Chapter 1: Introduction

- Benefits
- About This Guide
- Recommended Installation Sequence
- Using the Help
 - Audience
 - About the NSS Configuration Interface
 - Getting Help
 - Refreshing the GUI Pages
- Approved Vendor List for Drives

Chapter 2: Managing the System

- System Alerts
- Storage Status
- Network Status
- Shares Status
- Backup and Snapshots Status
- Power Status
- System Status
- Viewing the Hardware Monitor
- Viewing and Managing the System Logs
- Viewing the Power Status Page
- NSS-Supported UPS Product Families

Chapter 3: Adding the NSS to your Network

- Physical Interfaces
- Virtual Interfaces
- Viewing the Network Settings
- Configuring the Network Link IP
- Resetting the DHCP Lease on a Link
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing VLANs Configured on the NSS</td>
<td>20</td>
</tr>
<tr>
<td>Allowing a VLAN Access to the NSS</td>
<td>21</td>
</tr>
<tr>
<td>Changing a VLAN Configuration</td>
<td>23</td>
</tr>
<tr>
<td>Removing a VLAN's Access to the NSS</td>
<td>25</td>
</tr>
<tr>
<td>Configuring the NSS Network Identification</td>
<td>26</td>
</tr>
<tr>
<td>Configuring DNS or WINS for Name Resolution</td>
<td>28</td>
</tr>
<tr>
<td>Joining the NSS to a Network Information System (NIS) Domain</td>
<td>30</td>
</tr>
<tr>
<td>Editing Access Control Lists (ACLs) from Windows Explorer: Restrictions</td>
<td>32</td>
</tr>
<tr>
<td>Running Diagnostics of your Physical Links</td>
<td>32</td>
</tr>
<tr>
<td>Configuring the Network Ports</td>
<td>33</td>
</tr>
<tr>
<td>Setting up the Link Bonding & Advertising Modes</td>
<td>35</td>
</tr>
</tbody>
</table>

Chapter 4: Configuring your Storage

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Status Table</td>
<td>38</td>
</tr>
<tr>
<td>RAID Arrays Table</td>
<td>39</td>
</tr>
<tr>
<td>Volumes Table</td>
<td>40</td>
</tr>
<tr>
<td>USB Storage Status</td>
<td>40</td>
</tr>
<tr>
<td>Managing RAID Arrays</td>
<td>41</td>
</tr>
<tr>
<td>About the RAID Arrays Page</td>
<td>41</td>
</tr>
<tr>
<td>Choosing a RAID Array Level</td>
<td>42</td>
</tr>
<tr>
<td>Creating a RAID Array</td>
<td>44</td>
</tr>
<tr>
<td>Adding a Disk Drive to an Array</td>
<td>45</td>
</tr>
<tr>
<td>Deleting an Array</td>
<td>47</td>
</tr>
<tr>
<td>Migrating a RAID Array to another Storage Device</td>
<td>48</td>
</tr>
<tr>
<td>Virtualizing Storage within your Network</td>
<td>49</td>
</tr>
<tr>
<td>Exporting Storage to your Network</td>
<td>50</td>
</tr>
<tr>
<td>Creating Virtualized Storage</td>
<td>51</td>
</tr>
<tr>
<td>Unexporting Storage</td>
<td>52</td>
</tr>
<tr>
<td>Volume Management</td>
<td>53</td>
</tr>
</tbody>
</table>
Contents

Creating a Volume 54
Expanding a Volume 55
Deleting a Volume 58
Viewing the Snapshot Reserve Details 59
 Maintaining Active Snapshots 60
Creating a Snapshot for a Volume 61
Taking a Manual Snapshot of a Volume 63
Windows End Users: Accessing a Snapshot for a Share 64
Volume Encryption Overview 65
Locking an Encrypted Volume 66
Unlocking a Locked Volume 67
Changing the Password for an Encrypted Volume 69
Storage Options 70

Chapter 5: Setting up End-User Access 73
 Managing your NSS Users 73
 Creating a User Profile 74
 Editing a User Profile 76
 Integrating Users from an ADS, NTv4, or NIS Domain 78
 Logging into the NSS as a Local User 79
 Deleting a User Profile 79
 Working with Groups 80
 Creating a Group 80
 Changing the Users Assigned to a Group 83
 Integrating Groups from an Active Directory, NTv4, or NIS Domain 84
 Deleting a Group 84
 Managing Volume Quotas 86
 Changing the User’s Primary Group 87
 About the Volume Quota Page 87
Managing the NSS Configuration 133
Saving the Current Configuration 134
Restoring a Configuration File 137
Deleting a Configuration File 139
Configuring the Timing Settings 140
Configuring the Email Alerts for a Recipient 142
Changing the Email Alerts for a Recipient 144
Deleting an Email Alert Recipient Profile 145
Configuring SNMP Alerts 145
Changing the Administrator Password 147

Chapter 8: Accessing the Storage 149
Logging into a Share 149
Logging into the CIFS Shares with Administrator Privileges 149
Windows Users: Accessing the Storage by using CIFS/SMB 150
Windows Users: Accessing the Storage by using FTP 151
Mac Users: Accessing the Storage by using CIFS/SMB 151
Mac Users: Accessing the Storage by using FTP 152
UNIX/Linux Users: Accessing the Storage by using NFS 153
UNIX/Linux Users: Accessing the Storage by using FTP 154

Chapter A: Troubleshooting 155
NSS LEDs 155
 Power LED (Front Panel) 155
 System LED (Front Panel) 156
 Reset Button (Front Panel) 156
 LAN LED (Front Panel) 157
Hard Disk Drive LEDs 157
 USB LED (Front Panel) 158
 UPS LED (Back Panel) 158
Repairing a Degraded Array 158
Working with a Failed Array 160
Drive Error LED Remains On 161
Firmware Attempt is Unsuccessful 161
Free Bound Virtualized Storage when the Master System Fails 162
All CIFS Connections were Unexpectedly Ended 163
Hotplugging the Ethernet Link doesn't Reset IP or Link Rate 163
Unable to Create a Share or Quota for a Volume 163
Cannot Access the NSS through FTP 164
Cannot Rename a Folder through FTP 165
Configuration Page Does not Appear in Internet Explorer 165
Handling an Unexpected (Unclean) Shutdown 165
Boosting the Performance of NFS Transfers 166
Rejoining the ADS Domain after a Failed to Join 167

Appendix B: Specifications 168
Appendix C: Where to Go From Here 169
Chapter D: Glossary of Storage-related Terms and Acronyms 170
Introduction

Thank you for choosing the Linksys Business Series Network Storage System (NSS).

Administering a network can be a difficult job. Finding low-cost ways to simplify your data-management tasks means that you have more resources to dedicate elsewhere. The NSS is a Network Attached Storage (NAS) unit that appears as a native file server for the various clients within your network, including Windows, Apple Macintosh, UNIX, and Linux platforms. The biggest benefit to your users is that they can now access data that might be stored across different physical platforms as simply as if it were on their own computers. The NSS provides a single repository that is completely dedicated to storage, ensuring the integrity, reliability, and accessibility of your data for a relatively low cost.

The NSS lets you install up to four physical disk drives and virtualize your storage into one or more logical, redundant storage units or RAID arrays. The NSS uses the most common file-based protocols such as NFS, CIFS, and FTP for file sharing.

Benefits

The NSS offers these main advantages to your business:

- **Cross-platform File Sharing**: Share files easily and inexpensively across different platforms over a cost-effective Ethernet and IP network.

- **Easy Installation and Administration**: With a basic understanding of networking, the NSS is easily configured, managed and made available to all of your users on the network.

- **Data Consolidation**: Centralize data to reduce management costs and maximize your investment in existing hardware. This also means better data security.
About This Guide

The Linksys Business Series Network Storage System Administrator Guide describes the Administrative features that are available for you to configure and optimize your NSS. If you are setting up your system for the first time, refer to the Linksys Business Series Network Storage System Getting Started Guide.

Recommended Installation Sequence

Installing the NSS system involves a series of steps, from setting up the hardware to configuring the device. Certain activities must take place before others may be attempted (for example, you must set the User and Group ID ranges must be set before you join the NSS to the domain.

STEP 1 Set up the hardware:

a. Install the disk drive. Skip this step if you have an NSS4100 or NSS6100 as they are already equipped with disk drives.

b. Connect the Ethernet link(s).

c. Connect the power.

STEP 2 Configure the NSS:

a. Log into the Configuration Interface.

b. Configure the time setting (options include NTP or manual).

c. Configure RAID(s). You can choose to skip this step if you have an NSS4100 or NSS6100 as it is preconfigured with a RAID5 array.

d. Create the volume(s).

e. If you have multiple NSS units (one of which is a NSS6000 series unit), and you want to virtualize your storage, set the export/Import of the virtualized arrays.

f. Configure the Network Domain Identification (NT4, Active Directory, NIS, etc.).

g. Set up the User and Group ID ranges (this enables the import of groups/users from Domain Controllers)

h. Set up the users' Home Directory Location (this enables you to set up local users).
i. Add any locally defined groups or users. (Optional)

STEP 3 Create Shares. Enable CIFS, NFS, FTP access to specific shares.

a. Setup DFS access. (Optional)

b. If you have an NSS6000 series unit, configure the volume snapshots. (Optional)

c. Configure the share backups as required. (Optional).

d. Go through the rest of the configuration options to set up quotas, edit groups, set up email and SNMP alerts, and so forth. For more detailed information, refer to the Online Help.

STEP 4 Instruct your users how to access the NSS.

Using the Help

The NSS help file provides information about using the configuration interface to configure the NSS.

Audience

The information contained in these help pages is intended for use by network administrators. It assumes a basic understanding of storage-related concepts, including RAID, filesystems, and networking.

About the NSS Configuration Interface

The NSS Configuration Interface contains some basic navigation features to help you as you configure the NSS.

- **Manager Menu**: The Manager Menu forms the left side of the configuration interface window. It contains the menu options that represent the major configuration areas for the NSS. For example, System, Network, Share, Storage, and so on. When you click an option, a sub-menu of related options appears. Clicking a subtopic opens the associated topic in the Topic page in the right side of the window.

- **Topic Page**: When you select a topic from the Manager Menu, the configuration page for that topic appears in the right side of the window.
Getting Help

There are two buttons on the NSS configuration interface window that you can click to access help:

- From the Manager Menu click Help to display the full online Administrator Guide. Use the navigation tools within the help to find information for your chosen topic.

- A context-sensitive help button appears in the upper-right corner of the topic page. Click it to display help on the specific configuration area. For example, if the current configuration topic is about the status of your disk drives, click the Help button for information about the details that appear on the status page.

Refreshing the GUI Pages

Although certain GUI pages automatically refresh at a preselected time interval, some pages do not refresh until they are reselected. The best way to manually refresh a GUI page is to reselect it through the options in the Manager Menu on the left side of the GUI window. For example, to refresh the NTP Configuration page, from the Manager Menu, click Admin and then click Time. Do not use the Refresh button on the Web browser toolbar as this can cause data issues.

Approved Vendor List for Drives

If you are purchasing disk drives to install in the NSS, see the Approved Vendor List at http://www.cisco.com/support for a list of recommended disk drives.

When you select a disk drive, consider the type of RAID levels required to service your business needs. For example, if you are creating a RAID (versus a JBOD), make sure that each of the disks used in the array have the same disk capacity. The RAID is built using the capacity of the smallest disk in the array.
Managing the System

The System Status page provides an overview of the current operating condition of the NSS. For example, you can view system alert messages if a disk drive is failing or has failed, if a volume is approaching its full capacity, if an array rebuild is complete, and so on. You can also view the current status of any of the following: storage, shares, backups, volume snapshots, network, power, and system details. The System Status page automatically refreshes on a regular interval and is helpful for monitoring the progress of certain processes such as building a RAID.

These sections provide a detailed explanation of the information that appears on the System Status page.
System Alerts

The System Alerts section shows any system messages issued since the last time they were cleared. Messages can range in severity from informational to immediate action required.

There are three types of system alerts:

- **Error**: Indicates the most severe types of problems with the NSS. They are color-coded red and require immediate action. For example, if a disk drive or RAID array is in a failed condition.

- **Warning**: Indicates that there is a problem with the NSS that requires eventual action. They are color-coded orange. For example, if the amount of storage used for a volume is over 90%.

- **Notification**: Shows the recent changes to the NSS. They do not require action and are color-coded green. For example, the RAID rebuild is complete.

Storage Status

The Storage area displays these details about the configured storage on the NSS:

- **Drives**: The number of physical disk drives installed.

- **RAID Arrays**: The number of configured RAID arrays.

- **Volumes**: The number of configured volumes.

- **Total Configured Capacity**: The total aggregate size of all configured volumes.

- **Percent Used**: The total amount of the configured capacity used. The percentage is color-coded according to the current percentage used:
 - Green: 0 to 74%
 - Orange: 75 to 89%
 - Red: 90 to 100%
Network Status

The Network area displays the following:

- **Link 1 & 2**: The current status of the physical links. The status of the link can be up (color-coded green) or down (color-coded red). If the link is not present, the status appears as “down.”

- **Bonding Mode**: Displays how the bonding mode for the physical links is configured on the Network Properties page. See “Setting up the Link Bonding & Advertising Modes,” on page 35 for more information.

- **VLANs**: The number of VLANs configured on the NSS.

- **Link 1 IP**: The IP address of the first Ethernet link.

- **Link 2 IP**: The IP address of the second Ethernet link (if installed). If the bonding mode is set to “active backup” or “802.3ad”, the two links appear as a single entity (i.e., “Link 1+2 IP”).

Shares Status

The Shares area displays the following:

- **Shares**: The number of configured shares.

- **Connected Users**: The total number of user sessions currently connected to the NSS.
 - **FTP**: The FTP access state (enabled or disabled).
 - **NFS**: The NFS access state (enabled or disabled).

Backup and Snapshots Status

- The Backup and Snapshots area displays the following:

 - **Snapshots**: The total number of volume snapshots configured.

 - **Last Backup**: The date and time of the last backup run. If a backup has never been run on the system, the word “never” appears.
Power Status

The **Power** area displays the following:

- **UPS**: These options are available depending on the current operating condition of the UPS.
 - **No Connection**: A UPS is not currently connected to the NSS.
 - **On Mains**: A UPS is connected to the NSS but is not currently being used to power the unit. The NSS is deriving power from the mains power.
 - **On Battery (%)**: The NSS is currently deriving its power from the UPS battery. The percentage of power still available is also listed and is color-coded according to the amount of battery remaining.

For more information about how the UPS functions, refer to the UPS documentation.

- **RPSU**: These options are available depending on the current operating condition of the RPSU.
 - **No Connection**: There is no RPSU installed.
 - **Ready**: An RPSU is installed and is currently available as a backup power source.
 - **Standby/Fault**: An RPSU is installed but is in standby mode, or, the RPSU is installed and has a fault condition. For example, the RPSU is connected to the NSS but is powered off.
 - **Active**: The RPSU is currently being used to provide backup power to the NSS.
 - **Unavailable**: The RPSU is currently providing backup power to another device and is not available to provide backup power to the NSS.

For more information about how the RPSU functions, refer to the RPSU documentation.
System Status

The System area displays the following:

- **Serial Number**: The serial number of the NSS.
- **Firmware Version**: The current version and date of the firmware installed on the NSS.
- **Uptime**: The number of days the NSS has been running since it was last rebooted.
- **Last Boot**: The date when the NSS was last rebooted.

Viewing the Hardware Monitor

The Hardware Monitor page displays these details about the physical conditions related to the NSS:
Managing the System

Viewing and Managing the System Logs

- **Voltages**: The current voltage reading for all voltage rails in the system. The reading is color-coded depending on if the voltage level is within specification (green) or out of specification and in need of attention (red).

- **Fans**: The fan speed for each chassis fan. Normal fan operation is color-coded green. If the fan has stalled, the reading is color-coded red.

- **Temperatures**: The NSS has temperature sensors located at various parts of the chassis. Temperature readings are performed from these sensors as well as from any installed disks (if the disk has an internal temperature sensor). If a disk does not have a temperature sensor, the reading appears as “unavailable.” If the temperature of the system or disks is over or under the ideal temperature, the temperature is color-coded red. When the temperature is within the normal range the color-coding is green.

Viewing and Managing the System Logs

The NSS captures various types of information into log files, such as user access details. You can store the logs locally or on a remote server on the network. Since local space allocated for log files is limited, the logs are overwritten once the space is filled. Each new event overwrites the oldest event recorded in the file.

To work with the log files:

STEP 1 From the **Manager Menu**, click **System → Logs**.
The **System Logs** page appears.

![System Logs page screenshot](image)

STEP 2 You can view, download, or delete these types of log files:

- **Admin**: A full list of time-stamped actions that were initiated through the NSS configuration interface.

- **Web Access**: This log displays IP addresses of the systems that accessed the NSS configuration interface and the date and time of the authentication requests. This information helps you detect unauthorized attempts to access the configuration interface.

- **CIFS Sharing**: A time-stamped event log of events initiated by users accessing shares through CIFS.

- **FTP Access**: A time-stamped log of FTP actions, including user logins, file transfers, and user logouts.

- **All Logs**: A list of all the log files. You can download and save this file.
This is an example of the **Administrator Log**:

![Administrator Log Example](image)

STEP 3 Choose where you want to store the log files:

- **Locally**: To store the log files on the NSS, select **Store Logs Locally**, and then select the volume to which you want to store the logs from the options in the **Store Logs to** drop-down menu.

- **Remotely**: To store the log files on a remote server, select **Forward Log Messages**, and then enter the name or IP address of the server in one or both of the **Remote Log Host** fields. (If you set up two remote hosts, the log file is sent to both servers.) Note that the remote server must be running a syslog server.

STEP 4 Click **Update**.
Viewing the Power Status Page

The **Power Status** page provides an overview of the current power condition of the NSS. It is also where you can configure an attached UPS.

NOTE
When the UPS power goes to low battery, a signal is sent through the USB port on the NSS and a shutdown of the NSS is initiated. Make sure that the UPS has enough reserve power to sustain the NSS through the shutdown (approximately 5 minutes).

The **Power** area displays the following:

- **UPS**: These options are available depending on the current operating condition of the UPS.
 - **No Connection**: A UPS is not currently connected to the NSS.
 - **On Mains**: A UPS is connected to the NSS but is not currently being used to power the unit. The NSS is deriving power from the main power.
 - **On Battery (%)**: The NSS is currently deriving its power from the UPS battery. The percentage of power still available is also listed and is color-coded according to the amount of battery remaining.

For more information about the functioning of the UPS, refer to the UPS documentation.
• **RPSU**: These options are available depending on the current operating condition of the RPSU.
 - **No Connection**: There is no RPSU installed.
 - **Ready**: An RPSU is installed and is currently available as a backup power source.

• **Standby/Fault**: An RPSU is installed but is in Standby mode, or, the RPSU is installed and has some sort of fault condition. For example, the RPSU is connected to the NSS but is powered off.

• **Active**: The RPSU is currently being used to provide backup power to the NSS.

• **Unavailable**: The RPSU is currently providing backup power to another device and is not available to provide backup power to the NSS.

For more information about the functioning of the RPSU, refer to the RPSU documentation.

NSS-Supported UPS Product Families

The NSS supports these UPS product families:

- APC Back-UPS Pro USB
- APC Back-UPS RS USB
- APC Back-UPS USB
- APC Back-UPS LS USB
- APC Back-UPS ES/CyberFort 350
- APC Smart-UPS USB
Adding the NSS to your Network

The Network Device Status page displays the current status of the NSS physical and virtual network interfaces.

Physical Interfaces

The Network Device Status table displays the current status of the physical Ethernet links connected to the NSS.

- **Status**: The status of the physical link. Options include:
 - **Up**: The link is up (color-coded green) and is operational.
 - **Down**: The link is down (color-coded red) and not operational.
Adding the NSS to your Network

Physical Interfaces

- **Link**: The number that appears in this column identifies the link attached to the NSS. It can be either 1 or 2.

 If a cable is connected to the Ethernet port, check the cable integrity and the status of the device (switch, router, or computer) at the other end of the cable. You can use the NSS cable diagnostic feature (see to assist you. (see "Running Diagnostics of your Physical Links" section on page 32)

- **Speed**: The configured speed, in Mbps, of the physical link. Options include: 10 Mbps, 100 Mbps, 1000 Mbps.

- **MAC Address**: The Ethernet MAC address for the link.

- **MTU**: The Maximum Transmission Unit (MTU) in bytes defined for the link. This is set either manually from the Network Properties page or via the DHCP server.

- **Rx Pkts**: The total number of IP packets received since the last boot.

- **Tx Pkts**: The total number of IP packets transmitted since the last boot.

- **Dropped Pkts**: The total number of IP packets dropped since the last boot.

Virtual Interfaces

The **VLAN Status** area of the **Network Status** page displays the current status and details about each configured VLAN.

- **Link**: The number that appears in this column identifies the physical link on which the VLAN is configured. If there are two physical links, the link appears as either “1” or “2.” If the two links are bonded, the number appears as “1+2.”

- **VLAN**: The VLAN number.

- **Priority**: The 802.1p priority set for the VLAN. Options include 0 through 7 (0 being best effort data and 7 being network critical data).

- **Label**: The text description defined for the VLAN.

- **Rx Pkts**: The total number of IP packets received on the VLAN interface since the last boot.

- **Tx Pkts**: The total number of IP packets transmitted on the VLAN interface since the last boot.

- **Dropped Pkts**: The total number of IP packets dropped on the VLAN interface since the last boot.
Viewing the Network Settings

The Network Device Settings page displays information about the physical and virtual interfaces currently configured on the NSS.

NOTE
If you hotplug the Ethernet link after the initial installation of the NSS, make sure you wait 15 seconds between the time you unplug the cable and then plug it back in. The NSS displays the correct new settings within 10 seconds.

