Newer Design Guide Available

Cisco Smart Business Architecture has become part of the Cisco Validated Designs program.
For up-to-date guidance on the designs described in this guide, see http://cvddocs.com/fw/Aug13-138
For information about the Cisco Validated Design program, go to http://www.cisco.com/go/cvd
LAN and Wireless LAN 802.1X Authentication Deployment Guide
Who Should Read This Guide

This Cisco® Smart Business Architecture (SBA) guide is for people who fill a variety of roles:

- Systems engineers who need standard procedures for implementing solutions
- Project managers who create statements of work for Cisco SBA implementations
- Sales partners who sell new technology or who create implementation documentation
- Trainers who need material for classroom instruction or on-the-job training

In general, you can also use Cisco SBA guides to improve consistency among engineers and deployments, as well as to improve scoping and costing of deployment jobs.

Release Series

Cisco strives to update and enhance SBA guides on a regular basis. As we develop a series of SBA guides, we test them together, as a complete system. To ensure the mutual compatibility of designs in Cisco SBA guides, you should use guides that belong to the same series.

The Release Notes for a series provides a summary of additions and changes made in the series.

All Cisco SBA guides include the series name on the cover and at the bottom left of each page. We name the series for the month and year that we release them, as follows:

 month year Series

For example, the series of guides that we released in February 2013 is the “February Series”.

You can find the most recent series of SBA guides at the following sites:

 Customer access: http://www.cisco.com/go/sba
 Partner access: http://www.cisco.com/go/sbachannel

How to Read Commands

Many Cisco SBA guides provide specific details about how to configure Cisco network devices that run Cisco IOS, Cisco NX-OS, or other operating systems that you configure at a command-line interface (CLI). This section describes the conventions used to specify commands that you must enter.

Commands to enter at a CLI appear as follows:

 configure terminal

Commands that specify a value for a variable appear as follows:

 ntp server 10.10.48.17

Commands with variables that you must define appear as follows:

 class-map [highest class name]

Commands shown in an interactive example, such as a script or when the command prompt is included, appear as follows:

 Router# enable

Long commands that line wrap are underlined. Enter them as one command:

 wrr-queue random-detect max-threshold 1 100 100 100 100 100 100 100 100

Noteworthy parts of system output or device configuration files appear highlighted, as follows:

 interface Vlan64
 ip address 10.5.204.5 255.255.255.0

Comments and Questions

If you would like to comment on a guide or ask questions, please use the SBA feedback form.

If you would like to be notified when new comments are posted, an RSS feed is available from the SBA customer and partner pages.
Table of Contents

What's In This SBA Guide ... 1
 Cisco SBA Borderless Networks 1
 Route to Success .. 1
 About This Guide .. 1

Introduction ... 2
 Business Overview ... 2
 Technology Overview ... 2

Deployment Details .. 4
 Enable Authentication .. 4
 Deploying Cisco Identity Services Engine 4
 Enabling Visibility to the LAN 12
 Enabling Visibility to the Wireless Network 22
 Deploying Digital Certificates 26
 Enabling 802.1X Authentication 32
 Configuring Group Policy Objects 38
 Deploying Cisco AnyConnect on Windows Endpoints 47
 Configuring Mac Workstations for 802.1X Authentication 51
 Configure Mac OS X Supplicant 53
 Enabling Authorization for Cisco IP Phones 53
 Enabling Authorization for Wireless Access Points 54
 Modifying the MAB Authentication Policy 56
 Enabling Authorization for Wired Endpoints 57
 Enabling Authorization for Wireless Endpoints 57
 Modify Authorization Policy to be Closed 67
 Enabling EAP Chaining .. 68
 Enabling Downloadable Access Lists 75
 Enabling Security Group Access 79
 Monitoring Network Access ... 88

Appendix A: Product List ... 95

Appendix B: Changes ... 98
What’s In This SBA Guide

Cisco SBA Borderless Networks
Cisco SBA helps you design and quickly deploy a full-service business network. A Cisco SBA deployment is prescriptive, out-of-the-box, scalable, and flexible.

Cisco SBA incorporates LAN, WAN, wireless, security, data center, application optimization, and unified communication technologies—tested together as a complete system. This component-level approach simplifies system integration of multiple technologies, allowing you to select solutions that solve your organization’s problems—without worrying about the technical complexity.

Cisco SBA Borderless Networks is a comprehensive network design targeted at organizations with up to 10,000 connected users. The SBA Borderless Network architecture incorporates wired and wireless local area network (LAN) access, wide-area network (WAN) connectivity, WAN application optimization, and Internet edge security infrastructure.

Route to Success
To ensure your success when implementing the designs in this guide, you should first read any guides that this guide depends upon—shown to the left of this guide on the route below. As you read this guide, specific prerequisites are cited where they are applicable.

About This Guide
This deployment guide contains one or more deployment chapters, which each include the following sections:

- **Business Overview**—Describes the business use case for the design. Business decision makers may find this section especially useful.
- **Technology Overview**—Describes the technical design for the business use case, including an introduction to the Cisco products that make up the design. Technical decision makers can use this section to understand how the design works.
- **Deployment Details**—Provides step-by-step instructions for deploying and configuring the design. Systems engineers can use this section to get the design up and running quickly and reliably.

You can find the most recent series of Cisco SBA guides at the following sites:

Partner access: http://www.cisco.com/go/sbachannel
Introduction

Business Overview

With an increasingly mobile workforce and a diverse number of platforms used to gain access to the network, organizations are looking for ways to monitor and control network access. An organization needs to know not only who is accessing their wired and wireless networks, but also when the networks were accessed and from where. In addition, with the wide adoption of devices such as smart phones and tablets and with people bringing their own devices to access the network, organizations need to know how many of these devices are connecting. With this information, the organization can create a policy to prevent connection by nontraditional devices, limit connection to approved devices, or make access to network resources easier for these nontraditional devices.

Organizations are being driven by industry and regulatory compliance (PCI, Sarbanes-Oxley) to be able to report on who is accessing the organization's information, where they are accessing it from, and what type of device they are using to access it. Government mandates such as Federal Information Processing Standard (FIPS) and Federal Information Security Management Act (FISMA) are also requiring agencies and entities working with government agencies to track this information. In some cases, an organization may choose to limit access to certain information in order to adhere to these regulations.

This information is also key data that can be used to generate advanced security policies. Organizations see this as a daunting task requiring the use of several advanced technologies and often delay implementing a solution simply because they don't know where to begin.

This guide is the first step in deploying a complete identity-based architecture. Future projects will address additional use cases that will focus on the features that will provide for things such as enforcement, guest access, and confidentiality.

Technology Overview

Cisco Identity Services Engine (ISE) is an identity and access control policy platform that enables organizations to enforce compliance, enhance infrastructure security, and streamline their service operations. Cisco ISE is a core component of Cisco TrustSec. Its architecture allows an organization to gather real-time contextual information from the network, users, and devices to make proactive policy decisions by tying identity into network elements such as access switches, wireless controllers, and VPN gateways.

This deployment uses Cisco ISE as the authentication, authorization, and accounting server for the wired and wireless networks using RADIUS. Cisco ISE acts as a proxy to the existing Active Directory (AD) services to maintain a centralized identity store for all network services.

