'
output) from the APIC OS.

• ETH2-3 and ETH2-4 is the other port-channel pair, corresponding to eth2-2
('ifconfig' output) on APIC OS.

• Only one connection is allowed per port-channel pair. For example, connect one
cable to either ETH2-1 or ETH2-2, and connect another cable to either ETH2-3
or ETH2-4 (Never connect both ETHs in a port channel pair. This will lead to
fabric discovery issues.).

For further understanding, the following is a representation of the VIC port mapping to
APIC bond.

VIC 1455 ports — APIC redundant fabric port

Fabric discovery 37

Multi-Pod discovery

Overview

ACI Multi-Pod allows for the deployment of a single APIC cluster to manage multiple
ACI networks that are interconnected. Those separate ACI networks are called 'Pods'
and each Pod is a regular two or three-tier spine-leaf topology. A single APIC cluster
can manage several Pods.

A Multi-Pod design also allows for the extension of ACI fabric policies across Pods that
can physically exist in multiple rooms or even across remote datacenter locations. In a
Multi-Pod design, any policy defined on the APIC controller cluster is automatically
made available to all Pods.

Finally, a Multi-Pod design increases failure domain isolation. In fact, each Pod runs its
own instance of COOP, MP-BGP and IS-IS protocol so faults and issues with any of
these protocols are contained within that Pod and cannot spread to other Pods.

Please refer to the document "ACI Multi-Pod White Paper" on cisco.com for more
information on Multi-Pod design and best practices.

The main elements of a Multi-Pod ACI fabric are the leaf and spine switches, the APIC
controllers and the IPN devices.

38 Fabric discovery

This example dives into the troubleshooting workflow for issues related to setting up an
ACI Multi-Pod fabric. The reference topology used for this section is depicted in the
picture below:

ACI Multi-Pod reference topology

Fabric discovery 39

Troubleshooting workflow

Verify ACI policies

Access Policies
Multi-Pod uses an L3Out in order to connect Pods via the 'infra' tenant. This means the
standard set of access policies need to be in place to activate the required Multi-Pod
L3Out encapsulation (VLAN-4) on the spine ports facing towards the IPN.

Access Policies can be configured through the 'Add Pod' wizard which should be used to
deploy Multi-Pod. After using the wizard, deployed policy can be verified from the APIC
GUI. If policies are not properly configured, a fault will appear on the infra tenant and
connectivity from spines to the IPN may be not working as expected.

The following schemas can be referenced while verifying access policy definition for
the IPN-facing interfaces on the spine nodes:

40 Fabric discovery

Spine201

Spine202

Fabric discovery 41

Spine401

Spine402

42 Fabric discovery

In the infra tenant, the Multi-Pod L3Out should be configured as per the following
schema:

Multi-Pod L3Out in infra tenant

Fabric discovery 43

Below is a reference shot of the Multi-Pod L3Out Logical Interface Profile
configuration. The router sub-interface definitions should look like the picture below
for spine 201

Logical Interface Pro�le in infra L3Out

44 Fabric discovery

For each Pod, there should be a TEP Pool defined as in the picture below. Note that the
TEP Pool will be used from APIC controller to provision the IP addresses of the nodes
for the overlay-1 VRF.

Pod Fabric Setup Policy

Fabric discovery 45

Fabric External Connection Policy default
Verify that in the infra tenant the 'Fabric Ext Policy default' object is defined and
configured appropriately. A sample of this configuration is shown in the figures below.

Fabric External Connection Policy default

46 Fabric discovery

Dataplane TEP

Fabric discovery 47

Fabric External Routing Pro�le subnets

The Fabric External Routing Profile enables the user to verify whether all routed
subnets of the IPN defined are on it.

IPN Validation
Multi-Pod relies on an Inter-Pod Network (IPN) which will provide POD-to-POD
connectivity. It is crucial to verify that the configuration for the IPN is properly in place.
Often faulty or missing configuration is source of unexpected behavior or traffic drop in
case of failure scenarios. The configuration for the IPN will be described in detail in this
section.

48 Fabric discovery

For the next section, reference the following IPN topology:

IPN topology

Spine to IPN dot1q VLAN-4 sub-interfaces connectivity
Spine to IPN point-to-point connectivity is achieved with sub-interfaces on VLAN-4.
The first validation for this connectivity is to test IP reachability between the spines and
the IPN devices.

To do so, determine the correct interface and verify it is showing as up.

S1P1-Spine201# show ip int brief vrf overlay-1 | grep 172.16.101.2
eth1/29.29 172.16.101.2/30 protocol-up/link-up/admin-up

S1P1-Spine201# show ip interface eth1/29.29
IP Interface Status for VRF "overlay-1"
eth1/29.29, Interface status: protocol-up/link-up/admin-up, iod: 67, mode: external
 IP address: 172.16.101.2, IP subnet: 172.16.101.0/30
 IP broadcast address: 255.255.255.255
 IP primary address route-preference: 0, tag: 0

Fabric discovery 49

S1P1-Spine201# show system internal ethpm info interface Eth1/29.29
Ethernet1/29.29 - if_index: 0x1A01C01D
Router MAC address: 00:22:bd:f8:19:ff
Admin Config Information:
 state(up), mtu(9150), delay(1), vlan(4), cfg-status(valid)
 medium(broadcast)
Operational (Runtime) Information:
 state(up), mtu(9150), Local IOD(0x43), Global IOD(0x43), vrf(enabled)
 reason(None)
 bd_id(29)
Information from SDB Query (IM call)
 admin state(up), runtime state(up), mtu(9150),
 delay(1), bandwidth(40000000), vlan(4), layer(L3),
 medium(broadcast)
 sub-interface(0x1a01c01d) from parent port(0x1a01c000)/Vlan(4)
 Operational Bits:

User config flags: 0x1
 admin_router_mac(1)

Sub-interface FSM state(3)
No errors on sub-interface
Information from GLDB Query:
Router MAC address: 00:22:bd:f8:19:ff

After verifying the Interface is up, now test point-to-point IP connectivity:

S1P1-Spine201# iping -V overlay-1 172.16.101.1
PING 172.16.101.1 (172.16.101.1) from 172.16.101.2: 56 data bytes
64 bytes from 172.16.101.1: icmp_seq=0 ttl=255 time=0.839 ms
64 bytes from 172.16.101.1: icmp_seq=1 ttl=255 time=0.719 ms
^C
--- 172.16.101.1 ping statistics ---
2 packets transmitted, 2 packets received, 0.00% packet loss
round-trip min/avg/max = 0.719/0.779/0.839 ms
S1P1-Spine201#

If there is any connectivity issue, verify cabling and configuration on the remote IPN
(IPN1).

IPN1# show ip interface brief | grep 172.16.101.1
Eth1/33 172.16.101.101 protocol-up/link-up/admin-up
Eth1/35 172.16.101.105 protocol-up/link-up/admin-up
Eth1/53.4 172.16.101.1 protocol-up/link-up/admin-up

IPN1# show run int Eth1/53.4
interface Ethernet1/53.4
description to spine 1pod1

50 Fabric discovery

mtu 9150
encapsulation dot1q 4
ip address 172.16.101.1/30
ip ospf cost 100
ip ospf network point-to-point
ip router ospf 1 area 0.0.0.0
ip pim sparse-mode
ip dhcp relay address 10.0.0.3
no shutdown
IPN1#

OSPF configuration
OSPF is used as the routing protocol to connect Pod1 and Pod2 together within ACI VRF
'overlay-1'. The following can be referenced as a generic flow to validate if OSPF is
coming up between spine and IPN device.

S1P1-Spine201# show ip ospf neighbors vrf overlay-1
OSPF Process ID default VRF overlay-1
Total number of neighbors: 2
Neighbor ID Pri State Up Time Address Interface
172.16.101.201 1 FULL/ - 08:39:35 172.16.101.1 Eth1/29.29
172.16.101.202 1 FULL/ - 08:39:34 172.16.101.9 Eth1/30.30

S1P1-Spine201# show ip ospf interface vrf overlay-1
Ethernet1/29.29 is up, line protocol is up
 IP address 172.16.101.2/30, Process ID default VRF overlay-1, area backbone
 Enabled by interface configuration
 State P2P, Network type P2P, cost 1
 Index 67, Transmit delay 1 sec
 1 Neighbors, flooding to 1, adjacent with 1
 Timer intervals: Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello timer due in 00:00:10
 No authentication
 Number of opaque link LSAs: 0, checksum sum 0
loopback0 is up, line protocol is up
 IP address 10.0.200.66/32, Process ID default VRF overlay-1, area backbone
 Enabled by interface configuration
 State LOOPBACK, Network type LOOPBACK, cost 1
 loopback14 is up, line protocol is up
 IP address 172.16.1.4/32, Process ID default VRF overlay-1, area backbone
 Enabled by interface configuration
 State LOOPBACK, Network type LOOPBACK, cost 1
 Ethernet1/30.30 is up, line protocol is up
 IP address 172.16.101.10/30, Process ID default VRF overlay-1, area backbone
 Enabled by interface configuration
 State P2P, Network type P2P, cost 1
 Index 68, Transmit delay 1 sec
 1 Neighbors, flooding to 1, adjacent with 1
 Timer intervals: Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello timer due in 00:00:09

Fabric discovery 51

No authentication
 Number of opaque link LSAs: 0, checksum sum 0

IPN1# show ip ospf neighbors
OSPF Process ID 1 VRF default
Total number of neighbors: 5
Neighbor ID Pri State Up Time Address Interface
172.16.101.203 1 FULL/ - 4d12h 172.16.101.102 Eth1/33
172.16.101.202 1 FULL/ - 4d12h 172.16.101.106 Eth1/35
172.16.110.201 1 FULL/ - 4d12h 172.16.110.2 Eth1/48
172.16.1.4 1 FULL/ - 08:43:39 172.16.101.2 Eth1/53.4
172.16.1.6 1 FULL/ - 08:43:38 172.16.101.6 Eth1/54.4

When OSPF is up between all spines and IPN devices, all the Pod TEP pools can be seen
within the IPN routing tables.

IPN1# show ip ospf database 10.0.0.0 detail
 OSPF Router with ID (172.16.101.201) (Process ID 1 VRF default)
 Type-5 AS External Link States
LS age: 183
Options: 0x2 (No TOS-capability, No DC)
LS Type: Type-5 AS-External
Link State ID: 10.0.0.0 (Network address)
Advertising Router: 172.16.1.4
LS Seq Number: 0x80000026
Checksum: 0x2da0
Length: 36
Network Mask: /16
 Metric Type: 2 (Larger than any link state path)
 TOS: 0
 Metric: 20
 Forward Address: 0.0.0.0
 External Route Tag: 0
LS age: 183
Options: 0x2 (No TOS-capability, No DC)
LS Type: Type-5 AS-External
Link State ID: 10.0.0.0 (Network address)
Advertising Router: 172.16.1.6
LS Seq Number: 0x80000026
Checksum: 0x21aa
Length: 36
Network Mask: /16
 Metric Type: 2 (Larger than any link state path)
 TOS: 0
 Metric: 20
 Forward Address: 0.0.0.0
 External Route Tag: 0

IPN1# show ip ospf database 10.1.0.0 detail
 OSPF Router with ID (172.16.101.201) (Process ID 1 VRF default)
 Type-5 AS External Link States

52 Fabric discovery

LS age: 1779
Options: 0x2 (No TOS-capability, No DC)
LS Type: Type-5 AS-External
Link State ID: 10.1.0.0 (Network address)
Advertising Router: 172.16.2.4
LS Seq Number: 0x80000022
Checksum: 0x22ad
Length: 36
Network Mask: /16
 Metric Type: 2 (Larger than any link state path)
 TOS: 0
 Metric: 20
 Forward Address: 0.0.0.0
 External Route Tag: 0
LS age: 1780
Options: 0x2 (No TOS-capability, No DC)
LS Type: Type-5 AS-External
Link State ID: 10.1.0.0 (Network address)
Advertising Router: 172.16.2.6
LS Seq Number: 0x80000022
Checksum: 0x16b7
Length: 36
Network Mask: /16
 Metric Type: 2 (Larger than any link state path)
 TOS: 0
 Metric: 20
 Forward Address: 0.0.0.0
 External Route Tag: 0

IPN1# show ip route 10.0.0.0
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.0.0.0/16, ubest/mbest: 2/0
*via 172.16.101.2, Eth1/53.4, [110/20], 08:39:17, ospf-1, type-2
*via 172.16.101.6, Eth1/54.4, [110/20], 08:39:17, ospf-1, type-2

IPN1# show ip route 10.1.0.0
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.1.0.0/16, ubest/mbest: 1/0
*via 172.16.101.102, Eth1/33, [110/20], 08:35:25, ospf-1, type-2

Notice on IPN1 for the remote Pod (Pod2), only the most optimal route is shown in the
'show ip route' command.

Fabric discovery 53

DHCP relay configuration
Switch nodes receive their infra TEP address utilizing DHCP towards the APICs. All
APICs will typically receive the discover, but it is the first APIC to receive the discover
and present an offer which will allocate the TEP address. To account for this in a Multi-
Pod scenario, configure DHCP relay on the IPN to receive these discovers and unicast
them towards the APICs. Generally, configure all IPN spine-facing interfaces with IP
helpers pointing to all APICs. This will futureproof the IPN config if APIC is moved due
to recabling, a standby APIC fails over, or any other scenarios that involve an APIC
moving to a new Pod.

In this scenario, that means configuring IPN1 Eth1/53.4 and Eth1/54.4 with IP helpers
pointing to all APICs:

interface Ethernet1/53.4
 description to spine 1pod1
 mtu 9150
 encapsulation dot1q 4
 ip address 172.16.101.1/30
 ip ospf cost 100
 ip ospf network point-to-point
 ip router ospf 1 area 0.0.0.0
 ip pim sparse-mode
 ip dhcp relay address 10.0.0.1
 ip dhcp relay address 10.0.0.2
 ip dhcp relay address 10.0.0.3
 no shutdown

interface Ethernet1/54.4
 description to spine 2pod1
 mtu 9150
 encapsulation dot1q 4
 ip address 172.16.101.5/30
 ip ospf cost 100
 ip ospf network point-to-point
 ip router ospf 1 area 0.0.0.0
 ip pim sparse-mode
 ip dhcp relay address 10.0.0.1
 ip dhcp relay address 10.0.0.2
 ip dhcp relay address 10.0.0.3
 no shutdown

54 Fabric discovery

From IPN3:

interface Ethernet1/53.4
 description to spine 1pod2
 mtu 9150
 encapsulation dot1q 4
 ip address 172.16.101.17/30
 ip ospf cost 100
 ip ospf network point-to-point
 ip router ospf 1 area 0.0.0.0
 ip pim sparse-mode
 ip dhcp relay address 10.0.0.1
 ip dhcp relay address 10.0.0.2
 ip dhcp relay address 10.0.0.3
 no shutdown

interface Ethernet1/54.4
 description to spine 2pod2
 mtu 9150
 encapsulation dot1q 4
 ip address 172.16.101.21/30
 ip ospf cost 100
 ip ospf network point-to-point
 ip router ospf 1 area 0.0.0.0
 ip pim sparse-mode
 ip dhcp relay address 10.0.0.1
 ip dhcp relay address 10.0.0.2
 ip dhcp relay address 10.0.0.3
 no shutdown

MTU
If OSPF is not coming up (EXCHANGE or EXSTART) between spine and IPN device,
make sure to validate that MTU matches between devices.

RP configuration
With PIM BiDir, the Rendezvous Point (RP) is not part of the datapath. For functional
multicast, each IPN device need only have a route to the RP address. Redundancy can
be achieved using a Phantom RP configuration. In this case, Anycast RP is not a valid
redundancy method due to not having a source to exchange via Multicast Source
Discovery Protocol (MSDP).

In a Phantom RP design, the RP is a non-existent address in a reachable subnet. In the
below config, assume the multicast range configured in the APIC initial setup is the
default 225.0.0.0/15. If it was changed in APIC initial setup, IPN configurations must be
aligned.

Fabric discovery 55

The loopback1 below is the phantom-rp loopback. It must be injected in OSPF; however,
it can't be used as OPSF router-id. A separate loopback (loopback0) must be used for
that.

IPN1 config:

interface loopback1
 description IPN1-RP-Loopback
 ip address 172.16.101.221/30
 ip ospf network point-to-point
 ip router ospf 1 area 0.0.0.0
 ip pim sparse-mode
ip pim rp-address 172.16.101.222 group-list 225.0.0.0/15 bidir
ip pim rp-address 172.16.101.222 group-list 239.255.255.240/32 bidir

IPN2 config:

ip pim rp-address 172.16.101.222 group-list 225.0.0.0/15 bidir
ip pim rp-address 172.16.101.222 group-list 239.255.255.240/32 bidir

IPN3 config:

interface loopback1
 description IPN3-RP-Loopback
 ip address 172.16.101.221/29
 ip ospf network point-to-point
 ip router ospf 1 area 0.0.0.0
 ip pim sparse-mode
ip pim rp-address 172.16.101.222 group-list 225.0.0.0/15 bidir
ip pim rp-address 172.16.101.222 group-list 239.255.255.240/32 bidir

IPN4 config:

ip pim rp-address 172.16.101.222 group-list 225.0.0.0/15 bidir
ip pim rp-address 172.16.101.222 group-list 239.255.255.240/32 bidir

The subnet mask on the loopback cannot be a /32. To use IPN1 as the primary device in
the Phantom RP design, use a /30 subnet mask to take advantage of the most specific

56 Fabric discovery

1

2

3

4

route being preferred in the OSPF topology. IPN3 will be the secondary device in the
Phantom RP design, so use a /29 subnet mask to make it a less specific route. The /29
will only get used if something happens to stop the /30 from existing and subsequently
existing within the OSPF topology.

Troubleshooting the 1st Remote Pod spine joining the fabric
The following steps outlines the process that the 1st Remote Pod Spine takes to join the
fabric:

The spine will do DHCP on its sub-interface facing the IPN. The DHCP Relay
config will carry this discover to the APICs. The APICs will respond if the spine
was added in the Fabric Membership. The IP address that gets offered is the IP
address configured on the Multi-Pod L3Out.

The spine will install a route towards the DHCP server that offered the IP
address as a static route towards the other end of the point-to-point interface.

The spine will download a bootstrap file from the APIC through the static route.

The spine will get configured based on the bootstrap file to bring up VTEP, OSPF
and BGP to join the fabric.

From the APIC, validate if the L3Out IP is properly configured to be offered: (our Spine
401 has serial FDO22472FCV)

bdsol-aci37-apic1# moquery -c dhcpExtIf
dhcp.ExtIf
ifId : eth1/30
childAction :
dn : client-[FDO22472FCV]/if-[eth1/30]
ip : 172.16.101.26/30
lcOwn : local
modTs : 2019-10-01T09:51:29.966+00:00
name :
nameAlias :
relayIp : 0.0.0.0
rn : if-[eth1/30]
status :
subIfId : unspecified
dhcp.ExtIf
ifId : eth1/29
childAction :

Fabric discovery 57

dn : client-[FDO22472FCV]/if-[eth1/29]
ip : 172.16.101.18/30
lcOwn : local
modTs : 2019-10-01T09:51:29.966+00:00
name :
nameAlias :
relayIp : 0.0.0.0
rn : if-[eth1/29]
status :
subIfId : unspecified

Validate if the IPN-facing interface received the expected IP address matching L3Out
configuration done in infra Tenant.

S1P2-Spine401# show ip interface brief | grep eth1/29
eth1/29 unassigned protocol-up/link-up/admin-up
eth1/29.29 172.16.101.18/30 protocol-up/link-up/admin-up
S1P2-Spine401#

Now IP connectivity has been established from the spine to the APIC and connectivity
through ping can be verified:

S1P2-Spine401# iping -V overlay-1 10.0.0.1
PING 10.0.0.1 (10.0.0.1) from 172.16.101.18: 56 data bytes
64 bytes from 10.0.0.1: icmp_seq=0 ttl=60 time=0.345 ms
64 bytes from 10.0.0.1: icmp_seq=1 ttl=60 time=0.294 ms
^C
--- 10.0.0.1 ping statistics ---
2 packets transmitted, 2 packets received, 0.00% packet loss
round-trip min/avg/max = 0.294/0.319/0.345 ms
S1P2-Spine401#

The spine will now bring up the OSPF to the IPN and setup a loopback for the router id:

S1P2-Spine401# show ip ospf neighbors vrf overlay-1
OSPF Process ID default VRF overlay-1
Total number of neighbors: 2
Neighbor ID Pri State Up Time Address Interface
172.16.101.204 1 FULL/ - 00:04:16 172.16.101.25 Eth1/30.30
172.16.101.203 1 FULL/ - 00:04:16 172.16.101.17 Eth1/29.29
S1P2-Spine401# show ip ospf interface vrf overlay-1
loopback8 is up, line protocol is up
 IP address 172.16.2.4/32, Process ID default VRF overlay-1, area backbone
 Enabled by interface configuration
 State LOOPBACK, Network type LOOPBACK, cost 1

58 Fabric discovery

 Ethernet1/30.30 is up, line protocol is up
 IP address 172.16.101.26/30, Process ID default VRF overlay-1, area backbone
 Enabled by interface configuration
 State P2P, Network type P2P, cost 1
 Index 68, Transmit delay 1 sec
 1 Neighbors, flooding to 1, adjacent with 1
 Timer intervals: Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello timer due in 00:00:07
 No authentication
 Number of opaque link LSAs: 0, checksum sum 0
Ethernet1/29.29 is up, line protocol is up
 IP address 172.16.101.18/30, Process ID default VRF overlay-1, area backbone
 Enabled by interface configuration
 State P2P, Network type P2P, cost 1
 Index 67, Transmit delay 1 sec
 1 Neighbors, flooding to 1, adjacent with 1
 Timer intervals: Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello timer due in 00:00:04
 No authentication
 Number of opaque link LSAs: 0, checksum sum 0

The spine will now receive its PTEP trough DHCP:

S1P2-Spine401# show ip interface vrf overlay-1 | egrep -A 1 status
lo0, Interface status: protocol-up/link-up/admin-up, iod: 4, mode: ptep
IP address: 10.1.88.67, IP subnet: 10.1.88.67/32

The spine will move from Discovering to Active and is fully discovered:

bdsol-aci37-apic1# acidiag fnvread
 ID Pod ID Name Serial Number IP Address Role State LastUpdMsgId
--
 101 1 S1P1-Leaf101 FDO224702JA 10.0.160.64/32 leaf active 0
 102 1 S1P1-Leaf102 FDO223007G7 10.0.160.67/32 leaf active 0
 201 1 S1P1-Spine201 FDO22491705 10.0.160.65/32 spine active 0
 202 1 S1P1-Spine202 FDO224926Q9 10.0.160.66/32 spine active 0
 401 2 S1P2-Spine401 FDO22472FCV 10.1.88.67/32 spine active 0

Please do know that we can only discover a remote spine when it has at least 1 leaf
switch connected to it.

Fabric discovery 59

Verify remaining leaf and spine switches
The rest of the Pod is now discovered as per the normal Pod bring up procedure, as
discussed in the section "Initial fabric setup".

Check remote Pod APIC
To discover the 3rd APIC, the following process is followed:

• The leaf301 creates a static route to the directly connected APIC (APIC3) based
on LLDP (same as single Pod case). The remote APIC will receive an IP address
out of the POD1 IP Pool. We will create this route as a /32.

• Leaf301 advertises this route using IS-IS to Spine401 and Spine402 (same as
single Pod case)

• Spine401 and Spine402 redistribute this route into OSPF towards IPN

• Spine201 and Spine202 redistribute this route from OSPF to IS-IS in Pod1

• Now connectivity is established between APIC3 and APIC1 and APIC2

• APIC3 can now join the cluster

In order to confirm, use the following checks:

The Leaf301 creates a static route to the directly connected APIC (APIC3) based on
LLDP (same as Single Pod case)

S1P2-Leaf301# show ip route 10.0.0.3 vrf overlay-1
IP Route Table for VRF "overlay-1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.0.0.3/32, ubest/mbest: 2/0
 *via 10.1.88.64, eth1/50.14, [115/12], 00:07:21, isis-isis_infra, isis-l1-ext
 *via 10.1.88.67, eth1/49.13, [115/12], 00:07:15, isis-isis_infra, isis-l1-ext
 via 10.0.0.3, vlan9, [225/0], 07:31:04, static

60 Fabric discovery

Leaf301 advertises this route using IS-IS to Spine401 and Spine402 (same as single Pod
case)

Spine401 and Spine402 leak this route into OSPF towards IPN

S1P2-Spine401# show ip route 10.0.0.3 vrf overlay-1
IP Route Table for VRF "overlay-1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.0.0.3/32, ubest/mbest: 1/0
 *via 10.1.88.65, eth1/2.35, [115/11], 00:17:38, isis-isis_infra, isis-l1-ext S1P2-Spine401#

IPN3# show ip route 10.0.0.3
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.0.0.3/32, ubest/mbest: 2/0
 *via 172.16.101.18, Eth1/53.4, [110/20], 00:08:05, ospf-1, type-2
 *via 172.16.101.22, Eth1/54.4, [110/20], 00:08:05, ospf-1, type-2

S1P1-Spine201# show ip route vrf overlay-1 10.0.0.3
IP Route Table for VRF "overlay-1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.0.0.3/32, ubest/mbest: 2/0
 *via 172.16.101.1, eth1/29.29, [110/20], 00:08:59, ospf-default, type-2
 *via 172.16.101.9, eth1/30.30, [110/20], 00:08:59, ospf-default, type-2
 via 10.0.160.64, eth1/1.36, [115/12], 00:18:19, isis-isis_infra, isis-l1-ext
 via 10.0.160.67, eth1/2.35, [115/12], 00:18:19, isis-isis_infra, isis-l1-ext
S1P1-Spine201#

Now connectivity is established between APIC3 and APIC1 and APIC2

APIC3 can now join the cluster

apic1# show controller
Fabric Name : POD37
Operational Size : 3
Cluster Size : 3
Time Difference : 133
Fabric Security Mode : PERMISSIVE

Fabric discovery 61

 ID Pod Address In-Band IPv4 In-Band IPv6 OOB IPv4 OOB IPv6
Version Flags Serial Number Health
---- ---- --------------- --------------- ------------------------- --------------- ----------------------
-------- ------------------ ----- ---------------- ------------------
1* 1 10.0.0.1 0.0.0.0 fc00::1 10.48.176.57
fe80::d6c9:3cff:fe51:cb82 4.2(1i) crva- WZP22450H82 fully-fit
2 1 10.0.0.2 0.0.0.0 fc00::1 10.48.176.58
fe80::d6c9:3cff:fe51:ae22 4.2(1i) crva- WZP22441AZ2 fully-fit
3 2 10.0.0.3 0.0.0.0 fc00::1 10.48.176.59
fe80::d6c9:3cff:fe51:a30a 4.2(1i) crva- WZP22441B0T fully-fit
Flags - c:Commissioned | r:Registered | v:Valid Certificate | a:Approved | f/s:Failover fail/success
(*)Current (~)Standby (+)AS
apic1#

Ping from APIC1 to a remote device in Pod2 to validate connectivity via the following
ping: (make sure to source from the local interface, in APIC1 case 10.0.0.1)

apic1# ping 10.0.0.3 -I 10.0.0.1
PING 10.0.0.3 (10.0.0.3) from 10.0.0.1 : 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=58 time=0.132 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=58 time=0.236 ms
64 bytes from 10.0.0.3: icmp_seq=3 ttl=58 time=0.183 ms
^C
--- 10.0.0.3 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2048ms
rtt min/avg/max/mdev = 0.132/0.183/0.236/0.045 ms
apic1#

Scenarios

Spine cannot ping the IPN
This is most likely caused by:

• A misconfiguration in the ACI Access Policies.

• A misconfiguration in the IPN configuration.

Please refer to the "Troubleshooting workflow" in this chapter and review:

• Verify ACI Policies.

• IPN Validation.

62 Fabric discovery

Remote spine is not joining fabric
This is most likely caused by:

• DHCP relay issue on IPN network.

• Spine-to-APIC IP reachability over the IPN network.

Please refer to the "Troubleshooting workflow" in this chapter and review:

• Verify ACI Policies.

• IPN Validation.

• Troubleshoot 1st fabric join.

Make sure to validate that there is at least 1 leaf connected to the remote spine and that
the spine has an LLDP adjacency with this leaf.

APIC in Pod2 is not joining fabric
This is typically caused by a mistake in the APIC initial setup dialog assuming the
remote Pod leaf and spine switches were able to correctly join the fabric. In a correct
setup, expect the following 'avread' output (working APIC3 join scenario):

apic1# avread
Cluster:

fabricDomainName POD37
discoveryMode PERMISSIVE
clusterSize 3
version 4.2(1i)
drrMode OFF
operSize 3
APICs:

 APIC 1 APIC 2 APIC 3
version 4.2(1i) 4.2(1i) 4.2(1i)
address 10.0.0.1 10.0.0.2 10.0.0.3
oobAddress 10.48.176.57/24 10.48.176.58/24 10.48.176.59/24
routableAddress 0.0.0.0 0.0.0.0 0.0.0.0
tepAddress 10.0.0.0/16 10.0.0.0/16 10.0.0.0/16

Fabric discovery 63

podId 1 1 2
chassisId 7e34872e-.-d3052cda 84debc98-.-e207df70 89b73e48-.-f6948b98
cntrlSbst_serial (APPROVED,WZP22450H82) (APPROVED,WZP22441AZ2) (APPROVED,WZP22441B0T)
active YES YES YES
flags cra- cra- cra-
health 255 255 255
apic1#

Notice that APIC3 (in the remote Pod) is configured with podId 2 and the tepAddress of
Pod1.

Verify the original APIC3 setup settings by using the following command:

apic3# cat /data/data_admin/sam_exported.config
Setup for Active and Standby APIC
fabricDomain = POD37
fabricID = 1
systemName =bdsol-aci37-apic3
controllerID = 3
tepPool = 10.0.0.0/16
infraVlan = 3937
clusterSize = 3
standbyApic = NO
enableIPv4 = Y
enableIPv6 = N
firmwareVersion = 4.2(1i)
ifcIpAddr = 10.0.0.3
apicX = NO
podId = 2
oobIpAddr = 10.48.176.59/24

If a mistake occurs, login to APIC3 and execute 'acidiag touch setup' and 'acidiag
reboot'.

POD-to-POD BUM traffic not working
This is most likely caused by:

• The lack of an RP in the IP network

• The RP not reachable by the ACI fabricGeneral Multicast misconfiguration on
the IPN devices

64 Fabric discovery

Please refer to the "Troubleshooting workflow" in this chapter and review:

• IPN Validation

Also make sure one of the IPN RP devices is online.

After 1 IPN device failed, BUM traffic is being dropped
As described in the IPN Validation in the troubleshooting workflow, use a Phantom RP
to guarantee when the primary RP goes down that a secondary RP is available. Make
sure to review the "IPN Validation" section and verify the correct validation.

Inter-Pod endpoint connectivity is broken within the same EPG
This is most likely caused by a misconfiguration in the Multi-Pod setup, make sure to
validate the troubleshooting workflow and verify the entire flow. If this looks OK, please
refer to the "Multi-Pod forwarding" section in the chapter "Intra-Fabric forwarding" to
further troubleshoot this issue.

Fabric discovery 65

Device replacement

Introduction

During the evolution of an ACI fabric, it will become necessary to replace various
components including: APICs, leaf switches, spine switches, and IPN devices. The most
common reasons for replacement include RMAs and hardware upgrades. These
procedures are well documented in the Cisco Install/Upgrade guides and the most
recent guide should be read prior to replacement. This section will include a deeper
look into how the procedures work under the hood; as well as walk through several of
the most common troubleshooting scenarios.

Procedures and verification

Hardware replacement

Leaf
A leaf from the RMA depot will arrive running NXOS software. Please reference to the
below section called 'Problem: Arrives in NXOS mode' to properly convert the leaf to
ACI mode. If using a leaf from a different fabric or with previous configuration, make
sure to use the commands 'acidiag touch clean' and 'reload'.

After the above steps are completed and the new leaf switch is ready for registration,
remove the leaf to be replaced from the fabric via the 'Remove from Controller' option.

The 'Remove from Controller' option will completely remove the node from the
APIC, releasing the node ID, SN association, and TEP address which was
assigned by the APIC. These processes are desired when replacing a switch
node. The 'Decommission' option is only used when the expectation is that the
same node will rejoin the fabric with the same node ID and SN.

When the leaf switch to be replaced is no longer seen on the Fabric Membership page,
the new leaf can be connected to the fabric via the spine interfaces. Once the leaf is
discovered by the APIC, it will show up in the Fabric Inventory and be ready for

66 Fabric discovery

registration. If the device to be replaced has not yet released its node ID, and a new
switch is registered with the same node ID, a fault will be thrown referencing the fact
that the ID is already associated to another leaf node. The fault should clear after some
time. If the new node does not show up on the Fabric Membership submenu, there
could be a cabling issue; this can be verified by viewing the LLDP neighbors via the
'show lldp neighbors detail' command on the spine switches connecting to the newly
attached leaf switch. For more detail on the Fabric Discovery process, please reference
the "Initial fabric setup" chapter.

If the infra VLAN is modi�ed, all leaf nodes must be clean rebooted at the same
time. If all leaf switches are not cleaned at the same time, a clean reloaded
switch will come online and receive the old infra VLAN via LLDP from a not-yet-
cleaned leaf, and the clean reloaded leaf will fail to register with the APIC. See
the "Initial fabric setup" chapter for more details.

Due to platform limitations, VPC pairs cannot be a mix of Gen1 and Gen2 or
higher leaf switches. However, at the time of writing, any Gen2 leaf and higher
can mix with any other Gen2 leaf or higher.

Spine
Like a leaf, depending on the HW of the spine (such as modular spine) it could arrive in
NXOS mode. Use the procedure "Problem: Arrives in NXOS mode" under the scenarios
to perform the conversion.

When replacing a spine switch, the user must consider the BGP Route Reflector
functionality. As a best practice there must be at least two spine switches configured as
BGP Route Reflectors for a Layer 3 Cisco ACI fabric. This configuration is located at
'System > System Settings > BGP Route Reflectors' under Route Reflector Nodes. When
replacing or removing a spine switch, ensure the appropriate configuration changes are
made to maintain one active Route Reflector, and ensure at least two active Route
Reflectors after the changes are completed.

Refer to section "Pod Policies — BGP RR / Date&Time / SNMP" in chapter
"Management and core services" for more information on the BGP Route Reflectors.

Fabric discovery 67

APIC
The most important consideration when performing an APIC replacement is the health
of the existing APIC cluster. Prior to the replacement, all APICs in the cluster should be
reported as Fully Fit. In 4.2, an additional tool was introduced to verify the health of the
APIC cluster via CLI:

apic1# acidiag cluster
Admin password:
Product-name = APIC-SERVER-L2
Serial-number = FCH2206W0RK
Running...
Checking Core Generation: OK
Checking Wiring and UUID: OK
Checking AD Processes: Running
Checking All Apics in Commission State: OK
Checking All Apics in Active State: OK
Checking Fabric Nodes: OK
Checking Apic Fully-Fit: OK
Checking Shard Convergence: OK
Checking Leadership Degration: Optimal leader for all shards
Ping OOB IPs:
APIC-1: 192.168.4.20 - OK
Ping Infra IPs:
APIC-1: 10.0.0.1 - OK
Checking APIC Versions: Same (4.2(1i))
Checking SSL: OK

Done!

When replacing an APIC, make sure to note the initial setup variables of the APIC to be
replaced, before performing a decommission of the APIC.

apic1# cat /data/data_admin/sam_exported.config
Setup for Active and Standby APIC
fabricDomain = POD37
fabricID = 1
systemName =apic1
controllerID = 1
tepPool = 10.0.0.0/16
infraVlan = 3937
GIPo = 225.0.0.0/15
clusterSize = 3
standbyApic = NO
enableIPv4 = Y
enableIPv6 = N
firmwareVersion = 4.2(1i)
ifcIpAddr = 10.0.0.1

68 Fabric discovery

apicX = NO
podId = 1
oobIpAddr = 10.48.176.57/24

Prepare the new APIC with the correct software version and re-enter the initial setup
values referenced earlier. When the initial setup is complete and the APIC is fully
booted, recommission it to the fabric from UI of one of the other APICs in the cluster.

IPN device replacement
In a Multi-Pod environment, it might be necessary to replace one of the devices being
used for the IPN (Inter-Pod Network). Prior to the replacement, the IPN network must
have PIM Bidirectional Rendezvous Point Redundancy configured in the form of
Phantom RPs. Without Phantom RPs in place, if the node replaced was the RP, there
would be a PIM convergence and packet loss would be seen for all BUM traffic sent
across the IPN.

Please refer to "RP configuration" in "Multi-Pod Discovery" chapter for more
information on how to configure Phantom RP.

Clean reload of APIC/leaf/spine
In certain scenarios, the best option for recovering a leaf/spine that won't join the
fabric is to perform a clean reload of the device.

It is not recommended to perform a clean reload on a device that is waiting for its
turn to upgrade. Clean reload of any device can take an extended period of time.

The 'acidiag touch' command has two options, clean and setup. The clean option
removes all policy data while retaining the APIC network configuration (such as fabric
name, IP address, login). The setup option removes both policy data and the APIC
network configuration. The setup option is most commonly used when moving devices
across Pods, as the Pod ID must be changed, and normally the management network
will need to update as well.

Fabric discovery 69

APIC

fab1-apic1# acidiag touch clean
This command will wipe out this device, Proceed? [y/N] y
fab1-apic1# acidiag reboot
This command will restart this device, Proceed? [y/N] y

Leaf/Spine

fab1-leaf101# acidiag touch clean
This command will wipe out this device, Proceed? [y/N] y
fab1-leaf101# reload
This command will reload the chassis, Proceed (y/n)? [n]: y

The 'acidiag touch clean' command works by putting a hidden �le on the leaf in
/mnt/pss called .clean. When the leaf is booted, a shell script runs that checks to
see if .clean �le is present. In the event that .clean �le exists under /mnt/pss,
policy con�guration is wiped and con�guration is redownloaded from the APIC. If
this command is entered and the node is not reloaded, then the �le will still be
present and the policy will still be wiped upon the next reload, no matter how
much time has elapsed since the touch clean was entered.

Troubleshooting scenarios

Problem: Arrives in NXOS mode

Verification
Sometimes when a switch is shipped via RMA, it can arrive with NXOS software that has
not yet been configured via the Power On Auto Provisioning (POAP) process. When the
user consoles into this device they will see some form of the following message:

Abort Auto Provisioning and continue with normal setup ?(yes/no)

If the device has already gone through POAP, the simplest way to determine if a leaf is
running standalone NXOS code is to look for the 'NXOS image file' line in the 'show
version' output. If such output is present, the leaf is running standalone code and will

70 Fabric discovery

need to be converted to ACI mode. The presence of Kickstart and system images can be
verified and will only be present on a leaf running an ACI image, by looking at the image
itself, which will be n9000 on standalone and aci-n9000 on ACI.

Standalone NXOS

nxos-n9k# show version
Cisco Nexus Operating System (NX-OS) Software
.
.
.
Software
 BIOS: version 07.17
 NXOS: version 6.1(2)I3(4)
 BIOS compile time: 09/10/2014
 NXOS image file is: bootflash:///n9000-dk9.6.1.2.I3.4.bin
 NXOS compile time: 3/18/2015 0:00:00 [03/18/2015 07:49:10]

ACI

aci-leaf101# show version
Cisco Nexus Operating System (NX-OS) Software
.
.
.
Software
 BIOS: version 07.66
 kickstart: version 14.2(1i) [build 14.2(1i)]
 system: version 14.2(1i) [build 14.2(1i)]
 PE: version 4.2(1i)
 BIOS compile time: 06/11/2019
 kickstart image file is: /bootflash/aci-n9000-dk9.14.2.1i.bin
 kickstart compile time: 09/07/2019 10:25:16 [09/07/2019 10:25:16]
 system image file is: /bootflash/auto-s
 system compile time: 09/07/2019 10:25:16 [09/07/2019 10:25:16]

Solution
If the switch was shipped running NXOS code, it will need to be converted to ACI mode.
The switch should be shipped with both the NXOS and the ACI image in the bootflash,
although this is not always the case. The ACI image will start with 'aci-n9000'. If the ACI
image is not present, then it will need to be manually loaded onto the bootflash. This
can be performed via the USB connection (local access needed) or via SCP from the

Fabric discovery 71

1

2

1

2

3

4

APIC directly (assuming both devices are connected via a management network). Here
are the instructions to copy the image via SCP:

nexus-9000(config)# feature scp-server

apic1# scp -r /firmware/fwrepos/fwrepo/switch-image-name admin@standalone_switch:switch-image-name

The leaf will then need to be configured to not boot the NXOS image, save the
configuration, change the boot statements to ACI.

(config)# no boot nxos

(config)# copy run start

(config)# boot aci bootflash:<aci-image-name>

(config)# reload

Problem: Leaf/Spine EPLD/FPGA not correct, F1582

Verification
The following faults will be seen in the Faults for the Nexus 9000 ACI switch.

F1582 FPGA version mismatch detected. Running version:0x(z) Expected version:0x(y)

From the APIC CLI, search for all instances of Fault F1582:

moquery -c faultInst -f 'fault.Inst.code=="F1582"'

72 Fabric discovery

EPLD notes
The Cisco Nexus 9000 Series ACI-mode switches contain several programmable logical
devices (PLDs) that provide hardware functionalities in all modules. Cisco provides
electronic programmable logic device (EPLD) image upgrades to enhance hardware
functionality or to resolve known issues. PLDs include electronic programmable logic
devices (EPLDs), field programmable gate arrays (FPGAs), and complex programmable
logic devices (CPLDs), but they do not include ASICs.

The term EPLD is used to cover both FPGA and CPLDs.

The advantage of having EPLDs for some module functions is that when those functions
need to be upgraded, just upgrade their software images instead of replacing their
hardware.

EPLD image upgrades for an I/O module disrupt the tra�c going through the
module because the module must power down brie�y during the upgrade. In a
modular chassis, the system performs EPLD upgrades on one module at a time,
so at any one time the upgrade disrupts only the tra�c going through one
module.

Cisco provides the latest EPLD images with each release. Typically, these images are the
same as provided in earlier releases but occasionally some of these images are updated.
These EPLD image updates are not mandatory unless otherwise specified. When Cisco
makes an EPLD image upgrade available, these release notes announce their availability,
and they can be downloaded from the Cisco web site.

When new EPLD images are available, the upgrades are always recommended if the
network environment allows for a maintenance period in which some level of traffic
disruption is acceptable. In general, EPLD upgrades will be needed when new hardware
functionality is added as a result of a software upgrade.

Fabric discovery 73

1

2

There may also be various reasons for the need to upgrade EPLD firmware while
already in ACI Mode:

EPLD versions required an upgrade prior to a Cisco NX-OS to ACI Boot Mode
conversion and the FPGA/EPLDs were NOT upgraded.

Leaf/Spine was upgraded manually (instead of a policy upgrade from the APIC),
which does not include an EPLD upgrade.

Once the leaf or spine is added to the fabric, then the EPLD will be automatically
upgraded with any policy upgrade (normal upgrade initiated from the APIC
�rmware tab) where a new version of EPLD is available.

Solution
In older versions of ACI, it was necessary to downgrade and then upgrade the
leaf/spine in question, but as of 11.2(1m), there are two shell scripts available to the
admin user which greatly simplify the process.

fab1-leaf101# /bin/check-fpga.sh FpGaDoWnGrAdE

fab1-leaf101# /usr/sbin/chassis-power-cycle.sh

The '/usr/sbin/chassis-power-cycle.sh' script hard resets power, as compared to
a 'reload' which is simply a software restart. When upgrading EPLD, the power
needs to be removed entirely to reprogram the �rmware on the line cards. If
'/usr/sbin/chassis-power-cycle.sh' is not available or does not work, power
cables need to be removed for at least 30 seconds and then re-attached to
restore power.

Management and core
services

76 Management and core services

Overview

When a Cisco ACI fabric is discovered, a number of core and management services
should be configured to enable the fabric to be fully operational.

Those services include configuration for:

• Network connectivity of the nodes and controllers.

• BGP Route Reflectors.

• Date and Time Policy (NTP).

• SNMP.

The core and management services should be typically defined as a 'Day Zero' task. The
configuration of those services is well described in the "Cisco APIC Basic Configuration
Guide" available on Cisco.com.

This chapter will focus on providing the reader with a number of tools and
troubleshooting scenarios to verify that those services are configured successfully and
functioning as expected.

It is important to understand that failing to properly configure those basic services
could affect the operation of the fabric, and sometimes possibly even break specific
functionality. For example, if BGP Route Reflectors are not defined on a running ACI
fabric, MP-BGP will not be initialized, and as a consequence, L3Out learned routes
would not be redistributed in the fabric. This configuration break will possibly prevent
tenant connectivity.

Also, failing to configure SNMP and NTP will impact the operation of the fabric as an
ACI administrator may not be able to correlate log dates or receive proper alerting for
faults.

Management and core services 77

Finally, failing to properly configure OOB or in-band connectivity of all the nodes and
controllers of a fabric would make it more difficult to connect to those devices if
troubleshooting becomes necessary.

78 Management and core services

In-band and out-of-band management

ACI fabric nodes have two options for management connectivity; out-of-band (OOB),
which governs the dedicated physical management port on the back of the device, or
in-band (INB), which is provisioned using a specific EPG/BD/VRF in the management
tenant with a degree of configurable parameters. There's an OOB EPG present in the
management ('mgmt') tenant, but it's there by default and can't be modified. It only
allows configuration of Provided OOB Contracts.

On the APIC, the OOB interface is observed in the 'ifconfig' command output as
'oobmgmt' and the in-band interface will be represented by the 'bond.x' interface,
where <x> is the encap VLAN configured for the in-band EPG.

apic1# ifconfig oobmgmt
oobmgmt: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.4.20 netmask 255.255.255.0 broadcast 192.168.4.255
 inet6 fe80::7269:5aff:feca:2986 prefixlen 64 scopeid 0x20<link>
 ether 70:69:5a:ca:29:86 txqueuelen 1000 (Ethernet)
 RX packets 495815 bytes 852703636 (813.2 MiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 432927 bytes 110333594 (105.2 MiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

apic1# ifconfig bond0.300
bond0.300: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1496
 inet 10.30.30.254 netmask 255.255.255.0 broadcast 10.30.30.255
 inet6 fe80::25d:73ff:fec1:8d9e prefixlen 64 scopeid 0x20<link>
 ether 00:5d:73:c1:8d:9e txqueuelen 1000 (Ethernet)
 RX packets 545 bytes 25298 (24.7 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 6996 bytes 535314 (522.7 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

On the leaf, the OOB interface is seen as 'eth0' in the 'ifconfig' command output and the
INB is seen as a dedicated SVI. The user can view the interface with 'ifconfig' or with
'show ip interface vrf mgmt:<vrf>' where <vrf> is the name selected for the in-band VRF.

Management and core services 79

leaf101# show interface mgmt 0
mgmt0 is up
admin state is up,
 Hardware: GigabitEthernet, address: 00fc.baa8.2760 (bia 00fc.baa8.2760)
 Internet Address is 192.168.4.23/24
 MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, medium is broadcast
 Port mode is routed
 full-duplex, 1000 Mb/s
 Beacon is turned off
 Auto-Negotiation is turned on
 Input flow-control is off, output flow-control is off
 Auto-mdix is turned off
 EtherType is 0x0000
 30 seconds input rate 3664 bits/sec, 4 packets/sec
 30 seconds output rate 4192 bits/sec, 4 packets/sec
 Rx
 14114 input packets 8580 unicast packets 5058 multicast packets
 476 broadcast packets 2494768 bytes
 Tx
 9701 output packets 9686 unicast packets 8 multicast packets
 7 broadcast packets 1648081 bytes

leaf101# show ip interface vrf mgmt:inb
 IP Interface Status for VRF "mgmt:inb-vrf"
 vlan16, Interface status: protocol-up/link-up/admin-up, iod: 4, mode: pervasive
 IP address: 10.30.30.1, IP subnet: 10.30.30.0/24
 secondary IP address: 10.30.30.3, IP subnet: 10.30.30.0/24
 IP broadcast address: 255.255.255.255
 IP primary address route-preference: 0, tag: 0

The 'show ip interface vrf mgmt:<vrf>' will show the in-band management BD
subnet IP as the secondary IP address; this is expected output.

On spine switches the in-band management IP address is added as a dedicated
loopback interface in the 'mgmt:<vrf>' VRF. This implementation is thus different from
the in-band management IP implementation on leaf switches.

80 Management and core services

Observe the 'show ip int vrf mgmt:<vrf>' command output below on a spine switch

spine201# show ip interface vrf mgmt:inb
 IP Interface Status for VRF "mgmt:inb"
 lo10, Interface status: protocol-up/link-up/admin-up, iod: 98, mode: pervasive
 IP address: 10.30.30.12, IP subnet: 10.30.30.12/32
 IP broadcast address: 255.255.255.255
 IP primary address route-preference: 0, tag: 0

Under the System Settings, there is a setting to select either the in-band or out-of-
band connectivity preference for the APICs.

Only the traffic sent from the APIC will use the management preference selected in the
'APIC Connectivity Preferences'. The APIC can still receive traffic on either in-band or
out-of-band, assuming either is configured. APIC uses the following forwarding logic:

• Packets that come in an interface and go out that same interface.

• Packets sourced from the APIC, destined to a directly connected network, go
out the directly connected interface.

• Packets sourced from the APIC, destined to a remote network, prefer in-band
or out-of-band based on the APIC Connectivity Preferences.

Management and core services 81

APIC Connectivity Preferences

APIC routing table with OOB selected. Observe the metric value of 16 for the oobmgmt
interface which is lower than the bond0.300 in-band management interface metric of
32. Meaning the oobmgmt out-of-band management interface will be used for outgoing
management traffic.

apic1# bash
admin@apic1:~> route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.4.1 0.0.0.0 UG 16 0 0 oobmgmt
0.0.0.0 10.30.30.1 0.0.0.0 UG 32 0 0 bond0.300

82 Management and core services

APIC routing table with in-band selected. Observe the bond0.300 in-band management
interface's metric if 8 which is now lower than the oobmgmt interface metric of 16.
Meaning the bond0.300 in-band management interface will be used for outgoing
management traffic.

admin@apic1:~> route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.30.30.1 0.0.0.0 UG 8 0 0 bond0.300
0.0.0.0 192.168.4.1 0.0.0.0 UG 16 0 0 oobmgmt

The leaf and spine node management preferences are not affected by this setting.
These connectivity preferences are selected under the protocol policies. Below is an
example for NTP.

Management and core services 83

Spine or leaf management preferences for NTP

If in-band is selected under the APIC Connectivity Preferences, but then out-of-band is
selected under the protocol, which interface with the protocol packet use?

• The APIC Connectivity Preference will always take precedence over the protocol
selection on the APIC.

• The leaf nodes are the opposite, they only reference the selection under the
protocol.

84 Management and core services

Scenario: Unable to reach management network

If the user is unable to reach the management network, it may be due to a number of
different issues, but they can always use the same methodology to isolate the issue. The
assumption in this scenario is that the user cannot reach any devices in the
management network from behind their L3Out.

• Verify the APIC connectivity preference. This is outlined in figure 'APIC
Connectivity Preferences', and the options are OOB or in-band.

• Depending on which preference is selected, verify the configuration is correct,
the interfaces are up, the default gateway is reachable via the selected interface,
and there are no drops on the path of the packet.

Do not forget to check for faults in each section of con�guration in the GUI.
However, some con�guration mistakes can manifest in unexpected states, but a
fault may be generated in another section than the one the user would initially
consider.

Management and core services 85

Out-of-Band Management Access

Out-of-band configuration verification
For out-of-band configuration, there are four folders to verify under a special tenant
called 'mgmt':

• Node Management Addresses.

• Node Management EPGs.

• Out-of-band Contracts (under Contracts).

• External Network Instance Profiles.

86 Management and core services

Node Management Addresses can either be assigned statically or from a pool. Below is
an example of static address assignment. Verify that the type out-of-band IP addresses
are assigned and that the default gateway is correct.

Static Node Management Addresses GUI veri�cation

Management and core services 87

The out-of-band EPG should be present under the Node Management EPGs folder.

Out-of-band EPG - default

88 Management and core services

The contracts which govern which management services are provided from the out-of-
band EPG are special contracts that are configured in the out-of-band contracts folder.

Out-of-band contract

Management and core services 89

Next, verify the External Management Network Instance Profile is created and that the
correct out-of-band contract is configured as the 'Consumed Out-Of-Band Contract'.

External Management Network Instance Pro�le

The next items to verify are the interface state and cabling, and then the connectivity
to the gateway.

• To check if the oobmgmt interface is up, enter 'ifconfig oobmgmt' on the APIC
CLI. Verify that the interface flags are 'UP' and 'RUNNING', that the correct IP
address is configured, and that packets are increasing in the RX and TX
counters. If any checks are missing, then verify the correct cables are being used
and that they are connected to the correct physical management ports on the
APIC. The management ports will be labelled Eth1-1 and Eth1-2 and recent
hardware have oobmgmt stickers to indicate the out-of-band interface. For
more information about the physical out-of-band mgmt ports on the back of an

90 Management and core services

APIC, please refer to the section "Initial fabric setup" in chapter "Fabric
discovery".

apic1# ifconfig oobmgmt
oobmgmt: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.4.20 netmask 255.255.255.0 broadcast 192.168.4.255
inet6 fe80::7269:5aff:feca:2986 prefixlen 64 scopeid 0x20<link>
ether 70:69:5a:ca:29:86 txqueuelen 1000 (Ethernet)
RX packets 295605 bytes 766226440 (730.7 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 253310 bytes 38954978 (37.1 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

• To check the network connectivity through the OOB, use ping to test the path
of the packet through the out-of-band network.

apic1# ping 192.168.4.1
PING 192.168.4.1 (192.168.4.1) 56(84) bytes of data.
64 bytes from 192.168.4.1: icmp_seq=1 ttl=255 time=0.409 ms
64 bytes from 192.168.4.1: icmp_seq=2 ttl=255 time=0.393 ms
64 bytes from 192.168.4.1: icmp_seq=3 ttl=255 time=0.354 ms

Using traceroute in the bash shell on the APIC, trace the connectivity to the end user. If
the traceroute is incomplete, login to this device (if accessible) and ping the oobmgmt
interface and ping the host. Depending on which direction fails, troubleshoot the issue
as a traditional networking problem.

Traceroute works by sending UDP packets with an increasing TTL, starting with
1. If a router receives the packet with TTL 1 and needs to route it, it drops the
frame and sends back an ICMP unreachable message to the sender. Each hop is
sent 3 UDP packets at the current TTL, and asterisks represent attempts where
an ICMP unreachable / TTL Exceeded packet was not received. These 3 asterisk
blocks are expected in most networks as some routing devices have ICMP
unreachable / TTL Exceeded messages disabled, so when they receive TTL 1
packets that they need to route, they simply drop the packet and do not send the
message back to the sender.

Management and core services 91

apic1# bash
admin@apic1:~> traceroute 10.55.0.16
traceroute to 10.55.0.16 (10.55.0.16), 30 hops max, 60 byte packets
 1 192.168.4.1 (192.168.4.1) 0.368 ms 0.355 ms 0.396 ms
 2 * * *
 3 * * *
 4 10.0.255.221 (10.0.255.221) 6.419 ms 10.0.255.225 (10.0.255.225) 6.447 ms *
 5 * * *
 6 * * *
 7 10.55.0.16 (10.55.0.16) 8.652 ms 8.676 ms 8.694 ms

The leaf switches have access to the tcpdump command, which can be used to verify
which packets are traversing the oobmgmt interface. The example below captures on
'eth0', which is the oobmgmt interface used on the leaf and spine switches, and uses '-n'
option for tcpdump to give the IP addresses used instead of the DNS names, and then
filtering specifically for NTP packets (UDP port 123). Recall that in the previous example
the leaf is polling NTP server 172.18.108.14. Below, the user can verify that NTP packets
are being transmitted via the out-of-band interface and also that the leaf is receiving a
response from the server.

fab1-leaf101# tcpdump -n -i eth0 dst port 123
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
16:49:01.431624 IP 192.168.4.23.123 > 172.18.108.14.123: NTPv4, Client, length 48
16:49:01.440303 IP 172.18.108.14.123 > 192.168.4.23.123: NTPv4, Server, length 48

92 Management and core services

In-band management configuration
The in-band management configuration requires specific considerations for Layer 2 or
Layer 3 deployments. This example will only cover the Layer 3 deployment and
troubleshooting.

In-band management con�guration

Management and core services 93

Verify that there is a BD in the mgmt tenant with a subnet from which in-band node
mgmt addresses will be allocated to the fabric nodes for in-band connectivity, and
make sure that the L3Out is associated under the in-band management BD.

Bridge Domain Subnet which will act as the in-band management gateway

Verify an in-band node management EPG is present. As per screenshot below, the in-
band EPG names are denoted in the GUI with the prefix 'inb-'. Verify the in-band EPG
encap VLAN is associated correctly with a VLAN pool.

The encapsulation VLAN configured in the in-band management EPG needs to be
allowed by Access Policies: 'inb mgmt EPG encap VLAN > VLAN Pool > Domain > AEP >
Interface Policy Group > Leaf Interface Profile > Switch Profile'. If the supporting access
policies are not configured, a fault with code F0467 will be raised as per below
screenshot.

94 Management and core services

Fault F0467 - inb EPG

Verify that the bridge domain is the same as the one created above for the in-band
subnet. Lastly, verify that there is a Provided Contract configured on the in-band
management EPG, which is consumed by the external EPG.

Management and core services 95

In-band EPG

96 Management and core services

External EPG Instance Pro�le

Management and core services 97

Similar to out-of-band, fabric node in-band mgmt IP addresses can be statically
assigned or dynamically assigned from a pre-selected range. Verify the addresses
applied for type in-band match the previous BD subnet that was configured. Also verify
that the default gateway is correct.

Static Node Management Addresses

If everything has been configured correctly, and there are no faults in any above-
mentioned section, the next step is to ping between the switches and/or APICs to
verify that in-band connectivity is working correctly inside ACI.