To display the Network Device Settings page, from the Manager Menu, click Network → IP. The Network Device Settings table displays the following:

- **Link**: “1+ 2” appears in this column.
- **VLAN**: The ID assigned to the virtual interface. For physical interfaces, this column is blank.
- **Assign Via**: The method used to assign an IP configuration to the physical or virtual interface. Options include:
 - **DHCP**: The IP configuration was assigned by a DHCP server.
 - **Manual**: A static IP configuration was manually entered through the NSS configuration interface.
 - **AutoIP**: The interface was configured to use DHCP for IP configuration but no DHCP server was found. Instead the IP address was assigned by the AutoIP protocol.
Adding the NSS to your Network
Configuring the Network Link IP

- **IP Address**: The IP address for the physical or virtual interface.
- **Netmask**: The netmask for the physical or virtual interface.
- **Gateway**: The address of the gateway for the physical or virtual interface.

Configuring the Network Link IP

You need to configure the method for assigning an IP configuration to each interface connected to the NSS.

NOTE
If you hotplug the Ethernet link after the initial installation of the NSS, make sure you wait 15 seconds between the time you unplug the cable and then plug it back in. The NSS displays the correct new settings within 10 seconds.

To set the IP address allocation method for an interface:

STEP 1 From the Manager Menu, click **Network → IP**.

The Network IP page appears listing each interface.

STEP 2 Click **Edit** on the row of the interface you want to configure.

The Network Link Configuration page appears.
Adding the NSS to your Network

Resetting the DHCP Lease on a Link

STEP 3 Select one of the following:

- **Obtain IP Address Automatically**: Use a DHCP server to retrieve the IP address, netmask, and gateway address for the interface.

- **Use the Following IP Address**: Enter the IP configuration details manually, in dotted-quad notation.

STEP 4 Click **Update**.

Resetting the DHCP Lease on a Link

You can force a renewal of the DHCP lease on a physical link or VLAN that is configured for DHCP:

STEP 1 From the **Manager Menu**, click **Network → IP**.

The **Network IP** page appears listing each physical and virtual interface.

STEP 2 Click **Edit** on the row of the link IP that you want to reset.

The **Network Link Configuration** page appears.

STEP 3 Click **Update**.
Adding the NSS to your Network
Viewing VLANs Configured on the NSS

Viewing VLANs Configured on the NSS

When you first display the **Network VLAN** page, the currently configured VLANs appear. Configuring a VLAN to connect to the NSS depends if it is trunk-based or port-based. To configure a trunk-based VLAN, follow the steps provided next. To configure a port-based VLAN, configure the switch to assign the port to which the NSS is connected to the desired VLAN. In this case, no NSS configuration changes are required.

To view the VLANs currently configured on the NSS:

STEP 1
From the **Manager Menu**, click **Network ➤ VLAN**.

The **VLAN Configuration** page appears.

STEP 2
View the following details for each existing VLAN that appears in the VLAN Configuration table:

- **Link**: The link on which the VLAN is configured. The status appears as “1+2.”
- **VLAN**: The ID of the VLAN. This is configured when the VLAN is added to the NSS and should match the ID of the VLAN as it is configured in your network. The range of valid VLAN IDs is from 0 to 4095.
- **Priority**: The quality of service (QoS) as defined in the IEEE 802.1p standard for the VLAN traffic. VLAN Ethernet frames contain a three-bit priority tag ranging from 0 to 7 (where 0 is best effort and 7 is network-critical traffic).
Allowing a VLAN Access to the NSS

To set up a network VLAN to access the NSS:

STEP 1 From the Manager Menu, click **Network ➤ VLAN**.

The **VLAN Configuration** page appears.

STEP 2 In the **New VLAN** area of the page, set up the following fields:

- **Label**: A text description for the VLAN (for example, “Data,” “Voice,” “Video,” and so on). This description is used solely as a reference within the NSS interface and does not affect its operation.

- **Link**: Select the Ethernet link on which you want the VLAN to connect to the NSS. Available options depend on the configuration of your Ethernet link(s).

- **VLAN**: Enter the ID of the VLAN as it is defined within your network. The range of valid VLAN IDs is from 0 to 4095.

- **Priority**: Select the QoS priority for the VLAN traffic as it is defined for your network. Valid options range from 0 to 7 (as defined by the IEEE 802.1p standard). VLAN Ethernet frames contain a three-bit priority tag ranging from 0 to 7 (where 0 is best effort and 7 is network-critical traffic).
Label: Enter a text description for the VLAN (for example, “Data”, “Voice”, “Video”, etc.). It can be made up of alphanumeric characters. Note that this description is used solely as a reference within the NSS interface and does not affect its operation.

STEP 3 Click Add.

The newly added VLAN appears in the VLAN Configuration table. A message appears to advise that the VLAN does not take effect until you configure the IP address.

STEP 4 Click OK.

The Network Device Settings page appears. The newly added VLAN appears in the list.

STEP 5 Click Edit for the VLAN you need to configure.
The **Network Configuration** page appears.

![Network Configuration Page](image)

STEP 6 Click one of the following, depending on how you want to assign the VLAN IP addressing:

- **Obtain IP Address Automatically**: Use a DHCP server to retrieve the IP address, netmask address, and gateway address for the VLAN.

- **Use the Following IP address**: Enter the IP configuration details manually.

STEP 7 Click **Update**.

Changing a VLAN Configuration

After you set up a VLAN to access the NSS, you can change the VLAN configuration.

To edit a VLAN configuration:

STEP 1 From the **Manager Menu**, click **Network ➔ VLAN**.
The **VLAN Configuration** page appears.

STEP 2 Click **Edit** for the VLAN you want to change.

The **Edit VLAN** page appears.

STEP 3 Make changes to any of the VLAN configuration fields as required.

STEP 4 Click **Update**.
Removing a VLAN’s Access to the NSS

All connected VLANs appear when you first display the VLAN Configuration page. You can delete the connection between a VLAN and the NSS. Note that deleting the VLAN only affects the VLAN’s ability to access the NSS. It does not impact the VLANs operation within your network.

To disconnect a VLAN’s access to the NSS:

STEP 1 From the Manager Menu, click Network ➔ VLAN.

The VLAN Configuration page appears.

STEP 2 From the VLAN Configuration table, click Delete for the VLAN that you want to remove.

The VLAN disappears from the VLAN Configuration table and can no longer access the NSS.
Configuring the NSS Network Identification

The **Network Identification** page is where you configure the network identity of the NSS, including the hostname and domain membership.

Before you join the NSS to an NTv4 or Active Directory Service (ADS) domain, do the following:

- Configure the IP and DNS information.

 From the **Manager Menu**, click **Network → DNS/WINS** to configure the DNS server information. See “Configuring DNS or WINS for Name Resolution,” on page 28.

- Configure the NTP Server to synchronize with the ADS server. See “Configuring the Timing Settings,” on page 140.

- Set up the **Home Directory** Location on the **User/Group Settings** page. This is used for both domain users and local users. See “Configuring the User/Group Settings,” on page 99.

 From the **Manager Menu**, click **Access → Time**.

To configure the NSS network identity:

STEP 1 From the **Manager Menu**, click **Network → Identification**.

The **Network Identification** page appears.
STEP 2 In the **Hostname** field, enter the name you want to use for the NSS. Note any special naming restrictions or conventions enforced by the domain(s) into which the NSS is being joined.

CAUTION If you change the hostname, any current CIFS connections to shares on the NSS are disconnected.

STEP 3 To assign the hostname for the NSS using the DHCP server, select **Assign automatically via DHCP**. If the DHCP server is not available or if it is not configured to supply a hostname, the NSS hostname is assigned using the information entered in the **Hostname** field.

STEP 4 In the **Description** field, enter the textual description for the NSS as you want it to appear in the file manager window for your users.

STEP 5 Select the type of network into which you are making the NSS a member from the following options:

- **Workgroup**: Make the NSS part of a peer-to-peer network.
- **NTv4 Domain**: Make the NSS a part of a pre-Windows 2000 domain. If you select this option, set up the following fields:
 - **NTv4 Domain**: Enter the domain name.
 - **Domain Controller**: Enter the hostname or IP address of the domain controller.
 - **Username**: Enter the username of an account that has administrator privileges for this domain. Note: The username cannot contain the “%” character.
 - **Password**: Enter the password for the administrator account.
 - **Enable Support for Large ADS Domains**: Check this option to connect the NSS to an ADS domain that has more than 1000 users and groups. (This is the sum of the individual users and individual groups.)

It can take up from 2 to 5 minutes to complete the domain join for large ADS domains. When the NSS initially joins the domain, there might be a delay of several minutes until the domain users and groups appear in the graphical user interface (GUI). This delay only occurs after a successful join. Any changes that you make to the users and groups on the domain controller (additions or deletions) can take up to 20 minutes to appear in the GUI.
The NSS supports ADS domains of up to 8,000 users for the NSS4000 and 16,000 users for the NSS6000. If you need to connect the NSS to a domain larger than this, you might have problems making CIFS connections to the NSS.

- **System Volume Location**: If you checked the **Enable Support for Large ADS Domains** field, you must then select the RAID array on which to store the system cache files associated with the ADS domain join. The RAID array that you choose must have at least 512 MB of available space. If you delete the RAID array on which the system volume is located, leave the domain by switching to workgroup mode, and then delete the RAID array.

STEP 6 Click **Update**.

If you configured the NSS to join a domain, when you click **Update**, the domain join occurs. The NSS configuration interface displays the status of the domain join (successful or not successful).

NOTE

If you are joined to a domain and make changes to the fields on this page, make sure that you re-enter the domain password as the NSS automatically rejoins the domain when you click **Update**.

Configuring DNS or WINS for Name Resolution

Within a network, DNS and WINS are used to translate hostnames into IP addresses. For example, the hostname "myserver" might translate to 172.1.135.6. Configuring how the NSS works with name resolution depends on what type of servers exist within your network. To configure the DNS or WINS server addresses for your network:

STEP 1 From the **Manager Menu**, click **Network** ➔ **DNS/WINS**.
Adding the NSS to your Network
Configuring DNS or WINS for Name Resolution

The **Network Name Resolution** page appears.

![Network Name Resolution page](image)

STEP 2 Based on your network setup, configure the following fields:

- **Search Domain**: Enter the address of the DNS search domain accessible by the NSS. If you are joined to a domain, enter the controller name into this field.

- **Primary DNS Server**: Enter the IP address of the primary DNS server on your network. If you are joined to a domain, enter the IP address into this field.

- **Alternate DNS Server**: Enter the IP address of a second DNS server to be used should the primary DNS server become unavailable. This field is optional.

- **Assign automatically via DHCP**: Select this to assign the IP address for the DNS server using the DHCP server. If the DHCP server cannot be found or times out, the DNS server IP address is assigned the IP address manually entered in the **Primary** or **Alternate DNS Server** fields.

- **Primary WINS server**: If your network has a WINS server, enter its address. This field is optional.

- **Alternate WINS server**: If your network has a secondary WINS server, enter its address. This field is optional.
Assign automatically via DHCP: Select this to assign the IP address for the WINS server using the DHCP server. If the DHCP server cannot be found or times out, the DNS server IP address is assigned the IP address manually entered in the Primary or Alternate WINS Server fields.

STEP 3 Click Update.

Joining the NSS to a Network Information System (NIS) Domain

To join the NSS to a NIS domain, you need to configure and enable it.

NOTE
Before you join a NIS domain, make sure that you set up or make changes to the NIS domain users and groups ID range on the User/Groups Settings page. This minimizes the risk of collisions of user or group IDs within your network.

To configure the NSS for NIS:

STEP 1 From the Manager Menu, click Network ➔ NIS.

The NIS Configuration page appears.
STEP 2 Select **Enable NIS**.

STEP 3 Enter the NIS domain name in the **NIS Domain Name** field.

STEP 4 Set the bind state by clicking one of the following:

- **Broadcast for NIS Server**: Click this option to have the NSS search until it finds the NIS server on the network.

- **Use the following NIS Servers**: To manually identify the NIS server you want the NSS to use, click this option, and then enter the address of up to three different NIS servers.

The **Bind State** field shows the current bind status of the NSS.

STEP 5 Click **Update**.
Editing Access Control Lists (ACLs) from Windows Explorer: Restrictions

Access Control Lists (ACLs) are used to set user and group access privileges for specific files and folders stored on the NSS. When editing ACLs through Windows Explorer these restrictions apply

- **Group versus User ACLs**: You can only set up an ACL for individual users. You cannot set up a group ACL.
- **NIS domain**: You cannot create or edit ACLs for NIS domain users; they do not appear in the Security tab in Windows Explorer.

Running Diagnostics of your Physical Links

The NSS lets you test the physical network cables attached to Ethernet links 1 and 2 for certain fault conditions. You must manually initiate a test to update the results shown on the **Network Diagnostics** page.

NOTE

When you initiate a test on an Ethernet link, you take down the link for the duration of the test. Any current user connections on the link are dropped. If you have two links installed, any connections through the untested link remain unaffected.

To test the physical link:

STEP 1 From the **Manager Menu**, click **Network ➔ Diagnostics**.
The **Network Diagnostics** page appears.

![Network Diagnostics page](image)

STEP 2 Click **Test** for the cable you want to test.

After the test completes, the test results appear in the Link Status area. The test results also appear on the **System Status** page. If the cable is in good working condition, the link is again accessible to your users.

Configuring the Network Ports

By default the NSS runs network services on their well known (IETF defined) port numbers. You can change the port on which any particular service runs. When you disable WAN access for a given service, only hosts on the same subnet as the NSS may connect to that service. This is a shortcut to manually defining an equivalent network filter.

To set up the network services:

STEP 1 From the **Manager Menu**, click **Network ➤ Ports**.
The **Network Ports Configuration** page appears.

STEP 2 Change the port assignment for any of the following service types:

- **FTP/FTPS Port**: The well-known port setting is 21. Select **Disable WAN Access** to disallow FTP and FTPS protocol access to the NSS from a WAN.

- **Web Server Port**: The well-known port setting is 80. To access the NSS configuration interface, you must have either the HTTP port or HTTPS port enabled. Select **Disable WAN Access** to disallow HTTP protocol access to the NSS from a WAN.

- **SSL Web Server Port**: The well-known port setting is 443. Select **Disable WAN Access** to disallow HTTPS protocol access to the NSS from a WAN.

STEP 3 Click **Update**.
Adding the NSS to your Network
Setting up the Link Bonding & Advertising Modes

Setting up the Link Bonding & Advertising Modes

The Network Properties page is where you configure the bonding mode for the physical Ethernet link(s) attached to the NSS. It also lets you determine how you want to advertise the presence of the NSS within your network.

To configure the network properties:

STEP 1 From the Manager Menu, click Network → Properties.

The Network Properties page appears.

STEP 2 To set the bonding mode of your physical links, click one of the following:

- **802.3ad Link Aggregation (failover and load sharing):** Select this option to aggregate the two Ethernet connections using the IEEE 802.3ad standard. This technology is also known as trunking or bonding.

- **Active backup (failover):** This is the default option when you first install the NSS or when you restore the factory default settings by resetting the NSS. Select this option to define one link as the active link and one link as the backup. Should the active link become unusable (either disconnected or significantly degraded), the backup link automatically becomes the active link.

STEP 3 Set the Maximum Transmission Unit (MTU), in bytes, in the MTU field. This is the largest Ethernet frame that your network can handle. The default MTU size is 1500 bytes. MTU sizes greater than 1500 bytes are considered “jumbo frames.”
STEP 4 To assign the link MTU size automatically using the DHCP server, click Assign automatically via DHCP. In this case, the value entered in the MTU field is used as a backup if the DHCP server does not provide an MTU value or if the server cannot be reached.

STEP 5 Based on your network requirements, enable any of the following:

- Advertise using UPnP: The NSS is advertised within the network using UPnP.
- Advertise using Zeroconf/Bonjour: The NSS is advertised within the network using Zeroconf/Bonjour.

STEP 6 Click Update.
Configuring your Storage

The **Storage Status** page shows the current state of the disk drives, arrays, and volumes currently installed or exported to the NSS. You can also view the S.M.A.R.T. health report for each physical disk. To display the **Storage Status** page, from the **Manager Menu**, click **Storage ➤ Status**. The **Storage Status** page automatically refreshes on a regular interval and is helpful for monitoring the progress of certain processes such as checking the condition of a drive.
Disk Status Table

The Disk Status table lists each of the physical disks installed in the NSS. The table has these columns:

- **Port**: The port number on the NSS in which the disk is installed.
- **Model**: The model of the disk drive. This information is read from the disk drive.
- **Capacity**: The size of the disk drive.
- **Health**: The system monitors each disk drive and reports the condition of the disk drive.
 - **Passed**: The disk drive passed the S.M.A.R.T. test and is considered fully operational. The Error LED on the disk drive is off.
 - **Failing**: The disk drive failed the S.M.A.R.T. test and is predicated to fail. The red Error LED on the disk drive is blinking.
 - **Failed**: The disk drive is not operational (has failed). The red Error LED on the disk drive is on solid.
- **Status**: The state of use for the disk drive.
 - **Online**: The disk drive is spun up.
 - **Standby**: The disk drive is idle and is spun down.
 - **Offline**: The disk drive is failed.
- **Action**: There are available action buttons associated with each installed disk drive:
 - **Get Details**: View the current, detailed S.M.A.R.T. report for the disk drive.
 - **Locate**: Send a locate request to the applicable disk drive. The white disk drive LED on the front of the NSS chassis blinks for the targeted disk drive. You can only send one locate request at a time. Disk drives are numbered from 1 to 4 from left to right on the chassis (when facing the chassis front panel) and correspond with the port number.
 - **Cancel Locate**: There is a locate request set up for a disk drive. Click Cancel Locate to cancel the locate request. This lets you send a locate request for another disk drive.
RAID Arrays Table

The **RAID Arrays** table lists each array (either RAID or JBOD) currently configured. The table includes the following:

- **Label**: The name assigned to the array.
- **RAID Level**: The configured RAID level.
- **Size**: The size allocated for the array. The amount of available storage for an array depends on the number of drives in the array, the size of the smallest drive, as well as the RAID level assigned. The calculation for an array, according to RAID level, is as follows (where “n” = the number of drives in the array and “s” = the size of the smallest drive in the array):
 - **JBOD** = sum (size of each drive)
 - **RAID0** = n * s
 - **RAID1** = s
 - **RAID5** = (n-1) * s
 - **RAID10** = n * s /2
- **Status**: The current condition of the RAID array.
 - **Clean**: The array is in a normal state. This status is color-coded green.
 - **Degraded**: For RAID arrays with redundancy (i.e., RAID levels 1, 5, 10), one or more of the redundant disk drives is removed from the system or is failed. In this state, the array is fully recoverable. This status is color-coded orange.
 - **Failed**: One or more disk drives were removed or are unrecoverable from a RAID0 or a JBOD array. For RAID levels 1, 5, 10, it indicates a loss of all the redundant disks in the array plus at least one more drive. In this state, the array is unrecoverable.
 - **Rebuilding**: A RAID level with redundancy is being rebuilt. Note that during a rebuild, the RAID array is still fully usable. This status is color-coded orange. During the rebuild, the disk drive LED slowly blinks green.
 - **Stopped**: A RAID array has been stopped by the system (through degraded mode management) due to it being in degraded mode for the amount of time configured in the **Storage Options** page. Volumes associated with a stopped array are unmounted and unusable. To start the RAID array, click the **Start** button.
Volumes Table

The Volumes table provides a list of the existing volumes. The table is made up of the following:

- **Location**: The name of the RAID array on which the volume is configured.
- **Volume**: The name assigned to the volume.
- **Total Space**: The amount of space configured for the volume.
- **Used Space**: The amount of space used on the volume.
- **Avail. Space**: The amount of unused space on the volume.
- **% Used**: The percentage of available space that is used.
- **Encrypted**: Whether the volume is encrypted or unencrypted.
- **Locked**: The encrypted volume is locked and is not accessible. To make the volume accessible, the volume must be unlocked.

USB Storage Status

If you mount a USB flash device by inserting it into the AUX-1 port on the front of the chassis, the USB Storage Status table appears. If there is no USB flash device mounted, the USB Storage Status table does not appear. You can use the USB flash device to save a backup of the configuration file (see “Saving the Current Configuration” section on page 134). When you finish using the USB flash device, click **Unmount** before you remove it from the AUX-1 port. (The AUX-1 LED on the front of the chassis must be off before you can safely remove the USB flash device.) If you remove the USB flash device in a mounted state, you risk corrupting the files or filesystem.

The USB Storage Status table provides these details about the mounted USB flash device:

- **Disk**: The type of disk in this case is the USB flash.
- **Total Space**: The total amount of space (both used and available) on the USB flash device.
- **Used Space**: The amount of space taken up on the USB flash device.
- **Available Space**: The amount of unused space on the USB flash device.
%Used: The percentage of space used on the USB flash device.

Action: The Unmount button unmounts the USB flash device so that it can be safely removed from the AUX-1 port.

Managing RAID Arrays

RAID is an acronym for Redundant Array of Inexpensive Disks. In storage environments, a RAID array uses multiple physical disk drives to create a single logical unit from which data can be shared or replicated between the drives. A RAID array also simplifies the data management as the data appears in one logical unit. Choosing to store your data using a RAID array gives you the benefit of speed and performance; storage capacity; decreased downtime costs and increased availability; fault tolerance; and higher data security.

About the RAID Arrays Page

Use the RAID Arrays page to manage the local RAID and JBOD arrays. To display the RAID Arrays page, from the Manager Menu, click Storage ➔ RAID.
Choosing a RAID Array Level

RAID (Redundant Array of Inexpensive Disks) is a technology that enables multiple low-cost hard drives to be used together in a way that increases performance and/or reliability compared to that of a single drive. The component devices in a RAID array appear as a single logical storage device. There are various types of RAID, referred to as RAID levels. Some RAID levels increase the performance of the array, some increase the reliability, and others do a mixture of both. The NSS supports the following RAID levels: 0, 1, 5 and 10. The NSS also supports JBOD (Just a Bunch of Disks), which is not technically a RAID level.

These variables are used in formulas used to calculate the total capacity of each RAID level:

- **m** – capacity of the smallest disk in the array
- **n** – number of disks in the array

RAID0: RAID0 stripes the data written to the array across the component disks. The data is broken into chunks and each chunk is written to a different disk. Reads and writes to each disk occur in parallel, speeding up the total read and write performance of the array.