In addition to authentication, this deployment uses Cisco ISE to profile devices in order to determine the specific type of devices that are accessing the network. This is done by examining network traffic for certain criteria, based on certain characteristics. Cisco ISE currently has probes for Dynamic Host Configuration Protocol (DHCP), HTTP, RADIUS, Domain Name System (DNS), Simple Name Management Protocol (SNMP) traps and queries, Network Mapper (Nmap) scans, and Cisco IOS NetFlow. To analyze the traffic, the engine can be deployed as an inline policy enforcement device, or the traffic can be forwarded to the engine. As an example, the network infrastructure is configured to send DHCP and Cisco Discovery Protocol (CDP) data via RADIUS to Cisco ISE for analysis. The engine then evaluates the RADIUS data and can identify the device based off of the data in the RADIUS packet. For example, Cisco IP Phones are identified by their DHCP class identifier.
In the LAN, there are three modes for deploying Cisco TrustSec: monitor mode, low-impact mode, and closed mode. Cisco recommends a phased deployment model that can allow for limited impact on network access while gradually introducing authentication/authorization on the network. An organization’s goals might be met by implementing only some of the overall functionality of Cisco TrustSec and a successful deployment does not require all three modes to be deployed. This document covers the deployment phases of monitor mode and low-impact mode both at the headquarters site and the remote sites, with Cisco ISE being centralized in the data center. The deployment in use deploys two features within Cisco IOS on the switches in the access layer at both the headquarters sites as well as the remote sites. The first is MAC Authentication Bypass (MAB), which authenticates the device on the switch port by the MAC address. Monitor mode logs the MAC addresses that connect and grant access to any device that connects. The second feature is 802.1X open mode, which allows the switch port to give unrestricted access to the network even though authentication and authorization have not been performed. This enables the deployment of identity without affecting existing connectivity. This phased approach allows you to prepare for moving to another mode in the future. In addition to these features, this deployment also deploys the Security Group Access (SGA) features of Security Group Tags (SGT) and Security Group Exchange Protocol (SXP) in low-impact mode in order to enforce the access policy. Packets for a particular group are marked with an SGT in the TrustSec header. SXP is used to pass tagged packets across devices that do not support marking SGTs by binding the IP address of the device to the SGT and then passing the packets along to a device that does support SGTs. Devices then enforce a security policy using these tags. In the organization, these switch configurations will be managed by Cisco Prime LAN Management Solution (LMS) 4.2 and the new TrustSec Work Center. Cisco Prime LMS simplifies the deployment of identity by performing a network-readiness assessment for an identity deployment, providing templates for the various modes—monitor, low-impact, closed—and providing a step-by-step wizard to configure the various components required.

You accomplish integrating Cisco ISE into the wireless network by using Cisco ISE as the RADIUS server for wireless 802.1X authentication, authorization, and accounting. You configure this on every wireless LAN controller (WLC) in the network, at both headquarters and the remote sites. The one exception is for the controller used for guest access. You can also configure the WLCs to forward DHCP requests to Cisco ISE in order to enable the profiling of wireless endpoints.
Deployment Details

The deployment described here bases all IP addressing off of the Cisco SBA—Borderless Networks LAN Deployment Guide. Any IP addresses used in this guide are examples; you should use addressing that is applicable to your architecture.

Cisco ISE has different personas, or modes, for which it can be configured: administration, policy service, and monitoring. For a standalone configuration where the appliance is all personas, the maximum number of endpoints that can be supported is 2000. To support a greater number of endpoints, you will need to divide the personas across multiple appliances. In this example, there is a primary and secondary policy service and administration node and a primary and secondary monitoring node. This will allow the deployment to scale to 10,000 endpoints. If your deployment does not require support for more than 2000 endpoints, then you can just have a primary and secondary set of engines that support all the personas.

Table 1 - Cisco ISE engine IP addresses and hostnames

<table>
<thead>
<tr>
<th>Device</th>
<th>IP address</th>
<th>Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Cisco ISE administration and policy service node</td>
<td>10.4.48.41</td>
<td>ise-1.cisco.local</td>
</tr>
<tr>
<td>Secondary Cisco ISE administration and policy service node</td>
<td>10.4.48.42</td>
<td>ise-2.cisco.local</td>
</tr>
<tr>
<td>Primary Cisco ISE monitoring node</td>
<td>10.4.48.43</td>
<td>ise-3.cisco.local</td>
</tr>
<tr>
<td>Secondary Cisco ISE monitoring node</td>
<td>10.4.48.44</td>
<td>ise-4.cisco.local</td>
</tr>
</tbody>
</table>

Enable Authentication

Process

1. Set up initial primary engine
2. Set up the remaining engines
3. Configure certificate trust list
4. Configure Cisco ISE deployment nodes
5. Install Cisco ISE license
6. Configure network devices in Cisco ISE
7. Configure Cisco ISE to use Active Directory
8. Disable IP Phone authorization policy
Procedure 1 Set up initial primary engine

Step 1: Boot the Cisco ISE and then, at the initial prompt, enter `setup`. The installation begins.

```plaintext
Please type 'setup' to configure the appliance
localhost login: setup_
```

Step 2: Enter the host name, IP address, subnet mask, and default router of the engine.

- Enter hostname: `ise-1`
- Enter IP address: `10.4.48.41`
- Enter IP default netmask: `255.255.255.0`
- Enter IP default gateway: `10.4.48.1`

Step 3: Enter DNS information.

- Enter default DNS domain: `cisco.local`
- Enter primary nameserver: `10.4.48.10`

Add/Edit another nameserver? Y/N : n

Step 4: Configure time.

- Enter primary NTP server: `ntp.cisco.local`
- Add/Edit secondary NTP server? Y/N : n
- Enter system timezone[UTC]: `PST8PDT`

Tech Tip

Time zone abbreviations can be found in the *Cisco Identity Services Engine CLI Reference Guide, Release 1.1.x*:

Step 5: Configure an administrator account.

You must configure an administrator account in order to access to the CLI console. This account is not the same as the one used to access the GUI.

- Enter username[admin]: `admin`
- Enter password: [**password**]
- Enter password again: [**password**]

Cisco ISE completes the installation and reboots. This process takes several minutes. You are asked to enter a new database administrator password and a new database user password during the provisioning of the internal database. Do not press Control-C during the installation, or the installation aborts.

The primary engine is now installed.

Procedure 2 Set up the remaining engines

The procedure for setting up the remaining engines is the same as the primary, with the only difference being the IP address and host name configured for the engine. To set up the remaining engines, follow Procedure 1, “Cisco ISE integration into Cisco SBA,” and use the values supplied in Table 1 for the remaining engines.
Procedure 3 Configure certificate trust list

The engines use public key infrastructure (PKI) to secure communications between them. Initially in this deployment, you use local certificates, and you must configure a trust relationship between all of the engines. To do this, you need to import the local certificates from the secondary administration node and the two monitoring nodes into the primary administration node.

Step 1: In your browser, connect to the secondary engine’s GUI at http://ise-2.cisco.local.

Step 2: In Administration > System, select Certificates.

Step 3: In the Local Certificates window, select the local certificate by selecting the box next to the name of the secondary engine, ise-2.cisco.local, and then click Export.

Step 4: Choose Export Certificate Only, and then click Export.

Step 5: When the browser prompts you to save the file to a location on the local machine, choose where to store the file and make a note of it. You will be importing this file into the primary engine.

Step 6: In a browser, access the primary engine’s GUI at http://ise-1.cisco.local.

Step 7: In Administration > System, select Certificates.

Step 8: In the Certificate Operations pane on the left, click Certificate Store, and then click Import.

Step 9: Next to the Certificate File box, click Browse, and then locate the certificate exported from the secondary engine. It has an extension of .pem. Click Submit.

Step 10: Repeat this procedure for the remaining engines, ise-3.cisco.local and ise-4.cisco.local.

Procedure 4 Configure Cisco ISE deployment nodes

You can configure the personas of Cisco ISE—administration, monitoring, and policy service—to run all on a single engine or to be distributed amongst several engines. For this example installation, you will deploy a pair of engines for administration and policy service with one serving as primary and the other secondary and another pair of engines for monitoring with one serving as primary and the other secondary.

Step 1: Connect to http://ise-1.cisco.local.

Step 2: From the Administration menu, choose System, and then choose Deployment. A message appears notifying you that the node is currently stand-alone. Click OK.

Step 3: In the Deployment pane, click the gear icon, and then select Create Node Group.

In order for the two Cisco ISE devices to share policy and state information, they must be in a node group. The nodes use IP multicast to distribute this information, so they need to be able to communicate via IP multicast.

Step 4: Configure the node group with the node group name ISE-Group and the default multicast address of 228.10.11.12, and then click Submit.

Step 5: A pop-up window lets you know the group was created successfully. Click OK.
Step 6: In the Deployment pane on the left, expand Deployment. A list of the current deployment nodes appears.

Step 7: Click ise-1. This enables you to configure this deployment node.

Step 8: On the General Settings tab, in the Personas section, next to the Administration Role, click Make Primary.

Step 9: In the Include Node in Node Group list, choose ISE-Group.

Step 10: On the Profiling Configuration tab, select RADIUS, use the default parameters, and then click Save.

Step 11: Select HTTP, use the default parameters, and then click Save.

Step 12: In the Edit Node window, click Deployment Nodes List. The Deployment Nodes window appears.