The spine nodes will not respond to ping on the in-band as they use loopback
interfaces for connectivity which do not respond to ARP.

98 Management and core services

The in-band interface used on the leaf switches is kpm_inb. Using a similar tcpdump
capture, verify the packet is egressing the in-band CPU interface.

fab2-leaf101# tcpdump -n -i kpm_inb dst port 123
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on kpm_inb, link-type EN10MB (Ethernet), capture size 65535 bytes
16:46:50.431647 IP 10.30.30.3.123 > 172.18.108.14.123: NTPv4, Client, length 48
16:47:19.431650 IP 10.30.30.3.123 > 172.18.108.15.123: NTPv4, Client, length 48

Verify that the SVI used for in-band is 'protocol-up/link-up/admin-up'.

fab1-leaf101# show ip interface vrf mgmt:inb-vrf
IP Interface Status for VRF "mgmt:inb-vrf"
vlan16, Interface status: protocol-up/link-up/admin-up, iod: 4, mode: pervasive
 IP address: 10.30.30.1, IP subnet: 10.30.30.0/24 secondary
 IP address: 10.30.30.3, IP subnet: 10.30.30.0/24
 IP broadcast address: 255.255.255.255
 IP primary address route-preference: 0, tag: 0

Management and core services 99

Pod Policies — BGP RR / Date&Time / SNMP

Introduction

Management services such as BGP RR, Date & Time and SNMP are applied on the
system using a Pod Policy Group. A Pod Policy Group governs a group of Pod Policies
related to essential functions of an ACI Fabric. These Pod Policies relate to the following
components, many of which are provisioned in an ACI fabric by default.

Pod Policies

Pod Policy Requires Manual Con�g

Date & Time Yes

BGP Route Re�ector Yes

SNMP (server network management protocol) Yes

ISIS No

COOP No

Management Access No

MAC Sec Yes

Even in a single ACI fabric, the Pod Policy Group and Pod Profile need to be configured.
This is not specific to a Multi-Pod or even a Multi-Site deployment. The requirement
applies to all ACI deployment types.

This chapter focuses on these essential Pod Policies and how to verify they're applied
correctly.

100 Management and core services

Date & Time policy

About the Date & Time policy
Time synchronization plays a critical role in the ACI fabric. From validating certificates,
to keeping log timestamps in APICs and switches consistent, it is best practice to sync
the nodes in the ACI fabric to one or more reliable time sources using NTP.

In order to properly have the nodes synchronized to an NTP server provider, there's a
dependency to assign nodes with management addresses. This can be done under the
management tenant using either Static Node Management Addresses or Management
Node Connectivity Groups.

Workflow

1. Verify if Node Management Addresses are assigned to all nodes

Management tenant - Node Management Addresses

Management and core services 101

2. Verify if an NTP server has been configured as an NTP provider
If there are multiple NTP providers, flag at least one of them as the preferred time
source using the 'Preferred' checkbox as per the figure below.

NTP Provider/Server under Date and Time Pod Policy

102 Management and core services

3. Verify the Date and Time format under System Settings
The figure below shows an example whereby the Date and Time format has been set to
UTC.

Date and Time setting under System Settings

Management and core services 103

4. Verify the operational Sync Status of the NTP provider for all nodes
As shown in the figure below, the Sync Status column should show 'Synced to Remote
NTP Server'. Be aware that it can take several minutes for the Sync Status to converge
properly to the .Synced to Remote NTP Server. status.

NTP Provider/Server Sync Status

Alternatively, CLI methods can be used on the APICs and the switches to verify correct
time sync against the NTP Server.

104 Management and core services

APIC - NX-OS CLI

The 'refId' column below shows the NTP Servers next time source depending on the
stratum.

apic1# show ntpq
nodeid remote refid st t when poll reach
 auth delay offset jitter
------ - ------------------------------ -------------------------- -------- -- -------- -------- -------
- ---- -------- -------- --------
1 * 10.48.37.151 173.38.201.115 2 u 25 64 377
 none 0.214 -0.118 0.025
2 * 10.48.37.151 173.38.201.115 2 u 62 64 377
 none 0.207 -0.085 0.043
3 * 10.48.37.151 173.38.201.115 2 u 43 64 377
 none 0.109 -0.072 0.030

apic1# show clock
Time : 17:38:05.814 UTC Wed Oct 02 2019

APIC - Bash

apic1# bash
admin@apic1:~> date
Wed Oct 2 17:38:45 UTC 2019

Switch

Use the 'show ntp peers' command to make sure the NTP provider configuration has
been properly pushed to the switch.

leaf1# show ntp peers

 Peer IP Address Serv/Peer Prefer KeyId Vrf

 10.48.37.151 Server yes None management

leaf1# show ntp peer-status
Total peers : 1
* - selected for sync, + - peer mode(active),

Management and core services 105

- - peer mode(passive), = - polled in client mode
 remote local st poll reach delay vrf
--
*10.48.37.151 0.0.0.0 2 64 377 0.000 management

The '*' character is essential here as it governs whether the NTP server is actually
being used for sync.

Verify the number of packets sent/received in the following command to make sure
ACI nodes have reachability to the NTP server.

leaf1# show ntp statistics peer ipaddr 10.48.37.151
...
packets sent: 256
packets received: 256
...

BGP Route Reflector policy

About the BGP Route Reflector policy
An ACI fabric uses multi-protocol BGP (MP-BGP) and, more specifically, iBGP VPNv4
between leaf and spine nodes to exchange tenant routes received from external routers
(connected on L3Outs). To avoid a full mesh iBGP peer topology, the spine nodes reflect
VPNv4 prefixes received from a leaf to other leaf nodes in the fabric.

Without the BGP Route Reflector (BGP RR) Policy, no BGP instance will be created on
the switches and BGP VPNv4 sessions won't be established. In a Multi-Pod deployment,
each Pod requires at least one spine configured as a BGP RR and essentially more than
one for redundancy.

As a result, the BGP RR Policy is an essential piece of configuration in every ACI Fabric.
The BGP RR Policy also contains the ASN the ACI Fabric uses for the BGP process on
each switch.

106 Management and core services

Workflow

1. Verify if the BGP RR Policy has an ASN and at least one spine configured
The example below refers to a single Pod deployment.

BGP Route Re�ector Policy under System Settings

Management and core services 107

2. Verify if the BGP RR Policy is applied under the Pod Policy Group
Apply a default BGP RR Policy under the Pod Policy Group. Even if the entry is blank,
the default BGP RR Policy will be applied as part of the Pod Policy Group.

BGP Route Re�ector Policy applied under Pod Policy Group

108 Management and core services

3. Verify if the Pod Policy Group is applied under the Pod Profile

Pod Policy Group applied under the Pod Pro�le

4. Log into a spine and verify if the BGP Process is running with established VPN4
peer sessions

spine1# show bgp process vrf overlay-1

BGP Process Information
BGP Process ID : 26660
BGP Protocol Started, reason: : configuration
BGP Protocol Tag : 65001
BGP Protocol State : Running
BGP Memory State : OK
BGP asformat : asplain
Fabric SOO : SOO:65001:33554415
Multisite SOO : SOO:65001:16777199

109 Management and core services

Pod SOO : SOO:1:1

...

 Information for address family VPNv4 Unicast in VRF overlay-1
 Table Id : 4
 Table state : UP
 Table refcount : 9
 Peers Active-peers Routes Paths Networks Aggregates
 7 6 0 0 0 0

 Redistribution
 None

 Wait for IGP convergence is not configured
 Additional Paths Selection route-map interleak_rtmap_golf_rtmap_path_advertise_all
 Is a Route-reflector

 Nexthop trigger-delay
 critical 500 ms
 non-critical 5000 ms

 Information for address family VPNv6 Unicast in VRF overlay-1
 Table Id : 80000004
 Table state : UP
 Table refcount : 9
 Peers Active-peers Routes Paths Networks Aggregates
 7 6 0 0 0 0

 Redistribution
 None

 Wait for IGP convergence is not configured
 Additional Paths Selection route-map interleak_rtmap_golf_rtmap_path_advertise_all
 Is a Route-reflector

 Nexthop trigger-delay
 critical 500 ms
 non-critical 5000 ms

...

 Wait for IGP convergence is not configured
 Is a Route-reflector

 Nexthop trigger-delay
 critical 500 ms
 non-critical 5000 ms

As shown above, MP-BGP between leaf and spine nodes carries only VPNv4 and VPNv6
address families. The IPv4 address family is used in MP-BGP only on leaf nodes.

110 Management and core services

The BGP VPNv4 and VPNv6 sessions between spine and leaf nodes can also be easily
observed using the following command.

spine1# show bgp vpnv4 unicast summary vrf overlay-1
BGP summary information for VRF overlay-1, address family VPNv4 Unicast
BGP router identifier 10.0.136.65, local AS number 65001
BGP table version is 15, VPNv4 Unicast config peers 7, capable peers 6
0 network entries and 0 paths using 0 bytes of memory
BGP attribute entries [0/0], BGP AS path entries [0/0]
BGP community entries [0/0], BGP clusterlist entries [0/0]

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.0.136.64 4 65001 162 156 15 0 0 02:26:00 0
10.0.136.67 4 65001 154 154 15 0 0 02:26:01 0
10.0.136.68 4 65001 152 154 15 0 0 02:26:00 0
10.0.136.69 4 65001 154 154 15 0 0 02:26:01 0
10.0.136.70 4 65001 154 154 15 0 0 02:26:00 0
10.0.136.71 4 65001 154 154 15 0 0 02:26:01 0

spine1# show bgp vpnv6 unicast summary vrf overlay-1
BGP summary information for VRF overlay-1, address family VPNv6 Unicast
BGP router identifier 10.0.136.65, local AS number 65001
BGP table version is 15, VPNv6 Unicast config peers 7, capable peers 6
0 network entries and 0 paths using 0 bytes of memory
BGP attribute entries [0/0], BGP AS path entries [0/0]
BGP community entries [0/0], BGP clusterlist entries [0/0]

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.0.136.64 4 65001 162 156 15 0 0 02:26:11 0
10.0.136.67 4 65001 155 155 15 0 0 02:26:12 0
10.0.136.68 4 65001 153 155 15 0 0 02:26:11 0
10.0.136.69 4 65001 155 155 15 0 0 02:26:12 0
10.0.136.70 4 65001 155 155 15 0 0 02:26:11 0
10.0.136.71 4 65001 155 155 15 0 0 02:26:12 0

Note the 'Up/Down' column from the above output. It should list a duration time which
denotes the time the BGP session has been established. Also note in the example the
'PfxRcd' column shows 0 for each BGP VPNv4/VPNv6 peer as this ACI Fabric has no
L3Outs configured yet and as such no external routes/prefixes are exchanges between
leaf and spine nodes.

5. Log into a leaf and verify if the BGP Process is running with established VPN4 peer
sessions

Management and core services 111

leaf1# show bgp process vrf overlay-1

BGP Process Information
BGP Process ID : 43242
BGP Protocol Started, reason: : configuration
BGP Protocol Tag : 65001
BGP Protocol State : Running
...

leaf1# show bgp vpnv4 unicast summary vrf overlay-1
BGP summary information for VRF overlay-1, address family VPNv4 Unicast
BGP router identifier 10.0.136.64, local AS number 65001
BGP table version is 7, VPNv4 Unicast config peers 2, capable peers 2
0 network entries and 0 paths using 0 bytes of memory
BGP attribute entries [0/0], BGP AS path entries [0/0]
BGP community entries [0/0], BGP clusterlist entries [0/0]

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.0.136.65 4 65001 165 171 7 0 0 02:35:52 0
10.0.136.66 4 65001 167 171 7 0 0 02:35:53 0

The above command outputs show an amount of BGP VPNv4 sessions equal to the
number of spine nodes present in the ACI Fabric. This differs from the spine nodes
because they establish sessions to each leaf and the other route reflector spine nodes.

SNMP

About the SNMP Policy (Pod Policies) and differentiating ingress/egress SNMP
traffic flows
It is important to clarify from the start which specific subset of SNMP functions this
section covers. SNMP functions in an ACI fabric either relate to the SNMP Walk
function or the SNMP Trap function. The important distinction here is that SNMP Walk
governs ingress SNMP traffic flows on UDP port 161 whereas SNMP Trap governs
outgoing SNMP traffic flows with an SNMP Trap server listening on UDP port 162.

Ingress management traffic on ACI nodes require the Node Management EPGs (either
in-band or out-of-band) to provide the necessary contracts to allow the traffic to flow.
As such this also applies to ingress SNMP traffic flows.

This section will cover the ingress SNMP traffic flows (SNMP Walks) into ACI nodes
(APICs and switches). It will not cover the egress SNMP traffic flows (SNMP Traps) as

112 Management and core services

that would expand the scope of this section into Monitoring Policies and Monitoring
Policy dependencies (i.e. Monitoring Policy scope, Monitoring Packages, etc.).

This section also won't cover which SNMP MIBs are supported by ACI. That information
is available on the Cisco CCO website in the following link: https://www.cisco.com/c/dahttps://www.cisco.com/c/dahttps://www.cisco.com/c/da
m/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/mib/list/mib-support.htmlm/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/mib/list/mib-support.htmlm/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/mib/list/mib-support.html

Workflow

1. SNMP Pod Policy — Verify if a Client Group Policy is configured
Make sure at least a single SNMP Client is configured as part of the Client Group Policy
as per screenshots below.

Pod Policies — SNMP Policy — Client Group Policies

https://www.cisco.com/c/dam/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/mib/list/mib-support.html

Management and core services 113

Pod Policies — SNMP Policy — Client Group Policies

114 Management and core services

2. SNMP Pod Policy — Verify if at least one Community Policy is configured

Pod Policies — SNMP Policy — Community Policies

Management and core services 115

3. SNMP Pod Policy — Verify if the Admin State is set to 'Enabled'
Pod Policies — SNMP Policy — Admin State

116 Management and core services

4. Management tenant — verify if the OOB EPG is providing an OOB Contract
allowing UDP port 161
The OOB EPG governs connectivity into the APIC and switch OOB management ports.
As such it affects all traffic flows ingressing into the OOB ports.

Make sure the contract which is provided here includes all necessary
management services instead of just SNMP. For example: it also needs to include
at least SSH (TCP port 22). Without this it is not possible to log into the switches
using SSH. Please note this does not apply to APICs as they have a mechanism
to allow SSH, HTTP, HTTPS to prevent users from being locked up completely.

Management tenant — OOB EPG — provided OOB Contract

Management and core services 117

5. Management tenant — verify if the OOB Contract is present and has a filter
allowing UDP port 161

Management tenant — OOB EPG — Provided OOB Contract

In the figure below, it is not mandatory to just allow UDP port 161. A contract that has a
filter allowing UDP port 161 in any manner is correct. This can even be a contract
subject with the default filter from the common tenant. In our example, for clarity
purposes, a specific filter was configured just for UDP port 161.

118 Management and core services

Management tenant — OOB Contract — �lter allowing UDP port 161

6. Management tenant — verify if an External Management Network Instance Profile
is present with a valid Subnet consuming the OOB Contract
The external management network instance profile (ExtMgmtNetInstP) represents
external sources defined by the 'Subnets' in there that need to consume services
reachable via the OOB EPG. So, the ExtMgmtNetInstP consumes the same OOB
contract which is provided by the OOB EPG. This is the contract allowing UDP port 161.
In addition, the ExtMgmtNetInstP also specifies the allowed subnet ranges that may
consume the services provided by the OOB EPG.

Management and core services 119

Management tenant — ExtMgmtNetInstP with consumed OOB Contract and Subnet

As shown in the figure above, a CIDR-based subnet notation is required. The figure
shows a specific /24 subnet. The requirement is that the subnet entries cover the
SNMP Client Entries as configured in the SNMP Pod Policy (refer to Figure Pod Policies
— SNMP Policy — Client Group Policies).

As mentioned earlier, please be careful to include all required external subnets to
prevent other necessary management services from being locked out.

120 Management and core services

7. Log into a switch and perform a tcpdump to observe if SNMP Walk packets — UDP
port 161 — are observed
If SNMP Walk packets are entering a switch through the OOB port, this means all
necessary SNMP and OOB based policies/parameters have been properly configured.
Hence, it's a proper verification method.
Tcpdump on the leaf nodes leverages their Linux shell and Linux netdevices. Hence, it's
necessary to capture the packets on interface 'eth0' as per below example. In the
example, an SNMP client is performing an SNMP Get request against OID
.1.0.8802.1.1.2.1.1.1.0.

leaf1# ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000
 link/ether f4:cf:e2:28:fc:ac brd ff:ff:ff:ff:ff:ff
 inet 10.48.22.77/24 brd 10.48.22.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::f6cf:e2ff:fe28:fcac/64 scope link
 valid_lft forever preferred_lft forever

leaf1# tcpdump -i eth0 udp port 161
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
22:18:10.204011 IP 10.155.0.153.63392 > 10.48.22.77.snmp: C=my-snmp-community GetNextRequest(28)
.iso.0.8802.1.1.2.1.1.1.0
22:18:10.204558 IP 10.48.22.77.snmp > 10.155.0.153.63392: C=my-snmp-community GetResponse(29)
.iso.0.8802.1.1.2.1.1.2.0=4

Access policies

122 Access policies

Overview

How does the ACI administrator configure a VLAN on a port in the fabric? How does the
ACI admin begin to address faults related to access policies? This section will explain
how to troubleshoot issues related to fabric access policies.

Before jumping into troubleshooting scenarios, it is imperative that the reader have a
good understanding of how access policies function and their relationships within the
ACI Object Model. For this purpose, the reader can refer to both the "ACI Policy Model"
and "APIC Management Information Model Reference" documents available on
Cisco.com (https://developer.cisco.com/site/apic-mim-ref-api/https://developer.cisco.com/site/apic-mim-ref-api/https://developer.cisco.com/site/apic-mim-ref-api/).

The function of access policies is to enable specific configuration on a leaf switch's
downlink ports. Before tenant policy is defined to allow traffic through an ACI fabric
port, the related access policies should be in place.

Typically, access policies are defined when new leaf switches are added to the fabric, or
a device is connected to ACI leaf downlinks; but depending on how dynamic an
environment is, access policies could be modified during normal operation of the fabric.
For example, to allow a new set of VLANs or add a new Routed Domain to fabric access
ports.

The ACI access policies, though initially a bit intimidating, are extremely flexible and
are designed to simplify the provisioning of configuration to a large scale SDN network
in continuous evolution.

https://developer.cisco.com/site/apic-mim-ref-api/

Access policies 123

Access policy configuration: Methodology

Access policies can be configured independently, i.e. by creating all the objects required
independently, or can be defined through the numerous wizards provided by the ACI
GUI.

Wizards are very helpful because they guide the user through the workflow and make
sure all the required policies are in place.

Access policies — Quick Start wizard

The above image shows the Quick Start page where multiple wizards can be found.

Once an access policy is defined, the generic recommendation is to validate the policy
by making sure all the associated objects do not show any fault.

124 Access policies

For example, in the figure below, a Switch Profile has assigned an Interface Selector
Policy that does not exist. An attentive user will easily be able to spot the 'missing-
target' state of the object and verify that a fault was flagged from the GUI:

Leaf Pro�le — SwitchPro�le_101

Access policies 125

Leaf Pro�le — SwitchPro�le_101 — Fault

In this case, correcting the fault would be as easy as creating a new Interface Selector
Profile called 'Policy'.

The manual configuration of basic access policies will be explored in the following
paragraphs.

Access policies manual basic configurations
When deploying access policies, objects are being defined to express the intended use
of the given downlinks. The declaration which programs the downlinks (e.g. EPG Static
Port assignment) relies on this expressed intent. This helps to scale the configuration
and logically group similar use objects, such as switches or ports specifically connected
to a given external device.

126 Access policies

Reference the topology below for the remainder of this chapter.

Topology of access policy de�nition for dual-homed server

A web server is connected to an ACI fabric. The web server has 2 Network Interface
Cards (NICs) which are configured in an LACP port-channel. The web server is
connected to port 1/9 of leaf switches 101 and 102. The web server relies on VLAN-1501
and should reside in the EPG 'EPG-Web'.

Access policies 127

Configure the Switch Policy
The first logical step is to define which leaf switches will be used. The 'Switch Profile'
will contain 'Switch Selectors' which define the leaf node IDs to be used.

Switch policies

The general recommendation is to configure 1 Switch Profile per individual leaf switch
and 1 Switch Profile per VPC domain pair, using a naming scheme which indicates the
nodes which are part of the profile.

The Quick Start deploys a logical naming scheme which makes it easy to understand
where it is applied. The completed name follows the 'Switch<node-id>_Profile' format.
As an example, 'Switch101_Profile' will be for a switch profile containing leaf node 101
and Switch101-102_Profile for a Switch Profile containing leaf nodes 101 and 102 which
should be part of a VPC domain.

128 Access policies

Configure the Interface Policy
Once the switch access policies have been created, defining the interfaces would be the
next logical step. This is done by creating an 'Interface Profile' which consists of 1 or
more 'Access Port Selectors' which contain the 'Port Block' definitions.

Interface policies

To form the relationship between the 'Interface Profile' and the switches involved, link
the 'Switch Profile' to the 'Interface Profile'.

'Interface Profiles' can be defined in many ways. Similar to 'Switch Profiles', a single
'Interface Profile' can be created per physical switch along with an 'Interface Profile' per
VPC domain. These policies should then have a 1-to-1 mapping to their corresponding
switch profile. Following this logic, the fabric access policies are greatly simplified
which makes it easy for other users to understand.

The default naming schemes employed by the Quick Start can also be used here. It
follows the '<switch profile name>_ifselector' format to indicate this profile is used to
select interfaces. An example would be 'Switch101_Profile_ifselector'. This example
'Interface Profile' would be used to configure non VPC interfaces on leaf switch 101 and
it would only be associated to the 'Switch101_Profile' access policy.

Access policies 129

Switch Pro�le associated to Interface Pro�le

Notice that since an 'Interface Pro�le' with Eth 1/9 is connected to a 'Switch
Pro�le' which includes both leaf switch 101 and 102, provisioning Eth1/9 on both
nodes begins simultaneously.

At this point, leaf switches and their ports have been defined. The next logical step
would be to define characteristics of these ports. The 'Interface Policy Group' allows for
the definition of these port properties. A 'VPC Interface Policy Group' will be created to
allow for the above LACP Port-Channel.

Policy Group

130 Access policies

The 'VPC Interface Policy Group' gets associated to the 'Interface Policy Group' from
the 'Access Port Selector' to form the relationship from leaf switch/Interface to port
properties.

Switch and Interface Pro�les combined

Configure the VPC
To create the LACP port-channel over 2 leaf switches, a VPC domain must be defined
between leaf switch 101 and 102. This is done by defining a 'VPC Protection Group'
between the two leaf switches.

VPC

Access policies 131

Configure VLAN pools
The next logical step will be to create the VLANs that will be used on this port, in this
case VLAN-1501. The definition of a 'VLAN Pool' with 'Encap Blocks' completes this
configuration.

When considering the size of VLAN pool ranges, keep in mind that most deployments
only need a single VLAN pool and one additional pool if using VMM integration. To
bring VLANs from a legacy network into ACI, define the range of legacy VLANs as a
static VLAN pool.

As an example, assume VLANs 1-2000 are used in a legacy environment. Create one
Static VLAN pool which contains VLANs 1-2000. This will allow to trunk ACI Bridge
Domains and EPGs towards the legacy fabric. If deploying VMM, a second dynamic pool
can be created using a range of free VLAN IDs.

VLAN Pool

Configure Domains
The next logical step is to create a 'Domain'. A 'Domain' defines the scope of a VLAN
pool, i.e. where that pool will be applied. A 'Domain' could be physical, virtual, or
external (bridged or routed). In this example, a 'Physical Domain' will be used to
connect a bare metal server into the fabric. This 'Domain' gets associated to the 'VLAN
Pool' to allow the required vlan(s).

132 Access policies

Physical Domains

For most deployments, a single 'Physical Domain' is enough for bare metal deployments
and a single 'Routed Domain' is sufficient for L3Out deployments. Both can map to the
same 'VLAN Pool'. If the fabric is deployed in a multi-tenancy fashion, or if more
granular control is required to restrict which users can deploy specific EPGs & VLANs
on a port, a more strategic access policy design should to be considered.

'Domains' also provide the functionality to restrict user access to policy with 'Security
Domains' using Roles Based Access Control (RBAC).

When deploying VLANs on a switch, ACI will encapsulate spanning-tree BPDUs
with a unique VXLAN ID which is based on the domain the VLAN came from. Due
to this, it is important to use the same domain whenever connecting devices
which require STP communication with other bridges.

VLAN VXLAN IDs are also used to allow VPC switches to synchronize VPC
learned MAC and IP addresses. Due to this, the simplest design for VLAN pools is
to use a single pool for static deployments and create a second one for dynamic
deployments.

Configure the Attachable Access Entity Profile (AEP)
Two major chunks of access policy configuration have now been completed; the switch
and interface definitions, and the domain/VLAN(s) definitions. An object called
'Attachable Access Entity Profile' (AEP) will serve to tie these two chunks together.

Access policies 133

A 'policy group' is linked towards an AEP in a one-to-many relationship which allows for
the AEP to group interfaces and switches together which share similar policy
requirements. This means that only one AEP needs to be referenced when representing
a group of interfaces on specific switches.

Attachable Access Entity Pro�le

In most deployments, a single AEP should be used for static paths and one additional
AEP per VMM domain.

The most important consideration is that VLANs can be deployed on interfaces through
the AEP. This can be done by mapping EPGs to an AEP directly or by configuring a VMM
domain for Pre-provision. Both these configurations make the associated interface a
trunk port (‘switchport mode trunk' on legacy switches).

134 Access policies

Due to this, it is important to create a separate AEP for L3Out when using routed ports
or routed sub-interfaces. If SVIs are used in the L3Out, it is not necessary to create an
additional AEP.

Configure the tenant, APP, and EPG
ACI uses a different means of defining connectivity by using a policy-based approach.

The lowest level object is called an 'Endpoint Group' (EPG). The EPG construct is used
to define a group of VMs or servers (endpoints) with similar policy requirements.
'Application Profiles', which exist under a tenant, are used to logically group EPGs
together.

Tenant, APP, and EPG

Access policies 135

The next logical step is to link the EPG to the domain. This creates the link between the
logical object representing our workload, the EPG, and the physical
switches/interfaces, the access policies.

EPG to Domain link

136 Access policies

Configure the EPG Static Bindings
The last logical step is to program the VLAN onto a switch interface for a given EPG.
This is especially important if using a physical domain, as this type of domain requires
an explicit declaration to do so. This will allow the EPG to be extended out of the fabric
and it will allow the bare metal server to get classified into the EPG.

Static Bindings

The referenced 'Port Encap' needs to be resolvable against the 'VLAN Pool'. If it
is not, a fault will be �agged. This is discussed in the "Troubleshooting
work�ow" section of this chapter.

Access policies 137

Summary of the access policy configuration
The following diagram summarizes all the objects created to allow connectivity for the
host through VLAN-1501, using a VPC connection to leaf switch 101 and 102.

Bare-metal ACI connectivity

138 Access policies

Connecting additional servers
With all the previous policies created, what would it mean to connect one more server
on port Eth1/10 on leaf switches 101 and 102 with a port-channel?

Referring to the 'Bare-metal ACI connectivity' diagram, the minimum following will
need to be created:

• An extra Access Port Selector and Port Block.

• An extra VPC Interface Policy Group.

• An extra Static Binding with Port Encap.

Note that for LACP port-channels, a dedicated VPC Interface Policy Group must
be used as this VPC Policy Group is what de�nes the VPC id.

In the case of individual links, the non-VPC Interface Policy Group could be re-used for
the extra server if the link requires the same port properties.

The resulting policies would look like the following image.

Access policies 139

Connecting server2 into the setup

What is next?
The next section will go through a few access policy failure scenarios, starting with the
topology and use case discussed in this overview.

140 Access policies

Troubleshooting work�ow

The following troubleshooting scenarios could be encountered when working with
access policies:

• A missing relationship between two or more entities in the access policy, such
as access policy group not linked to an AEP.

• A missing or unexpected policy is tied to a given access policy, such as an LLDP
policy named 'lldp_enabled', while in reality the policy configuration has LLDP
rx/tx disabled.

• A missing or unexpected value in the access policy, such as the configured VLAN
ID encap missing from the configured VLAN Pool.

• A missing relationship between the EPG and access policy, such as no physical
or virtual domain association to the EPG.

Most of the above troubleshooting involves walking through the access policy
relationships to understand if any relationships are missing, or to understand which
policies are configured and/or whether the configuration is resulting in the desired
behavior.

Configure interface, PC, and VPC Quick Start
Within the APIC GUI, the 'Configure Interface, PC, and VPC' quick start wizard
facilitates access policy lookup by providing the administrator an aggregated view of
existing access policies. This quick start wizard can be found in the GUI at:

'Fabric > Access Policies > Quick Start > Steps > Configure Interface, PC, and VPC'.

Access policies 141

Location of 'Con�gure Interface, PC, and VPC' Quick Start

Even though the wizard has 'Con�gure' in the name, it is exceptionally handy for
providing an aggregated view of the many access policies that must be
con�gured to get interfaces programmed. This aggregation serves as a single
view to understand which policies are already de�ned and e�ectively reduces the
number of clicks required to begin isolating access policy-related issues.

Using the Quick Start for troubleshooting
When the Quick Start view is loaded, the 'Configured Switch Interfaces' view (top-left
pane) can be referenced to determine existing access policies. The wizard groups the

142 Access policies

entries underneath folders that represent either individual or multiple leaf switches,
depending on the access policies configuration.

As a demonstration of the wizard's value, the following wizard screenshots are
presented, knowing the reader has no previous understanding of the fabric topology:

Demo view of 'Con�gure Interface, PC, and VPC' Quick Start

The 'Configured Switch Interfaces' pane shows access policy mappings. The 'VPC
Switch Pairs' pane shows completed VPC Protection Group definitions.

Access policies 143

The table below shows a subset of completed access policy definitions that can be
derived from the above screenshot.

Subset of completed access policies that can be derived from the above Quick Start
view

Switch Node Interface Policy Group Type Domain Type VLANs

101 1/31 Individual Routed (L3) 2600

101 1/4 Individual Phys (Bare Metal) 311-3..?

103-104 1/10 VPC Phys (Bare Metal) 100-3..?

The VLAN column entries are intentionally incomplete given the default view.

Similarly, the completed 'VPC Protection Group' policies can be derived from the 'VPC
Switch Pairs' view (bottom-left pane). Without 'VPC Protection Groups', VPCs cannot be
deployed as this is the policy which defines the VPC Domain between two leaf nodes.

Take into consideration that due to pane sizing, long entries are not completely visible.
To view the full value of any entry, hover the mouse pointer on the field of interest.

144 Access policies

Mouse pointer is hovering over 'Attached Device Type' �eld for 103-104, int 1/10 VPC
entry:

By hovering the mouse over the pane, the complete entries are visible.

Access policies 145

Updated subset of completed access policies using mouse-over details

Switch Node Interface Policy Group Type Domain Type VLANs

101 1/31 Individual Routed (L3) 2600

101 1/4 Individual Phys (Bare Metal) 311-320

103-104 1/10 VPC Phys (Bare Metal) 100-300,900-999

103-104 1/10 VPC Routed (L3) 100-300,900-999

Full VLAN associations can now be observed and understood for troubleshooting
and veri�cation.

Troubleshooting scenarios

For the following troubleshooting scenarios, reference the same topology from the
previous chapter.

146 Access policies

Topology from access policy 'Introduction' section

Scenario 1: Fault F0467 — invalid-path, nwissues
This fault is raised when a switch/port/VLAN declaration is made without the
corresponding access policies in place to allow that configuration to be applied
properly. Depending on the description of this fault, a different element of the access
policy relationship may be missing.

Access policies 147

After deploying a static binding for the above VPC interface with trunked encap VLAN
1501 without the corresponding access policy relationship in place, the following fault is
raised on the EPG:

Fault: F0467

Description: Fault delegate: Con�guration failed for uni/tn-Prod1/ap-App1/epg-
EPG-Web node 101 101_102_eth1_9 due to Invalid Path Con�guration, Invalid
VLAN Con�guration, debug message: invalid-vlan: vlan-1501 :STP Segment Id
not present for Encap. Either the EPG is not associated with a domain or the
domain does not have this vlan assigned to it;invalid-path: vlan-1501 :There is no
domain, associated with both EPG and Port, that has required VLAN;

From the above fault description, there are some clear indications as to what could be
causing the fault to be triggered. There is a warning to check the access policy
relationships, as well as to check the domain association to the EPG.

148 Access policies

Reviewing the Quick Start view in the scenario described above, clearly the access
policy is missing VLANs.

Quick Start view where 101-102, Int 1/9 VPC is missing VLANs

Note that the entry is missing a reference to any VLAN IDs.

Access policies 149

Once corrected, the Quick Start view will show '(VLANs 1500-1510)'.

101-102, Int 1/9 VPC now shows Bare Metal (VLANs: 1500-1510)

However, the EPG fault still exists with the following updated description for fault
F0467:

Fault: F0467

Description: Fault delegate: Con�guration failed for uni/tn-Prod1/ap-App1/epg-
EPG-Web node 101 101_102_eth1_9 due to Invalid Path Con�guration, debug
message: invalid-path: vlan-150 : There is no domain, associated with both EPG
and Port, that has required VLAN.

150 Access policies

With the above updated fault, check the EPG domain associations to find that there are
no domains tied to the EPG.

EPG-Web has Static Ports association, but is missing domain associations

Once the domain that contains VLAN 1501 is associated to the EPG, no further faults are
raised.

Scenario 2: Unable to select VPC as a path to deploy on EPG Static Port or L3Out
Logical Interface Profile (SVI)
While attempting to configure a VPC as a path on an EPG Static Port or L3Out Logical
Interface Profile SVI entry, the specific VPC to be deployed is not displayed as an
available option.

Access policies 151

1

2

When attempting to deploy a VPC static binding, there are two hard requirements:

The VPC Explicit Protection Group must be defined for the pair of leaf switches
in question.

The full access policy mapping must be defined.

Both requirements can be checked from the Quick Start view as shown above. If neither
is complete, the VPC will simply not show up as an available option for Static Port
Bindings.

Scenario 3: Fault F0467 — fabric encap already used in another EPG
By default, VLANs have a global scope. This means that a given VLAN ID can only be
used for a single EPG on a given leaf switch. Any attempt to re-use the same VLAN on
multiple EPGs within a given leaf switch will result in the following fault:

Fault: F0467

Description: Fault delegate: Con�guration failed for uni/tn-Prod1/ap-App1/epg-
EPG-BusinessApp node 102 101_102_eth1_8 due to Encap Already Used in
Another EPG, debug message: encap-already-in-use: Encap is already in use by
Prod1:App1:EPG-Web;

Aside from selecting a different VLAN, another option to make this configuration work
is to consider the usage of 'Port Local' VLAN Scope. This scope allows for VLANs to be
mapped on a per-interface basis which means that VLAN-1501 could potentially be used
for different EPGs, across multiple interfaces, on the same leaf.

Although 'Port Local' scope gets associated on a Policy Group basis (specifically via an
L2 policy), it is applied at the leaf level.

152 Access policies

Location to change 'VLAN Scope' setting within APIC GUI

Before implementing the 'Port Local' VLAN scope configuration, review the "Cisco APIC
Layer 2 Networking Configuration Guide" on Cisco.com to ensure that its limitations
and design restrictions are acceptable for the desired use cases and designs.

Special mentions

Show Usage
While not specific to access policies, a button is available on most objects in the GUI
that is labeled 'Show Usage'. This button performs a policy lookup rooted at the selected
object to determine which leaf nodes/interfaces have a direct relationship to it. This
can be useful for both the general lookup scenario as well as to gain an understanding
of whether a specific object or policy is even in use.

Access policies 153

In the screenshot below, the selected AEP is being used by two different interfaces. This
implies that making a modification to the AEP will have a direct impact on the
associated interfaces.

'Show Usage' view when used on 'Attachable Access Entity Pro�le'

Overlapping VLAN Pools
While the function of access policies is to allow a specific VLAN to be deployed onto an
interface, there is additional usage that must be considered during the design phase.
Specifically, the domain gets used in the calculation of the VXLAN ID (called Fabric
Encap) tied to the external encapsulation. While this functionality generally has no
major bearing on dataplane traffic, such IDs are especially relevant for a subset of
protocols which flood through the fabric, including Spanning Tree BPDUs. If VLAN-<id>
BPDUs ingressing on leaf1 are expected to egress Leaf 2 (e.g. having legacy switches
converging spanning-tree through ACI), VLAN-<id> must have the same fabric encap on
both leaf nodes. If the fabric encap value differs for the same access VLANS, the BPDUs
will not traverse the fabric.

As mentioned in the previous section, avoid configuration of same VLANs in multiple
domains (VMM vs Physical, for example) unless special care is being taken to ensure

154 Access policies

that each domain is only ever applied to a unique set of leaf switches. The moment both
domains can be resolved onto the same leaf switch for a given VLAN, there is a chance
that underlying VXLAN can be changed after an upgrade (or clean reload) which can
lead for example to STP convergence issues. The behavior is a result of each domain
having a unique numerical value (the 'base' attribute) which is used in the following
equation to determine VXLAN ID:

VXLAN VNID = Base + (encap — from_encap)

To validate which domains are pushed onto a given leaf, a moquery can be run against
the 'stpAllocEncapBlkDef' class:

leaf# moquery -c stpAllocEncapBlkDef
stp.AllocEncapBlkDef
encapBlk : uni/infra/vlanns-[physvlans]-dynamic/from-[vlan-1500]-to-[vlan-1510]
base : 8492
dn : allocencap-[uni/infra]/encapnsdef-[uni/infra/vlanns-[physvlans]-dynamic]/allocencapblkdef-
[uni/infra/vlanns-[physvlans]-dynamic/from-[vlan-1500]-to-[vlan-1510]]
from : vlan-1500
to : vlan-1510

From this output, discern the following access policy definitions:

• There is a programmed VLAN pool with a block of VLANs explicitly defining
VLANS 1500-1510.

• This block of VLANs is tied to a domain named 'physvlans'.

• The base value used in VXLAN calculation is 8492.

• The resulting VXLAN calculation for VLAN-1501 would be 8492 + (1501-1500) =
8493 as the fabric encapsulation.

Access policies 155

The resulting VXLAN ID (in this example, 8493) can be verified with the following
command:

leaf# show system internal epm vlan all
+----------+---------+-----------------+----------+------+----------+-----------
 VLAN ID Type Access Encap Fabric H/W id BD VLAN Endpoint
 (Type Value) Encap Count
+----------+---------+-----------------+----------+------+----------+-----------
13 Tenant BD NONE 0 16121790 18 13 0
14 FD vlan 802.1Q 1501 8493 19 13 0

If there is any other VLAN pool containing VLAN-1501 that gets pushed onto the
same leaf, an upgrade or clean reload could potentially grab unique base value
(and subsequently a di�erent Fabric Encap) which will cause BPDUs to stop
making it to another leaf which is expected to receive BPDUs on VLAN-1501.

Security policies

158 Security policies

Overview

The fundamental security architecture of the ACI solution follows a whitelist model.
Unless a VRF is configured in unenforced mode, all EPG to EPG traffic flows are
implicitly dropped. As implied by the out-of-the-box whitelist model, the default VRF
setting is in enforced mode. Traffic flows can be allowed or explicitly denied by
implementing zoning-rules on the switch nodes. These zoning-rules can be
programmed in a variety of different configurations depending on the desired
communication flow between endpoint groups (EPG) and the method used to define
them. Note that zoning-rule entries are not stateful and will typically allow/deny based
on port/socket given two EPGs once the rule has been programmed.

Methods to program zoning-rules

The main methods to program zoning-rules within ACI are as follows:

• EPG-to-EPG Contracts: Typically requires at least one consumer and one
provider to program zoning-rules across two or more distinct endpoint groups.

• Preferred Groups: Requires enabling grouping at the VRF level; only one group
can exist per VRF. All members of the group can communicate freely. Non-
members require contracts to allow flows to the preferred group.

• vzAny: An 'EPG Collection' that is defined under a given VRF. vzAny represents
all EPGs in the VRF. Usage of vzAny allows flows between one EPG and all EPGs
within the VRF via one contract connection.

The following diagram can be used to reference the granularity of zoning-rule that each
of the above methods allows for control:

Security policies 159

Comparsion between zoning-rule methodologies

While utilizing the contract method of programming zoning-rules, there is an option
for defining the contract scope. This option must be given careful consideration if any
route leaking/shared service design is required. If the wish is to get from one VRF to
another within the ACI fabric, contracts are the method to do so.

The scope values can be the following:

• Application: a contract consumer/provider relationship will only program rules
between EPGs that are defined within the same Application Profile. Re-using the
same contract across other Application Profile EPGs will not allow for crosstalk
between them.

160 Security policies

• VRF (default): a contract consumer/provider relationship will program rules
between EPGs that are defined within the same VRF. Re-using the same contract
across other Application Profile EPGs will allow for crosstalk between them.
Take care to ensure that only desired flows are allowed, otherwise a new
contract should be defined to prevent unintentional crosstalk.

• Tenant: a contract consumer/provider relationship will program rules between
EPGs that are defined within the same tenant. If there are EPGs tied to multiple
VRFs within a single tenant and they consume/provide the same contract, this
scope can be used to induce route leaking to allow for inter-VRF
communication.

• Global: a contract consumer/provider relationship will program rules between
EPGs across any tenant within an ACI fabric. This is the highest possible scope
of the definition, and great care should be taken when this is enabled on
previously defined contracts as to prevent unintentional flow leakage.

Reading a zoning-rule entry

Once the zoning-rule is programmed, it will appear as the following on a leaf:

+---------+--------+--------+----------+----------------+---------+---------+-----------------+----------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+---------+-----------------+----------+----------------------+

• Rule ID: the ID of the rule entry. No real significance other than to act as a
unique identifier.

• Src EPG: a unique ID per VRF (pcTag) of the source endpoint group.

• Dst EPG: a unique ID per VRF (pcTag) of the destination endpoint group.

• FilterID: the ID of the filter that the rule is attempting to match against. The
Filter contains the protocol info that the rule will match against.

• Dir: the directionality of the zoning-rule.

Security policies 161

• OperSt: the operating State of the rule.

• Scope: a unique ID of the VRF that the rule will match against.

• Name: the name of the contract that resulted in that entry being programmed.

• Action: what the leaf will do when it matches that entry. Includes: [Drop, Permit,
Log, Redirect].

• Priority: the order in which the zoning-rules will be validated for action given a
matching Scope, SrcEPG, DstEPG, and Filter Entries.

Policy Content-Addressable Memory (CAM)
As each zoning rule gets programmed, a matrix of the zoning-rule entry mapped
against filter entries will begin to consume Policy CAM on the switches. While
designing allowed flows through an ACI fabric, special care should be taken when re-
using contracts, as opposed to creating new ones, depending on the end design.
Haphazardly re-using the same contract across multiple EPGs without understanding
the resulting zoning-rules can quickly cascade into multiple flows being allowed
unexpectedly. At the same time, these unintentional flows will continue to consume
Policy CAM. When Policy CAM becomes full, the zoning-rule programming will begin to
fail which can result in unexpected and intermittent loss depending on configuration
and endpoint behaviors.

VRF leaking, global pcTags and policy enforcement
directionality of shared L3Outs

This is a special callout for the shared services use case which requires contracts to be
configured. Shared services typically imply inter-VRF traffic within an ACI fabric which
relies on the usage of either a 'tenant' or 'global' scoped contract. To fully understand
this, one must first reinforce the idea that the typical pcTag value assigned to EPGs are
not globally unique. pcTags are scoped to a VRF and the same pcTag could potentially
be re-used within another VRF. When the discussion of route leaking comes up, start to

162 Security policies

enforce requirements on the ACI fabric including the need for globally unique values
including subnets and pcTags.

What makes this a special consideration is the directionality aspect tied to an EPG
being a consumer vs a provider. In a shared services scenario, the provider is typically
expected to drive a global pcTag to get a fabric unique value. At the same time, the
consumer will retain its VRF-scoped pcTag which puts it in a special position to be able
to now program and understand the usage of the global pcTag value to enforce policy.

For reference, the pcTag allocation range is as follows:

• System reserved: 1-15.

• Global scoped: 16-16384 for shared services provider EPGs.

• Local scoped: 16385-65535 for VRF scoped EPGs.

VRF policy control enforcement direction

In each VRF it is possible to define the enforcement direction setting.

• The default setting of enforcement direction is Ingress.

• The other option for enforcement direction is Egress.

Understanding where the policy is enforced depends on several different variables.

The table below helps to understand where the security policy is enforced at leaf level.

Security policies 163

Where is policy enforced?

Scenario VRF enforcement mode Consumer Provider Policy enforced on

Intra-VRF

Ingress/egress EPG EPG

• If destination endpoint is
learned: ingress leaf*

• If destination endpoint is not
learned: egress leaf

Ingress EPG L3Out EPG Consumer leaf (non-border leaf)

Ingress L3Out EPG EPG Provider leaf (non-border leaf)

Egress EPG L3Out EPG

Border leaf -> non-border leaf tra�c

• If destination endpoint is

learned: border leaf

• If destination endpoint is not

learned: non-border leaf

Non-border leaf-> border leaf tra�c

• Border leaf

Egress L3Out EPG EPG

Ingress/egress L3Out EPG L3Out EPG Ingress leaf*

Inter-VRF

Ingress/egress EPG EPG Consumer leaf

Ingress/egress EPG L3Out EPG Consumer leaf (Non-border leaf)

Ingress/egress L3Out EPG EPG Ingress leaf*

Ingress/egress L3Out EPG L3Out EPG Ingress leaf*

*Policy enforcement is applied on the first leaf hit by the packet.

164 Security policies

The figure below illustrates an example of contract enforcement where EPG-Web as
consumer and L3Out EPG as provider have an intra-VRF contract. If VRF is set to
Ingress enforcement mode, policy is enforced by the leaf nodes where EPG-Web
resides. If VRF is set to Egress enforcement mode, policy is enforced by the border leaf
nodes where L3Out resides if VM-Web endpoint is learned on the border leaf.

Ingress enforcement and egress enforcement

Security policies 165

Tools

There are a variety of tools and commands that can be used to help in the identification
of a policy drop. A policy drop can be defined as a packet drop due to a contract
configuration or lack thereof.

Zoning-rule validation

The following tools and commands can be used to explicitly validate the zoning-rules
that are programmed on leaf switches as a result of completed contract
consumer/provider relationships.

'show zoning-rules'
A switch level command showing all zoning rules in place.

leaf# show zoning-rule
+---------+--------+--------+----------+----------------+---------+----------+-----------------+----------+----------------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+----------+-----------------+----------+----------------------------+
| 4156 | 25 | 16410 | 425 | uni-dir-ignore | enabled | 2818048 | external_to_ntp | permit | fully_qual(7) |
| 4131 | 16410 | 25 | 424 | bi-dir | enabled | 2818048 | external_to_ntp | permit | fully_qual(7) |
+---------+--------+--------+----------+----------------+---------+----------+-----------------+----------+----------------------------+

'show zoning-filter'
A filter that contains the sport/dport information that the zoning rule is acting on. The
filter programming can be verified with this command.

leaf# show zoning-filter
+----------+----------+-------------+-------------+-------------+----------+-------------+-------------+-------------+-------------+----------+
| FilterId | Name | EtherT | Prot | ApplyToFrag | Stateful | SFromPort | SToPort | DFromPort | DToPort | Prio |
+----------+----------+-------------+-------------+-------------+----------+-------------+-------------+-------------+-------------+----------+
implarp	implarp	arp	unspecified	no	no	unspecified	unspecified	unspecified	unspecified	dport
implicit	implicit	unspecified	unspecified	no	no	unspecified	unspecified	unspecified	unspecified	implicit
425	425_0	ip	tcp	no	no	123	123	unspecified	unspecified	sport
424	424_0	ip	tcp	no	no	unspecified	unspecified	123	123	dport
+----------+----------+-------------+-------------+-------------+----------+-------------+-------------+-------------+-------------+----------+

166 Security policies

'show system internal policy-mgr stats'
This command can be run to verify the number of hits per zoning-rule. This is useful to
determine whether an expected rule is being hit as opposed to another, such as an
implicit drop rule that may have a higher priority.

leaf# show system internal policy-mgr stats
Requested Rule Statistics
Rule (4131) DN (sys/actrl/scope-2818048/rule-2818048-s-16410-d-25-f-424) Ingress: 0, Egress: 0, Pkts: 0 RevPkts: 0
Rule (4156) DN (sys/actrl/scope-2818048/rule-2818048-s-25-d-16410-f-425) Ingress: 0, Egress: 0, Pkts: 0 RevPkts: 0

'show logging ip access-list internal packet-log deny'
A switch level command that can be run at iBash level which reports ACL (contract)
related drops and flow-related information including:

• VRF

• VLAN-ID

• Source MAC/Dest MAC

• Source IP/Dest IP

• Source Port/Dest Port

• Source Interface

leaf# show logging ip access-list internal packet-log deny
[Tue Oct 1 10:34:37 2019 377572 usecs]: CName: Prod1:VRF1(VXLAN: 2654209), VlanType: Unknown, Vlan-Id: 0, SMac: 0x000c0c0c0c0c,
DMac:0x000c0c0c0c0c, SIP: 192.168.21.11, DIP: 192.168.22.11, SPort: 0, DPort: 0, Src Intf: Tunnel7, Proto: 1, PktLen: 98
[Tue Oct 1 10:34:36 2019 377731 usecs]: CName: Prod1:VRF1(VXLAN: 2654209), VlanType: Unknown, Vlan-Id: 0, SMac: 0x000c0c0c0c0c,
DMac:0x000c0c0c0c0c, SIP: 192.168.21.11, DIP: 192.168.22.11, SPort: 0, DPort: 0, Src Intf: Tunnel7, Proto: 1, PktLen: 98

contract_parser
An on-device Python script which produces an output that correlates the zoning-rules,
filters and hit statistics while performing name lookups from IDs. This script is
extremely useful in that it takes a multi-step process and turns it into a single

Security policies 167

command which can be filtered to specific EPGs/VRFs or on other contract related
values.

leaf# contract_parser.py
Key:
[prio:RuleId] [vrf:{str}] action protocol src-epg [src-l4] dst-epg [dst-l4] [flags][contract:{str}] [hit=count]

[7:4131] [vrf:common:default] permit ip tcp tn-Prod1/ap-Services/epg-NTP(16410) tn-Prod1/l3out-L3Out1/instP-extEpg(25) eq 123
[contract:uni/tn-Prod1/brc-external_to_ntp] [hit=0]
[7:4156] [vrf:common:default] permit ip tcp tn-Prod1/l3out-L3Out1/instP-extEpg(25) eq 123 tn-Prod1/ap-Services/epg-NTP(16410)
[contract:uni/tn-Prod1/brc-external_to_ntp] [hit=0]
[12:4169] [vrf:common:default] deny,log any tn-Prod1/l3out-L3Out1/instP-extEpg(25) epg:any [contract:implicit] [hit=0]
[16:4167] [vrf:common:default] permit any epg:any tn-Prod1/bd-Services(32789) [contract:implicit] [hit=0]

Packet classification validation

ELAM
An ASIC level report used to check forwarding details which indicates, in the case of a
dropped packet, the drop reason. Relevant to this section, the reason can be a
SECURITY_GROUP_DENY (contract policy drop).

fTriage
A Python-based utility on the APIC which can track end-to-end packet flow with ELAM.

ELAM Assistant App
An APIC App that abstracts the complexity of various ASICs to make forwarding
decision inspection much more convenient and user friendly.

Please refer to the "Intra-Fabric Forwarding" section for additional details on the
ELAM, fTriage and ELAM Assistant Tools

168 Security policies

Policy CAM usage

Policy CAM usage on a per leaf basis is an important parameter to monitor to ensure
the fabric is in a healthy status. The quickest way to monitor that is to use the 'Capacity
Dashboard' within the GUI and explicitly check the 'Policy Cam' column.

The 'Leaf Capacity' view of Capacity Dashboard

Security policies 169

'show platform internal hal health-stats'
This command is useful for validating a variety of resource limits and usage, including
Policy CAM. Note that this command can only be run in vsh_lc, so pass it in using the '-
c' flag if being run from iBash.

leaf8# vsh_lc -c "show platform internal hal health-stats"
Sandbox_ID: 0 Asic Bitmap: 0x0

...

Policy stats:
=============
policy_count : 96
max_policy_count : 65536
policy_otcam_count : 175
max_policy_otcam_count : 8192
policy_label_count : 0
max_policy_label_count : 0
=============

170 Security policies

EPG to EPG

Generic policy drop considerations

There are numerous ways to troubleshoot a connectivity issue between two endpoints.
The following methodology provides a good starting point to quickly and effectively
isolate whether the connectivity issue is the result of a policy drop (contract induced).

Some high-level questions worth asking before diving in:

• Are the endpoints in same or different EPG?

- Traffic between two endpoints residing in different EPGs (inter-EPG) is
implicitly denied and requires a contact to allow communication.

- Traffic between two endpoints within the same EPG (intra-EPG) is
implicitly allowed, unless intra-EPG isolation is in use.

• Is the VRF enforced or unenforced?

- When a VRF is in enforced mode, — within the VRF — contracts are
required for endpoints in two different EPGs to communicate.

- When a VRF is in unenforced mode, — within the VRF — all traffic would
be allowed by the ACI fabric across multiple EPGs belonging to the
unenforced VRF, regardless of the ACI contracts applied.

Methodology
With the various tools available, there are some that are more appropriate and
convenient to start with than others, depending on the level of information already
known about the affected flow.

Security policies 171

1

2

-

Is the full path of the packet in the ACI fabric known (ingress leaf, egress leaf...)?

If the answer is yes, ELAM Assistant should be used to identify the drop reason on the
source or destination switch.

If the answer is no, Visibility & Troubleshooting, fTriage, contract_parser, Operational
tab in the Tenant view, and iBash commands will help to narrow down the path of the
packet or give more visibility into the drop reasons.

Please note that the fTriage tool will not be discussed in detail in this section.
Refer to the chapter "Intra-Fabric Forwarding" for more detail on using this tool.

Consider that while Visibility & Troubleshooting can help to quickly visualize where
packets are dropped between two endpoints, fTriage shows more in-depth information
for further troubleshooting. i.e. fTriage will help identify interface, drop reason, and
other low-level details about the affected flow.

This example scenario will show how to troubleshoot a policy drop between two
endpoints: 192.168.21.11 and 192.168.23.11

Assuming packet drops are experienced between those two endpoints, the following
troubleshooting workflow will be used to identify the root cause of the problem:

Identify the src/dst leaf(s) involved in the traffic flow:

Use Visibility & Troubleshooting to trace the packet flow and identify which
device is dropping the packet.

Run the command 'show logging ip access-list internal packet-log deny' on the
selected device.

If a packet with one of the IP addresses of interest is being denied and
logged, the packet-log will print the relevant endpoint and contract
name on a per hit basis.

172 Security policies

3

-

-

Use command 'contract_parser.py --vrf <tenant>:<VRF>' on source and
destination leaf to observe hit count for the configured contract:

If a packet is hitting the contract on either the source or destination
switch, the counter of the relevant contract will increment

This method is less granular than that of IP access-list internal packet-
log in situations where many flows could be hitting the same rule (many
endpoints/flows between the two EPGs of interest).

The above steps are described further in the next paragraph.

Example troubleshooting scenario EPG to EPG

This example scenario will show how to troubleshoot a policy drop between two
endpoints: 192.168.21.11 in EPG-Web and 192.168.23.11 in EPG-DB.

Topology

Security policies 173

Identify the source and destination leaf switches involved in the
packet drop

Visibility & Troubleshooting
The Visibility & Troubleshooting tool will help to visualize the switch where the packet
drop occurred for a specific EP-to-EP flow and identify where packets are possibly
dropped.

Con�guration of Visibility & Troubleshooting

Configure a Session Name, Source, and Destination endpoint. Then click 'Submit' or
'Generate Report'.

The tool will automatically find the endpoints in the fabric and provide information
about the Tenant, Application Profile and EPG those EP belong to.

In this case, it will discover that the EPs belong to the tenant Prod1, they belong to the
same Application Profile 'AppProf' and are assigned to different EPGs: 'Web' and 'DB'.

174 Security policies

Drop identi�cation

The tool will automatically visualize the topology of the troubleshooting scenario. In
this case, the two endpoints happen to be connected to the same leaf switch.

By navigating to the Drop/Stats submenu, the user can view general drops on the leaf
or spine in question. Refer to the "Interface Drops" section in the chapter "Intra-Fabric
Forwarding" of this book for more information about understanding which drops are
relevant.

Many of these drops are expected behavior and can be ignored.

Security policies 175

Drop details

By drilling down to drop detail using the yellow 'Packets dropped' button on the switch
diagram, the user can view details about the dropped flow.

176 Security policies

Contract details

By navigating to the Contracts submenu, the user can identify which contract is causing
policy drop off between the EPGs. In the example, it is Implicit to Deny Prod1/VRF1
which shows some hits. This does not necessarily mean the specified flow (192.168.21.11
and 192.168.23.11) is hitting this implicit deny. If the Hits of Context Implicit deny rule is
increasing, it implies there is traffic between Prod1/DB and Prod1/Web that do not hit
any of contracts, hence are dropped by the Implicit deny.

Security policies 177

In the Application Profile Topology view at Tenant > select the Application Profile name
on the left > Topology , it is possible to verify which contracts are applied to the DB
EPG. In this case, no contract is assigned to the EPG:

Contract visualization

Now that the source and destination EPGs are known, it is also possible to identify
other relevant information such as the following:

• The src/dst EPG pcTag of the affected endpoints. The pcTag is the class ID used
to identify an EPG with a zoning-rule.

• The src/dst VRF VNID, also referred to as scope, of the affected endpoints.