- Minimum Number of Disks: 2
- Total capacity: \(m \times n \)
- Advantages: Increased read and write performance.
- Disadvantages: Decreased reliability. A failure of any component disk in the array causes the entire array to fail.

RAID1: RAID1 writes the same data to each disk in the array. The disks are referred to as “mirrors” because each one mirrors the data stored on the others. As long as one disk in the array is intact, all data can be read back from the array. If a disk fails in the array and is then replaced, the array must copy the entire contents of a good disk to the new disk. This process is referred to as “resyncing.” During a resync, the array continues to be available for reads and writes. When an array contains a failed disk, it is said to be operating in degraded mode. This reflects the decreased performance and reliability of the array when it is missing disks.

- Minimum Number of Disks: 2
- Total capacity: \(m \)
- Advantages: Increased reliability. The array can sustain the loss of all but one disk without any data loss. Each mirror disk added to the array...
increases the reliability (for example, a two-disk RAID1 is half as likely to fail, a three-disk RAID1 is one-third as likely to fail, and so on). Increased read performance.

- **Disadvantages**: Decreased aggregate storage capacity (each mirror disk does not contribute to the total capacity of the array). Decreased write performance. I/O intensive when resyncing mirrors.

RAID5: RAID5 stripes data written to the array like RAID0, except that, unlike RAID0, RAID5 generates parity information that also gets striped across the array. This parity information is used during the reconstruction of the lost data when a drive fails in the array. When a failed disk is then replaced, the array must regenerate and rewrite the parity information of the array. This process is referred to as “rebuilding”. During a rebuild, the array continues to be available for reads and writes. If the parity information in the array gets out of sync with the data in the array, usually as the result of an unexpected loss of power to the system, the array must be rebuilt. Like RAID1, if a disk is missing from the array, the array is said to be operating in “degraded” mode.

- **Minimum Number of Disks**: 3
- **Total capacity**: \(m \times (n-1) \)
- **Advantages**: Increased reliability. The RAID array can sustain the loss of any single disk without any data loss. Increased read and write performance.
- **Disadvantages**: Decreased aggregate storage capacity (you lose the equivalent capacity of a single disk). CPU intensive calculation of parity, especially during rebuild operation. I/O intensive during rebuild operation.

RAID10: RAID10 is a combination of RAID1 and RAID0. The NSS implements RAID10 as two, 2-disk RAID1 mirrors, which are then used to build a RAID0 array. RAID10 can be thought of as “mirror then stripe”.

- **Minimum Number of Disks**: 4
- **Total capacity**: \(2 \times m \)
- **Advantages**: Increased read and write performance; increased reliability. The RAID array can sustain the loss of any single disk without data loss. Depending on which disks fail, the array can lose up to two disks without data loss.
- **Disadvantages**: Decreased aggregate storage capacity (you lose half of the storage space).
JBOD: JBOD lets you combine multiple disks of mixed capacities into a single logical storage device. The capacity of the JBOD array is the sum of the total capacities of the individual component disks (that is, it does not have the limitation of RAID0 where you lose some capacity when using mixed sized disks). JBOD offers no performance increase compared to the component disks. It has lower reliability than the component disks, as the failure of a single disk results, in general, in the failure of the whole array. Depending on how you create volumes on the JBOD array, you may be able to recover data when one or more disks in the JBOD fail. This, however, is not guaranteed.

- Minimum Number of Disks: 1
- Total capacity: sum of capacities of component disks.
- Advantages: Maximal storage capacity, especially when using mixed size disks.
- Disadvantages: Decreased reliability.

Creating a RAID Array

To create an array:

STEP 1 From the Manager Menu, click Storage → RAID.

The RAID page appears:
STEP 2 The available disks appear in the **New RAID Device** table. Select each disk that you want to include in the array.

STEP 3 From the **RAID Level** drop-down menu, click the RAID level of the RAID array you want to create.

STEP 4 Click **Add**.

STEP 5 The RAID creation can take some time to complete (depending on the size of the disks and the selected RAID level). You can monitor the progress of the RAID build from the **Storage Status** page. When the build is finished, the array appears in the **RAID Arrays** table. The disks used in the array are no longer available for creating additional arrays.

Adding a Disk Drive to an Array

You can add additional disks to an existing RAID1 or RAID5. As long as the array is clean, these disks then become spares.
NOTE When adding disks to an array, we recommend that you use the same model of disk with the same capacity. The new disk must have at least the same capacity of the smallest disk currently in the array. With the exception of a JBOD, RAIDs are configured to use the maximum of the smallest disk capacity in the array for each additional disk in the array. For example, if you install two, 250 GB disks and one 500 GB disk, the total capacity is 750 GB.

To add a disk to an array:

STEP 1 If not already installed in the chassis, insert the disk in the NSS.

STEP 2 From the Manager Menu, click Storage ➔ RAID.

The RAID page appears.

STEP 3 In the RAID Arrays table, click Edit for the applicable RAID array.
Configuring your Storage
Deleting an Array

The **RAID Configuration** page appears.

![RAID Configuration Page](image)

STEP 4 Available disk drives appear in the listing. Click **Add** to add the disk drive to the array.

If the disk drive is added to a functional array, the disk drive becomes a hot spare. If the disk drive is added to a degraded array, the RAID array is rebuilt. While the rebuild continues, the array can still be used. After the rebuild process completes, the disk becomes part of the redundant storage. You can monitor the progress of the rebuild through the **System Status** page.

Deleting an Array

You can remove an existing array and release the disks used in the array back into available storage. Note that deleting an array also deletes any existing data on the array (including the volumes, shares, and quotas). If you delete an array that you must assign a new volume as the **Home Directory** location.

To delete an existing array:

STEP 1 From the **Manager Menu**, click **Storage ➤ RAID**.
The **RAID** page appears.

![RAID page screenshot]

STEP 2 Click **Delete** in the row of the RAID array that you want to delete.

A warning message appears.

STEP 3 To continue, click **OK**.

The deleted array disappears from the list of existing arrays. The disks used in the array are released back into available storage and appear in the **New RAID Device** table.

Migrating a RAID Array to another Storage Device

If you are migrating a RAID array from the NSS to another network NSS, make sure that you coldplug the RAID array (instead of hotplugging it) into the new system by following these steps:

- **STEP 1** Power down the NSS (from which you are removing the RAID array).
- **STEP 2** Remove each of the disk drives that make up the RAID array to be moved.
- **STEP 3** Power down the NSS to which you are migrating the RAID array.
- **STEP 4** Insert each of the disk drives in the RAID array into the new NSS.
NOTE
You can install the drives into the new NSS in any order. You do not need to install them in the same order or slots that they were installed in the original NSS.

STEP 5
When all the disk drives are installed, power up the NSS.

Virtualizing Storage within your Network

The NSS virtualization feature lets you create storage physically located on other network NSS units into one logical storage unit. The recommended network configuration for using virtualization is to use an NSS6000 series to operate as the “master” storage device (the “slave” devices can either be NSS6000, NSS4000, NSS3000, or NSS2000 series devices). This configuration setup means that you can export storage (must be an unused disk drive or configured array) from a slave NSS and then import the storage into the master NSS. The supported RAID level for virtualized storage is JBOD (although the JBOD can consist of concatenated exported arrays).

NOTE
After you configure a virtual RAID, you cannot migrate the disks used for that RAID to another NSS. You also cannot export storage from a device that uses imported storage.
Exporting Storage to your Network

To export storage to the network:

STEP 1 Log into the configuration interface for the device from which you are exporting storage.

STEP 2 From the Manager Menu, click Storage → Virtualization. The Storage Virtualization page appears.

STEP 3 From the Export a device area, select each device that you want to export from the list of available devices.

STEP 4 From the Link field, select the physical link that you want to use to export the storage.

STEP 5 Click Export.

STEP 6 The selected disk(s) disappear from the available list of arrays and appear in the Currently Exported Storage table at the top of the page. Follow the steps to create a JBOD from virtualized storage to use the exported storage. (see Creating Virtualized Storage, page 51)
Creating Virtualized Storage

To create a JBOD with exported disks:

STEP 1 Log in to the configuration interface from the master unit.

STEP 2 From the **Manager Menu**, click **Storage ➔ RAID**.

The **RAID** page appears.

Exported disks from other NSS units in the network appear in the table.

STEP 3 From the **New RAID Device** table, click the disks or arrays that you want to include in the JBOD.

STEP 4 Select **JBOD** as the RAID level.

STEP 5 Click **Add**.

The JBOD appears in the **RAID Arrays** listing. You can now create volumes from the virtualized JBOD.
Unexporting Storage

You can choose to unexport pieces of the storage currently exported to the network. Note that you can only unexport storage that has not yet been used.

To unexport a piece of storage:

STEP 1 From the Master device, delete any RAID arrays associated with the storage you want to unexport. (see Deleting an Array, page 47)

STEP 2 Display the Configuration Interface for the slave device that contains the storage you want to unexport.

STEP 3 From the Manager Menu, click Storage → Virtualization.

The Storage Virtualization page appears.

STEP 4 Click Unexport for the device you want to release from the network.

The disk drive(s) or array no longer appears in the Currently Exported Storage list. It now appears in the Export a device list and is again available for use.
Volume Management

A volume is a way to partition storage space available on an array. The Storage Volumes page shows the following details about configured volumes or create additional volumes.

The Volumes table displays the following:

- **Volume**: The name of the volume.
- **Location**: The array on which the volume is located.
- **Total Space**: The amount of space allocated for the volume (in MB or GB).
- **% Used**: The amount of space, as a percentage, that is currently used.
- **Crypto**: Whether the volume is encrypted or not. Note that file transfer performance to encrypted volumes is generally lower than to non-encrypted volumes.
- **Action**: Click **Edit** to make changes to the current volume. Click **Delete** to remove the volume (and any saved data on the volume) from the array. If the volume is encrypted, you can either click **Unlock** to unlock it and make it usable, or click **Lock** to manually lock it.
Creating a Volume

After you define at least one RAID array, you can create a volume. You need to create at least one volume before you can create users, groups, or shares.

To create a volume:

STEP 1 From the Manager Menu, click Storage ➤ Volumes.

The Storage Volumes page appears.

STEP 2 From the New Volume area, set up these fields:

- **Array**: Click the drop-down menu to select the array on which you want to create the volume.
- **Name**: Enter the name you want to give the volume. The volume name must consist of at least one alphanumeric character, must begin with a letter, but cannot contain any spaces.
- **Size (in MB)**: Enter the size for the volume, and then select the unit from the drop-down menu. The final size of the shared volume is less than the size you enter in this field due to filesystem overhead. The minimum volume size is 32 MB. Volume sizes are rounded down to the nearest 32 MB increment.
NOTE

Once the volume is created, you can expand the volume but you cannot reduce its size.

STEP 3

To encrypt the volume, select Encrypted. To create an unencrypted volume, go to Step 6.

NOTE

You can encrypt the volume only when the volume is first created. After a volume is created, you cannot change whether it is encrypted or unencrypted. File transfer performance to encrypted volumes is generally lower than to non-encrypted volumes.

STEP 4

Enter a password in the Password field using a minimum of eight alphanumeric characters. The password must consist of at least three of the following: lowercase character, upper-case character, number (0-9), or a special character (such as #@*^&). The password must be entered to unlock an encrypted volume when the NSS is started up following a power interruption, shutdown, or rebooted, or, if the volume was manually locked through the NSS configuration interface.

CAUTION

Because you need the password to decrypt a locked volume, keep a secure backup of the password to ensure that it is accessible when required. There is no way to unlock the volume without the password. If you forget the password, the only way to retrieve is if the password was saved in a configuration file. See Restoring a Configuration File, page 137.

STEP 5

Re-enter the password in the Confirm Password field.

STEP 6

Click Add.

Expanding a Volume

After a volume is created, you can increase its size, provided there is available space on the array. Note: You cannot grow a volume if it is the target of a snapshot. If you want to grow such a volume, delete the snapshots first and then expand the volume.
To increase the size of a volume:

STEP 1 From the Manager Menu, click Storage ➔ Volumes.

The Volumes page appears.

STEP 2 Click Edit for the volume you want to expand.
The **Grow File System** page appears for the selected volume.

STEP 3 In the **Resize by field**, select one of the following:

- **Grow By**: Select this option to add the space allocated in the **Size** field to the existing space for the volume. For example, if the volume currently has 224 MB of space and you want to add another 224 MB, select **Grow By**, then enter 224 in the **Size** field and set the unit field to **MB**. The system rounds up the total space to the nearest 32 MB boundary.

- **Resulting Size**: Select this option to resize the volume to the space entered in the **Size** field. For example, if the volume currently has 224 MB of space and you want it to have 928 MB, select **Resulting Size** and then enter 928 in the **Size** field. The system rounds up the total space to the nearest 32 MB boundary.

STEP 4 Depending on your choice in the previous step, enter the new number in the **Size** field and then select the unit from the drop-down menu. If you selected **Grow By**, the new number is added to the existing volume size. If you selected **Resulting Size**, the new number becomes the total size for the volume.

STEP 5 Click **OK**.
Deleting a Volume

You can choose to delete a volume at any time.

CAUTION Deleting the volume removes any shares or data currently saved to that volume. If the volume was assigned as the users’ *Home Directory* Location, you must reassign the *Home Directory* Location to another volume.

To delete a volume:

STEP 1 From the **Manager Menu**, click **Storage → Volumes**.

The **Storage Volumes** page appears.

STEP 2 From the **Volumes** area, click **Delete** for the volume you want to delete.
Viewing the Snapshot Reserve Details

You can configure the NSS6000 series NAS to take snapshots of the data on an existing volume. When you create a snapshot, a backup of each of the shares on the volume is created and is available within the system's file directory to which end users of those shares have access. The advantage of a snapshot over a backup is that a snapshot is user-accessible and can be used for quick file recovery resulting from end-user error (such as an accidentally deleted file). A backup is only accessible to the administrator through the NSS configuration interface. Restoring data from a backup is generally a task that is scheduled with the IT administration staff. Backups are usually used to restore the system from a major system failure.

Snapshots can be taken at various time intervals (such as hourly, daily, and so on). Each time a snapshot is taken, the previous snapshot is overwritten. You can also configure multiple snapshot sequences for the same volume. This is typically done to have snapshots occur at different time intervals. For example, you might want to capture a snapshot sequence for each hour, a separate sequence for weekly snapshots, and one for bi-weekly snapshots. In this case, the volume has three separate snapshot sequences. Each snapshot is overwritten when the next snapshot of the same frequency is taken. To ensure data integrity, during the creation of the snapshot (the duration is approximately a few seconds), no writes can occur to the share.

The snapshot reserve is the amount of space that you want to allocate to the snapshot on the associated array. Once set, this space is not available for other storage use. The recommended amount of a reserve is generally between 10 to 20% of the total volume size. Note that if the period of time between snapshots is greater, the amount of the reserve should be greater. Or, if there is a heavy amount of activity on the volume, set a higher reserve. This is due to the snapshot reserve being used to store the changes to the volume contents since the last time the snapshot was taken.

NOTE
This feature is only available on the NSS6000. You cannot grow a volume if it is the target of a snapshot. If you want to grow such a volume, delete the snapshots first and then expand the volume.
Maintaining Active Snapshots

You can view the list of configured snapshots by displaying the **Storage Snapshots** page. The **Currently Active Snapshots** area lists each snapshot set up for all the volumes on your NSS6000,

These column headings provide details about the snapshot:

- **Volume**: The name of the volume for which the snapshot is set up.
- **Frequency**: The time interval of the snapshot. If the time interval is set up to occur at a certain time of the week, day, or hour, it is also listed. For example, daily @ 10:30 means that the snapshot occurs each day at 10:30 a.m.
- **Size**: The size of the snapshot reserve.
- **Current Usage**: The percent of the space allocated for the snapshot currently taken up by the snapshot.
Creating a Snapshot for a Volume

As part of your backup strategy, you can configure the NSS6000 to capture snapshots of the data stored on a volume. You can define a snapshot to occur at various frequencies (such as hourly, daily, weekly, and so on). Individual snapshots are overwritten by the subsequent snapshot for the same interval. For example, if you set up an hourly snapshot, the 10:00 a.m. snapshot is replaced by the 11:00 a.m. snapshot (and so on).

You can also configure multiple snapshots for the same volume. For example, you might set up an hourly snapshot, another snapshot to occur every four hours, and a daily snapshot. Each of these three snapshots is maintained separately and is only overwritten by the subsequent snapshot of its own frequency type. The snapshot(s) reside in the reserve area allocated for each snapshot. When you create a snapshot, the end user can access it by logging into the NSS with their username and password. Each snapshot appears as a copy of the share accessible by the end user.

The snapshot reserve is the amount of space that you want to allocate on the array to the snapshot. Once set, this space is not available for other storage use. The recommended amount of a reserve is generally between 10 to 20% of the total volume size. If the period of time between snapshots is greater, the amount of the reserve should be greater. Or, if there is a heavy amount of activity on the volume, set a higher reserve.

NOTE

This feature is only available on NSS6000 series NAS units.

To create a snapshot for a volume:

1. **STEP 1** From the Manager Menu, click **Storage → Snapshots**.
The Storage Snapshots page appears.

STEP 2 From the **New Snapshot** table, click the volume for which you are creating the snapshot.

STEP 3 Depending on the frequency, use the first part of the **Every** field to enter a unit of time. Tab to the second part of the **Every** field, and then click the snapshot frequency (hours or days). For example, set the first part of the field to “7,” and the second part to “Days” to take a snapshot once every week.

STEP 4 Use the **At** fields to set up the timing for the snapshot. For example, if the frequency is set to Days, set the hour and minute of the day at which you want the snapshot to be taken. When entering the hour, use the 24-hour clock. For example, 3 p.m. should be entered as 15:00. When the frequency is set to Hours, you can only edit the minutes part of the **At** field.

STEP 5 In the **Reserve Size** field, enter the amount of space that you want to allocate to the snapshot. This space becomes unavailable for any other storage on the array. You must enter a minimum of 32 MB in this field.
The snapshot is built at the array level. The Volume column currently shows the amount of space left on the array on which the volume is located. To calculate the reserve size, refer to the applicable volume size listed on the Volume page.

NOTE

STEP 6 Click **Add** to save the snapshot. Clicking **Add** saves the first snapshot. Each subsequent snapshot occurs based on the defined schedule. The snapshot details appear in the **Currently Active Snapshots** area at the top of the page.

Taking a Manual Snapshot of a Volume

There might be times when you want to take a snapshot of a volume that falls outside of the regularly scheduled snapshot times. When you take a snapshot of a volume using the **resnap** function, the new snapshot overwrites the previously existing one for the specified interval. For example, if you have a snapshot set up to occur hourly and then click **Resnap**, a new snapshot is built that overwrites the existing hourly snapshot.

NOTE

This feature is only available on NSS6000 series NAS units.

To take a manual snapshot:

STEP 1 From the **Manager Menu**, click **Storage** ➔ **Snapshots**.
The **Storage Snapshots** page appears.

STEP 2

Click **Resnap** next to the volume for which you want to take a snapshot.

The snapshot takes seconds to complete. To ensure data integrity, no writes can occur to the share until the snapshot is complete.

Windows End Users: Accessing a Snapshot for a Share

After a snapshot is created for a volume, a file folder appears in the end user’s file directory for each share to which the end user has access. Snapshots are saved with the name of the share followed by an underscore and then the term “snap.” Each file folder contains a subfolder for each snapshot interval (for example, hourly, daily, and so on).

To access a snapshot for a share:
STEP 1 There are a variety of ways to access the NSS:

- From the My Computer window, type `\<hostname> or IP address` in the Address bar (where the `<hostname>` refers to your NSS hostname. For example, `\NAS`).
- Browse for the NSS from the My Network Places window.
- Map the NSS to a network drive.

The Log In window appears.

STEP 2 Enter your user name and password.

STEP 3 Click OK.

STEP 4 The Windows Explorer window opens with a directory listing of the folders for the shares available on the user’s home directory

STEP 5 Snapshots are read-only. To work with a snapshot, locate it, take a copy of it, and then place the copy in a working directory.

Volume Encryption Overview

The Volumes page lists both the encrypted and unencrypted volumes and lets you create a volume, and lock, unlock, or change the password for encrypted volumes.

NOTE File transfer performance to encrypted volumes is generally lower than non-encrypted volumes.
Locking an Encrypted Volume

You can manually lock an encrypted volume at any time. Locking a volume means that it becomes unmounted and is unusable (you cannot create or use shares stored on the locked volume). This provides an extra layer of security against the theft of data.

To lock a volume:

STEP 1 From the **Manager Menu**, click **Storage ➔ Volumes**.
The Volumes page appears.

The Crypto column displays whether the volume is encrypted (Yes) or not encrypted (No).

STEP 2 Click Lock to lock the volume.

Unlocking a Locked Volume

When an encrypted volume is locked, either automatically as a result of the NSS being rebooted or manually locked through the configuration interface, you must unlock it before it can be used for tasks such as creating shares or quotas.

To unlock a volume:

STEP 1 From the Manager Menu, click Storage ➔ Volumes.
The **Volumes** page appears.

STEP 2 Click **Unlock** for the volume you want to unlock.

The **Unlock Volume** page appears.

STEP 3 Enter the password for the volume in the **Password** field.

STEP 4 Click **OK**.

The **Volume Encryption** page appears. The volume is now unlocked.
Changing the Password for an Encrypted Volume

A password must be set up when you create an encrypted volume (see “Creating a Volume,” on page 54). After the volume is created, you can change the password at any time. The password must be entered when the NSS is started up after a power interruption, or, the volume has been manually locked.

CAUTION
Because the password is required to de-crypt a locked volume, keep a backup of the password so that you can access it when required. There is no way to unlock the volume without the password. If you forget the password, the only way to retrieve it is if the password was saved in a configuration file. See “Restoring a Configuration File,” on page 137.

To change the password on an existing encrypted volume:

STEP 1
From the Manager Menu, click Storage ➔ Volumes.

The Volumes page appears.