Step 13: Click Register, and then choose Register an ISE Node.

Step 14: Enter the IP address or host name of the primary monitoring Cisco ISE engine from Table 1 (in this example, ise-3.cisco.local) and the credentials for the admin account, and then click Next.

Step 15: Select Monitoring, and then in the Role list, choose Primary. Make sure Administration and Policy Service are not selected.
Step 16: Click Submit. The node registers, and a pop-up window displays letting you know that the process was successful. Click OK.

Step 17: In the Deployment Node window, click ise-1.

Step 18: Clear Monitoring, and then click Save. The node updates, and a message displays letting you know that the process was successful. Click OK. The node restarts.

Step 19: Log in to the console, and then in the Administration menu, in the System section, choose Deployment.

Step 20: In the Deployment Node window, click Register, and then choose Register an ISE Node.

Step 21: Enter the IP address or host name of the secondary administration Cisco ISE from Table 1 (in this example, ise-2.cisco.local) and the credentials for the admin account, and then click Next.

Step 22: Select only Administration and Policy Service. In the Administration section, in the Role list, choose Secondary, and then in the Policy Service section, in the Node Group list, choose ISE-Group.
Step 23: Click **Submit**. The node registers, and a pop-up window displays letting you know that the process was successful. Click **OK**.

Step 24: Next, you’ll configure which methods are used to profile network endpoints for the secondary policy service node.

Step 25: In the **Deployment Nodes** list, click **ise-2**.

Step 26: On the **Profiling Configuration** tab, select **RADIUS**, and use the default parameters.

Step 27: Select **HTTP**, use the default parameters, and then click **Save**.

Step 28: In the **Edit Node** window, click **Deployment Nodes List**. The Deployment Nodes window appears.

Step 29: In the Deployment Nodes window, click **Register**, and then choose **Register an ISE Node**.

Step 30: Enter the IP address or host name of the secondary monitoring Cisco ISE from Table 1 (in this example, ise-4.cisco.local) and the credentials for the admin account, and then click **Next**.

Step 31: Select **Monitoring**, and then in the **Role** list, choose **Secondary**. Make sure **Administration** and **Policy Service** are not selected.

Step 32: Click **Submit**. The node registers, and a pop-up window displays letting you know that the process was successful. Click **OK**.
You have now deployed all Cisco ISE nodes: a pair of redundant administration and policy service nodes and a pair of redundant monitoring nodes.

Procedure 5 Install Cisco ISE license

Cisco ISE comes with a 90-day demo license for both the Base and Advanced packages. To go beyond 90 days, you need to obtain a license from Cisco. In a redundant configuration, you only need to install the license on the primary administration node.

Tech Tip

When installing a Base license and an Advanced license, the Base license must be installed first.

Step 1: Mouse over Administration, and then, from the System section of the menu, choose Licensing.

Notice that you only see one node here since only the primary administration node requires licensing.

Step 2: Click the name of the Cisco ISE server. This enables you to edit the license details.

Step 3: Under Licensed Services, click Add Service.

Step 4: Click Browse, locate your license file, and then click Import.

Step 5: If you have multiple licenses to install, repeat the process for each.

Procedure 6 Configure network devices in Cisco ISE

Configure Cisco ISE to accept authentication requests from network devices. RADIUS requires a shared secret key to enable encrypted communications. Each network device that will use Cisco ISE for authentication will need to have this key.

Step 1: Mouse over Administration, and then, from the Network Resources section of the menu, choose Network Devices.

Step 2: In the left pane, click Default Device.

Tech Tip

Each network device can be configured individually, or devices can be grouped by location, by device type, or by using IP address ranges. The other option is to use the Default Device to configure the parameters for devices that aren’t specifically configured. All network devices in this example use the same key, so for simplicity, this example uses the Default Device.

Step 3: In the Default Network Device Status list, choose Enable.

Step 4: Enter the RADIUS shared secret, and then click Save.
Procedure 7 Configure Cisco ISE to use Active Directory

Cisco ISE will use the existing Active Directory (AD) server as an external authentication server. First, you must configure the external authentication server.

Step 1: Mouse over Administration, and then, from the Identity Management section of the menu, choose External Identity Sources.

Step 2: In the left panel, click Active Directory.

Step 3: On the Connection tab, enter the AD domain (for example, cisco.local) and the name of the server (for example, AD1), and then click Save Configuration.

Step 4: Verify these settings by selecting the box next to the node, clicking Test Connection, and then choosing Basic Test.

Step 5: Enter the credentials for a domain user, and then click OK.

Step 6: A message appears letting you know whether or not the test was successful. Click Close.

Step 7: Select the box next each node, and then click Join.

Step 8: Enter the credentials for a domain administrator account. Cisco ISE is now joined to the AD domain.

Step 9: A message appears letting you know whether or not the join was successful. Click Close.

Step 10: Click the Groups tab, click Add, and then click Select Groups from Directory.

Step 11: Search for the groups you wish to add. The domain box is already filled in. The default filter is a wildcard to list all groups. Click Retrieve Groups to get a list of all groups in your domain.

Step 12: Select the groups you want to use for authentication, and then click OK. For example, for all users in the domain, select the group <domain>/Users/Domain Users.

Step 13: Click Save Configuration.
Procedure 8 Disable IP Phone authorization policy

There is a default policy in place for Cisco IP Phones that have been profiled. This profile applies a downloadable access list on the port to which the phone is connected. Since there is no policy enforcement taking place at this point, this rule should be disabled.

Step 1: On the menu bar, mouse over Policy, and then click Authorization.

Step 2: For the Profiled Cisco IP Phones rule, click Edit, click the green check mark icon, choose Disabled, click Done, and then click Save.

Process

Enabling Visibility to the LAN
1. Configure MAC Authentication Bypass
2. Configure 802.1X for wired users
3. Enable RADIUS in the access layer
4. Enable identity
5. Disable port security timers
6. Configure identity on Catalyst 4500

Cisco ISE now has a baseline configuration. The next step is to configure Cisco ISE with an authentication policy and to configure the switches for identity by using Cisco Prime LMS 4.2 and the Cisco TrustSec Work Center.

Procedure 1 Configure MAC Authentication Bypass

MAC Authentication Bypass (MAB) allows you to configure specific machine MAC addresses on the switch to bypass the authentication process. For monitor mode, this is required, since you aren’t enforcing authentication. You configure MAB to allow any MAC address to authenticate for both the wired and wireless networks.

Step 1: Mouse over Policy, and then choose Authentication. The Policy Type is Rule-Based.

There are already two default rules in place, MAB and Dot1X.
Step 2: Next to Wired_MAB, click the + symbol. To the right of the Wired_MAB condition name, click the gear symbol, and then choose Add Condition from Library.

Step 3: In the Select Condition list, next to Compound Condition, click the > symbol.

Step 4: Choose Wireless_MAB, and then click anywhere to continue.

Step 5: For the MAB policy, click the black triangle to the right of the and... This brings up the identity store used for the MAB rule.

Step 6: Next to Internal Endpoints, click the +.

Step 7: In this example deployment, all endpoints are allowed to authenticate. Set the following values, click anywhere in the window in order to continue, and then click Save:
 - If authentication failed—Continue
 - If user not found—Continue
 - If process failed—Drop

Procedure 2 Configure 802.1X for wired users

There is already a Dot1X rule configured on the engine. Although in this example deployment you aren’t deploying any wired endpoints with 802.1X supplicants at this point, you should still configure this rule to prepare for the next phase of an identity deployment.

Step 1: Mouse over Policy, and then, from the menu, choose Authentication.

Step 2: Rename the rule Wired-Dot1X. This differentiates the rule from a wireless 802.1X rule.
Step 3: For the Wired-Dot1X rule, click the black triangle to the right of the and... This brings up the identity store used for this rule.

The default identity store is the internal user database. For 802.1X, use the Active Directory server that you defined earlier.

Step 4: Next to Internal Users, click the + symbol. This enables you to edit the identity store and the parameters.

Step 5: In the Identity Source list, choose the previously defined AD server AD1, use the default options for this identity source, click anywhere in the window to continue, and then click Save.

Step 2: Mouse over Work Centers, and then, from the TrustSec section, choose Getting Started. This shows the network’s Cisco TrustSec-readiness assessment, which verifies that the software versions support the identity features and that the switches are capable of running RADIUS.