178 Security policies

Class ID and scope can be easily retrieved from the APIC GUI by opening the Tenant >
select the Tenant name on the left > Operational > Resource IDs > EPGs

Tenant resource ID to �nd EPG pcTag and scope

In this case the Class ID and Scopes are:

• Web EPG pcTag 32778

• Web EPG scope 2654209

• DB EPG pcTag 49159

• DB EPG scope 2654209

Security policies 179

Verify the policy applied to the traffic flow being troubleshot

iBash
An interesting tool to verify the packet dropped on an ACI leaf is the iBash command
line: 'show logging ip access-list internal packet-log deny':

leaf5# show logging ip access-list internal packet-log deny | grep 192.168.21.11
[2019-10-01T14:25:44.746528000+09:00]: CName: Prod1:VRF1(VXLAN: 2654209), VlanType: FD_VLAN, Vlan-Id: 114, SMac: 0xf6f26c4ec8d0,
DMac:0x0022bdf819ff, SIP: 192.168.21.11, DIP: 192.168.23.11, SPort: 0, DPort: 0, Src Intf: Ethernet1/19, Proto: 1, PktLen: 126
[2019-10-01T14:25:44.288653000+09:00]: CName: Prod1:VRF1(VXLAN: 2654209), VlanType: FD_VLAN, Vlan-Id: 116, SMac: 0x3e2593f0eded,
DMac:0x0022bdf819ff, SIP: 192.168.23.11, DIP: 192.168.21.11, SPort: 0, DPort: 0, Src Intf: Ethernet1/19, Proto: 1, PktLen: 126

As per the previous output, it can be seen that on the leaf switch, numerous ICMP
packets sourced by EP 192.168.23.11 towards 192.168.21.11 have been dropped.

The contract_parser tool will help to verify the actual policies applied to the VRF where
the Endpoints are associated with:

leaf5# contract_parser.py --vrf Prod1:VRF1
Key:
[prio:RuleId] [vrf:{str}] action protocol src-epg [src-l4] dst-epg [dst-l4] [flags][contract:{str}] [hit=count]

[7:5159] [vrf:Prod1:VRF1] permit ip tcp tn-Prod1/ap-App1/epg-App(32771) eq 5000 tn-Prod1/ap-App1/epg-Web(32772) [contract:uni/tn-
Prod1/brc-web_to_app] [hit=0]
[7:5156] [vrf:Prod1:VRF1] permit ip tcp tn-Prod1/ap-App1/epg-Web(32772) tn-Prod1/ap-App1/epg-App(32771) eq 5000 [contract:uni/tn-
Prod1/brc-web_to_app] [hit=0]
[16:5152] [vrf:Prod1:VRF1] permit any epg:any tn-Prod1/bd-Web(49154) [contract:implicit] [hit=0]
[16:5154] [vrf:Prod1:VRF1] permit arp epg:any epg:any [contract:implicit] [hit=0]
[21:5155] [vrf:Prod1:VRF1] deny,log any epg:any epg:any [contract:implicit] [hit=38,+10]
[22:5153] [vrf:Prod1:VRF1] deny,log any epg:any pfx-0.0.0.0/0(15) [contract:implicit] [hit=0]

180 Security policies

This can also be verified through the zoning rule programmed in the leaf the policies
enforced by the switch.

leaf5# show zoning-rule scope 2654209

+---------+--------+--------+----------+----------------+---------+----------+------------+----------+-------------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+----------+------------+----------+-------------------------+
5155	0	0	implicit	uni-dir	enabled	2654209		deny,log	any_any_any(21)
5159	32771	32772	411	uni-dir-ignore	enabled	2654209	web_to_app	permit	fully_qual(7)
5156	32772	32771	410	bi-dir	enabled	2654209	web_to_app	permit	fully_qual(7)
+---------+--------+--------+----------+----------------+---------+----------+------------+----------+-------------------------+

As already seen by the Visibility & Troubleshooting tool, the contract_parser tool, and
the zoning rules, output confirms there is no contract between the source and
destination EPGs in troubleshooting. It is easy to assume that the packets dropped are
matching the implicit deny rule 5155.

ELAM Capture
ELAM capture provides an ASIC level report used to check forwarding details which
indicates, in the case of a dropped packet, the drop reason. When the reason of a drop
is a policy drop, as in this scenario, the output of the ELAM capture will look like the
following.

Please note that details of setting up an ELAM capture will not be discussed in
this chapter, please see the chapter "Intra-Fabric Forwarding".

leaf5# vsh_lc
module-1# debug platform internal tah elam asic 0
module-1(DBG-elam)# trigger init in-select 6 out-select 0
module-1(DBG-elam)# trigger reset
module-1(DBG-elam-insel6)# set outer ipv4 src_ip 192.168.21.11 dst_ip 192.168.23.11
module-1(DBG-elam-insel6)# start
module-1(DBG-elam-insel6)# status

ELAM STATUS
===========
Asic 0 Slice 0 Status Triggered
Asic 0 Slice 1 Status Armed

module-1(DBG-elam-insel6)# ereport | grep reason

Security policies 181

RW drop reason : SECURITY_GROUP_DENY
LU drop reason : SECURITY_GROUP_DENY
 pkt.lu_drop_reason: 0x2D

The ELAM report above shows clearly that the packet was dropped due to a policy drop:
'SECURITY_GROUP_DENY'

ELAM Assistant:
The very same result of the ELAM capture can be shown through the ELAM Assistant
App on the APIC GUI.

Con�guration

Typically, the user will configure both source and destination details for the flow of
interest. In this example, src IP is used to capture traffic towards endpoint in
destination EPG that does not have a contract relationship to the source EPG.

182 Security policies

Elam Assistant Express report

There are three levels of output that can be viewed with ELAM Assistant. These are
Express, Detail, and Raw.

Elam Assistant Express report (cont.)

Under the Express Result, the Drop Code reason SECURITY_GROUP_DENY indicates
that the drop was a result of a contract hit.

Security policies 183

Preferred group

About contract preferred groups

There are two types of policy enforcements available for EPGs in a VRF with a contract
preferred group configured:

• Included EPGs: EPGs can freely communicate with each other without
contracts, if they have membership in a contract preferred group. This is based
on the source-any-destination-any-permit default rule.

• Excluded EPGs: EPGs that are not members of preferred groups require
contracts to communicate with each other. Otherwise, the deny rules between
the excluded EPG and any EPG apply.

The contract preferred group feature enables greater control of communication
between EPGs in a VRF. If most of the EPGs in the VRF should have open
communication, but a few should only have limited communication with the other
EPGs, configure a combination of a contract preferred group and contracts with filters
to more precisely control inter-EPG communication.

EPGs that are excluded from the preferred group can only communicate with other
EPGs if there is a contract in place to override the source-any-destination-any-deny
default rule.

Contract Preferred Group programming
Essentially, Contract Preferred Groups are an inverse of regular contracts. For regular
contracts, explicit permit zoning-rules are programmed with an implicit deny zoning-
rule with the VRF Scope. For Preferred Groups, an implicit PERMIT zoning-rule is
programmed with the highest numeric priority value and specific DENY zoning-rules
are programmed to disallow traffic from EPGs which are not Preferred Group members.
As a result, the deny rules are evaluated first and if the flow isn't matched by these
rules, then the flow is implicitly permitted.

184 Security policies

There's always a pair of explicit deny zoning-rules for every EPG outside of the
preferred group:

• One from the non-Preferred Group member to any pcTag (value 0).

• Another from any pcTag (value 0) to the non-Preferred Group member.

Scenario
The figure below shows a logical topology in which EPGs App, App2 and App3 are all
configured as Preferred Group Members.

VM-App is part of EPG-App and VM-App2 is part of EPG-App2. Both App and App2 EPG
should be part of the preferred and hence communicate freely.

VM-App initiates a traffic flow on TCP port 6000 to VM-App2. Both EPG-App and EPG-
App2 are Preferred Group Members as part of VRF1. VM-App2 never receives any
packets on TCP port 6000.

Security policies 185

Troubleshooting scenario

186 Security policies

Workflow

1. Look up the pcTag of EPG APP and its VRF VNID/Scope

EPG and VRF pcTags

2. Verify contract programming using contract_parser.py on the ingress leaf
Use contract_parser.py and/or the 'show zoning-rule' command and specify the VRF

fab3-leaf8# show zoning-rule scope 2654209
+---------+--------+--------+----------+---------+---------+---------+------+----------+----------------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+---------+---------+---------+------+----------+----------------------------+
4165	0	0	implicit	uni-dir	enabled	2654209		permit	grp_any_any_any_permit(20)
4160	0	0	implarp	uni-dir	enabled	2654209		permit	any_any_filter(17)
4164	0	15	implicit	uni-dir	enabled	2654209		deny,log	grp_any_dest_any_deny(19)
4176	0	16386	implicit	uni-dir	enabled	2654209		permit	any_dest_any(16)
4130	32770	0	implicit	uni-dir	enabled	2654209		deny,log	grp_src_any_any_deny(18)
4175	49159	0	implicit	uni-dir	enabled	2654209		deny,log	grp_src_any_any_deny(18)
4129	0	49159	implicit	uni-dir	enabled	2654209		deny,log	grp_any_dest_any_deny(19)
4177	32778	0	implicit	uni-dir	enabled	2654209		deny,log	grp_src_any_any_deny(18)
4128	0	32778	implicit	uni-dir	enabled	2654209		deny,log	grp_any_dest_any_deny(19)
4178	32775	0	implicit	uni-dir	enabled	2654209		deny,log	grp_src_any_any_deny(18)

Security policies 187

| 4179 | 0 | 32775 | implicit | uni-dir | enabled | 2654209 | | deny,log | grp_any_dest_any_deny(19) |
+---------+--------+--------+----------+---------+---------+---------+------+----------+----------------------------+
fab3-leaf8# contract_parser.py --vrf Prod1:VRF1
Key:
[prio:RuleId] [vrf:{str}] action protocol src-epg [src-l4] dst-epg [dst-l4] [flags][contract:{str}] [hit=count]
[16:4176] [vrf:Prod1:VRF1] permit any epg:any tn-Prod1/bd-App(16386) [contract:implicit] [hit=0]
[16:4160] [vrf:Prod1:VRF1] permit arp epg:any epg:any [contract:implicit] [hit=0]
[18:4130] [vrf:Prod1:VRF1] deny,log any tn-Prod1/vrf-VRF1(32770) epg:any [contract:implicit] [hit=?]
[18:4178] [vrf:Prod1:VRF1] deny,log any epg:32775 epg:any [contract:implicit] [hit=?]
[18:4177] [vrf:Prod1:VRF1] deny,log any epg:32778 epg:any [contract:implicit] [hit=?]
[18:4175] [vrf:Prod1:VRF1] deny,log any epg:49159 epg:any [contract:implicit] [hit=?]
[19:4164] [vrf:Prod1:VRF1] deny,log any epg:any pfx-0.0.0.0/0(15) [contract:implicit] [hit=0]
[19:4179] [vrf:Prod1:VRF1] deny,log any epg:any epg:32775 [contract:implicit] [hit=?]
[19:4128] [vrf:Prod1:VRF1] deny,log any epg:any epg:32778 [contract:implicit] [hit=?]
[19:4129] [vrf:Prod1:VRF1] deny,log any epg:any epg:49159 [contract:implicit] [hit=?]
[20:4165] [vrf:Prod1:VRF1] permit any epg:any epg:any [contract:implicit] [hit=65]

Examining the above output, the implicit permit entry — ruleId 4165 — with the highest
priority of 20, is observed. This implicit permit rule will cause all traffic flows to be
allowed unless there's an explicit deny rule with a lower priority disallowing the traffic
flow.

In addition, there are two explicit deny rules observed for pcTag 32775 which is the
pcTag of EPG App2. These two explicit deny zoning-rules disallow traffic from any EPG
to EPG App2, and vice versa. Those rules have priority 18 and 19, so they will take
precedence on the default permit rule.

The conclusion is that EPG App2 is not a Preferred Group Member as the explicit deny
rules are observed.

3. Verify EPG preferred Group Member Configuration
Navigate the APIC GUI and check EPG App2 and EPG App Preferred Group Member
Configuration,

188 Security policies

In the following figure, see EPG App2 is not configured as a Preferred Group Member.

EPG App2 — Preferred Group Member setting excluded

Security policies 189

EPG App — Preferred Group Member setting included

190 Security policies

4. Set EPG App2 to be a Preferred Group Member
Changing the configuration of App2 EPG enables the preferred group to communicate
freely as part of the preferred group.

EPG App2 — Preferred Group Member setting included

5. Re-verify contract programming using contract_parser.py on the leaf where the
src EP resides
Use contract_parser.py again and specify the VRF name to verify whether the explicit
deny rules for EPG App2 are now gone.

fab3-leaf8# contract_parser.py --vrf Prod1:VRF1
Key:
[prio:RuleId] [vrf:{str}] action protocol src-epg [src-l4] dst-epg [dst-l4] [flags][contract:{str}] [hit=count]
[16:4176] [vrf:Prod1:VRF1] permit any epg:any tn-Prod1/bd-App(16386) [contract:implicit] [hit=0]
[16:4160] [vrf:Prod1:VRF1] permit arp epg:any epg:any [contract:implicit] [hit=0]
[18:4175] [vrf:Prod1:VRF1] deny,log any epg:16390 epg:any [contract:implicit] [hit=0]
[18:4167] [vrf:Prod1:VRF1] deny,log any epg:23 epg:any [contract:implicit] [hit=0]
[18:4156] [vrf:Prod1:VRF1] deny,log any tn-Prod1/vrf-VRF1(32770) epg:any [contract:implicit] [hit=0]
[18:4168] [vrf:Prod1:VRF1] deny,log any epg:49159 epg:any [contract:implicit] [hit=0]
[19:4164] [vrf:Prod1:VRF1] deny,log any epg:any pfx-0.0.0.0/0(15) [contract:implicit] [hit=0]
[19:4169] [vrf:Prod1:VRF1] deny,log any epg:any epg:16390 [contract:implicit] [hit=0]
[19:4159] [vrf:Prod1:VRF1] deny,log any epg:any epg:23 [contract:implicit] [hit=0]

Security policies 191

[19:4174] [vrf:Prod1:VRF1] deny,log any epg:any epg:49159 [contract:implicit] [hit=0]
[20:4165] [vrf:Prod1:VRF1] permit any epg:any epg:any [contract:implicit] [hit=65]

The explicit deny rules for EPG App2 and its pcTag 32775 are no longer observed in the
above output. This means that traffic between EPs in EPG App and EPG App2 will now
match the implicit permit rule — ruleId 4165 — with the highest priority of 20.

192 Security policies

vzAny to EPG

About vzAny

When configuring contracts between one or multiple EPGs, contracts can either be
configured as a consumed or provided relation. When the number of EPGs grows, so
can the amount of contract relations between them. Some common use cases require
all EPGs to exchange traffic flows with another specific EPG. Such a use case could be
an EPG containing EPs providing services that need to be consumed by all other EPGs
inside the same VRF (NTP or DNS for example). vzAny allows for lower operational
overhead in configuring contract relations between all EPGs and specific EPGs
providing services to be consumed by all other EPGs. In addition, vzAny allows for a
much more efficient Security Policy CAM usage on leaf switches as only 2 zoning-rules
are added for each vzAny contract relation.

Scenarios
The figure below describes such a use case whereby VM-Web and VM-App in EPGs
Web and App respectively need to consume NTP services from VM-NTP in EPG-NTP.
Instead of configuring a provided contract on EPG NTP, and subsequently having that
same contract as a consumed contract on EPGs Web and App, vzAny allows each EPG in
VRF Prod:VRF1 to consume NTP services from EPG NTP.

Security policies 193

vzAny — Any EPG in VRF Prod:VRF1 can consume NTP services from EPG NTP

194 Security policies

Consider a scenario where drops are observed between EPGs that consume the NTP
services when there is no contract between them.

Tra�c drops if there is no contract

Security policies 195

Workflow

1. Look up the pcTag of EPG NTP and its VRF VNID/Scope
'Tenant > Operational > Resource IDs > EPGs' allows finding the pcTag and scope

EPG NTP pcTag and its VRF VNID/Scope

196 Security policies

2. Verify if a contract is configured as a vzAny consumed contract as part of the VRF
Navigate to the VRF and check if there's a consumed contract configured as vzAny
under the 'EPG Collection for VRF'.

Contract con�gured as a consumed vzAny contract on the VRF

Security policies 197

3. Verify if the same contract is applied as a provided contract on EPG NTP
In order to establish a contract relation, the same contract needs to be applied as a
provided contract on EPG NTP which is providing NTP services to the other EPGs in its
VRF.

Contract con�gured as a provided contract on EPG NTP

4. Zoning-rule verification on ingress leaf using contract_parser.py or 'show zoning-
rule'
The ingress leaf should have 2 zoning-rules to allow bi-directional traffic flows (if the
contract subject is set to allow both directions) between any EPG and EPG NTP. 'Any
EPG' is denoted as pcTag 0 in zoning-rule programming.

Using contract_parser.py or the 'show zoning-rule' commands on the ingress leaf
whilst specifying the VRF allows to ensure the zoning-rule are programmed.

198 Security policies

1

-

-

2

Zoning-rules allowing traffic to/from EPG NTP from other EPGs in the VRF present
Using contract_parser.py and 'show zoning-rule' to check the presence of the vzAny
based zoning-rules.

Here two types of rules are evident:

Rule 4156 and Rule 4168 which permit Any to NTP and vice-versa. They have
priority 13 and 14:

Zoning-rule allowing traffic flows from any EPG (pcTag 0) to EPG NTP
(pcTag 49161).

Zoning-rule allowing traffic flows from EPG NTP (pcTag 46161) to any
other EPG (pcTag 0).

Rule 4165 which is the any to any deny rule (default) with priority 21.

Given that lowest priority has precedence, all EPGs of the VRF will have access NTP
EPG.

fab3-leaf8# contract_parser.py --vrf Prod1:VRF
Key:
[prio:RuleId] [vrf:{str}] action protocol src-epg [src-l4] dst-epg [dst-l4] [flags][contract:{str}] [hit=count]

[13:4156] [vrf:Prod1:VRF1] permit ip tcp tn-Prod1/ap-Services/epg-NTP(49161) eq 123 epg:any [contract:uni/tn-Prod1/brc-
any_to_ntp] [hit=0]
[14:4168] [vrf:Prod1:VRF1] permit ip tcp epg:any tn-Prod1/ap-Services/epg-NTP(49161) eq 123 [contract:uni/tn-Prod1/brc-
any_to_ntp] [hit=0]
[16:4176] [vrf:Prod1:VRF1] permit any epg:any tn-Prod1/bd-App(16386) [contract:implicit] [hit=0]
[16:4174] [vrf:Prod1:VRF1] permit any epg:any tn-Prod1/bd-Services(32776) [contract:implicit] [hit=0]
[16:4160] [vrf:Prod1:VRF1] permit arp epg:any epg:any [contract:implicit] [hit=0]
[21:4165] [vrf:Prod1:VRF1] deny,log any epg:any epg:any [contract:implicit] [hit=65]
[22:4164] [vrf:Prod1:VRF1] deny,log any epg:any pfx-0.0.0.0/0(15) [contract:implicit] [hit=0]

Security policies 199

fab3-leaf8# show zoning-rule scope 2654209
+---------+--------+--------+----------+---------+---------+---------+------------+----------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+---------+---------+---------+------------+----------+----------------------+
4165	0	0	implicit	uni-dir	enabled	2654209		deny,log	any_any_any(21)
4160	0	0	implarp	uni-dir	enabled	2654209		permit	any_any_filter(17)
4164	0	15	implicit	uni-dir	enabled	2654209		deny,log	any_vrf_any_deny(22)
4176	0	16386	implicit	uni-dir	enabled	2654209		permit	any_dest_any(16)
4174	0	32776	implicit	uni-dir	enabled	2654209		permit	any_dest_any(16)
4168	0	49161	424	uni-dir	enabled	2654209	any_to_ntp	permit	any_dest_filter(14)
4156	49161	0	425	uni-dir	enabled	2654209	any_to_ntp	permit	src_any_filter(13)
+---------+--------+--------+----------+---------+---------+---------+------------+----------+----------------------+

200 Security policies

Shared L3Out to EPG

Description

Shared Layer 3 Out is a configuration which allows having an L3Out in one VRF
providing some services (external access) and one or more other VRFs consume this
L3Out. More detail on shared L3Out can be found in the "External routing" chapter.

When doing shared L3Out it is recommended to have the provider of the contract being
the shared L3Out and the EPG being the consumer of the contract. This scenario will be
illustrated in this section.

It is not recommended to do the opposite, which is L3Out consuming a service
provided by an EPG. This configuration leads to less scalability and that scenario will
not be illustrated here.

Scenario: provided contract on L3Out EPG and consumed
contract on EPG

Motivation
The recommended configuration when requiring traffic flows between an L3Out and an
EPG in different VRFs is to configure the external EPG (l3extInstP) as the provider and
the EPG as the consumer. The behavior is such that zoning-rules are only installed on
consumer VRF. The principles of consuming and providing denote where traffic flows
are initiated. With default ingress policy enforcement, this means policy enforcement
will be applied on the consumer side and more specifically on the ingress leaf (non-
border leaf). For the ingress leaf to enforce policy it requires the pcTag of the
destination. In this scenario the destination is the external EPG pcTag. The ingress leaf
thus performs policy enforcement and forwards the packets to the border leaf. The
border leaf receives the packet on its fabric link which performs a route lookup (LPM)
and forwards the packet onto the adjacency for the destination prefix.

Security policies 201

The border leaf however does NOT perform any policy enforcement when sending
traffic onto the destination EP nor does it do so on the return traffic flow back to the
source EP.

As a result, only the Policy CAM of the ingress non-BL leaf has entries installed (in the
consumer VRF) and the BL's Policy CAM is not affected.

1. Verify EPG pcTag and VRF VNID/Scope for the consumer EPG
With shared L3Out, the zoning-rules are only installed in the consumer VRF. The
provider must have a global pcTag (below 16k) which allows this pcTag to be used in all
consumer VRFs. In our scenario, the provider is the external EPG and will have a global
pcTag. The consumer EPG will have a local pcTag as usual.

pcTag of consumer EPG

202 Security policies

2. Verify the pcTag and VRF VNID/Scope for the provider L3Out EPG
As noted in Step 1, the provider L3Out EPG has a global range pcTag as prefixes from
L3Out which are leaked into the consumer VRF. As a result, the L3Out EPG pcTag is
required to not overlap with pcTags in the consumer VRF, and so it is within the global
pcTag range.

pcTag of provider external EPG

Security policies 203

3. Verify the consumer EPG has either an imported tenant scoped contract or global
contract configured
The consumer EPG NTP with subnet defined under the EPG/BD is consuming the
'tenant' or 'global' scoped contract

Contract consumed by EPG

4. Verify whether the BD of the consumer EPG has a subnet configured with its scope
set to 'Shared between VRFs'
The subnet of the EPG is configured under the bridge domain but must have the 'shared
between VRF' flag (to allow routed leaking) and the 'advertised externally' flag (to allow
to advertise to L3Out)

5. Verify the provider L3Out EPG has either an imported tenant scoped contract or
global contract configured
The L3Out EPG should either have a tenant scoped contract or global contract
configured as a provided contract.

204 Security policies

Contract on provider L3Out

6. Verify if the provider L3Out EPG has a subnet configured with the necessary
scopes checked
The provider L3Out EPG should have the to-be-leaked prefix configured with the
following scopes:

• External subnets for the external EPG.

• Shared route control subnet.

• Shared security import subnet.

For more detail on subnet flag in L3Out EPG refer to the "External forwarding" chapter.

Security policies 205

External EPG subnet settings

External EPG subnet settings expanded

206 Security policies

7. Verify the pcTag of L3Out EPG subnet on the non-BL for the consumer VRF
When traffic destined to the external EPG subnet ingresses the non-BL, a lookup is
performed against the destination prefix to determine the pcTag. This can be checked
using the following command on the non-BL.

Note this output is took in the scope of the VNI 2818048 which is the consumer VRF
VNID. By looking at the table the consumer can find the pcTag of the destination, even
though it is not in the same VRF.

fab3-leaf8# vsh -c 'show system internal policy-mgr prefix' | egrep 'Vrf-Vni|==|common:default'
Vrf-Vni VRF-Id Table-Id Table-State VRF-Name Addr Class Shared Remote Complete
======= ====== =========== ======= ============================ ================================= ====== ====== ====== ========
2818048 19 0x13 Up common:default 0.0.0.0/0 15 False False False
2818048 19 0x80000013 Up common:default ::/0 15 False False False
2818048 19 0x13 Up common:default 172.16.10.0/24 25 True True False

The above output shows the combination of the L3Out EPG subnet and its global pcTag 25.

8. Verify the programmed zoning-rules on the non-BL for the consumer VRF
Use either 'contract_parser.py' or the 'show zoning-rule' command and specify the VRF.

Below command outputs display two zoning-rules are installed to allow traffic from the
consumer EPG local pcTag 16410 to the L3Out EPG global pcTag 25. This is in the scope
2818048, which is the scope of the consumer VRF.

fab3-leaf8# show zoning-rule scope 2818048
+---------+--------+--------+----------+----------------+---------+---------+-----------------+----------+-----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+---------+-----------------+----------+-----------------------+
4174	0	0	implarp	uni-dir	enabled	2818048		permit	any_any_filter(17)
4168	0	15	implicit	uni-dir	enabled	2818048		deny,log	any_vrf_any_deny(22)
4167	0	32789	implicit	uni-dir	enabled	2818048		permit	any_dest_any(16)
4159	0	0	implicit	uni-dir	enabled	2818048		deny,log	any_any_any(21)
4169	25	0	implicit	uni-dir	enabled	2818048		deny,log	shsrc_any_any_deny(12)
4156	25	16410	425	uni-dir-ignore	enabled	2818048	external_to_ntp	permit	fully_qual(7)
4131	16410	25	424	bi-dir	enabled	2818048	external_to_ntp	permit	fully_qual(7)
+---------+--------+--------+----------+----------------+---------+---------+-----------------+----------+-----------------------+

fab3-leaf8# contract_parser.py --vrf common:default
Key:
[prio:RuleId] [vrf:{str}] action protocol src-epg [src-l4] dst-epg [dst-l4] [flags][contract:{str}] [hit=count]

Security policies 207

[7:4131] [vrf:common:default] permit ip tcp tn-Prod1/ap-Services/epg-NTP(16410) tn-Prod1/l3out-L3Out1/instP-extEpg(25) eq 123
[contract:uni/tn-Prod1/brc-external_to_ntp] [hit=0]
[7:4156] [vrf:common:default] permit ip tcp tn-Prod1/l3out-L3Out1/instP-extEpg(25) eq 123 tn-Prod1/ap-Services/epg-NTP(16410)
[contract:uni/tn-Prod1/brc-external_to_ntp] [hit=0]
[12:4169] [vrf:common:default] deny,log any tn-Prod1/l3out-L3Out1/instP-extEpg(25) epg:any [contract:implicit] [hit=0]
[16:4167] [vrf:common:default] permit any epg:any tn-Prod1/bd-Services(32789) [contract:implicit] [hit=0]
[16:4174] [vrf:common:default] permit arp epg:any epg:any [contract:implicit] [hit=0]
[21:4159] [vrf:common:default] deny,log any epg:any epg:any [contract:implicit] [hit=0]
[22:4168] [vrf:common:default] deny,log any epg:any pfx-0.0.0.0/0(15) [contract:implicit] [hit=0]

9. Verify the programmed zoning-rules on the BL for the provider VRF
Use either 'contract_parser.py' or the 'show zoning-rule' command and specify the VRF.
The following command outputs show that there are NO specific zoning-rules in the
provider VRF as outlined multiple times before.

It is in the scope 2719752 which is the scope of provider VRF.

border-leaf# show zoning-rule scope 2719752
+---------+--------+--------+----------+----------------+---------+---------+--------------+----------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+---------+--------------+----------+----------------------+
4134	10937	24	default	uni-dir-ignore	enabled	2719752	vrf1_to_vrf2	permit	src_dst_any(9)
4135	24	10937	default	bi-dir	enabled	2719752	vrf1_to_vrf2	permit	src_dst_any(9)
4131	0	0	implicit	uni-dir	enabled	2719752		deny,log	any_any_any(21)
4130	0	0	implarp	uni-dir	enabled	2719752		permit	any_any_filter(17)
4132	0	15	implicit	uni-dir	enabled	2719752		deny,log	any_vrf_any_deny(22)
+---------+--------+--------+----------+----------------+---------+---------+--------------+----------+----------------------+

border-leaf# contract_parser.py --vrf Prod1:VRF3
Key:
[prio:RuleId] [vrf:{str}] action protocol src-epg [src-l4] dst-epg [dst-l4] [flags][contract:{str}] [hit=count]

[9:4134] [vrf:Prod1:VRF3] permit any tn-Prod1/l3out-L3Out1/instP-extEpg2(10937) tn-Prod1/l3out-L3Out2/instP-extEpg2(24)
[contract:uni/tn-Prod1/brc-vrf1_to_vrf2] [hit=0]
[9:4135] [vrf:Prod1:VRF3] permit any tn-Prod1/l3out-L3Out2/instP-extEpg2(24) tn-Prod1/l3out-L3Out1/instP-extEpg2(10937)
[contract:uni/tn-Prod1/brc-vrf1_to_vrf2] [hit=0]
[16:4130] [vrf:Prod1:VRF3] permit arp epg:any epg:any [contract:implicit] [hit=0]
[21:4131] [vrf:Prod1:VRF3] deny,log any epg:any epg:any [contract:implicit] [hit=0]
[22:4132] [vrf:Prod1:VRF3] deny,log any epg:any pfx-0.0.0.0/0(15) [contract:implicit] [hit=0]

Intra-Fabric forwarding

210 Intra-Fabric forwarding

Overview

This chapter explains a general forwarding path within a Cisco ACI fabric. A few
troubleshooting scenarios will be depicted to facilitate the reader in learning how
packets flow through the fabric. Typically, this troubleshooting is done to identify
packet drops or unexpected behavior of the fabric with regards to endpoint
connectivity.

This chapter will not focus on detailed architecture of the forwarding behavior inside of
an ACI fabric. For more information about this, refer to other Cisco resources such as
the Cisco Live session "BRKACI-3545 Mastering ACI Forwarding Behavior" which can be
found in the Cisco Live On-Demand Library.

The figure below illustrates a simple example of one of the forwarding scenarios
between an endpoint A and an endpoint B that will be the subject of this chapter.

ACI forwarding behavior overview

Intra-Fabric forwarding 211

1

2

3

-

-

4

5

-

-

6

In this scenario, the EP A is a VM running on a single-homed host. EP B resides on a
host dual-homed to the ACI fabric. Assuming the EPs in the above scenario have not yet
established a flow, when a packet flows from the source to the destination leaf, the
following happens in the ACI fabric:

Source leaf learns the source of traffic as an endpoint.

Source leaf will decide where to send, based on the destination IP or MAC of
traffic.

Source leaf will either:

Forward the packet to a local endpoint.

Encapsulate the packet with a VXLAN (and subsequent Eth/IP) header
and forward it to the destination leaf via a spine.

Packet is routed in VRF overlay-1 based on TEP IP (or VPC VIP in case of a VPC
leaf pair) in the outer header using the IS-IS routing table.

Packet reaches destination leaf.

Destination leaf learns the source EP based on the inner Eth/IP headers.

Destination leaf makes forwarding decision based on the destination
IP/MAC of the inner header (original packet).

Packet is sent out of the fabric.

In the case where destination is unknown (i.e. endpoint learning has yet to occur) the
fabric will behave differently. More information on this will be covered along with
example troubleshooting scenarios in this chapter.

The following troubleshooting scenarios will be detailed in the next chapters:

• Layer 2 forwarding — 2 EPs in the same BD with no unicast routing.

• Unknown Layer 2 unicast traffic — BD in flood mode.

212 Intra-Fabric forwarding

• Unknown Layer 2 unicast traffic — BD in hardware-proxy mode.

• Layer 3 forwarding — EPs in different BDs.

• Layer 3 forwarding — Unknown EP IP.

• ACI Multi-Pod forwarding.

• Intermittent drops.

• Interface drops.

Intra-Fabric forwarding 213

1

2

3

Tools

In order to troubleshoot a forwarding problem from an ACI perspective, the following
needs to be understood:

Which switch is receiving a flow?

What forwarding decision is that switch making?

Is the switch dropping it?

ACI includes several tools which allow the user to gain in-depth insights into what is
happening to a specific flow. The next several sections will demonstrate these tools in
detail so only a high-level introduction is provided here.

SPAN and ERSPAN

SPAN and ERSPAN are both tools that allow all or some traffic received at a specific
location to be replicated to another location. The end device that the replicated traffic
is sent to is expected to be running some type of packet sniffer/analyzer application.
Traditional SPAN involves replicating traffic that is being received on one port and
passing out through another port. ACI supports doing this in addition to ERSPAN.

ERSPAN follows the same concept except replicating the traffic out a local port; the
replicated traffic is encapsulated in GRE and sent to a remote destination. In ACI, this
ERSPAN destination must only be learned as a Layer 3 endpoint and it can be any EPG
in any VRF.

It's usually a good idea to always have SPAN destinations connected to the fabric to
minimize preparation time during troubleshooting and allow for rapid ERSPAN session
config and capture.

214 Intra-Fabric forwarding

ELAM

Overview
Embedded Logic Analyzer Module (ELAM) is a tool that allows a user to set conditions
in hardware and capture the first packet or frame that matches the set conditions. A
successful capture will cause the ELAM status to show as 'triggered'. Once triggered,
the ELAM is disabled and a dump can be collected to analyze the vast number of
forwarding decisions that the switch ASIC is making with that packet/frame. ELAM is
implemented at the ASIC level and will not impact CPU or other resources on the
switch.

The forwarding examples in this book will use ELAM as a means of verifying what is
happening with the flow. Examples will show both the leaf CLI version and the ELAM
Assistant App.

This guide will not cover usage of ELAM on �rst generation leaf switches
(switches without EX, FX, or FX2 su�x).

Before using the tool, it is important to understand the structure of the command
syntax.

Example on leaf CLI:

• vsh_lc [This command enters the line card shell where ELAMs are run]

• debug platform internal <asic> elam asic 0 [refer to the ASICs table]

Set Conditions to Trigger

• trigger reset [ensures no existing triggers are running]

• trigger init in-select <number> out-select <number> [determines what information about
a packet is displayed and which conditions can be set]

• set outer/inner [sets conditions]

Intra-Fabric forwarding 215

• start [starts the trigger]

• status [checks if a packet is captured]

Generate the Dump containing the packet analysis

• ereport [display detailed forwarding decision for the packet]

'status' should continually be run to view the state of the trigger. Once a packet
matching the defined conditions is detected on the ASIC, the output of 'status' will
show 'triggered'. Once the ELAM has been triggered, the details of the switch
forwarding decisions can be shown with 'ereport'. Prior to ACI version 4.2, 'report' must
be used.

ASICs
Within the ELAM syntax, note that the ASIC must be specified. Since the ASIC is
dependent on the switch model, the following table can be used to determine which
ASIC to specify:

ASICs table

Switch/Line card Family ASIC Family

-EX switches/LCs TAH

-FX(P) switches/LCs ROC

-FX2 switches/LCs HEA

C switches (9364C,9332C) ROC

ELAM trigger in-select
The other component of the ELAM that must be understood when running from the
CLI is the 'in-select'. The 'in-select' defines which headers the packet/frame should
have, and which to match on.

216 Intra-Fabric forwarding

For example, a packet coming from a downlink port that is not VXLAN encapsulated
would only have outer Layer 2, Layer 3, and Layer 4 headers.

A packet coming from a front-panel (downlink) port that is VXLAN encapsulated (such
as Cisco ACI Virtual Edge in VXLAN mode) or coming from an upstream spine would
have VXLAN encapsulation. This means it would have potentially both outer and inner
Layer 2, Layer 3, and Layer 4 headers.

Below are all the options:

leaf1# vsh_lc

module-1# debug platform internal tah elam asic 0
module-1(DBG-elam)# trigger reset
module-1(DBG-elam)# trigger init in-select ?
 10 Outerl4-innerl4-ieth
 13 Outer(l2|l3|l4)-inner(l2|l3|l4)-noieth
 14 Outer(l2(vntag)|l3|l4)-inner(l2|l3|l4)-ieth
 15 Outer(l2|l3|l4)-inner(l2|l3|l4)-ieth
 6 Outerl2-outerl3-outerl4
 7 Innerl2-innerl3-innerl4
 8 Outerl2-innerl2-ieth
 9 Outerl3-innerl3

If 'in-select 6' is selected the only option is to set conditions and display headers from
the outer Layer 2, 3, or 4 headers. If 'in-select 14' is selected the only option is to set
conditions for and see the details of the outer and inner Layer 2, 3, and 4 headers.

Best practices note:

To capture a packet coming with VLAN encapsulation on a downlink port, use 'in-
select 6'

To capture a packet with VXLAN encapsulation (either from a spine or from a
vleaf with VXLAN encapsulation) use 'in-select 14'

Intra-Fabric forwarding 217

ELAM trigger out-select
The 'out-select' allows some ability to control which lookup results are displayed in the
ELAM report. For most practical purposes 'out-select 0' should be used as it contains
most information including the 'drop vector' which will tell if the result of the lookup is
to drop the packet/frame.

Note that when 'report' instead of 'ereport' or 'report detail' is used to get ELAM
results, 'drop vector' only shows up in 'out-select 1'. However, one should
always perform 'ereport' or 'report detail' with 'out-select 0'.

ELAM set conditions
ELAM supports a large amount of Layer 2, 3, and 4 conditions to look for in a packet.
Specifying 'inner' vs. 'outer' determines if the condition should be checked in the inner
header (VXLAN encapsulated packet) or outer header.

ARP example:

set outer arp source-ip-address 10.0.0.1 target-ip-address 10.0.0.2

MAC address example:

set outer l2 src_mac aaaa.bbbb.cccc dst_mac cccc.bbbb.aaaa

IP address in inner header example:

set inner ipv4 src_ip 10.0.0.1 dst_ip 10.0.0.2

218 Intra-Fabric forwarding

Viewing the ELAM report
Verify that the ELAM has triggered with status:

module-1(DBG-elam-insel6)# status
ELAM STATUS
===========
Asic 0 Slice 0 Status Armed
Asic 0 Slice 1 Status Triggered

'ereport' can be used to display the result of the ELAM in an easy to understand format.
Note that the ELAM report is saved in the '/var/log/dme/log/' folder on the switch.
There will be two files for the ELAM under the folder.

• elam_<timestamp>.txt

• pretty_elam_<timestamp>.txt

Full ELAM example
The following example would capture a non-VXLAN encapsulated traffic (matching on
outer header) coming from a downlink port on an -EX switch:

module-1# debug platform internal tah elam asic 0
module-1(DBG-elam)# trigger reset
module-1(DBG-elam)# trigger init in-select 6 out-select 0
module-1(DBG-elam-insel6)# set outer ipv4 src_ip 10.0.0.1 dst_ip 10.0.0.2
module-1(DBG-elam-insel6)# start
module-1(DBG-elam-insel6)# status
module-1(DBG-elam-insel6)# ereport

ELAM Assistant application

The troubleshooting examples in this book will also show the usage of the ELAM
Assistant app which can be downloaded through the Cisco DC App Center
(https://dcappcenter.cisco.com). This tool automates the deployment and
interpretation of ELAMs through the GUI on the APIC.

Intra-Fabric forwarding 219

The example below shows the deployment of an ELAM matching a specific source and
destination IP on node-101 downlink port

ElamAssistant

ElamAssistant - Detail

The ELAM Assistant also allows for easy usage of more complex matching parameters
such as the source interface or VXLAN values.

220 Intra-Fabric forwarding

fTriage

fTriage is an APIC CLI-based tool that is intended to provide end-to-end automation of
ELAM configuration and interpretation. The premise of the tool is that a user can define
a specific flow as well as the leaf where the flow should start and then the tool will
execute ELAMs on each node, one by one, to examine the forwarding flow. It is
particularly useful in large topologies where it is unclear which path a packet will take.

fTriage generates a large log file containing the output of each command executed. The
name of this file is visible on the first few lines of the fTriage output.

fTriage completion can take up to 15 minutes.

Examples
Map out the flow for routed communication between 10.0.1.1 and 10.0.2.1 starting on leaf
104:

ftriage route -ii LEAF:104 -dip 10.0.2.1 -sip 10.0.1.1

Map out a Layer 2 flow starting on leaf 104:

ftriage bridge -ii LEAF:104 -dmac 02:02:02:02:02:02

Full fTriage help can be seen by running 'ftriage --help' on the APIC.

Tcpdump

Tcpdump can be leveraged on ACI switches to capture traffic to and from the control-
plane. Note that only control plane traffic sent to the switch CPU can be observed in a
tcpdump capture. Some examples are: routing protocols, LLDP/CDP, LACP, ARP, etc. To
capture dataplane (and control plane) traffic please make use of SPAN and/or ELAM.

Intra-Fabric forwarding 221

To capture on the CPU, the interface that should be specified is kpm_inb. Most
traditional tcpdump options and filters are available.

Example to capture ICMP destined to an SVI on the leaf switch:

leaf205# tcpdump -ni kpm_inb icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on kpm_inb, link-type EN10MB (Ethernet), capture size 65535 bytes
20:24:12.921981 IP 10.0.2.100 > 10.0.2.1: ICMP echo request, id 62762, seq 4096, length 64
20:24:12.922059 IP 10.0.2.1 > 10.0.2.100: ICMP echo reply, id 62762, seq 4096, length 64
20:24:13.922064 IP 10.0.2.100 > 10.0.2.1: ICMP echo request, id 62762, seq 4352, length 64
20:24:13.922157 IP 10.0.2.1 > 10.0.2.100: ICMP echo reply, id 62762, seq 4352, length 64
20:24:14.922231 IP 10.0.2.100 > 10.0.2.1: ICMP echo request, id 62762, seq 4608, length 64
20:24:14.922303 IP 10.0.2.1 > 10.0.2.100: ICMP echo reply, id 62762, seq 4608, length 64

In addition, the '-w' option allows the tcpdump to write the packet capture to a PCAP
file so that it can be opened in tools such as Wireshark.

To use tcpdump on the eth0 interface, which is the out-of-band interface on the
switch. This is useful to troubleshoot connectivity of any traffic going through the out-
of-band physical port of the switch. This would mainly be control plane-based traffic
such as SSH, SNMP, etc.

Enhanced Endpoint Tracker app

This is an app available through the Cisco DC App Center that adds additional
functionality and features to endpoint monitoring and management. Its installation is
highly recommended for users exhibiting any type of endpoint movement symptoms
including intermittent packet loss, full packet loss, or unexpected learn location.

On-demand Atomic Counters

On-demand atomic counters are intended to count packets within a specific flow as
they leave on a leaf uplink and are received on another leaf fabric port. They allow some
granularity into whether packets were missed or received in excess.

222 Intra-Fabric forwarding

L2 forwarding: two endpoints in same BD —
no unicast routing

This section explains a troubleshooting example where endpoints in the same bridge
domain and same subnet can't talk to each other. The figure below illustrates the
topology where the BD doesn't have any subnets and has unicast routing disabled.

Typically, when troubleshooting traffic flows with endpoint connectivity, the suggestion
is to start identifying a pair of endpoints. Refer to the topology below with EPs A and B.
These will respectively have IP addresses 10.1.1.1/24 and 10.1.1.2/24. The MAC addresses
will respectively be 00:00:10:01:01:01 and 00:00:10:01:01:02.

Endpoints in same BD and in the same subnet (L2 BD)

Intra-Fabric forwarding 223

1

2

3

In this section there are three scenarios:

Known Layer 2 unicast flow.

Unknown Layer 2 unicast flow with BD in flood mode.

Unknown Layer 2 unicast flow with BD in hardware-proxy mode.

The troubleshooting flows that will be followed can be summarized by the following
scheme:

• Level 1 check: GUI validation of the config, faults and endpoints learned.

• Level 2 check: CLI on the leaf switches:

- Check if the source and destination leaf switches learn the endpoints.

- Check if spine nodes learn the endpoint in COOP.

• Level 3 check: packet capture:

- ELAM (ELAM Assistant or CLI) to validate the frame is there.

- fTriage to track the flow.

GUI check

The first level of troubleshooting is validating from the GUI that the endpoint MAC was
learned properly. This can be done from the operational tab of the EPG where the
endpoint sits.

224 Intra-Fabric forwarding

'EPG Operational tab > Client End-Points'

In this scenario, both endpoints A and B are shown in the GUI. The GUI shows their
MAC addresses, the interface where they are connected to the fabric, and the
encapsulation — in this case both are in encap VLAN 2501.

It is expected that the IP address isn't learnt from the ACI fabric as the unicast routing
has been disabled at the BD level.

Refer to the learning source column in the screenshot above. If it denotes 'learned', the
ACI leaf switch received at least one packet from the endpoint.

Since in this case the endpoints are learnt from the ACI fabric, move on to the next
troubleshooting case for known Layer 2 unicast traffic.

Intra-Fabric forwarding 225

Troubleshooting workflow for known Layer 2 unicast traffic

Ingress leaf source EP MAC learning
In case of Layer 2 forwarding in the same BD, ACI will only learn the source MAC and
forward based on the destination MAC. MAC addresses are learnt in the scope of the BD

First, check if the endpoint is learned:

leaf1# show endpoint mac 0000.1001.0101
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+-------------+
4/Prod:VRF1 vlan-2501 0000.1001.0101 L eth1/3

The above output gives the following information:

• MAC address 0000.1001.0101 is learnt locally (Flag is L for local) on port ethernet
1/3 with encapsulation vlan-2501 in vrf Prod:VRF1.

• Refer to the 'VLAN/Domain' column in the above output. The VLAN ID listed
there is the internal VLAN.

226 Intra-Fabric forwarding

Ingress leaf destination MAC endpoint lookup
Assume the destination MAC is known (known unicast).

leaf1# show endpoint mac 0000.1001.0102
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+-------------+
7/Prod:VRF1 vxlan-16351141 0000.1001.0102 tunnel4

The above output gives the following information:

• MAC address 0000.1001.0102 is not learned locally.

• It is learned from interface tunnel 4.

• It is learned in encapsulation VXLAN-16351141 which corresponds to the
BD_VNID (VXLAN Network ID) of the bridge domain.

Next, check the destination of the tunnel interface using the 'show interface tunnel <x>'
command

leaf1# show interface tunnel 4
Tunnel4 is up
 MTU 9000 bytes, BW 0 Kbit
 Transport protocol is in VRF "overlay-1"
 Tunnel protocol/transport is ivxlan
 Tunnel source 10.0.88.95/32 (lo0)
 Tunnel destination 10.0.96.66
 Last clearing of "show interface" counters never
 Tx
 0 packets output, 1 minute output rate 0 packets/sec
 Rx
 0 packets input, 1 minute input rate 0 packets/sec

So, the packet will be encapsulated in VXLAN with source TEP IP 10.0.88.95 (assigned to
loopback0) and sent towards the destination TEP IP 10.0.96.66.

Intra-Fabric forwarding 227

Confirm the source IP:

leaf1# show ip interface loopback 0 vrf overlay-1
IP Interface Status for VRF "overlay-1"
lo0, Interface status: protocol-up/link-up/admin-up, iod: 4, mode: ptep
 IP address: 10.0.88.95, IP subnet: 10.0.88.95/32
 IP broadcast address: 255.255.255.255
 IP primary address route-preference: 0, tag: 0

The destination TEP IP 10.0.96.66 can be one of the following:

• PTEP address of another leaf (can be checked using acidiag fnvread)

• VPC VIP (can be seen in 'GUI > Fabric > Access Policies > Policies > Switch >
Virtual Port Channel default' (see screenshot below)

• Some loopback IP on a spine switch. Use 'show ip interface vrf overlay-1 '
command on the spine switch to verify this.

Explicit VPC Protection Groups

228 Intra-Fabric forwarding

Ingress leaf switch sending to spine switch
The ingress leaf will now encapsulate the frame into VXLAN with the outer destination
IP set to 10.0.96.66 which is the tunnel destination IP listed in the previous 'show
interface tunnel 4' command. It will encapsulate it in VXLAN with the VNID of the
bridge domain - vxlan-16351141 - as shown in the previous 'show endpoint mac
0000.1001.0102' command output.

Based on the IS-IS route in VRF overlay-1 determine where to send it:

leaf1# show ip route 10.0.96.66 vrf overlay-1
IP Route Table for VRF "overlay-1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

10.0.96.66/32, ubest/mbest: 4/0
 *via 10.0.88.65, Eth1/49.10, [115/3], 2w5d, isis-isis_infra, isis-l1-int
 *via 10.0.88.94, Eth1/50.128, [115/3], 2w5d, isis-isis_infra, isis-l1-int

So, there is ECMP (equal cost multipath) routing to the destination using eth1/49 and
1/50 which are the fabric uplinks to the spine switches.

Spine forwarding
The VRF overlay-1 routing table on the spine shows that host route 10.0.96.66 is
reachable via either to leaf3 or leaf4. This is expected as 10.0.96.66 is the VPC VIP of leaf
switches 103 and 104:

spine1# show ip route 10.0.96.66 vrf overlay-1
IP Route Table for VRF "overlay-1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

10.0.96.66/32, ubest/mbest: 2/0
 *via 10.0.88.91, eth1/3.35, [115/2], 02w05d, isis-isis_infra, isis-l1-int
 *via 10.0.88.90, eth1/4.39, [115/2], 02w05d, isis-isis_infra, isis-l1-int
 spine1# show lldp neighbors | egrep "1\/3 |1\/4 "
leaf3 Eth1/3 120 BR Eth1/49
leaf4 Eth1/4 120 BR Eth1/49

Intra-Fabric forwarding 229

Egress leaf remote EP MAC learning
In this case, the destination TEP is a VPC pair so the packet will arrive on either leaf3 or
leaf4. Refer to the command outputs below. Leaf4 should show similar output. Given
they are part of the same VPC pair, all endpoints are synchronized between the two leaf
switches.

Endpoint learning for Layer 2 traffic on the egress leaf is based on the source MAC
address which is learned in the BD corresponding to the VNID in the received packet.
This can be verified in the endpoint table.

The source MAC address lies behind tunnel 26 in VXLAN-16351141.

Tunnel 26 goes to TEP IP 10.0.88.95 which is leaf1:

leaf3# show endpoint mac 0000.1001.0101
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+-------------+
136/Prod:VRF1 vxlan-16351141 0000.1001.0101 tunnel26

leaf3# show interface tunnel 26
Tunnel26 is up
 MTU 9000 bytes, BW 0 Kbit
 Transport protocol is in VRF "overlay-1"
 Tunnel protocol/transport is ivxlan
 Tunnel source 10.0.88.91/32 (lo0)
 Tunnel destination 10.0.88.95
 Last clearing of "show interface" counters never
 Tx
 0 packets output, 1 minute output rate 0 packets/sec
 Rx
 0 packets input, 1 minute input rate 0 packets/sec

leaf3# acidiag fnvread | egrep "10.0.88.95"
 101 1 leaf1 FDO20160TPA 10.0.88.95/32 leaf active 0

230 Intra-Fabric forwarding

Egress leaf destination MAC lookup
The 'show endpoint' command confirms the destination MAC is learned behind port-
channel 1 and uses encapsulation VLAN-2501

leaf3# show endpoint mac 0000.1001.0102
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+-------------+
135/Prod:VRF1 vlan-2501 0000.1001.0102 LpV po1

This indicates that the frame is leaving the ACI fabric on leaf3 interface port-channel 1
with encap VLAN ID 2501. You can find the BD VNID under the Tenant Operational tab
in the GUI.

Validate both endpoints are learned properly in the spine switch COOP EP repo
The COOP EP repo should be synchronized across all the spine nodes. the COOP EP
repo can be checked using the BD VNID as a key and entering the EP MAC address. You
can find the BD VNID under the Tenant Operational tab in the GUI.

The source MAC address of this flow is learned from tunnel next-hop 10.0.88.95 which
is the TEP IP of leaf1. Additionally, the command output shows VNID 16351141 which
corresponds to the correct bridge domain.

spine1# show coop internal info repo ep key 16351141 00:00:10:01:01:01

Repo Hdr Checksum : 24197
Repo Hdr record timestamp : 10 01 2019 10:16:50 278195866
Repo Hdr last pub timestamp : 10 01 2019 10:16:50 283699467
Repo Hdr last dampen timestamp : 01 01 1970 00:00:00 0
Repo Hdr dampen penalty : 0
Repo Hdr flags : IN_OBJ EXPORT ACTIVE
EP bd vnid : 16351141

EP mac : 00:00:10:01:01:01
flags : 0x80

Intra-Fabric forwarding 231

repo flags : 0x122
Vrf vnid : 2097154
Epg vnid : 0
EVPN Seq no : 0
Remote publish timestamp: 01 01 1970 00:00:00 0
Snapshot timestamp: 10 01 2019 10:16:50 278195866
Tunnel nh : 10.0.88.95
MAC Tunnel : 10.0.88.95
IPv4 Tunnel : 10.0.88.95
IPv6 Tunnel : 10.0.88.95
ETEP Tunnel : 0.0.0.0

The destination MAC of this flow is learned against the VPC VIP 10.0.96.66 of leaf3 and
leaf4. The EP BD VNID 16351141 is listed as well, which corresponds to the correct BD.

spine1# show coop internal info repo ep key 15302583 00:00:10:01:01:02

Repo Hdr Checksum : 16897
Repo Hdr record timestamp : 10 01 2019 11:05:46 351360334
Repo Hdr last pub timestamp : 10 01 2019 11:05:46 352019546
Repo Hdr last dampen timestamp : 01 01 1970 00:00:00 0
Repo Hdr dampen penalty : 0
Repo Hdr flags : IN_OBJ EXPORT ACTIVE
EP bd vnid : 16351141
 EP mac : 00:00:10:01:01:02
flags : 0x90
repo flags : 0x122
Vrf vnid : 2097154
Epg vnid : 0
EVPN Seq no : 0
Remote publish timestamp: 01 01 1970 00:00:00 0
Snapshot timestamp: 10 01 2019 11:05:46 351360334
Tunnel nh : 10.0.96.66
MAC Tunnel : 10.0.96.66
IPv4 Tunnel : 10.0.96.66
IPv6 Tunnel : 10.0.96.66
ETEP Tunnel : 0.0.0.0

ELAM output using ELAM Assistant
ELAM Assistant is a powerful ACI App which can simplify the execution of ELAM
captures on an ACI fabric.

ELAM Assistant triggers can be started simultaneously on multiple leaf nodes. As a
result, specific packets can be checked in parallel in leaf1, leaf3 and leaf4.

232 Intra-Fabric forwarding

The configured ELAM capture will appear as shown below. As observed, the packet is
seen on leaf1 (node-101) and leaf3 (node-103).

ELAM Assistant — parameters

The report of leaf1 (node-101) shows the following:

The Captured Packet Information output confirms the packet enters on eth1/3 and has
the correct MAC and IP information.

The packet forwarding information shows it's forwarded on eth1/49 to TEP IP
10.0.96.66.

Intra-Fabric forwarding 233

ELAM Assistant — leaf1 (node-101) — Captured Packet Information

234 Intra-Fabric forwarding

ELAM Assistant — leaf1 (node-101) — Packet Forwarding Information

On leaf3 (node-103) on the egress leaf, the following is observed:

In the Captured Packet Information on leaf3, it enters from eth1/49. The outer IP
address confirms the following:

• Source TEP: 10.0.88.95

• Destination TEP: 10.0.96.66

• VNID: 16351141 (BD VNID)

Intra-Fabric forwarding 235

ELAM Assistant — leaf3 (node-103) — Captured Packet Information

236 Intra-Fabric forwarding

The Packet Forwarding Information shows the traffic is forwarded on port-channel 1
and specifically ethernet 1/12.

ELAM Assistant — leaf3 (node-103) — Packet Forwarding Information

Ingress leaf ELAM using CLI
It is recommended to use ELAM Assistant as it simplifies the operation of running
ELAM captures. However, it is also possible to use CLI commands on ACI switches to
generate an ELAM report. Below is an example of how this would be done.

Use the trigger sequence shown to capture the packet on the ingress leaf. Refer to the
"Tools" section for more info regarding ELAM options.

• In this example, the ASIC is 'tah' as the leaf (part number ending '-EX').

• 'in-select 6' is used to capture a packet coming from a downlink port without a
VXLAN encap.

Intra-Fabric forwarding 237

• 'out-select 1' ensures the drop vector is also shown (in case of a packet drop).

• The 'reset' command is needed to make sure any previous triggers have been
cleaned.

• Even though this is a bridged flow ELAM has visibility into the IP header.

- As a result, 'ipv4 src_ip' and 'dst_ip' can be used to set up the trigger.

module-1# debug platform internal tah elam asic 0
module-1(DBG-elam)# trigger init in-select ?
 10 Outerl4-innerl4-ieth
 13 Outer(l2|l3|l4)-inner(l2|l3|l4)-noieth
 14 Outer(l2(vntag)|l3|l4)-inner(l2|l3|l4)-ieth
 15 Outer(l2|l3|l4)-inner(l2|l3|l4)-ieth
 6 Outerl2-outerl3-outerl4
 7 Innerl2-innerl3-innerl4
 8 Outerl2-innerl2-ieth
 9 Outerl3-innerl3

module-1(DBG-elam)# trigger init in-select 6 out-select 1
module-1(DBG-elam-insel6)# reset
module-1(DBG-elam-insel6)# set outer ipv4 src_ip 10.1.1.1 dst_ip 10.1.1.2
module-1(DBG-elam-insel6)# start

To see if the packet was received, check the ELAM status. If there is a trigger, that
means a packet matching the conditions was caught.

module-1(DBG-elam-insel6)# status
ELAM STATUS
===========
Asic 0 Slice 0 Status Triggered
Asic 0 Slice 1 Status Armed

The next output shows the report is displayed using the 'ereport' command. The output
is very long, so only the beginning is pasted here. But note that the full report is saved
for later analysis in a location in the leaf file system. The file name also contains the
timestamps when the ELAM was taken.