STEP 2
Click Edit for the volume you want to change.
The **Edit Volume** page appears.

- In **Current Password** field, enter the password.
- In the **New Password** field, enter the new password.
- Re-enter the new password in the **Confirm Password** field.
- Click **Update**.

Storage Options

The **Storage Options** page lets you define the following:

- **Idle Drive Spin Down**: Configure the NSS to spin down the disk drives after a predefined time of inactivity. Select the period of time that the disk drive must be idle before it is spun down. (Select **Never** to ensure that the drives are never spun down.)

- **RAID Rebuild Priority**: During normal operation, the CPU switches between tasks to service all active tasks on the system. Creating a RAID array or rebuilding an existing array can take up a significant amount of the available percentage of CPU processing power. You can control how the system prioritizes the rebuild and allocates the system’s resources based on your system’s current workload and need for responsiveness. To set the
RAID rebuild priority, choose one of the following from the RAID Rebuild Priority field:

- **High**: The CPU focuses on the RAID rebuilding process. This setting allows for the fastest possible RAID rebuild at the expense of other system tasks. File-sharing throughput is adversely affected during a RAID rebuild when this setting is chosen.
 - **Medium**: This option gives a balance between the rebuild process and other system tasks. The rebuild process takes longer than if it was set to High.
 - **Low**: The CPU focuses on other tasks versus the RAID rebuild process. This results in a longer rebuild time on a busy system. However, if the workload on the system is low, the CPU services the rebuild process well. Note that if you are repairing an array, this option leaves the array vulnerable until the rebuild is complete.

- **Degraded Mode Grace Period**: Set the period of time after which the system automatically shuts down degraded arrays. You can manually restart RAID arrays automatically stopped by using degraded mode management. Warning messages are sent out periodically while the RAID array is degraded.

- **Enable Global Spares**: Allow RAID arrays defined in the system to share spare drives. If this option is disabled, a RAID array can only use a spare that has been added to that particular array. If this option is enabled, spare drives added to one RAID array may be reallocated by the NSS to another RAID array.

For example, if RAID A is a two-drive RAID1 that is not degraded and RAID B is a degraded two-drive RAID1, if you add a spare drive to RAID A, the NSS automatically gives the spare drive to RAID B to enable RAID B to resync. This option is only relevant when you use network disks (via storage virtualization). A system limited to local disks lets you only build up to two, two-disk RAID arrays, but have no spares.
If you make changes to any of the storage options, click **Update**.
Setting up End-User Access

The **Access Status** page shows the current end-user connections to the NSS, grouped by the file-sharing protocol used. The page displays the username, the name of the host from which the user is currently connected, and the share or path that the user is accessing. The **Access Status** page automatically refreshes on a regular interval and is helpful for monitoring the progress of certain processes such as the current end-user connections to the NSS.

Managing your NSS Users

You can create, view, and maintain the list of users who can access the NSS. The **Configured Users** page displays the **Configured Users** table. This table lists each defined user whether the user was created locally through the NSS configuration interface or imported from an NTv4, Active Directory, or NIS domain.
Users that are not created locally through the NSS are read-only. Once a user profile is created, you cannot rename the username. To rename an existing user profile, delete the user profile and then create a new one. User profiles are maintained by the administrator. Users cannot make changes to their passwords.

To limit the entries in the User list, perform a substring search by entering the desired search string in the User List Filter field, and then click Filter. (For example, enter "ea" to display any list items that contain "ea" such as "Sean" or "BillyJean"). To clear the filter, delete the contents of the User List Filter field, and then click Filter.

Creating a User Profile

Depending on your network setup, you might administer users and groups locally or through the domain controller. The NSS configuration interface gives you read-only access to users and groups provided by NTv4, Active Directory, or NIS domains. You can also create and manage local users from the NSS configuration interface. Before you can create a user profile, you must configure the volume you want to use as the home directory location for your users on the Access Options page (from the Manager Menu, click Access → Options).
To add a local user:

STEP 1 From the Manager Menu, click **Access → Users**.

The Configured Users page appears. Users created from the NSS configuration interface and provided by the ADS, NTv4, or NIS domain appear in the Configured Users table.

STEP 2 Click **Add** to create a user.

The New User page appears.

STEP 3 In the **Username** field, type the username. The name must be made up of alphanumeric characters (that is, a-z, 0-9), any case, to a maximum of 32 characters. This field is required.

STEP 4 Select the group you want to assign as the user’s primary group from the **Primary Group** field. If there are no groups configured, the only available choice is the default group “nasusers”. This field is required.

NOTE Although you can assign the user to multiple groups (through the **Add Group** or **Edit Group** page), the primary group is the group against which quota charges for the user’s storage usage are made and is the group that defines the group ownership for all files created by the user. The primary group applies to users set up locally on the NSS. A domain user’s primary group is set up from the domain and is not derived from the **Primary Group** field in the NSS user profile.
Setting up End-User Access

Editing a User Profile

STEP 5 Assign a password by entering any valid (ASCII table) characters in the **Password** field. The password is required.

STEP 6 To verify the password, re-enter it in the **Confirm Password** field.

NOTE All password changes to end-user accounts set up through the NSS configuration pages must be made by the administrator.

STEP 7 To record the user’s full name, enter it in the **Real Name** field. This field is optional. You cannot enter the “/” character in this field.

STEP 8 To record the user’s email address, enter it in the **Email Address** field. This field is optional.

STEP 9 Click **OK** to create the user and exit the **New User** page. Click **Apply** to create the user and then add another new user.

Editing a User Profile

You can change certain aspects of the user’s profile. Note that once you create a username, the only way to “rename” that user is to delete the existing user profile and then create a new one. If the user profile resides on an ADS, NTv4, or NIS domain, you need to edit the profile from the applicable domain manager. All password changes for end-user accounts set up directly through the NSS configuration pages must be done by the Administrator.

To edit an existing user profile:

STEP 1 From the **Manager Menu**, click **Access ➔ Users**.
The Configured Users page appears.

The existing users appear in the Configured Users table.

STEP 2 Select the user from the list, and then click **Edit**. To limit the entries in the User list, perform a substring search by entering the desired search string in the User List Filter field, and then clicking **Filter**. (For example, enter "ea" to display any list items that contain "ea" such as "Sean" or "BillyJean".)

The end user's profile appears in the Edit User page.
Setting up End-User Access

Integrating Users from an ADS, NTv4, or NIS Domain

STEP 3 The username is read-only. You can make changes to any of the other fields in the user's profile.

STEP 4 Click **Update**.

Integrating Users from an ADS, NTv4, or NIS Domain

When the NSS is joined to an ADS, NTv4, or NIS domain, a list of existing domain users is imported into the **Configured Users** list. You can view the entire user list from the **Configured Users** page but can only edit or delete locally created users (not domain users). The naming conventions use the NetBIOS format with the domain name as a prefix of the username. The primary group for users set up within the ADS, NTv4 or NIS domain is taken from the user’s domain profile versus the **Primary Group** field in the NSS user profile.

NOTE Make sure that you set up your User and Group ID ranges before you join the NSS to an ADS, NTv4, or NIS domain. After you join the NSS to a domain, you should not make changes to the range as this might lead to an ID collision.
Setting up End-User Access
Deleting a User Profile

Logging into the NSS as a Local User

When the NSS is joined to an NTv4 or ADS domain, local users must prefix their username with the hostname of the NSS. Users who log in without the hostname prefix are automatically assumed to be domain users. For example, if the NSS hostname is “NASadmin” and the local username is “bob”, the user would need to log in as “NASadmin\bob” in the login dialog.

Deleting a User Profile

You can delete user profiles that were created through the NSS. When you delete a user profile, the user’s home directory and any files or folders created by the user on the various shares are not deleted. As an administrator, you can log into CIFS using the administrator account to delete the user’s data as required.

To delete an existing user profile:

STEP 1 From the **Manager Menu**, click **Access ➤ Users**.

The **Configured Users** page appears.
STEP 2 Click the **username** and then click **Delete**. To delete multiple users, use the following mouse-key combinations:

- **Shift-click**: To select a contiguous group of users that you want to delete, hold down the **Shift** key, then click the first user, and then the last user in the series. Click **Delete** to delete the highlighted users.

- **Ctrl-click**: To select a non-contiguous group of users that you want to delete, hold down the **Ctrl** key, and then click each user from the list. Click **Delete** to delete the highlighted users.

 The selected user(s) disappear from the list of available users.

Working with Groups

Groups are an easy way to manage users with the same storage needs and privileges. A group consists of one or more users. You can add or remove users from a group at any time. The user's primary group (the group to which quota charges for storage usage are applied) is set up in the **Primary Group** field of the user’s profile.

A group called “nasusers” is automatically created when you first install the NSS. This group is the default primary group when you create new users.

To limit the entries in the **Group** list, perform a substring search by entering the desired search string in the **Group List Filter** field, and then clicking **Filter**. (For example, enter “ea” to display any list items that contain “ea” such as “Sean” or “BillyJean”.) To clear the filter, delete the contents of the **Group List Filter** field, and then click **Filter**.

Creating a Group

Groups let you specify the share access privileges for a set of users. After you create a group, you can define the group’s access privileges on a per-share basis. You can also add or remove users to and from the group at any time. Users are assigned a primary group within their user profile. When users create a file, the group ownership is automatically set to their primary group. The storage usage is charged to their primary group for the purposes of volume quota accounting. Group membership, other than the primary group, is defined in either the **Add Group** or **Edit Group** page and is used only to control access to shares and files.
NOTE
You cannot grant security privileges to a group for a CIFS share through an ACL.

To create a group:

STEP 1 From the **Manager Menu**, click **Access → Groups**.

The **Configured Groups** page appears.

STEP 2 Click **Add**.
The New Group page appears.

STEP 3 In the Group Name field, type the name you want to assign to the group. The name can only contain lower-case alphanumeric characters and underscores (i.e., a-z, 0-9, _) to a maximum of 32 characters.

STEP 4 Move the users you want to assign to the group from the Users Available list to the Users in Group list. Note that a user can be assigned to multiple groups. (The single angled bracket “<” or “>” moves the selection in the direction of the bracket. The double angled bracket “<<” or “>>” moves the entire list in the direction of the bracket.)

To limit the entries in the Users Available list, perform a substring search by entering the desired search string in the User List Filter field, and then clicking Filter. (For example, enter “ea” to display any list items that contain “ea” such as “Sean” or “BillyJean”.)

STEP 5 Click OK to save the current group and display the Configured Groups page. Click Apply to save the current group and remain in the New Group page to add another group.
Changing the Users Assigned to a Group

After you create a group, you can delete or add to the list of users that belong to that group.

NOTE

When you delete an end user from a group, the end user must log out of their client machine before the change takes effect. This means that users no longer assigned to a group maintain full group privileges (i.e., access to shares) until they log off/log on to their computer.

To change the group membership:

STEP 1 From the Manager Menu, click Access ➤ Groups.

The Configured Groups page appears.

STEP 2 From the list of configured groups, select the group that you want to change.

STEP 3 Click Edit.

The Edit Group page appears.
Setting up End-User Access
Integrating Groups from an Active Directory, NTv4, or NIS Domain

STEP 4 Set up the Users in Group list as required. (The single angled bracket “<” or “>” moves the selection in the direction of the bracket. The double angled bracket “<<“ or “>>” moves the entire list in the direction of the bracket.)

STEP 5 Click Update.

Integrating Groups from an Active Directory, NTv4, or NIS Domain

When the NSS is joined to an Active Directory, NTv4, or NIS domain, domain groups are imported into the Configured Groups list. Group membership for imported domain groups are read-only. The naming conventions use the NetBIOS format with the domain name as a prefix of the group name. For example, “DOMAINNAME\GroupName”

NOTE
Make sure that you set up your User and Group ID ranges before you join the NSS to an ADS, NTv4, or NIS domain. After you join the NSS to a domain, you should not make changes to the range as this might lead to an ID collision.

Deleting a Group

When you delete a group, the group is automatically removed from having access to any configured shares.

To delete a group:

STEP 1 From the Manager Menu, click Access ➔ Groups.
The Configured Groups page appears.

STEP 2 Before you can delete a group, you must remove any assigned users.

STEP 3 You can delete a group from two locations in the NSS configuration interface:

- **Groups page**: Highlight the group you want to delete from the Configured Groups table, and then click **Delete**. To delete multiple groups, use the following key-mouse combination:
 - **Shift-click**: To select a contiguous list of groups that you want to delete, hold down the **Shift** key, then click the first group, and then the last group in the series. Click **Delete** to delete the highlighted groups.
 - **Ctrl-click**: To select a non-contiguous set of groups that you want to delete, hold down the **Ctrl** key, and then click each group from the list. Click **Delete** to delete the highlighted groups.

- **Edit Groups page**: Select the group you want to edit, and then click **Edit**. The Edit Groups page appears. Click **Delete** to remove the group.
Managing Volume Quotas

You can set up specific space limits for each user or group who has write access to a volume. Defining a user or group’s quota means that you can set a space limit (referred to as a soft quota) that, when reached, sends a warning to the administrator and initiates a countdown of the defined grace period. The user has the amount of time in the grace period to reduce the amount of space used to under the soft quota limit. Users who do not reduce the space in the allotted grace period, or who reach their hard quota limit, no longer have write access to the volume until they reduce their usage to under their soft quota limit.

When a user creates, modifies or deletes a file on a volume, note that there is a small delay before the usage is updated on the Quota page. This delay is due to the caching in the filesystem used to provide high performance.

NOTE

Before you create or edit a quota located on an encrypted volume, make sure that the volume is unlocked. You also need to set up the Warn For time for each volume from the Volume Quota page. The Warn For time only affects individual quota that was created after the Warn For time was set.
Changing the User’s Primary Group

Quotas are charged to the group assigned as the user’s primary group at the time of file creation. If the user’s primary group changes, files created under the previous group continue to be charged against that group. If the user’s primary group changes while the user is connected to the NSS, the previous primary group continues to be the group charged until the user’s connection is closed. The new primary group becomes the group charged only after the connection is reopened.

NOTE
If you create a user within a domain, the primary group defined is in the user profile from the domain, not from the Primary Group field in the NSS user profile.

About the Volume Quota Page

Use the Volume Quota page to manage user and group quotas for each volume. To display the Volume Quota page, from the Manager Menu, click Access → Quota.
Creating Volume Quota for a User or Group

You can set up a quota on a volume for each user or group. This quota limits the user or group to the allocated amount of space within the volume. To give certain users or groups assigned to a volume full access to the space on the volume, do not create a quota for that user or group.

NOTE
Before you can create quota on an encrypted volume, make sure that it is unlocked. You also need to set up the **Warn For time** for each volume from the **Volume Quota** page. The Warn For time only affects individual quota that was created after the **Warn For time** was set.

To create a quota for a user or group:

STEP 1
From the **Manager Menu**, click **Access → Quota**.

The **Filesystem Quota** page appears.

STEP 2
Click **Create Quota**.
The **New Filesystem Quota** page appears.

STEP 3 Select the volume on which you want to set the quota from the **New Quota on** drop-down list. To limit the entries in the **User/Group** list, perform a substring search by entering the desired search string in the **User/Group List Filter** field, and then clicking **Filter**. (For example, enter "ea" to display any list items that contain "ea" such as "Sean" or "BillyJean").

STEP 4 Select the user or group for which you are creating the quota from the **For User/Group** drop-down list.

STEP 5 In the **Warning at** field, enter the threshold of space that, when exceeded, triggers a warning that the quota is close to being used up. When the threshold is exceeded, the grace period set up for the volume begins. The user has the amount of time set in the grace period to reduce the amount of space used to under the space set in the **Warning at** field or they are not allowed to write further data to the volume. This is also referred to as a “soft quota.”

STEP 6 In the **Space Limit** field, enter the amount of space that the user or group has available to use, and then select the size unit from the drop-down menu. This is also referred to as a “hard quota.” If the user reaches the space limit, the user can no longer write data to the volume until they either reduce the amount of space used to under the limit by deleting files or have the quota increased.

STEP 7 Click **Update**.
Setting up the Grace Period for a Volume Quota

You can set up a limit on the amount of space available to your users or groups. This limit can be set as a soft quota and hard quota. When the users reach their “soft quota,” a warning is issued and the grace period begins. Users then have the amount of time set in the grace period to either reduce the amount of space used by deleting files, or have the quota increased. If the amount of space is not reduced before the grace period expires or the user reaches the hard quota, the user is automatically denied write access to the volume.

NOTE
Before you create quotas for a user or group, make sure that you set up the Warn For time for each volume from the Filesystem Quota page. The Warn For time only affects individual quota that was created after the Warn For time was set.

To set up the grace period for a volume:

STEP 1
From the Manager Menu, click Access ➔ Quota.

The Filesystem Quota page appears.
Setting up End-User Access

Changing a Volume Quota for a User or Group

STEP 2
To set up the grace period, after which if the soft limit set for the user or group is still exceeded, the user or group is denied write access, enter the time period in the **Warn for <time period> before denying access** field. Enter the number in the first part of the field, and the time unit in the second part of the field.

For example, to warn the user or group that they have reached their soft limit and have three days to reduce it, enter “3” and then select “days”. Normally, when the quota is under the limit, it appears in black type. When a user reaches their soft quota limit, the amount listed on **Filesystem Quota** page turns red.

STEP 3
Click **Update**.

STEP 4
Repeat steps 2 and 3 for each applicable volume.

Changing a Volume Quota for a User or Group

After a quota is created, you can increase or decrease it. You can also change the limit at which the user or group receives a warning message and the grace period begins.

To change the quota limit or warning limit:

STEP 1
From the **Manager Menu**, click **Access → Quota**.

The **Filesystem Quota** page appears.
Setting up End-User Access

Clearing a Quota

STEP 2 Click Edit for the user or group for which you want to change the quota. The Edit Quota page appears.

STEP 3 Make the required changes to the soft (warning) or hard quota (space limit) limits.

STEP 4 Click Update.

Clearing a Quota

After a quota has been set up, you can clear it. Clearing a quota means that the user or group no longer has a space limitation on their use of the associated volume (other than the actual unused storage space on the volume).

To clear a quota for a user or group:

STEP 1 From the Manager Menu, click Access → Quota.
The **Filesystem Quota** page appears.

![Filesystem Quota page](image)

Quotas are displayed according to their associated volume.

STEP 2 Click Clear for the user or group whose quota you want to remove.

Network Filters Overview

In addition to providing storage for your data, the NSS provides a firewall that you can configure to protect that data. Defining network filters lets you specify which network hosts have access to the NSS through the various supported protocols.

To view the network filters:

STEP 1 From the **Manager Menu**, click **Access → Network**.
The **Network Filters** page appears.

STEP 2

You can do any of the following:

- Set the default network policy to control what happens to traffic not explicitly covered by defined filters. (see “Defining the Default Network Policy,” on page 94)

- View or delete the existing filters defined for the NSS from the **Active Network Access Filters** table. (see “Network Filters Overview,” on page 93)

- Create a new filter based on an IP or MAC address or a range of IP addresses. (see “Creating a Network Filter,” on page 96)

Defining the Default Network Policy

The default network policy is the overarching policy that defines the gateway for communication to the NSS. It specifies how traffic that is not covered by defined filters is handled. The default policy can be defined to either accept or reject such traffic.

To define the default network policy:

STEP 1

From the **Manager Menu**, click **Access ➔ Network**.
STEP 2 From the Default Network Policy drop-down menu, click one of the following:

- **Accept Traffic**: Allow the NSS to communicate with all initiating hosts. Select this option if you have a limited number of systems that you want to disallow. When you set up your individual filters, select those filters that “disallow” (i.e., drop or reject) certain types of connections. For example, you might want to disallow CIFS connections but allow all other types.

- **Drop Traffic**: Disallow the NSS from communicating with any initiating systems. Select this option if you have a limited number of systems that you want to allow to communicate with the NSS. When you set up your filters, select those filters that “allow” certain types of connections. For example, you might only want to allow FTP connections.

NOTE

If you set the default policy to Drop and you want to enable FTP connections, make sure that you set the FTP connection type on the host to active. (If you set the connection type to passive you can connect to the NSS but are not able to list, transfer the data, and so on.)

STEP 3 Click Change Policy.
Creating a Network Filter

The **Active Network Access Filters** table on the **Network Filters** page displays currently defined filters. These filters control if access to the NSS from specified hosts is granted or denied on a per-protocol basis. Each device in your network is assigned a fixed 48-bit MAC address and changeable 32-bit IP address. When you define a filter, it grants or denies access through the specified protocol from the specified IP/MAC address or range of IP addresses.

NOTE

When you define a new filter, any existing connections that would normally be denied by this rule remain intact. These connections are denied during the next attempt to connect to the NSS.

To add a network filter:

STEP 1 From the **Manager Menu**, click **Access → Network**.

The **Network Filters** page appears.

STEP 2 From the **New Network Access Filter** table, type the IP/MAC address to which you are applying the filter, in the IP/MAC address field. You can also enter addresses for the following:

- **IP Address Range**: Type the range according to the following format: *first address-last address*. (Where the first IP address in the range is entered first, followed by a hyphen, and then the last IP address in the range.)
Setting up End-User Access
Available Access Filters

- **Subnet**: Enter the subnet to set a filter for all the addresses within the subnet. The format should appear as shown in the following example: 192.168.1.0/24 (where the digits following the slash represent the number of bits in the network portion of the IP address).

STEP 3 From the **Filter** drop-down menu, select the type of filter you want to apply to the IP/MAC address.

STEP 4 Click **Add**.

Any connections that apply to the new filter rule are affected by the rule during the next connection attempt.

Available Access Filters

When you configure network filters, determine which protocols can or cannot access the NSS. To display the list of available filters, click the drop-down arrow next to the **Filter** field on the Network Filters page.
NOTE

Rejecting versus Dropping Traffic: When incoming traffic matches a reject filter, the NSS drops the traffic and then sends a notice to the initiating system of the denial of service. When incoming traffic matches a drop filter, the NSS drops the traffic but no notice is sent to the initiating system.