Tech Tip

Cisco Prime LMS 4.2 supports TrustSec 2.0 features. The TrustSec 2.0 feature set did not include support for the Cisco Catalyst 4500 Series Switches. Alternate procedures are listed in this guide for configuring these switches.

Next, you configure identity by enabling RADIUS on the switch.

Step 3: Mouse over Work Centers, and then, from the TrustSec section, choose RADIUS Configuration.

Step 4: In the RADIUS-capable devices table, select the switches for which you want to enable RADIUS, and then click Next.

Step 5: On the Configure RADIUS page, select RADIUS Group, and in the RADIUS Group Name box, enter ISE-Group, and then in the Shared Key box, use the value used in previous procedures.
Step 6: In the RADIUS Server Details section, click Add.

Step 7: In the pop-up window, for the RADIUS server IP address, enter 10.4.48.41, and then click Save and add another.

Step 8: For the second RADIUS server, enter 10.4.48.42, and then click Save. The RADIUS server group has been configured.

Step 9: In the AAA Configuration section, make sure that only Enable for 802.1X / MAB AAA is selected. A message about not configuring AAA for web authentication appears. Click OK.

Step 10: On the Configure RADIUS page, click Next.

Tech Tip

Step 11: Enter a job description, and then click Finish. Deployment begins immediately.

Step 12: When you receive the message regarding the addition of AAA commands, click Yes, and then on the pop-up window generated after the job is created, click OK.

Procedure 4 Enable identity

The identity configuration enables monitor mode on the switch. This enables both 802.1X and MAC Authentication Bypass (MAB); however, no authentication policy is enabled. This allows the ports to be monitored with no disruption to current network activity.

Step 1: Mouse over Work Centers, and then, under the TrustSec section, choose Identity Configuration.

Step 2: In the Navigator pane, click Enable Identity on Interfaces.
Step 3: In the Filter list, choose the switch that was previously configured for RADIUS, in the Port Group Selector pane, select All Groups, and then click Next.

Step 4: Select the check boxes next to the ports for which you want to enable identity, and then click Next.

Step 5: In the Identity mode to be configured section, move the Security Mode slider to Monitor, which is the default.

Step 6: In the Authentication profile and host mode section, set the following values:
- Define Authentication Profile—802.1X, then MAB
- Define Host Mode—MultiAuth
- Action to be taken on security violation—No Change

In the MAC Configuration section, make sure only Enable MAC Move is selected.

Step 7: In the Additional Configurations section, select Advanced Options, and then in the Adhoc commands box, enter the following command, and then click Next.

device-sensor accounting

For device profiling, you need to enable the IOS Sensor feature on the switch to include DHCP and CDP information in the RADIUS messages sent from the switch to Cisco ISE. The IOS Sensor feature relies on information from the DHCP snooping feature that was enabled in the LAN Deployment Guide. This feature is not supported on the Cisco Catalyst 2960S access layer switches. If you want to use device profiling in the access layer, you will need to deploy Cisco Catalyst 3560, 3750, or 4500 Series Switches.
Identity configuration is complete. Next, you create a deployment job in order to deliver the configuration to the switch.

Step 8: In the Job Description box, enter a description, click Finish, and then click OK.
The global commands added to the switch configuration at the completion of the previous two procedures are as follows.

```plaintext
radius-server host 10.4.48.41 auth-port 1645 acct-port 1646
radius-server host 10.4.48.42 auth-port 1645 acct-port 1646
radius-server key [key]
aaa group server radius ISE-Group
  server 10.4.48.41 auth-port 1645 acct-port 1646
  server 10.4.48.42 auth-port 1645 acct-port 1646
aaa authentication dot1x default group ISE-Group
aaa authorization network default group ISE-Group
aaa authorization configuration default group ISE-Group
aaa accounting dot1x default start-stop group ISE-Group
radius-server vsa send accounting
radius-server vsa send authentication
authentication mac-move permit
dot1x system-auth-control
device-sensor accounting
```

The interface commands added at the completion of the previous two procedures are as follows.

```plaintext
interface [interface]
  authentication host-mode multi-auth
  authentication open
  authentication order dot1x mab
  authentication port-control auto
  mab
dot1x pae authenticator
```

Procedure 5 Disable port security timers

The current Cisco SBA design incorporates the use of port security to provide a level of security and prevent rogue devices from being connected. However, 802.1X also provides this functionality and there can be conflicts when both are enabled on a port at the same time. This is particularly true of inactivity timers since both port security and 802.1X each have their own set of timers. The conflict causes 802.1X to re-authenticate every time the port security time out is reached. To avoid this issue, port security timers need to be disabled.

Step 1: Connect to the Cisco Prime LMS server by browsing to `https://lms.cisco.local`.

Step 2: Navigate to Configuration > Tools > NetConfig. This opens the Job Browser.

Step 3: Click Create. This enables you to configure a new job.

Step 4: Select Port based, and then click Go.

Step 5: In the tree, next to All Devices, click the + symbol, select the switch you are configuring, and then click Next.

Tech Tip

In this example, only one switch is being configured, but you can select multiple switches to accommodate a large deployment. The Group Selector allows you to choose switches by pre-defined groups or by model.

Step 6: Select Define an Ad-Hoc Rule. A new screen is displayed.

Step 7: For the ad-hoc rule, in the Object Type list, choose Port.

Step 8: In the Variable list, choose Identity_Security_Mode.

Step 9: In the Operator list, choose =, and then in the Value list, choose Monitor.
Step 10: Click Add Rule Expression, and then click Next.

Step 11: In the Task Selector, select Adhoc Task, and then click Next.

Step 12: Click Add Instance, and then, in the new window, enter the CLI commands necessary to remove the port security configuration.

no switchport port-security aging time
no switchport port-security aging type
no switchport port-security violation

Step 13: Click Applicable Devices, select the switch to which you want to apply this configuration, click Close, and then click Save.

Step 14: After returning to the Add Tasks window, click Next.

Step 15: Fill in a description for the job, and then click Next. The job is submitted for immediate deployment.

Step 16: Click Finish, and then when you receive a notice that the job was submitted successfully, click OK.
Cisco TrustSec Work Center supports TrustSec 2.0 features, but does not support Cisco Catalyst 4500. However, Catalyst 4500 does support all of the features in use. You have to configure these by using the NetConfig feature of Cisco LMS. This procedure covers enabling RADIUS, configuring 802.1X in monitor mode, and disabling port security.

Procedure 6 Configure identity on Catalyst 4500

Step 1: Connect to the Cisco Prime LMS server by browsing to https://lms.cisco.local:1741.

Step 2: Mouse over Configuration, and then, from the Tools section, choose NetConfig.

Step 3: In the NetConfig Job Browser, click Create.

Step 4: Select Device Based for the NetConfig Job Type, and then click Go.

Step 5: In the Device Selector, expand All Devices, select the devices where you want to enable identity.

Step 6: In the Task Selector, expand All Tasks, select Adhoc, and then click Next.

Step 7: Click Add Instance, and then, in the new window, enter the CLI commands necessary to configure identity.

```
radius-server host 10.4.48.41 auth-port 1645 acct-port 1646
radius-server host 10.4.48.42 auth-port 1645 acct-port 1646
radius-server key [key]
aaa group server radius ISE-Group
  server 10.4.48.41 auth-port 1645 acct-port 1646
  server 10.4.48.42 auth-port 1645 acct-port 1646

aaa authentication dot1x default group ISE-Group
aaa authorization network default group ISE-Group
aaa authorization configuration default group ISE-Group
aaa accounting dot1x default start-stop group ISE-Group
```

Step 8: Click Applicable Devices, select the switch to which you want to apply this configuration, and then click Close.

Step 9: For the command mode, choose Config, and then click Save.

Step 10: After returning to the Add Tasks window, click Next.

Step 11: Fill in a description for the job, and then click Next. The job is submitted for immediate deployment.

Step 12: Click Finish, and then when you receive a notice that the job was submitted successfully, click OK.

Step 13: Navigate to Configuration > Tools > NetConfig. This opens the Job Browser.

Step 14: Click Create. This enables you to configure a new job.

Step 15: Select Port based, and then click Go.

Step 16: In the tree, next to All Devices, click the + symbol, select the switch you are configuring, and then click Next.