238 Intra-Fabric forwarding

leaf1# ls -al /var/log/dme/log/elam_2019-09-30-03m-23h-14s.txt
-rw-rw-rw- 1 root root 699106 Sep 30 23:03 /var/log/dme/log/elam_2019-09-30-03m-23h-14s.txt

The 'ereport' validates the packet has been received and the information is as expected
(source and destination MAC, source, and destination IP, etc.)

module-1(DBG-elam-insel6)# ereport
Python available. Continue ELAM decode with LC Pkg
ELAM REPORT

===
 Trigger/Basic Information
===
ELAM Report File : /tmp/logs/elam_2019-09-30-03m-23h-14s.txt
In-Select Trigger : Outerl2-outerl3-outerl4(6)
Out-Select Trigger : Pktrw-sideband-drpvec(1)
ELAM Captured Device : LEAF
Packet Direction : ingress
Triggered ASIC type : Sugarbowl
Triggered ASIC instance : 0
Triggered Slice : 0
Incoming Interface : 0x24(0x24)
(Slice Source ID(Ss) in "show plat int hal l2 port gpd")

===
 Captured Packet

Outer Packet Attributes

Outer Packet Attributes : l2uc ipv4 ip ipuc ipv4uc
Opcode : OPCODE_UC

Outer L2 Header

Destination MAC : 0000.1001.0102
Source MAC : 0000.1001.0101
802.1Q tag is valid : yes(0x1)
CoS : 0(0x0)
Access Encap VLAN : 2501(0x9C5)

Outer L3 Header

L3 Type : IPv4
IP Version : 4
DSCP : 0
IP Packet Length : 84 (= IP header(28 bytes) + IP payload)
Don't Fragment Bit : not set

Intra-Fabric forwarding 239

TTL : 255
IP Protocol Number : ICMP
IP CheckSum : 51097(0xC799)
Destination IP : 10.1.1.2
Source IP : 10.1.1.1

===
 Forwarding Lookup (FPB)
===

Destination MAC (Lookup Key)

Dst MAC Lookup was performed : yes
Dst MAC Lookup BD : 522(0x20A)
(Hw BDID in "show plat int hal l2 bd pi")
Dst MAC Address : 0000.1001.0102

Destination MAC (Lookup Result)

Dst MAC is Hit : yes
Dst MAC is Hit Index : 6443(0x192B)
(phy_id in "show plat int hal objects ep l2 mac (MAC) extensions")
or (HIT IDX in "show plat int hal l3 nexthops" for L3OUT/L3 EP)
.....

Using fTriage to follow the flow
fTriage is run from an APIC CLI and can be used to follow the full path through the ACI
fabric. Specify at least the ingress leaf (node-101), the source IP and the destination IP.
In this specific case it's a bridged (Layer 2) flow, so the fTriage bridge option is to be
used.

Note that fTriage generates a log file in the current directory. This log file will contain
all logs and ELAM reports gathered. This allows the packet to be captured at every hop.
The short version of the output is below:

apic1# ftriage bridge -ii LEAF:101 -sip 10.1.1.1 -dip 10.1.1.2
fTriage Status: {"dbgFtriage": {"attributes": {"operState": "InProgress", "pid": "12181", "apicId": "1", "id":
"0"}}}
Starting ftriage
Log file name for the current run is: ftlog_2019-10-01-18-53-24-125.txt
2019-10-01 18:53:24,129 INFO /controller/bin/ftriage bridge -ii LEAF:101 -sip 10.1.1.1 -dip 10.1.1.2
2019-10-01 18:53:49,280 INFO ftriage: main:1165 Invoking ftriage with default password and default
username: apic#fallback\\admin
2019-10-01 18:54:10,204 INFO ftriage: main:839 L2 frame Seen on leaf1 Ingress: Eth1/3 Egress: Eth1/49
Vnid: 15302583

240 Intra-Fabric forwarding

2019-10-01 18:54:10,422 INFO ftriage: main:242 ingress encap string vlan-2501
2019-10-01 18:54:10,427 INFO ftriage: main:271 Building ingress BD(s), Ctx
2019-10-01 18:54:12,288 INFO ftriage: main:294 Ingress BD(s) Prod:BD1
2019-10-01 18:54:12,288 INFO ftriage: main:301 Ingress Ctx: Prod:VRF1
2019-10-01 18:54:12,397 INFO ftriage: pktrec:490 leaf1: Collecting transient losses snapshot for LC
module: 1
2019-10-01 18:54:30,079 INFO ftriage: main:933 SMAC 00:00:10:01:01:01 DMAC 00:00:10:01:01:02
2019-10-01 18:54:30,080 INFO ftriage: unicast:973 leaf1: <- is ingress node
2019-10-01 18:54:30,320 INFO ftriage: unicast:1215 leaf1: Dst EP is remote
2019-10-01 18:54:31,155 INFO ftriage: misc:659 leaf1: L2 frame getting bridged in SUG
2019-10-01 18:54:31,380 INFO ftriage: misc:657 leaf1: Dst MAC is present in SUG L2 tbl
2019-10-01 18:54:31,826 INFO ftriage: misc:657 leaf1: RwDMAC DIPo(10.0.96.66) is one of dst TEPs
['10.0.96.66']
2019-10-01 18:56:16,249 INFO ftriage: main:622 Found peer-node spine1 and IF: Eth1/1 in candidate list
2019-10-01 18:56:21,346 INFO ftriage: node:643 spine1: Extracted Internal-port GPD Info for lc: 1
2019-10-01 18:56:21,348 INFO ftriage: fcls:4414 spine1: LC trigger ELAM with IFS: Eth1/1 Asic :0 Slice:
0 Srcid: 32
2019-10-01 18:56:54,424 INFO ftriage: main:839 L2 frame Seen on spine1 Ingress: Eth1/1 Egress: LC-1/0
FC-24/0 Port-0 Vnid: 15302583
2019-10-01 18:56:54,424 INFO ftriage: pktrec:490 spine1: Collecting transient losses snapshot for LC
module: 1
2019-10-01 18:57:15,093 INFO ftriage: fib:332 spine1: Transit in spine
2019-10-01 18:57:21,394 INFO ftriage: unicast:1252 spine1: Enter dbg_sub_nexthop with Transit inst: ig
infra: False glbs.dipo: 10.0.96.66
2019-10-01 18:57:21,508 INFO ftriage: unicast:1417 spine1: EP is known in COOP (DIPo = 10.0.96.66)
2019-10-01 18:57:25,537 INFO ftriage: unicast:1458 spine1: Infra route 10.0.96.66 present in RIB
2019-10-01 18:57:25,537 INFO ftriage: node:1331 spine1: Mapped LC interface: LC-1/0 FC-24/0 Port-0 to FC
interface: FC-24/0 LC-1/0 Port-0
2019-10-01 18:57:30,616 INFO ftriage: node:460 spine1: Extracted GPD Info for fc: 24
2019-10-01 18:57:30,617 INFO ftriage: fcls:5748 spine1: FC trigger ELAM with IFS: FC-24/0 LC-1/0 Port-0
Asic :0 Slice: 2 Srcid: 0
2019-10-01 18:57:49,611 INFO ftriage: unicast:1774 L2 frame Seen on FC of node: spine1 with Ingress: FC-
24/0 LC-1/0 Port-0 Egress: FC-24/0 LC-1/0 Port-0 Vnid: 15302583
2019-10-01 18:57:49,611 INFO ftriage: pktrec:487 spine1: Collecting transient losses snapshot for FC
module: 24
2019-10-01 18:57:53,110 INFO ftriage: node:1339 spine1: Mapped FC interface: FC-24/0 LC-1/0 Port-0 to LC
interface: LC-1/0 FC-24/0 Port-0
2019-10-01 18:57:53,111 INFO ftriage: unicast:1474 spine1: Capturing Spine Transit pkt-type L2 frame on
egress LC on Node: spine1 IFS: LC-1/0 FC-24/0 Port-0
2019-10-01 18:57:53,530 INFO ftriage: fcls:4414 spine1: LC trigger ELAM with IFS: LC-1/0 FC-24/0 Port-0
Asic :0 Slice: 0 Srcid: 64
2019-10-01 18:58:26,497 INFO ftriage: unicast:1510 spine1: L2 frame Spine egress Transit pkt Seen on
spine1 Ingress: LC-1/0 FC-24/0 Port-0 Egress: Eth1/3 Vnid: 15302583
2019-10-01 18:58:26,498 INFO ftriage: pktrec:490 spine1: Collecting transient losses snapshot for LC
module: 1
2019-10-01 18:59:28,634 INFO ftriage: main:622 Found peer-node leaf3 and IF: Eth1/49 in candidate list
2019-10-01 18:59:39,235 INFO ftriage: main:839 L2 frame Seen on leaf3 Ingress: Eth1/49 Egress: Eth1/12
(Po1) Vnid: 11364
2019-10-01 18:59:39,350 INFO ftriage: pktrec:490 leaf3: Collecting transient losses snapshot for LC
module: 1
2019-10-01 18:59:54,373 INFO ftriage: main:522 Computed egress encap string vlan-2501
2019-10-01 18:59:54,379 INFO ftriage: main:313 Building egress BD(s), Ctx
2019-10-01 18:59:57,152 INFO ftriage: main:331 Egress Ctx Prod:VRF1
2019-10-01 18:59:57,153 INFO ftriage: main:332 Egress BD(s): Prod:BD1

Intra-Fabric forwarding 241

1

2

3

2019-10-01 18:59:59,230 INFO ftriage: unicast:1252 leaf3: Enter dbg_sub_nexthop with Local inst: eg infra:
False glbs.dipo: 10.0.96.66
2019-10-01 18:59:59,231 INFO ftriage: unicast:1257 leaf3: dbg_sub_nexthop invokes dbg_sub_eg for vip
2019-10-01 18:59:59,231 INFO ftriage: unicast:1784 leaf3: <- is egress node
2019-10-01 18:59:59,377 INFO ftriage: unicast:1833 leaf3: Dst EP is local
2019-10-01 18:59:59,378 INFO ftriage: misc:657 leaf3: EP if(Po1) same as egr if(Po1)
2019-10-01 18:59:59,378 INFO ftriage: misc:659 leaf3: L2 frame getting bridged in SUG
2019-10-01 18:59:59,613 INFO ftriage: misc:657 leaf3: Dst MAC is present in SUG L2 tbl
2019-10-01 19:00:06,122 INFO ftriage: main:961 Packet is Exiting fabric with peer-device: n3k-3 and
peer-port: Ethernet1/16

Troubleshooting workflow for unknown Layer 2 unicast traffic
— BD in flood mode
In this example, the destination MAC is unknown. The destination MAC lookup on the
ingress leaf shows no output.

leaf1# show endpoint mac 0000.1001.0102
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+-------------+

Given the BD is set to 'Flood' for L2 Unknown Unicast, here is what will happen at a high
level:

Ingress leaf will hash the packet header to assign it to one of the FTAGs (from 0
to 15).

Ingress leaf will encapsulate the frame in a VXLAN packet with the BD VNID. The
outer destination IP will be the BD GIPo + FTAG.

It will be flooded in the fabric following a tree topology and should reach every
leaf node that has the BD deployed.

242 Intra-Fabric forwarding

This section will highlight what can be checked.

Finding BD GIPo
The GUI identifies multicast group 225.1.5.48 used by the BD for multi-destination
traffic.

BD GIPo

ELAM — ingress leaf — flooded traffic
Using ELAM Assistant, the ELAM report on the ingress leaf is checked. This shows that
the frame was flooded in the BD and is egressing on all fabric uplinks (here eth1/49,
1/50,1/51 and 1/52).

Intra-Fabric forwarding 243

ELAM Assistant - ingress leaf - Packet Forwarding Information

To find the FTAG value selected by the ingress leaf, go to the raw report of the ELAM
Assistant.

 sug_lu2ba_sb_info.mc_info.mc_info_nopad.ftag: 0xC

When converting the hexadecimal value of 0xC to decimal, this results in FTAG 12.

244 Intra-Fabric forwarding

Drawing the FTAG topology
FTAG topology is computed by IS-IS. A tree topology is created for each FTAG value,
with a root and output interface list which allows for an optimal load spread topology.

Display the local FTAG topology using the following command. In the example below,
we're using FTAG ID 12 topology on spine1.

spine1# show isis internal mcast routes ftag
IS-IS process: isis_infra
 VRF : default
FTAG Routes
====================================

FTAG ID: 12 [Enabled] Cost:(2/ 11/ 0)

 Root port: Ethernet1/4.39
 OIF List:
 Ethernet1/11.11
 Ethernet1/12.12

Drawing the full FTAG topology in a large ACI fabric can prove to be a long and complex
task. The 'aci-ftag-viewer' Python script (https://github.com/agccie/aci-ftag-viewer)
can be copied onto an APIC. It generates the complete FTAG topology of the fabric in a
single pass.

The output below displays the FTAG 12 tree in Pod1 of a Multi-Pod fabric and includes
the FTAG topology across the IPN devices.

This shows that if traffic enters the ACI fabric from leaf101 it will traverse the following
paths as listed in the script's output below.

admin@apic1:tmp> python aci_ftag_viewer.py --ftag 12 --pod 1

Pod 1 FTAG 12
Root spine-204
active nodes: 8, inactive nodes: 1
##
spine-204
 +- 1/1 -------- 1/52 leaf-101
 +- 1/2 -------- 1/52 leaf-102

Intra-Fabric forwarding 245

 +- 1/1 -------- 1/52 leaf-101
 +- 1/2 -------- 1/52 leaf-102
 +- 1/3 -------- 1/52 leaf-103
 +- 1/4 -------- 1/52 leaf-104
 +- 1/49 -------- 1/4 spine-201
 | +- 1/11 (EXT) Eth2/13 n7706-01-Multipod-A1
 | +- 1/12 (EXT) Eth2/9 n7706-01-Multipod-A2
 |
 +- 1/50 -------- 1/4 spine-202
 | +- 1/11 (EXT) Eth2/14 n7706-01-Multipod-A1
 | +- 1/12 (EXT) Eth2/10 n7706-01-Multipod-A2
 |
 +- 1/51 -------- 2/4 spine-203
 +- 2/11 (EXT) Eth2/15 n7706-01-Multipod-A1
 +- 2/12 (EXT) Eth2/11 n7706-01-Multipod-A2
 +- 1/11 (EXT) Eth2/16 n7706-01-Multipod-A1
 +- 1/12 (EXT) Eth2/12 n7706-01-Multipod-A2

ELAM — egress leaf — flooded traffic
In this case, the flooded traffic reaches every leaf in the ACI fabric. So, it will reach both
leaf3 and leaf4 which are the VPC pair. Both of those leaf nodes have a VPC to the
destination. To avoid duplicate packets, the VPC pair elects only one leaf to forward the
flooded traffic to the destination. The elected leaf is called VPC DF leaf (VPC designated
forwarder leaf).

This can be checked in ELAM using the following trigger on both leaf nodes.

module-1# debug platform internal tah elam asic 0
module-1(DBG-elam)# trigger reset
module-1(DBG-elam)# trigger init in-select 14 out-select 1
module-1(DBG-elam-insel14)# set inner ipv4 src_ip 10.1.1.1 dst_ip 10.1.1.2
module-1(DBG-elam-insel14)# start

leaf3 output:

module-1(DBG-elam-insel14)# ereport | egrep vpc.*df
 sug_lub_latch_results_vec.lub4_1.vpc_df: 0x1

246 Intra-Fabric forwarding

leaf4 output:

module-1(DBG-elam-insel14)# ereport | egrep vpc.*df
 sug_lub_latch_results_vec.lub4_1.vpc_df: 0x0

In the above output, leaf3 has value '0x1' set for the 'vpc_df' field, whereas leaf4 has
'0x0' set for the 'vpc_df' field. Hence the designated forwarder will be leaf3. leaf3 will
forward the flooded packet on its VPC link to the destination EP.

Troubleshooting workflow for unknown Layer 2 unicast traffic
— BD in hardware proxy

The current scenario listed is the one for Layer 2 unknown unicast traffic with the BD
in hardware proxy mode. In this scenario, given the ingress leaf does not know the
destination MAC address, it will forward the packet to the spine anycast proxy-mac
address. The spine will perform a COOP lookup for the destination MAC.

If the lookup succeeds as shown below, the spine will rewrite the outer destination IP to
the tunnel destination (here 10.0.96.66) and will send it to the leaf3-leaf4 VPC pair.

spine1# show coop internal info repo ep key 15302583 00:00:10:01:01:02

Repo Hdr Checksum : 16897
Repo Hdr record timestamp : 10 01 2019 11:05:46 351360334
Repo Hdr last pub timestamp : 10 01 2019 11:05:46 352019546
Repo Hdr last dampen timestamp : 01 01 1970 00:00:00 0
Repo Hdr dampen penalty : 0
Repo Hdr flags : IN_OBJ EXPORT ACTIVE
EP bd vnid : 16351141
 EP mac : 00:00:10:01:01:02
flags : 0x90
repo flags : 0x122
Vrf vnid : 2097154
Epg vnid : 0
EVPN Seq no : 0
Remote publish timestamp: 01 01 1970 00:00:00 0
Snapshot timestamp: 10 01 2019 11:05:46 351360334
Tunnel nh : 10.0.96.66
MAC Tunnel : 10.0.96.66
IPv4 Tunnel : 10.0.96.66
IPv6 Tunnel : 10.0.96.66
ETEP Tunnel : 0.0.0.0

Intra-Fabric forwarding 247

If the lookup fails (endpoint is unknown in the ACI fabric), the spine will drop the
unknown unicast.

spine1# show coop internal info repo ep key 15302583 00:00:10:01:01:02
Key not found in repo

Summary
The following diagram summarizes the possible forwarding behavior for Layer 2 traffic
in the ACI fabric.

248 Intra-Fabric forwarding

ACI fabric Layer 2 forwarding behavior

Intra-Fabric forwarding 249

L3 forwarding: two endpoints in di�erent
BDs

This chapter explains a troubleshooting example where endpoints in different bridge
domains can't talk to each other. This would be a flow routed by ACI fabric. Figure 1
illustrates the topology.

Endpoints in di�erent bridge domains

250 Intra-Fabric forwarding

High level troubleshooting workflow

The following are typical troubleshooting steps and verification commands:

• First checks — validate programming:

- BD pervasive gateway should be pushed to leaf nodes.

- Route to the destination BD subnet should be pushed to leaf nodes.

- ARP for the default gateway of the hosts should be resolved.

• Second checks — validate learning and table entries via CLI on leaf nodes:

- Check the source leaf and destination leaf nodes learn the endpoint and
whether it learns the destination endpoint:

- Endpoint table — 'show endpoint'.

- TEP destination — 'show interface tunnel <x>'.

- Locating TEP destination in 'show ip route <TEP address> vrf
overlay-1' command.

- Check spine nodes learns the endpoint:

- 'show coop internal info'.

• Third checks — grab a packet and analyze the forwarding decisions:

- With ELAM (ELAM Assistant or CLI) to validate the frame is there.

- Or with fTriage to track the flow.

Intra-Fabric forwarding 251

Troubleshooting workflow for known endpoints

Check the pervasive gateway of the BD
In this example, the following source and destination endpoints will be used:

• EP A 10.1.1.1 under leaf1.

• EP B 10.1.2.1 under VPC pair leaf3 and leaf4.

Following pervasive gateways should be seen:

• 10.1.1.254/24 for BD1 gateway on leaf1.

• 10.1.2.254/24 for BD2 gateway on leaf3 and leaf4.

This can be checked using: 'show ip interface vrf <vrf name>' on the leaf nodes.

leaf1:

leaf1# show ip interface vrf Prod:VRF1
IP Interface Status for VRF "Prod:VRF1"
vlan7, Interface status: protocol-up/link-up/admin-up, iod: 106, mode: pervasive
 IP address: 10.1.1.254, IP subnet: 10.1.1.0/24
 IP broadcast address: 255.255.255.255
 IP primary address route-preference: 0, tag: 0

leaf3 and 4:

leaf3# show ip interface vrf Prod:VRF1
IP Interface Status for VRF "Prod:VRF1"
vlan1, Interface status: protocol-up/link-up/admin-up, iod: 159, mode: pervasive
 IP address: 10.1.2.254, IP subnet: 10.1.2.0/24
 IP broadcast address: 255.255.255.255
 IP primary address route-preference: 0, tag: 0

leaf4# show ip interface vrf Prod:VRF1
IP Interface Status for VRF "Prod:VRF1"
vlan132, Interface status: protocol-up/link-up/admin-up, iod: 159, mode: pervasive
 IP address: 10.1.2.254, IP subnet: 10.1.2.0/24

252 Intra-Fabric forwarding

IP broadcast address: 255.255.255.255
 IP primary address route-preference: 0, tag: 0

Note that leaf3 and leaf4 have the same pervasive gateway address, but different VLAN
encapsulation for the SVI will likely be seen.

• leaf3 uses VLAN 1.

• leaf4 uses VLAN 132.

This is expected as VLAN 1 or VLAN 132 is local VLAN on the leaf.

If the pervasive gateway IP address is not pushed to the leaf, verify in APIC GUI
that there are no faults that would prevent the VLAN from being deployed.

Checking routing table on the leaf
Leaf1 does not have any endpoint in subnet 10.1.2.0/24, however it must have the route
to that subnet in order to reach it:

leaf1# show ip route 10.1.2.0/24 vrf Prod:VRF1
IP Route Table for VRF "Prod:VRF1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.1.2.0/24, ubest/mbest: 1/0, attached, direct, pervasive
 *via 10.0.8.65%overlay-1, [1/0], 00:22:37, static, tag 4294967294
 recursive next hop: 10.0.8.65/32%overlay-1

Note that the route flagged with 'pervasive' and 'direct' have next-hop of 10.0.8.65. This
is the anycast-v4 loopback address which exists on all spines.

leaf1# show isis dteps vrf overlay-1 | egrep 10.0.8.65
10.0.8.65 SPINE N/A PHYSICAL,PROXY-ACAST-V4
bdsol-aci32-leaf1#

Intra-Fabric forwarding 253

Similarly, leaf3 and leaf4 should have route for 10.1.1.0/24.

leaf3# show ip route 10.1.1.1 vrf Prod:VRF1
IP Route Table for VRF "Prod:VRF1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.1.1.0/24, ubest/mbest: 1/0, attached, direct, pervasive
 *via 10.0.8.65%overlay-1, [1/0], 00:30:25, static, tag 4294967294
 recursive next hop: 10.0.8.65/32%overlay-1

If these routes are missing, it is likely because there is no contract between an
EPG in BD1 and an EPG in BD2. If there is no local endpoint in BD1 under a leaf,
the BD1 pervasive gateway doesn't get pushed to the leaf. If there is a local
endpoint in an EPG that has a contract with another EPG in BD1, the BD1 subnet
gets learned on the leaf.

ARP resolution for the default gateway IP
Since the leaf where a local endpoint resides should have a pervasive gateway, ARP
requests for the pervasive gateway should always be resolved by the local leaf. This can
be checked on the local leaf using the following command:

leaf1# show ip arp internal event-history event | egrep 10.1.1.1
 [116] TID 26571:arp_handle_arp_request:6135: log_collect_arp_pkt; sip = 10.1.1.1; dip = 10.1.1.254;interface
= Vlan7; phy_inteface = Ethernet1/3; flood = 0; Info = Sent ARP response.
 [116] TID 26571:arp_process_receive_packet_msg:8384: log_collect_arp_pkt; sip = 10.1.1.1; dip =
10.1.1.254;interface = Vlan7; phy_interface = Ethernet1/3;Info = Received arp request

Ingress leaf source IP and MAC endpoint learning
In case of Layer 3 forwarding, ACI will perform Layer 3 source IP learning and
destination IP lookup. Learned IP addresses are scoped to the VRF.

This can be checked on the GUI in an EPG's 'operational' tab. Note that here the IP and
the MAC are both learned.

254 Intra-Fabric forwarding

EPG Operational End-Points

EPG Operational End-Points — detail

Check local endpoint is learned on the local leaf. Here check on leaf1 that IP 10.1.1.1 is
learned:

leaf1# show endpoint ip 10.1.1.1
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+-------------+
46 vlan-2501 0000.1001.0101 L eth1/3
Prod:VRF1 vlan-2501 10.1.1.1 L eth1/3

As shown above, the endpoint content is:

• BD (internal VLAN for BD is 46) with VLAN encapsulation of the EPG (vlan-2501)
and the MAC address learned on eth1/3

• VRF (Prod:VRF1) with the IP 10.1.1.1

Intra-Fabric forwarding 255

This can be understood as equivalent to an ARP entry in a traditional network.
ACI does not store ARP info in an ARP table for endpoints. Endpoints are only
visible in the endpoint table.

The ARP table on a leaf is only used for L3Out next-hops.

leaf1# show ip arp vrf Prod:VRF1
Flags: * - Adjacencies learnt on non-active FHRP router
 + - Adjacencies synced via CFSoE
 # - Adjacencies Throttled for Glean
 D - Static Adjacencies attached to down interface IP ARP Table for context Prod:VRF1
Total number of entries: 0
Address Age MAC Address Interface < NO ENTRY >

Ingress leaf destination IP lookup — known remote endpoint
Assuming the destination IP is known (known unicast), below is the 'show endpoint'
output for destination IP 10.1.2.1. That is a remote learn since it does not reside on leaf1,
specifically pointing to the tunnel interface where it is learned locally (tunnel 4).

Remote endpoints only contain either the IP or the MAC, never both in the same entry.
MAC address and IP address in the same endpoint happens only when the endpoint is
locally learned.

leaf1# show endpoint ip 10.1.2.1
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+-------------+
Prod:VRF1 10.1.2.1 p tunnel4

256 Intra-Fabric forwarding

leaf1# show interface tunnel 4
Tunnel4 is up
 MTU 9000 bytes, BW 0 Kbit
 Transport protocol is in VRF "overlay-1"
 Tunnel protocol/transport is ivxlan
 Tunnel source 10.0.88.95/32 (lo0)
 Tunnel destination 10.0.96.66
 Last clearing of "show interface" counters never
 Tx
 0 packets output, 1 minute output rate 0 packets/sec
 Rx
 0 packets input, 1 minute input rate 0 packets/sec

The destination TEP is the anycast TEP of the leaf3 and 4 VPC pair and is learned via
uplinks to spine.

leaf1# show ip route 10.0.96.66 vrf overlay-1
IP Route Table for VRF "overlay-1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.0.96.66/32, ubest/mbest: 4/0
 *via 10.0.88.65, eth1/49.10, [115/3], 02w06d, isis-isis_infra, isis-l1-int
 *via 10.0.128.64, eth1/51.8, [115/3], 02w06d, isis-isis_infra, isis-l1-int
 *via 10.0.88.64, eth1/52.126, [115/3], 02w06d, isis-isis_infra, isis-l1-int
 *via 10.0.88.94, eth1/50.128, [115/3], 02w06d, isis-isis_infra, isis-l1-int

Additional endpoint information for IP 10.1.2.1 can be collected using the 'show system
internal epm endpoint ip <ip>' command.

leaf1# show system internal epm endpoint ip 10.1.2.1
MAC : 0000.0000.0000 ::: Num IPs : 1
IP# 0 : 10.1.2.1 ::: IP# 0 flags : ::: l3-sw-hit: No
Vlan id : 0 ::: Vlan vnid : 0 ::: VRF name : Prod:VRF1
BD vnid : 0 ::: VRF vnid : 2097154
Phy If : 0 ::: Tunnel If : 0x18010004
Interface : Tunnel4
Flags : 0x80004420 ::: sclass : 32771 ::: Ref count : 3
EP Create Timestamp : 10/01/2019 13:53:16.228319
EP Update Timestamp : 10/01/2019 14:04:40.757229
EP Flags : peer-aged|IP|sclass|timer|
::::

Intra-Fabric forwarding 257

In that output check:

• VRF VNID is populated — this is the VNID used to encapsulate the frame in
VXLAN to the fabric.

• MAC address is 0000.0000.0000 as MAC address is never populated on a
remote IP entry.

• BD VNID is unknown as for routed frames, the ingress leaf acts as the router and
does a MAC rewrite. This means the remote leaf will not have visibility into the
BD of the destination, only the VRF.

The frame will now be encapsulated in a VXLAN frame going to the remote TEP
10.0.96.66 with a VXLAN id of 2097154 which is the VNID of the VRF. It will be routed in
the overlay-1 routing table (IS-IS route) and will reach the destination TEP. Here it will
reach either leaf3 or leaf4 as 10.0.96.66 is the anycast TEP address of the leaf3 and leaf4
VPC pair.

Source IP learning on egress leaf
The outputs here are taken from leaf3 but would be similar on leaf4. When packets
reach leaf3 (destination leaf and owner of the TEP), leaf will learn source IP of the
packet in the VRF.

leaf3# show endpoint ip 10.1.1.1
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+-------------+
Prod:VRF1 10.1.1.1 p tunnel26

leaf3# show interface tunnel 26
Tunnel26 is up
 MTU 9000 bytes, BW 0 Kbit
 Transport protocol is in VRF "overlay-1"
 Tunnel protocol/transport is ivxlan

258 Intra-Fabric forwarding

Tunnel source 10.0.88.91/32 (lo0)
 Tunnel destination 10.0.88.95
 Last clearing of "show interface" counters never
 Tx
 0 packets output, 1 minute output rate 0 packets/sec
 Rx
 0 packets input, 1 minute input rate 0 packets/sec
The destination TEP 10.0.88.95 is the TEP address of leaf1 and is learned via all uplinks to spine.

Destination IP lookup on egress leaf
The last step is for the egress leaf to lookup the destination IP. Look at the endpoint
table for 10.1.2.1.

This gives the following information:

• The egress leaf knows the destination 10.1.2.1 (similar to a /32 host route in
routing table) and the route is learned in correct VRF.

• The egress leaf knows the MAC 0000.1001.0201 (endpoint info).

• The egress leaf knows the traffic destined to 10.1.2.1 must be encapsulated in
vlan-2502 and send out on port-channel 1 (po1).

leaf3# show endpoint ip 10.1.2.1
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+-------------+
2 vlan-2502 0000.1001.0201 LpV po1
Prod:VRF1 vlan-2502 10.1.2.1 LpV po1

fTriage to follow the datapath
Use fTriage in the APIC to follow the datapath flow. Remember, fTriage relies on ELAM,
so it needs real data flow. This allows confirmation of the full datapath, with
confirmation that the packet exits the fabric on leaf3 port 1/16.

Intra-Fabric forwarding 259

apic1# ftriage route -ii LEAF:101 -sip 10.1.1.1 -dip 10.1.2.1
fTriage Status: {"dbgFtriage": {"attributes": {"operState": "InProgress", "pid": "6888", "apicId": "1", "id": "0"}}}
Starting ftriage
Log file name for the current run is: ftlog_2019-10-01-21-17-54-175.txt
2019-10-01 21:17:54,179 INFO /controller/bin/ftriage route -ii LEAF:101 -sip 10.1.1.1 -dip 10.1.2.1
2019-10-01 21:18:18,149 INFO ftriage: main:1165 Invoking ftriage with default password and default username:
apic#fallback\\admin
2019-10-01 21:18:39,194 INFO ftriage: main:839 L3 packet Seen on bdsol-aci32-leaf1 Ingress: Eth1/3 Egress: Eth1/51 Vnid:
2097154
2019-10-01 21:18:39,413 INFO ftriage: main:242 ingress encap string vlan-2501
2019-10-01 21:18:39,419 INFO ftriage: main:271 Building ingress BD(s), Ctx
2019-10-01 21:18:41,240 INFO ftriage: main:294 Ingress BD(s) Prod:BD1
2019-10-01 21:18:41,240 INFO ftriage: main:301 Ingress Ctx: Prod:VRF1
2019-10-01 21:18:41,349 INFO ftriage: pktrec:490 bdsol-aci32-leaf1: Collecting transient losses snapshot for LC module: 1
2019-10-01 21:19:05,747 INFO ftriage: main:933 SIP 10.1.1.1 DIP 10.1.2.1
2019-10-01 21:19:05,749 INFO ftriage: unicast:973 bdsol-aci32-leaf1: <- is ingress node
2019-10-01 21:19:08,459 INFO ftriage: unicast:1215 bdsol-aci32-leaf1: Dst EP is remote
2019-10-01 21:19:09,984 INFO ftriage: misc:657 bdsol-aci32-leaf1: DMAC(00:22:BD:F8:19:FF) same as RMAC(00:22:BD:F8:19:FF)
2019-10-01 21:19:09,984 INFO ftriage: misc:659 bdsol-aci32-leaf1: L3 packet getting routed/bounced in SUG
2019-10-01 21:19:10,248 INFO ftriage: misc:657 bdsol-aci32-leaf1: Dst IP is present in SUG L3 tbl
2019-10-01 21:19:10,689 INFO ftriage: misc:657 bdsol-aci32-leaf1: RwDMAC DIPo(10.0.96.66) is one of dst TEPs
['10.0.96.66']
2019-10-01 21:20:56,148 INFO ftriage: main:622 Found peer-node bdsol-aci32-spine3 and IF: Eth2/1 in candidate list
2019-10-01 21:21:01,245 INFO ftriage: node:643 bdsol-aci32-spine3: Extracted Internal-port GPD Info for lc: 2
2019-10-01 21:21:01,245 INFO ftriage: fcls:4414 bdsol-aci32-spine3: LC trigger ELAM with IFS: Eth2/1 Asic :0 Slice: 0
Srcid: 32
2019-10-01 21:21:33,894 INFO ftriage: main:839 L3 packet Seen on bdsol-aci32-spine3 Ingress: Eth2/1 Egress: LC-2/0 FC-
22/0 Port-1 Vnid: 2097154
2019-10-01 21:21:33,895 INFO ftriage: pktrec:490 bdsol-aci32-spine3: Collecting transient losses snapshot for LC module: 2
2019-10-01 21:21:54,487 INFO ftriage: fib:332 bdsol-aci32-spine3: Transit in spine
2019-10-01 21:22:01,568 INFO ftriage: unicast:1252 bdsol-aci32-spine3: Enter dbg_sub_nexthop with Transit inst: ig infra:
False glbs.dipo: 10.0.96.66
2019-10-01 21:22:01,682 INFO ftriage: unicast:1417 bdsol-aci32-spine3: EP is known in COOP (DIPo = 10.0.96.66)
2019-10-01 21:22:05,713 INFO ftriage: unicast:1458 bdsol-aci32-spine3: Infra route 10.0.96.66 present in RIB
2019-10-01 21:22:05,713 INFO ftriage: node:1331 bdsol-aci32-spine3: Mapped LC interface: LC-2/0 FC-22/0 Port-1 to FC
interface: FC-22/0 LC-2/0 Port-1
2019-10-01 21:22:10,799 INFO ftriage: node:460 bdsol-aci32-spine3: Extracted GPD Info for fc: 22
2019-10-01 21:22:10,799 INFO ftriage: fcls:5748 bdsol-aci32-spine3: FC trigger ELAM with IFS: FC-22/0 LC-2/0 Port-1 Asic
:0 Slice: 2 Srcid: 24
2019-10-01 21:22:29,322 INFO ftriage: unicast:1774 L3 packet Seen on FC of node: bdsol-aci32-spine3 with Ingress: FC-22/0
LC-2/0 Port-1 Egress: FC-22/0 LC-2/0 Port-1 Vnid: 2097154
2019-10-01 21:22:29,322 INFO ftriage: pktrec:487 bdsol-aci32-spine3: Collecting transient losses snapshot for FC module: 22
2019-10-01 21:22:31,571 INFO ftriage: node:1339 bdsol-aci32-spine3: Mapped FC interface: FC-22/0 LC-2/0 Port-1 to LC
interface: LC-2/0 FC-22/0 Port-1
2019-10-01 21:22:31,572 INFO ftriage: unicast:1474 bdsol-aci32-spine3: Capturing Spine Transit pkt-type L3 packet on egress
LC on Node: bdsol-aci32-spine3 IFS: LC-2/0 FC-22/0 Port-1
2019-10-01 21:22:31,991 INFO ftriage: fcls:4414 bdsol-aci32-spine3: LC trigger ELAM with IFS: LC-2/0 FC-22/0 Port-1 Asic
:0 Slice: 1 Srcid: 0

260 Intra-Fabric forwarding

2019-10-01 21:22:48,952 INFO ftriage: unicast:1510 bdsol-aci32-spine3: L3 packet Spine egress Transit pkt Seen on bdsol-
aci32-spine3 Ingress: LC-2/0 FC-22/0 Port-1 Egress: Eth2/3 Vnid: 2097154
2019-10-01 21:22:48,952 INFO ftriage: pktrec:490 bdsol-aci32-spine3: Collecting transient losses snapshot for LC module: 2
2019-10-01 21:23:50,748 INFO ftriage: main:622 Found peer-node bdsol-aci32-leaf3 and IF: Eth1/51 in candidate list
2019-10-01 21:24:05,313 INFO ftriage: main:839 L3 packet Seen on bdsol-aci32-leaf3 Ingress: Eth1/51 Egress: Eth1/12 (Po1)
Vnid: 11365
2019-10-01 21:24:05,427 INFO ftriage: pktrec:490 bdsol-aci32-leaf3: Collecting transient losses snapshot for LC module: 1
2019-10-01 21:24:24,369 INFO ftriage: nxos:1404 bdsol-aci32-leaf3: nxos matching rule id:4326 scope:34 filter:65534
2019-10-01 21:24:25,698 INFO ftriage: main:522 Computed egress encap string vlan-2502
2019-10-01 21:24:25,704 INFO ftriage: main:313 Building egress BD(s), Ctx
2019-10-01 21:24:27,510 INFO ftriage: main:331 Egress Ctx Prod:VRF1
2019-10-01 21:24:27,510 INFO ftriage: main:332 Egress BD(s): Prod:BD2
2019-10-01 21:24:30,536 INFO ftriage: unicast:1252 bdsol-aci32-leaf3: Enter dbg_sub_nexthop with Local inst: eg infra: False
glbs.dipo: 10.0.96.66
2019-10-01 21:24:30,537 INFO ftriage: unicast:1257 bdsol-aci32-leaf3: dbg_sub_nexthop invokes dbg_sub_eg for vip
2019-10-01 21:24:30,537 INFO ftriage: unicast:1784 bdsol-aci32-leaf3: <- is egress node
2019-10-01 21:24:30,684 INFO ftriage: unicast:1833 bdsol-aci32-leaf3: Dst EP is local
2019-10-01 21:24:30,685 INFO ftriage: misc:657 bdsol-aci32-leaf3: EP if(Po1) same as egr if(Po1)
2019-10-01 21:24:30,943 INFO ftriage: misc:657 bdsol-aci32-leaf3: Dst IP is present in SUG L3 tbl
2019-10-01 21:24:31,242 INFO ftriage: misc:657 bdsol-aci32-leaf3: RW seg_id:11365 in SUG same as EP segid:11365
2019-10-01 21:24:37,631 INFO ftriage: main:961 Packet is Exiting fabric with peer-device: bdsol-aci32-n3k-3 and peer-
port: Ethernet1/12

Packet capture on egress leaf using ELAM Assistant app

Below is the packet captured with the ELAM Assistant app on leaf3 coming from the
spine. This shows that:

• The VNID from the outer Layer 4 information (VNID is 2097154).

• Outer L3 header source TEP and destination TEP.

Intra-Fabric forwarding 261

ELAM Assistant — L3 �ow egress leaf (part 1)

262 Intra-Fabric forwarding

ELAM Assistant — L3 �ow egress leaf (part 2)

Intra-Fabric forwarding 263

The Packet Forwarding Information section proves it got out on port-channel 1

ELAM Assistant — L3 egress leaf — Packet Forwarding Information

Troubleshooting workflow for unknown endpoints

This section shows what differs when the ingress leaf does not know the destination IP.

Ingress leaf destination IP lookup
The first step is to check if there is an endpoint learn for the destination IP.

leaf1# show endpoint ip 10.1.2.1
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service

264 Intra-Fabric forwarding

+-----------------------------------+---------------+-----------------+--------------+------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+------------+ <NO ENTRY>

There is nothing in endpoint table for the destination, so next step is to check the
routing table looking for the longest prefix match route to the destination:

leaf1# show ip route 10.1.2.1 vrf Prod:VRF1
IP Route Table for VRF "Prod:VRF1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

10.1.2.0/24, ubest/mbest: 1/0, attached, direct, pervasive
 *via 10.0.8.65%overlay-1, [1/0], 01:40:18, static, tag 4294967294
 recursive next hop: 10.0.8.65/32%overlay-1

Falling on the /24 BD subnet 10.1.2.0/24 means the leaf will encapsulate the frame in
VXLAN with destination TEP 10.0.8.65 (anycast-v4 on spine). The frame will use a
VXLAN id which is the VRF VNID.

COOP lookup on spine — destination IP is known
The packet will reach one of the spines that does COOP lookup in the IP database. The
source must be verified and the destination IP needs to be learned correctly from the
COOP database.

To find an IP in the COOP database, the key is VRF VNID (2097154 in this example)

From the output below, there is confirmation that the COOP database has the entry for
the source IP from TEP 10.0.88.95 (leaf1) correctly.

spine1# show coop internal info ip-db key 2097154 10.1.1.1
IP address : 10.1.1.1
Vrf : 2097154
Flags : 0
EP bd vnid : 15302583
EP mac : 00:00:10:01:01:01
Publisher Id : 10.0.88.95
Record timestamp : 10 01 2019 14:16:50 522482647

Intra-Fabric forwarding 265

Publish timestamp : 10 01 2019 14:16:50 532239332
Seq No: 0
Remote publish timestamp: 01 01 1970 00:00:00 0
URIB Tunnel Info
Num tunnels : 1
 Tunnel address : 10.0.88.95
 Tunnel ref count : 1

The output below shows that the COOP database has the entry for the destination IP
from TEP 10.0.96.66 (Anycast TEP of the leaf3 and 4 VPC pair) correctly

spine1# show coop internal info ip-db key 2097154 10.1.2.1
IP address : 10.1.2.1
Vrf : 2097154
Flags : 0
EP bd vnid : 15957974
EP mac : 00:00:10:01:02:01
Publisher Id : 10.0.88.90
Record timestamp : 10 01 2019 14:52:52 558812544
Publish timestamp : 10 01 2019 14:52:52 559479076
Seq No: 0
Remote publish timestamp: 01 01 1970 00:00:00 0
URIB Tunnel Info
Num tunnels : 1
 Tunnel address : 10.0.96.66
 Tunnel ref count : 1

In the scenario here, COOP knows the destination IP so it will rewrite the destination IP
of the outer IP header in the VXLAN packet to be 10.0.96.66 and then will send to leaf3
or leaf4 (depending on ECMP hashing). Note that the source IP of the VXLAN frame is
not changed so it is still the leaf1 PTEP.

COOP lookup on spine - destination IP is unknown
In the case where the COOP entry for the destination IP is not populated (silent
endpoint or aged out), the spine will generate an ARP glean to resolve it. For more
information, refer to "Multi-Pod Forwarding" section.

266 Intra-Fabric forwarding

Summary

The following drawing summarizes the ACI forwarding for Layer 2 and Layer 3 use case.

ACI forwarding summary

Intra-Fabric forwarding 267

Multi-Pod forwarding

Multi-Pod forwarding overview

This chapter will cover how to troubleshoot scenarios in which connectivity is not
working correctly across Pods in a Multi-Pod environment

Before looking at specific troubleshooting examples, it is important to take a moment to
understand the Multi-Pod components at a high level.

Multi-Pod components

Similar to a traditional ACI fabric, a Multi-Pod fabric is still considered to be a single
ACI fabric and relies on a single APIC cluster for management.

Within each individual Pod, ACI leverages the same protocols in the overlay as a
traditional fabric. This includes IS-IS for exchange of TEP information as well as

268 Intra-Fabric forwarding

multicast Outgoing Interface (OIF) selection, COOP for a global endpoint repository,
and BGP VPNv4 for the distribution of external routers through the fabric.

Multi-Pod builds on those components as it must connect each Pod together.

• To exchange routing information regarding TEPs in the remote Pod, OSPF is
used to advertise the summary TEP pool through the IPN.

• To exchange external routes learned from one Pod to another, the BGP VPNv4
address-family is extended between spine nodes. Each Pod becomes a separate
route-reflector cluster.

• To synchronize endpoints as well as other information stored in COOP across
Pods, the BGP EVPN address-family is extended between spine nodes.

• Lastly, in order to handle the flooding of Broadcast, Unknown-Unicast, and
Multicast (BUM) traffic across Pods, the spine nodes in each Pod act as IGMP
hosts and the IPN routers exchange multicast routing information through
Bidirectional PIM.

A large portion of the Multi-Pod troubleshooting scenarios and workflows are similar to
Single Pod ACI fabrics. This Multi-Pod section will mostly focus on the differences
between Single Pod and Multi-Pod forwarding.

Multi-Pod forwarding troubleshooting workflow

As with troubleshooting any scenario, it is important to begin by understanding what
the expected state is. The following topology will be used in the below examples.

Intra-Fabric forwarding 269

Topology for Multi-Pod examples

270 Intra-Fabric forwarding

1

2

3

1

2

3

The high level workflow is as follows:

Is the flow Unicast or multi-destination? Remember, even if the flow is expected
to be unicast in the working state, if ARP isn't resolved then it is a multi-
destination flow.

Is the flow routed or bridged? Traditionally, a routed flow from an ACI
perspective would be any flow where the destination MAC address is the router
MAC address that is owned by a gateway configured on ACI. Additionally, if ARP
flooding is disabled, then the ingress leaf would route based on the target-IP
address. If the destination MAC address is not owned by ACI, then the switch
would either forward based on the MAC address or follow the 'unknown unicast'
behavior configured on the bridge domain.

Is the ingress leaf dropping the flow? fTriage and ELAM are the best tools to
confirm this.

If the flow is Layer 3 unicast:

Does the ingress leaf have an endpoint learn for the destination IP in the same
VRF as the source EPG? If so, this will always take precedence over any learned
routes. The leaf will forward directly to the tunnel address or egress interface
where the endpoint is learned.

If there is no endpoint learn, does the ingress leaf have a route for the
destination that has the 'Pervasive' flag set? This indicates that the destination
subnet is configured as a Bridge Domain subnet and that the next-hop should be
the spine proxy in the local Pod.

If there is no Pervasive route, then the last resort would be any routes that are
learned through an L3Out. This portion is identical to Single Pod L3Out
forwarding.

Intra-Fabric forwarding 271

1

2

If the flow is Layer 2 unicast:

Does the ingress leaf have an endpoint learn for the destination MAC address in
the same Bridge Domain as the source EPG? If so, the leaf will forward to the
remote tunnel IP or out the local interface where the endpoint is learned.

If there is no learn for the destination MAC address in the source Bridge
Domain, then the leaf will forward based on the 'unknown-unicast' behavior the
BD is set to. If it is set to 'Flood', then the leaf will flood to the GIPo multicast
group allocated for the Bridge Domain. Local and remote Pods should get a
flooded copy. If it is set to 'Hardware Proxy' then the frame is sent to the spine
for a proxy lookup and forwarded based on the spine's COOP entry.

Since the troubleshooting outputs would be considerably different for unicast
compared to BUM, working outputs and scenarios for unicast will be considered before
and then move to BUM.

Multi-Pod unicast troubleshooting workflow

Following the topology, walk through the flow from 10.0.2.100 on leaf205 to 10.0.1.100 on
leaf101.

Note, before proceeding here, it is important to con�rm whether the source has
ARP resolved for the gateway (for a routed �ow) or the destination MAC address
(for a bridged �ow)

1. Confirm that the ingress leaf receives the packet. Use the ELAM CLI tool shown in
the "Tools" section along with the ereport output available in 4.2. The ELAM Assistant
App is also used.

module-1# debug platform internal tah elam asic 0
module-1(DBG-elam)# trigger reset
module-1(DBG-elam)# trigger init in-select 6 out-select 1
module-1(DBG-elam-insel6)# set outer ipv4 src_ip 10.0.2.100 dst_ip 10.0.1.100
module-1(DBG-elam-insel6)# start
module-1(DBG-elam-insel6)# stat
ELAM STATUS
===========
Asic 0 Slice 0 Status Armed
Asic 0 Slice 1 Status Triggered

272 Intra-Fabric forwarding

Note that the ELAM triggered which confirms the packet was received on the ingress
switch. Now look at a couple of fields in the report since the output is extensive.

===
 Captured Packet

===

Outer Packet Attributes

Outer Packet Attributes : l2uc ipv4 ip ipuc ipv4uc
Opcode : OPCODE_UC

Outer L2 Header

Destination MAC : 0022.BDF8.19FF
Source MAC : 0000.2222.2222
802.1Q tag is valid : yes(0x1)
CoS : 0(0x0)
Access Encap VLAN : 1021(0x3FD)

--
Outer L3 Header
--
L3 Type : IPv4
IP Version : 4
DSCP : 0
IP Packet Length : 84 (= IP header(28 bytes) + IP payload)
Don't Fragment Bit : not set
TTL : 255
IP Protocol Number : ICMP
IP CheckSum : 10988(0x2AEC)
Destination IP : 10.0.1.100
Source IP : 10.0.2.100

There is much more info in the ereport about where the packet is going but the ELAM
Assistant App is currently more useful for interpreting this data. The ELAM Assistant
output for this flow will be shown later in this chapter.

Intra-Fabric forwarding 273

2. Is the ingress leaf learning the destination as an endpoint in the ingress VRF? If
not, is there a route?

a-leaf205# show endpoint ip 10.0.1.100 detail
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+-----------------------------+
 VLAN/ Encap MAC Address MAC Info/ Interface Endpoint Group
 Domain VLAN IP Address IP Info Info
+-----------------------------------+---------------+-----------------+--------------+-------------+-----------------------------+

No output in the above command means the destination IP is not learned. Next check
the routing table.

a-leaf205# show ip route 10.0.1.100 vrf Prod:Vrf1
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

10.0.1.0/24, ubest/mbest: 1/0, attached, direct, pervasive
 *via 10.0.120.34%overlay-1, [1/0], 01:55:37, static, tag 4294967294
 recursive next hop: 10.0.120.34/32%overlay-1

In the above output, the pervasive flag is seen which indicates this is a Bridge Domain
subnet route. The next-hop should be an anycast proxy address on the spines.

a-leaf205# show isis dtep vrf overlay-1 | grep 10.0.120.34
10.0.120.34 SPINE N/A PHYSICAL,PROXY-ACAST-V4

Note that if the endpoint is learned on a tunnel or physical interface, this will take
precedence, causing the packet to be forwarded directly there. Refer to the "External
forwarding" chapter of this book for more details.

Use the ELAM Assistant to confirm the forwarding decisions seen in the above outputs.

274 Intra-Fabric forwarding

ELAM Assistant con�guration

Verify forwarding decisions

The above output shows that the ingress leaf is forwarding the packet to the IPv4 spine
proxy address. This is what is expected to happen.

Intra-Fabric forwarding 275

3. Confirm on the spine that the destination IP is present in COOP so that the proxy
request works.
There are multiple ways to get the COOP output on the spine, for example, look at it
with a 'show coop internal info ip-db' command:

a-spine4# show coop internal info ip-db | grep -B 2 -A 15 "10.0.1.100"

IP address : 10.0.1.100
Vrf : 2392068 <--This vnid should correspond to vrf where the IP is learned. Check operational tab of the tenant
vrfs
Flags : 0x2
EP bd vnid : 15728642
EP mac : 00:00:11:11:11:11
Publisher Id : 192.168.1.254
Record timestamp : 12 31 1969 19:00:00 0
Publish timestamp : 12 31 1969 19:00:00 0
Seq No: 0
Remote publish timestamp: 09 30 2019 20:29:07 9900483
URIB Tunnel Info
Num tunnels : 1
 Tunnel address : 10.0.0.34 <--When learned from a remote pod this will be an External Proxy TEP. We'll
cover this more
 Tunnel ref count : 1

Other commands to run on the spine:

Query COOP for l2 entry:
moquery -c coopEpRec -f 'coop.EpRec.mac=="00:00:11:11:22:22"

Query COOP for l3 entry and get parent l2 entry:
moquery -c coopEpRec -x rsp-subtree=children 'rsp-subtree-filter=eq(coopIpv4Rec.addr,"1.1.1.1")' rsp-subtree-
include=required

Query COOP for l3 entry only:
moquery -c coopIpv4Rec -f 'coop.Ipv4Rec.addr=="1.1.1.1"'

The useful thing about the multiple moquery is that they can also be run directly on an
APIC and the user can see every spine that has the record in coop.

276 Intra-Fabric forwarding

4. Multi-Pod spine proxy forwarding decision
If the spine's COOP entry points to a tunnel in the local Pod then forwarding is based
on traditional ACI behavior.

Note that owner of a TEP can be veri�ed in the fabric by running from an APIC:
moquery -c ipv4Addr -f 'ipv4.Addr.addr=="<tunnel address>"'

In the above proxy scenario, the tunnel next-hop is 10.0.0.34. Who is the owner of this
IP address?:

a-apic1# moquery -c ipv4Addr -f 'ipv4.Addr.addr=="10.0.0.34"' | grep dn
dn : topology/pod-1/node-1002/sys/ipv4/inst/dom-overlay-1/if-[lo9]/addr-[10.0.0.34/32]
dn : topology/pod-1/node-1001/sys/ipv4/inst/dom-overlay-1/if-[lo2]/addr-[10.0.0.34/32]

This IP is owned by both spine nodes in Pod 1. This is a specific IP called an External
Proxy address. In the same way that ACI has proxy addresses owned by the spine nodes
within a Pod (see step 2 of this section), there are also proxy addresses assigned to the
Pod itself. This interface type can be verified by running:

a-apic1# moquery -c ipv4If -x rsp-subtree=children 'rsp-subtree-filter=eq(ipv4Addr.addr,"10.0.0.34")' rsp-
subtree-include=required

...
ipv4.If
mode : anycast-v4,external
ipv4.Addr
 addr : 10.0.0.34/32
 dn : topology/pod-1/node-1002/sys/ipv4/inst/dom-overlay-1/if-[lo9]/addr-[10.0.0.34/32]

The 'external' flag indicates this is an external proxy TEP.

Intra-Fabric forwarding 277

5. Verify BGP EVPN on the spine
The coop endpoint record should be imported from BGP EVPN on the spine. The
following command can be used to verify that it is in EVPN (though if it is already in
COOP with a next-hop of the remote Pod external proxy TEP it can be assumed it came
from EVPN):

a-spine4# show bgp l2vpn evpn 10.0.1.100 vrf overlay-1
Route Distinguisher: 1:16777199
BGP routing table entry for [2]:[0]:[15728642]:[48]:[0000.1111.1111]:[32]:[10.0.1.100]/272, version 689242 dest
ptr 0xaf42a4ca
Paths: (2 available, best #2)
Flags: (0x000202 00000000) on xmit-list, is not in rib/evpn, is not in HW, is locked
Multipath: eBGP iBGP

 Path type: internal 0x40000018 0x2040 ref 0 adv path ref 0, path is valid, not best reason: Router Id, remote
nh not installed
 AS-Path: NONE, path sourced internal to AS
 192.168.1.254 (metric 7) from 192.168.1.102 (192.168.1.102)
 Origin IGP, MED not set, localpref 100, weight 0
 Received label 15728642 2392068
 Received path-id 1
 Extcommunity:
 RT:5:16
 SOO:1:1
 ENCAP:8
 Router MAC:0200.0000.0000

 Advertised path-id 1
 Path type: internal 0x40000018 0x2040 ref 1 adv path ref 1, path is valid, is best path, remote nh not
installed
 AS-Path: NONE, path sourced internal to AS
 192.168.1.254 (metric 7) from 192.168.1.101 (192.168.1.101)
 Origin IGP, MED not set, localpref 100, weight 0
 Received label 15728642 2392068
 Received path-id 1
 Extcommunity:
 RT:5:16
 SOO:1:1
 ENCAP:8
 Router MAC:0200.0000.0000

 Path-id 1 not advertised to any peer

278 Intra-Fabric forwarding

Note that the above command can be run for a MAC address as well.

192.168.1.254 is the dataplane TEP con�gured during Multi-Pod setup. Note
however that even though it is advertised in BGP as the NH, the actual next-hop
will be the external proxy TEP.

192.168.1.101 and .102 are the Pod 1 spine nodes advertising this path.

6. Verify COOP on the spines in the destination Pod.
The same command as earlier can be used:

a-spine2# show coop internal info ip-db | grep -B 2 -A 15 "10.0.1.100"

IP address : 10.0.1.100
Vrf : 2392068
Flags : 0
EP bd vnid : 15728642
EP mac : 00:50:56:81:3E:E6
Publisher Id : 10.0.72.67
Record timestamp : 10 01 2019 15:46:24 502206158
Publish timestamp : 10 01 2019 15:46:24 524378376
Seq No: 0
Remote publish timestamp: 12 31 1969 19:00:00 0
URIB Tunnel Info
Num tunnels : 1
 Tunnel address : 10.0.72.67
 Tunnel ref count : 1

Verify who owns the tunnel address by running the following command on an APIC:

a-apic1# moquery -c ipv4Addr -f 'ipv4.Addr.addr=="10.0.72.67"'
Total Objects shown: 1

ipv4.Addr
addr : 10.0.72.67/32
childAction :
ctrl :
dn : topology/pod-1/node-101/sys/ipv4/inst/dom-overlay-1/if-[lo0]/addr-[10.0.72.67/32]
ipv4CfgFailedBmp :
ipv4CfgFailedTs : 00:00:00:00.000

Intra-Fabric forwarding 279

ipv4CfgState : 0
lcOwn : local
modTs : 2019-09-30T18:42:43.262-04:00
monPolDn : uni/fabric/monfab-default
operSt : up
operStQual : up
pref : 0
rn : addr-[10.0.72.67/32]
status :
tag : 0
type : primary
vpcPeer : 0.0.0.0

The above command shows that the tunnel from COOP points to leaf101. This means
that leaf101 should have the local learn for the destination endpoint.

7. Verify that the egress leaf has the local learn.
This can be done via a 'show endpoint' command:

a-leaf101# show endpoint ip 10.0.1.100 detail
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+-----------------------------+
 VLAN/ Encap MAC Address MAC Info/ Interface Endpoint Group
 Domain VLAN IP Address IP Info Info
+-----------------------------------+---------------+-----------------+--------------+-------------+-----------------------------+
341 vlan-1075 0000.1111.1111 LV po5 Prod:ap1:epg1
Prod:Vrf1 vlan-1075 10.0.1.100 LV po5

Note that the endpoint is learned. The packet should be forwarded based out
port-channel 5 with VLAN tag 1075 set.

280 Intra-Fabric forwarding

Using fTriage to verify the end-to-end flow

As discussed in the "Tools" section of this chapter, fTriage can be used to map out an
existing flow end-to-end and understand what every switch in the path is doing with
the packet. This is particularly useful in larger and more complex deployments such as
Multi-Pod.