- **Allow All**: This is the default filter. It tells the NSS to accept traffic via all supported protocols.
- **Allow CIFS**: Allow CIFS filesharing access.
- **Allow FTP**: Allow FTP and FTPS access.
- **Allow HTTP**: Allow access to the NSS configuration interface through a Web browser.
- **Allow NFS**: Allow NFS access.
- **Reject CIFS**: Do not allow CIFS filesharing access. The NSS informs the system initiating the connection about the denial of service.
- **Reject FTP**: Do not allow FTP or FTPS traffic. The NSS informs the system initiating the connection about the denial of service.
- **Reject HTTP**: Do not allow access to the NSS configuration interface via a Web browser. The NSS informs the system initiating the connection about the denial of service.
- **Reject NFS**: Do not allow NFS filesharing access. The NSS informs the system initiating the connection about the denial of service.
- **Drop CIFS**: Do not allow CIFS filesharing access. The NSS does not inform the system initiating the connection about the denial of service.
- **Drop FTP**: Do not allow FTP or FTPS traffic. The NSS does not inform the system initiating the connection about the denial of service.
- **Drop HTTP**: Do not allow access to the NSS configuration interface via a Web browser. The NSS does not inform the system initiating the connection about the denial of service.
- **Drop NFS**: Do not allow NFS filesharing access. The NSS does not inform the system initiating the connection about the denial of service.
Deleting a Network Filter

To delete a network filter:

STEP 1 From the Manager Menu, click Access ➤ Network.

The Network Filters page appears.

STEP 2 The Active Network Access Filters table lists the existing filters. To delete a filter, click Delete for the filter you want to remove.

The filter disappears from the list. The filter is no longer active.

Configuring the User/Group Settings

To avoid conflicts between your user and group IDs, it is important to set up the ranges for the various types of users and groups (i.e., local, NIS domain, and Windows domain). The ID range should be set up before you create any local users or join a NIS, NTv4, or ADS domain as you should not change the range after the domain has been joined. In addition to setting the ID ranges, you also need to define which volume you are using to store your users’ home directories.

To set up the ID ranges and home directory location:
STEP 1 From the Manager Menu, click Access » Options.

The User/Group Settings page appears.

STEP 2 Set up the following ID Ranges:

- **Local Users and Groups ID Range**: This ID range applies to any users or groups created from the NSS configuration interface. When you create a user or group, the ID assigned is in this range. Make sure the range you set does not conflict with the NIS or Windows domain ranges.

- **NIS Domain Users and Groups ID Range**: This ID range should match the range of IDs defined in your NIS domain and not conflict with the local or Windows ID range. Set this range before you join the NSS to the NIS domain.

- **Windows Domain Users and Groups ID Range**: This ID range must be at least 10,000 in size. Users and groups from your NTv4 and ADS domain are mapped to local user or group IDs within this range. It is important to set this range before you join the NTv4 or ADS domain. After you join the NTv4 or ADS domain, the ID range should not change.

STEP 3 Set the volume that you want to assign as the home directory location for your users through the Home Directory Location field.

STEP 4 Click Update.
Managing the Shares

To display a list of your defined file shares, from the Manager Menu, click Shares ➤ Shares. The File Shares page appears. This page displays read-only details about the shares that are currently defined on the NSS. You can add new shares by clicking the Create Share button.

There is a limit of 21 users and groups (the combined total) that you can assign access privileges to a share. If you have a number of users that exceeds the limitation, assign the applicable users to a group or groups and then assign the group to the share. There is no limit to the number of users that you can assign to an individual group.
Creating a Share

After you define at least one volume, you can create the shares that can be accessed by your users when they log into the NSS. There is a limit of 21 users and groups (the combined total) that you can assign access privileges to a share. If you have a number of users that exceeds the limitation, assign the applicable users to a group or groups and then assign the group to the share. There is no limit to the number of users that you can assign to an individual group.

NOTE
You cannot create a share on a locked volume. If the volume is locked, go to the Volume page, and unlock the volume.

To add a share:

STEP 1 From the Manager Menu, click Shares ➔ Shares.
STEP 2 Click Create Share.

The New Share page appears.
STEP 3 In the Share field, enter a name for the share.

STEP 4 From the Location field, select the volume on which you want to configure the share.

STEP 5 Add a description or comment about the share in the Comment field. This comment appears when you browse the NSS from My Network Places (as the tooltip when you hover over the share, or if you select the Details viewing mode). This field is optional.

STEP 6 Click the Share Attributes options to configure the share as public and if public, read-only. (These settings are optional.)

- Public: Enable all users to access the share. To make an NFS share world readable/writable, select this checkbox, and ensure the Read-Only checkbox is also deselected. To make an NFS share world readable, select this checkbox, and ensure the Read-Only checkbox is also selected.

- Read-Only: If the share is configured as a public share, allow the users read-only access to the share. Users can access and view the share but cannot write to the share. (For NFS shares, refer to the information stated in the Public field.)

- DFS Root: Set the share to be a Microsoft DFS root. The share must be set as a DFS root when it is created. You cannot set it as a DFS root after it is created or revert a DFS root share to be a regular share. When you set this option, the CIFS Default File Creation Attributes and Protocol checkboxes are greyed out as they are not relevant. Follow the steps in “Adding a DFS Shared Folder,” on page 108 to add shared folder links to the root.

STEP 7 Set the Allow users to delete or rename other users' files and folders field as required. This field determines whether users who are assigned to a share can delete or rename files or folders within that share that they do not own.

It is important to consider interoperability with applications such as MS Word 2007 and Photoshop. For example, if this field is not selected and you gave a user write permissions to a file and that user tried to open, edit, and save the file, the save would fail due to the fact that Word sets up a temporary file and then attempts to delete it and replace it with the new version. Not all applications work this way. Always consider the applications used by your users to determine how you want to set this field.

- Select this field: By selecting this field, users with write permissions can rename or delete files or folders within the assigned share even though they are not the owners of the files or folders.
STEP 8 Set up the defaults for how file permissions are set when a file is created using CIFS via the following CIFS File Creation Attributes checkboxes:

- **GroupReadable:** Members of the group assigned to the file have read permission. The group is assigned during file creation. When creating files by using NFS, the owner can manually set the group permissions when the file is created and can edit them at a later time. For files created by using CIFS, the group is automatically assigned as the owner's default group. This group cannot be edited at a later time.

- **GroupWritable:** Members of the group assigned to the file have write permission. The group is assigned during file creation. When creating files by using NFS, the owner can manually set the group permissions when the file is created and can edit them at a later time. When creating files by using CIFS, the group is automatically assigned as the owner's default group. This group cannot be edited at a later time.

- **EveryoneReadable:** All authenticated users can view the file.

- **EveryoneWritable:** All authenticated users have write permission to the file.

STEP 9 From the Protocol field, click the checkboxes to select the protocols that can be used to access the share:

- **CIFS:** Enable CIFS access to the share.

- **NFS:** Enable NFS access to the share. To allow NFS access to the share, the NSS must also be configured to allow NFS access.

- **FTP:** Enable FTP access to the share. To allow FTP access to the share, the NSS must also be configured to allow FTP access.
Managing the Shares

Editing an Existing Share

STEP 10 To assign users access to the share, move the users into one of the following boxes. (The single angled bracket "<" or ">" moves the selection in the direction of the bracket. The double angled bracket "<<" or ">>" moves the entire list in the direction of the bracket.)

NOTE Setting individual user and group permissions on NFS shares only works when joined to an NIS domain.

- **Read-Only Users**: These users have read-only access to the share.
- **Read-Write Users**: These users have full read-write access to the share.

STEP 11 To assign a group access to the share, move the users into one of the following boxes. (The single angled bracket "<" or ">" moves the selection in the direction of the bracket. The double angled bracket "<<" or ">>" moves the entire list in the direction of the bracket.)

- **Read-Only Groups**: These groups have read-only access to the share.
- **Read-Write Groups**: These groups have full read-write access to the share.

STEP 12 Click OK.

Editing an Existing Share

After a share is created, you can make changes to it, such as changing user or group permissions, changing the share attributes, and adding a DFS shared folder for shares set up to be a DFS root. There is a limit of 21 users and groups (the combined total) that you can assign access privileges to a share. If you have a number of users that exceeds the limitation, assign the applicable users to a group or groups and then assign the group to the share. There is no limit to the number of users that you can assign to an individual group.

To edit a share:

STEP 1 From the **Manager Menu**, click **Shares ➤ Shares**.

STEP 2 Click **Edit** for the share you want to change.
Managing the Shares
Editing an Existing Share

The **Edit Share** page appears.

![Edit Share Page](image)

STEP 3 You can change the comment from the **Comment** field as required. This comment appears when you browse the NSS from **My Network Places** (as the tooltip when you hover over the share, or if you select the **Details viewing** mode).

STEP 4 Change the setting for the **Allow users to delete or rename other users’ files and folders** field as required. This field determines whether users who are assigned to a share can delete or rename files or folders within that share that they do not own.

It is important to consider interoperability with applications such as MS Word 2007 and Photoshop. For example, if this field is not selected and you gave a user write permissions to a file and that user tried to open, edit, and save the file, the save would fail due to the fact that Word sets up a temporary file and then attempts to delete it and replace it with the new version. Not all applications work this way. Always consider the applications used by your users to determine how you want to set this field.

- **Select this field**: By selecting this field, users with write permissions can rename or delete files or folders within the assigned share even though they are not the owners of the files or folders.

- **Deselect this field**: Users cannot rename or delete a file or folder within the assigned share unless they are the owners of the file or folder.
NOTE Any subfolders you create by using CIFS, behave according to the current setting of the Allow users to delete or rename other users’ files or folders field. If a subfolder is created via NFS or FTP, it behaves as though this field is selected until this field is changed. These subfolders then behave according to the current setting.

STEP 5 The Share attributes checkbox determines if the share is read-only or if users can write to the share:

- **Public**: All users can write to the share.
- **Read-Only**: Users can view the share as read-only.

STEP 6 Set up the defaults for how file permissions are set when the file is created in the following CIFS File Creation Attributes checkboxes:

- **GroupReadable**: Members of the group assigned to the file have read-only permissions. The group is assigned during file creation. For NFS files, the owner can manually set the group permissions when the file is created and can edit them at a later time. For CIFS files, the group is automatically assigned as the owner’s default group. This group cannot be edited at a later time.

- **GroupWritable**: Members of the group assigned to the file have read-write permissions. The group is assigned during file creation. For NFS files, the owner can edit the group ownership of a file. For files created via CIFS, the group is automatically assigned as the owner’s default group. This group cannot be edited at a later time.

- **EveryoneReadable**: All authenticated users can view the file.

- **EveryoneWritable**: All authenticated users have read-write permissions for the file.

STEP 7 From the Protocol field, click the checkboxes to select the protocols that can be used to access the share:

- **CIFS**: Enable CIFS access the share.

- **NFS**: Enable NFS access the share. To allow NFS access to the share, the NSS must also be configured to allow NFS access.

- **FTP**: Enable FTP access to the share. To allow FTP access to the share, the NSS must also be configured to allow NFS access.
Managing the Shares

Adding a DFS Shared Folder

STEP 8 Move any usernames that you want to have access to the share from the User list into one of the following boxes. (The single angled bracket "<" or ">" moves the selection in the direction of the bracket. The double angled bracket "<<" or ">>" moves the entire list in the direction of the bracket.)

- **Read-Only Users**: Usernames that appear in this list have read-only access to the share.

- **Read-Write Users**: Usernames that appear in this list have read-write access to the share.

STEP 9 Use the last two tables in the window to set up your group permissions for the share. Move any groups that you want to have access to the share from the left side of the page into one of the following. (The single angled bracket "<" or ">" moves the selection in the direction of the bracket. The double angled bracket "<<" or ">>" moves the entire list in the direction of the bracket.)

- **Read-Only Groups**: Groups that appear in this list have read-only access to the share.

- **Read-Write Groups**: Groups that appear in this list have full read-write access to the share.

STEP 10 Click **OK**.

Adding a DFS Shared Folder

Microsoft DFS lets users within your network easily access data stored on multiple remote computers. Through DFS, your users can view and access shares through a familiar, unified folder hierarchy, even when those resources are located on different servers. The NSS can act as a DFS root or leaf. When acting as a root, the share on the NSS contains subfolders that link to the various shares on remote systems, referred to as "DFS shared folders." When you create a DFS shared folder from a share, note that the user must have privileges set up to access that share on the remote system. After the user accesses the DFS shared folder through the NSS DFS root share, the user’s rights to the DFS shared folder are those assigned to the corresponding target share on the remote system.

To add a DFS root directory to a share on the NSS:

STEP 1 From the **Manager Menu**, click Shares ➔ Shares.
Managing the Shares
Adding a DFS Shared Folder

The File Shares page appears.

STEP 2 Click **Edit** for the share to which you want to add a folder.

The **Edit Share** page appears.

STEP 3 Click **Add Shared Folder**.
The *Add Folder* page appears.

STEP 4 Select one of the following:

- **Add a Folder to DFS**: Select this option to create a single DFS shared folder. Fill in the following fields from the Add DFS Shared Folder table:
 - **Link Name**: This is the name of the link that appears as a folder within the share. When users click this link, they are redirected to the target share on the remote server. Enter any name of up to 255 characters.
 - **Server Name**: Enter the name of the remote server on which the target share is located.
 - **Share**: Enter the name of the target share.

- **Import an Entire Remote Server**: Select this option to automatically create links for all shares on the remote server. Fill in the following fields from the Import Remote Server table:
 - **Server Name**: Enter the name of the remote server.
 - **Username**: Enter the username of the account with access to the server.
 - **Password**: Enter the password for the above account.

STEP 5 If you are adding a folder to DFS, click **OK**. If you are importing a remote server, click **Import**.
Restrictions using Microsoft DFS from the NSS

To use DFS folders from the NSS, it is important to understand the limitations or restrictions involved and how to best configure your system:

- **User Credentials must be Recognized by the Remote Server**: Redirection to a remote file-server is only successful if the current user credentials (i.e., the user’s NSS username and password) are recognized by the remote server. Microsoft DFS (MSDFS) operates optimally if the PC-user’s login username and password are recognized as valid on all file servers being accessed. Otherwise, an authentication error occurs and the user may not be able to re-authenticate with different user credentials.

 As a workaround in a non-domain (workgroup) environment, pre-map a file-share to each file server that needs special user credentials (other than the logged-in username and password). In this case, the MSDFS redirect proceeds smoothly because the PC-client already has an established session with the target file-server. When the user’s login is different on the DFS leaf than the DFS root, they can pre-login to the leaf. When they then login to the root, they can access the linked DFS share.

- **Windows Operating System Version**: MSDFS is not supported by Windows 98 clients.

- **Windows Clients must be Restarted**: After you set up a DFS root, any Windows clients that were connected must be restarted.

Setting up CIFS Access

Although you cannot globally disable CIFS as you can for NFS and FTP, you can allow or disallow CIFS access on a per-share basis. The CIFS Networking Configuration page lets you specify the length of time CIFS connections to the NSS can be idle before being automatically disconnected.

To set up the idle disconnect time for a CIFS connection to the NSS:
STEP 1 From the **Manager Menu**, click **Shares ➔ CIFS Setup**.

The **CIFS Networking Configuration** page appears.

STEP 2 From the dropdown box, select the amount of time that the CIFS connection can be idle, after which it is disconnected.

STEP 3 Click **Update**.

Setting up Network Filesystem (NFS) Access

The first step to enable NFS access to the NSS is to enable it globally. You then need to enable it on a per-share basis.

NOTE

The NSS only supports NFSv3.

To set up global NFS access to the NSS:

STEP 1 From the **Manager Menu**, click **Shares ➔ NFS Setup**.
The **NFS Setup** page appears.

STEP 2 To enable NFS support, click **Enable NFS** support. This checkbox activates the other NFS configuration options on this page.

STEP 3 To enable the optional asynchronous write option, click **Use Asynchronous Writes**. Asynchronous writes allow applications running on the NFS client to not block until write requests are complete on the NSS as they normally would. Instead they continue immediately after committing the write. This can improve performance if the NSS is heavily used.

STEP 4 If asynchronous writes is enabled, you can enable aggregate write requests by selecting the **Aggregate Write Requests** checkbox.

- When enabled, NFS write requests are “bulked” and sent in a batch. The benefit of enabling this feature is that it is more efficient.

- When disabled, the write requests are sent immediately. The downside of enabling this feature is that there is a potential for permanent data loss should the NSS suffer an unexpected power loss or if the NFS client crashes.

STEP 5 Click **Update**.
Configuring the NSS for FTP Access

You can configure the NSS to allow the FTP protocol to be used for file transfers between the NSS over the Internet. The NSS supports both FTP (faster but not as secure) and FTPS (not as fast as FTP but more secure). The NSS only supports Explicit FTPS (versus Implicit FTPS). The NSS does not support SFTP. After you globally enable FTP access, you can allow or disallow FTP access on a per-share basis.

NOTE

FTP is disabled by default. You must enable FTP access before your users can access the NSS storage through FTP regardless of their per-share settings.

To set up the FTP protocol:

STEP 1 From the **Manager Menu**, click **Shares ➤ FTP Setup**.

The FTP Setup page appears.

STEP 2 To enable FTP, click **Enable FTP**.

This enables both FTP and FTPS access and activates the remaining FTP configuration settings on this page.
STEP 3 In the **Banner Message** box, enter a message that appears when a user first connects to the NSS.

STEP 4 To allow only file transfers using FTPS (FTP over SSL), click Allow only FTPS Connections. Also make sure that the Allow Anonymous Access checkbox is deselected.

STEP 5 To allow anonymous FTP access, click **Allow Anonymous Access**.

 a. If you allow anonymous access, select the volume that you want to set as the anonymous root directory from the **Anonymous Root Directory** drop-down menu.

 b. To allow anonymous users to have write access to the NSS, click **Anonymous Upload**.

 c. To allow anonymous users to download files that have been uploaded by other anonymous users, make sure that the **Allow Download of Uploaded Files** checkbox is selected.

 d. To set a maximum transfer rate for anonymous users, enter it in KB/s in the **Maximum Anonymous Transfer Rate** field. For no maximum, set the rate as 0.

STEP 6 To disconnect the FTP connection after a period of time when the connection is idle, select the number of minutes in the **Disconnect Idle Sessions** drop-down menu.

STEP 7 To disconnect an FTP connection after a certain length of time has passed during a file transfer, select the number of minutes in the **Disconnect Stalled Transfers** drop-down menu.

STEP 8 To set the maximum number of FTP connections that can be made from a single client IP address, enter the number in the **Max Connections per IP Address** field.

STEP 9 To leave this as an unlimited number of connections, leave this field blank.

STEP 10 Set up the defaults for how file permissions are set when a file is created using FTP through the following Default File Creation Attributes checkboxes. Unlike CIFS permissions which are set on a share-by-share basis, the FTP permissions are global to all files and folders created through FTP regardless of the share to which they are assigned.

 - **GroupReadable**: Members of the user who created the file or folder’s primary group have read permission.

 - **GroupWritable**: Members of the user who created the file or folder’s primary group have write permission.
Managing the Shares
Configuring the NSS for FTP Access

- **Everyone Readable**: All authenticated users can view the file.
- **Everyone Writable**: All authenticated users have write permission to the file.
- **Set the Allow users to delete or rename other users’ files and folders field as required.**

This field determines if users who have write permission to a share can delete or rename files or folders within that share that they do not own.

Consider the applications used by your users to determine how you want to set this field such as interoperability with applications such as MS Word 2007 and Photoshop. For example, if this field is not selected and you gave a user write permissions to a file and that user tried to open, edit, and save the file, the save would fail due to the fact that Word sets up a temporary file and then attempts to delete it and replace it with the new version. Not all applications work this way.

- **Select this field**: By selecting this field, users with write permissions can rename or delete files or folders within the assigned share even though they are not the owners of the files or folders.

- **Deselect this field**: Users cannot rename or delete a file or folder within the assigned share unless they are the owners of the file or folder.

NOTE

Unlike the setting on the Shares Setup page, this setting is global, not per share. All files within folders created through FTP act according to this setting, regardless of the share they are created in.

STEP 11 If the NSS is located behind a firewall and/or router, continue to the next section, Configuring Passive Mode FTP

Configuring Passive Mode FTP

Passive Mode FTP is an alternative way of establishing FTP connections that is used for FTP clients or servers that are located behind a router/and or firewall (in this case, the NSS acts as an FTP server). Passive Mode allows for a more secure form of data transfer and ensures that the intended network client establishes all connections and maintains session control for FTP server requests within local and external network environments.
Select this option if the NSS is located behind a firewall and/or router. By default, the FTP server sets the NSS IP address to passive mode.

NOTE
Passive Mode FTP through a router and/or firewall only works on a single interface. If you have VLANs defined, you must choose which interface to access through FTP.

To configure **Passive Mode FTP**, follow these steps:

STEP 1 From the Manager Menu, click **Network ➔ Ports**.

The **Network Port Configuration** page appears.

STEP 2 Verify the FTP port number on the NSS (port number 21 is the default setting).

To use a non-default port number, enter the new port number in the **FTP/FTPS Server Port** field (For example: 8028) and then click **Update**. You must also specify this port number in your router configuration software.
In this example, port 8028 is specified in the FTP client program Filezilla:

STEP 3 From the Manager Menu, click Shares → FTP Setup.

The FTP Setup page appears.
STEP 4 Enter the router’s WAN IP address in the **PASV IP address** field.

STEP 5 Enter the **minimum and maximum port range** for passive FTP port connections for each simultaneous FTP client connection that the NSS expects and then click **Update**.

- **Minimum port for passive mode (PASV) connections**: If your network has FTP connections that pass through a firewall, set the minimum port for the port range. The default is 1025. The minimum port range can be as low as one (for each expected FTP connection).

- **Maximum port for passive mode (PASV) connections**: Set the maximum port number for the port range. The default is 4000.

If you are using a non-default port number, enter the minimum and maximum port range for your router (such as 9031 to 9040).

You must also enter these ranges in your router configuration software as follows:

a. Set the port forwarding for the FTP port.