Tech Tip

In this example, only one switch is being configured, but you can select multiple switches to accommodate a large deployment. The Group Selector allows you to choose switches by predefined groups or by model.

Step 17: Select Define an Ad-Hoc Rule. A new screen is displayed.
Step 18: For the ad-hoc rule, in the Rule text section, click Include.

Step 19: In the Include List section, expand Devices, and then select the switch you want to configure for identity.

Step 20: Choose the ports you want to configure for identity, and then click Include. The window closes.

Step 21: Move to step 3 of the wizard by clicking Next.

Step 22: In the Task Selector, select Adhoc Task, and then click Next.

Step 23: Click Add Instance, and then, in the new window, enter the CLI commands necessary in order to enable monitor mode and remove the port security configuration.

```
authentication host-mode multi-auth
authentication open
authentication port-control auto
mab
mab
dot1x pae authenticator
no switchport port-security aging time
no switchport port-security aging type
no switchport port-security violation
```

Step 24: Click Applicable Devices, select the switch to which you want to apply this configuration, click Close, and then click Save.

Step 25: After returning to the Add Tasks window, click Next.
Step 26: Fill in a description for the job, and then click **Next**. The job is submitted for immediate deployment.

Step 27: Click **Finish**, and then when you receive a notice that the job was submitted successfully, click **OK**.

Step 28: Repeat this procedure for each Cisco Catalyst 4500 switch where you need to configure identity.

Process

Enabling Visibility to the Wireless Network

1. Configure 802.1X for wireless endpoints
2. Disable EAP-TLS on Cisco ISE
3. Add ISE as RADIUS authentication server
4. Add Cisco ISE as RADIUS accounting server
5. Enable client profiling

To authenticate wireless clients, you need to configure the wireless LAN controllers (WLC) to use the new Cisco ISE servers as RADIUS servers for authentication and accounting. The existing entry is disabled so that if there are any issues after moving to Cisco ISE, you can quickly restore the original configuration. Additionally, you configure the WLCs for DHCP profiling so that profiling information can be obtained from the DHCP requests from these clients and sent to the Cisco ISE.

Procedure 1 **Configure 802.1X for wireless endpoints**

To differentiate wireless users in the authentication logs, create a rule to identify when wireless users authenticate.

Step 1: In a browser, access the primary engine's GUI at http://ise-1.cisco.local and navigate to **Policy > Authentication** to open the Authentication Policy page.

Step 2: For the Default Rule, click the **Actions** button, and then choose **Insert new row above**. A new rule, Standard Policy 1, is created.

Step 3: Rename Standard Policy 1 to **Wireless-Dot1X**. In the **Condition(s)** box, click the + symbol, and then choose **Select Existing Condition from Library**.

Step 4: In the **Select Condition** list, next to Compound Condition, click the > symbol.

Step 5: Choose **Wireless_802.1X**, and then click anywhere to continue.
Step 6: In the Select Network Access list, next to Allowed Protocols, click the > symbol, and then select Default Network Access.

Step 7: For the Wireless-Dot1X rule, to the right of and..., click the black triangle. This displays the identity store used for this rule.

Step 8: Next to Internal Users, click the + symbol.

Step 9: In the Identity Source list, choose the previously defined AD server, for example, AD1.

Step 10: Use the default options for this identity source, continue by clicking anywhere in the window, and then click Save.

Procedure 2 Disable EAP-TLS on Cisco ISE

For wireless deployments that aren’t currently using digital certificates, you need to disable EAP-TLS in order to allow clients to log in. You will be deploying digital certificates in a later phase of this deployment.

Step 1: On the menu bar, mouse over Policy, and then, from the Policy Elements section of the menu, choose Results.

Step 2: In the left pane, double-click Authentication. This expands the options.

Step 3: Double-click Allowed Protocols, and then select Default Network Access.

Step 4: Clear the global Allow EAP-TLS check box and under the PEAP settings, clear the Allow EAP-TLS check box, and then click Save.

Procedure 3 Add ISE as RADIUS authentication server

Perform this procedure for every wireless LAN controller (WLC) in the architecture with the exception of the standalone guest WLC, if you have deployed one.

Step 1: Navigate to the WLC console by browsing to https://wlc1.cisco.local.
Step 2: On the menu bar, click Security.

Step 3: In the left pane, under the RADIUS section, click Authentication.

Step 4: Click New. A new server is added.

Step 5: In the Server IP Address box, enter 10.4.48.41, and then enter your RADIUS shared secret.

Step 6: Next to Management, clear the Enable box, and then click Apply.

Step 7: Repeat Step 4 through Step 6 in order to add the secondary engine, 10.4.48.42, to the WLC configuration.

After adding Cisco ISE as a RADIUS server, disable the current RADIUS server in use. By disabling the server instead of deleting it, you can easily switch back if needed. Perform this procedure for every wireless LAN controller (WLC) in the architecture with the exception of the standalone guest WLC, if you have deployed one.

Step 8: On the RADIUS Authentication Servers screen, click the Server Index of the original RADIUS server, and then, for Server Status, select Disabled. Click Apply.

Step 9: On the RADIUS Authentication Servers screen, click Apply.

Procedure 4 Add Cisco ISE as RADIUS accounting server

Perform this procedure for every wireless LAN controller (WLC) in the architecture, with the exception of the standalone guest WLC, if you have deployed one.

Step 1: On the menu bar, click Security.

Step 2: In the left pane, under the RADIUS section, click Accounting.

Step 3: Click New. This adds a new server.

Step 4: In the Server IP Address box, enter 10.4.48.41, enter your RADIUS shared secret, and then click Apply.

Step 5: Repeat Step 3 through Step 4 in order to add the secondary engine, 10.4.48.42, to the WLC configuration.
Step 6: On the RADIUS Accounting Servers screen, click the Server Index of the original RADIUS server, and then, for Server Status, select Disabled. Click Apply.

Step 7: On the RADIUS Accounting Servers screen, click Apply.

Procedure 5 Enable client profiling

You need to enable client profiling on the WLC in order to send DHCP and HTTP information to the engine for endpoint profiling.

Step 1: On the WLC, navigate to WLANs, and then select the WLAN ID for the SSIDs you wish to monitor.

Step 2: On the Advanced tab, in the Client Profiling section, select DHCP Profiling.

Step 3: When the message appears about enabling DHCP Req’d and disabling Local Auth, click OK.

Step 4: In the Client Profiling section, select HTTP Profiling, and then click Apply.

Step 5: When a message appears saying that the WLANs need to be disabled, click OK.

The network infrastructure is now enabled for monitoring the network to determine what types of devices are connecting. Additionally, authentication using Cisco ISE is enabled for the wireless network. This is a good place in the deployment to test the deployment and monitor network access. Some organizations may not need to implement the next phase and choose to stop here.
Deploying Digital Certificates

1. Install certificate authority
2. Install trusted root certificate for domain
3. Install trusted root on AD server
4. Request a certificate for ISE from the CA
5. Download CA root certificate
6. Issue certificate for Cisco ISE
7. Install trusted root certificate in Cisco ISE
8. Install local certificate in Cisco ISE
9. Delete old certificate and request

In the next phase of deployment, you configure the infrastructure to support the use of digital certificates for user and machine authentication. Using digital certificates when deploying 802.1X is a Cisco best practice. In this example deployment, you will be deploying digital certificates to Microsoft Windows XP and Windows 7 endpoints as well as to Apple Mac OS X devices. The certificate authority (CA) you will be using is the one built into Windows Server 2008 Enterprise, and you will install it as a standalone server.

Procedure 1 Install certificate authority

There are six different role services that can be installed when configuring the certificate authority. For this deployment, you will install all of them.

Step 1: Install an enterprise root certificate authority on a Windows 2008 R2 Enterprise server.

Procedure 2 Install trusted root certificate for domain

Install a trusted root certificate on the AD controller in order to distribute it to the clients so that certificates from the CA server will be trusted.

Step 1: On the console of the AD controller, launch a web browser, and then connect to the certificate authority at the following: https://ca.cisco.local/certsrv

Step 2: Click Download a CA certificate, certificate chain, or CRL.

Step 3: Make sure the current certificate is selected and the DER encoding method is selected.
Step 4: Click **Download CA Certificate**, and then save the certificate file on the AD controller.

Step 5: On the AD console, navigate to **Start > Administrative Tools > Group Policy Management**.