Note that fTriage will take some time to fully run (potentially 15 minutes).

When running fTriage on the example flow:

a-apic1# ftriage route -ii LEAF:205 -dip 10.0.1.100 -sip 10.0.2.100
fTriage Status: {"dbgFtriage": {"attributes": {"operState": "InProgress", "pid": "7297", "apicId": "1", "id": "0"}}}
Starting ftriage
Log file name for the current run is: ftlog_2019-10-01-16-04-15-438.txt
2019-10-01 16:04:15,442 INFO /controller/bin/ftriage route -ii LEAF:205 -dip 10.0.1.100 -sip 10.0.2.100
2019-10-01 16:04:38,883 INFO ftriage: main:1165 Invoking ftriage with default password and default username:
apic#fallback\\admin
2019-10-01 16:04:54,678 INFO ftriage: main:839 L3 packet Seen on a-leaf205 Ingress: Eth1/31 Egress: Eth1/53 Vnid:
2392068
2019-10-01 16:04:54,896 INFO ftriage: main:242 ingress encap string vlan-1021
2019-10-01 16:04:54,899 INFO ftriage: main:271 Building ingress BD(s), Ctx
2019-10-01 16:04:56,778 INFO ftriage: main:294 Ingress BD(s) Prod:Bd2
2019-10-01 16:04:56,778 INFO ftriage: main:301 Ingress Ctx: Prod:Vrf1
2019-10-01 16:04:56,887 INFO ftriage: pktrec:490 a-leaf205: Collecting transient losses snapshot for LC module: 1
2019-10-01 16:05:22,458 INFO ftriage: main:933 SIP 10.0.2.100 DIP 10.0.1.100
2019-10-01 16:05:22,459 INFO ftriage: unicast:973 a-leaf205: <- is ingress node
2019-10-01 16:05:25,206 INFO ftriage: unicast:1215 a-leaf205: Dst EP is remote
2019-10-01 16:05:26,758 INFO ftriage: misc:657 a-leaf205: DMAC(00:22:BD:F8:19:FF) same as RMAC(00:22:BD:F8:19:FF)
2019-10-01 16:05:26,758 INFO ftriage: misc:659 a-leaf205: L3 packet getting routed/bounced in SUG
2019-10-01 16:05:27,030 INFO ftriage: misc:657 a-leaf205: Dst IP is present in SUG L3 tbl
2019-10-01 16:05:27,473 INFO ftriage: misc:657 a-leaf205: RwDMAC DIPo(10.0.72.67) is one of dst TEPs ['10.0.72.67']
2019-10-01 16:06:25,200 INFO ftriage: main:622 Found peer-node a-spine3 and IF: Eth1/31 in candidate list
2019-10-01 16:06:30,802 INFO ftriage: node:643 a-spine3: Extracted Internal-port GPD Info for lc: 1
2019-10-01 16:06:30,803 INFO ftriage: fcls:4414 a-spine3: LC trigger ELAM with IFS: Eth1/31 Asic :3 Slice: 1 Srcid: 24
2019-10-01 16:07:05,717 INFO ftriage: main:839 L3 packet Seen on a-spine3 Ingress: Eth1/31 Egress: LC-1/3 FC-24/0 Port-1
Vnid: 2392068
2019-10-01 16:07:05,718 INFO ftriage: pktrec:490 a-spine3: Collecting transient losses snapshot for LC module: 1
2019-10-01 16:07:28,043 INFO ftriage: fib:332 a-spine3: Transit in spine
2019-10-01 16:07:35,902 INFO ftriage: unicast:1252 a-spine3: Enter dbg_sub_nexthop with Transit inst: ig infra: False
glbs.dipo: 10.0.72.67
2019-10-01 16:07:36,018 INFO ftriage: unicast:1417 a-spine3: EP is known in COOP (DIPo = 10.0.72.67)
2019-10-01 16:07:40,422 INFO ftriage: unicast:1458 a-spine3: Infra route 10.0.72.67 present in RIB
2019-10-01 16:07:40,423 INFO ftriage: node:1331 a-spine3: Mapped LC interface: LC-1/3 FC-24/0 Port-1 to FC interface: FC-

Intra-Fabric forwarding 281

24/0 LC-1/3 Port-1
2019-10-01 16:07:46,059 INFO ftriage: node:460 a-spine3: Extracted GPD Info for fc: 24
2019-10-01 16:07:46,060 INFO ftriage: fcls:5748 a-spine3: FC trigger ELAM with IFS: FC-24/0 LC-1/3 Port-1 Asic :0 Slice: 1
Srcid: 40
2019-10-01 16:08:06,735 INFO ftriage: unicast:1774 L3 packet Seen on FC of node: a-spine3 with Ingress: FC-24/0 LC-1/3 Port-
1 Egress: FC-24/0 LC-1/3 Port-1 Vnid: 2392068
2019-10-01 16:08:06,735 INFO ftriage: pktrec:487 a-spine3: Collecting transient losses snapshot for FC module: 24
2019-10-01 16:08:09,123 INFO ftriage: node:1339 a-spine3: Mapped FC interface: FC-24/0 LC-1/3 Port-1 to LC interface: LC-
1/3 FC-24/0 Port-1
2019-10-01 16:08:09,124 INFO ftriage: unicast:1474 a-spine3: Capturing Spine Transit pkt-type L3 packet on egress LC on
Node: a-spine3 IFS: LC-1/3 FC-24/0 Port-1
2019-10-01 16:08:09,594 INFO ftriage: fcls:4414 a-spine3: LC trigger ELAM with IFS: LC-1/3 FC-24/0 Port-1 Asic :3 Slice: 1
Srcid: 48
2019-10-01 16:08:44,447 INFO ftriage: unicast:1510 a-spine3: L3 packet Spine egress Transit pkt Seen on a-spine3 Ingress:
LC-1/3 FC-24/0 Port-1 Egress: Eth1/29 Vnid: 2392068
2019-10-01 16:08:44,448 INFO ftriage: pktrec:490 a-spine3: Collecting transient losses snapshot for LC module: 1
2019-10-01 16:08:46,691 INFO ftriage: unicast:1681 a-spine3: Packet is exiting the fabric through {a-spine3: ['Eth1/29']}
Dipo 10.0.72.67 and filter SIP 10.0.2.100 DIP 10.0.1.100
2019-10-01 16:10:19,947 INFO ftriage: main:716 Capturing L3 packet Fex: False on node: a-spine1 IF: Eth2/25
2019-10-01 16:10:25,752 INFO ftriage: node:643 a-spine1: Extracted Internal-port GPD Info for lc: 2
2019-10-01 16:10:25,754 INFO ftriage: fcls:4414 a-spine1: LC trigger ELAM with IFS: Eth2/25 Asic :3 Slice: 0 Srcid: 24
2019-10-01 16:10:51,164 INFO ftriage: main:716 Capturing L3 packet Fex: False on node: a-spine2 IF: Eth1/31
2019-10-01 16:11:09,690 INFO ftriage: main:839 L3 packet Seen on a-spine2 Ingress: Eth1/31 Egress: Eth1/25 Vnid: 2392068
2019-10-01 16:11:09,690 INFO ftriage: pktrec:490 a-spine2: Collecting transient losses snapshot for LC module: 1
2019-10-01 16:11:24,882 INFO ftriage: fib:332 a-spine2: Transit in spine
2019-10-01 16:11:32,598 INFO ftriage: unicast:1252 a-spine2: Enter dbg_sub_nexthop with Transit inst: ig infra: False
glbs.dipo: 10.0.72.67
2019-10-01 16:11:32,714 INFO ftriage: unicast:1417 a-spine2: EP is known in COOP (DIPo = 10.0.72.67)
2019-10-01 16:11:36,901 INFO ftriage: unicast:1458 a-spine2: Infra route 10.0.72.67 present in RIB
2019-10-01 16:11:47,106 INFO ftriage: main:622 Found peer-node a-leaf101 and IF: Eth1/54 in candidate list
2019-10-01 16:12:09,836 INFO ftriage: main:839 L3 packet Seen on a-leaf101 Ingress: Eth1/54 Egress: Eth1/30 (Po5) Vnid:
11470
2019-10-01 16:12:09,952 INFO ftriage: pktrec:490 a-leaf101: Collecting transient losses snapshot for LC module: 1
2019-10-01 16:12:30,991 INFO ftriage: nxos:1404 a-leaf101: nxos matching rule id:4659 scope:84 filter:65534
2019-10-01 16:12:32,327 INFO ftriage: main:522 Computed egress encap string vlan-1075
2019-10-01 16:12:32,333 INFO ftriage: main:313 Building egress BD(s), Ctx
2019-10-01 16:12:34,559 INFO ftriage: main:331 Egress Ctx Prod:Vrf1
2019-10-01 16:12:34,560 INFO ftriage: main:332 Egress BD(s): Prod:Bd1
2019-10-01 16:12:37,704 INFO ftriage: unicast:1252 a-leaf101: Enter dbg_sub_nexthop with Local inst: eg infra: False
glbs.dipo: 10.0.72.67
2019-10-01 16:12:37,705 INFO ftriage: unicast:1257 a-leaf101: dbg_sub_nexthop invokes dbg_sub_eg for ptep
2019-10-01 16:12:37,705 INFO ftriage: unicast:1784 a-leaf101: <- is egress node
2019-10-01 16:12:37,911 INFO ftriage: unicast:1833 a-leaf101: Dst EP is local
2019-10-01 16:12:37,912 INFO ftriage: misc:657 a-leaf101: EP if(Po5) same as egr if(Po5)
2019-10-01 16:12:38,172 INFO ftriage: misc:657 a-leaf101: Dst IP is present in SUG L3 tbl
2019-10-01 16:12:38,564 INFO ftriage: misc:657 a-leaf101: RW seg_id:11470 in SUG same as EP segid:11470
fTriage Status: {"dbgFtriage": {"attributes": {"operState": "Idle", "pid": "0", "apicId": "0", "id": "0"}}}
fTriage Status: {"dbgFtriage": {"attributes": {"operState": "Idle", "pid": "0", "apicId": "0", "id": "0"}}}

282 Intra-Fabric forwarding

There is a large amount of data in the fTriage. Some of the most important fields are
highlighted. Note that that the path of the packet was 'leaf205 (Pod 2) > spine3 (Pod 2) >
spine2 (Pod 1) > leaf101 (Pod 1)'. All forwarding decisions and contract lookups made
along the way are also visible.

Note that if this was a Layer 2 flow, the syntax of the fTriage would need to be set to
something like:

ftriage bridge -ii LEAF:205 -dmac 00:00:11:11:22:22

Proxied requests where the EP is not in COOP
Before considering specific failure scenarios, there is one more piece to discuss related
to unicast forwarding over Multi-Pod. What happens if the destination endpoint is
unknown, the request is proxied, and the endpoint is not in COOP?

In this scenario, the packet/frame is sent to the spine and a glean request is generated.

When the spine generates a glean request, the original packet is still preserved in the
request however, the packet receives ethertype 0xfff2 which is a Custom Ethertype
reserved for gleans. For this reason, it will not be easy to interpret these messages in
packet capture tools such as Wireshark.

The outer Layer 3 destination is also set to 239.255.255.240 which is a reserved
multicast group specifically for glean messages. These should be flooded across the
fabric and any egress leaf switches that have the destination subnet of the glean
request deployed will generate an ARP request to resolve the destination. These ARPs
are sent from the BD Subnet IP Address configured (therefore proxy requests can't
resolve the location of Silent/Unknown endpoints if Unicast Routing is disabled on a
Bridge Domain).

The reception of the glean message on the egress leaf and the subsequently generated
ARP and received ARP response can be verified through the following command:

Intra-Fabric forwarding 283

Glean ARP veri�cation

a-leaf205# show ip arp internal event-history event | grep -F -B 1 192.168.21.11
73) Event:E_DEBUG_DSF, length:127, at 316928 usecs after Wed May 1 08:31:53 2019
Updating epm ifidx: 1a01e000 vlan: 105 ip: 192.168.21.11, ifMode: 128 mac: 8c60.4f02.88fc <<< Endpoint is
learned
75) Event:E_DEBUG_DSF, length:152, at 316420 usecs after Wed May 1 08:31:53 2019
log_collect_arp_pkt; sip = 192.168.21.11; dip = 192.168.21.254; interface = Vlan104;info = Garp Check adj:(nil)
<<< Response received
77) Event:E_DEBUG_DSF, length:142, at 131918 usecs after Wed May 1 08:28:36 2019
log_collect_arp_pkt; dip = 192.168.21.11; interface = Vlan104;iod = 138; Info = Internal Request Done <<< ARP
request is generated by leaf
78) Event:E_DEBUG_DSF, length:136, at 131757 usecs after Wed May 1 08:28:36 2019 <<< Glean received, Dst IP is
in BD subnet
log_collect_arp_glean;dip = 192.168.21.11;interface = Vlan104;info = Received pkt Fabric-Glean: 1
79) Event:E_DEBUG_DSF, length:174, at 131748 usecs after Wed May 1 08:28:36 2019
log_collect_arp_glean; dip = 192.168.21.11; interface = Vlan104; vrf = CiscoLive2019:vrf1; info = Address in
PSVI subnet or special VIP <<< Glean Received, Dst IP is in BD subnet

For reference, glean messages being sent to 239.255.255.240 is why this group needs to
be included in the Bidirectional PIM group range on the IPN.

284 Intra-Fabric forwarding

Multi-Pod troubleshooting scenario #1

In the following topology, EP B cannot communicate with EP A.

Troubleshooting topology

Note that many of the problems seen for Multi-Pod forwarding are identical to
problems seen in a Single Pod. For this reason, problems speci�c to Multi-Pod
are focused on.

While following the unicast troubleshooting workflow described earlier, note that the
request is proxied but the spine nodes in Pod 2 do not have the destination IP in COOP.

Intra-Fabric forwarding 285

Cause:
As discussed earlier, COOP entries for remote Pod endpoints are populated from BGP
EVPN information. As a result, it is important to determine:

a.) Does the source Pod (Pod 2) spine have it in EVPN?

a-spine4# show bgp l2vpn evpn 10.0.1.100 vrf overlay-1
<no output>

b.) Does the remote Pod (Pod 1) spine have it in EVPN?

a-spine1# show bgp l2vpn evpn 10.0.1.100 vrf overlay-1
Route Distinguisher: 1:16777199 (L2VNI 1)
BGP routing table entry for [2]:[0]:[15728642]:[48]:[0050.5681.3ee6]:[32]:[10.0.1.100]/272, version 11751 dest
ptr 0xafbf8192
Paths: (1 available, best #1)
Flags: (0x00010a 00000000) on xmit-list, is not in rib/evpn
Multipath: eBGP iBGP

 Advertised path-id 1
 Path type: local 0x4000008c 0x0 ref 0 adv path ref 1, path is valid, is best path
 AS-Path: NONE, path locally originated
 0.0.0.0 (metric 0) from 0.0.0.0 (192.168.1.101)
 Origin IGP, MED not set, localpref 100, weight 32768
 Received label 15728642 2392068
 Extcommunity:
 RT:5:16

 Path-id 1 advertised to peers:

The Pod 1 spine has it and the next-hop IP is 0.0.0.0; this means it was exported from
COOP locally. Note, however, that the 'Advertised to peers' section does not include the
Pod 2 spine nodes.

286 Intra-Fabric forwarding

1

2

3

4

c.) Is BGP EVPN up between Pods?

a-spine4# show bgp l2vpn evpn summ vrf overlay-1

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
192.168.1.101 4 65000 57380 66362 0 0 0 00:00:21 Active
192.168.1.102 4 65000 57568 66357 0 0 0 00:00:22 Active

Notice in the above output that the BGP EVPN peerings are down between Pods.
Anything besides a numeric value in the State/PfxRcd column indicates that the
adjacency is not up. Pod 1 EPs aren't learned through EVPN and aren't imported into
COOP.

If this issue is seen verify the following:

Is OSPF up between the spine nodes and the connected IPNs?

Do the spine nodes have routes learned through OSPF for the remote spine IPs?

Does the full path across the IPN support jumbo MTU?

Are all protocol adjacencies stable?

Other possible causes
If the endpoint is not in the COOP database of any Pod and the destination device is a
silent host (not learned on any leaf switch in the fabric), verify that the fabric glean
process is working correctly. For this to work:

• Unicast Routing must be enabled on the BD.

• The destination must be in a BD subnet.

• The IPN must be providing multicast routing service for the 239.255.255.240
group.

The multicast portion is covered more in the next section.

Intra-Fabric forwarding 287

Multi-Pod broadcast, unknown unicast, and multicast (BUM)
forwarding overview

In ACI, traffic is flooded via overlay multicast groups in many different scenarios. For
example, flooding occurs for:

• Multicast and broadcast traffic.

• Unknown unicast that must be flooded.

• Fabric ARP glean messages.

• EP announce messages.

Many features and functionality rely on BUM forwarding.

Within ACI, all Bridge Domains are allocated a multicast address known as a Group IP
Outer (or GIPo) address. All traffic that must be flooded within a Bridge Domain is
flooded on this GIPo.

288 Intra-Fabric forwarding

BD GIPo in GUI

The object can be queried directly on one of the APICs.

BD GIPo in Moquery

a-apic1# moquery -c fvBD -f 'fv.BD.name=="Bd1"'
Total Objects shown: 1

fv.BD
name : Bd1
OptimizeWanBandwidth : no
annotation :
arpFlood : yes
bcastP : 225.1.53.64
childAction :
configIssues :
descr :

Intra-Fabric forwarding 289

dn : uni/tn-Prod/BD-Bd1
epClear : no
epMoveDetectMode :
extMngdBy :
hostBasedRouting : no
intersiteBumTrafficAllow : no
intersiteL2Stretch : no
ipLearning : yes
ipv6McastAllow : no
lcOwn : local
limitIpLearnToSubnets : yes
llAddr : ::
mac : 00:22:BD:F8:19:FF
mcastAllow : no
modTs : 2019-09-30T20:12:01.339-04:00
monPolDn : uni/tn-common/monepg-default
mtu : inherit
multiDstPktAct : bd-flood
nameAlias :
ownerKey :
ownerTag :
pcTag : 16387
rn : BD-Bd1
scope : 2392068
seg : 15728642
status :
type : regular
uid : 16011
unicastRoute : yes
unkMacUcastAct : proxy
unkMcastAct : flood
v6unkMcastAct : flood
vmac : not-applicable

The above information about GIPo flooding is true regardless whether Multi-Pod is
used or not. The additional portion of this that pertains to Multi-Pod is the multicast
routing on the IPN.

IPN Multicast Routing involves the following:

• Spine nodes act as multicast hosts (IGMP only). They do not run PIM.

• If a BD is deployed in a Pod, then one spine from that pod will send an IGMP join
on one of its IPN-facing interfaces. This functionality is striped across all spine
nodes and IPN-facing interface over many groups.

290 Intra-Fabric forwarding

• The IPNs receive these joins and send PIM joins towards the Bidirectional PIM
RP.

• Because PIM Bidir is used, there are no (S,G) trees. Only (*,G) trees are used in
PIM Bidir.

• All dataplane traffic sent to the GIPo goes through the RP.

IPN multicast control plane

Intra-Fabric forwarding 291

IPN multicast dataplane

The only means of RP redundancy with PIM Bidir is to use Phantom. This is covered in
detail within the Multi-Pod Discovery portion of this book. As a quick summary, note
that with Phantom RP:

• All IPNs must be configured with the same RP address.

• The exact RP address must not exist on any device.

• Multiple devices advertise reachability to the subnet that contains the Phantom
RP IP address. The advertised subnets should vary in subnet length so that all
routers agree on who is advertising the best path for the RP. If this path is lost
then convergence is dependent on the IGP.

292 Intra-Fabric forwarding

Phantom RP con�guration

Multi-Pod broadcast, unknown unicast, and multicast (BUM)
troubleshooting workflow

• First confirm if the flow is truly being treated as multi-destination by the fabric.
The flow will be flooded in the BD in these common examples:

• The frame is an ARP broadcast and ARP flooding is enabled on the BD.

• The frame is destined to a multicast group. Note that even if IGMP-
snooping is enabled, the traffic is still always flooded into the fabric on
the GIPo.

• The traffic is destined to a multicast group that ACI is providing
multicast routing services for.

• The flow is a Layer 2 (bridged flow) and the destination MAC address is
unknown and the unknown unicast behavior on the BD is set to 'Flood'.

Intra-Fabric forwarding 293

The easiest way to determine which forwarding decision will be made is with an ELAM.

ELAM ARP on ingress leaf

• Once it is identified that the packet should be flooded in the BD, identify the BD
GIPo. Refer to the section earlier in this chapter that talks about this. Spine
ELAMs can also be run through the ELAM Assistant App to verify that the
flooded traffic is being received.

• Once the GIPo is known, the last remaining portion (if there is no flooded traffic
on the destination) is to verify the multicast routing tables on the IPN for that
GIPo. The outputs to do this would vary depending on the IPN platform in use,
but at a high level:

• All IPN routers must agree on the RP and the RPF for this GIPo must
point to this tree.

• One IPN router connected to each Pod should be getting an IGMP join
for the group.

294 Intra-Fabric forwarding

Multi-Pod troubleshooting scenario #2
This scenario would cover any scenario that involves ARP not being resolved across
Multi-Pod or BUM scenarios (unknown unicast, etc.).

There are several common possible causes here.

Possible cause 1: Multiple routers own the PIM RP address
With this scenario, the ingress leaf floods the traffic (verify with ELAM), the source Pod
receives and floods the traffic, but the remote Pod does not get it. For some BDs,
flooding works, but for others it doesn't.

On the IPN, run 'show ip mroute <GIPo address>' for the GIPo to see that the RPF tree
points to multiple, different routers.

If this is the case check the following:

• Verify that the actual PIM RP address isn't configured anywhere. Any device that
owns that actual RP address would see a local /32 route for it.

• Verify that multiple IPN routers aren't advertising the same prefix length for the
RP in the Phantom RP scenario.

Possible cause 2: IPN routers aren't learning routes for the RP Address
In the same way as the first possible cause, here the flooded traffic is failing to leave the
IPN. The output of 'show ip route <rp address>' on each IPN router would show the
locally configured prefix-length only rather than what the other routers are advertising.

The result of this is that each device thinks it is the RP even though the real RP IP
address isn't configured anywhere.

If this is the case. check the following:

• Verify that routing adjacencies are up between IPN routers. Verify that the route
is in the actual protocol database (such as the OSPF database).

Intra-Fabric forwarding 295

• Verify that all loopbacks that are supposed to be candidate RP's are configured
as OSPF point-to-point network types. If this network type is not configured
then each router will always advertise a /32 prefix-length regardless of what is
actually configured.

Possible cause 3: IPN routers aren't installing the GIPo route or the RPF points to ACI
As mentioned earlier, ACI does not run PIM on its IPN-facing links. This means that the
IPN's best path towards the RP should never point to ACI. The scenario where this
could happen would be if multiple IPN routers are connected to the same spine and a
better OSPF metric is seen through the spine than directly between IPN routers.

RPF interface toward ACI

296 Intra-Fabric forwarding

To resolve this issue:

• Ensure that routing protocol adjacencies between IPN routers are up.

• Increase the OSPF cost metrics for the IPN-facing links on the spine nodes to a
value that will make that metric less preferable than the IPN-to-IPN links.

Other references

Prior to ACI software 4.0, some challenges were experienced regarding the usage of
COS 6 by external devices. Most of these issues have been addressed through 4.0
enhancements but for more info, please refer to CiscoLive session "BRKACI-2934 -
Troubleshooting Multi-Pod" and the "Quality of Service" section.

Intra-Fabric forwarding 297

Intermittent drops

This chapter explains a troubleshooting example for an intermittent traffic drop.

Topology example

In this example, ping from EP A (10.1.1.1) to EP B (10.1.2.1) is experiencing the intermittent
drops.

[EP-A ~]$ ping 10.1.2.1 -c 10
PING 10.1.2.1 (10.1.2.1) 56(84) bytes of data.
64 bytes from 10.1.2.1: icmp_seq=1 ttl=231 time=142 ms
64 bytes from 10.1.2.1: icmp_seq=2 ttl=231 time=141 ms
 <-- missing icmp_seq=3

64 bytes from 10.1.2.1: icmp_seq=4 ttl=231 time=141 ms
64 bytes from 10.1.2.1: icmp_seq=5 ttl=231 time=141 ms
64 bytes from 10.1.2.1: icmp_seq=6 ttl=231 time=141 ms
 <-- missing icmp_seq=7

64 bytes from 10.1.2.1: icmp_seq=8 ttl=231 time=176 ms

298 Intra-Fabric forwarding

64 bytes from 10.1.2.1: icmp_seq=9 ttl=231 time=141 ms
64 bytes from 10.1.2.1: icmp_seq=10 ttl=231 time=141 ms

--- 10.1.2.1 ping statistics ---
10 packets transmitted, 8 received, 20% packet loss, time 9012ms

Troubleshooting workflow

1. Determine which direction is causing the intermittent drops
Perform a packet capture (tcpdump, Wireshark, etc.) on the destination host (EP B). For
ICMP, focus on the sequence number to see the intermittently dropped packets are
observed on EP B.

[admin@EP-B ~]$ tcpdump -ni eth0 icmp
11:32:26.540957 IP 10.1.1.1 > 10.1.2.1: ICMP echo request, id 3569, seq 1, length 64
11:32:26.681981 IP 10.1.2.1 > 10.1.1.1: ICMP echo reply, id 3569, seq 1, length 64
11:32:27.542175 IP 10.1.1.1 > 10.1.2.1: ICMP echo request, id 3569, seq 2, length 64
11:32:27.683078 IP 10.1.2.1 > 10.1.1.1: ICMP echo reply, id 3569, seq 2, length 64
11:32:28.543173 IP 10.1.1.1 > 10.1.2.1: ICMP echo request, id 3569, seq 3, length 64 <---
11:32:28.683851 IP 10.1.2.1 > 10.1.1.1: ICMP echo reply, id 3569, seq 3, length 64 <---
11:32:29.544931 IP 10.1.1.1 > 10.1.2.1: ICMP echo request, id 3569, seq 4, length 64
11:32:29.685783 IP 10.1.2.1 > 10.1.1.1: ICMP echo reply, id 3569, seq 4, length 64
11:32:30.546860 IP 10.1.1.1 > 10.1.2.1: ICMP echo request, id 3569, seq 5, length 64
...

• Pattern 1 - All packets are observed on EP B packet capture.

Drops should be in ICMP echo reply (EP B to EP A).

• Pattern 2 - The intermittent drops are observed on EP B packet capture.

Drops should be in ICMP echo (EP A to EP B).

2. Check if another protocol with the same source/destination IP has the same issue
If possible, try to test the connectivity between the two endpoints using a different
protocol allowed by the contract between them (such as ssh, telnet, http,..)

• Pattern 1 - Other protocols have the same intermittent drop.

The issue could be in endpoint flapping or queuing/buffering as shown below.

Intra-Fabric forwarding 299

• Pattern 2 - Only ICMP has the intermittent drop.

The forwarding tables (such as endpoint table) should have no issue since forwarding is
based on MAC and IP. Queuing/buffering should not be the reason either, as this would
affect other protocols. The only reason that ACI would make a different forwarding
decision based on protocol would be the PBR use-case.

One possibility is that one of spine nodes may have an issue. When a protocol is
different, the packet with same source and destination could be load balanced to
another uplink/fabric port (i.e. another spine) by the ingress leaf.

Atomic Counters can be used to ensure packets are not dropped on spine nodes and
reach to the egress leaf. In case the packets didn't reach the egress leaf, check the
ELAM on the ingress leaf to see which fabric port the packets are sent out. To isolate
the issue to a specific spine, leaf uplinks can be shut down to force the traffic towards
another spine.

3. Check if it's related to an endpoint learning issue
ACI uses an endpoint table to forward packets from one endpoint to another endpoint.
An intermittent reachability issue can be caused by endpoint flapping because
inappropriate endpoint information will cause the packet to be sent out to a wrong
destination or to be classified into a wrong EPG that may result in a contract drop. Even
if the destination is supposed to be an L3Out instead of an endpoint group, ensure that
the IP is not learned as an endpoint in the same VRF across any leaf switches.

See the "Endpoint Flapping" sub-section in this section for more details on how to
troubleshoot endpoint flapping.

4. Check if it's related to buffering issues by changing the traffic frequency
Increase or decrease the interval of ping to see if the drop ratio changes. The interval
difference should be large enough.

In Linux, '-i' option can be used to change the interval (sec):

[EP-A ~]$ ping 10.1.2.1 -c 10 -i 5 -- Increase it to 5 sec
[EP-A ~]$ ping 10.1.2.1 -c 10 -i 0.2 -- Decrease it to 0.2 msec

300 Intra-Fabric forwarding

1

2

If the drop ratio increases when the interval is decreased, it is likely related to queuing
or buffering on endpoints or switches.

The drop ratio to consider is (number of drops/total packets sent) instead of the
(number of drops/time).

In such scenario, check the following.

Check if any drop counters on switch interfaces are increasing along with the
ping. See "Interface drops" section in the chapter "Intra-Fabric forwarding" for
details.

Check if the Rx counter is increasing along with the packets on the destination
endpoint. If the Rx counter is increased with the same number as the
transmitted packets, packets are likely being dropped on the endpoint itself.
This could be due to endpoint buffering on TCP/IP stack.

For example, if 100000 pings are sent with as short interval as possible, the Rx counter
on the endpoint can be observed as it increments by 100000.

[EP-B ~]$ ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.1.2.1 netmask 255.255.255.0 broadcast 10.1.2.255
 ether 00:00:10:01:01:02 txqueuelen 1000 (Ethernet)
 RX packets 101105 bytes 1829041
 RX errors 0 dropped 18926930 overruns 0 frame 0
 TX packets 2057 bytes 926192
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

5. Check if ACI is sending the packets out or the destination is receiving the packets
In case none of the above is applicable in this scenario, take a SPAN capture on the
egress port of the leaf switch to eliminate ACI fabric from the troubleshooting path.

Rx counters on the destination can also be useful to eliminate the entire network
switches from troubleshooting path as shown in the previous steps for buffering.

Intra-Fabric forwarding 301

Endpoint flapping

This section explains how to check endpoint flapping briefly. See the following two
documents for details:

• "ACI Fabric Endpoint Learning Whitepaper" on www.cisco.comwww.cisco.comwww.cisco.com

• "Cisco Live BRKACI-2641 ACI Troubleshooting: Endpoints" on www.ciscolive.comwww.ciscolive.comwww.ciscolive.com

When ACI learns the same MAC or IP address in multiple locations, it will look as if the
endpoint is moving even though one of them may be caused by a spoofing device or
mis-configuration. Such behavior is referred to as endpoint flapping. In such a scenario,
traffic towards the moving/flapping endpoint (MAC address for bridged traffic, IP
address for routed traffic) will intermittently fail.

The most effective method to detect endpoint flapping is to use the Enhanced Endpoint
Tracker. This app can run as an ACI AppCenter app or as a standalone app on an
external server in case it needs to manage a much larger fabric.

Enhanced Endpoint Tracker

https://www.cisco.com/
https://www.ciscolive.com/

302 Intra-Fabric forwarding

The picture above shows the Enhanced Endpoint Tracker in AppCenter. The following
shows an example of how to find flapping endpoints with the Enhanced Endpoint
Tracker.

Endpoint �apping example

In this example, IP 10.1.2.1 should belong to EP B with MAC 0000.1001.0102. However, an
EP X with MAC 0000.1001.9999 is also sourcing traffic with IP 10.1.2.1 due to a mis-
config or perhaps IP spoofing.

Intra-Fabric forwarding 303

Enhanced Endpoint Tracker output — Moves

The Enhanced Endpoint Tracker shows when and where IP 10.1.2.1 was learned. As
shown in the screenshot above, 10.1.2.1 is flapping between two endpoints with MAC
0000.1001.0102 (expected) and 0000.1001.9999 (not expected). This will cause a
reachability issue towards IP 10.1.2.1 because when it's learned on the wrong MAC
address, the packet will be sent to a wrong device via the wrong interface. To resolve
this, take steps to prevent the unexpected VM from sourcing traffic with an
inappropriate IP address.

304 Intra-Fabric forwarding

The following shows a typical example of endpoint flapping due to an inappropriate
configuration.

Topology example that could cause endpoint �apping

When a server or VM is connected to ACI leaf nodes via two interfaces without a VPC,
the server needs to use Active/Standby NIC teaming. Otherwise, the packets are load
balanced to both uplinks and it would look as if the endpoints are flapping between two
interfaces from the ACI leaf switch perspective. In this case, Active/Standby or
equivalent NIC teaming mode is required or just use a VPC on the ACI side.

Intra-Fabric forwarding 305

Interface drops

This chapter describes how to check major counters related to ingress interface drop.

Hardware drop counter types

On Nexus 9000 switches running in ACI mode, there are three major hardware
counters on the ACI for ingress interface drops.

Forward
Major reasons this may happen are following:

• SECURITY_GROUP_DENY: A drop because of missing contracts to allow the
communication.

• VLAN_XLATE_MISS: A drop because of inappropriate VLAN. For example, a
frame enters the fabric with an 802.1Q VLAN 10. If the switch has VLAN 10 on the
port, it will inspect the contents and make a forwarding decision based on the
destination MAC. However, if VLAN 10 is not allowed on the port, it will drop it
and label it as a VLAN_XLATE_MISS.

• ACL_DROP: A drop because of SUP-TCAM. SUP-TCAM in ACI switches contains
special rules to be applied on top of the normal L2/L3 forwarding decision.
Rules in SUP-TCAM are built-in and not user configurable. The objective of SUP-
TCAM rules is mainly to handle some exceptions or some control plane traffic
and not intended to be checked or monitored by users. When a packet is hitting
SUP-TCAM rules and the rule is to drop the packet, the dropped packet is
counted as ACL_DROP and it will increment the forward drop counter.

Forward drops are essentially packets dropped for a valid known reason. They
can generally be ignored and will not cause performance penalties, unlike real
data tra�c drops.

306 Intra-Fabric forwarding

Error
When the switch receives an invalid frame, it is dropped as an error. Examples of this
include frames with FCS or CRC errors. See the later section "CRC — FCS — cut-
through switching" for more details.

Buffer
When a switch receives a frame, and there are no buffers available for either ingress or
egress, the frame will be dropped with 'Buffer'. This typically hints at congestion
somewhere in the network. The link that is showing the fault could be full, or the link
containing the destination may be congested.

Viewing drop stats in CLI

If faults are noted, or there is a need to check packet drops on interfaces using the CLI,
the best way to do this is by viewing the platform counters in hardware. Not all
counters are shown using 'show interface'. The three major drop reasons can only be
viewed using the platform counters. In order to view these, perform these steps:

Leaf
SSH to the leaf and run these commands. This example is for ethernet 1/31.

ACI-LEAF# vsh_lc;
module-1# show platform internal counters port 31;
Stats for port 31;
(note: forward drops includes sup redirected packets too);
IF LPort Input Output;
 Packets Bytes Packets Bytes;
eth-1/31 31 Total 400719 286628225 2302918 463380330;
 Unicast 306610 269471065 453831 40294786;
 Multicast 0 0 1849091 423087288;
 Flood 56783 8427482 0 0;
 Total Drops 37327 0;
 Buffer 0 0;
 Error 0 0;
 Forward 37327;
 LB 0;
 AFD RED 0;
...

Intra-Fabric forwarding 307

Spine
A fixed spine (N9K-C9332C and N9K-C9364C) can be checked using the same method
as the leaf switches.

For a modular spine (N9K-C9504 etc.), the linecard must be attached to before the
platform counters can be viewed. SSH to the spine and run these commands. This
example is for ethernet 2/1.

ACI-SPINE# vsh
ACI-SPINE# attach module 2
module-2# show platform internal counters port 1
Stats for port 1
(note: forward drops include sup redirected packets too)
IF LPort Input Output
 Packets Bytes Packets Bytes
eth-2/1 1 Total 85632884 32811563575 126611414 25868913406
 Unicast 81449096 32273734109 104024872 23037696345
 Multicast 3759719 487617769 22586542 2831217061
 Flood 0 0 0 0
 Total Drops 0 0
 Buffer 0 0
 Error 0 0
 Forward 0
 LB 0
 AFD RED 0
...

Queuing stats counters are shown using 'show queuing interface'. This example is for
ethernet 1/5.

ACI-LEAF# show queuing interface ethernet 1/5
==
 Queuing stats for ethernet 1/5
==
==
 Qos Class level1
==
Rx Admit Pkts : 0 Tx Admit Pkts : 0
Rx Admit Bytes: 0 Tx Admit Bytes: 0
Rx Drop Pkts : 0 Tx Drop Pkts : 0
Rx Drop Bytes : 0 Tx Drop Bytes : 0

==
 Qos Class level2

308 Intra-Fabric forwarding

==
Rx Admit Pkts : 0 Tx Admit Pkts : 0
Rx Admit Bytes: 0 Tx Admit Bytes: 0
Rx Drop Pkts : 0 Tx Drop Pkts : 0
Rx Drop Bytes : 0 Tx Drop Bytes : 0

==
 Qos Class level3
==
Rx Admit Pkts : 1756121 Tx Admit Pkts : 904909
Rx Admit Bytes: 186146554 Tx Admit Bytes: 80417455
Rx Drop Pkts : 0 Tx Drop Pkts : 22
Rx Drop Bytes : 0 Tx Drop Bytes : 3776

...

Intra-Fabric forwarding 309

Viewing statistics in GUI

The location is 'Fabric > Inventory > Leaf/Spine > Physical interface > Stats'.

GUI interface statistics

310 Intra-Fabric forwarding

The error statistics can be seen in the same place:

GUI interface errors

And finally, the GUI can display QoS stats per interface:

Intra-Fabric forwarding 311

GUI interface QoS counters

CRC — FCS — cut-through switching

What is cyclic redundancy check (CRC)?
CRC is a polynomial function on the frame which returns a 4B number in Ethernet. It
will catch all single bit errors and a good percentage of double bit errors. It is thus
meant to ensure that the frame was not corrupted in transit. If the CRC error counter is
increasing, it means that when the hardware ran the polynomial function on the frame,
the result was a 4B number which differed from the 4B number found on the frame
itself. Frames can get corrupted due to several reasons such as duplex mismatch, faulty
cabling, and broken hardware. However, some level of CRC errors should be expected
and the standard allows up-to 10 bit-error-rate on Ethernet (1 bit out of 10 can
flip).

-12 12

312 Intra-Fabric forwarding

Store-and-forward vs cut-through switching
Both store-and-forward and cut-through Layer 2 switches base their forwarding
decisions on the destination MAC address of data packets. They also learn MAC
addresses as they examine the source MAC (SMAC) fields of packets as stations
communicate with other nodes on the network.

A store-and-forward switch makes a forwarding decision on a data packet after it has
received the entire frame and checked its integrity. A cut-through switch engages in
the forwarding process soon after it has examined the destination MAC (DMAC) address
of an incoming frame. However, a cut-through switch must wait until it has viewed the
entire packet before performing the CRC check. That means that by the time CRC is
validated, the packet has already been forwarded and cannot be dropped if it fails the
check.

Traditionally, most network devices used to operate based on store-and-forward. Cut-
through switching technologies tend to get used in high speed networks that demand
low latency forwarding.

All devices in ACI fabric are doing cut-through switching.

Stomping
Packets with a CRC error necessitate a drop. If the frame is being switched in a cut-
through path, CRC validation happens after the packet is already forwarded. As such,
the only option is to stomp the Ethernet Frame Check Sequence (FCS). Stomping a
frame involves setting the FCS to a known value that does not pass a CRC check.
Because of this, one bad frame that fails CRC could show up as a CRC on every interface
it traverses, until it reaches a store-and-forward switch which will drop it.

ACI and CRC: look for faulty interfaces

• If a leaf sees CRC errors on a downlink port, it is mostly a problem on the
downlink SFP or with components on the external device/network.

Intra-Fabric forwarding 313

• If a spine sees CRC errors, it is mostly a problem on that local port, SFP, Fiber or
Neighbor SFP. CRC failing packets from leaf downlinks are not stomped to the
spines. As if its headers are readable, it is VXLAN encapsulated and new CRC will
be computed. If the headers were not readable from frame corruption, the
packet would be dropped.

• If a leaf sees CRC errors on fabric links, it can either be:

- An issue on the local fiber/SFP pair, the spine's ingress fiber, or the SFP
pair.

- A stomped frame making its way through the fabric.

Stomping: troubleshoot stomping

• Look for interfaces with FCS errors on the fabric. Since FCS occurs local to a
port, it is most likely the fiber or SFP on either end.

• CRC errors on 'show interface' output reflects the total FCS+Stomp value.

Look at an example:

Check on a port with the command in vsh_lc: 'show platform internal counter port <X>'.

In this command 3 values are important:

• RX_FCS_ERR - FCS failure.

• RX_CRCERR - Received stomped CRC error frame.

• TX_FRM_ERROR - Transmitted stomped CRC error frame.

module-1# show platform internal counters port 1 | egrep ERR
 RX_FCS_ERR 0 ---- Real error local between the devices and its direct neighbor
 RX_CRCERR 0 ---- Stomped frame --- so likely stomped by underlying devices and generated further down the network
 TX_FRM_ERROR 0 ---- Packet received from another interface that was stomp on Tx direction

314 Intra-Fabric forwarding

Example topology:

CRC stomp troubleshooting scenario

If a corrupted link generates a large number of corrupted frames, those frames
could be �ooded to all other leaf nodes and it is very possible to �nd CRC on the
ingress of fabric uplinks of most leaf nodes in the fabric. Those would likely all
come from a single corrupted link.

External forwarding

316 External forwarding

Overview

In order for traffic to be routed outside of the fabric, Cisco ACI uses the concept of an
L3Out which is configured at the tenant level. This section further explores the
mechanisms of an L3Out and how to configure and troubleshoot it.

L3Out components

The following picture illustrates the major building blocks required to configure an L3
Outside (L3Out)

Major components of a L3Out

External forwarding 317

1

-

-

-

2

-

-

-

3

-

-

4

-

Root of L3Out:

Select a routing protocol to deploy (such as OSPF, BGP).

Select a VRF to deploy the routing protocol.

Select an L3Out Domain to define available leaf interfaces and VLAN for
the L3Out.

Node Profile:

Select leaf switches to deploy the routing protocol. These are typically
known as 'Border Leaf Switches' (BL).

Configure Router-ID (RID) for the routing protocol on each border leaf.
Unlike a normal router, ACI does not automatically assign Router-ID
based on an IP address on the switch.

Configure a static route.

Interface profile:

Configure leaf interfaces to run the routing protocol.
i.e. Interface type (SVI, routed-port, sub-interface), interface ID and IP
addresses etc.

Select a policy for interface level routing protocol parameters (such as
hello interval).

External EPG (L3Out EPG):

An 'External EPG' is a hard requirement to deploy all policy tied to the
L3Out, such as IP addresses or SVIs to establish neighbors. Details on
how to use external EPGs will be covered later.

318 External forwarding

1

2

-

External routing

The following diagram shows the high-level operation involved for external routing.

High-level external routing �ow

The BL(s) will establish routing protocol adjacencies with external routers.

Route prefixes are received from external routers and are injected in MP-BGP as
the VPNv4 address-family path.

At a minimum, two spine nodes must be configured as BGP route
reflectors to reflect external routes to all leaf nodes.

External forwarding 319

3

4

Internal prefixes (BD subnets) and/or prefixes received from other L3Out must
be explicitly redistributed into the routing protocol to be advertised to the
external router.

Security enforcement: an L3Out contains at least one L3Out EPG. A contract
must be consumed or provided on the L3Out EPG (also called l3extInstP from
the class name) to allow traffic in/out of the L3Out.

L3Out EPG configuration options
In the L3Out EPG section, subnets can be defined with a series of 'Scope' and
'Aggregate' options as illustrated below:

An L3Out subnet being de�ned including 'scope' de�nition

320 External forwarding

'Scope' options:

• Export Route Control Subnet: This scope is to advertise (export) a subnet from
ACI to outside via the L3Out. Although this is mainly for Transit Routing, this
could also be used to advertise a BD subnet as described in the "ACI BD subnet
advertisement" section.

• Import Route Control Subnet: This scope is about learning (importing) an
external subnet from the L3Out. By default, this scope is disabled, hence it’s
greyed out, and a border leaf (BL) learns any routes from a routing protocol. This
scope can be enabled when it needs to limit external routes learned via OSPF
and BGP. This is not supported for EIGRP. To use this scope, 'Import Route
Control Enforcement' needs to be enabled first on a given L3Out.

• External Subnets for the External EPG (import-security): This scope is used to
allow packets with the configured subnet from or to the L3Out with a contract.
It classifies a packet into the configured L3Out EPG based on the subnet so that
a contract on the L3Out EPG can be applied to the packet. This scope is a
Longest Prefix Match instead of an exact match like other scopes for routing
table. If 10.0.0.0/16 is configured with 'External Subnets for the External EPG' in
L3Out EPG A, any packets with IP in that subnet, such as 10.0.1.1, will be
classified into the L3Out EPG A to use a contract on it. This does not mean
'External Subnets for the External EPG' scope installs a route 10.0.0.0/16 in a
routing table. It will create a different internal table to map a subnet to an EPG
(pcTag) purely for a contract. It does not have any effects on routing protocol
behaviors. This scope is to be configured on a L3Out that is learning the subnet.

• Shared Route Control Subnet: This scope is to leak an external subnet to
another VRF. ACI uses MP-BGP and Route Target to leak an external route from
one VRF to another. This scope creates a prefix-list with the subnet, which is
used as a filter to export/import routes with route target in MP-BGP. This scope
is to be configured on a L3Out that is learning the subnet in the original VRF.

• Shared Security Import Subnet: This scope is used to allow packets with the
configured subnet when the packets are moving across VRFs with a L3Out. A
route in a routing table is leaked to another VRF with 'Shared Route Control

External forwarding 321

Subnet' as mentioned above. However, another VRF has yet to know which EPG
the leaked route should belong to. The 'Shared Security Import Subnet' informs
another VRF of the L3Out EPG which the leaked route belongs to. Hence, this
scope can be used only when 'External Subnets for the External EPG' is also
used, otherwise the original VRF doesn’t know which L3Out EPG the subnet
belongs to either. This scope is also the Longest Prefix Match.

'Aggregate' options:

• Aggregate Export: This option can be used only for 0.0.0.0/0 with 'Export Route
Control Subnet'. When both 'Export Route Control Subnet' and 'Aggregate
Export' are enabled for 0.0.0.0/0; it creates a prefix-list with '0.0.0.0/0 le 32'
which matches any subnets. Hence, this option can be used when a L3Out needs
to advertise (export) any routes to the outside. When more granular aggregation
is required, Route Map/Profile with an explicit prefix-list can be used.

• Aggregate Import: This option can be used only for 0.0.0.0/0 with 'Import
Route Control Subnet'. When both 'Import Route Control Subnet' and 'Aggregate
Import' are enabled for 0.0.0.0/0, it creates a prefix-list with '0.0.0.0/0 le 32'
which matches any subnets. Hence, this option can be used when a L3Out needs
to learn (import) any routes from outside. However, the same thing can be
accomplished by disabling 'Import Route Control Enforcement' which is the
default. When more granular aggregation is required, Route Map/Profile with an
explicit prefix-list can be used.

• Aggregate Shared Routes: This option can be used for any subnets with 'Shared
Route Control Subnet'. When both 'Shared Route Control Subnet' and 'Aggregate
Shared Routes' are enabled for 10.0.0.0/8 as an example, it creates a prefix-list
with '10.0.0.0/8 le 32' which matches 10.0.0.0/8, 10.1.0.0/16 and so on.

322 External forwarding

L3Out topology used in this section

The following topology will be used in this section:

L3Out topology

External forwarding 323

Adjacencies

This section explains how to troubleshoot and verify routing protocol adjacencies on
L3Out interfaces.

Below are a few parameters to check that will be applicable for all ACI external routing
protocols:

• Router ID: In ACI, each L3Out needs to use the same Router ID in the same VRF
on the same leaf even if routing protocols are different. Also, only one of those
L3Outs on the same leaf can create a loopback with the Router ID, which is
typically BGP.

• MTU: Although the hard requirement of MTU is only for OSPF adjacency, it is
recommended to match MTU for any routing protocols to ensure any jumbo
packets used for route exchange/updates can be transmitted without
fragmentation, as most of control plane frames will be sent with the DF (don't
fragment) bit set, which will drop the frame if its size exceeds the maximum
MTU of the interface.

• MP-BGP Router Reflector: Without this, the BGP process will not start on leaf
nodes. Although, this is not required for OSPF or EIGRP just to establish a
neighbor, it is still required for BLs to distribute external routes to other leaf
nodes.

• Faults: Always be sure to check faults during and after configuration is
complete.

BGP

This section uses an example of an eBGP peering between the loopback on BL3, BL4,
and R34 from the topology in the Overview section. The BGP AS on R34 is 65002.

324 External forwarding

Verify the following criteria when establishing a BGP adjacency.

• Local BGP AS number (ACI BL side).

Peer Connectivity Pro�le — Local-AS

The BGP AS number of a user L3Out will automatically be the same as the BGP AS for
the infra-MP-BGP that is configured in the BGP Route Reflector policy. The 'Local AS'
configuration in the BGP Peer Connectivity Profile is not required unless one needs to
disguise the ACI BGP AS to the outside world. This means external routers should point
to the BGP AS configured in the BGP Route Reflector.

NOTE — The scenario where Local AS configuration is required is the same as the
standalone NX-OS 'local-as' command.

• Remote BGP AS number (external side)

External forwarding 325

Peer Connectivity Pro�le — Remote AS

The Remote BGP AS number is required only for eBGP where the neighbor's BGP AS is
different from ACI BGP AS.

• Source IP for BGP peer session.

L3Out — BGP Peer Connectivity Pro�le

ACI supports sourcing a BGP session from the loopback interface on top of a typical ACI
L3Out interface type (routed, sub-interface, SVI).

326 External forwarding

When a BGP session needs to be sourced from a loopback, configure the BGP Peer
Connectivity Profile under the Logical Node Profile.

When the BGP session needs to be sourced from a routed/sub-interface/SVI, configure
the BGP Peer Connectivity Profile under the Logical Interface Profile.

• BGP peer IP reachability.

Logical Node Pro�le — Node Association

When the BGP peer IPs are loopbacks, make sure the BL and the external router have
reachability to the peer's IP address. Static routes or OSPF can be used to gain
reachability to the peer IPs.

BGP CLI Verification (eBGP with loopback example)
The CLI outputs for the following steps are collected from BL3 in the topology from the
Overview section.

External forwarding 327

1. Check if the BGP session is established
'State/PfxRcd' in the following CLI output means the BGP session is established.

f2-leaf3# show bgp ipv4 unicast summary vrf Prod:VRF1
BGP summary information for VRF Prod:VRF1, address family IPv4 Unicast
BGP router identifier 10.0.0.3, local AS number 65001

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.0.0.134 4 65002 10 10 10 0 0 00:06:39 0

If the 'State/PfxRcd' shows Idle or Active, BGP packets are not being exchanged with
the peer yet. In such a scenario, check the following and move on to the next step.

• Ensure the external router is pointing to the ACI BGP AS correctly (local AS
number 65001).

• Ensure the ACI BGP Peer Connectivity Profile is specifying the correct neighbor
IP from which the external router is sourcing the BGP session (10.0.0.134).

• Ensure the ACI BGP Peer Connectivity Profile is specifying the correct neighbor
AS of the external router (Remote Autonomous System Number in GUI which
shows up in CLI as AS 65002).

2. Check BGP Neighbor details (BGP Peer Connectivity Profile)
The following command shows the parameters that are key for BGP neighbor
establishment.

• Neighbor IP: 10.0.0.134.

• Neighbor BGP AS: remote AS 65002.

• Source IP: Using loopback3 as update source.

• eBGP multi-hop: External BGP peer might be upto 2 hops away.

f2-leaf3# show bgp ipv4 unicast neighbors vrf Prod:VRF1
BGP neighbor is 10.0.0.134, remote AS 65002, ebgp link, Peer index 1
 BGP version 4, remote router ID 10.0.0.134
 BGP state = Established, up for 00:11:18
 Using loopback3 as update source for this peer
 External BGP peer might be upto 2 hops away

328 External forwarding

...

 For address family: IPv4 Unicast
...
Inbound route-map configured is permit-all, handle obtained
Outbound route-map configured is exp-l3out-BGP-peer-3047424, handle obtained
Last End-of-RIB received 00:00:01 after session start
Local host: 10.0.0.3, Local port: 34873
 Foreign host: 10.0.0.134, Foreign port: 179
 fd = 64

Once the BGP peer is established correctly, the 'Local host' and 'Foreign host' appear at
the bottom of the output.

3. Check IP reachability for the BGP peer

f2-leaf3# show ip route vrf Prod:VRF1
10.0.0.3/32, ubest/mbest: 2/0, attached, direct
 *via 10.0.0.3, lo3, [0/0], 02:41:46, local, local
 *via 10.0.0.3, lo3, [0/0], 02:41:46, direct
10.0.0.4/32, ubest/mbest: 1/0
 *via 20.0.32.68%overlay-1, [1/0], 02:38:04, bgp-65001, internal, tag 65001
10.0.0.134/32, ubest/mbest: 1/0
 *via 10.10.34.1, vlan27, [1/0], 02:41:46, static <--- neighbor IP reachability via static route
10.10.34.0/29, ubest/mbest: 2/0, attached, direct
 *via 10.10.34.3, vlan27, [0/0], 02:41:46, direct
 *via 10.10.34.2, vlan27, [0/0], 02:41:46, direct
10.10.34.2/32, ubest/mbest: 1/0, attached
 *via 10.10.34.2, vlan27, [0/0], 02:41:46, local, local
10.10.34.3/32, ubest/mbest: 1/0, attached
 *via 10.10.34.3, vlan27, [0/0], 02:41:46, local, local

Ensure ping to the neighbor IP works from ACI BGP's source IP.

f2-leaf3# iping 10.0.0.134 -V Prod:VRF1 -S 10.0.0.3
PING 10.0.0.134 (10.0.0.134) from 10.0.0.3: 56 data bytes
64 bytes from 10.0.0.134: icmp_seq=0 ttl=255 time=0.571 ms
64 bytes from 10.0.0.134: icmp_seq=1 ttl=255 time=0.662 ms

External forwarding 329

4. Check the same thing on the external router
The following is an example of configuration on the external router (standalone NX-OS).

router bgp 65002
 vrf f2-bgp
 router-id 10.0.0.134
 neighbor 10.0.0.3
 remote-as 65001
 update-source loopback134
 ebgp-multihop 2
 address-family ipv4 unicast
 neighbor 10.0.0.4
 remote-as 65001
 update-source loopback134
 ebgp-multihop 2
 address-family ipv4 unicast

interface loopback134
 vrf member f2-bgp
 ip address 10.0.0.134/32

interface Vlan2501
 no shutdown
 vrf member f2-bgp
 ip address 10.10.34.1/29

vrf context f2-bgp
 ip route 10.0.0.0/29 10.10.34.2

5. Additional Step — tcpdump
On ACI leaf nodes, the tcpdump tool can sniff the 'kpm_inb' CPU interface to confirm if
the protocol packets reached the leaf CPU. Use L4 port 179 (BGP) as a filter.

f2-leaf3# tcpdump -ni kpm_inb port 179
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on kpm_inb, link-type EN10MB (Ethernet), capture size 65535 bytes
20:36:58.292903 IP 10.0.0.134.179 > 10.0.0.3.34873: Flags [P.], seq 3775831990:3775832009, ack 807595300, win
3650, length 19: BGP, length: 19
20:36:58.292962 IP 10.0.0.3.34873 > 10.0.0.134.179: Flags [.], ack 19, win 6945, length 0
20:36:58.430418 IP 10.0.0.3.34873 > 10.0.0.134.179: Flags [P.], seq 1:20, ack 19, win 6945, length 19: BGP,
length: 19
20:36:58.430534 IP 10.0.0.134.179 > 10.0.0.3.34873: Flags [.], ack 20, win 3650, length 0

330 External forwarding

OSPF

This section uses an example of OSPF neighborships between BL3, BL4, and R34 from
the topology in Overview section with OSPF AreaID 1 (NSSA).

The following are the common criteria to check for OSPF adjacency establishment.

• OSPF Area ID and Type

L3Out — OSPF Interface Pro�le — Area ID and Type

Just like any routing device, OSPF Area ID and Type need to match on both neighbors.
Some ACI specific limitations on OSPF Area ID configurations include:

• One L3Out can have only one OSPF Area ID.

• Two L3Outs can use the same OSPF Area ID in the same VRF only when
they are on two different leaf nodes.

Although the OSPF ID does not need to be backbone 0, in the case of Transit Routing it
is required between two OSPF L3Outs on the same leaf; one of them must use OSPF
Area 0 because any route exchange between OSPF areas must be through OSPF Area 0.

External forwarding 331

• MTU

Logical Interface Pro�le — SVI

The default MTU on ACI is 9000 bytes, instead of 1500 bytes, which is typically the
default used on traditional routing devices. Ensure the MTU matches with the external
device. When OSPF neighbor establishment fails due to MTU, it gets stuck at
EXCHANGE/DROTHER.

• IP Subnet mask. OSPF requires the neighbor IP to use the same subnet mask.

• OSPF Interface Profile.

OSPF Interface Pro�le

This is equivalent to 'ip router ospf <tag> area <area id>' on a standalone NX-OS config
to enable OSPF on the interface. Without this, the leaf interfaces will not join OSPF.

332 External forwarding

• OSPF Hello / Dead Timer, Network Type

OSPF Interface Pro�le — Hello / Dead timer and Network Type

OSPF Interface Policy details

External forwarding 333

OSPF requires the Hello and Dead Timers to match on each neighbor device. These are
configured in the OSPF Interface Profile.

Ensure the OSPF Interface Network Type matches with the external device. When the
external device is using type Point-to-Point, the ACI side needs to explicitly configure
Point-to-Point as well. These are also configured in the OSPF Interface Profile.

OSPF CLI verification
The CLI outputs in the following steps are collected from BL3 in the topology from
"Overview" section.