Enter the port number (For example: 8028) in both the External and Internal Port FTP fields and then click **Save Settings**. This is the same port number that you entered in the **FTP/FTPS Server Port** field in Step 2.
b. Set the port forwarding ranges for passive FTP connections and then click **Save Settings**. These are the same **minimum and maximum port ranges** that you entered in **Step 5**.

The Passive Mode FTP configuration is complete.

Creating or Running a Backup of a Share

The **Scheduled Backup** page displays any backups that have been configured. It lets you schedule further backups or initiate a manual backup.
Creating a Scheduled Backup for a Share

You can quickly configure a backup to run at a scheduled time interval for a share or group of shares. The backup can be saved to a remote CIFS server or to another share on the NSS.

To set up a scheduled backup:

STEP 1 From the Manager Menu, click Shares ➔ Backup.

STEP 2 Click Schedule Backup.
The **Scheduled Backups** page appears.

STEP 3 Move the shares you want to include in the backup from the **Available Shares** list to the **Shares to Backup** list. (The single angled bracket "<" or ">" moves the selection in the direction of the bracket. The double angled bracket "<<" or ">>" moves the entire list in the direction of the bracket.)

STEP 4 Click one of the following to determine the destination for the backup:

- **Remote CIFS Filer**: To save the backup on a remote CIFS server, click this option and then configure the hostname of the remote server, the remote share, as well as the login credentials to that share.

- **Local File System**: Select the share on which you want to store the backup.

STEP 5 To create a compressed backup, check **Compress backup image**.

NOTE Compressed backup images are smaller than non-compressed images but take longer to create.

STEP 6 Click **Next**.
The **Select Backup Schedule** page appears.

STEP 7 Select the backup frequency as one of the following:

- **Daily**: Select each day on which you want the backup to occur.
- **Weekly**: Select the day of the week on which you want the backup to occur.
- **Monthly**: Select the day of the month on which you want the backup to occur. Make sure you select a day that is 28 or less. If you select the 29th, 30th or 31st day, the backup does not run during months that do not contain that day.

STEP 8 In the **Run Backup at** field, set up the specific time (hour:minute) at which time the backup occurs. When setting the hour, use the 24-hour clock.

STEP 9 To set up a backup that backs up just the changes made to the share since the last backup, click **Incremental Backups**. Leave it unchecked to take a full backup of the share each time the backup is run.

STEP 10 Click **OK**.
Initiating a Backup for a Share

You can initiate a backup on a share or group of shares at any time. You can save the backup to a remote CIFS server or to another share on the NSS.

To initiate a backup manually:

STEP 1 From the **Manager Menu**, click **Shares ➤ Backup**.

The **Scheduled Backups** page appears.

STEP 2 Click **Run Backup**.
Managing the Shares

Initiating a Backup for a Share

The Run a Backup page appears.

STEP 3 Move the shares you want to include in the backup from the Available Shares list to the Shares to Backup list. (The single angled bracket "<" or ">" moves the selection in the direction of the bracket. The double angled bracket "<<<" or ">>>" moves the entire list in the direction of the bracket.)

STEP 4 Click one of the following to determine the destination for the backup:

- **Remote CIFS Filer**: To save the backup on a remote CIFS server, click this option and then configure the hostname of the remote server, the remote share, as well as the login information to that share.

- **Local File System**: Select the share on which you want to store the backup.

STEP 5 To create a compressed backup, check Compress backup image. Compressed backup images are smaller than non-compressed images but take longer to create.

STEP 6 Click OK to initiate the backup. A message appears when the backup is complete.
Deleting Backup Images

Each time the backup job runs for a CIFS share or group of CIFS shares, the backup image is saved to the local share (if configured for backups). To remove these images, you must have administrator privileges.

To delete a backup image from a local CIFS share:

STEP 1
Login to the share using the “admin” username together with the password configured for the administrator.

The share’s contents appear.

STEP 2
Go to the “backup” folder and delete the backup images as required (the images appear as .tar.gz files).
Managing the NSS

You can perform these maintenance tasks from the System Details page.

- Reboot or Shut down the system. See “Rebooting or Shutting Down the NSS,” on page 127.
- Upgrade the firmware. See “Upgrading the NSS Firmware,” on page 129
- Restore the configuration settings to the factory defaults. See “Restoring the Factory Default Configuration,” on page 131.

Rebooting or Shutting Down the NSS

If you need to reboot or shut down the NSS, doing so disconnects all active user sessions. If the power to the NSS is interrupted unexpectedly (such as an unclean shutdown), your system settings might become corrupted.
We recommend that you use a UPS (and optionally an RPSU) to ensure that power to the NSS is never interrupted. See “Handling an Unexpected (Unclean) Shutdown,” on page 165 for more information.

During a reboot or shutdown of the NSS, the color and blink rate of the Power LED on the front of the chassis indicates the status of the currently selected process. The LEDs on the front and back of the NSS chassis help you troubleshoot a variety of conditions on the NSS. The **Reset** button lets you restore the network defaults in situations where you can no longer log into the configuration interface.

To reboot or shut down the NSS:

STEP 1 From the **Manager Menu**, click **Admin ➔ Maintenance**.

The **System Details** page appears.

STEP 2 Click one of the following:

- **Reboot System**: Power down and power up the system.

 Make sure that you close the Web browser when the system is rebooting. If you refresh the configuration interface Web page during the reboot process, the system initiates another reboot.

- **Shut Down System**: This does a “clean” shutdown of the NSS. You can also shut down the NSS to do the following:
 - **Restore the network setting system defaults**: You need to do this if the configuration interface becomes inaccessible. To reset the network setting system defaults, shut down the NSS, power it off, hold down the

Linksys Small Business NSS4000 and NSS6000 Series Network Storage System Administration Guide 128
Managing the NSS

Upgrading the NSS Firmware

Reset button, and then power up the NSS. When you see the Power LED blink yellow rapidly, release the Reset button. The network settings are restored to factory defaults.

- Reset the box: Press and hold the Reset button while the system is running until the Power LED begins to blink green. Release the button.

A warning message appears.

STEP 3 Click OK to continue.

You can view the Power LED on the front of the chassis during the reboot or shutdown process. It changes to indicate the current status of the process. When the NSS is fully powered up, the Power LED is solid green. When the shutdown is complete, the Power LED is off. You need to unlock any encrypted volumes following any reboot or power up of the NSS.

Upgrading the NSS Firmware

Before you start the firmware upgrade, note the following:

- The firmware must be upgraded from an external source to the NSS. You cannot install firmware that is saved to a disk on the NSS. If a copy of the firmware is saved to a disk on the NSS, make sure you that you copy it to another location (such as onto a PC) before you attempt to upgrade it.

- The firmware must be compatible with the NSS platform.

- The firmware must be newer than the version currently installed. The system does not support downgrades.

- The firmware must be installed in a specific order if upgrading within a virtualized setup (see “Upgrading the NSS Firmware in a Virtualized Setup,” on page 131).

CAUTION

When you upgrade the firmware, avoid using a wireless connection to the NSS as wireless connections can be unreliable and cause image corruption. Do not interrupt the power during the firmware upgrade. The system reboots after the firmware upgrade is completed. Wait until the Power LED goes back to solid green before you log in and use the configuration interface.
To upgrade the firmware:

STEP 1 Back up the system configuration file on a USB flash device before you upgrade the firmware. It is advisable to back up the configuration file daily.

STEP 2 Download the latest image from the support website to your local computer.

STEP 3 From the Manager Menu, click Admin ➔ Maintenance.

The System Details page appears.

STEP 4 In the Firmware image file: field, either enter the location of the firmware file, or click Browse to locate it.

STEP 5 Click Upgrade Firmware to initiate the upgrade process. During the upgrade, the Power LED alternates from yellow to green.

STEP 6 When the firmware upgrade completes, the system automatically reboots. Wait until the Power LED is solid green before you log back into the configuration interface. If the upgrade is not successful, a message appears. (The Power LED appears solid yellow until you click OK after which the system reboots with the current version of the firmware.)

For more information about the Power and System Error LEDs, see the “NSS LEDs,” on page 155.

STEP 7 After the firmware upgrade is complete, we recommend that you clear your browser cache before you reconnect to the administrator interface.
Upgrading the NSS Firmware in a Virtualized Setup

To upgrade the firmware when you have virtualized storage:

1. **STEP 1** Power down the Master device.
2. **STEP 2** Upgrade the firmware for each slave (one-by-one or in parallel).
3. **STEP 3** Power up the Master device.
4. **STEP 4** Upgrade the firmware for the Master device.

Restoring the Factory Default Configuration

There are two ways to restore configuration settings when you run into a problem with the NSS: preserve the specific storage configuration but restore everything else to factory defaults, or reset just the network settings so that you can log into the NSS configuration interface.

CAUTION
If you restore the full factory defaults to an NSS in a virtualized setup, you will break any virtualized RAIDs.

To reset the NSS:

1. **STEP 1** From the Manager Menu, click **Admin ➔ Maintenance**.
2. **STEP 2** Depending on the nature of the problem, choose one of the following ways to reset the configuration:
 - Delete the entire configuration with the exception of the storage details: When you reset the configuration through the configuration interface, the RAID, volume, share, and quota configuration is maintained. All other configuration details are restored to factory defaults. Click **Restore All Settings to Factory Defaults**.
Reset the Network Settings to Enable you to Access the Configuration Interface: If there is a problem with the NSS that results in your not being able to access the NSS configuration interface, you might need to reset the network settings. This lets you access the interface and make the changes required to resolve the problem.

To reset the network settings, first shut down the system and power it off. Press and hold the recessed **Reset** button on the front panel of the chassis, and then apply power to the system. Wait until you see the Power LED on the front of the chassis flash yellow rapidly, and then release the **Reset** button.

These settings are reset to their default:

- Link Addressing: DHCP
- Link Bonding Mode: Active Backup
- NSS Hostname: nas<MAC address of primary link> For example, “nas0123456789ab”
- Network Ports: The network ports are reset to their default as described in “Configuring the Network Ports,” on page 33.
- VLANs: All configured VLANs are deleted.
- ADS Server: ADS server settings are cleared.
- DNS: DNS settings are cleared.
- Administrator Password: admin
Managing the NSS Configuration

You can save the current configuration settings within a configuration file that can be used to restore the settings at a later time. You can choose to save the configuration file to a volume on the NSS or you can save the file to a USB flash device that is inserted into the AUX-1 port on the front of the chassis. When you save the configuration file, it is time and date stamped and becomes available in the list of available configuration files when you click the Restore button from the Configuration Manager page. After you mount the USB flash device by inserting it into the AUX-1 port, make sure you unmount the USB flash device before you remove it. (To unmount the USB flash device, display the Storage Status page and then click Unmount.

NOTE

If you restore a configuration file that was saved in an older version of the NSS firmware than the current version, check the settings after you restore the file to make sure that they were updated correctly.

To display the Configuration Manager page, from the Manager Menu, click Admin ➔ Configuration.
The **Configuration Manager** page appears.

Saving the Current Configuration

You can save a copy of the NSS configuration if you need to restore the settings at a later time. When you save the configuration file, it saves a date-stamped version of the current configuration settings to the specified volume on the NSS. You can save the current configuration settings to a specified volume on the NSS or you can save the file to a USB flash device inserted into the AUX-1 port.

NOTE

If you restore a configuration file that was saved in an older version of the NSS firmware than the current version, check the settings after you restore the file to ensure they were updated correctly.

To save the current configuration:

STEP 1 If you are saving the configuration file to a USB flash device, insert a USB flash device into the AUX-1 port on the NSS chassis.

STEP 2 From the **Manager Menu**, click **Admin ➔ Configuration**.
The Configuration Manager page appears.

STEP 3 Select the location where the backup is saved from the Stored Configuration Location drop-down menu. To save the configuration file to a USB flash device, select the AUX-1port as the location. You can then copy the configuration file from the USB flash device to another location on your network.

STEP 4 Click Update.

STEP 5 Click Save to save the configuration settings. If the configuration file does not successfully save to the specified volume, check the volume and make sure that it is not locked.

STEP 6 If you saved the file to the USB flash device, display the Storage Status page.
STEP 7 Click **Unmount**.

NOTE
Removing the USB flash device in a mounted state can cause file or filesystem corruption.

STEP 8 When the AUX-1 LED on the front of the chassis is off, you can safely remove the unmounted USB flash device from the AUX-1 port.
Restoring a Configuration File

You can easily overwrite the current configuration settings with the configuration settings in a saved configuration file.

NOTE
If you restore a configuration file that was saved in an older version of the NSS firmware than the current version, check the settings after you restore the file to ensure they were updated correctly.

To restore a configuration file:

STEP 1 From the Manager Menu, click **Admin ➤ Configuration**.

The Configuration Manager page appears.

STEP 2 If the configuration file is not located on a volume in the NSS, copy it onto a USB flash device and then insert the USB flash device into the AUX-1 port.

STEP 3 From the Stored Configuration Location field, select the location of the saved configuration file.

STEP 4 Click **Update**.

STEP 5 Click **Restore**.
A list of saved configuration files appear. Each saved configuration file is named according to the time and date it was saved. The naming format is: HH.MM.SS.NN.DD.YY.tar.gz where HH = hour, MM=minute, SS=second, NN=month, DD=day, and YY=year.

STEP 6 Set **Restore Volume Encryption Password** depending on whether you want to include the encryption keys for the encrypted volumes in the restore.

The NSS configuration backup includes a backup of the encryption header for all the encrypted volumes (the encryption header contains an encrypted version of the encryption key used to encrypt the volume data. Including it in the configuration backup does not decrease the security of the encryption because this same header would be available to any attacker with physical access to the system). You can choose to restore these keys or not, depending on the reason you are doing the restore. If the encryption header on an encrypted volume becomes corrupted, restoring the header may allow you to unlock the volume. Also, if you have forgotten the password, you can restore the encryption header. This lets you revert to the volume password as it was when the configuration file was saved.

STEP 7 Click **Full Restore** for the configuration file you want to restore.

STEP 8 Close the Web browser.

STEP 9 After a few minutes the system reboots.

STEP 10 Check the Power LED on the front of the chassis. The Power LED goes to a solid green when the reboot completes. See the “Power LED (Front Panel),” on page 155 for more information.

STEP 11 Log back into the configuration interface. You need to unlock any encrypted volumes to make them available for storage purposes.

STEP 12 If you saved the file to the USB flash device, display the **Storage Status** page.
STEP 13 Click Unmount.

NOTE Removing the USB flash device in a mounted state can cause file or filesystem corruption.

STEP 14 When the AUX-1 LED on the front of the chassis is off, you can safely remove the unmounted USB flash device from the AUX-1 port.

Deleting a Configuration File

Each time you save a configuration file, a copy of it is time and date stamped and saved to the specified location. You can choose to delete a configuration file.

To delete a configuration file:
Managing the NSS
Configuring the Timing Settings

STEP 1 From the Manager Menu, click Admin ➔ Configuration.

The Configuration Manager page appears.

STEP 2 If the configuration file is located in a location on your network, install it onto a USB flash device and then insert the USB flash device into the AUX-1 port on the front of the NSS chassis.

STEP 3 Click Restore.

A list of saved configuration files appear.

STEP 4 Click Delete for each configuration file you want to remove.

Configuring the Timing Settings

If you are installing the NSS within the Linksys One environment, the NSS time is automatically set via the Linksys NTP server.

When you first configure the NSS, ensure that the NSS has successfully synchronized the time with the NTP server. When the NSS is synchronizing with the NTP time server, the “Synchronizing time with NTP server” message appears and the Update button is grayed out. After the synchronization is complete, you can manually refresh the page by reselecting the NTP Configuration page from the Manager Menu.
If the synchronization failed, the following occurs:

- An error message stating “Could not synchronize with NTP server(s)” appears in the NTP Configuration page.
- The system alert message “Could not synchronize with NTP server(s)” appears in the System Status page.
- If the SNMP traps are configured, an SNMP trap message is sent.

To configure the time settings for the NSS:

STEP 1 From the Manager Menu, click Admin ➤ Time.

The NTP Configuration page appears.

STEP 2 To use an NTP server to maintain the NSS time, click Automatically (via NTP). To assign the time manually, skip to step 4.

NOTE If the NSS joins to the ADS domain, you must enter the IP address of the domain controller into the NTP server field and uncheck Assign automatically via DHCP. Otherwise, the NSS will not join the domain.
Managing the NSS
Configuring the Email Alerts for a Recipient

STEP 3 If your DHCP server is configured to provide NTP settings, select Assign automatically via DHCP. If not, manually configure the NTP settings. In the NTP Server fields, enter the IP address or hostname for the NTP servers you wish to synchronize. The settings in these fields are also used as a fallback if you chose to get NTP settings from your DHCP server. The NTP servers can be located on your network or can be public NTP servers located on the Internet. Skip to step 6.

STEP 4 Click Manually.

STEP 5 Enter the date and time in the Date and Time fields.

STEP 6 Select your time zone from the Time Zone drop-down menu.

STEP 7 Click Update.

Configuring the Email Alerts for a Recipient

You can create a list of users that will receive email alerts when changes occur to the NSS. Changes can include configuration changes (such as the addition of a volume), physical changes (such as the removal or insertion of a disk), and changes of state (such as a loss of power). You can customize the user’s email profile to suit the user’s specific need-to-know requirements.

To configure the NSS for email alerts:

STEP 1 From the Manager Menu, click Admin → Email Alerts.
The **Email Alerts** page appears.

STEP 2 Enter the SMTP server IP address or name in the SMTP Server field.

STEP 3 Click **Update**.

STEP 4 To add a new email account, define the following fields in the **Alert Recipients & Types** area:

- **Email Address**: Enter the user’s email address.
- **Disk**: Check this option to notify the user when a change occurs to the disks that are installed in the NSS.
- **RAID**: Check this option to notify the user when a change occurs to a RAID array.
- **Quota**: Check this option to notify the user when a change occurs to a quota.
- **Backup**: Check this option to notify the user when a backup is run.
- **Power**: Check this option to notify the user when there is a change of state of the UPS or RPSU.

STEP 5 Click **Add**. Click **Test All** to send a test notification for all checked options to the defined recipients.
Changing the Email Alerts for a Recipient

After you define a recipient to receive email alerts, you can only edit the alert profile by first deleting the existing profile and then recreating it.

To edit the email alerts:

STEP 1 From the Manager Menu, click Admin → Email Alerts.

The Email Alerts page appears.

STEP 2 Click **Delete** for the applicable email recipient.

STEP 3 Recreate the email recipient.

STEP 4 Click **Add**. Click **Test All** to send a test notification for all checked options to the defined recipients.
Deleting an Email Alert Recipient Profile

To stop sending all email alerts to a user, you can delete the profile at any time. This is also one of the steps you must take if you want to make changes to the types of email alerts the user receives.

To delete the email alerts:

STEP 1 From the Manager Menu, click Admin → Email Alerts.

The Email Alerts page appears.

STEP 2 Click Delete for the applicable email recipient.

Configuring SNMP Alerts

The NSS can send SNMP traps to alert you of various system events. If you download and install the NSS SNMP MIB, you get a more human readable version of alerts displayed on your SNMP management station.

To define SNMP Trapsinks:

STEP 1 From the Manager Menu, click Admin → SNMP.
The SNMP Trapsinks page appears.

STEP 2 To install the NSS MIB on your management station, click **Download**.

STEP 3 Save and install the MIB to your management station. For more information on installing and integrating the NSS MIB into your management station, refer to the management station documentation.

STEP 4 Enter the IP address or hostname for the management station to which you want to send the alerts.

STEP 5 Select the checkbox for each type of trap sink for which you want to send alerts to the SNMP server. You can set up an alert for any of the following:

- **Disk**: When the following occurs: 1) a drive is predicted to fail by S.M.A.R.T., 2) a drive is above temperature threshold, 3) a volume is more than 90% full.

- **RAID**: When any of the following occurs: 1) a RAID goes into a degraded state, 2) a RAID is in a degraded state and will be deactivated (the alert advises the time at which the RAID will be deactivated), 3) a RAID goes into a failed state, 4) a RAID is deactivated, 5) a RAID is rebuilt, 6) a RAID is created.

- **Snapshot**: When a snapshot reserve is more than 90% full.

- **Quota**: When a user or group is over their quota.

- **Backup**: When a backup job completes.

- **UPS**: When any of the following occurs: 1) the UPS goes online, 2) the UPS goes on battery, 3) the battery is low, 4) the NSS establishes contact with
the UPS, 5) the NSS loses contact with the UPS (after communication was successfully established), 6) the UPS is about to shut down the system, 7) the UPS battery needs to be replaced, 8) the NSS cannot talk to the UPS.

STEP 6 Click Add.

The management station appears in the Existing SNMP Trapsinks list.

STEP 7 Repeat steps 4 through 6 for each SNMP server address to which you want to send alerts.

STEP 8 To send a test alert for each of the selected conditions to all configured trapsinks, click Test All. To delete an existing SNMP Trapsink, click Delete.

Changing the Administrator Password

You should change the administrator password from the default to ensure that only authorized individuals can access the NSS configuration interface. If you forget the administrator password, you can only reset it by pressing the Reset button on the NSS chassis and restoring the factory defaults. The default password is “admin.”

To set up the administrator password:

STEP 1 From the Manager Menu, click Admin ➤ Password.

The Admin Password Configuration page appears.
STEP 2 Enter the current password in the Current Password field.

STEP 3 Enter the new password in the New Password field.

STEP 4 Re-enter the new password in the Confirm Password field.

STEP 5 Click Update.

The new password takes effect immediately. The next configuration interface page that you access prompts you for the new password.
Accessing the Storage

Logging into a Share

End users, using a Windows, UNIX, Linux, or Mac computer can easily access the NSS storage. Once the end user logs into the NSS using their username and password, the shares to which the end user has read or read-write privileges appear. The NSS supports three file-sharing protocols: CIFS, NFS, and FTP. The steps to access the NSS storage depend on which file-sharing protocol the end user chooses to use: CIFS, NFS, or FTP as well as the end user’s operating system.