Step 6: Expand **Forest > Domains > [local domain] > Group Policy Objects**.

Step 7: Right-click **Default Domain Policy**, and then choose **Edit**.

Step 9: Click Next.

Step 10: Click Browse, locate the trusted root certificate saved in Step 2, and then click Next.

Step 11: Place the certificate in the Trusted Root Certification Authorities certificate store, and then click Next.

Step 12: Click Finish. The certificate imports.

Step 13: Click OK to close the wizard.
Procedure 3 Install trusted root on AD server

In addition to configuring AD server to distribute the trusted root certificate to workstations, you need to install the certificate directly on the AD server. A group policy object (GPO) update takes care of this automatically. In this procedure, you will force the update to run immediately.

Step 1: On the AD console, navigate to Start > Run.

Step 2: Type cmd, and then press Enter. A command window opens.

Step 3: Update the group policy.

C:\> gpupdate

Procedure 4 Request a certificate for ISE from the CA

In order to obtain a certificate from the CA, Cisco ISE needs to generate a signing request that will be used by the CA to generate a certificate.

Step 1: Connect to https://ise-1.cisco.local.

Step 2: Mouse over Administration, and then, from the System section of the menu, choose Certificates.

Step 4: Click Add, and then choose Generate Certificate Signing Request.

Step 5: In the Certificate Subject box, after the “CN=”, enter the fully qualified domain name (FQDN) of the Cisco ISE server, and then click Submit.

Step 6: On the message acknowledging that the certificate was successfully generated, click OK.

Step 7: Click Certificate Signing Requests, select the check box next to the new request, and then click Export.

Step 8: Save the file to your local machine. You will use this file to generate a certificate on the CA for Cisco ISE.
Procedure 5 Download CA root certificate

Step 1: Browse to https://ca.cisco.local/certsrv.

Step 2: Click Download a CA certificate, certificate chain, or CRL.

Step 3: Make sure the current certificate is selected and the DER encoding method is selected.

Step 4: Click Download CA Certificate, and then save the certificate file on the local machine.

Procedure 6 Issue certificate for Cisco ISE

Step 1: Click Home. The CA's home screen displays.

Step 2: Click Request a certificate.

Step 3: Click advanced certificate request.

Step 4: In a text editor, such as Notepad, open the certificate file saved in Procedure 4, “Request a certificate for ISE from the CA.”

Step 5: Select all the text, and then copy it to the clipboard.

Step 6: In the browser, on the Submit a Certificate Request or Renewal Request page, in the Saved Request box, paste the certificate contents.

Step 7: In the Certificate Template list, choose Web Server, and then click Submit.

Step 8: Select DER encoded, and then click Download certificate. The certificate saves to your local machine.
Procedure 7: Install trusted root certificate in Cisco ISE

Step 1: In the Cisco ISE interface, mouse over Administration, and then, from the System section of the menu, choose Certificates.

Step 2: Click Certificate Store, and then click Import.

Step 3: Click Browse, and then locate the root CA certificate saved in Procedure 5, “Download CA root certificate.”

Step 4: Select Trust for client authentication, and then click Submit.

Procedure 8: Install local certificate in Cisco ISE

Step 1: In the Cisco ISE interface, mouse over Administration, and then, from the System section of the menu, choose Certificates.

Step 2: Click Local Certificates.

Step 3: Click Add, and then choose Bind CA Certificate.

Step 4: Click Browse and locate the certificate saved from Procedure 6, “Issue certificate for Cisco ISE.”

Step 5: In the Protocol section, select both EAP and Management Interface. When you receive a message that selecting the Management Interface check box will require the Cisco ISE appliance to restart, click OK, and then click Submit.

Step 6: When you receive a message that the Cisco ISE appliance will restart, click OK.
Procedure 9 Delete old certificate and request

Now that you have imported the local certificate into Cisco ISE, you need to delete the old self-signed certificate as well as the certificate signing request generated previously.

Step 1: In the Cisco ISE interface, mouse over Administration, and then, in the System section, choose Certificates.

Step 2: Click Local Certificates.

Step 3: Select the box next to the self-signed certificate. This is the certificate issued by the Cisco ISE appliance and not the certificate issued by the CA that was just imported.

Step 4: Click Delete, and then click OK.

Step 5: Click Certificate Signing Requests.

Step 6: Select the box next to the certificate signing request that was created in Procedure 4, “Request a certificate for ISE from the CA.”

Step 7: Click Delete, and then click OK.

Process

Enabling 802.1X Authentication

1. Create user authentication policies
2. Create machine authentication policies
3. Enable certificates
4. Enable EAP-TLS

You will configure Cisco ISE policies to support 802.1X authentication using digital certificates for both wired and wireless users.

Procedure 1 Create user authentication policies

An authentication profile is used to determine how a certificate will be used for authentication. You will create an authentication profile for user authentication using certificates.

Step 1: In Cisco ISE, mouse over Administration, and then, in the Identity Management section, choose External Identity Sources.

Step 2: In the left pane, click Certificate Authentication Profile, and then click Add.

Step 3: Give the profile a meaningful name, and in the Principal Username X509 Attribute list, choose Subject Alternative Name.
Step 4: Select Perform Binary Certificate Comparison with Certificate retrieved from LDAP or Active Directory, and then, in the LDAP/AD Instance Name list, choose previously defined AD server AD1.

Tech Tip

When using certificates for authentication, Cisco ISE does not need to proxy the authentication request to Active Directory. However, without contacting Active Directory, you won’t get additional information about the user, such as group membership. By performing the certificate comparison with Active Directory, you can get that information and be able to use it for policy decisions.

Step 5: Click Submit.

Step 6: Click Identity Source Sequences, and then click Add.

Step 7: Give the sequence a meaningful name.

Step 8: In the Certificate Based Authentication section, select Select Certificate Authentication Profile, and then choose the profile created in Step 2 through Step 5.

Step 9: In the Authentication Search List section, in the Available list, double-click the AD server. It moves into the Selected list.

An identity source sequence allows certificates to be used as an identity store and also allows for a backup identity store if a primary identity store is unavailable.
Step 10: In the Advanced Search List Settings section, select Treat as if the user was not found and proceed to the next store in the sequence, and then click Submit.

An identity source sequence allows certificates to be used as an identity store and also allows for a backup identity store if a primary identity store is unavailable.

Step 5: Click Identity Source Sequences, and then click Add.

Step 6: Give the sequence a meaningful name.

Step 7: In the Certificate Based Authentication section, select Select Certificate Authentication Profile, and then choose the profile created in Step 2 through Step 4.

Step 8: In the Authentication Search List section, in the Available list, double-click the AD server. It moves into the Selected list.

Procedure 2 Create machine authentication policies

You will create an authentication profile for machine authentication using certificates.

Step 1: In Cisco ISE, mouse over Administration, and then, in the Identity Management section, choose External Identity Sources.

Step 2: In the left pane, click Certificate Authentication Profile, and then click Add.

Step 3: Give the profile a meaningful name, and in the Principal Username X509 Attribute list, choose Common Name.
Step 9: In the Advanced Search List Settings section, select Treat as if the user was not found and proceed to the next store in the sequence, and then click Submit.

Now that you have created certificate authentication profiles and identity source sequences for digital certificates, you need to enable the 802.1X authentication policies for machine authentication and user authentication for both wired and wireless users.

Procedure 3
Enable certificates

Step 1: Mouse over Policy, and then choose Authentication.

Step 2: For the Wired-Dot1X rule, to the right of and..., click the black triangle. This brings up the identity store used for this rule. Next to the Default rule, in the Actions list, choose Insert new rule above.

Step 3: Give the rule a name, and then next to the Enter Condition box, click the box symbol. The Expression Builder opens.

Step 4: Click Create New Condition (Advance Option).

Step 5: In the Expression list, next to Select Attribute, click the arrow.

Step 6: Next to Network Access, click the arrow, and then choose EapAuthentication.

Step 7: In the second list, choose Equals, and in the last list, choose EAP-TLS.
Step 8: Click the gear icon at the end of the condition, and then choose Add Attribute/Value.

Step 9: In the Expression list, next to Select Attribute, click the arrow.

Step 10: Next to Radius, click the arrow, and then select User-name.

Step 11: In the second list, choose Starts with, and in the last box, type host/ and then click OK.

Step 12: Next to Internal Users, click the + symbol.