1. Check OSPF neighbor status
If the 'State' is 'FULL' in the following CLI, the OSPF neighbor is established correctly.
Otherwise, move on to the next step to check parameters.

f2-leaf3# show ip ospf neighbors vrf Prod:VRF2
OSPF Process ID default VRF Prod:VRF2
Total number of neighbors: 2
Neighbor ID Pri State Up Time Address Interface
10.0.0.4 1 FULL/DR 00:47:30 10.10.34.4 Vlan28 <--- neighbor with BL4
10.0.0.134 1 FULL/DROTHER 00:00:21 10.10.34.1 Vlan28 <--- neighbor with R34

In ACI, BLs will form OSPF neighborships with each other on top of external routers
when using the same VLAN ID with an SVI. This is because ACI has an internal flooding
domain called L3Out BD (or External BD) for each VLAN ID in the L3Out SVIs.

Note that the VLAN ID 28 is an internal VLAN called PI-VLAN (Platform-Independent
VLAN) instead of the actual VLAN (Access Encap VLAN) used on wire. Use the following
command to verify the access encap VLAN ('vlan-2502').

f2-leaf3# show vlan id 28 extended
 VLAN Name Encap Ports
 ---- -------------------------------- ---------------- ------------------------
 28 Prod:VRF2:l3out-OSPF:vlan-2502 vxlan-14942176, Eth1/13, Po1
 vlan-2502

One could get the same output via access encap VLAN ID as well.

334 External forwarding

f2-leaf3# show vlan encap-id 2502 extended
 VLAN Name Encap Ports
 ---- -------------------------------- ---------------- ------------------------
 28 Prod:VRF2:l3out-OSPF:vlan-2502 vxlan-14942176, Eth1/13, Po1
 vlan-2502

2. Check OSPF area
Ensure the OSPF area ID and Type is identical to the neighbors. If the OSPF interface
profile is missing, the interface will not join OSPF and it will not show up in the OSPF
CLI output.

f2-leaf3# show ip ospf interface brief vrf Prod:VRF2
OSPF Process ID default VRF Prod:VRF2
Total number of interface: 1
Interface ID Area Cost State Neighbors Status
Vlan28 94 0.0.0.1 4 BDR 2 up
f2-leaf3# show ip ospf vrf Prod:VRF2
Routing Process default with ID 10.0.0.3 VRF Prod:VRF2
...
 Area (0.0.0.1)
 Area has existed for 00:59:14
 Interfaces in this area: 1 Active interfaces: 1
 Passive interfaces: 0 Loopback interfaces: 0
 This area is a NSSA area
 Perform type-7/type-5 LSA translation
 SPF calculation has run 10 times
 Last SPF ran for 0.001175s
 Area ranges are
 Area-filter in 'exp-ctx-proto-3112960'
 Area-filter out 'permit-all'
 Number of LSAs: 4, checksum sum 0x0

External forwarding 335

3. Check OSPF interface details
Ensure interface level parameters meet the requirements for OSPF neighbor
establishment such as IP subnet, Network Type, Hello/Dead Timer. Please note the
VLAN ID to specify the SVI is PI-VLAN (vlan28)

f2-leaf3# show ip ospf interface vrf Prod:VRF2
Vlan28 is up, line protocol is up
 IP address 10.10.34.3/29, Process ID default VRF Prod:VRF2, area 0.0.0.1
 Enabled by interface configuration
 State BDR, Network type BROADCAST, cost 4
 Index 94, Transmit delay 1 sec, Router Priority 1
 Designated Router ID: 10.0.0.4, address: 10.10.34.4
 Backup Designated Router ID: 10.0.0.3, address: 10.10.34.3
 2 Neighbors, flooding to 2, adjacent with 2
 Timer intervals: Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello timer due in 0.000000
 No authentication
 Number of opaque link LSAs: 0, checksum sum 0

f2-leaf3# show interface vlan28
Vlan28 is up, line protocol is up, autostate disabled
 Hardware EtherSVI, address is 0022.bdf8.19ff
 Internet Address is 10.10.34.3/29
 MTU 9000 bytes, BW 10000000 Kbit, DLY 1 usec

4. Check IP reachability to the neighbor
Although OSPF Hello packets are Link Local Multicast packets, OSPF DBD packets
required for the first OSPF LSDB exchange are unicast. Therefore, unicast reachability
also needs to be verified for the OSPF neighborship establishment.

f2-leaf3# iping 10.10.34.1 -V Prod:VRF2
PING 10.10.34.1 (10.10.34.1) from 10.10.34.3: 56 data bytes
64 bytes from 10.10.34.1: icmp_seq=0 ttl=255 time=0.66 ms
64 bytes from 10.10.34.1: icmp_seq=1 ttl=255 time=0.653 ms

336 External forwarding

5. Check the same on the external router
The following are examples of configurations on the external router (standalone NX-OS)

router ospf 1
 vrf f2-ospf
 router-id 10.0.0.134
 area 0.0.0.1 nssa

interface Vlan2502
 no shutdown
 mtu 9000
 vrf member f2-ospf
 ip address 10.10.34.1/29
 ip router ospf 1 area 0.0.0.1

Make sure to verify the MTU as well on the physical interface.

6. Additional step — tcpdump
On ACI leaf nodes, the user can perform tcpdump on the 'kpm_inb' CPU interface to
verify if the protocol packets have reached the leaf CPU. Although there are multiple
filters for OSPF, the IP Protocol Number is the most comprehensive filter.

• IP Protocol Number: proto 89 (IPv4) or ip6 proto 0x59 (IPv6)

• IP address of the neighbor: host <ip>

• OSPF Link Local Mcast IP: host 224.0.0.5 or host 224.0.0.6

f2-leaf3# tcpdump -ni kpm_inb proto 89
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on kpm_inb, link-type EN10MB (Ethernet), capture size 65535 bytes
22:28:38.231356 IP 10.10.34.4 > 224.0.0.5: OSPFv2, Hello, length 52
22:28:42.673810 IP 10.10.34.3 > 224.0.0.5: OSPFv2, Hello, length 52
22:28:44.767616 IP 10.10.34.1 > 224.0.0.5: OSPFv2, Hello, length 52
22:28:44.769092 IP 10.10.34.3 > 10.10.34.1: OSPFv2, Database Description, length 32
22:28:44.769803 IP 10.10.34.1 > 10.10.34.3: OSPFv2, Database Description, length 32
22:28:44.775376 IP 10.10.34.3 > 10.10.34.1: OSPFv2, Database Description, length 112
22:28:44.780959 IP 10.10.34.1 > 10.10.34.3: OSPFv2, LS-Request, length 36
22:28:44.781376 IP 10.10.34.3 > 10.10.34.1: OSPFv2, LS-Update, length 64
22:28:44.790931 IP 10.10.34.1 > 224.0.0.6: OSPFv2, LS-Update, length 64

External forwarding 337

EIGRP

This section uses an example of EIGRP neighborship between BL3, BL4 and R34 from
the topology in "Overview" section with EIGRP AS 10.

The following are the common criteria for EIGRP adjacency establishment.

• EIGRP AS: a L3Out is assigned one EIGRP AS. This needs to match with the
external device.

• EIGRP Interface Profile.

EIGRP Interface Pro�le

This is equivalent to the 'ip router eigrp <as>' configuration on a standalone NX-OS
device. Without this, the leaf interfaces will not join EIGRP.

• MTU

Although this does not have to match to simply establish the EIGRP neighborship, the
EIGRP topology exchange packets may become larger than the maximum MTU allowed
on the interfaces between the peers, and since these packets are not allowed to be
fragmented, they are dropped and as a result the EIGRP neighborship will flap.

338 External forwarding

EIGRP CLI Verification
The CLI outputs in the following steps are collected from BL3 in the topology from the
"Overview" section.

1. Check EIGRP neighbor status

f2-leaf3# show ip eigrp neighbors vrf Prod:VRF3
EIGRP neighbors for process 10 VRF Prod:VRF3
H Address Interface Hold Uptime SRTT RTO Q Seq
 (sec) (ms) Cnt Num
0 10.10.34.4 vlan29 14 00:12:58 1 50 0 6 <--- neighbor with BL4
1 10.10.34.1 vlan29 13 00:08:44 2 50 0 4 <--- neighbor with R34

In ACI, BLs will form an EIGRP neighborship with each other on top of external routers
when they use the same VLAN ID with SVI. This is because an ACI has an internal
flooding domain called L3Out BD (or External BD) for each VLAN ID in L3Out SVIs.

Please note that the VLAN ID 29 is an internal VLAN called PI-VLAN (Platform-
Independent VLAN) instead of the actual VLAN (Access Encap VLAN) used on wire. Use
the following command to verify the access encap VLAN (vlan-2503).

f2-leaf3# show vlan id 29 extended
 VLAN Name Encap Ports
 ---- -------------------------------- ---------------- ------------------------
 29 Prod:VRF3:l3out-EIGRP:vlan-2503 vxlan-15237052, Eth1/13, Po1
 vlan-2503

One could get the same output via access encap VLAN ID as well.

f2-leaf3# show vlan encap-id 2503 extended
 VLAN Name Encap Ports
 ---- -------------------------------- ---------------- ------------------------
 29 Prod:VRF3:l3out-EIGRP:vlan-2503 vxlan-15237052, Eth1/13, Po1
 vlan-2503

External forwarding 339

2. Check EIGRP interface details
Ensure EIGRP is running on the expected interface. If not, check Logical Interface
Profile and EIGRP Interface Profile.

f2-leaf3# show ip eigrp interfaces vrf Prod:VRF3
EIGRP interfaces for process 10 VRF Prod:VRF3
 Xmit Queue Mean Pacing Time Multicast Pending
Interface Peers Un/Reliable SRTT Un/Reliable Flow Timer Routes
vlan29 2 0/0 1 0/0 50 0
 Hello interval is 5 sec
 Holdtime interval is 15 sec
 Next xmit serial: 0
 Un/reliable mcasts: 0/2 Un/reliable ucasts: 5/10
 Mcast exceptions: 0 CR packets: 0 ACKs suppressed: 2
 Retransmissions sent: 2 Out-of-sequence rcvd: 0
 Classic/wide metric peers: 2/0

f2-leaf3# show int vlan 29
Vlan29 is up, line protocol is up, autostate disabled
 Hardware EtherSVI, address is 0022.bdf8.19ff
 Internet Address is 10.10.34.3/29
 MTU 9000 bytes, BW 10000000 Kbit, DLY 1 usec

3. Check the same on the external router
The following the example config on the external router (standalone NX-OS).

router eigrp 10
 vrf f2-eigrp

interface Vlan2503
 no shutdown
 vrf member f2-eigrp
 ip address 10.10.34.1/29
 ip router eigrp 10

340 External forwarding

4. Additional step — tcpdump
On ACI leaf nodes, the user can perform tcpdump on the 'kpm_inb' CPU interface to
confirm if the protocol packets reached the leaf's CPU. Use IP protocol number 88
(EIGRP) as a filter.

f2-leaf3# tcpdump -ni kpm_inb proto 88
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on kpm_inb, link-type EN10MB (Ethernet), capture size 65535 bytes
23:29:43.725676 IP 10.10.34.3 > 224.0.0.10: EIGRP Hello, length: 40
23:29:43.726271 IP 10.10.34.4 > 224.0.0.10: EIGRP Hello, length: 40
23:29:43.728178 IP 10.10.34.1 > 224.0.0.10: EIGRP Hello, length: 40
23:29:45.729114 IP 10.10.34.1 > 10.10.34.3: EIGRP Update, length: 20
23:29:48.316895 IP 10.10.34.3 > 224.0.0.10: EIGRP Hello, length: 40

External forwarding 341

Route advertisement

This section focusses on the verification and troubleshooting of route advertisement in
ACI. Specifically, it looks at examples involving:

• Bridge Domains Subnet Advertisement.

• Transit Route Advertisement.

• Import and Export Route Control.

This section discusses route-leaking as it pertains to shared L3Outs in later sections.

Bridge domain route advertisement workflow

Before looking at common troubleshooting the user should familiarize themselves with
how Bridge Domain advertisement is supposed to work.

BD advertisement, when the BD and L3Out are in the same VRF, involves:

• Having a contract relationship between the L3Out and the internal EPG.

• Associating the L3Out to the Bridge Domain.

• Selecting 'Advertise Externally' on the BD subnet.

In addition, it is also possible to control Bridge Domain advertisement using export
route-profiles which prevent the need to associate the L3Out. However, 'Advertise
Externally' should still be selected. This is a less common use-case so it won't be
discussed here.

The contract relationship between the L3Out and the EPG is required in order to cause
the BD pervasive static route to get pushed to the BL. The actual route-advertisement is
handled via redistribution of the static route into the external protocol. Lastly, the

342 External forwarding

redistribution route-maps will only be installed within the L3Outs that are associated to
the BD. In this way the route isn't advertised out all L3Outs.

In this case, the BD subnet is 192.168.1.0/24 and it should be advertised via OSPF L3Out.

Before applying the contract between the L3Out and internal EPG

leaf103# show ip route 192.168.1.0/24 vrf Prod:Vrf1
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
Route not found

Notice that the BD route isn't present yet on the BL.

After applying the contract between the L3Out and internal EPG
At this point no other configuration has been done. The L3Out isn't yet associated to
the BD and the 'Advertise Externally' flag isn't set.

leaf103# show ip route 10.0.1.0/24 vrf Prod:Vrf1
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
192.168.1.0/24, ubest/mbest: 1/0, attached, direct, pervasive
 *via 10.0.120.34%overlay-1, [1/0], 00:00:08, static, tag 4294967294
 recursive next hop: 10.0.120.34/32%overlay-1

Notice that the BD subnet route (indicated by the pervasive flag) is now deployed on the
BL. Notice, however, that the route is tagged. This tag value is an implicit value assigned
to BD routes before being configured with 'Advertise Externally'. All external protocols
deny this tag from being redistributed.

External forwarding 343

After selecting 'Advertise Externally' on the BD Subnet
The L3Out still hasn't been associated to the BD. However, notice that the tag has
cleared.

leaf103# show ip route 192.168.1.0/24 vrf Prod:Vrf1
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
192.168.1.0/24, ubest/mbest: 1/0, attached, direct, pervasive
 *via 10.0.120.34%overlay-1, [1/0], 00:00:06, static
 recursive next hop: 10.0.120.34/32%overlay-1

At this point the route still isn't being advertised externally because there is no route-
map and prefix-list that matches this prefix for redistribution into the external
protocol. This can be verified with the following commands:

leaf103# show ip ospf vrf Prod:Vrf1
Routing Process default with ID 10.0.0.3 VRF Prod:Vrf1
Stateful High Availability enabled
Supports only single TOS(TOS0) routes
Supports opaque LSA
Table-map using route-map exp-ctx-2392068-deny-external-tag
Redistributing External Routes from
 static route-map exp-ctx-st-2392068
 direct route-map exp-ctx-st-2392068
 bgp route-map exp-ctx-proto-2392068
 eigrp route-map exp-ctx-proto-2392068
 coop route-map exp-ctx-st-2392068

The BD route is programmed as a static route, so check the static redistribution route-
map by running 'show route-map <route-map name>' and then 'show ip prefix-list
<name>' on any prefix-lists that are present in the route-map. Do this in the next step.

344 External forwarding

After associating the L3Out to the BD
As mentioned earlier, this step results in the prefix-list that matches the BD subnet
being installed in the static to external protocol redistribution route-map.

leaf103# show route-map exp-ctx-st-2392068
route-map exp-ctx-st-2392068, deny, sequence 1
 Match clauses:
 tag: 4294967294
 Set clauses:

...
route-map exp-ctx-st-2392068, permit, sequence 15803
 Match clauses:
 ip address prefix-lists: IPv4-st16390-2392068-exc-int-inferred-export-dst
 ipv6 address prefix-lists: IPv6-deny-all
 Set clauses:
 tag 0

Verify the prefix-list:

leaf103# show ip prefix-list IPv4-st16390-2392068-exc-int-inferred-export-dst
ip prefix-list IPv4-st16390-2392068-exc-int-inferred-export-dst: 1 entries
 seq 1 permit 192.168.1.1/24

The BD subnet is being matched to redistribute into OSPF.

At this point the configuration and verification workflow is complete for the
advertisement of the BD subnet out of the L3Out. Past this point, verification would be
protocol specific. For instance:

• For EIGRP, verify that the route is being installed in the topology table with
'show ip eigrp topology vrf <name>'

• For OSPF, verify that the route is being installed in the database table as an
External LSA with 'show ip ospf database vrf <name>'

• For BGP, verify that the route is in the BGP RIB with 'show bgp ipv4 unicast vrf
<name>'

External forwarding 345

BGP route advertisement
For BGP, all static routes are implicitly permitted for redistribution. The route-map
which matches the BD subnet is applied at the BGP neighbor level.

leaf103# show bgp ipv4 unicast neighbor 10.0.0.134 vrf Prod:Vrf1 | grep Outbound
 Outbound route-map configured is exp-l3out-BGP-peer-2392068, handle obtained

In the above example, 10.0.0.134 is the BGP neighbor configured within the L3Out.

EIGRP route advertisement
Like OSPF, a route-map is used to control Static to EIGRP redistribution. In this way
only subnets associated to the L3Out and set to 'Advertise Externally' should be
redistributed. This can be verified with this command:

leaf103# show ip eigrp vrf Prod:Vrf1
IP-EIGRP AS 100 ID 10.0.0.3 VRF Prod:Vrf1
 Process-tag: default
 Instance Number: 1
 Status: running
 Authentication mode: none
 Authentication key-chain: none
 Metric weights: K1=1 K2=0 K3=1 K4=0 K5=0
 metric version: 32bit
 IP proto: 88 Multicast group: 224.0.0.10
 Int distance: 90 Ext distance: 170
 Max paths: 8
 Active Interval: 3 minute(s)
 Number of EIGRP interfaces: 1 (0 loopbacks)
 Number of EIGRP passive interfaces: 0
 Number of EIGRP peers: 2
 Redistributing:
 static route-map exp-ctx-st-2392068
 ospf-default route-map exp-ctx-proto-2392068
 direct route-map exp-ctx-st-2392068
 coop route-map exp-ctx-st-2392068
 bgp-65001 route-map exp-ctx-proto-2392068

346 External forwarding

The final working BD configuration is shown below.

Bridge Domain L3 Con�guration

Bridge domain route advertisement troubleshooting scenario
In this case, the typical symptom would normally be that a configured BD subnet is not
being advertised out of an L3Out. Follow the previous workflow to understand which
component is broken.

Start with the configuration before getting too low-level by verifying the following:

• Is there a contract between the EPG and L3Out?

• Is the L3Out associated to the BD?

External forwarding 347

• Is the BD subnet set to advertise externally?

• Is the external protocol adjacency up?

Possible Cause: BD Not Deployed
This case would be applicable in a couple of different scenarios, such as:

• The internal EPG is using VMM integration with On Demand option and no VM
endpoints have been attached to the port-group for the EPG.

• The internal EPG has been created but no static path bindings have been
configured or the interface on which the static path is configured are down.

In both cases, the BD would not be deployed and, as a result, the BD static route would
not get pushed to the BL. The solution here is to deploy some active resources within
an EPG which is linked to this BD so that the subnet gets deployed.

Possible Cause: OSPF L3Out is configured as 'Stub' or 'NSSA' with No Redistribution
When OSPF is used as the L3Out protocol, basic OSPF rules must still be followed. Stub
areas do not allow redistributed LSAs but can advertise a default route instead. NSSA
areas do allow redistributed paths but 'Send Redistributed LSAs into NSSA Area' must
be selected on the L3Out. Or NSSA can also advertise a default route instead by
disabling 'Originate Summary LSA' as well which is a typical scenario where 'Send
Redistributed LSA's into NSSA Area' would be disabled.

Possible Cause: 'Default-Export' Route-Profile with a 'Deny' Action configured under
the L3Out
When route-profiles are configured under an L3Out with the names of 'default-export'
or 'default-import' they are implicitly applied to the L3Out. In addition, if the default-
export route-profile is set to a deny action and configured as 'Match Prefix and Routing
Policy' then BD subnets should be advertised out of this L3Out and would be implicitly
denied:

348 External forwarding

Default-export Deny Route Pro�le

Prefix-matches within the default-export route-profile will not implicitly include BD
Subnets if the 'Match Routing Policy Only' option is selected.

External route import workflow

This section discusses how ACI learns external routes through an L3Out and distributes
this to internal leaf nodes. It also covers transit and route-leaking use-cases in later
sections

As with the previous section, the user should be aware of what happens at a higher-
level.

External forwarding 349

By default, all routes learned through the external protocol are redistributed into the
internal fabric BGP process. This is true regardless of what subnets are configured
under the external EPG and what flags are selected. There are two examples where this
is not true.

• If the 'Route Control Enforcement' option at the top level L3Out policy is set to
'Import'. In this case the route import model would go from a blacklist model
(only specify what shouldn't be allowed) to a whitelist model (everything is
implicitly denied unless configured otherwise).

• If the external Protocol is EIGRP or OSPF and an Interleak Route-Profile used
does not match the external routes.

For an external route to be distributed to an internal leaf the following must happen:

• The route must be learned on the BL from the external router. To be a candidate
to redistribute into the fabric MP-BGP process the route must be installed in the
routing table rather than just in the protocol RIB.

• The route must be permitted to be redistributed or advertised into the internal
BGP process. This should always happen unless import route-control
enforcement or an Interleak Route-Profile is used.

• A BGP Route-Reflector Policy must be configured and applied to a Pod Policy
Group which is applied to the Pod Profile. If this isn't applied, then the BGP
Process will not initialize on the switches.

If the internal EPG/BD is in the same VRF as the L3Out then the above three steps are
all that is required for the internal EPG/BD to use external routes.

Route is installed in BL routing table
In this case the external route that should be learned on BLs 103 and 104 is
172.16.20.1/32.

350 External forwarding

leaf103# show ip route 172.16.20.1 vrf Prod:Vrf1
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

172.16.20.1/32, ubest/mbest: 1/0
 *via 10.10.34.3, vlan347, [110/20], 00:06:29, ospf-default, type-2

It is evident that it is installed in the routing table as being learned through OSPF. If it
wasn't seen here, check the individual protocol and ensure adjacencies are up.

Route is redistributed into BGP
The redistribution route-map can be verified, after checking that neither 'Import'
enforcement or Interleak Route-Profiles are used, by looking at the route-map used for
external protocol to BGP redistribution. See the following command:

leaf103# show bgp process vrf Prod:Vrf1

Information regarding configured VRFs:

BGP Information for VRF Prod:Vrf1
VRF Type : System
VRF Id : 85
VRF state : UP
VRF configured : yes
VRF refcount : 1
VRF VNID : 2392068
Router-ID : 10.0.0.3
Configured Router-ID : 10.0.0.3
Confed-ID : 0
Cluster-ID : 0.0.0.0
MSITE Cluster-ID : 0.0.0.0
No. of configured peers : 1
No. of pending config peers : 0
No. of established peers : 1
VRF RD : 101:2392068
VRF EVPN RD : 101:2392068
...
 Redistribution
 direct, route-map permit-all
 static, route-map imp-ctx-bgp-st-interleak-2392068
 ospf, route-map permit-all
 coop, route-map exp-ctx-st-2392068
 eigrp, route-map permit-all

External forwarding 351

Here it is evident that the 'permit-all' route-map is used for OSPF to BGP redistribution.
This is the default. From here, BL can be verified and the local route originating from
BGP checked:

a-leaf101# show bgp ipv4 unicast 172.16.20.1/32 vrf Prod:Vrf1
BGP routing table information for VRF Prod:Vrf1, address family IPv4 Unicast
BGP routing table entry for 172.16.20.1/32, version 25 dest ptr 0xa6f25ad0
Paths: (2 available, best #2)
Flags: (0x80c0002 00000000) on xmit-list, is not in urib, exported
 vpn: version 16316, (0x100002) on xmit-list
Multipath: eBGP iBGP

 Advertised path-id 1, VPN AF advertised path-id 1
 Path type: redist 0x408 0x1 ref 0 adv path ref 2, path is valid, is best path
 AS-Path: NONE, path locally originated
 0.0.0.0 (metric 0) from 0.0.0.0 (10.0.0.3)
 Origin incomplete, MED 20, localpref 100, weight 32768
 Extcommunity:
 RT:65001:2392068
 VNID:2392068
 COST:pre-bestpath:162:110

 VRF advertise information:
 Path-id 1 not advertised to any peer

 VPN AF advertise information:
 Path-id 1 advertised to peers:
 10.0.64.64 10.0.72.66
 Path-id 2 not advertised to any peer

In the above output, the 0.0.0.0/0 indicates it is originated locally. The list of
peers advertised to are the spine nodes in the fabric which act as Route-
Re�ectors.

Verify route on internal leaf
The BL should advertise it to the spine nodes through the VPNv4 BGP Address-Family.
The spine nodes should advertise it to any leaf nodes with the VRF deployed (true of
non-route-leaking example). On any of these leaf nodes run 'show bgp vpnv4 unicast
<route> vrf overlay-1' to verify it is in VPNv4

352 External forwarding

Use the command below to verify the route on the internal leaf.

leaf101# show ip route 172.16.20.1 vrf Prod:Vrf1
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

172.16.20.1/32, ubest/mbest: 2/0
 *via 10.0.72.64%overlay-1, [200/20], 00:21:24, bgp-65001, internal, tag 65001
 recursive next hop: 10.0.72.64/32%overlay-1
 *via 10.0.72.67%overlay-1, [200/20], 00:21:24, bgp-65001, internal, tag 65001
 recursive next hop: 10.0.72.67/32%overlay-1

In the above output the route is being learned through BGP and the next-hops should
be the Physical TEPs (PTEP) of the BLs.

leaf101# acidiag fnvread
 ID Pod ID Name Serial Number IP Address Role State LastUpdMsgId
--
 103 1 a-leaf101 FDO20160TPS 10.0.72.67/32 leaf active 0
 104 1 a-leaf103 FDO20160TQ0 10.0.72.64/32 leaf active 0

External route troubleshooting scenario
In this scenario the internal leaf (101) is not receiving an external route(s).

As always, first check the basics. Make sure that:

• Routing protocol adjacencies are up on the BLs.

• A BGP Route-Reflector Policy is applied to the Pod Policy-Group and the Pod
Profile.

If the above criteria are correct, below are some more advanced examples of what
could be causing the issue.

External forwarding 353

Possible Cause: VRF not deployed on the internal leaf
In this case, the issue would be that there are no EPGs with resources deployed on the
internal leaf where the external route is expected. This could be caused by static path
bindings only configured on down interfaces or only have On Demand mode VMM
integrated EPGs present with no dynamic attachments detected.

Because the L3Out VRF is not deployed on the internal leaf (verify with 'show vrf' on
internal leaf) the internal leaf will not import the BGP route from VPNv4.

To resolve this issue, the user should deploy resources within the L3Out VRF on the
internal leaf.

Possible Cause: Import Route Enforcement is being used
As mentioned earlier, when import route-control enforcement is enabled the L3Out
only accepts external routes that are explicitly permitted. Typically, the feature is
implemented as a table-map. A table-map sits in between the protocol RIB and the
actual routing table so that it only affects what is in the routing table.

In the output below the Import Route-Control is enabled, but there aren't any explicitly
permitted routes. Notice that the LSA is in the OSPF database but not in the routing
table on the BL:

leaf103# vsh -c "show ip ospf database external 172.16.20.1 vrf Prod:Vrf1"
 OSPF Router with ID (10.0.0.3) (Process ID default VRF Prod:Vrf1)

 Type-5 AS External Link States

Link ID ADV Router Age Seq# Checksum Tag
172.16.20.1 10.0.0.134 455 0x80000003 0xb9a0 0

leaf103# show ip route 172.16.20.1 vrf Prod:Vrf1
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

Route not found

354 External forwarding

Here is the table-map that is now installed causing this behavior:

leaf103# show ip ospf vrf Prod:Vrf1

 Routing Process default with ID 10.0.0.3 VRF Prod:Vrf1
 Stateful High Availability enabled
 Supports only single TOS(TOS0) routes
 Supports opaque LSA
 Table-map using route-map exp-ctx-2392068-deny-external-tag
 Redistributing External Routes from..

leaf103# show route-map exp-ctx-2392068-deny-external-tag
route-map exp-ctx-2392068-deny-external-tag, deny, sequence 1
 Match clauses:
 tag: 4294967295
 Set clauses:
route-map exp-ctx-2392068-deny-external-tag, deny, sequence 19999
 Match clauses:
 ospf-area: 0.0.0.100
 Set clauses:

Anything learning in area 100, which is the area configured on this L3Out, is implicitly
denied by this table-map so that it is not installed in the routing table.

To resolve this issue, the user should define the subnet on the external EPG with the
'Import Route Control Subnet' flag or create an Import Route-Profile that matches the
prefixes to be installed.

• Note that import enforcement is not supported for EIGRP.

• Also note that for BGP, import enforcement is implemented as an inbound
route-map applied to the BGP neighbor. Check the "BGP Route Advertisement"
sub-section for details on how to check this.

Possible Cause: an Interleak Profile is being used
Interleak Route-Profiles are used for EIGRP and OSPF L3Outs and intended to allow for
control over what is redistributed from the IGP into BGP as well as allows the
application of policy such as setting BGP attributes.

Without an interleak Route-Profile, all routes are implicitly imported to BGP.

External forwarding 355

Without an interleak Route-Profile:

leaf103# show bgp process vrf Prod:Vrf1

Information regarding configured VRFs:

BGP Information for VRF Prod:Vrf1
VRF Type : System
VRF Id : 85
VRF state : UP
VRF configured : yes
VRF refcount : 1
VRF VNID : 2392068
Router-ID : 10.0.0.3
Configured Router-ID : 10.0.0.3
Confed-ID : 0
Cluster-ID : 0.0.0.0
MSITE Cluster-ID : 0.0.0.0
No. of configured peers : 1
No. of pending config peers : 0
No. of established peers : 1
VRF RD : 101:2392068
VRF EVPN RD : 101:2392068

...
 Peers Active-peers Routes Paths Networks Aggregates
 1 1 7 11 0 0

 Redistribution
 direct, route-map permit-all
 static, route-map imp-ctx-bgp-st-interleak-2392068
 ospf, route-map permit-all
 coop, route-map exp-ctx-st-2392068
 eigrp, route-map permit-all

With an interleak route-profile:

a-leaf103# show bgp process vrf Prod:Vrf1

Information regarding configured VRFs:

BGP Information for VRF Prod:Vrf1
VRF Type : System
VRF Id : 85
VRF state : UP
VRF configured : yes
VRF refcount : 1
VRF VNID : 2392068
Router-ID : 10.0.0.3
Configured Router-ID : 10.0.0.3

356 External forwarding

Confed-ID : 0
Cluster-ID : 0.0.0.0
MSITE Cluster-ID : 0.0.0.0
No. of configured peers : 1
No. of pending config peers : 0
No. of established peers : 1
VRF RD : 101:2392068
VRF EVPN RD : 101:2392068

...

 Redistribution
 direct, route-map permit-all
 static, route-map imp-ctx-bgp-st-interleak-2392068
 ospf, route-map imp-ctx-proto-interleak-2392068
 coop, route-map exp-ctx-st-2392068
 eigrp, route-map permit-all

The above highlighted route-map would only permit what is explicitly matched in the
configured Interleak Profile. If the external route isn't matched it will not be
redistributed into BGP.

Transit route advertisement workflow

This section discusses how routes from one L3Out are advertised out another L3Out.
This would also cover the scenario where static routes that are configured directly on
an L3Out need to be advertised. It will not go into every specific protocol consideration,
but rather through how this is implemented in ACI. It will not go into inter-VRF transit
routing at this time.

External forwarding 357

This scenario will use the following topology:

Transit routing topology

The high-level flow of how 172.16.20.1 would be learned from OSPF and then advertised
into EIGRP, and verifications of the whole process and troubleshooting scenarios, are
discussed below.

For the 172.16.20.1 route to get advertised into EIGRP, one of the following must be
configured:

• The subnet to be advertised could be defined on the EIGRP L3Out with the
'Export Route-Control Subnet' flag. As mentioned in the overview section, this
flag is used mainly for transit routing and defines the subnets that should be
advertised out of that L3Out.

• Configure 0.0.0.0/0 and select both 'Aggregate Export' and 'Export Route
Control Subnet'. This creates a route-map for redistribution into the external

358 External forwarding

protocol that matches 0.0.0.0/0 and all prefixes that are more specific (which is
an effective match any). Note that when 0.0.0.0/0 is used with 'Aggregate
Export', static routes will not be matched for redistribution. This is to prevent
inadvertently advertising BD routes that shouldn't be advertised.

• Lastly, it is possible to create an export route-profile that matches the prefixes
to be advertised. Using this method could configure the 'Aggregate' option with
prefixes besides 0.0.0.0/0.

The above configurations would result in the transit route being advertised but it still
needs to have a security policy in place to allow dataplane traffic to flow. As with any
EPG to EPG communication, a contract must be in place before traffic is permitted.

Note that duplicate external subnets with the 'External Subnet for External EPG'
cannot be con�gured in the same VRF. When con�gured, subnets need to be
more speci�c than 0.0.0.0. It is important to con�gure 'External Subnet for
External EPG' only for the L3Out where the route is being received. Don't
con�gure this on the L3Out that should be advertising this route.

It's also important to understand that all transit routes are tagged with a specific VRF
Tag. By default, this tag is 4294967295. The Route-Tag policy is configured under
'Tenant > Networking > Protocols > Route-Tag':

External forwarding 359

Route-Tag Policy

This Route Tag policy is then applied to the VRF. The purpose of this tag is essentially to
prevent loops. This route tag is applied when the transit route is advertised back out of
an L3Out. If these routes are then received back with the same route tag then the route
is discarded.

Verify that the route is present on the receiving BL via OSPF
Like the last section, first verify that the BL that should initially receive the correct
route.

leaf103# show ip route 172.16.20.1 vrf Prod:Vrf1
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

360 External forwarding

172.16.20.1/32, ubest/mbest: 1/0
 *via 10.10.34.3, vlan347, [110/20], 01:25:30, ospf-default, type-2

For now, assume that the advertising L3Out is on a different BL (as in the topology)
(later scenarios will discuss where it is on the same BL).

Verify that the route is present in BGP on the receiving OSPF BL
For the OSPF route to be advertised to the external EIGRP router, the route needs to be
advertised into BGP on the receiving OSPF BL

leaf103# show bgp ipv4 unicast 172.16.20.1/32 vrf Prod:Vrf1
BGP routing table information for VRF Prod:Vrf1, address family IPv4 Unicast
BGP routing table entry for 172.16.20.1/32, version 30 dest ptr 0xa6f25ad0
Paths: (2 available, best #1)
Flags: (0x80c0002 00000000) on xmit-list, is not in urib, exported
 vpn: version 17206, (0x100002) on xmit-list
Multipath: eBGP iBGP

 Advertised path-id 1, VPN AF advertised path-id 1
 Path type: redist 0x408 0x1 ref 0 adv path ref 2, path is valid, is best path
 AS-Path: NONE, path locally originated
 0.0.0.0 (metric 0) from 0.0.0.0 (10.0.0.3)
 Origin incomplete, MED 20, localpref 100, weight 32768
 Extcommunity:
 RT:65001:2392068
 VNID:2392068
 COST:pre-bestpath:162:110

 VRF advertise information:

 Path-id 1 not advertised to any peer

 VPN AF advertise information:
 Path-id 1 advertised to peers:
 10.0.64.64 10.0.72.66
 Path-id 2 not advertised to any peer

The route is in BGP.

External forwarding 361

Verify on the EIGRP BL that should advertise the route that it is installed

leaf102# show ip route 172.16.20.1 vrf Prod:Vrf1
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

172.16.20.1/32, ubest/mbest: 2/0
 *via 10.0.72.67%overlay-1, [200/20], 00:56:46, bgp-65001, internal, tag 65001
 recursive next hop: 10.0.72.67/32%overlay-1
 *via 10.0.72.64%overlay-1, [200/20], 00:56:46, bgp-65001, internal, tag 65001
 recursive next hop: 10.0.72.64/32%overlay-1

It is installed in the routing table with overlay next-hops pointing to the originating
border leaf nodes.

leaf102# acidiag fnvread

 ID Pod ID Name Serial Number IP Address Role State LastUpdMsgId
--
 103 1 a-leaf101 FDO20160TPS 10.0.72.67/32 leaf active 0
 104 1 a-leaf103 FDO20160TQ0 10.0.72.64/32 leaf active 0

362 External forwarding

Verify that the route is advertised on the BL
The route will be advertised by BL 102 as a result of the 'Export Route Control Subnet'
flag being set on the configured subnet:

Export Route Control

External forwarding 363

Use the following command to view the route-map that is created as a result of this
'Export Route Control' flag:

leaf102# show ip eigrp vrf Prod:Vrf1
IP-EIGRP AS 101 ID 10.0.0.2 VRF Prod:Vrf1
 Process-tag: default
 Instance Number: 1
 Status: running
 Authentication mode: none
 Authentication key-chain: none
 Metric weights: K1=1 K2=0 K3=1 K4=0 K5=0
 metric version: 32bit
 IP proto: 88 Multicast group: 224.0.0.10
 Int distance: 90 Ext distance: 170
 Max paths: 8
 Active Interval: 3 minute(s)
 Number of EIGRP interfaces: 1 (0 loopbacks)
 Number of EIGRP passive interfaces: 0
 Number of EIGRP peers: 1
 Redistributing:
 static route-map exp-ctx-st-2392068
 ospf-default route-map exp-ctx-proto-2392068
 direct route-map exp-ctx-st-2392068
 coop route-map exp-ctx-st-2392068
 bgp-65001 route-map exp-ctx-proto-2392068

To look for the 'BGP > EIGRP redistribution', look at the route-map. But, the route-map
itself should be the same regardless of whether the source protocol is OSPF, EIGRP, or
BGP. Static routes will be controlled with a different route-map.

leaf102# show route-map exp-ctx-proto-2392068
route-map exp-ctx-proto-2392068, permit, sequence 15801
 Match clauses:
 ip address prefix-lists: IPv4-proto32771-2392068-exc-ext-inferred-export-dst
 ipv6 address prefix-lists: IPv6-deny-all
 Set clauses:
 tag 4294967295

a-leaf102# show ip prefix-list IPv4-proto32771-2392068-exc-ext-inferred-export-dst
ip prefix-list IPv4-proto32771-2392068-exc-ext-inferred-export-dst: 1 entries
 seq 1 permit 172.16.20.1/32

In the above output, the VRF tag is set on this prefix for loop prevention and the subnet
configured with 'Export Route Control' is explicitly matched.

364 External forwarding

Transit Routing when receiving and advertising BL are the same
As discussed earlier, when the receiving and advertising BLs are different, the route
must be advertised through the fabric using BGP. When the BLs are the same, the
redistribution or advertisement can be done directly between the protocols on the leaf.

Below are brief descriptions of how this is implemented:

• Transit routing between two OSPF L3Outs on the same leaf: Route
advertisement is controlled via an 'area-filter' applied to the OSPF process level.
An L3Out in Area 0 must be deployed on the leaf since the routes are advertised
between areas as opposed to through redistribution. Use 'show ip ospf vrf
<name>' to view the filter-list. Display the contents of the filter using 'show
route-map <filter name>'.

• Transit routing between OSPF and EIGRP L3Outs on the same leaf: Route
advertisement is controlled via redistribution route-maps that can be seen with
'show ip ospf' and 'show ip eigrp'. Note that if multiple OSPF L3Outs exist on the
same BL the only way to redistribute into only one of those OSPF L3Outs is if the
other is a Stub or NSSA with 'Send redistributed LSAs into NSSA area' disabled
so that it doesn't allow any external LSA's.

• Transit routing between OSPF or EIGRP and BGP on the same leaf: Route
advertisement into the IGP is controlled via redistribution route-maps. Route-
advertisement into BGP is controlled via an outbound route-map applied
directly to the bgp neighbor that the route should be sent do. This can be
verified with 'show bgp ipv4 unicast neighbor <neighbor address> vrf <name> |
grep Outbound'.

• Transit routing between two BGP l3Outs on the same leaf: All advertisement is
controlled via route-maps applied directly to the bgp neighbor that the route
should be sent to. This can be verified with 'show bgp ipv4 unicast neighbor
<neighbor address> vrf <name> | grep Outbound'.

External forwarding 365

Transit routing troubleshooting scenarios #1: Transit Route not advertised
This troubleshooting scenario involves routes that should be learned through one
L3Out not being sent out the other L3Out.

As always, check the basics before looking at anything ACI specific.

• Are protocol adjacencies up?

• Is the route, that ACI should be advertising, learned from an external protocol in
the first place?

• For BGP, is the path being dropped due to some BGP attribute? (as-path, etc.).

• Does the receiving L3Out have it in the OSPF database, EIGRP topology table, or
BGP table?

• Is a BGP Route Reflector Policy applied to the Pod Policy Group that is applied to
the Pod Profile?

If all the basic protocol verifications are configured correctly, below are some other
common causes for a transit route that is not being advertised.

Possible Cause: No OSPF Area 0
If the affected topology involves two OSP L3Outs on the same border leaf, then there
must be an Area 0 for routes to be advertised from one area to another. Look at the
"Transit routing between two OSPF L3Outs on the same leaf" bullet above for more
details.

Possible Cause: OSPF area is stub or NSSA
This would be seen if the OSPF L3Out is configured with a Stub or NSSA area that is not
configured to advertise external LSAs. With OSPF, external LSAs are never advertised
into Stub areas. They are advertised into NSSA areas if 'Send Redistributed LSAs into
NSSA Area' is selected.

366 External forwarding

Transit routing troubleshooting scenarios #2: Transit Route not received
In this scenario the problem is that some routes advertised by an ACI L3Out are not
being received back in another L3Out. This scenario could be applicable if the L3Outs
are in two separate fabrics and are connected by external routers or if the L3Outs are in
different VRFs and the routes are being passed between the VRFs by an external router.

Possible Cause: BL is Configured with the same Router ID in multiple VRFs
From a configuration perspective, a router-id cannot be duplicated within the same
VRF. However, it is typically fine to use the same router-id in different VRFs as long as
the two VRFs aren't attached to the same routing protocol domains.

Consider the following topology:

External router with single VRF — Transit Route not received

The problem here would be that the ACI leaf sees LSAs with its own Router-ID being
received, resulting in these not being installed in the OSPF database.

In addition, if the same setup was seen with VPC pairs, LSAs would continuously be
added and deleted on some routers. For example, the router would see LSAs coming

External forwarding 367

from its VPC peer with VRF and LSAs coming from the same node (with same Router-
ID) that were originated in the other VRF.

To resolve this issue, the user should make sure that a node will have a different, unique
router-id within each VRF that it has an L3Out in.

Possible cause: routes from one L3Out in one ACI fabric received on another fabric
with same VRF tag
The default route-tag in ACI is always the same unless it is changed. If routes are
advertised from one L3Out in one VRF or ACI fabric to another L3Out in another VRF or
ACI fabric without changing the default VRF tags, the routes will be dropped by the
receiving BLs.

The solution to this scenario is simply to use a unique Route-Tag policy for each VRF in
ACI.

Transit routing troubleshooting scenarios #3 — Transit Routes unexpectantly
advertised
This scenario would be seen when transit routes are advertised out an L3Out where
they are not intended to be advertised.

Possible cause: usage of 0.0.0.0/0 with 'Aggregate Export'
When an external subnet is configured as 0.0.0.0/0 with 'Export Route Control Subnet'
and 'Aggregate Export' the result is that a match all redistribution route-map is
installed. In this case all routes on the BL that were learned through OSPF, EIGRP, or
BGP are advertised out the L3Out where this is configured.

Below is the route-map that is deployed to the leaf as a result of the Aggregate Export:

leaf102# show ip eigrp vrf Prod:Vrf1
IP-EIGRP AS 101 ID 10.0.0.2 VRF Prod:Vrf1
 Process-tag: default
 Instance Number: 1
 Status: running
 Authentication mode: none
 Authentication key-chain: none
 Metric weights: K1=1 K2=0 K3=1 K4=0 K5=0
 metric version: 32bit
 IP proto: 88 Multicast group: 224.0.0.10

368 External forwarding

Int distance: 90 Ext distance: 170
 Max paths: 8
 Active Interval: 3 minute(s)
 Number of EIGRP interfaces: 1 (0 loopbacks)
 Number of EIGRP passive interfaces: 0
 Number of EIGRP peers: 1
 Redistributing:
 static route-map exp-ctx-st-2392068
 ospf-default route-map exp-ctx-proto-2392068
 direct route-map exp-ctx-st-2392068
 coop route-map exp-ctx-st-2392068
 bgp-65001 route-map exp-ctx-proto-2392068
 Tablemap: route-map exp-ctx-2392068-deny-external-tag , filter-configured
 Graceful-Restart: Enabled
 Stub-Routing: Disabled
 NSF converge time limit/expiries: 120/0
 NSF route-hold time limit/expiries: 240/0
 NSF signal time limit/expiries: 20/0
 Redistributed max-prefix: Disabled
 selfAdvRtTag: 4294967295
leaf102# show route-map exp-ctx-proto-2392068
route-map exp-ctx-proto-2392068, permit, sequence 19801
 Match clauses:
 ip address prefix-lists: IPv4-proto32771-2392068-agg-ext-inferred-export-dst
 ipv6 address prefix-lists: IPv6-deny-all
 Set clauses:
 tag 4294967295

leaf102# show ip prefix-list IPv4-proto32771-2392068-agg-ext-inferred-export-dst
 ip prefix-list IPv4-proto32771-2392068-agg-ext-inferred-export-dst: 1 entries
seq 1 permit 0.0.0.0/0 le 32

This is the number one cause of routing loops that involve an ACI environment.

External forwarding 369

Contract and L3Out

Prefix-based EPG on L3Out

In an internal EPG (non-L3Out), contracts are enforced after deriving the pcTag of the
source and the pcTag of the destination EPG. The encapsulation VLAN/VXLAN of the
packet received on the downlink port is used to drive this pcTag by classing the packet
into the EPG. Whenever learning a MAC address or an IP address, it is learned along
with its access encapsulation and the associated EPG pcTag. For more details on pcTag
and contract enforcement, please refer to the "Security policies" chapter.

L3Outs also drive a pcTag using its L3Out EPG (External EPG) located under 'Tenant >
Networking > L3OUT > Networks > L3OUT-EPG'. However, L3Outs do not rely on
VLANs and interfaces to classify packets as such. Classification is instead based on
source prefix/subnet in a 'Longest Prefix Match' fashion. Hence, an L3Out EPG can be
referred to as a prefix-based EPG. After a packet is classified into an L3Out based on a
subnet, it follows a similar policy enforcement pattern as a regular EPG.

370 External forwarding

The following diagram outlines where the pcTag of a given L3Out EPG can be found
within the GUI.

Location of the pcTag for an L3Out

The user is responsible for defining the prefix-based EPG table. This is done using the
'External Subnet for External EPG' subnet scope. Each subnet set with that scope will
add an entry in a static Longest Prefix Match (LPM) table. This subnet will point to the
pcTag value that will get used for any IP address falling within that prefix.

Th LPM table of prefix-based EPG subnets can be verified on leaf switches using the
following command:

vsh -c 'show system internal policy-mgr prefix'

External forwarding 371

Remarks:

• LPM table entries are scoped to VRF VNID. The lookup is done per vrf_vnid/src
pcTag/dst pcTag.

• Each entry points to a single pcTag. As a consequence, two L3Out EPGs cannot
use the same subnet with the same mask length within the same VRF.

• Subnet 0.0.0.0/0 always uses special pcTag 15. As such, it can be duplicated but
should only be done so with a full understanding of the policy enforcement
implications.

• This table is used in both directions.

- From L3Out to Leaf Local Endpoint, the source pcTag is derived using
this table.

- From Leaf Local Endpoint to L3Out, the destination pcTag is derived
using this table.

• If the VRF has the 'Ingress' enforcement setting for 'Policy Control Enforcement
Direction', then the LPM prefix table will be present on the L3Out BLs as well as
any leaf switches in the VRF that have a contract with the L3Out.

Example 1: Single L3Out with specific prefix
Scenario: A single BGP L3Out in vrf Prod:VRF1 with one L3Out EPG. Prefix 172.16.1.0/24
is being received from an external source so it must be classified into the L3Out EPG.

bdsol-aci32-leaf3# show ip route 172.16.1.0 vrf Prod:VRF1
IP Route Table for VRF "Prod:VRF1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

172.16.1.0/24, ubest/mbest: 1/0
 *via 10.0.0.134%Prod:VRF1, [20/0], 00:56:14, bgp-132, external, tag 65002
 recursive next hop: 10.0.0.134/32%Prod:VRF1

372 External forwarding

First, add the subnet to the prefix table.

Subnet with 'External Subnets for the External EPG' scope

External forwarding 373

Verify the programming of the prefix list on the leaf switches that have the VRF of the
L3Out:

bdsol-aci32-leaf3# vsh -c ' show system internal policy-mgr prefix ' | egrep "Prod|==|Addr"
Vrf-Vni VRF-Id Table-Id Table-State VRF-Name Addr Class Shared Remote Complete
======= ====== =========== ======= ============================ ================================= ====== ====== ====== ========
2097154 35 0x23 Up Prod:VRF1 0.0.0.0/0 15 True True False
2097154 35 0x23 Up Prod:VRF1 172.16.1.0/24 32772 True True False

The pcTag of the L3Out EPG is 32772 in vrf scope 2097154.

Example 2: Single L3Out with multiple prefixes

Expanding on the previous example, in this scenario the L3Out is receiving multiple
prefixes. While entering each prefix is functionally sound, an alternative option
(depending on the intended design) is to accept all prefixes received on the L3Out.

This can be accomplished with the '0.0.0.0/0' prefix.

default subnet with 'External Subnets for the External EPG' scope

374 External forwarding

1

2

This results in the following policy-mgr prefix table entry:

bdsol-aci32-leaf3# vsh -c ' show system internal policy-mgr prefix ' | egrep "Prod|==|Addr"
Vrf-Vni VRF-Id Table-Id Table-State VRF-Name Addr Class Shared Remote Complete
======= ====== =========== ======= ============================ ================================= ====== ====== ====== ========
2097154 35 0x23 Up Prod:VRF1 0.0.0.0/0 15 True True False
2097154 35 0x23 Up Prod:VRF1 172.16.1.0/24 32772 True True False

Note that the pcTag assigned to 0.0.0.0/0 uses value 15, not 32772. pcTag 15 is
a reserved system pcTag which is only used with 0.0.0.0/0 which acts as
wildcard to match all pre�xes on an L3Out.

If the VRF has a single L3Out with a single L3Out EPG using the 0.0.0.0/0, then the
policy-prefix remains unique and is the easiest approach to catch all.

Example 3a: Multiple L3Out EPGs in a VRF

In this scenario there are multiple L3Out EPGs in the same VRF.

Note: From a prefix-based EPG perspective, the following two configurations will result
in equivalent LPM policy-mgr prefix table entries:

Two L3Outs with one L3Out EPG each.

One L3Out with two L3Out EPGs

In both scenarios, the total number of L3Out EPGs is 2. This means that each one will
have its own pcTag and associated subnets.

All pcTags of a given L3Out EPG can be viewed in the GUI at 'Tenant > Operational >
Resource id > L3Outs'

External forwarding 375

Veri�cation of the L3Out pcTag

In this scenario, the ACI fabric is receiving multiple prefixes from the external routers
and the L3Out EPG definition is as follows:

• 172.16.1.0/24 assigned to L3OUT-EPG.

• 172.16.2.0/24 assigned to L3OUT-EPG2.

• 172.16.0.0/16 assigned to L3OUT-EPG (to catch the 172.16.3.0/24 prefix).

To match this, the config will be defined as follows:

• L3OUT-EPG has subnet 172.16.1.0/24 and 172.16.0.0/16 both with scope 'External
Subnet for the External EPG'.

• L3OUT-EPG2 has subnet 172.16.2.0/24 with scope 'External Subnet for the
External EPG'.

376 External forwarding

The resulting prefix table entries will be:

bdsol-aci32-leaf3# vsh -c 'show system internal policy-mgr prefix' | egrep "Prod|==|Addr"
Vrf-Vni VRF-Id Table-Id Table-State VRF-Name Addr Class Shared Remote Complete
======= ====== =========== ======= ============================ ================================= ====== ====== ====== ========
2097154 35 0x23 Up Prod:VRF1 0.0.0.0/0 15 True True False
2097154 35 0x23 Up Prod:VRF1 172.16.1.0/24 32772 True True False
2097154 35 0x23 Up Prod:VRF1 172.16.0.0/16 32772 True True False
2097154 35 0x23 Up Prod:VRF1 172.16.2.0/24 32773 True True False

172.16.2.0/24 is assigned to pcTag 32773 (L3OUT-EPG2) and 172.16.0.0/16 is assigned to
32772 (L3OUT-EPG).

In this scenario, the entry for 172.16.1.0/24 is redundant as the /16 supernet is assigned
to the same EPG.

Multiple L3Out EPGs is useful when the goal is to apply different contracts to groups of
prefixes within a single L3Out. The next example will illustrate how contracts come into
play with multiple L3Out EPGs.

Example 3b: multiple L3Out EPGs with different contracts
This scenario contains the following setup:

• ICMP contract allowing only ICMP.

• HTTP contract allowing only tcp destination port 80.

• EPG1 (pcTag 32770) provides the HTTP contract consumed by L3OUT-EPG
(pcTag 32772).

• EPG2 (pcTag 32771) provides the ICMP contract consumed by L3OUT-EPG2
(pcTag 32773).

The same policymgr prefixes from the previous example will be used:

• 172.16.1.0/24 in L3OUT-EPG should permit HTTP to EPG1

• 172.16.2.0/24 in L3OUT-EPG2 should permit ICMP to EPG2

External forwarding 377

policy-mgr prefix and zoning-rules:

bdsol-aci32-leaf3# vsh -c ' show system internal policy-mgr prefix ' | egrep "Prod|==|Addr"
Vrf-Vni VRF-Id Table-Id Table-State VRF-Name Addr Class Shared Remote Complete
======= ====== =========== ======= ============================ ================================= ====== ====== ====== ========
2097154 35 0x23 Up Prod:VRF1 0.0.0.0/0 15 True True False
2097154 35 0x23 Up Prod:VRF1 172.16.1.0/24 32772 True True False
2097154 35 0x23 Up Prod:VRF1 172.16.0.0/16 32772 True True False
2097154 35 0x23 Up Prod:VRF1 172.16.2.0/24 32773 True True False

bdsol-aci32-leaf3# show zoning-rule scope 2097154
+---------+--------+--------+----------+----------------+---------+---------+------+----------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+---------+------+----------+----------------------+
4326	0	0	implicit	uni-dir	enabled	2097154		deny,log	any_any_any(21)
4335	0	16387	implicit	uni-dir	enabled	2097154		permit	any_dest_any(16)
4334	0	0	implarp	uni-dir	enabled	2097154		permit	any_any_filter(17)
4333	0	15	implicit	uni-dir	enabled	2097154		deny,log	any_vrf_any_deny(22)
4332	0	16386	implicit	uni-dir	enabled	2097154		permit	any_dest_any(16)
4342	32771	32773	5	uni-dir-ignore	enabled	2097154	ICMP	permit	fully_qual(7)
4343	32773	32771	5	bi-dir	enabled	2097154	ICMP	permit	fully_qual(7)
4340	32770	32772	38	uni-dir	enabled	2097154	HTTP	permit	fully_qual(7)
4338	32772	32770	37	uni-dir	enabled	2097154	HTTP	permit	fully_qual(7)
+---------+--------+--------+----------+----------------+---------+---------+------+----------+----------------------+

Datapath validation using fTriage — flow allowed by policy
With an ICMP flow between 172.16.2.1 on the external network and 192.168.3.1 in EPG2,
fTriage can be used to catch and analyze the flow. In this case, start fTriage on both leaf
switch 103 and 104 as traffic may enter either of them:

admin@apic1:~> ftriage route -ii LEAF:103,104 -sip 172.16.2.1 -dip 192.168.3.1
fTriage Status: {"dbgFtriage": {"attributes": {"operState": "InProgress", "pid": "14454", "apicId": "1", "id":
"0"}}}
Starting ftriage
Log file name for the current run is: ftlog_2019-10-02-22-30-41-871.txt
2019-10-02 22:30:41,874 INFO /controller/bin/ftriage route -ii LEAF:103,104 -sip 172.16.2.1 -dip 192.168.3.1
2019-10-02 22:31:28,868 INFO ftriage: main:1165 Invoking ftriage with default password and default
username: apic#fallback\\admin
2019-10-02 22:32:15,076 INFO ftriage: main:839 L3 packet Seen on bdsol-aci32-leaf3 Ingress: Eth1/12
(Po1) Egress: Eth1/12 (Po1) Vnid: 11365
2019-10-02 22:32:15,295 INFO ftriage: main:242 ingress encap string vlan-2551
2019-10-02 22:32:17,839 INFO ftriage: main:271 Building ingress BD(s), Ctx
2019-10-02 22:32:20,583 INFO ftriage: main:294 Ingress BD(s) Prod:VRF1:l3out-BGP:vlan-2551
2019-10-02 22:32:20,584 INFO ftriage: main:301 Ingress Ctx: Prod:VRF1

378 External forwarding

2019-10-02 22:32:20,693 INFO ftriage: pktrec:490 bdsol-aci32-leaf3: Collecting transient losses snapshot
for LC module: 1
2019-10-02 22:32:38,933 INFO ftriage: nxos:1404 bdsol-aci32-leaf3: nxos matching rule id:4343 scope:34
filter:5
2019-10-02 22:32:39,931 INFO ftriage: main:522 Computed egress encap string vlan-2502
2019-10-02 22:32:39,933 INFO ftriage: main:313 Building egress BD(s), Ctx
2019-10-02 22:32:41,796 INFO ftriage: main:331 Egress Ctx Prod:VRF1
2019-10-02 22:32:41,796 INFO ftriage: main:332 Egress BD(s): Prod:BD2
2019-10-02 22:32:48,636 INFO ftriage: main:933 SIP 172.16.2.1 DIP 192.168.3.1
2019-10-02 22:32:48,637 INFO ftriage: unicast:973 bdsol-aci32-leaf3: <- is ingress node
2019-10-02 22:32:51,257 INFO ftriage: unicast:1202 bdsol-aci32-leaf3: Dst EP is local
2019-10-02 22:32:54,129 INFO ftriage: misc:657 bdsol-aci32-leaf3: EP if(Po1) same as egr if(Po1)
2019-10-02 22:32:55,348 INFO ftriage: misc:657 bdsol-aci32-leaf3: DMAC(00:22:BD:F8:19:FF) same as
RMAC(00:22:BD:F8:19:FF)
2019-10-02 22:32:55,349 INFO ftriage: misc:659 bdsol-aci32-leaf3: L3 packet getting routed/bounced in
SUG
2019-10-02 22:32:55,596 INFO ftriage: misc:657 bdsol-aci32-leaf3: Dst IP is present in SUG L3 tbl
2019-10-02 22:32:55,896 INFO ftriage: misc:657 bdsol-aci32-leaf3: RW seg_id:11365 in SUG same as EP
segid:11365
2019-10-02 22:33:02,150 INFO ftriage: main:961 Packet is Exiting fabric with peer-device: bdsol-aci32-
n3k-3 and peer-port: Ethernet1/16

fTriage confirms the zoning-rule hit against the ICMP rule from L3OUT_EPG2 to EPG:

2019-10-02 22:32:38,933 INFO ftriage: nxos:1404 bdsol-aci32-leaf3: nxos matching rule id:4343 scope:34
filter:5

Datapath validation using fTriage — flow that is not allowed by policy
With ICMP traffic sourced from 172.16.1.1 (L3OUT-EPG) towards 192.168.3.1 (EPG2),
expect a policy drop.

admin@apic1:~> ftriage route -ii LEAF:103,104 -sip 172.16.1.1 -dip 192.168.3.1
fTriage Status: {"dbgFtriage": {"attributes": {"operState": "InProgress", "pid": "15139", "apicId": "1", "id":
"0"}}}
Starting ftriage
Log file name for the current run is: ftlog_2019-10-02-22-39-15-050.txt
2019-10-02 22:39:15,056 INFO /controller/bin/ftriage route -ii LEAF:103,104 -sip 172.16.1.1 -dip 192.168.3.1
2019-10-02 22:40:03,523 INFO ftriage: main:1165 Invoking ftriage with default password and default
username: apic#fallback\\admin
2019-10-02 22:40:43,338 ERROR ftriage: unicast:234 bdsol-aci32-leaf3: L3 packet getting fwd dropped,
checking drop reason
2019-10-02 22:40:43,339 ERROR ftriage: unicast:234 bdsol-aci32-leaf3: L3 packet getting fwd dropped,
checking drop reason
SECURITY_GROUP_DENY condition setcast:236 bdsol-aci32-leaf3: Drop reason - SECURITY_GROUP_DENY
condition set
2019-10-02 22:40:43,340 INFO ftriage: unicast:252 bdsol-aci32-leaf3: policy drop flow sclass:32772
dclass:32771 sg_label:34 proto:1

External forwarding 379

2019-10-02 22:40:43,340 INFO ftriage: main:681 : Ftriage Completed with hunch: None
fTriage Status: {"dbgFtriage": {"attributes": {"operState": "Idle", "pid": "0", "apicId": "0", "id": "0"}}}

fTriage confirms that the packet is dropped with the SECURITY_GROUP_DENY (policy
drop) reason and that the derived source pcTag is 32772 and destination pcTag is 32771.
Checking this against zoning-rules, there are clearly no entries between those EPG.

bdsol-aci32-leaf3# show zoning-rule scope 2097154 src-epg 32772 dst-epg 32771
+---------+--------+--------+----------+-----+--------+-------+------+--------+----------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+-----+--------+-------+------+--------+----------+
+---------+--------+--------+----------+-----+--------+-------+------+--------+----------+

Example 4: multiple L3Outs with multiple prefixes

The scenario is setup similarly to example 3 (L3Out and L3Out EPG definitions), but the
network defined on both L3Out EPGs is 0.0.0.0/0.