Logging into the CIFS Shares with Administrator Privileges

To log into CIFS shares with administrator privileges:

STEP 1

There are a variety of ways to access the CIFS shares on the NSS. As the administrator, you also have read-write access to a hidden share called “storage”. This share gives access to all data on the system (including user home directories). As the administrator, you can read, write, and delete all files and folders regardless of who owns them. For this reason, make sure that you change the default administrator password.

- From the **My Computer** window, type the NSS \<hostname> or <IP address > in the Address bar. (Where the <hostname> refers to your NSS hostname and <IP address > refers to the IP address of your NSS. For example, “NAS0123456789ab” or “192.168.1.2”). To access the hidden storage folder, type the hostname or IP address followed by “\storage”. For example, “NAS0123456789ab\storage”.

- Browse for the NSS from the **My Network Places** window. To access the hidden storage folder, make sure that you add “\storage” to the address.

- Map the NSS to a network drive. To access the hidden storage folder, make sure that you add “\storage” to the address.
Accessing the Storage

Windows Users: Accessing the Storage by using CIFS/SMB

STEP 1 Choose one of these options to access the NSS.

- From the *My Computer* window, type `\<hostname>` or `\<IP address>` in the Address bar. (Where the `<hostname>` refers to your NSS hostname and `<IP address>` refers to your NSS IP address. For example, "\NAS0123456789ab or \192.168.1.2".)
- Browse for the NSS from the *My Network Places* window.
- Map the NSS to a network drive.

The *Login* window appears.

STEP 2 If your user profile is set up locally (that is, through the NSS configuration interface) and the NSS is part of a Windows domain, in the *User name* field, enter the following: `<NSS hostname><username>`. If your user profile is set up through the domain or the NSS is not joined to a domain, you do not need to enter the NSS hostname before your user name. (Just enter your user name and then your password.)

STEP 3 Click **OK**.

The *Windows Explorer* window opens with a directory listing of the available shares.

STEP 4 Depending on your share privileges, you can begin using the NSS storage.
Windows Users: Accessing the Storage by using FTP

Windows users who have a user profile set up can access any shares to which they have privileges on the NSS storage using CIFS/SMB or FTP. Note that when using FTP to access the NSS storage, users cannot rename folders. To rename a folder, use CIFS or NFS if enabled on the share.

NOTE

Before your end users can access the shares on the NSS using FTP, the NSS must have FTP access enabled and the individual share must be set up to allow FTP access.

To access the NSS storage using FTP:

STEP 1 From your FTP client application, connect to the NSS. Enter the IP address or hostname of the NSS. For more information about using your FTP client application, refer to its documentation.

STEP 2 Enter your username and password when prompted by your FTP client.

When your FTP client has logged in, a list of accessible shares appears as individual directories.

STEP 3 Depending on your share privileges, you can begin using the NSS storage.

Mac Users: Accessing the Storage by using CIFS/SMB

Mac users who have a user profile can access any shares to which they have privileges on the NSS storage using CIFS/SMB.

To access the NSS storage through CIFS/SMB:

STEP 1 From the Finder’s Go menu, click Connect to Server.

STEP 2 Enter "smb://<hostname or IP address of the NSS>/<sharename>". (Where the information in the brackets is meant to be replaced with the applicable information. Do not type the brackets.)

Click the "+" sign to save the NSS address to the Favorite Servers list so that the next time you log in you just need to select the address from the list.
STEP 3 Click Connect.

STEP 4 When the Login window appears, enter your username and password. If your user profile is set up locally (that is, through the NSS configuration interface and not through the ADS or NTv4 domain) and the NSS is joined to a domain, you need to enter the following: <NSS hostname>\<user name>. If the NSS is not joined to a domain, just enter the username.

STEP 5 Depending on your share privileges, you can begin using the NSS storage.

Mac Users: Accessing the Storage by using FTP

Mac users who have a user profile can access any shares to which they have privileges on the NSS storage using FTP. However, they cannot rename folders when using FTP to access the NSS storage. To rename a folder, use CIFS or NFS if it is enabled on the share.

NOTE

Before your end users can access the shares on the NSS using FTP, the NSS must have FTP access enabled and the individual share must be set up to allow FTP access.

To access the NSS storage using FTP:

STEP 1 Open your FTP client application.

STEP 2 Click Connect.

STEP 3 From your FTP client application, connect to the NSS. Enter the IP address or hostname of the NSS. For more information about using your FTP client application, refer to its documentation.

STEP 4 Enter your username and password when prompted by your FTP client.

When your FTP client has logged in, a list of accessible shares appears as individual directories.

STEP 5 Depending on your share privileges, you can begin using the NSS storage.
UNIX/Linux Users: Accessing the Storage by using NFS

UNIX and Linux users can access shares on the NSS through NFS. Due to the way that the NSS implements NFS file access privileges, only NFSv3 is supported. In order for NFS access privileges to work correctly, you must have the NSS joined to an NIS domain.

NOTE
You must have root privileges to your client system to create an NFS mount. Before an end user can access the shares on the NSS through NFS, NFS must be enabled on the NSS and the individual share set up to allow NFS access.

To access the NSS storage through FTP:

STEP 1
Log into the client system as root.

STEP 2
Create a mount point directory for the mount if you do not already have one (e.g., `mkdir /mnt/nas_share`).

STEP 3
Mount the NFS share by typing `mount -v -t nfs -o nfsvers=3,rsize=32768,wsize=32768 <IP address/hostname>:<mount point path on NSS> <mount point path on client>`. The mount point path on the NSS appears in the **Shares** page.

STEP 4
Log out of the root account.

STEP 5
Log into the user account on the client system.

You can now access the share though the mount point directory on your client. You have the share privileges as are defined for the NSS.
UNIX/Linux Users: Accessing the Storage by using FTP

UNIX and Linux users who have a user profile set up can access any shares to which they have privileges on the NSS storage using NFS or FTP. Note that when using FTP to access the NSS storage, users cannot rename folders. To rename a folder, use CIFS or NFS if enabled on the share.

NOTE
Before your end users can access the shares on the NSS using FTP, the NSS network filters must be set up to allow FTP access. The individual share must also be set up to allow FTP access.

To access the NSS storage using FTP:

STEP 1 Open your FTP client application.

STEP 2 Enter the NSS hostname/IP address.

STEP 3 Enter any other required settings. If using FTPS, ensure that the client is set to use Explicit FTPS. For more help using the FTP client, refer to the FTP client documentation.

STEP 4 Enter your username and password when prompted by the FTP client.

STEP 5 Depending on your share privileges, you can begin using the NSS storage.
Troubleshooting

NSS LEDs

The LEDs on the front and the back of the NSS chassis help you troubleshoot a variety of conditions on the NSS, from normal operating conditions, alerts, to serious error conditions. The **Reset** button lets you restore the network defaults in situations where you can no longer log into the configuration interface.

Power LED (Front Panel)

The **Power LED** shows whether the NSS is receiving power and is functioning properly. These are the LED colors and their meanings:

- **Solid Yellow**: The NSS is powered on and the boot loader is currently running. The boot loader runs for approximately 10 seconds when the NSS first starts up, and then the LED blinks green.

 This condition also occurs if the firmware upgrade fails (although in this case, the LED remains in a solid yellow condition until the user clicks **OK** from the **System Details** page following an unsuccessful upload. After the user clicks **OK**, the system reboots using the current version of the firmware.

- **Blinking Yellow**: The network configuration factory defaults are being reset. When resetting the network defaults, hold down the **Reset** button until you see the **Power** LED flash yellow rapidly.

- **Solid Green**: The NSS is powered up and finished booting.

- **Blinking Green**: The NSS is either booting up or shutting down.

- **Alternating Yellow & Green**: The firmware update is currently in progress.

- **Off**: The NSS is either disconnected from a power source or has finished the shutdown process and can be safely disconnected from a power source.
System LED (Front Panel)

The System (SYS) LED indicates that a system error has occurred on the NSS. These are the LED colors and their meanings:

- **Solid Yellow**: Indicates one of these error conditions. You can view the error through the NSS configuration interface.
 - A volume is more than 90% full.
 - A disk drive has failed or is about to fail.
 - A fan has stalled.
 - The system temperature is above the maximum threshold.
 - The temperature of a disk drive is above the maximum threshold.
 - A voltage rail is above or below specification.
 - The NSS is running on UPS due to a mains power failure.
- **Solid Red**: Indicates a critical system failure. The system could not boot due to a corrupted firmware image.
- **Off**: There are no system-related problems

Reset Button (Front Panel)

The Reset button lets you restore the network setting system defaults or reset the box.

- **To restore the network setting system defaults**: You need to do this if the configuration interface becomes inaccessible. To reset the network setting system defaults, shut down the NSS, power it off, hold down the Reset button, and then power up the NSS. When you see the Power LED blink yellow rapidly, release the Reset button. The network settings are restored to factory defaults.

- **To reset the box**: Press and hold the Reset button while the system is running until the Power LED begins to blink green. Release the Reset button.
LAN LED (Front Panel)

The **LAN LED** shows the status of the Ethernet link. These are the LED colors and their meanings:

- **Solid Green**: The LAN link is up and running at 1000 link speed, but is currently idle.
- **Flickering Green**: The LAN link is up and running at 1000 link speed and is currently active. The LED flickers off with activity.
- **Solid Yellow**: The LAN link is up and running at 10/100 link speed, but is currently idle.
- **Flickering Yellow**: The LAN link is up and running at 10/100 link speed and is currently active. The LED flickers off with activity.
- **Off**: No LAN link is detected.

Hard Disk Drive LEDs

These LEDs show the disk-drive activity, the error conditions, and locate state of the installed disk drives.

The green LED indicates drive activity. These are the LED colors and their meanings.

- **Solid Green**: The disk drive is configured but is currently idle.
- **Flickering Green**: The disk drive is configured, active, and not rebuilding. Flickers off with activity.
- **Blinking Green**: The disk drive is configured and a RAID array is currently rebuilding to the disk drive.
- **Off**: The disk drive is not configured (not part of a RAID or JBOD array and not exported).

The red LED means that the drive is in an error condition. These are the LED colors and their meanings

- **Solid Red**: The drive is in a failed state.
- **Blinking Red**: The drive is predicated to fail (via S.M.A.R.T.). We recommend that you replace the drive to avoid the loss of data.
Off: The drive is OK.

The white LED means that there is a locate request currently on the disk drive:

Blinking White: There is a locate request currently on the disk drive (see “Storage Status,” on page 6 on the configuration interface). There can only be one locate request set for a disk drive at one time.

Off: The disk drive is not marked by a locate request.

USB LED (Front Panel)

Solid Green: The USB hard/flash drive is connected and is not safe to remove.

Blinking Green: The USB hard/flash drive is connected and is being mounted or unmounted.

Off: There is either no USB hard/flash drive connected to the NSS, or, if connected, the USB hard/flash drive is safe to remove.

UPS LED (Back Panel)

Off: There is either no UPS attached to the NSS or the UPS function has been disabled in the System Power page in the configuration interface.

On: A UPS is attached to the NSS and the UPS function is enabled in the System Power page in the configuration interface.

For more information about the UPS, refer to the UPS documentation.

Repairing a Degraded Array

If a RAID level 1, 5, or 10 is in a degraded state (that is, a redundant disk drive has failed), you can replace the failed disk drive(s). (You might be able to use some of the data on a JBOD if there are volumes that do not span across the failed disk. Otherwise, you must rebuild the JBOD after you replace the disk.) If an array with no redundancy has a failed disk drive, you must delete the array, replace the disk drive, and then recreate the array.
NOTE When adding disks to an array, we recommend you use the same model of disk with the same capacity. The new disk must have at least the same capacity of the smallest disk currently in the array. With the exception of a JBOD, RAIDs are configured to use the maximum of the smallest disk capacity in the array for each additional disk in the array. For example, if you install two, 250 GB disks and one 500 GB disk, the total capacity is 750 GB.

To add a disk to a degraded array:

STEP 1 If you are replacing a disk, remove the failed drive from the NSS and install the replacement disk.

STEP 2 From the Manager Menu, click Storage ➤ RAID.

The RAID page appears.

STEP 3 In the RAID Arrays table, click Edit for the applicable RAID array.
The RAID Configuration page appears.

![RAID Configuration Page]

STEP 4 Available disk drives appear in the listing. Click **Add** to add the disk drive to the array.

The RAID array is rebuilt for the added or changed redundant disk drive. While the rebuild continues, the array can still be used. After the rebuild process completes, the disk becomes part of the redundant storage. You can monitor the progress of the rebuild through the **System Status** page.

Working with a Failed Array

If a RAID is in a failed state, the data on the array is not recoverable. You need to delete the array, replace the disk drive, and then configure a new array.

To create an array when an array fails:

STEP 1 Remove the failed drive from the NSS and install the replacement disk. (This step can be done out of order as long as it is installed before you configure the new array.)

STEP 2 Reboot the NSS. Make sure that you do a safe reboot using the Reboot function. See "Rebooting or Shutting Down the NSS" on page 127.

STEP 3 When the system reboots, log back into the configuration interface.
STEP 4 From the Manager Menu, click Storage → RAID.

The RAID page appears. The failed array appears with a status of “Stopped”.

STEP 5 Click Delete.

The disk drives used in the failed array become part of the available storage.

STEP 6 Create a new array as required.

Once built, you can set up the volumes, shares, and quotas for the array. If the failed array contained the volume used as the Home Directory Location, set the location to the volume you want to use.

Drive Error LED Remains On

If a drive that is part of a RAID array is accidentally removed and is then subsequently reinserted into the chassis, the drive Error LED might will become lit. This means that the drive was rejected from the array.

To resolve the problem:

STEP 1 Remove the drive from the chassis, and then reinsert it.

The Error LED for that drive clears.

STEP 2 If the array did not fail as a result of the original removal of the drive, add the drive back into the array. If the array failed, follow the steps to recreate the failed array.

Firmware Attempt is Unsuccessful

If a problem occurs when updating the firmware, check the following:

- If a copy of the firmware is saved to a disk on the NSS, make sure that you copied it to another location (such as onto a PC). You cannot install firmware that is saved to a disk on the NSS.

- Verify that the firmware is compatible with the NSS platform.

- Verify that the firmware is newer than the version that is currently installed. The system does not support downgrades.
- If you are upgrading within a virtualized setup, make sure that you installed the firmware in the order described in "Upgrading the NSS Firmware" on page 129.

To update the firmware after a failed attempt:

STEP 1 Click OK when the message appears from the System Details page that the firmware upgrade was not successful.

The system automatically reboots using the current firmware version. The Power LED blinks green and then goes solid green when the reboot completes.

STEP 2 Go through the steps to upgrade the firmware.

Free Bound Virtualized Storage when the Master System Fails

A storage system is bound to a failed storage system and rejects any bind requests from other systems.

Follow these steps to recreate the problem:

STEP 1 Export storage from System A.

STEP 2 Import storage from System A to System B.

STEP 3 System B crashes and cannot be recovered.

STEP 4 System A is "bound" to System B and rejects any new bind requests from other systems.

To resolve the problem:

STEP 1 Unexport the bound storage system (in our example, System A).

STEP 2 Re-export the storage system.

The storage system is now available to be used by another system.
All CIFS Connections were Unexpectedly Ended

If all current CIFS connections to the NSS were unexpectedly severed, check to see if the the hostname the **Network Identification** page was changed. Changing the hostname severs any current CIFS connections to the NSS.

To resolve the problem, change the name back to the original hostname.

Hotplugging the Ethernet Link doesn’t Reset IP or Link Rate

When you disconnect the Ethernet link and reconnect it, the IP address and link rate does not reset. For example, if you unplug a cable from the NSS to a 100 Mbps switch and then reconnect the NSS to a 1 Gbps switch, the link is not restored.

To resolve the problem:

<table>
<thead>
<tr>
<th>STEP</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unplug the Ethernet link.</td>
</tr>
<tr>
<td>2</td>
<td>Wait at least 15 seconds.</td>
</tr>
<tr>
<td>3</td>
<td>Reconnect the link.</td>
</tr>
<tr>
<td>4</td>
<td>Wait 10 seconds.</td>
</tr>
</tbody>
</table>

The link is re-established. You can view the status from the **System Status** page on the configuration interface.

Unable to Create a Share or Quota for a Volume

When you attempt to create a share, the volume does not appear in the **Location** field. When you try to create a quota, the quota is not successfully added for the volume.

The problem is likely caused by the volume being locked. An encrypted volume is automatically locked whenever the NSS is rebooted or is manually locked through the configuration interface. As long as the volume is locked, you cannot use the volume to create shares or quotas (you can however, set up the **Home Directory**).
Troubleshooting

Cannot Access the NSS through FTP

To resolve the problem:

STEP 1 From the **Manager Menu**, click **Storage » Volumes**.

If the problem is due to the volume being locked, the **Unlock** button appears next to the volume in the **Action** column.

STEP 2 Click **Unlock**.

STEP 3 Enter the password for the volume.

STEP 4 Click **OK**.

You can now be create a share or quota for the volume.

Cannot Access the NSS through FTP

Users attempt to log into the NSS through FTP but are unable to access their home directory or shares on the NSS.

To resolve the problem, you need to configure these settings to enable FTP access:

STEP 1 From the **Manager Menu**, click **Shares » FTP Setup**.

STEP 2 Make sure that **Enable FTP** is selected. (You can go through the settings on this page to ensure they are correctly defined.)

STEP 3 Close the **FTP Setup** page.

STEP 4 From the **Manager Menu**, click **Shares » Shares**.

STEP 5 Click **Edit** for the applicable share.

STEP 6 Make sure the **FTP protocol** is selected, and then click **Update**.

STEP 7 From the **Manager Menu**, click **Access » Network**.

STEP 8 Make sure there are no filters set up to drop or reject FTP access for the applicable IP or MAC addresses.
Cannot Rename a Folder through FTP

Users attempt to log into the NSS through FTP but are unable to rename a folder. Renaming of folders is not a supported FTP standard.

To rename a folder, users must log into the NSS through NFS or CIFS (provided that these are supported protocols).

Configuration Page Does not Appear in Internet Explorer

If you click a configuration page and the page does not appear, this is a caching problem with the Internet Explorer browser.

Follow these steps to resolve the problem (These steps only apply to Internet Explorer version 6.0. The steps for other versions might vary slightly):

STEP 1 From the Internet Explorer browser window, click Tools → Internet Options.

STEP 2 Click General, and then click Settings.

The Settings window appears.

STEP 3 Under the Check for newer versions of stored pages: section, click Automatically.

STEP 4 Set the Amount of disk space to use to 1 MB.

STEP 5 Click OK.

Handling an Unexpected (Unclean) Shutdown

The best way to shut down the NSS is to use the Shut Down command from the System Details page on the configuration interface or by using the Power button on the front of the chassis.

If the power to the NSS is unexpectedly disrupted, causing the NSS to do an unclean shutdown, the system settings (including time) might be altered. The Administrator is notified of the unclean shutdown in three possible ways:
When the NSS powers up, an SNMP trap sends a notification.

When the Administrator first logs into the configuration pages following the shutdown, a message appears.

An email is sent to the defined email address if the Administrator is set up to receive an email for power loss.

Following an unclean shutdown of the NSS:

STEP 1

Do one of the following:

- **Review/Edit the System Settings Manually**: Go through each setting, including the time setting to make sure that nothing has been negatively altered. If you make changes to the settings, we highly recommend that you take a USB backup.

- **Back up the System Settings from a USB Backup**: If you have a valid backup on a USB flash device, it might be easier to restore the system settings from the backup (versus manually going through and checking each system setting).

STEP 2

If you attempt either of the above unsuccessfully, restore the configuration settings back to the factory defaults, and then either restore the configuration settings from a USB flash device backup or manually edit the settings.

NOTE

The factory default administrator password is "admin".

Boosting the Performance of NFS Transfers

You can substantially improve the NFS performance by increasing the size of read and write buffers on the client. These buffers are sized at 4 KB by default but can be changed at mount time.

For example:
```
mount -v -t nfs 192.168.1.1:/mnt/RAIDA/vol1/share1 /mnt/client -o nfsvers=3,rsize=32768,wsize=32768
```

where:

- 192.168.1.1 is the IP address of the NSS system
- /mnt/RAIDA/vol1/share1 is the path to the share
Troubleshooting
Rejoining the ADS Domain after a Failed to Join

- /mnt/client is the mount point on the client
- The size of the read and write buffers is 32 KB.

Rejoining the ADS Domain after a Failed to Join

To rejoin to the ADS domain after a failed to join:

STEP 1 From the Manager Menu, click Admin ▶ Time.

The NTP Configuration page appears. Enter the IP address of the ADS domain (2000/2003/2008 server machine) into the NTP Server fields and then click Update.

STEP 2 From the Manager Menu, click Network ▶ DNS/WINS.

The Network Name Resolution page appears.

STEP 3 Enter the ADS domain name into the Search Domain field and the IP address of the ADS domain into the Primary DNS Server field and then click Update.

STEP 4 From the Manager Menu, click Network ▶ Identification.

The Network Identification page appears. Enter the Administrator password and click Update to rejoin the ADS domain.
This appendix lists the technical specifications for the NSS4000 and NSS6000 Network Storage Systems.

<table>
<thead>
<tr>
<th>Technical Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Dimensions</td>
<td>17.32 x 1.73" x 16.54" (440 x 44 x 420 mm)</td>
</tr>
<tr>
<td>Unit Weight</td>
<td>NSS4000: 24.25 lb (11 kg);</td>
</tr>
<tr>
<td></td>
<td>NSS6000: 20.99 lb (9.52 kg)</td>
</tr>
<tr>
<td>Power</td>
<td>150W Power Supply</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>32 to 113°F (0°C to 45°C)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-4 to 158°F (-20 to 70°C)</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>10 to 90%, Relative humidity non-condensing</td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>10 to 95%, Relative humidity non-condensing</td>
</tr>
</tbody>
</table>
Where to Go From Here

Cisco provides a wide range of resources to help you and your customer obtain the full benefits of the Linksys Network Storage System.