Step 13: In the Identity Source list, choose the identity source sequence for machine authentication that you created in Procedure 2, “Create machine authentication policies,” use the default options for this identity source, and then click anywhere in the window to continue.

Step 14: You now create a rule for wired user authentication.

Step 15: Next to the Default rule, in the Actions list, choose Insert new rule above.

Step 16: Give the rule a name, and then next to the Enter Condition box, click the box symbol. The Expression Builder opens.

Step 17: Click Create New Condition (Advance Option).

Step 18: In the Expression list, next to Select Attribute, click the arrow.

Step 19: Next to Network Access, click the arrow, and then choose EapAuthentication.

Step 20: In the second list, choose Equals, and in the last list, choose EAP-TLS, and then click OK.

Step 21: Next to Internal Users, click the + symbol.
Step 22: In the Identity Source list, choose the identity source sequence for machine authentication that you created in Procedure 1, “Create user authentication policies,” use the default options for this identity source, and then click anywhere in the window to continue.

Step 23: Click Save.

Step 24: Repeat Step 2 through Step 22 for the Wireless-Dot1X rule.

Procedure 4 Enable EAP-TLS

In a previous section, you disabled EAP-TLS. Now that you are using digital certificates, you need to re-enable it.

Step 1: On the menu bar, mouse over Policy, and then in the Policy Elements section, choose Results.

Step 2: In the left pane, double-click Authentication. This expands the options.

Step 3: Double-click Allowed Protocols, and then choose Default Network Access.

Step 4: Select the global Allow EAP-TLS check box and, under the PEAP settings, select the Allow EAP-TLS check box, and then click Save.
Process

Configuring Group Policy Objects

1. Create template for workstations
2. Create template for user auto-enrollment
3. Configure GPOs for wired endpoints
4. Configure GPOs for wireless endpoints

In this deployment, you will be using group policy objects (GPOs) to distribute certificates and to configure the native 802.1X supplicant for Windows XP and later endpoints that are members of the domain. Machine certificates are distributed when the machine joins the domain, and user certificates are deployed to the endpoint where the user logs in to the domain. The steps in this example deployment describe how to edit the Default Domain Policy so that it will apply to all users, but you could create a new policy object and apply it to a subset of users if you prefer.

Procedure 1 Create template for workstations

You need to create a certificate template on the CA to be used to distribute machine certificates to workstations that join the Active Directory (AD) domain.

Step 1: On the CA console, navigate to Start > Administrative Tools > Certification Authority.

Step 2: Expand the CA server, right-click Certificate Templates, and then choose Manage. The Certificate Templates Console opens.

Step 3: Right-click the Computer template, and then choose Duplicate Template.

Step 4: For compatibility, make sure that Windows 2003 Server Enterprise is selected.

Step 5: In the Properties of New Template window, click the General tab, and then give the template a name.

Step 6: On the Request Handling tab, select Allow private key to be exported, and then click CSPs.
Step 7: Select Requests must use one of the following CSPs and Microsoft Enhanced Cryptographic Provider v1.0, and then click OK.

Step 8: On the Security tab, click Domain Computers, and then for both Enroll and Autoenroll, make sure Allow is selected.

Step 9: Use the defaults for the remaining tabs, and then click OK.

Step 10: Close the Certificate Templates Console.
Step 11: In the Certificate Authority console, right-click Certificate Templates, and then choose New > Certificate Template to Issue.

Step 12: Choose the previously defined template, and then click OK.

When machines join the domain or when the GPO policy is refreshed (the default period is 90 minutes), the machine receives a machine certificate to allow for 802.1X machine authentication.

Procedure 2 Create template for user auto-enrollment

This deployment uses group policy objects (GPOs) to have domain users auto-enroll to obtain a certificate when they log in to the domain. To enable auto-enrollment, you need to create a certificate template for these users.

Step 1: On the CA console, navigate to Start > Administrative Tools > Certification Authority.

Step 2: Expand the CA server, right-click Certificate Templates, and then choose Manage. The Certificate Templates Console opens.

Step 3: Right-click the User template, and then choose Duplicate Template.
Step 4: For compatibility with Windows XP, make sure that Windows 2003 Server Enterprise is selected.

Step 5: In the Properties of New Template window, click the General tab, and then give the template a name.

Step 6: On the Request Handling tab, select Allow private key to be exported, make sure Enroll subject without requiring any user input is selected, and then click CSPs.

Step 7: Select Requests must use one of the following CSPs and Microsoft Enhanced Cryptographic Provider v1.0, and then click OK.

Step 8: On the Security tab, click Domain Users, and then for Read, Enroll, and Autoenroll, make sure Allow is selected.

Step 9: Use the defaults for the remaining tabs, and then click OK.

Step 10: Close the Certificate Templates Console.
Step 11: In the Certificate Authority console, right-click Certificate Templates, and then choose New > Certificate Template to Issue.

Step 12: Choose the previously defined template, and then click OK.

Users will have a certificate pushed to them the next time they log in to the domain or after the GPO policy is refreshed. If the user logs in to multiple endpoints, the certificate is deployed to each of them.

Procedure 3 Configure GPOs for wired endpoints

This deployment uses GPOs to configure the 802.1X supplicant on wired endpoints running Windows XP SP3 and higher.

Step 1: On the CA console, navigate to Start > Administrative Tools > Group Policy Management.

Step 2: Expand Forest > Domain > local domain > Group Policy Objects.

Step 3: Right-click Default Domain Policy and click Edit. The Group Policy Management Editor opens.

Step 4: In the Group Policy Management Editor, navigate to Computer Configuration > Policies > Windows Settings > Security Settings.
Step 5: Right-click Wired Network (IEEE 802.3e) Policies, and then choose Create a New Wired Network Policy for Windows Vista and Later Releases.

Step 6: On the General tab, give the policy a name and description, and then make sure Use Windows Wired Auto Config service for clients is selected.

Step 7: On the Security tab, make sure Enable of IEEE 802.1X authentication for network access is selected.

Step 8: In the Network Authentication Method list, choose Microsoft: Smart Card or other certificate.

Step 9: In the Authentication Mode list, choose User or computer authentication.

Step 10: Click Properties.

Step 11: Make sure Use a certificate on this computer is selected, and then make sure Use simple certificate selection and Validate server certificate are selected.

Step 12: In the Trusted Root Certification Authorities list, next to the root certificate for the CA, select the check box.

Step 13: Click OK. The certificate properties window closes.

Step 14: In the policy properties window, click Apply, and then click OK again.

Procedure 4 Configure GPOs for wireless endpoints

This deployment uses GPOs to configure the 802.1X supplicant for wireless endpoints running Windows XP SP3 and higher.

Step 1: On the CA console, navigate to Start > Administrative Tools > Group Policy Management.

Step 2: Expand Forest > Domain > local domain > Group Policy Objects.

Step 3: Right-click Default Domain Policy. The Group Policy Management Editor opens.

Step 4: In the Group Policy Management Editor, navigate to Computer Configuration > Policies > Windows Settings > Security Settings.

Step 6: On the General tab, give the policy a name and description, and then make sure Use Windows WLAN AutoConfig service for clients is selected.

Step 7: Click Add, and then choose Infrastructure.

Step 8: Give the profile a name, enter the name of the SSID for the wireless network, and then click Add.

Step 9: On the Security tab, in the Authentication list, choose WPA2-Enterprise, and then in the Encryption list, choose AES.

Step 10: In the Select a network authentication method list, choose Microsoft: Smart Card or other certificate.
Step 11: In the Authentication Mode list, choose User or Computer authentication.

Step 12: Click Properties.

Step 13: Make sure Use a certificate on this computer is selected, and then make sure Use simple certificate selection and Validate server certificate are selected.

Step 14: In the Trusted Root Certification Authorities list, next to the root certificate for the CA, select the check box.

Step 15: Click OK. The certificate properties window closes.

Step 16: Click OK. The profile properties window closes.

Step 17: In the policy properties window, click Apply, and then click OK. Next, you create a policy for Windows XP clients.

Step 18: Right-click Wireless Network (IEEE 802.11) Policies, and then choose Create a New Windows XP Policy.

Step 19: On the General tab, give the policy a name and description, and then make sure Use Windows WLAN AutoConfig service for clients is selected.
Step 20: In the Networks to access list, choose Any available network (access point preferred).