Contract configuration is the following:

• ICMP1 contract allowing ICMP.

• ICMP2 contract allowing ICMP.

• EPG1 (pcTag 32770) provides ICMP1 contract which is consumed by L3OUT-EPG
(pcTag 32772).

• EPG2 (pcTag 32771) provides ICMP2 contract which is consumed by L3OUT-
EPG2 (pcTag 32773).

This configuration may look ideal in the case where the external network is advertising
many prefixes, but there are at least two chunks of prefixes that follow different
allowed flow patterns. In this example, one prefix should only allow ICMP1 and the
other should only allow ICMP2.

380 External forwarding

1

2

Despite using '0.0.0.0/0' twice in the same VRF, only one prefix gets programmed in the
policy-mgr prefix table:

bdsol-aci32-leaf3# vsh -c ' show system internal policy-mgr prefix ' | egrep "Prod|==|Addr"
Vrf-Vni VRF-Id Table-Id Table-State VRF-Name Addr Class
Shared Remote Complete
======= ====== =========== ======= ============================ ================================= ======
====== ====== ========
2097154 35 0x23 Up Prod:VRF1 0.0.0.0/0 15
True True False

Two flows reexamined below. Based on the contract configuration above, the following
is expected:

172.16.2.1 (L3OUT-EPG2) to 192.168.3.1 (EPG2) should be allowed by ICMP2

172.16.2.1 (L3OUT-EPG2) to 192.168.1.1 (EPG1) should not be allowed as there is no
contract between EPG1 and L3OUT-EPG2

Datapath validation using fTriage — flow that is allowed by policy
Run fTriage with an ICMP flow from 172.16.2.1 (L3OUT-EPG2) to 192.168.3.1 (EPG2 —
pcTag 32771).

admin@apic1:~> ftriage route -ii LEAF:103,104 -sip 172.16.2.1 -dip 192.168.3.1
fTriage Status: {"dbgFtriage": {"attributes": {"operState": "InProgress", "pid": "1921", "apicId": "1", "id":
"0"}}}
Starting ftriage
Log file name for the current run is: ftlog_2019-10-02-23-11-14-298.txt
2019-10-02 23:11:14,302 INFO /controller/bin/ftriage route -ii LEAF:103,104 -sip 172.16.2.1 -dip 192.168.3.1
2019-10-02 23:12:00,887 INFO ftriage: main:1165 Invoking ftriage with default password and default
username: apic#fallback\\admin
2019-10-02 23:12:44,565 INFO ftriage: main:839 L3 packet Seen on bdsol-aci32-leaf3 Ingress: Eth1/12
(Po1) Egress: Eth1/12 (Po1) Vnid: 11365
2019-10-02 23:12:44,782 INFO ftriage: main:242 ingress encap string vlan-2551
2019-10-02 23:12:47,260 INFO ftriage: main:271 Building ingress BD(s), Ctx
2019-10-02 23:12:50,041 INFO ftriage: main:294 Ingress BD(s) Prod:VRF1:l3out-BGP:vlan-2551
2019-10-02 23:12:50,042 INFO ftriage: main:301 Ingress Ctx: Prod:VRF1
2019-10-02 23:12:50,151 INFO ftriage: pktrec:490 bdsol-aci32-leaf3: Collecting transient losses snapshot
for LC module: 1
2019-10-02 23:13:08,595 INFO ftriage: nxos:1404 bdsol-aci32-leaf3: nxos matching rule id:4336 scope:34
filter:5
2019-10-02 23:13:09,608 INFO ftriage: main:522 Computed egress encap string vlan-2502

External forwarding 381

2019-10-02 23:13:09,609 INFO ftriage: main:313 Building egress BD(s), Ctx
2019-10-02 23:13:11,449 INFO ftriage: main:331 Egress Ctx Prod:VRF1
2019-10-02 23:13:11,449 INFO ftriage: main:332 Egress BD(s): Prod:BD2
2019-10-02 23:13:18,383 INFO ftriage: main:933 SIP 172.16.2.1 DIP 192.168.3.1
2019-10-02 23:13:18,384 INFO ftriage: unicast:973 bdsol-aci32-leaf3: <- is ingress node
2019-10-02 23:13:21,078 INFO ftriage: unicast:1202 bdsol-aci32-leaf3: Dst EP is local
2019-10-02 23:13:23,926 INFO ftriage: misc:657 bdsol-aci32-leaf3: EP if(Po1) same as egr if(Po1)
2019-10-02 23:13:25,216 INFO ftriage: misc:657 bdsol-aci32-leaf3: DMAC(00:22:BD:F8:19:FF) same as
RMAC(00:22:BD:F8:19:FF)
2019-10-02 23:13:25,217 INFO ftriage: misc:659 bdsol-aci32-leaf3: L3 packet getting routed/bounced in
SUG
2019-10-02 23:13:25,465 INFO ftriage: misc:657 bdsol-aci32-leaf3: Dst IP is present in SUG L3 tbl
2019-10-02 23:13:25,757 INFO ftriage: misc:657 bdsol-aci32-leaf3: RW seg_id:11365 in SUG same as EP
segid:11365
2019-10-02 23:13:32,235 INFO ftriage: main:961 Packet is Exiting fabric with peer-device: bdsol-aci32-
n3k-3 and peer-port: Ethernet1/16

This flow is allowed (as expected) by zoning-rule 4336.

Datapath validation using fTriage — flow that is not allowed by policy
Run fTriage with an ICMP flow from 172.16.2.1 (L3OUT-EPG2) to 192.168.1.1 (EPG1 —
pcTag 32770):

admin@apic1:~> ftriage route -ii LEAF:103,104 -sip 172.16.2.1 -dip 192.168.1.1
fTriage Status: {"dbgFtriage": {"attributes": {"operState": "InProgress", "pid": "31500", "apicId": "1", "id":
"0"}}}
Starting ftriage
Log file name for the current run is: ftlog_2019-10-02-23-53-03-478.txt
2019-10-02 23:53:03,482 INFO /controller/bin/ftriage route -ii LEAF:103,104 -sip 172.16.2.1 -dip 192.168.1.1
2019-10-02 23:53:50,014 INFO ftriage: main:1165 Invoking ftriage with default password and default
username: apic#fallback\\admin
2019-10-02 23:54:39,199 INFO ftriage: main:839 L3 packet Seen on bdsol-aci32-leaf3 Ingress: Eth1/12
(Po1) Egress: Eth1/12 (Po1) Vnid: 11364
2019-10-02 23:54:39,417 INFO ftriage: main:242 ingress encap string vlan-2551
2019-10-02 23:54:41,962 INFO ftriage: main:271 Building ingress BD(s), Ctx
2019-10-02 23:54:44,765 INFO ftriage: main:294 Ingress BD(s) Prod:VRF1:l3out-BGP:vlan-2551
2019-10-02 23:54:44,766 INFO ftriage: main:301 Ingress Ctx: Prod:VRF1
2019-10-02 23:54:44,875 INFO ftriage: pktrec:490 bdsol-aci32-leaf3: Collecting transient losses snapshot
for LC module: 1
2019-10-02 23:55:02,905 INFO ftriage: nxos:1404 bdsol-aci32-leaf3: nxos matching rule id:4341 scope:34
filter:5
2019-10-02 23:55:04,525 INFO ftriage: main:522 Computed egress encap string vlan-2501
2019-10-02 23:55:04,526 INFO ftriage: main:313 Building egress BD(s), Ctx
2019-10-02 23:55:06,390 INFO ftriage: main:331 Egress Ctx Prod:VRF1
2019-10-02 23:55:06,390 INFO ftriage: main:332 Egress BD(s): Prod:BD1
2019-10-02 23:55:13,571 INFO ftriage: main:933 SIP 172.16.2.1 DIP 192.168.1.1
2019-10-02 23:55:13,572 INFO ftriage: unicast:973 bdsol-aci32-leaf3: <- is ingress node
2019-10-02 23:55:16,159 INFO ftriage: unicast:1202 bdsol-aci32-leaf3: Dst EP is local

382 External forwarding

2019-10-02 23:55:18,949 INFO ftriage: misc:657 bdsol-aci32-leaf3: EP if(Po1) same as egr if(Po1)
2019-10-02 23:55:20,126 INFO ftriage: misc:657 bdsol-aci32-leaf3: DMAC(00:22:BD:F8:19:FF) same as
RMAC(00:22:BD:F8:19:FF)
2019-10-02 23:55:20,126 INFO ftriage: misc:659 bdsol-aci32-leaf3: L3 packet getting routed/bounced in
SUG
2019-10-02 23:55:20,395 INFO ftriage: misc:657 bdsol-aci32-leaf3: Dst IP is present in SUG L3 tbl
2019-10-02 23:55:20,687 INFO ftriage: misc:657 bdsol-aci32-leaf3: RW seg_id:11364 in SUG same as EP
segid:11364
2019-10-02 23:55:26,982 INFO ftriage: main:961 Packet is Exiting fabric with peer-device: bdsol-aci32-
n3k-3 and peer-port: Ethernet1/16

This flow is allowed (unexpected) by zoning-rule 4341. The zoning-rules must now be
analyzed to understand why.

Datapath validation — zoning-rules
The zoning-rules corresponding to the last 2 tests are below:

• Expected — flow hits zoning-rule line 4336 (ICMP2 contract).

• Unexpected — flow hits zoning-rule line 4341 (ICMP1 contract).

bdsol-aci32-leaf3# show zoning-rule scope 2097154
+---------+--------+--------+----------+---------+---------+---------+-------+----------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+---------+---------+---------+-------+----------+----------------------+
4326	0	0	implicit	uni-dir	enabled	2097154		deny,log	any_any_any(21)
4335	0	16387	implicit	uni-dir	enabled	2097154		permit	any_dest_any(16)
4334	0	0	implarp	uni-dir	enabled	2097154		permit	any_any_filter(17)
4333	0	15	implicit	uni-dir	enabled	2097154		deny,log	any_vrf_any_deny(22)
4332	0	16386	implicit	uni-dir	enabled	2097154		permit	any_dest_any(16)
4339	32770	15	5	uni-dir	enabled	2097154	ICMP2	permit	fully_qual(7)
4341	49153	32770	5	uni-dir	enabled	2097154	ICMP2	permit	fully_qual(7)
4337	32771	15	5	uni-dir	enabled	2097154	ICMP1	permit	fully_qual(7)
4336	49153	32771	5	uni-dir	enabled	2097154	ICMP1	permit	fully_qual(7)
+---------+--------+--------+----------+---------+---------+---------+-------+----------+----------------------+

Both flows derive the src pcTag of 49153. This is the pcTag of the VRF. This can be
verified in the UI:

External forwarding 383

Veri�cation the pcTag of the VRF

The following happens when the 0.0.0.0/0 prefix is in use with an L3Out:

• Traffic from an internal EPG to an L3Out EPG with 0.0.0.0/0 will derive a
destination pcTag of 15.

• Traffic from an L3Out EPG with 0.0.0.0/0 to an ACI internal EPG will derive a
source pcTag of the VRF (49153).

The contract_parser script gives a holistic view of the zoning-rules:

bdsol-aci32-leaf3# contract_parser.py --vrf Prod:VRF1
Key:
[prio:RuleId] [vrf:{str}] action protocol src-epg [src-l4] dst-epg [dst-l4] [flags][contract:{str}] [hit=count]
[7:4339] [vrf:Prod:VRF1] permit ip icmp tn-Prod/ap-App/epg-EPG1(32770) pfx-0.0.0.0/0(15) [contract:uni/tn-
Prod/brc-ICMP2] [hit=0]
[7:4337] [vrf:Prod:VRF1] permit ip icmp tn-Prod/ap-App/epg-EPG2(32771) pfx-0.0.0.0/0(15) [contract:uni/tn-
Prod/brc-ICMP] [hit=0]
[7:4341] [vrf:Prod:VRF1] permit ip icmp tn-Prod/vrf-VRF1(49153) tn-Prod/ap-App/epg-EPG1(32770) [contract:uni/tn-
Prod/brc-ICMP2] [hit=270]
[7:4336] [vrf:Prod:VRF1] permit ip icmp tn-Prod/vrf-VRF1(49153) tn-Prod/ap-App/epg-EPG2(32771) [contract:uni/tn-
Prod/brc-ICMP] [hit=0]

384 External forwarding

Confirming pcTag used by the packet using ELAM Assistant app
The ELAM Assistant App gives another method to confirm the source and destination
pcTag of live traffic flows.

The screen shot below shows the ELAM result for traffic from pcTag 32771 to pcTag
49153.

ELAM Assistant app output for src 32771 to dst 49153

Conclusion
The usage of 0.0.0.0/0 must be carefully tracked within a VRF as every L3Out using that
subnet will inherit the contracts applied to every other L3Out using it. This will likely
lead to unplanned permit flows.

External forwarding 385

Shared L3Out

Overview

This section will discuss how to troubleshoot route-advertisement in Shared L3Out
configurations. The term 'Shared L3Out' refers to the scenario where an L3Out is in one
VRF but an internal EPG having a contract with the L3Out is in a another VRF. With
Shared L3Outs, the route-leaking is being done internally to the ACI fabric.

This section will not go into deep detail about security policy troubleshooting. For that
refer to the "Security Policies" chapter of this book. This section will also not talk in
detail about External Policy Prefix classification for security purposes. Refer to the
"Contract and L3Out" section in the "external forwarding" chapter.

386 External forwarding

This section uses the following topology for our examples.

Shared L3Out topology

At a high level, the following configurations must be in place for a Shared L3Out to
function:

• An L3Out subnet must be configured with the 'Shared Route Control Subnet'
scope to leak external routes into internal VRFs. 'Aggregate Shared' option can
also be selected to leak all routes that are more specific than the configured
subnet.

• An L3Out subnet must be configured with the 'Shared Security Import Subnet'
scope to program the security policies necessary to allow communication
through this L3Out.

External forwarding 387

• The internal BD subnet must be set to 'Shared between VRFs' and 'Advertise
Externally' to program the BD subnet in the external VRF and advertise it.

• A 'tenant' or 'global' scope contract must be configured between the internal
EPG and the external EPG of the shared L3Out.

The next section will go into detail about how leaked routes are advertised and learned
in ACI.

Shared L3Out workflow — learning external routes

This section will outline the path of a learned external route as it is advertised into the
fabric.

External route as seen on the border leaf
This command will show the external route learned from OSPF:

leaf103# show ip route 172.16.20.1/32 vrf Prod:Vrf1
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

172.16.20.1/32, ubest/mbest: 1/0
 *via 10.10.34.3, vlan347, [110/20], 03:59:59, ospf-default, type-2

Next, the route must be imported into BGP. By default, all external routes should be
imported into BGP.

BGP verifications on the border leaf
The route must be in the BGP VPNv4 Address-family with a route-target to be
distributed throughout the fabric. The route-target is a BGP extended community
exported by the external VRF and imported by any internal VRFs that needs to receive
the path.

388 External forwarding

Next, verify the route-target that is being exported by the external VRF on the BL.

leaf103# show bgp process vrf Prod:Vrf1

Information regarding configured VRFs:

BGP Information for VRF Prod:Vrf1
VRF Type : System
VRF Id : 85
VRF state : UP
VRF configured : yes
VRF refcount : 1
VRF VNID : 2392068
Router-ID : 10.0.0.3
Configured Router-ID : 10.0.0.3
Confed-ID : 0
Cluster-ID : 0.0.0.0
MSITE Cluster-ID : 0.0.0.0
No. of configured peers : 1
No. of pending config peers : 0
No. of established peers : 0
VRF RD : 101:2392068
VRF EVPN RD : 101:2392068

...

 Wait for IGP convergence is not configured
 Export RT list:
 65001:2392068
 Import RT list:
 65001:2392068
 Label mode: per-prefix

The above output shows that any paths advertised from the external VRF into VPNv4
should receive a route-target of 65001:2392068.

Next, verify the bgp path:

leaf103# show bgp ipv4 unicast 172.16.20.1/32 vrf Prod:Vrf1
BGP routing table information for VRF Prod:Vrf1, address family IPv4 Unicast
BGP routing table entry for 172.16.20.1/32, version 30 dest ptr 0xa6f25ad0
Paths: (2 available, best #1)
Flags: (0x80c0002 00000000) on xmit-list, is not in urib, exported
 vpn: version 17206, (0x100002) on xmit-list
Multipath: eBGP iBGP

External forwarding 389

 Advertised path-id 1, VPN AF advertised path-id 1
 Path type: redist 0x408 0x1 ref 0 adv path ref 2, path is valid, is best path
 AS-Path: NONE, path locally originated
 0.0.0.0 (metric 0) from 0.0.0.0 (10.0.0.3)
 Origin incomplete, MED 20, localpref 100, weight 32768
 Extcommunity:
 RT:65001:2392068
 VNID:2392068
 COST:pre-bestpath:162:110

 VRF advertise information:
 Path-id 1 not advertised to any peer

 VPN AF advertise information:
 Path-id 1 advertised to peers:
 10.0.64.64 10.0.72.66
 Path-id 2 not advertised to any peer

The above output shows that the path has the correct route-target. The VPNv4 path
can also be verified by using 'show bgp vpnv4 unicast 172.16.20.1 vrf overlay-1' command.

Verifications on the server leaf
For the internal EPG leaf to install the BL-advertised route, it must import the route-
target (mentioned above) into the internal VRF. The internal VRF's BGP process can be
checked to validate this:

leaf101# show bgp process vrf Prod:Vrf2

Information regarding configured VRFs:

BGP Information for VRF Prod:Vrf2
VRF Type : System
VRF Id : 54
VRF state : UP
VRF configured : yes
VRF refcount : 0
VRF VNID : 2916352
Router-ID : 192.168.1.1
Configured Router-ID : 0.0.0.0
Confed-ID : 0
Cluster-ID : 0.0.0.0
MSITE Cluster-ID : 0.0.0.0
No. of configured peers : 0
No. of pending config peers : 0
No. of established peers : 0
VRF RD : 102:2916352
VRF EVPN RD : 102:2916352

390 External forwarding

...
 Wait for IGP convergence is not configured
 Import route-map 2916352-shared-svc-leak
 Export RT list:
 65001:2916352
 Import RT list:
 65001:2392068
 65001:2916352

The above output shows the internal VRF importing the route-target that is exported by
the external VRF. Additionally, there is an 'Import Route-Map' that is referenced. The
import route-map includes the specific prefixes that are defined in the shared L3Out
with the 'Shared Route Control Subnet' flag.

The route-map contents can be checked to ensure it includes the external prefix:

leaf101# show route-map 2916352-shared-svc-leak
route-map 2916352-shared-svc-leak, deny, sequence 1
 Match clauses:
 pervasive: 2
 Set clauses:
route-map 2916352-shared-svc-leak, permit, sequence 2
 Match clauses:
 extcommunity (extcommunity-list filter): 2916352-shared-svc-leak
 Set clauses:
route-map 2916352-shared-svc-leak, permit, sequence 1000
 Match clauses:
 ip address prefix-lists: IPv4-2392068-16387-5511-2916352-shared-svc-leak
 ipv6 address prefix-lists: IPv6-deny-all
 Set clauses:

a-leaf101# show ip prefix-list IPv4-2392068-16387-5511-2916352-shared-svc-leak
ip prefix-list IPv4-2392068-16387-5511-2916352-shared-svc-leak: 1 entries
 seq 1 permit 172.16.20.1/32

The above output shows the import route-map which includes the subnet to be
imported.

The final verifications include checking that the route is in the BGP table and that it is
installed in the routing table.

External forwarding 391

BGP table on server leaf:

leaf101# show bgp ipv4 unicast 172.16.20.1/32 vrf Prod:Vrf2
BGP routing table information for VRF Prod:Vrf2, address family IPv4 Unicast
BGP routing table entry for 172.16.20.1/32, version 3 dest ptr 0xa763add0
Paths: (2 available, best #1)
Flags: (0x08001a 00000000) on xmit-list, is in urib, is best urib route, is in HW
 vpn: version 10987, (0x100002) on xmit-list
Multipath: eBGP iBGP

 Advertised path-id 1, VPN AF advertised path-id 1
 Path type: internal 0xc0000018 0x40 ref 56506 adv path ref 2, path is valid, is best path
 Imported from 10.0.72.64:5:172.16.20.1/32
 AS-Path: NONE, path sourced internal to AS
 10.0.72.64 (metric 3) from 10.0.64.64 (192.168.1.102)
 Origin incomplete, MED 20, localpref 100, weight 0
 Received label 0
 Received path-id 1
 Extcommunity:
 RT:65001:2392068
 VNID:2392068
 COST:pre-bestpath:162:110
 Originator: 10.0.72.64 Cluster list: 192.168.1.102

The route is imported into the internal VRF BGP table and has the expected route-
target.

The installed routes can be verified:

leaf101# vsh -c "show ip route 172.16.20.1/32 detail vrf Prod:Vrf2"
IP Route Table for VRF "Prod:Vrf2"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
172.16.20.1/32, ubest/mbest: 2/0
 *via 10.0.72.64%overlay-1, [200/20], 01:00:51, bgp-65001, internal, tag 65001 (mpls-vpn)
 MPLS[0]: Label=0 E=0 TTL=0 S=0 (VPN)
 client-specific data: 548
 recursive next hop: 10.0.72.64/32%overlay-1
 extended route information: BGP origin AS 65001 BGP peer AS 65001 rw-vnid: 0x248004 table-id: 0x36 rw-
mac: 0
 *via 10.0.72.67%overlay-1, [200/20], 01:00:51, bgp-65001, internal, tag 65001 (mpls-vpn)
 MPLS[0]: Label=0 E=0 TTL=0 S=0 (VPN)
 client-specific data: 54a
 recursive next hop: 10.0.72.67/32%overlay-1
 extended route information: BGP origin AS 65001 BGP peer AS 65001 rw-vnid: 0x248004 table-id: 0x36 rw-
mac: 0

392 External forwarding

The above output uses a specific 'vsh -c' command to get the 'detail' output. The 'detail'
flag includes the rewrite VXLAN VNID. This is the VXLAN VNID of the external VRF.
When the BL receives dataplane traffic with this VNID, it knows to make the forwarding
decision in the external VRF.

The rw-vnid value is in hex, so converting to decimal will get the VRF VNID of 2392068.
Search for the corresponding VRF using 'show system internal epm vrf all | grep
2392068' on the leaf. A global search can be performed on an APIC using the 'moquery -
c fvCtx -f 'fv.Ctx.seg=="2392068"'' command.

The next-hop's IP should also point to the BL PTEPs and the '%overlay-1' indicates that
the route lookup for the next-hop is in the overlay VRF.

Shared L3Out workflow — advertising internal routes

As in previous sections, advertising internal BD subnets out a shared L3Out is handled
by the following:

• The BD subnet (internal VRF) is installed on the BL (external VRF) as a static
route. This static route deployment is a result of the contract relationship
between the internal EPG and the L3Out.

• The static route is redistributed into the external protocol when the 'Advertised
Externally' scope is set on the BD subnet.

Verify BD static route on the BL

leaf103# vsh -c "show ip route 192.168.1.0 detail vrf Prod:Vrf1"
IP Route Table for VRF "Prod:Vrf1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

192.168.1.0/24, ubest/mbest: 1/0, attached, direct, pervasive
 *via 10.0.120.34%overlay-1, [1/0], 00:55:27, static, tag 4294967292
 recursive next hop: 10.0.120.34/32%overlay-1
 vrf crossing information: VNID:0x2c8000 ClassId:0 Flush#:0

External forwarding 393

Notice that in the above output the VNID of the internal VRF is set for the rewrite. The
next-hop is also set to the proxy-v4-anycast address.

The above route is advertised externally through the same route-maps that are
demonstrated in the "Route Advertisement" section.

If a BD subnet is set to 'Advertise Externally', it is redistributed into every L3Out's
external protocol that the internal EPG has a contract relationship with.

Shared L3Out troubleshooting scenario — unexpected route
leaking

This scenario has multiple L3Outs in the external VRF and an internal EPG is receiving a
route from an L3Out where the network is not defined with the 'shared' scope options.

Usage of 'Aggregate Shared'
Consider the following figure:

Unexpected route leak

394 External forwarding

The BGP import-map with the prefix-list programmed from the 'Shared Route Control
Subnet' flags is applied at the VRF level. If one L3Out in VRF1 has a subnet with 'Shared
Route Control Subnet', then all routes received on L3Outs within VRF1 that match this
Shared Route Control Subnet will get imported into VRF2.

The above design can result in unexpected traffic flows. If there are no contracts
between the internal EPG and the unexpected advertising L3Out EPG, then there will
be traffic drops.

VMM integration

396 VMM integration

Overview

ACI controllers have the capability to integrate with third-party virtual machine
managers (VMMs).

This is one of the key features of ACI as it simplifies and automates operations for end-
to-end networking configuration of the fabric and to workloads that connect to it. ACI
offers a single overlay policy model that can be extended across multiple workload
types, i.e. virtual machines, bare metal servers, and containers.

This chapter will specifically focus on some typical troubleshooting scenarios related to
the VMware vCenter VMM integration.

The reader will walk through:

• Investigation on vCenter communication faults.

• Host and VM dynamic discovery process and failure scenarios.

• Hypervisor Load Balancing algorithms.

VMM integration 397

vCenter connectivity

Role-Based Access Control (RBAC)

The mechanisms by which APIC is able to interface with the vCenter Controller are
dependent on the user account associated to a given VMM Domain. Specific
requirements are outlined for the vCenter user associated with the VMM Domain to
ensure that the APIC can successfully perform operations on the vCenter, whether it is
pushing and retrieving inventory and configurations or monitoring and listening to
managed inventory related events.

The easiest way to remove concern about such requirements is to use the administrator
vCenter account that has full access; however, this kind of freedom is not always
available to the ACI administrator.

The minimum privileges for a custom user account, as of ACI version 4.2, are as follows:

• Alarms

- APIC creates two alarms on the folder. One for DVS and another for port
group. An alarm is raised when the EPG or VMM Domain policy is
deleted on the APIC, however vCenter is unable to delete the
corresponding Port Group or DVS due to having VMs attached to it.

• Distributed Switch

• dvPort Group

• Folder

• Network

- APIC manages the network settings such as add or delete port groups,
setting host/DVS MTU, LLDP/CDP, LACP etc.

398 VMM integration

• Host

- If using AVS in addition to above, the user needs the Host privilege on
the datacenter where APIC will create DVS.

- Host.Configuration.Advanced settings

- Host.Local operations.Reconfigure virtual machine

- Host.Configuration.Network configuration

- This is needed for AVS and the auto-placement feature for virtual
Layer 4 to Layer 7 Service VMs. For AVS, APIC creates VMK
interface and places it in VTEP port group which is used for
OpFlex.

• Virtual machine

- If Service Graphs are in use, the Virtual machine privilege for the virtual
appliances is also required.

- Virtual machine.Configuration.Modify device settings

- Virtual machine.Configuration.Settings

Troubleshooting RBAC-related issues
RBAC issues are most often encountered during initial setup of a VMM Domain
but could be encountered if a vCenter administrator were to modify permissions
of the user account associated with the VMM Domain after initial setup has
already taken place.

The symptom can present itself in the following ways:

• Partial or complete inability to deploy new services (DVS creation, port
group creation, some objects are successfully deployed but not all).

VMM integration 399

• Operational inventory is incomplete or missing from ACI administrator
views.

• Faults raised for unsupported vCenter operation, or for any of the
scenarios above (e.g. port group deployment failure).

• vCenter controller is reported as offline and faults indicate that there is
connectivity or credential related issues.

Solution for RBAC-related issues
Verify all the above permissions are granted to the vCenter user that is
configured in the VMM Domain.

Another method is to login directly to the vCenter with the same credentials as
defined in the VMM Domain configuration and attempt similar operations (port
group creation, etc.). If the user is not able to perform these same operations
while logged in directly to the vCenter, clearly the correct permissions are not
granted to the user.

Connectivity
When troubleshooting a VMM connectivity related issue, it is important to note
some of the fundamental behaviors of how ACI communicates with vCenter.

The first and most pertinent behavior is that only one APIC in the cluster is
sending configuration and collecting inventory at any given point. This APIC is
referred to as the shard leader for this VMM Domain. However, multiple APICs
are listening for vCenter Events in order to account for a scenario where the
shard leader missed an event for any reason. Following the same distributed
architecture of APICs, a given VMM Domain will have one APIC handling primary
data and functionality (in this case, the shard leader), and two replicas (in the
case of VMM they are referred to as followers). To distribute the handling of
VMM communication and functionality across APICs, any two VMM Domains
can either have the same or a different shard leaders.

400 VMM integration

Connectivity troubleshooting
The vCenter connectivity state can be found by navigating to the VMM
controller of interest in the GUI or using the CLI command listed below.

VMWare VMM Domain - vCenter connectivity state

apic2# show vmware domain name VDS_Site1 vcenter 10.48.176.69
Name : bdsol-aci37-vc
Type : vCenter
Hostname or IP : 10.48.176.69
Datacenter : Site1
DVS Version : 6.0
Status : online
Last Inventory Sync : 2019-10-02 09:27:23
Last Event Seen : 1970-01-01 00:00:00
Username : administrator@vsphere.local
Number of ESX Servers : 2
Number of VMs : 2
Faults by Severity : 0, 0, 0, 0
Leader : bdsol-aci37-apic1

Managed Hosts:
ESX VMs Adjacency Interfaces
--------------- -------- ---------- --
10.48.176.66 1 Direct leaf-101 eth1/11, leaf-102 eth1/11
10.48.176.67 1 Direct leaf-301 eth1/11, leaf-302 eth1/11

VMM integration 401

If a VMM controller is indicated to be offline, a fault will be thrown similar to
below:

Fault fltCompCtrlrConnectFailed
Rule ID:130
Explanation:
This fault is raised when the VMM Controller is marked offline. Recovery is in process.
Code: F0130
Message: Connection to VMM controller: hostOrIp with name name in datacenter rootContName in domain:
domName is failing repeatedly with error: [remoteErrMsg]. Please verify network connectivity of VMM
controller hostOrIp and check VMM controller user credentials are valid.

1. The first step in troubleshooting a connectivity issue between the APIC and
vCenter is understanding which APIC is the shard leader for the given VMM
Domain. The easiest way to determine this information is to run the command
'show vmware domain name <domain>' on any APIC.

apic1# show vmware domain name VDS_Site1
Domain Name : VDS_Site1
Virtual Switch Mode : VMware Distributed Switch
Vlan Domain : VDS_Site1 (1001-1100)
Physical Interfaces : leaf-102 eth1/11, leaf-301 eth1/11, leaf-302 eth1/11,
 leaf-101 eth1/11
Number of EPGs : 2
Faults by Severity : 0, 0, 0, 0
LLDP override : RX: enabled, TX: enabled
CDP override : no
Channel Mode override : mac-pinning
NetFlow Exporter Policy : no
Health Monitoring : no
vCenters:
Faults: Grouped by severity (Critical, Major, Minor, Warning)
vCenter Type Datacenter Status ESXs VMs Faults
-------------------- -------- -------------------- -------- ----- ----- ---------------
10.48.176.69 vCenter Site1 online 2 2 0,0,0,0
APIC Owner:
Controller APIC Ownership
------------ -------- ---------------
bdsol- apic1 Leader
aci37-vc
bdsol- apic2 NonLeader
aci37-vc
bdsol- apic3 NonLeader
aci37-vc

402 VMM integration

2. After identifying the APIC which is actively communicating with the
vCenter, verify IP connectivity with tools such as ping.

apic1# ping 10.48.176.69
PING 10.48.176.69 (10.48.176.69) 56(84) bytes of data.
64 bytes from 10.48.176.69: icmp_seq=1 ttl=64 time=0.217 ms
64 bytes from 10.48.176.69: icmp_seq=2 ttl=64 time=0.274 ms
64 bytes from 10.48.176.69: icmp_seq=3 ttl=64 time=0.346 ms
64 bytes from 10.48.176.69: icmp_seq=4 ttl=64 time=0.264 ms
64 bytes from 10.48.176.69: icmp_seq=5 ttl=64 time=0.350 ms
^C
--- 10.48.176.69 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4084ms
rtt min/avg/max/mdev = 0.217/0.290/0.350/0.052 ms

If the vCenter was configured using the FQDN rather than IP address, the
nslookup command can be used to verify name resolution.

apic1:~> nslookup bdsol-aci37-vc
Server: 10.48.37.150
Address: 10.48.37.150#53
Non-authoritative answer:
Name: bdsol-aci37-vc.cisco.com
Address: 10.48.176.69

3. Check the APIC routing table to verify if out-of-band or in-band is preferred
for connectivity and which gateway is used:

apic1# bash
admin@apic1:~> route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 10.48.176.1 0.0.0.0 UG 16 0 0 oobmgmt

VMM integration 403

4. Ensure Port 443 is allowed between all APICs and the vCenter, including any
firewalls in the path of communication.

vCenter <-> APIC - HTTPS (TCP port 443) - communication

General HTTPS reachability from the APICs to vCenter can be tested with a curl:

apic2# curl -v -k https://10.48.176.69
* Rebuilt URL to: https://10.48.176.69/
* Trying 10.48.176.69...
* TCP_NODELAY set
* Connected to 10.48.176.69 (10.48.176.69) port 443 (#0)
...

Verify that the shard leader has an established TCP connection on port 443
using the netstat command.

apic1:~> netstat -tulaen | grep 10.48.176.69
tcp 0 0 10.48.176.57:40806 10.48.176.69:443 ESTABLISHED 600 13062800

404 VMM integration

5. If possible, perform a packet capture along the path in between the shard
leader and vCenter in an effort to identify if traffic is being sent and received
by either device.

VMware inventory

The following table shows a list of VMWare VDS parameters and specifies
whether these are configurable by the APIC.

VMware VDS parameters managed by APIC

VMware VDS Default Value
Con�gurable Using Cisco APIC

Policy?

Name VMM Domain name Yes (Derived from Domain)

Description 'APIC Virtual Switch' No

Folder Name VMM Domain name Yes (Derived from Domain)

Version
Highest supported by
vCenter

Yes

Discovery Protocol LLDP Yes

Uplink Ports and Uplink
Names

8
Yes (From Cisco APIC Release
4.2(1))

Uplink Name Pre�x uplink
Yes (From Cisco APIC Release
4.2(1))

Maximum MTU 9000 Yes

LACP policy disabled Yes

Port mirroring 0 sessions Yes

Alarms
2 alarms added at the folder
level

No

The following table shows a list of VMWare VDS Port Group parameters and
specifies whether these are configurable by the APIC.

VMM integration 405

VMWare VDS Port Group parameters managed by APIC

VMware VDS Port
Group

Default Value
Con�gurable using APIC

Policy

Name
Tenant Name | Application Pro�le Name |
EPG Name

Yes (Derived from EPG)

Port binding Static binding No

VLAN Picked from VLAN pool Yes

Load balancing
algorithm

Derived based on port-channel policy on
APIC

Yes

Promiscuous mode Disabled Yes

Forged transmit Disabled Yes

MAC change Disabled Yes

Block all ports FALSE No

Inventory troubleshooting:
Inventory sync events occur to ensure that the APIC is aware of vCenter events
that may require the APIC to dynamically update policy. There are two types of
inventory sync events that can occur between vCenter and the APIC; a full
inventory sync and an event-based inventory sync. The default schedule of a full
inventory sync between the APIC and vCenter is every 24 hours, however these
can also be manually triggered. Event-based inventory syncs are typically tied to
triggered tasks, such as a vMotion. In this scenario, if a virtual machine moves
from one host to another, and those hosts are connected to two different leaf
switches, the APIC will listen for the VM migration event and, in the scenario of
on-demand deployment immediacy, unprogram the EPG on the source leaf, and
program the EPG on the destination leaf.

Depending on the deployment immediacy of EPGs associated with a VMM
domain, failure to pull inventory from the vCenter could have undesirable
consequences. In the scenario that inventory has failed to complete or is partial,

406 VMM integration

there will always be a fault raised indicating the object or objects which have
caused the failure.

Scenario 1 - Virtual machine with invalid backing:
If a virtual machine is moved from one vCenter to another, or the virtual
machine is determined to have an invalid backing (e.g. a port group attachment
to an old/deleted DVS), the vNIC will be reported to have an operational issues.

Fault fltCompVNicOperationalIssues
Rule ID:2842
Explanation:
This fault is raised when ACI controller failed to update the properties of a VNIC (e.g., it can not
find the EPG that the VNIC attached to).
Code: F2842
Message: Operational issues detected for VNic name on VM name in VMM controller: hostOrIp with name
name in datacenter rootContName in domain: domName due to error: issues.

Resolution:

Remediate the virtual machines indicated in the fault by assigning a valid port
group on the affected vNIC of the VM.

Scenario 2 — vCenter administrator modified a VMM managed object on the
vCenter:
Modifying objects which are managed by the APIC from vCenter is not a
supported operation. The following fault would be seen if an unsupported
operation is performed on vCenter.

Fault fltCompCtrlrUnsupportedOperation
Rule ID:133
Explanation:
This fault is raised when deployment of given configuration fails for a Controller.
Code: F0133
Message: Unsupported remote operation on controller: hostOrIp with name name in datacenter
rootContName in domain domName detected, error: [deployIssues]

Resolution:

If this scenario is encountered, try to undo the unsupported change in vCenter
and then trigger an 'inventory sync' manually.

VMM integration 407

VMWare VMM Domain - vCenter controller - trigger inventory sync

VMware DVS version

When creating a new vCenter controller as part of a VMM Domain, the default
setting for the DVS Version will be to use the 'vCenter Default'. When selecting
this, the DVS version will be created with the version of the vCenter.

408 VMM integration

VMWare VMM Domain - vCenter controller creation

This means that in the example of a vCenter running 6.5 and ESXi servers
running 6.0, the APIC will create a DVS with version 6.5 and hence the vCenter
administrator will be unable to add the ESXi servers running 6.0 into the ACI
DVS.

VMM integration 409

APIC managed DVS - vCenter host addition - empty list

APIC managed DVS - vCenter host addition - incompatible hosts

So, when creating a VMM Domain make sure to select the correct 'DVS Version'
such that the necessary ESXi servers can be added to the DVS.

410 VMM integration

Host dynamic discovery

Host / VM discovery process

VMM integration in ACI differentiates itself from manual provisioning in that the fabric
can dynamically discover where hosts and applicable virtual machines are connected to
efficiently deploy policy. Through this dynamic process, ACI can optimize utilization of
hardware resources on the leaf switches as VLANs, SVIs, zoning rules, etc. are deployed
on nodes only when there is an endpoint connected which requires the policy. The
benefit to the network administrator, from an ease of use perspective, is that ACI will
provision VLAN/policy where VMs connect in an automated way. To determine where
policy must be deployed, the APIC will use information from multiple sources. The
following diagram outlines the basic steps of the host discovery process when using a
DVS-based VMM Domain.

VMWare VMM Domain — Deployment work�ow

VMM integration 411

In short the following key steps are happening when:

• LLDP or CDP is exchanged between hypervisor and leaf switches.

• Hosts report adjacency info to vCenter.

• vCenter notifies APIC of adjacency info:

- APIC knows about host via inventory sync.

• APIC pushes policy to the leaf port:

- please review "Resolution Immediacy" sub-section within this section to
further understand these conditions.

• If vCenter adjacency info is lost, APIC can remove policy.

As can be seen, CDP/LLDP plays a key role in the discovery process and it is important
to make sure this is properly configured and both sides are using the same protocol.

Fabric LooseNode / intermediate switch - use case

In a deployment using a blade chassis with an intermediate switch between the leaf
switches and the hypervisor, the APIC needs to 'stitch' the adjacency together. In this
scenario, multiple discovery protocols could be used as the intermediate switch may
have different protocol requirements than the host.

In a setup with a blade server and an intermediate switch (i.e. blade chassis switch), ACI
should detect the intermediate switch and map the hypervisors behind it. The
intermediate switch is referred to in ACI as a LooseNode or an 'Unmanaged Fabric
Node'. The detected LooseNodes can be viewed under 'Fabric > Inventory > Fabric
Membership > Unmanaged Fabric Nodes'. By navigating to one of these types of servers
in the GUI, the user can view the path from leaf to intermediate switch to host.

412 VMM integration

APIC UI — Unmanaged fabric nodes (LooseNodes)

With LLDP or CDP discovery in place, ACI can determine the topology for such
LooseNodes, given that the hypervisor downstream of the intermediate switch is
managed through VMM integration, and the leaf itself has an adjacency to the
intermediate switch from downstream.

VMM integration 413

This concept is illustrated by the image below.

APIC UI — Unmanaged Fabric Node path

Resolution Immediacy

In scenarios where critical services utilize the VMM-integrated DVS such as
management connectivity to vCenter/ESXi, it is prudent to use the Pre-provision
Resolution Immediacy. With this setting, the mechanism of dynamic host discovery is
removed and instead policy / VLANs are statically programmed on the host facing
interfaces. In this configuration, the VMM VLANs will always be deployed to all
interfaces tied to the AEP referenced by the VMM Domain. This removes the possibility
that a critical VLAN (such as management) is removed from a port due to a discovery
protocol-related adjacency event.

414 VMM integration

Refer to the below diagram:

Pre-provision deployment example

If Pre-provision was set for an EPG in the ACI_VDS1 VMM Domain, then VLANs would
be deployed on links for Server1 but not Server2 as Server2's AEP does not include the
ACI_VDS1 VMM Domain.

To summarize the resolution immediacy settings:

• On-Demand - Policy is deployed when adjacency is established between leaf and
host and a VM attached to the port group.

VMM integration 415

• Immediate - Policy is deployed when adjacency is established between leaf and
host.

• Pre-provision - Policy is deployed to all ports using an AEP with the VMM
Domain contained, no adjacency is required.

Troubleshooting scenarios

VM cannot resolve ARP for its default gateway
In this scenario, VMM integration has been configured and the DVS has been added to
the hypervisor but the VM cannot resolve ARP for its gateway in ACI. For the VM to
have network connectivity, verify that adjacency has established and VLANs are
deployed.

First, the user can check the leaf has detected the host by using 'show lldp neighbors' or
'show cdp neighbors' on the leaf depending on the protocol selected.

Leaf101# show lldp neighbors
Capability codes:
 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID Local Intf Hold-time Capability Port ID
bdsol-aci37-apic1 Eth1/1 120 eth2-1
bdsol-aci37-apic2 Eth1/2 120 eth2-1
bdsol-aci37-os1 Eth1/11 180 B 0050.565a.55a7
S1P1-Spine201 Eth1/49 120 BR Eth1/1
S1P1-Spine202 Eth1/50 120 BR Eth1/1
Total entries displayed: 5

If needed from a troubleshooting perspective, this can be validated from the ESXi side
both on the CLI and GUI:

[root@host:~] esxcli network vswitch dvs vmware list
VDS_Site1
 Name: VDS_Site1
 ...
 Uplinks: vmnic7, vmnic6
 VMware Branded: true

416 VMM integration

DVPort:
 Client: vmnic6
 DVPortgroup ID: dvportgroup-122
 In Use: true
 Port ID: 0

 Client: vmnic7
 DVPortgroup ID: dvportgroup-122
 In Use: true
 Port ID: 1

[root@host:~] esxcfg-nics -l
Name PCI Driver Link Speed Duplex MAC Address MTU Description
vmnic6 0000:09:00.0 enic Up 10000Mbps Full 4c:77:6d:49:cf:30 9000 Cisco Systems Inc Cisco VIC
Ethernet NIC
vmnic7 0000:0a:00.0 enic Up 10000Mbps Full 4c:77:6d:49:cf:31 9000 Cisco Systems Inc Cisco VIC
Ethernet NIC

[root@host:~] vim-cmd hostsvc/net/query_networkhint --pnic-name=vmnic6 | grep -A2 "System Name"
 key = "System Name",
 value = "Leaf101"
 }

VMM integration 417

vCenter Web Client - host - vmnic LLDP/CDP adjacency details

If the leaf LLDP adjacency cannot be seen from the ESXi host, this is often caused by
using a network adapter which is configured to generate LLDPDUs instead of the ESXi
OS. Make sure to validate if the network adapter has LLDP enabled and hence is
consuming all LLDP information. If this is the case, be sure to disable LLDP on the
adapter itself so it is controlled through the vSwitch policy.

Another cause might be that there is a mis-alignment between the discovery protocols
used between leaf and ESXi Hypervisor. Make sure on both ends to use the same
discovery protocol.

418 VMM integration

To check if the CDP/LLDP settings are aligned between ACI and the DVS in the APIC UI,
navigate to 'Virtual Networking > VMM Domains > VMWare > Policy > vSwitch Policy'.
Make sure to only enable either LLDP or CDP policy as they are mutually exclusive.

APIC UI - VMWare VMM Domain - vSwitch policy

In vCenter go to: 'Networking > VDS > Configure'.

vCenter Web Client UI - VDS properties

Correct the LLDP/CDP settings if needed.

VMM integration 419

Then validate the APIC observes the ESXi host's LLDP/CDP neighborship against the
leaf switch in the UI under 'Virtual Networking > VMM Domains > VMWare > Policy >
Controller > Hypervisor > General'.

APIC UI - VMWare VMM Domain - Hypervisor details

If this is showing expected values, then the user can validate that the VLAN is present
on the port toward the host.

S1P1-Leaf101# show vlan encap-id 1035

 VLAN Name Status Ports
 ---- -------------------------------- --------- -------------------------------
 12 Ecommerce:Electronics:APP active Eth1/11

 VLAN Type Vlan-mode
 ---- ----- ----------
 12 enet CE

420 VMM integration

vCenter/ESXi management VMK attached to APIC-pushed DVS
In a scenario where vCenter or ESXi management traffic needs to utilize the VMM
integrated DVS, it is important to take some extra care to avoid a stalemate in activating
the dynamic adjacencies and activate the required VLANs.

For vCenter, which is typically built before VMM integration is configured, it is
important to use a physical domain and static path to assure the vCenter VM's encap
VLAN is always programmed on the leaf switches so that it can be used before VMM
integration is fully set up. Even after setting up the VMM integration, it is advised to
leave this static path in place to always assure availability of this EPG.

For the ESXi hypervisors, as per the "Cisco ACI Virtualization Guide" on Cisco.com,
when migrating onto the vDS it is important to make sure that the EPG where the VMK
interface will be connected is deployed with the resolution immediacy set to Pre-
provision. This will make sure the VLAN is always programed on the leaf switches
without relying on LLDP/CDP discovery of the ESXi hosts.

Host adjacencies not discovered behind LooseNode
Typical causes of LooseNode discovery issues are:

• CDP/LLDP is not enabled

- CDP/LLDP must be exchanged between the intermediate switch, the
leaf switches and ESXi hosts

- For Cisco UCS, this is accomplished via a network control policy on the
vNIC

• A change in the management IP of the LLDP/CDP neighbor breaks connectivity

- The vCenter will see the new management IP in the LLDP/CDP
adjacency, but will not update APIC

- Trigger a manual inventory sync to fix

VMM integration 421

• VMM VLANs are not added to the intermediate switch

- The APIC doesn't program third party blade/intermediate switches.

- Cisco UCSM integration app (ExternalSwitch) available in 4.1(1) release.

- VLANs must be configured and trunked to uplinks connected to ACI leaf
nodes and downlinks connected to hosts

F606391 - Missing adjacencies for the physical adapter on the host
When seeing the fault below:

Affected Object: comp/prov-VMware/ctrlr-[DVS-DC1-ACI-LAB]-DVS1/hv-host-104
Fault delegate: [FSM:FAILED]: Get LLDP/CDP adjacency information for the physical adapters on the host: bdsol-
aci20-os3 (TASK:ifc:vmmmgr:CompHvGetHpNicAdj)

Please review the workflow in section "VM cannot resolve ARP for its default gateway"
as this means there are missing CDP/LLDP adjacencies. These adjacencies should be
verified end-to-end.

422 VMM integration

Hypervisor uplink load balancing

When connecting hypervisors such as ESXi to an ACI fabric, they will typically be
connected with multiple uplinks. In fact, it is recommended to have an ESXi host
connected to at least two leaf switches. This will minimize the impact of failure
scenarios or upgrades.

In order to optimize how uplinks are used by the workloads running on a hypervisor,
VMware vCenter configurations allow configuring multiple load balancing algorithms
for VM-generated traffic towards the hypervisor's uplinks.

It is crucial to have all hypervisors and the ACI fabric aligned with the same load
balancing algorithm configuration to ensure correct connectivity is in place. Failure to
do so may result in intermittent traffic flow drops and endpoint moves in the ACI fabric.

This can be seen in an ACI fabric by excessive alerts such as:

F3083 fault
ACI has detected multiple MACs using the same IP address 172.16.202.237.
MACs: Context: 2981888. fvCEps:
uni/tn-BSE_PROD/ap-202_Voice/epg-VLAN202_Voice/cep-00:50:56:9D:55:B2;
uni/tn-BSE_PROD/ap-202_Voice/epg-VLAN202_Voice/cep-00:50:56:9D:B7:01;

or

[F1197][raised][bd-limits-exceeded][major][sys/ctx-[vxlan-2818048]/bd-[vxlan-16252885]/fault-F1197]
Learning is disabled on BD Ecommerce:BD01

This chapter will cover VMWare ESXi host connectivity into ACI but is applicable for
most hypervisors.

VMM integration 423

Rack server

When looking at the various ways an ESXi host can connect to an ACI fabric, they are
divided in 2 groups, switch dependent and switch independent load balancing
algorithms.

Switch independent load balancing algorithms are ways to connect where no specific
switch configuration is needed. For switch dependent load balancing, switch-specific
configurations are required.

Make sure to validate if vSwitch Policy is in line with the 'ACI Access Policy Group'
requirements as per the table below.

424 VMM integration

Teaming and ACI vSwitch policy

VMware
Teaming and

Failover Mode

ACI
vSwitch
Policy

Description

ACI Access
Policy Group

- Port
Channel
Required

Route based on
the originating
virtual port

MAC
Pinning

Select an uplink based on the virtual port IDs on the
switch. After the virtual switch selects an uplink for a
virtual machine or a VMKernel adapter, it always
forwards tra�c through the same uplink for this virtual
machine or VMKernel adapter.

No

Route based on
Source MAC hash

NA
Select an uplink based on a hash of the source MAC
address

NA

Explicit Failover
Order

Use
Explicit
Failover
Mode

From the list of active adapters, always use the highest
order uplink that passes failover detection criteria. No
actual load balancing is performed with this option.

No

Link
Aggregation(LAG)
- IP Hash Based

Static
Channel -
Mode On

Select an uplink based on a hash of the source and
destination IP addresses of each packet. For non-IP
packets, the switch uses the data at those �elds to
compute the hash. IP-based teaming requires that on
the ACI side a port-channel / VPC is con�gured with
'mode on'.

Yes (channel
mode set to
'on')

Link
Aggregation(LAG)
- LACP

LACP
Active /
Passive

Select an uplink based on a selected hash (20 di�erent
hash options available). LACP based teaming requires
that on the ACI side a port-channel / VPC is con�gured
with LACP enabled. Make sure to create an Enhanced
Lag Policy in ACI and apply it to the VSwitch Policy.

Yes (channel
mode set to
'LACP
Active/Passive')

Route based on
Physical NIC Load
(LBT)

MAC
Pinning -
Physical-
NIC-load

Available for distributed port groups or distributed
ports. Select an uplink based on the current load of the
physical network adapters connected to the port group
or port. If an uplink remains busy at 75 percent or
higher for 30 seconds, the host's vSwitch moves a part
of the virtual machine tra�c to a physical adapter that
has free capacity.

No

VMM integration 425

See the screenshot below on how to validate Port-Channel Policy as part of the vSwitch
Policy in place.

ACI vSwitch Policy — Port Channel Policy

Note : For a more in-depth description of VMware networking features, please
review vSphere Networking at https://docs.vmware.com/en/VMware-vSphere/6.https://docs.vmware.com/en/VMware-vSphere/6.https://docs.vmware.com/en/VMware-vSphere/6.
5/com.vmware.vsphere.networking.doc/GUID-D34B1ADD-B8A7-43CD-AA7E-25/com.vmware.vsphere.networking.doc/GUID-D34B1ADD-B8A7-43CD-AA7E-25/com.vmware.vsphere.networking.doc/GUID-D34B1ADD-B8A7-43CD-AA7E-2
832A0F7EE76.html832A0F7EE76.html832A0F7EE76.html

Cisco UCS B-Series use case

When using Cisco UCS B-Series servers, it is important to note they connect within
their chassis to UCS Fabric Interconnects (FIs) that do not have a unified dataplane. This
use case equally applies to other vendors which employ a similar topology. Because of

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.networking.doc/GUID-D34B1ADD-B8A7-43CD-AA7E-2832A0F7EE76.html

426 VMM integration

this there can be a difference between the load-balancing method used from an ACI leaf
switch side and the vSwitch side.

Below is a UCS FI topology with ACI:

Cisco UCS FI with ACI leaf switches - topology

Key things to notice:

• Each Cisco UCS FI has a port-channel towards the ACI leaf switches.

• The UCS FIs are directly interconnected for heartbeat purposes only (not used
for dataplane).

• Each blade server's vNIC is pinned to a specific UCS FI or uses a path toward
one of FIs by using UCS Fabric Failover (Active-Standby).

• Using IP-hash algorithms on the ESXi host's vSwitch will cause MAC flaps on the
UCS FI’s.

VMM integration 427

In order to correctly configure this, do the following:

Cisco UCS FI with ACI leaf switches — port-channel con�g

When MAC Pinning is configured on the Port-Channel Policy as part of the vSwitch
Policy in ACI, this will show as 'Route based on the originating virtual port' teaming
configuration of the port groups on the VDS.

428 VMM integration

ACI — Port Channel Policy as part of vSwitch Policy

Note: The Port Channel Policy used in the above example is auto-named by the
wizard hence it's called "VDS_lacpLagPol" although we use Mode "MAC
Pinning".

VMM integration 429

VMWare vCenter — ACI VDS — Port Group — Load Balancing setting

PBR (Policy-Based
Redirect)

432 PBR (Policy-Based Redirect)

1

-

-

2

-

-

-

3

-

-

-

4

Overview

This chapter explains troubleshooting for unmanaged mode Service Graph with Policy-
Based Redirect (PBR).

The following are typical troubleshooting steps. This chapter explains how to verify
steps 2 and 3 which are specific to PBR. For steps 1 and 4, please refer to chapters:
"Intra-Fabric forwarding", "External forwarding", and "Security policies".