Product Resources

<table>
<thead>
<tr>
<th>Resource</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warranty and End User License Agreement</td>
<td>www.cisco.com/go/warranty</td>
</tr>
<tr>
<td>Open Source License Notices</td>
<td>www.cisco.com/go/osln</td>
</tr>
<tr>
<td>Cisco Partner Central site for Small Business</td>
<td>www.cisco.com/web/partners/sell/smb</td>
</tr>
</tbody>
</table>
Glossary of Storage-related Terms and Acronyms

A

ACL: Access Control List. Used within network security systems to allow selective use of services. An Access Control List is used to control access to, and denial of, services. It lists the services available with a corresponding list of the hosts permitted to use the service.

Active Directory: A Microsoft directory service for use in Windows environments. Administrators use Active Directory to assign enterprise wide policies, deploy programs to many computers, and apply critical updates to an entire organization. Active Directory functions much like an online phone book, storing information about resources on the network while providing a means of centrally organizing, managing, and controlling access to these resources.

AES (Advanced Encryption Standard): A block cipher adopted as an encryption standard by the U.S. government.

Aggregation: The act of collecting something together. In Network Storage Aggregation, you can put together pieces of networked storage into one, logical storage unit.

B

Bonjour: Apple’s version of the Zeroconf. Used to automatically configure devices and discover services on an IP network, Bonjour is the most widely used implementation of Zeroconf. On the Mac, Bonjour lets Safari Web browser users find the Zeroconf-enabled Web servers in the network. Web servers are widely used not just for HTML pages, but function as control panels for a variety of network devices such as routers and Webcams. There is also a Bonjour plug-in for Internet Explorer which is used to discover Bonjour-enabled network printers and devices. (It was originally named Rendezvous.)
C

CIFS: Common Internet Filesystem. A protocol that evolved out of SMB (Server Message Block). CIFS is an application-level network protocol mainly used to share files, printers, serial ports, and miscellaneous communications between nodes on a network. It also provides an authenticated Inter-process communication mechanism. It is mainly used by Microsoft Windows-equipped computers.

Coldplug: Often taken to mean the opposite of hotplugging. In other words, the inability of a computer system to add or remove hardware without powering the system down.

D

DAS: Direct Attached Storage. Also referred as Server Attached Storage and Captive Storage. The storage device (such as disk drive or RAID array) is directly attached to a computer. The computer uses various adapters and standardized protocols, such as SCSI and Fibre Channel, to access the storage device.

DFS: Distributed Filesystem. This system, developed by Microsoft, lets you build a hierarchical view of multiple file servers and shares on the network.

DHCP: Dynamic Host Configuration Protocol. Software that dynamically assigns IP addresses to devices on a TCP/IP network. DHCP software typically runs in servers and is also found in network devices such as ISDN routers and modem routers that allow multiple users access to the Internet. Newer DHCP servers dynamically update the DNS servers after making assignments.

DiffServ (Differentiated Services): A scalable IP Layer 3 method for classifying, managing network traffic, and providing QoS (Quality of Service) guarantees on an IP network. DiffServ is often used to provide low-latency, guaranteed service to time-sensitive network traffic like voice or video while concurrently providing best-effort traffic guarantees to non-time sensitive Web traffic (such as email) or file transfers.

Disk Quotas: For NAS devices, a limit set by a network administrator that restricts certain aspects of filesystem usage. There are four types of disk quotas: 1) Usage (or block) quota sets a limit on the amount of storage space (measured in MB or GB) that connected users or groups can use, 2) File (or inode) quota sets a limit for a specific number of directories or files that connected users or groups can use, 3) Usage or File quotas are considered Hard quotas, 4) Soft quota is a way, set by the administrator, to define a warning level that alerts users that they are nearing their specified hard quota limit.
Disk Tax/Disk Overhead: The limitation of hard disk drive (HDD) capacity when specific RAID configurations that use mirroring or redundancy are applied to an array.

DNS: Domain Name System (or Service or Server). An Internet service that translates domain names into IP addresses. While domain names are alphabetic and easier to remember, the Internet uses IP addresses. When you use a domain name, a DNS service must translate the name into the corresponding IP address. The DNS system is its own network. If one DNS server does not know how to translate a particular domain name, it asks another one, and so on, until the correct IP address is returned.

Domain: The name that identifies a computer connected to the Internet. For example, www.google.com. The "www." refers to the connection to the World Wide Web; the middle portion of a domain name is usually the name of the company that owns the computer (in this case, Google). The final portion of a domain name tells you what kind of site is served by this machine. In this case, .com means this is a commercial site. Other categories include: .net, .org, .edu, .fr, .uk, etc. All devices sharing a common part of the IP address share that domain.

dotted quad: This refers to the IP address number. The dotted quad is a unique number format made up of four parts separated by dots. For example, 116.112.96.2.

E

ext2: Second extended filesystem. A native filesystem for the Linux kernel. It was initially designed to replace the extended filesystem (ext). It is fast enough that it is used as the benchmarking standard. Although ext2 is not a journaling filesystem, its successor, ext3, provides journaling and is almost completely compatible with ext2.

ext3: Third Extended Filesystem. A journalled filesystem that is commonly used by the Linux operating system. Unlike its predecessor, ext2, the journaling support alleviates lengthy filesystem checks (fsck) at bootup after a sudden system crash, reset, or power loss. It is the default filesystem for many popular Linux distributions.
FAT32: File Allocation Table. Microsoft developed this partially patented filesystem for MS-DOS. It is the primary filesystem for consumer versions of Microsoft Windows up to and including Windows Me. Because it is considered relatively simple, the FAT filesystem is supported by virtually all existing operating systems for personal computers. This ubiquity makes it an ideal format for floppy disks and solid-state memory cards, and a convenient way of sharing data between disparate operating systems installed on the same computer (a dual boot environment). The most common implementations have a serious drawback in that when files are deleted and new files written to the media, their fragments tend to become scattered over the entire media, making reading and writing a slow process. Defragmentation is one solution to this, but is often a lengthy process in itself and has to be repeated regularly to keep the FAT filesystem clean. To overcome the volume size limit of FAT16, while still allowing DOS real-mode code to handle the format without unnecessarily reducing the available conventional memory, Microsoft decided to implement a newer generation of FAT, known as FAT32, with cluster counts held in a 32-bit field, of which 28 bits are currently used.

File Sharing Protocol: A high-level network protocol that provides the structure and language for file requests between clients and servers, including the commands for opening, reading, writing and closing files across the network. It may also provide access to the directory services. It is sometimes referred to as a "client/server protocol" and functions at the application layer (layer 7 of the OSI model). In order for a client to have access to multiple servers running different operating systems, either the client supports the file sharing protocol of each operating system or the server supports the file sharing protocol of each client. Software that adds this capability is very common and allows interoperability between Windows, Macintosh, NetWare and Unix platforms. Examples of file sharing protocols include: CIFS/SMB (Windows), and NFS (UNIX).

FTP: File Transfer Protocol. FTP is a standard Internet protocol that uses the Internet's TCP/IP protocols to exchange files between computers on the Internet. FTP can be used to transfer, download, and upload files individually or in batch form.

FTPS: File Transfer Protocol over SSL. FTPS is similar to the standard FTP but because it operates over an encrypted link (SSL), it is a more secure way to transfer files over the Internet. The NSS supports Explicit FTPS (versus Implicit FTPS). Explicit FTPS is named for the command issued to indicate that TLS security should be used. This is the preferred method according to the RFC defining FTP over TLS. The client connects to the server port 21 and starts an unencrypted FTP session as normal, but requests that TLS security be used and performs the appropriate handshake before sending any sensitive data.
G

Gigabit: Also Gbit or Gb. A unit of information or data storage equivalent to 1,000,000,000 (1 billion) bits.

Gigabyte (GB): A unit of information or data storage equivalent to 1,000,000,000 (1 billion) bytes.

H

High Availability: A term applied to a class of electronic devices where a system design protocol has been applied and implemented to ensure a higher/improved degree of operational continuity during a given measurement period.

Hotplug: The ability to add or remove hardware without first powering down the system.

I

IEEE 802.1ad: Protocols that provide separate instances of MAC services to multiple independent users on a bridged LAN (local area network) in a way that does not require cooperation among the users, but does require a minimum of cooperation between users and the MAC service provider.

IEEE 802.1p: An IEEE standard that provides quality of service (QoS) in 802-based networks at the MAC level. 802.1p uses three bits (defined in 802.1q) to allow switches to reorder packets based on priority level (traffic class expediting and dynamic multicast filtering). It also defines the Generic Attributes Registration Protocol (GARP) and the GARP VLAN Registration Protocol (GVRP). GARP lets client stations request membership in a multicast domain, and GVRP lets them register into a VLAN. Eight different classes of service are available, expressed through three extra bits on the Ethernet Frame. The way traffic is treated when assigned to any particular class is undefined and left to the implementation. The IEEE however has made some broad recommendations. 802.1p is used within the IEEE 802.1D and IEEE 802.1Q standards.

IEEE 802.1Q: An Ethernet, Layer 2 standard for providing VLAN identification and QoS (Quality of Service) levels for devices on a network. This is achieved by adding four bytes to the Ethernet frame header of a data packet (three bits of which assign up to eight priority or QoS levels and 12 bits identify up to 4096 VLANs).
IEEE 802.1X: Standard for port-based network access control that authenticates devices attached to a LAN port. This standard establishes connection to a network and its connected resources if authentication is approved, and conversely, prevents access to the network if authentication fails. An authentication server resides in each Cisco Small Business NSS product.

JBOD: Just a Bunch of Disks. Multiple hard disk drives (HDDs) that are combined into a single virtual drive. In a JBOD configured array, each drive can be a different size or capacity (this storage method can be used to turn two or more odd-sized hard drives into one useful drive). There is no redundancy provided with a JBOD and the failure of one disk in the array usually results in the loss of the data stored on the JBOD.

Journaling Filesystem: A fault-resilient filesystem that provides data integrity because updates to directories and bitmaps are constantly written to a serial log on disk before the original disk log is updated. If the system fails, a full journaling filesystem restores the data on the disk to its pre-crash configuration. It also recovers unsaved data and stores it in the location where it would have gone if the computer had not crashed. This type of system is beneficial for mission-critical systems. A physical journal logs verbatim copies of blocks that will be written later (for example, ext3) as compared with a logical journal that logs metadata changes in a special, more compact format. Logical journals can improve performance by reducing the amount of data that needs to be read from and written to the journal in large, metadata-heavy operations (for example, deleting a large directory tree). XFS keeps a logical journal.

LCD: Stands for Liquid Crystal Display and is a display technology that uses liquid crystals that flow like liquid and bend light. The LCD appears on the front of the NSS3000 chassis and can be used to determine various status details about the NSS3000.

LDAP (Lightweight Directory Access Protocol): A protocol that lets users find organizations, workgroups, other users, network resources (such as directories, volumes, files) or peripheral devices (such as printers and NAS devices) on a local network, in a intranet or on the Internet without knowing the specific domain where they reside. A single LDAP directory can be mirrored on multiple servers that can be periodically synchronized.
Link Aggregation Group: (LAG) A computer networking term used to describe using multiple Ethernet network cables/ports in parallel to increase the link speed beyond the limits of any one single cable or port. Other terms for this also include "ethernet trunk", "NIC teaming", "port teaming", "port trunking", "NIC bonding" and "link aggregate group" (LAG), and is based on a networking standard known as "IEEE 802.3ad".

M

MDFS (Microsoft Distributed Filesystem): see DFS.

Mirroring: For NAS devices, the automated process of simultaneously writing data to two (or more) hard disk drives. Mirroring creates a redundant repository of data, such that if one of the hard disk drives (HDD) fails, the redundant drive continues to provide access to the stored data for connected users. Network administrators can then replace the failed drive with a new drive that can be re-mirrored to the good drive. RAID level 1 uses mirroring.

MTBF (Mean Time Between Failures): A measurement of hardware product reliability typically indicated in thousands, tens of thousands, or hundreds of thousands of operational hours between failures. It is most often defined as the average time between failures. MTBF can be derived from extensive and time intensive testing of the working product, calculated from actual product field performance (depending on the product, its market, its usage, and the ability to retrieve accurate usage data), or from a calculated prediction based on known factors. Manufacturers provide MTBF as a reference of the product's, or its subcomponent's reliability. Customers can use the MTBF to determine their service needs to maintain or replace the product.

N

NAS (Network Attached Storage): A data storage device on a computer network to provide a centralized repository of data that can be shared and accessed by other end-users or workgroups on the network. The Cisco Small Business NSS products are NAS devices.

NFS: Network Filesystem. A protocol suite developed and licensed by Sun Microsystems that allows different makes of computers running different operating systems to share files and disk storage.

NIS: Network Information Service (formerly known as Yellow Pages). A system by which one machine (the master) holds the Ethernet addresses of other machines (the servants). NIS is an insecure alternative to DNS.
NTFS: New Technology Filesystem. Windows NT standard filesystem and its descendants: Windows 2000, Windows XP, Windows Server 2003 and Windows Vista. NTFS replaced Microsoft’s previous FAT filesystem, used in MS-DOS and early versions of Windows, and offers improvements over FAT such as improved support for metadata and the use of advanced data structures to improve performance, reliability and disk space utilization plus additional extensions such as security access control lists and filesystem journaling.

Parity: A way to attach additional binary digits to data blocks that lets a NAS controller monitor if data has been lost or overwritten after it has been moved from one place to another in a storage array or among networked computers.

PSU: Power Supply Unit. A device or system external to or within the NSS that supplies electrical power to the device or group of devices.

RADIUS (Remote Authentication Dial-in User Service): An authentication, authorization, and accounting protocol to access a network locally or remotely. RADIUS uses a RADIUS server that resides in the local network or as an offsite, leased resource/service to perform the authentication and authorization functions.

RAID: Redundant Array of Inexpensive or Independent Disks. In storage environments, a RAID uses multiple physical disk drives to create a single logical unit from which data can be shared or replicated between the drives. There are various RAID levels (or ways to define how the disks work together). Each level provides one or more of increased data integrity, fault-tolerance, and throughput or capacity. The types of RAID levels and combinations of these levels is constantly changing as new methods and technologies continue to improve. Currently, the NSS offers the choice of five different RAID levels (including JBOD) with two options for adding a hot spare to an existing RAID level.
SAN (Storage Area Network): A network of storage and server devices typically found in large, enterprise environments with high volume or high data traffic requirements. SANs are architected to be scalable so that computer storage devices (such as disk array controllers, tape libraries, and servers) can be added and incorporated into the system. A SAN lets computers connect to hard disk drives and tape drives on a network as though they were locally attached devices. A SAN can contain a single NAS device or numerous NAS devices.

SAS (Serial Attached SCSI): A computer bus technology and serial communication protocol to transfer data to and from hard disk drives and CD-ROMs. Used in large enterprise environments to replace legacy, parallel, SCSI solutions, because SAS attains much higher transfer speeds, and has backwards-compatibility with SATA. SAS uses serial communication to establish connectivity to other SAS devices and uses SCSI commands for file transfer.

SATA: Serial ATA. A computer bus technology that evolved from the Parallel ATA physical storage interface. Like PATA, SATA is an IDE (Integrated Drive Electronics) drive, designed for transfer of data to and from a hard disk. Serial ATA is a serial link -- a single cable with a minimum of four wires creates a point-to-point connection between devices. Transfer rates for Serial ATA begin at 150 MBps. One of the main design advantages of Serial ATA is that the thinner serial cables facilitate more efficient airflow inside a form factor and also allow for smaller chassis designs. The IDE cables used in parallel ATA systems are bulkier than Serial ATA cables and can only extend to 40cm long, while Serial ATA cables can extend up to one meter.

SATA II: A followup set of specifications to the original SATA specifications. The SATA II enhancements are delivered in increments. The first increment, called SATA II: Extensions to SATA 1.0. was released in 2002 and focused on the immediate needs for the server and network storage segments. Additional increments of the specification will focus on enhanced cabling, fan-out and failover capabilities and next generation signaling speeds. In spring 2003, two incremental developments were announced: a SATA II Port Multiplier specification release candidate and the completion and pending adoption of the SATA II Cables and Connectors Volume 1 specification.

SFTP: Secure File Transfer Protocol. A network protocol designed by the IETF to provide secure file transfer and manipulation facilities over the secure shell (SSH) protocol. This protocol is NOT supported by the NSS. (It does support FTPS.)
S.M.A.R.T. : Self-Monitoring Analysis and Reporting Technology. This industry-standard technology was developed by a number of major hard disk drive manufacturers to try to increase the reliability of drives. Using this technology, the NSS can predict the future failure of hard disk drives. The NSS uses the advanced diagnostics within the S.M.A.R.T. system to monitor the internal operations of a drive. It can then send an early warning for about 70% of all hard drive errors, such as disk performance, faulty sectors, recalibration, CRC errors, drive spin-up time, drive heads, distance between the heads and the disk platters, drive temperature, and characteristics of the media, motor, and servomechanisms. This lets the administrator repair or replace the drive before any data is lost or damaged.

SMB (Server Message Block): An application-level networking protocol that gives shared access to files, serial ports, printers, and other data transfer between nodes on a network. SMB can also be used to access different subnets over the Internet. Computers on a network that don’t share their individual hard disk drives, use SMB to gain access to shared drives, volumes, files, printers, or other devices on a network. It is mainly used by Microsoft Windows-enabled computers.

SMTP (Simple Mail Transfer Protocol): The standard protocol for sending emails over the Internet typically used in conjunction with POP or IMAP mail servers so that end users can receive, save, and store email.

Snapshot: A copy of a set of files, volumes, or directories as they were at a particular point in time. The Cisco NSS uses snapshots to back up the shares located on a volume in such a way that end users can recover their own files without having to ask the administrator to restore a backup. So for files that are on a volume for which snapshots are set up, a snapshot folder is created for each share on the volume. End users can revert to older versions of files by browsing the snapshot folder and finding a version of the desired file. The snapshots can be set for hourly, daily, and weekly intervals.

SSH (Secure Shell): A protocol and group of standards that provide confidentiality and integrity of data as it is exchanged between two or more computers or from a storage/server device to an accessing computer. SSH uses encryption and authentication codes to establish a secure communication channel. It is most often used to log into a remote computer or other device to execute commands.

SSL: Secure Sockets Layer. SSL is a protocol used to transmit files over the Internet using a private key to encrypt the data. SSL was originally developed by Netscape and is now an industry standard. The NSS supports FTPS which is FTP over SSL.
Striping: A method of concatenating multiple disk drives into one logical storage unit. Striping involves partitioning each drive's storage space into stripes which may be as small as one sector (512 bytes) or as large as several megabytes. These stripes are then interleaved round-robin, so that the combined space is composed alternately of stripes from each drive. In effect, the storage space of the drives is shuffled like a deck of cards. The type of application environment, I/O or data intensive, determines whether large or small stripes should be used.

Terabyte (TB): For data storage capacity usage, terabyte is equal to 1024 gigabytes.

TFTP (Trivial File Transfer Protocol): A simple file transfer protocol used to transfer small files between hosts on a network. TFTP works like a very basic form of FTP.

TLS: Transport Layer Security. A security protocol from the IETF that is based on the Secure Sockets Layer (SSL) 3.0 protocol developed by Netscape. TLS uses digital certificates to authenticate the user and the network. The TLS client uses the public key from the server to encrypt a random number and send it back to the server. The random number, combined with additional random numbers previously sent to each other, is used to generate a secret session key to encrypt the subsequent message exchange.

UPnP: Universal Plug and Play. A family of protocols from the UPnP Forum that automatically configure devices, discovering services and providing peer-to-peer data transfer over an IP network. Like Zeroconf, UPnP uses link-local addressing for IP assignment and provides service discovery. Unlike Zeroconf, UPnP uses a different protocol. If a device does not have an IP address and there is no DHCP server in the network, UPnP employs link-local addressing to create an IP address. Software such as Windows Media Connect uses UPnP to stream audio and video over the network. Several UPnP standards are employed including the Simple Service Discovery Protocol (SSDP) for finding devices and UPnP AV Architecture, MediaServer and MediaRenderer for streaming. UPnP can open router ports to let a device, external to the network, contact a network device.

UPS: Uninterruptible Power Supply. A device that provides battery backup when the electrical power fails or drops to an unacceptable voltage level. Small UPS systems provide power for a few minutes; enough to power down the computer in an orderly manner, while larger systems have enough battery for several hours.
Virtualization: The creation of a virtual (rather than actual) version of something, such as an operating system, a server, a storage device or network resources. The Cisco NSS refers to virtualization as a way of aggregating storage between devices. Virtualized storage occurs when storage is exported to the network as a disk drive or an array and is then imported by a master NSS. The master NSS then uses the newly imported storage to create a single JBOD.

VLAN: Virtual Local Area Network (LAN). A logical group of user stations, servers, and other network devices that appear to be on the same LAN, regardless of their physical location. You can use the MAC addresses or IP addresses to interconnect the workstations on the LAN. You can access and control the switches directly from a console port or via the LAN using IP.

Well Known Ports: IANA assigns TCP and UDP port numbers to specific uses. The port numbers are divided into three ranges: the Well Known Ports, the Registered Ports, and the Dynamic and/or Private Ports. The Ports that are popular (well known) are those in the range 0 to 1023.

WINS: Windows Internet Naming Service. This is part of the Microsoft Windows NT Server. It manages the association of workstation names and locations with Internet addresses. The user or an administrator does not have to be involved in each configuration change.

XFS: A high-performance journaling filesystem created by Silicon Graphics for their IRIX operating system. XFS has been merged into the mainline Linux 2.4 and 2.6 kernels, making it almost universally available on Linux systems. Installation programs for the SuSE, Gentoo, Mandriva, Slackware, Zenwalk, Fedora, Ubuntu and Debian Linux distributions all offer XFS as a choice of filesystem. FreeBSD gained read-only support for XFS in December 2005 and in June 2006 experimental write support was introduced to FreeBSD-7.0-CURRENT.
Z

Zeroconf: An IETF (Internet Engineering Task Force) specification that lets IP network devices automatically configure themselves and be discovered without manual intervention. Zeroconf can also manually assign an IP address and alternate host name to a device, as required. Once assigned, Zeroconf lets users and applications readily discover the service it offers. Apple's Bonjour is the major implementation of Zeroconf.