Check the traffic works without PBR Service Graph:

Consumer and provider endpoints are learned.

Consumer and provider endpoints can communicate.

Check Service Graph is deployed:

Deployed Graph Instances have no fault.

VLANs and class IDs for service node are deployed.

Service node endpoints are learned.

Check the forwarding path:

Check policy is programmed on the leaf nodes.

Capture the traffic on the service node to confirm if traffic is redirected.

Capture the traffic on the ACI leaf to confirm if traffic comes back to the
ACI fabric after PBR.

Check the traffic arrives on the consumer and provider endpoint, and that the
endpoint generates the return traffic.

PBR (Policy-Based Redirect) 433

This document doesn’t cover design or configuration options. For that information,
please refer to the "ACI PBR White Paper" on Cisco.com

In this chapter, service node and service leaf imply the following:

• Service node — an external node to which PBR is redirecting the traffic, such as
a firewall or load balancer.

• Service leaf — an ACI leaf that is connected to a service node.

434 PBR (Policy-Based Redirect)

Service Graph deployment

This chapter explains a troubleshooting example where a Service Graph is not
deployed.

After a Service Graph policy is defined and applied to a contract subject, there should
be a deployed graph instance appearing on the ACI GUI. The figure below shows the
troubleshooting scenario where the Service Graph does not appear as deployed.

Service Graph is not shown as a Deployed Graph Instance.

1. Check configuration steps and fault
The first step of troubleshooting is to check the necessary components have been
configured without any fault. The assumption is that general configurations below are
already done:

PBR (Policy-Based Redirect) 435

• VRF and BDs for consumer EPG, provider EPG and service node

• The consumer and provider EPG.

• The contract and filters.

It’s worth mentioning that an EPG for the service node is not needed to be
created manually. It will be created through Service Graph deployment.

Service Graph with PBR configuration steps are the following:

• Create the L4-L7 Device (Logical Device).

• Create the Service Graph.

• Create the PBR policy.

• Create the Device Selection policy.

• Associate the Service Graph with the contract subject.

2. Service Graph deployment issues

Check Service Graph deployment in the UI
After a Service Graph is associated to the contract subject, a deployed graph instance
should show up for each contract with Service Graph (figure below).

The location is 'Tenant > Services > L4-L7 > Deployed Graph Instances'

436 PBR (Policy-Based Redirect)

Deployed Graph Instance

If a Deployed Graph Instance does not show up, there is something wrong with the
contract configuration. Major reasons can be:

• The contract doesn't have a consumer or provider EPG.

• The contract subject doesn't have any filter.

• The contract scope is VRF even though it's for inter-VRF or inter-tenant EPG
communication.

PBR (Policy-Based Redirect) 437

If Service Graph instantiation fails, faults are raised in the Deployed Graph Instance,
which means there is something wrong with the Service Graph configuration. Typical
faults caused by configuration are the following:

F1690: Configuration is invalid due to ID allocation failure
This fault indicates that the encapsulated VLAN for the service node is not available. For
example, there is no available dynamic VLAN in the VLAN pool associated to the VMM
domain used in the Logical Device.

Resolution: Check the VLAN pool in the domain used for the Logical Device. Check
encapsulated VLAN in the Logical Device interface if it's in a physical domain. The
locations are 'Tenant > Services > L4-L7 > Devices and Fabric >Access Policies > Pools >
VLAN'.

F1690: Configuration is invalid due to no device context found for LDev
This fault indicates that the Logical Device can't be found for the Service Graph
rendering. For example, there is no Device Selection Policy matched for the contract
with the Service Graph.

Resolution: Check the Device Selection Policy is defined. Device Selection Policy
provides a selection criterion for a service device and its connectors. The criteria are
based on a contract name, a Service Graph name, and a node name in the Service
Graph. The location is 'Tenant > Services > L4-L7 > Device Selection Policy'.

438 PBR (Policy-Based Redirect)

Check Device Selection Policy

F1690: Configuration is invalid due to no cluster interface found
This fault indicates that the cluster interface for the service node can't be found. For
example, the cluster interface is not specified in Device Selection Policy.

Resolution: Check the cluster interface is specified in Device Selection policy and
connector name is correct (Figure below).

F1690: Configuration is invalid due to no BD found
This fault indicates that the BD for the service node can't be found. For example, the BD
is not specified in Device Selection Policy.

PBR (Policy-Based Redirect) 439

Resolution: Check BD is specified in Device Selection policy and connector name is
correct (Figure below).

F1690: Configuration is invalid due to invalid service redirect policy
This fault indicates that the PBR policy is not selected even though redirect is enabled
on the service function in the Service Graph.

Resolution: Select PBR policy in the Device Selection Policy (Figure below).

Logical interface con�guration in Device Selection Policy

440 PBR (Policy-Based Redirect)

Forwarding

This chapter explains the troubleshooting steps for the PBR forwarding path.

1. Check VLANs are deployed and endpoints are learned on the leaf node
Once a Service Graph is successfully deployed without any fault, EPGs and BDs for a
service node get created. The figure below shows where to find the encapsulated VLAN
IDs and class IDs of service node interfaces (Service EPGs). In this example, the
consumer side of a firewall is class ID 16386 with VLAN encap 1000 and the provider
side of a firewall is class ID 49157 with VLAN encap 1102.

The location is 'Tenant > Services > L4-L7 > Deployed Graph instances > Function
Nodes'.

Service node

PBR (Policy-Based Redirect) 441

Service node interface class ID

These VLANs are deployed on the service leaf node interfaces where the service nodes
are connected. VLAN deployment and endpoint learning status can be checked by using
'show vlan extended' and 'show endpoint' on the service leaf node CLI.

Pod1-Leaf1# show endpoint vrf Prod:VRF1
Legend:
s - arp H - vtep V - vpc-attached p - peer-aged
R - peer-attached-rl B - bounce S - static M - span
D - bounce-to-proxy O - peer-attached a - local-aged m - svc-mgr
L - local E - shared-service
+-----------------------------------+---------------+-----------------+--------------+-------------+
 VLAN/ Encap MAC Address MAC Info/ Interface
 Domain VLAN IP Address IP Info
+-----------------------------------+---------------+-----------------+--------------+-------------+
53 vlan-1000 0050.56af.3c60 LV po1
Prod:VRF1 vlan-1000 192.168.101.100 LV po1
59 vlan-1102 0050.56af.1c44 LV po1
Prod:VRF1 vlan-1102 192.168.102.100 LV po1

442 PBR (Policy-Based Redirect)

If endpoint IPs of the service nodes are not learned as endpoints in ACI fabric, it’s most
likely either a connectivity or configuration issue between the service leaf and service
node. Please check the following statuses:

• The service node is connected to the correct leaf downlink port.

- If the service node is in a physical domain, the leaf static path end encap
VLAN needs to be defined in the Logical Device.

- If the service node is in a VMM domain, please check the VMM domain
is working and the port group created through Service Graph is attached
to the service node VM correctly.

• The leaf downlink port connected to the service node or the hypervisor where
the service node VM resides is UP.

• The service node has the correct VLAN and IP address.

• Intermediate switch between the service leaf and the service node has the
correct VLAN configuration.

2. Check the expected traffic paths
If end-to-end traffic stops working once PBR is enabled, even though the service node
endpoints are learned in ACI fabric, the next troubleshooting step is to check what the
expected traffic paths are.

Figures 'PBR forwarding path example - consumer to provider' and 'PBR forwarding
path example - provider to consumer' illustrate a forwarding path example of firewall
insertion using PBR between a consumer endpoint and a provider endpoint. The
assumption is that the endpoints are already learned on leaf nodes.

PBR (Policy-Based Redirect) 443

PBR forwarding path example - consumer to provider

Note : Since source MAC is not changed to ACI leaf MAC, the PBR node must not
use source MAC based forwarding if consumer endpoint and PBR node are not in
the same BD

444 PBR (Policy-Based Redirect)

PBR forwarding path example - provider to consumer

Note: It's worth mentioning that PBR policy is enforced on either consumer or
provider leaf and what ACI PBR does is destination MAC rewrite as shown in
�gures 'PBR forwarding path example - consumer to provider' and 'PBR
forwarding path example - provider to consumer'. Reaching the PBR destination
MAC always uses a spine proxy, even if the source endpoint and PBR destination
MAC are under the same leaf.

PBR (Policy-Based Redirect) 445

Though figures 'PBR forwarding path example - consumer to provider' and 'PBR
forwarding path example - provider to consumer' show an example of where the traffic
would be redirected, where policy is enforced depends on contract configuration and
endpoint learning status. The table 'Where policy is enforced' summarizes where policy
is enforced within a single ACI site. Where policy is enforced in Multi-Site is different.

446 PBR (Policy-Based Redirect)

Where is policy enforced?

Scenario VRF enforcement mode Consumer Provider Policy enforced on

Intra-VRF

Ingress/egress EPG EPG

• If destination endpoint is
learned: ingress leaf*

• If destination endpoint is not
learned: egress leaf

Ingress EPG L3Out EPG Consumer leaf (non-border leaf)

Ingress L3Out EPG EPG Provider leaf (non-border leaf)

Egress EPG L3Out EPG

Border leaf -> non-border leaf tra�c

• If destination endpoint is

learned: border leaf

• If destination endpoint is not

learned: non-border leaf

Non-border leaf-> border leaf tra�c

• Border leaf

Egress L3Out EPG EPG

Ingress/egress L3Out EPG L3Out EPG Ingress leaf*

Inter-VRF

Ingress/egress EPG EPG Consumer leaf

Ingress/egress EPG L3Out EPG Consumer leaf (Non-border leaf)

Ingress/egress L3Out EPG EPG Ingress leaf*

Ingress/egress L3Out EPG L3Out EPG Ingress leaf*

*Policy enforcement is applied on the first leaf hit by the packet.

PBR (Policy-Based Redirect) 447

These are examples:

• If an external endpoint in L3Out EPG in VRF1 tries to access an endpoint in Web
EPG in VRF1 and VRF1 is configured for ingress enforcement mode, traffic is
redirected by the leaf where the endpoint in Web EPG resides, regardless of
contract direction.

• If an endpoint in consumer Web EPG in VRF1 tries to access an endpoint in
provider App EPG in VRF1, and the endpoints are learned on consumer and
provider leaf nodes, traffic is redirected by the ingress leaf.

• If an endpoint in consumer Web EPG in VRF1 tries to access an endpoint in
provider App EPG in VRF2, traffic is redirected by the consumer leaf where the
consumer endpoint resides, regardless of the VRF enforcement mode.

3. Check if traffic is redirected to the service node
Once the expected forwarding path is clear, ELAM can be used to check whether traffic
arrives on the switch nodes and check the forwarding decision on the switch nodes.
Please refer to section "Tools" in the chapter "Intra-Fabric Forwarding" for instructions
on how to use ELAM.

For example, to trace the traffic flow in the figure 'PBR forwarding path example -
consumer to provider', these can be captured to confirm if consumer to provider traffic
is redirected.

• Downlink port on consumer leaf to check 1 and 2 (Traffic arrives on the
consumer leaf and PBR is enforced).

• Fabric port on spine nodes to check 3 (Traffic goes to spine proxy).

• Fabric port on service leaf to check 4 (Traffic arrives on the service leaf).

Then, these can be captured to confirm if traffic that comes back from the service node
goes to the provider.

• Downlink port on the service leaf to check 5 and 6 (Traffic comes back from the
service node and is permitted).

448 PBR (Policy-Based Redirect)

• Fabric port on spine nodes to check 7 (Traffic goes to provider leaf via spine).

• Fabric port on provider leaf to check 8 (Traffic arrives on the service leaf and
goes to the provider endpoint).

Note: If consumer and service node are under the same leaf, specify an interface
or source MAC in addition to source/destination IP to take ELAM to check 1 or 5
in �gure 'PBR forwarding path example - consumer to provider' speci�cally
because both use the same source IP and destination IP.

If the consumer to provider traffic is redirected to the service node but doesn't come
back to the service leaf, please check the following as they are common mistakes:

• Service node routing table reaches the provider subnet.

• Service node security policy such as ACL permits the traffic.

If the traffic is redirected and arrives on the provider, please check the return traffic
path from provider to consumer in a similar way.

4. Check the policies programmed on leaf nodes
If traffic is not forwarded or redirected accordingly, the next troubleshooting step is to
check the policies programmed on the leaf nodes. This section shows zoning-rule and
contract_parser as examples. For more detail of how to check zoning-rules, please
refer to section "Tools" in chapter "Security Policies".

Note: The policies are programmed based on EPG deployment status on the leaf.
The show command output in this section uses the leaf that has consumer EPG,
provider EPG, and EPGs for the service node.

Use of the 'show zoning-rule' command
The figure and the 'show zoning-rule' output below describes the zoning-rules before
Service Graph deployment.

PBR (Policy-Based Redirect) 449

Zoning-rules before Service Graph deployment

VRF scope id can be found in 'Tenant > Networking > VRF'.

Pod1-Leaf1# show zoning-rule scope 2752513

+---------+--------+--------+----------+----------------+---------+---------+------------+----------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+---------+------------+----------+----------------------+
| 4237 | 32772 | 32773 | 8 | bi-dir | enabled | 2752513 | web-to-app | permit | fully_qual(7) |
| 4172 | 32773 | 32772 | 9 | uni-dir-ignore | enabled | 2752513 | web-to-app | permit | fully_qual(7) |
+---------+--------+--------+----------+----------------+---------+---------+------------+----------+----------------------+

Once the Service Graph is deployed, EPGs for the service node get created and policies
are updated to redirect traffic between the consumer and the provider EPGs. The figure
below and the 'show zoning-rule' output below describes the zoning-rules after Service
Graph deployment. In this example, the traffic from pcTag 32772 (Web) to pcTag 32773
(App) is redirected to 'destgrp-27' (consumer side of the service node) and the traffic
from pcTag 32773 (App) to pcTag 32772 (Web) is redirected to 'destgrp-28' (provider side
of the service node).

450 PBR (Policy-Based Redirect)

Zoning-rules after Service Graph deployment

Pod1-Leaf1# show zoning-rule scope 2752513
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+
...
4213	16386	32772	9	uni-dir	enabled	2752513		permit	fully_qual(7)
4249	49157	32773	default	uni-dir	enabled	2752513		permit	src_dst_any(9)
4237	32772	32773	8	bi-dir	enabled	2752513		redir(destgrp-27)	fully_qual(7)
4172	32773	32772	9	uni-dir-ignore	enabled	2752513		redir(destgrp-28)	fully_qual(7)
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+

The destination information of each destgrp can be found by using the 'show service
redir info' command.

PBR (Policy-Based Redirect) 451

Pod1-Leaf1# show service redir info
==
LEGEND
TL: Threshold(Low) | TH: Threshold(High) | HP: HashProfile | HG: HealthGrp | BAC: Backup-Dest | TRA: Tracking | RES: Resiliency
==
List of Dest Groups
GrpID Name destination HG-name BAC operSt operStQual TL TH HP TRAC RES
===== ==== =========== ============== === ======= ============ === === === === ===
28 destgrp-28 dest-[192.168.102.100]-[vxlan-2752513] Not attached N enabled no-oper-grp 0 0 sym no no
27 destgrp-27 dest-[192.168.101.100]-[vxlan-2752513] Not attached N enabled no-oper-grp 0 0 sym no no

List of destinations
Name bdVnid vMac vrf operSt operStQual HG-name
==== ====== ==== ==== ===== ========= =======
dest-[192.168.102.100]-[vxlan-2752513] vxlan-16023499 00:50:56:AF:1C:44 Prod:VRF1 enabled no-oper-dest Not attached
dest-[192.168.101.100]-[vxlan-2752513] vxlan-16121792 00:50:56:AF:3C:60 Prod:VRF1 enabled no-oper-dest Not attached
...

If zoning-rules are programmed accordingly, but traffic is not redirected or forwarded
accordingly, please check the following as they are common mistakes:

• Check if the source or destination class ID is resolved as expected by using
ELAM. If not, please check what the wrong class ID is and the EPG derivation
criteria such as path and encap VLAN.

• Even though source and destination class IDs are resolved accordingly, and PBR
policy is applied but traffic doesn't arrive on the PBR node, please check IP, MAC,
and VRF of the destgrp in the redir action ('show service redir info') are correct.

By default, permit rules for a consumer EPG to a service node (consumer side),
and a provider EPG to a service node (provider side) are not programmed if PBR
is enabled. Thus, a consumer or provider endpoint can't directly communicate to
the service node by default. To permit this tra�c, the Direct Connect option
needs to be enabled. The use case is explained in section "Other tra�c �ow
examples".

452 PBR (Policy-Based Redirect)

Use of contract_parser
The contract_parser tool can also help to verify the policies. C-consumer is the
consumer side of the service node and C-provider is the provider side of the service
node.

Pod1-Leaf1# contract_parser.py --vrf Prod:VRF1
Key:
[prio:RuleId] [vrf:{str}] action protocol src-epg [src-l4] dst-epg [dst-l4] [flags][contract:{str}] [hit=count]

[7:4213] [vrf:Prod:VRF1] permit ip tcp tn-Prod/G-Prod-ASAv-VM1ctxVRF1/C-consumer(16386) eq 80 tn-Prod/ap-
app1/epg-Web(32772) [contract:uni/tn-Prod/brc-web-to-app] [hit=0]
[7:4237] [vrf:Prod:VRF1] redir ip tcp tn-Prod/ap-app1/epg-Web(32772) tn-Prod/ap-app1/epg-App(32773) eq 80
[contract:uni/tn-Prod/brc-web-to-app] [hit=0]
 destgrp-27 vrf:Prod:VRF1 ip:192.168.101.100 mac:00:50:56:AF:3C:60 bd:uni/tn-
Prod/BD-Service-BD1
[7:4172] [vrf:Prod:VRF1] redir ip tcp tn-Prod/ap-app1/epg-App(32773) eq 80 tn-Prod/ap-app1/epg-Web(32772)
[contract:uni/tn-Prod/brc-web-to-app] [hit=0]
 destgrp-28 vrf:Prod:VRF1 ip:192.168.102.100 mac:00:50:56:AF:1C:44 bd:uni/tn-
Prod/BD-Service-BD2
[9:4249] [vrf:Prod:VRF1] permit any tn-Prod/G-Prod-ASAv-VM1ctxVRF1/C-provider(49157) tn-Prod/ap-app1/epg-
App(32773) [contract:uni/tn-Prod/brc-web-to-app] [hit=15]
...

PBR (Policy-Based Redirect) 453

1

-

-

2

-

-

-

3

-

-

-

Other tra�c �ow examples

This section considers other common traffic flow examples to identify the desired flows
for troubleshooting. For troubleshooting steps, please refer to the previous chapter in
this section.

Load balancer without SNAT:

In this example, consumer EPG Web and provider EPG App have a
contract with a load balancer Service Graph. Endpoints in App EPG are
real servers associated to the VIP on the load balancer.

PBR to load balancer is enabled for provider to consumer traffic
direction.

Firewall and load balancer without SNAT:

In this example, consumer EPG Web and provider EPG App have a
contract with a firewall and a load balancer Service Graph. Endpoints in
App EPG are real servers associated with the VIP on load balancer.

PBR to firewall is enabled for both directions.

PBR to load balancer is enabled for provider to consumer traffic
direction.

Shared service (Inter-VRF contract):

In this example, consumer EPG Web and provider EPG App have a
contract with a firewall Service Graph. EPG Web and EPG App are in
different VRFs.

PBR to firewall is enabled for both directions.

The firewall is in between VRFs.

454 PBR (Policy-Based Redirect)

1. Load balancer without SNAT
PBR can be deployed as bidirectional PBR or unidirectional PBR. One use case for
unidirectional PBR is load balancer integration without source Network Address
Translation (NAT). If load balancer performs source NAT, PBR is not required.

Traffic path example
The figure below illustrates an example of an incoming traffic flow from consumer EPG
Web to provider EPG App with two connections: One is from an endpoint in the
consumer EPG Web to the load balancer VIP, and the other is from the load balancer to
an endpoint in the provider EPG App. Because the incoming traffic is destined to the
VIP, the traffic will reach the load balancer without PBR if the VIP is reachable. The load
balancer changes the destination IP to one of the endpoints in EPG App associated to
the VIP but doesn't translate the source IP. Accordingly, traffic goes to the provider
endpoint.

PBR (Policy-Based Redirect) 455

Load balancer without SNAT forwarding path example — consumer to VIP and load
balancer to provider without PBR

456 PBR (Policy-Based Redirect)

The figure below illustrates the return traffic flow from provider EPG App to consumer
EPG Web. Because the return traffic is destined to the original source IP, PBR is
required to make the return traffic to go back to the load balancer. Otherwise the
consumer endpoint receives the traffic where the source IP is the provider endpoint
instead of the VIP. Such traffic will be dropped because the consumer endpoint didn’t
initiate traffic to the provider endpoint even if the intermediate network such as the
ACI fabric forwards the packet back to the consumer endpoint.

After the traffic from the provider endpoint to the consumer endpoint is redirected to
the load balancer, the load balancer changes the source IP to the VIP. Then, the traffic
comes back from the load balancer and the traffic goes back to the consumer endpoint.

PBR (Policy-Based Redirect) 457

Load balancer without SNAT forwarding path example - provider to consumer with PBR

458 PBR (Policy-Based Redirect)

The policies programmed on the leaf nodes.
The figure below and the 'show zoning-rule' output below describe the zoning-rules
after Service Graph deployment. In this example, the traffic from pcTag 32772 (Web) to
pcTag 16389 (Service-LB) is permitted, the traffic from pcTag 16389 (Service-LB) to
pcTag 32773 (App) is permitted, and the traffic from pcTag 32773 (App) to pcTag 32772
(Web) is redirected to 'destgrp-31' (load balancer).

Zoning-rules after Service Graph deployment - load balancer without SNAT

PBR (Policy-Based Redirect) 459

Pod1-Leaf1# show zoning-rule scope 2752513
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+
4248	16389	32773	default	uni-dir	enabled	2752513		permit	src_dst_any(9)
4143	32773	32772	9	uni-dir	enabled	2752513		redir(destgrp-31)	fully_qual(7)
4234	16389	32772	9	uni-dir-ignore	enabled	2752513		permit	fully_qual(7)
4133	32772	16389	8	bi-dir	enabled	2752513		permit	fully_qual(7)
...

By default, a permit rule for provider EPG (pcTag 32773) to Service-LB (pcTag 16389) is
not programmed. To permit bi-directional communication between them for health-
checks from the load balancer to provider endpoints, the Direct Connect option on the
connection must be set to True. The location is 'Tenant > L4-L7 > Service Graph
Templates > Policy'. The default value is False.

Set Direct Connect option

460 PBR (Policy-Based Redirect)

It adds a permit rule for provider EPG(32773) to Service-LB(16389) as below.

Pod1-Leaf1# show zoning-rule scope 2752513
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+
4248	16389	32773	default	bi-dir	enabled	2752513		permit	src_dst_any(9)
4143	32773	32772	9	uni-dir	enabled	2752513		redir(destgrp-31)	fully_qual(7)
4234	16389	32772	9	uni-dir-ignore	enabled	2752513		permit	fully_qual(7)
4133	32772	16389	8	bi-dir	enabled	2752513		permit	fully_qual(7)
4214	32773	16389	default	uni-dir-ignore	enabled	2752513		permit	src_dst_any(9)
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+

2. Traffic flow example - Firewall and load balancer without
SNAT

PBR can be deployed with multiple service functions in a Service Graph such as firewall
as first node and load balancer as second node.

Traffic path example
The figure below illustrates an example of an incoming traffic flow from consumer EPG
Web to provider EPG App with two connections: One is from an endpoint in the
consumer EPG Web to the load balancer VIP via firewall and the other is from the load
balancer to an endpoint in the provider EPG App. The incoming traffic destined to the
VIP is redirected to the firewall and then goes to the load balancer without PBR. The
load balancer changes the destination IP to one of the endpoints in App EPG associated
to the VIP but doesn't translate the source IP. Then, traffic goes to the provider
endpoint.

PBR (Policy-Based Redirect) 461

Firewall and load balancer without SNAT forwarding path example - consumer to VIP and
load balancer to provider

462 PBR (Policy-Based Redirect)

Firewall and load balancer without SNAT forwarding path example - consumer to VIP and
load balancer to provider (continued)

The figure below illustrates the return traffic flow from provider EPG App to consumer
EPG Web. Because the return traffic is destined to original source IP, PBR is required to
make the return traffic go back to the load balancer.

After the traffic from the provider endpoint to the consumer endpoint is redirected to
the load balancer, the load balancer changes the source IP to the VIP. The traffic comes

PBR (Policy-Based Redirect) 463

back from the load balancer and is redirected to the firewall. Then, the traffic comes
back from the firewall and goes back to the consumer endpoint.

Firewall and load balancer without SNAT forwarding path example - provider to
consumer

464 PBR (Policy-Based Redirect)

Firewall and load balancer without SNAT forwarding path example - provider to consumer (continued)

The policies programmed on the leaf nodes
The figure below and the 'show zoning-rule' output shown below describe the zoning-
rules after Service Graph deployment. In this example, the traffic from pcTag 32772
(Web) to pcTag 16389 (Service-LB) is redirected to 'destgrp-32' (consumer side of the
firewall), the traffic from pcTag 32773 (App) to pcTag 32772 (Web) is redirected to
'destgrp-33' (load balancer), and the traffic from pcTag 16389 (Service-LB) to pcTag
32772 (Web) is redirected to 'destgrp-34' (provider side of the firewall).

PBR (Policy-Based Redirect) 465

Zoning-rules after Service Graph deployment - �rewall and load balancer without SNAT

Pod1-Leaf1# show zoning-rule scope 2752513
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+
4236	32772	16389	8	bi-dir	enabled	2752513		redir(destgrp-32)	fully_qual(7)
4143	32773	32772	9	uni-dir	enabled	2752513		redir(destgrp-33)	fully_qual(7)
4171	16389	32773	default	bi-dir	enabled	2752513		permit	src_dst_any(9)
4248	16389	32772	9	uni-dir-ignore	enabled	2752513		redir(destgrp-34)	fully_qual(7)
4214	32774	32772	9	uni-dir	enabled	2752513		permit	fully_qual(7)
4244	32775	16389	default	uni-dir	enabled	2752513		permit	src_dst_any(9)
4153	32773	16389	default	uni-dir-ignore	enabled	2752513		permit	src_dst_any(9)
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+----------------------+

466 PBR (Policy-Based Redirect)

In the example above, the Direct Connect option is set to 'True' on the connection
between the provider side of the load balancer and the provider EPG. It must be
enabled for health-check from the load balancer to provider endpoints. The location is
'Tenant > L4-L7 > Service Graph Templates >Policy'. Please refer to figure 'Set Direct
Connect option'.

3. Shared service (Inter-VRF contract)

PBR can be enabled in inter-VRF contract. This section explains how the zoning-rules
are programmed in the case of EPG to EPG inter-VRF contract.

The policies programmed on the leaf nodes
In case of EPG to EPG inter-VRF contract, policy is always enforced in consumer VRF.
Thus, redirection happens on the consumer VRF. For other combinations, please refer
to table "Where is policy enforced?" in section "Forwarding".

The figure below and the 'show zoning-rule' output below describes the zoning-rules
after Service Graph deployment. In this example, the traffic from pcTag 32772 (Web) to
pcTag 10936 (App) is redirected to 'destgrp-36' (consumer side of the service node) and
the traffic from pcTag 10936 (App) to pcTag 32772 (Web) is redirected to 'destgrp-35'
(provider side of the service node). Both are enforced in VRF1 that is consumer VRF. The
traffic from pcTag 32776 (consumer side of the firewall) to pcTag 32772 (Web) is
permitted in VRF1.

PBR (Policy-Based Redirect) 467

Zoning-rules after Service Graph deployment - inter-VRF contract

Pod1-Leaf1# show zoning-rule scope 2752513
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+------------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+------------------------+
4191	32776	32772	9	uni-dir	enabled	2752513		permit	fully_qual(7)
4143	10936	32772	9	uni-dir-ignore	enabled	2752513		redir(destgrp-35)	fully_qual(7)
4136	32772	10936	8	bi-dir	enabled	2752513		redir(destgrp-36)	fully_qual(7)
+---------+--------+--------+----------+----------------+---------+---------+------+-------------------+------------------------+

468 PBR (Policy-Based Redirect)

The traffic from pcTag 49157 (provider side of the firewall) to pcTag 10936 (App) is
permitted in VRF2 because both are in VRF2.

Pod1-Leaf1# show zoning-rule scope 2555904
+---------+--------+--------+----------+---------+---------+---------+------+----------+----------------------+
| Rule ID | SrcEPG | DstEPG | FilterID | Dir | operSt | Scope | Name | Action | Priority |
+---------+--------+--------+----------+---------+---------+---------+------+----------+----------------------+
| 4249 | 49157 | 10936 | default | uni-dir | enabled | 2555904 | | permit | src_dst_any(9) |
+---------+--------+--------+----------+---------+---------+---------+------+----------+----------------------+

Fabric upgrade

470 Fabric upgrade

Overview

The ACI fabric allows for upgrade of a multitude of systems (APICs, leaf nodes, and
spines) using a well-defined workflow.

The specific steps and verifications that need to be performed before, during, and after
the upgrade process are the focus of discussion in this chapter. The recommendations
and guidelines outlined are of utmost consideration with respect to ensuring maximum
availability throughout the process and ultimately the success of the upgrade
procedure.

This section will also cover specific areas such as APIC CIMC and Switch
EPLD/FPGA/BIOS upgrade scenarios.

Cisco's recommendations related to the upgrade procedure focus on preparing an
upgrade as per the official guidelines, release notes, advisories, and documents
available on Cisco.com. If the upgrade should fail for any reason, basic troubleshooting
scenarios will be advised in this document. To limit impact of a failed upgrade, Cisco's
recommendation is to contact Cisco TAC for expert guidance and assistance.

Fabric upgrade 471

Pre-upgrade validations

When upgrading an ACI fabric, proper planning and preparation is strongly advised. To
help facilitate with these preparations, Cisco has multiple documents and tools
available that can be leveraged to ensure a predictable and reliable upgrade. Additional
consideration is given to potential fallback plans in the event of an unexpected
outcome.

Verify cluster health

The health of the APIC cluster should be validated prior to fabric upgrade. If any issues
or anomalies are observed, further troubleshooting and resolution should take place
before proceeding.

admin@bdsol-aci12-apic1:~> acidiag cluster
Admin password:
Product-name = APIC-SERVER-M1
Serial-number = FCH1906V1XV
Running...

Checking Core Generation: OK
Checking Wiring and UUID: OK
Checking AD Processes: Running
Checking All Apics in Commission State: OK
Checking All Apics in Active State: OK
Checking Fabric Nodes: OK
Checking Apic Fully-Fit: OK
Checking Shard Convergence: OK
Checking Leadership Degration: Optimal leader for all shards
Ping OOB IPs:
APIC-1: 10.48.22.69 - OK
APIC-2: 10.48.22.70 - OK
APIC-3: 10.48.22.71 - OK
Ping Infra IPs:
APIC-1: 10.0.0.1 - OK
APIC-2: 10.0.0.2 - OK
APIC-3: 10.0.0.3 - OK
Checking APIC Versions: Same (4.2(1c))
Checking SSL: OK

Done!

472 Fabric upgrade

Upgrade checklist

The starting point for ACI upgrade preparations should always be the 'Cisco ACI
Upgrade Checklist' found on Cisco.com.

Additional important recommendations are listed below:

• Check the Release Notes for latest information regarding the target software
version.

• Check for Faults and remediate where possible before starting the upgrade.

• Review Hardware Support Information for ACI-mode switches documented in
the "ACI-mode Switches Hardware Support Matrix".

• Determine the appropriate and supported upgrade path using the "APIC
Upgrade/Downgrade Support Matrix".

• Review ACI upgrade best practices:

- Understand how the encryption backup and passphrase works.

- Disable any apps installed on the Cisco APIC nodes before upgrading the
APIC software on those nodes.

- Verify that the Target Version is set correctly before performing an
upgrade.

- Confirm that the '/firmware' partition is not filled beyond 75%.

• Use StateChecker available on Cisco DC App Center (also known as
StateChangeChecker).

• Review "Installation Notes and Usage Guidelines" documents.

• Understand firmware management and review the Important Notes in the
"Cisco APIC Installation, Upgrade, and Downgrade Guide".

Fabric upgrade 473

• Understand firmware upgrade modes (e.g. 'Upgrade now' and 'Schedule an
upgrade for later').

• Understand the workflow to upgrade the Cisco ACI fabric documented in the
"Cisco APIC Installation, Upgrade, and Downgrade Guide".

• Understand upgrading the Cisco APIC node and the switch software
documented in the "Cisco APIC Installation, Upgrade, and Downgrade Guide".

• Upgrade the Cisco APIC and switches software documented in the "Cisco APIC
Installation, Upgrade, and Downgrade Guide".

Make sure to review these checks in detail. What follows is a deep dive into the most
significant steps.

Check Release Notes for late-breaking information.
Cisco cannot emphasize enough the importance of Release Notes. These notes specify
which hardware is supported, which caveats are to be reviewed, which specific
considerations have to be taken into account, as well as other version specific
information. Make sure to properly review and read the Release Notes for the target
version and if there are any concerns, reach out to Cisco TAC for further assistance.
Please do know there are Release Notes for both the Switch and APIC software.

Check for faults before going through the upgrade
Before upgrading, be sure to review the faults in the system. As per version 4.2, the
fabric will refuse to upgrade when certain critical or major faults are active in the
system, unless the check is acknowledged and overridden. Please review the section
"Blocking ACI Upgrades or Downgrades If Faults Are Present" in the Cisco APIC
Installation, Upgrade, and Downgrade Guide. In summary, all critical faults and some
major faults will block the upgrade.

The upgrade dialog will show the following when launching an upgrade in a fabric with
critical or targeted major faults.

474 Fabric upgrade

Warning for critical faults

The administrator has the option to acknowledge these faults by selecting the checkbox
pictured above. Do understand that proceeding might have severe impact on the health
of the fabric and predictability of a successful upgrade.

Determine the appropriate upgrade path.
Refer to the 'APIC Upgrade/Downgrade Support Matrix' tool to verify a supported
upgrade path and to review which caveats should be taken into consideration.

Fabric upgrade 475

APIC Upgrade/Downgrade Support Matrix

When using the tool, be sure to scroll down to the bottom section and review the
'Target Release - Open Bugs' and "Current Release - Bug Status" to understand the
impact of the proposed upgrade path.

The tool will provide all possible upgrade paths if multiple paths are available. It is
strongly advised to use the paths going over the 'Long-Lived' APIC versions such as
3.2(x) and 4.2(x).

Refer to the 'Recommended Cisco APIC' and "Cisco Nexus 9000 Series ACI-Mode
Switches Releases" documents regarding Long-Lived Releases.

476 Fabric upgrade

Understand how the encryption backup and passphrase works.
APIC backups do not use encryption by default. To use encryption, a user must
manually enable this feature and set the specific key value that is used for encryption
and decryption. Once defined, it is not possible to perform a key lookup. This makes it
vital to have the key saved elsewhere and readily available in order to do a restore of the
backup should any issues arise.

Should an issue arise during the fabric upgrade that makes it necessary to
restore from backup, be sure to contact Cisco TAC for assistance in con�rming
and validating next steps.

Use the StateChecker application
There is an app in ACI appcenter called 'State Change Checker' that can capture the
state of the fabric before and after an upgrade to assist in validating any changes
incurred to the state of the fabric as a result of the upgrade.

This functionality proves very useful in the following circumstances:

• Validation that after reboot, a leaf or spine, important configuration has not
gone missing.

- There may, for example, be missing routes after reboot due to an
external device responding on the reboot event.

• Overlapping policies which are applied in a different order after reboot.

Evaluating change purely based on number of objects is not a foolproof method
in understanding whether something has gone wrong during upgrade. There is
always a possibility that the number of objects will change across versions.
However, it is worth referencing this tool in the event that impact is felt, to
understand if the tool can help in narrowing down the investigation.

The following is an example of a spine where a snapshot was taken before and after
upgrade. In the example, OSPF routes are observed to have gone missing.

Fabric upgrade 477

State Change Checker view

The specific objects deleted can be observed by drilling down on the red text.

State Change Checker drill down into 'Deleted' section

Another level of detail can be achieved by drilling down on the ospfRoute object.

478 Fabric upgrade

State Change Checker detail ospfUcNexthop class

Drilling down further, it is observed which node specifically incurred the deletions.

State Change Checker detail ospfUcNexthop class

Further detail can illustrate which specific OSPF next-hops were deleted.

Follow the recommended upgrade procedure

When upgrading an ACI fabric, make sure to follow the recommended procedure as
outlined in the "Cisco APIC Installation, Upgrade, and Downgrade" guide.

Fabric upgrade 479

1

2

3

4

5

6

At a high-level, the following are the steps to upgrade a Cisco ACI fabric:

• The procedure or steps for upgrade and downgrade are the same unless stated
otherwise in the Release Notes of a specific release.

• Ensure that the CIMC software is a version that interoperates with the
destination APIC software.

• Download the Cisco ACI Controller image (Cisco APIC image) to the APIC
firmware repository.

• Download the Cisco ACI switch image to the APIC firmware repository.

• Upgrade the cluster of Application Policy Infrastructure Controllers (Cisco
APICs).

• Verify that the fabric is operational and the APIC cluster is 'Fully Fit' before
proceeding.

• Divide the switches into multiple groups, and upgrade the switches by group,
verifying that the fabric is operational between switch group upgrades. For
example, divide the switches into two groups - red and blue, then proceed with
the following upgrade process:

Upgrade the red group of switches.

Wait for the red group of switches to finish upgrading.

Verify that the fabric is operational.

Upgrade the blue group of switches.

Wait for the blue group of switches to finish upgrading.

Verify that the fabric is operational.

480 Fabric upgrade

For CIMC upgrade, refer to the "CIMC' section in this chapter.

Divide switches into two or more groups depending on scale of the fabric.
Depending on scale, some fabrics may require multiple �rmware upgrade groups.
Upgrade one group at a time. That way, fabric bandwidth will not be lost entirely
during the upgrade window.

Fabric upgrade 481

During and POST upgrade veri�cations

Overview

As mentioned in the previous section "Pre-upgrade validations", an ACI fabric upgrade is
mainly involving a two-step procedure:

• APIC cluster upgrade.

• ACI nodes upgrade.

This chapter will provide suggestions on what to do and what not to do during the
upgrade process.

A few general rules to follow during the upgrade are summarized below:

• Do not force reboot of a device while it is performing an upgrade.

• While performing an upgrade, avoid making any policy change on the ACI fabric.

• Once an upgrade is triggered, do not push further upgrade commands.

• Do not change the fabric topology while the upgrading is ongoing, e.g. do not
add or remove nodes or add or remove cables.

Any deviation from the above guidelines may affect the stability of the ACI fabric and
the success of the ACI fabric upgrade with irreversible consequences. As explained
throughout this chapter, Cisco strongly recommends involving a TAC engineer if the
upgrade process fails or results in an unexpected state.

During the APIC cluster upgrade

During the APIC cluster upgrade process, only one controller will go down for reboot at
any given time.

482 Fabric upgrade

The time of upgrade and reboot of an APIC controller may vary. During the time of
reboot, the APIC controller will disappear from the view of other controllers. This is
expected. In the screen captures below, APIC3 is being rebooted as result of a triggered
controller upgrade.

APIC �rmware during an upgrade - APIC reloading

Fabric upgrade 483

APIC �rmware during an upgrade - APIC coming up

If an APIC controller does not come online after 1 hour or more, it is likely that the APIC
failed to upgrade.

If this is the case, the following verifications can be made:

• Verify the APIC controller is powered on by checking the device power LED to
be on.

• Verify the APIC controller is reachable via ping, SSH, and HTTPS. If this is true,
verify the controller accepts user credentials and login is successful.

• Access the KVM console via CIMC in attempt to gather more information about
the APIC's current state.

If any of the above checks are failing, open a TAC case so that a Cisco engineer can
assist in additional verifications and recovery.

484 Fabric upgrade

Post-APIC cluster upgrade

When the APIC Cluster Upgrade is complete, the APIC controllers will be running the
target version.

APIC Firmware after an upgrade

The Controllers will be in Active status and the Health Status will be in 'Fully Fit' status.

Fabric upgrade 485

APIC Cluster view

These verifications can also be made via APIC CLI with the commands 'show version'
and 'show controller'.

From APIC CLI, controller upgrades can be monitored and verified with the command
'show firmware upgrade status'.

If a controller or switch node is in the process of reloading, it might not appear in
the 'show �rmware upgrade status' output.

486 Fabric upgrade

During the node upgrade

Nodes of the same upgrade group will be upgraded in parallel unless they fall under the
following rules:

• Nodes in different Pods can't be upgraded in parallel.

• Nodes in a VPC pair can't be upgraded in parallel.

In those cases, nodes that cannot be upgraded in parallel will be queued for upgrade.

For example, if a VPC pair is part of the same upgrade group, the following will be
shown by APIC GUI:

VPC nodes upgrade in same upgrade group

Fabric upgrade 487

VPC nodes upgrade - Fault record

In the above case the node 101 is queued for upgrade with the following message:

Node: 101, Policy: pod1_leaf, Check constraint: Is VPC peer upgrading?, Result: fail, Details: Rejecting upgrade
request from node: 101. VPC peer upgrading, node to retry periodically. Peer node: 10.2.72.64/32

The time of upgrade and reboot of a node may vary. During the time of reboot, the node
will be shown with an unknown status in the GUI. This is expected. In the screen
captures below, node 101 is being rebooted.

488 Fabric upgrade

Fabric node upgrade - during upgrade

If a node does not come online after 1 hour or more, it is likely that the node failed to
upgrade.

If this is the case, the following verifications can be made:

• Verify the node is powered on by checking the switch chassis LED to be on.

• Verify the node is reachable via ping and SSH. If this is true, verify the node
accepts user credentials and login is successful.

• Access the node via console port in attempt to glean additional information
about the current state.

If any of the above checks are failing, open a TAC case so that a Cisco engineer can
assist in additional verifications and recovery.

Fabric upgrade 489

Post-node upgrade

When a node upgrade is performed, the node will be running the target version.

Node �rmware - post upgrade

This verification can also be made via CLI with the command 'show version'.

From APIC CLI, node upgrades can be monitored and verified with the command 'show
firmware upgrade status'.

If a controller or switch node is in the process of reloading, it might not appear in
the 'show �rmware upgrade status' output.

490 Fabric upgrade

1

2

3

4

FPGA / EPLD / BIOS

There are various methods to load a firmware image on a leaf or a spine in order to
upgrade it.

Perform a policy upgrade/downgrade through the APIC.

Perform an NXOS to ACI conversion.

Load an image while at the loader prompt through USB or TFTP.

Transfer an image (SCP, SFTP, USB etc.) to '/bootflash' of the switch and use the
'setup-bootvars.sh <image>' command followed by reload of the device.

The first method will always assure that the FPGA / EPLD and BIOS images are
correctly upgraded and this is always the supported way to perform an upgrade /
downgrade.

It is strongly advised to use a policy upgrade / downgrade via the APIC GUI. Not doing
so could lead to FPGA, EPLD, and BIOS related faults and in the worst case scenario,
result in devices that cannot activate their front-panel ports. In such a scenario the
device would be unable to join the fabric, preventing the administrator from being able
to perform corrective actions via the APIC GUI.

Should method 2, 3, or 4 be used, there is a risk of receiving the following error: 'F1582
FPGA version mismatch detected. Running version:<0x(z)> Expected version:<0x(y)>'.
The way to resolve this issue is explained in the section "Device replacement" in the
chapter "Fabric discovery".

Fabric upgrade 491

CIMC

Overview

This section will cover the Cisco Integrated Management Controller (CIMC)
configuration, hardware items it is capable of monitoring, and upgrade procedure. The
CIMC is a component of all UCS C-series used as a lights-out management interface
with the intention of providing detailed information about the hardware components in
the chassis. It provides capabilities such as changing the power state of the server,
remote console connection, SNMP alerts for hardware monitoring etc. The CIMC
should be upgraded at regular intervals to ensure compatibility of hardware firmware
with the APIC Operating System (OS).

Hardware models
As of the writing of this book, there are 3 generations of APIC supported with ACI.

APIC Generations

Appliance Generation Part Number UCS Model Base

Third
APIC-L3 UCSC-C220-M5

APIC-M3 UCSC-C220-M5

Second
APIC-L2 UCSC-C220-M4

APIC-M2 UCSC-C220-M4

First
APIC-L1 UCSC-C220-M3

APIC-M1 UCSC-C220-M3

492 Fabric upgrade

CIMC configuration

The CIMC server plays a critical role when troubleshooting the APIC server if the APIC
is found to be unreachable through its management address. In order to use CIMC
under such conditions, it must be configured for remote access (IP address, password,
etc.). Note that this is typically configured using a physical keyboard and monitor
connected to the server.

The CIMC can be configured upon boot up of the APIC appliance. This is done by
pressing the F8 key at the BIOS POST screen.

APIC boot up screen

While in the CIMC configuration page, parameters to allow remote access can be
configured according to the requirements of the OOB network. Dedicated mode is

Fabric upgrade 493

required for correct operation in the ACI fabric.

CIMC Con�guration Utility

Once the configuration is complete, the CIMC should be accessible via HTTPS and SSH.

Within the CIMC, several hardware items can be viewed and managed to ensure proper
operation of the APIC. The following discusses items specific to an APIC appliance.

Serial over LAN (SoL)

Serial over LAN is a feature of CIMC to allow console redirection to the user's SSH
session. This allows the user to view a remote console of the APIC like the vKVM. This
can be used as an alternative if the user has issues working with the Java or HTML5
vKVM console.

494 Fabric upgrade

To enable the SoL feature, use the following commands on the CIMC CLI.

C220-FCH1930V2Z7# scope sol
C220-FCH1930V2Z7 /sol # set enabled yes
C220-FCH1930V2Z7 /sol # commit
C220-FCH1930V2Z7 /sol # show
Enabled Baud Rate(bps) Com Port SOL SSH Port
------- --------------- -------- -------------
yes 115200 com0 2400

Once enabled, use the following command to connect to the Serial console.

C220-FCH1930V2Z7# connect host
CISCO Serial Over LAN:
Press Ctrl+x to Exit the session

apic1 login:

Please do know enabling SOL will disable the onboard hardware console port.

LLDP

LLDP is an essential protocol to fabric discovery and connectivity between the APIC
and leaf. The Cisco VIC adapter used for the fabric ports of the APIC are also capable
generating LLDP packets. APIC appliances ship with LLDP disabled on the VIC by
default and will not operate correctly if it is enabled. This is because when LLDP is
enabled on the VIC, LLDP packets will be sent and received by the VIC itself rather that
passing the discovery packets up to the APIC OS. In such a scenario, the APIC would fail
to discover the leaf switches to which it is connected. The LLDP setting on the VIC can
be found and verified via SSH with the following commands.

C220-FCH1930V2Z7# scope chassis
 C220-FCH1930V2Z7 /chassis # scope adapter 1
 C220-FCH1930V2Z7 /chassis/adapter # show detail
 PCI Slot 1:
 Product Name: UCS VIC 1225
 Serial Number: FCH19277ZTT
 Product ID: UCSC-PCIE-CSC-02
 Adapter Hardware Revision: 6
 Current FW Version: 4.1(3a)

Fabric upgrade 495

VNTAG: Disabled
 FIP: Disabled
 LLDP: Disabled
 Configuration Pending: no
 Cisco IMC Management Enabled: no
 VID: V03
 Vendor: Cisco Systems Inc
 Description:
 Bootloader Version: 4.0(1e)
 FW Image 1 Version: 4.1(3a)
 FW Image 1 State: RUNNING ACTIVATED
 FW Image 2 Version: 4.0(1e)
 FW Image 2 State: BACKUP INACTIVATED
 FW Update Status: Idle
 FW Update Error: No error
 FW Update Stage: No operation (0%)
 FW Update Overall Progress: 0%

If this is for some reason set to Enabled, it can be updated with the following
commands.

C220-FCH1930V2Z7 /chassis/adapter # set lldp disabled
C220-FCH1930V2Z7 /chassis/adapter *# commit
New VNIC adapter settings will take effect upon the next server reset

Modification of LLDP setting on the VIC will only take effect after a reboot of the APIC.

RAID/HDD/SSD

The APIC appliance comes pre-configured with RAID across its multiple disks. The
health status of the virtual drive groups can be seen in the CIMC GUI under the Storage
tab. The RAID configuration should be as follows.

APIC RAID layout

RAID Level Drives Media Type

1 2 and 3 HDD

0 1 SSD

496 Fabric upgrade

TPM

The Trusted Platform Module (TPM) is a hardware component used to verify and
authenticate the server. For the APIC to boot and operate as expected, the TPM must be
enabled, activated, and owned from the BIOS perspective. If the TPM is not in this state,
the APIC may fail to boot or upgrade.

To verify the TPM state, check under Advanced > Trusted Computing in the BIOS
Setup.

BIOS Advanced tab view

The TPM settings should not be modified under any circumstances without Cisco TAC
involvement as it may render the appliance unusable.

Fabric upgrade 497

1

2

Host Upgrade Utility (HUU)

The Cisco Host Upgrade Utility (HUU) is a tool that can be used to upgrade the CIMC
firmware on the APIC appliance as well as other UCS C-series chassis components. The
tool will update components such as VIC adapter, RAID controller, and BIOS version of
the APIC. It is recommended to upgrade all components available when performing this
task.

To get started with upgrading the CIMC firmware via HUU, identify the proper UCS
model base for APIC from the chart in the Hardware Models section of this chapter.
Once identified, download the recommended firmware based on the ACI version. The
full list of CIMC firmware supported, and recommended version to be used, is available
in the Release Notes of the APIC software.

Before beginning the CIMC upgrade, ensure the APIC cluster is fully fit. The upgrade
should only be performed on 1 APIC at a time and the APIC to undergo CIMC upgrade
should be decommissioned from the cluster while the maintenance is performed.

To load the image onto the CIMC, two options are available. One is via a HTTP/HTTPS
mount and one is via vKVM mount. The basic steps of both procedures will be outlined
below.

vMedia Mount

Log into CIMC CLI via SSH.

Enable the vMedia feature if not already done.

C220-FCH1930V2Z7# scope vmedia
C220-FCH1930V2Z7 /vmedia # set enabled yes
C220-FCH1930V2Z7 /vmedia *# commit
C220-FCH1930V2Z7 /vmedia # show
Encryption Enabled Enabled Active Sessions Low Power USB Enabled
------------------ ------- --------------- -------
no yes 1 yes

498 Fabric upgrade

3

4

5

6

7

8

9

1

2

Map the HUU via the HTTP/HTTPS path. For ease of use, the HUU can be
copied to the '/data/techsupport' directory of another APIC and will
automatically be hosted via HTTPS. The example below will show the HUU
mounted on APIC2 of the cluster but the number in the URL will change
depending on the APIC hosting the file.

C220-FCH1930V2Z7 /vmedia # map-www mnt https://10.122.141.117/files/2/techsupport/ ucs-c220-huu-3.0.4j.iso
Server username: admin
Server password:
Confirm password:
C220-FCH1930V2Z7 /vmedia # show mappings detail
Volume mnt:
 Map-Status: OK
 Drive-Type: CD
 Remote-Share: https://10.122.141.117/files/2/techsupport/
 Remote-File: ucs-c220-huu-3.0.4j.iso
 Mount-Type: www
 Mount-Options: "noauto,username=admin,password=********"

Reboot the APIC via the acidiag reboot command.

Upon BIOS POST screen, use the F6 key to enter the Boot Selection menu. If
prompted for a password, the default is 'password'.

Select the Cisco CIMC-Mapped vDVD to boot the HUU.

The HUU will begin to inventory the chassis and after several minutes, the HUU
User Interface will appear.

Select the 'Upgrade All' option to begin the upgrade of CIMC firmware.

When completed, the user can quit the HUU and reboot using the 'Exit' option.
If a BIOS upgrade is done, the APIC will automatically reboot to complete this
process.

vKVM Mount

Log into CIMC HTTPS GUI.

Launch the vKVM console using HTML5 or Java.

Fabric upgrade 499

3

4

5

6

7

8

9

Mount the selected HUU via Virtual Media on the vKVM console.

Reboot the APIC via the 'acidiag reboot' command.

Upon BIOS POST screen, use the F6 key to enter the Boot Selection menu. If
prompted for a password, the default is 'password'.

Select the Cisco vKVM-Mapped vDVD to boot the HUU.

The HUU will begin to inventory the chassis and after several minutes, the HUU
User Interface will appear.

Select the 'Upgrade All' option to begin the upgrade of APIC firmware.

When completed, the user can quit the HUU and reboot using the 'Exit' option.
If a BIOS upgrade is done, the APIC will automatically reboot to complete this
process. The vKVM will disconnect as well.

After the HUU update has completed and the APIC is booted again, the user can
recommission it from another APIC in the cluster. Additionally, some hardware
components may reset to their default values (such as LLDP being activated on the VIC).
If the APIC fails to boot or not able to rejoin the cluster, validate the settings called out
for components listed previously in this section.

Acronyms

502 Acronyms

Acronyms

ACI - Application Centric Infrastructure
ACL - Access Control List
AEP - Access Entity Profile
APIC - Application Policy Infrastructure Controller
AP - Application Profile
ARP - Address Resolution Protocol
AS - Autonomous System
ASIC - Application-Specific Integrated Circuit
ASN - Autonomous System Number
AVS - Application Virtual Switch
BD - Bridge Domain
BGP - Border Gateway Protocol
BIOS - Basic Input/Output System
BL - Border Leaf
BOOTP - Bootstrap Protocol
BUM - Broadcast, Unknown-Unicast, and Multicast
CAM - Content Addressable Memory
CDP - Cisco Discovery Protocol
CIDR - Classless Inter-Domain Routing
CIMC - Cisco Integrated Management Controller
CLI - Command Line Interface
COOP - Council Of Oracle Protocol
CPLD - Complex Programmable Logic Devices
CRC - Cyclic Redundancy Check
DHCP - Dynamic Host Configuration Protocol
DNS - Domain Name System
DR - Designated Router
DSCP - Differentiated Services Code Point
DVS - Distributed Virtual Switch
ECMP - Equal Cost Multipath Routing
EIGRP - Enhanced Interior Gateway Routing Protocol
ELAM - Embedded Logic Analyzer Module

Acronyms 503

EP - EndPoint
EPG - EndPoint Group
EPLD - Electronic Programmable Logic Device
ERSPAN - Encapsulated Remote Switched Port Analyzer
ETEP - External Tunnel Endpoint
EVPN - Ethernet Virtual Private Network
FC - Fibre Channel
FCS - Frame Check Sequence
FHRP - First Host Redundancy Protocol
FPGA - Field Programmable Gate Arrays
FQDN - Fully Qualified Domain Name
FTAG - Forwarding Tag
GIPo - Group Internet Protocol Outer
GRE - Generic Routing Encapsulation
HTTP - HyperText Transfer Protocol
HTTPS - HyperText Transfer Protocol Secure
HUU - Host Update Utility
ICMP - Internet Control Message Protocol
IGMP - Internet Group Management Protocol
IGP - Interior Gateway Protocol
IP - Internet Protocol
IPN - Inter-Pod Network
IS-IS - Intermediate System to Intermediate System
ISN - Inter-Site Network
KVM - Keyboard, Video, and Mouse
LACP - Link Aggregation Control Protocol
LAN - Local Area Network
LBT - Load-Based Teaming
LC - Line Card
LED - Light Emitting Diode
LLDP - Link Layer Discovery Protocol
LSA - Link State Advertisement
LSDB - Link State Database
MAC address - Media Access Control address
MP-BGP - Multiprotocol Border Gateway Protocol

504 Acronyms

MSDP - Multicast Source Discovery Protocol
MTU - Maximum Transmission Unit
NAT - Network Address Translation
NIC - Network Interface Card
NSSA - Not-So-Stubby Area
NTP - Network Time Protocol
NXOS - Nexus Operating System
OID - Object Identifier
OIF - Outgoing Interface
OOB - Out-of-Band
OSPF - Open Shortest Path First
PBR - Policy Based Redirect
PCI - Peripheral Component Interconnect
PCIE - Peripheral Component Interconnect Express
PC - Port Channel
PID - Product Identifier
PIM BiDir - Protocol Independent Multicast Bi-Directional
POAP - Power On Auto Provisioning
PSU - Power Supply Unit
PTEP - Physical Tunnel Endpoint
RAID - Redundant Array of Independent Disks
RBAC - Role-Based Access Control
RIB - Routing Information Base
RMA - Return Merchandise Authorization
RPF - Reverse Path Forwarding
RP - Rendezvous Point
RR - Route Reflector
SCP - Secure Copy Protocol
SDK - Software Development Kit
SDN - Software-Defined Networking
SFP - Small Form-Factor Pluggable
SFTP - Secure File Transfer Protocol
SNMP - Simple Network Management Protocol
SPAN - Switched Port Analyzer
SSD - Solid State Drive

Acronyms 505

SSL - Secure Sockets Layer
STP - Spanning-Tree Protocol
SUP - Supervisor
SVI - Switched Virtual Interface
TAC - Technical Assistance Center
TCAM - Ternary Content-Addressable Memory
TCP - Transmission Control Protocol
TEP - Tunnel End Point
TFTP - Trivial File Transfer Protocol
TLV - Type Length Value
TOS - Type Of Service
TPM - Trusted Platform Module
TTL - Time To Live
UDP - User Datagram Protocol
URL - Uniform Resource Locator
UTC - Universal Time Coordinated
UUID - Universally Unique Identifier
VIC - Virtual Interface Card
VIP - Virtual Internet Protocol
VLAN - Virtual Local Area Network
VM - Virtual Machine
VMK - Virtual Machine Kernel
VMM - Virtual Machine Manager
VNI - Virtual Network Instance
VNIC - Virtual Network Interface Card
VNID - Virtual Network Identifier
VNTAG - Virtual Network Tag
VPC - Virtual Port Channel
VPNv4/v6 - Virtual Private Network version 4/6
VRF - Virtual Routing and Forwarding
VTEP - Virtual Tunnel End Point
VXLAN - Virtual Extensible Local Area Network

506 Acronyms