Step 21: On the Preferred Networks tab, click Add, and then select Infrastructure.

Step 22: Enter the SSID for the network and give a description.

Step 23: In the Authentication list, choose WPA2, and then in the Encryption list, choose AES.

Step 24: On the IEEE 802.1X tab, in the EAP type list, choose Microsoft: Smart Card or other certificate.

Step 25: In the Authentication Mode list, choose User or Computer authentication.

Step 26: Click Settings, make sure Use a certificate on this computer is selected, and then make sure Use simple certificate selection and Validate server certificate are selected.
Step 27: In the Trusted Root Certification Authorities list, next to the root certificate for the CA, select the check box, and then click OK.

Step 28: In the profile properties window, click Apply, and then click OK.

Step 29: In the policy properties window, click Apply, and then click OK.

At this point, all endpoints running Windows XP SP3 and later will have a 802.1X supplicant configuration pushed to them the next time they log in to the domain or after the GPO policy is refreshed.

Process

Deploying Cisco AnyConnect on Windows Endpoints

1. Install Cisco AnyConnect
2. Install Profile Editor
3. Create wired profile
4. Create wireless profile

Cisco AnyConnect Secure Mobility Client 3.1 can be used as an 802.1X supplicant on Windows endpoints, using the Network Access Manager module. In this example deployment, the Network Access Manager is configured with both wired and wireless profiles using digital certificates.

Procedure 1 Install Cisco AnyConnect

To use Cisco AnyConnect Secure Mobility Client 3.1 as your 802.1X supplicant on Windows endpoints, you need to download the latest version from Cisco.com along with the Profile Editor. The client is distributed as an ISO image and will need to either be burned to a disk or mounted as a disk image by using a utility that provides this function. You need to be logged in as an administrator to install AnyConnect Secure Mobility Client.

The latest Cisco AnyConnect Secure Mobility client and Profile Editor can be downloaded from the following location:

To deploy the Cisco AnyConnect Secure Mobility Client to multiple workstations with the same policy, you can create a customized installation package. You need to copy all the files from the installation disk to a folder on the hard drive, for example, C:\AnyConnect. Then, follow the procedure above to edit the profile. Copy the file (C:\ProgramData\Cisco\Cisco AnyConnect Secure Mobility Client\Network Access Manager\system\configuration.xml) to C:\AnyConnect\Profiles\nam\configuration.xml.

Copy the contents of C:\AnyConnect to some form of removable media, for instance, CD, DVD, USB drive, etc. You can then take this new installer package and run the installation on a workstation. The custom configuration file is loaded and ready for use.

Tech Tip

Step 1: Start the installer for the Cisco AnyConnect Secure Mobility Client by launching the Setup program on the disk.

Step 2: Select AnyConnect Diagnostic and Reporting Tool and AnyConnect Network Access Manager, and then clear all of the other check boxes.

Step 3: Click Install Selected, verify the components selected to install, and then click OK.

Step 4: Click Accept. This accepts the license agreement.

Step 5: After the installation completes, click OK. You may be asked to restart the computer.
Procedure 2
Install Profile Editor

Step 1: Locate the Profile Editor Installer downloaded previously, and then double-click it. The installation process starts.

The installation requires Java Runtime Environment 1.6 or higher. If you don’t have it installed, you are prompted to install it.

Step 2: If you are prompted to install Java Runtime Environment 1.6 or higher, click Next. This installs it.

Step 3: Click Next. The installation of Profile Editor continues.

Step 4: Click Typical, and then click Install.

Step 5: Click Finish. The installation completes.

Procedure 3
Create wired profile

Step 1: Launch the Profile Editor by navigating to Start > All Programs > Cisco > Cisco AnyConnect Profiler Editor > Network Access Manager Profile Editor.

Step 2: From the File menu, choose Open, and then select C:\ProgramData\Cisco\Cisco AnyConnect Secure Mobility Client\Network Access Manager\system\configuration.xml.

Step 3: Click Networks.

Step 4: Select the wired profile, and then click Edit.

Step 5: Enter a name for the profile, and then click Next.

Step 6: Select Authenticating Network, and then click Next.

Step 7: Select Machine and User Connection, and then click Next.

Step 8: For the machine authentication method, select EAP-TLS, and then click Next.

Step 9: For machine identity, enter an unprotected identity pattern. In this deployment, use host.[domain], and then click Next.

Step 10: For the user authentication method, select EAP-TLS, and then click Next.
Step 11: For user identity, enter an unprotected identity pattern. In this deployment, use [username]@[domain].

Step 12: In the User Credentials section, select Prompt for Credentials, and then select Remember while User is Logged On.

Step 13: Under Certificate Sources, select Smart Card or OS certificates, and then click Done.

Procedure 4 Create wireless profile

Step 1: In the Profile Editor, click Add. This creates a new wireless profile.

Step 2: Enter a name for the profile, and then, for group membership, select In all groups (Global).

Step 3: In the Choose Your Network Media section, select Wi-Fi (wireless) Network, enter the SSID of the wireless network, and then click Next.

Step 4: Select Authenticating Network, for the association mode, choose WPA2 Enterprise (AES), and then click Next.

Step 5: Select Machine and User Connection, and then click Next.

Step 6: For the machine authentication method, select EAP-TLS, and then click Next.

Step 7: For machine identity, enter an unprotected identity pattern. In this deployment, use host.[domain], and then click Next.

Step 8: For the user authentication method, select EAP-TLS, and then click Next.

Step 9: For user identity, enter an unprotected identity pattern. In this deployment, use [username]@[domain].
Step 10: In the User Credentials section, select Prompt for Credentials, and then select Remember while User is Logged On.

Step 11: Under Certificate Sources, select Smart Card or OS certificates, and then click Done.

Step 12: From the File menu, choose Save. This updates the configuration file.

At this point, all Windows endpoints now have certificates deployed and are enabled to use 802.1X authentication. On the wireless network, any device that doesn't have a certificate uses PEAP to gain access to the network. Monitor mode is running on the wired network, so endpoints that aren't configured for 802.1X still get access by using MAC Authentication Bypass (MAB).

Process

Configuring Mac Workstations for 802.1X Authentication

1. Install root certificate on Mac OS X
2. Request user certificate

If you have Apple Mac endpoints, you have to manually obtain a certificate and configure 802.1X authentication. The example deployment shows how you would do this for Mac OS X 10.8.

Procedure 1 Install root certificate on Mac OS X

To install a trusted root certificate on Mac OS X 10.8, you need to manually request the certificate from the CA and install the certificate in the keychain.

Step 1: On the Mac, browse to the CA at http://ca.cisco.local/certsrv.

Step 2: Click Download CA certificate, certificate chain, or CRL.

Step 3: Make sure the current certificate is selected and the DER encoding method is selected.

Tech Tip

You may be prompted for credentials of a user with permission to change the certificate trust settings.

Procedure 2 Request user certificate

Next, you need to obtain a user certificate for the Mac. To do this, first you need to generate a certificate signing request, and then request the certificate from the CA.
Step 1: In the Keychain Access utility, from the Keychain Access menu, choose Certificate Assistant > Request a Certificate from a Certificate Authority.

Step 2: In the Certificate Assistant, enter the Mac user’s email address and common name (typically the user’s first and last names), select Saved to Disk, and then click Continue.

Step 3: Enter a file name and location, and then click Save.

Step 4: Click Done.

Step 6: Authenticate to the CA as the user for which you wish to obtain a certificate.

Tech Tip

If you still have the browser window open from when you downloaded the trusted root certificate, click Home in the upper right corner. This returns you to the main page of the CA.

Step 7: Click Request a certificate.

Step 8: Click advanced certificate request.

Step 9: In a text editor, such as TextEdit, open the certificate request file saved in Step 3.

Step 10: Select all the text, and then copy it to the clipboard.

Step 11: In the browser, on the Submit a Certificate Request or Renewal Request page, in the Saved Request box, paste the certificate contents.

Step 12: In the Certificate Template list, choose User, and then click Submit.
Step 13: Select DER encoded, and then click Download certificate. This saves the certificate.

Step 14: In Finder, locate the saved certificate, and then double-click it. The Keychain Access utility imports the certificate.

Configure Mac OS X Supplicant

When accessing an 802.1X enabled network, Mac OS X will prompt you for a username and password. You will be connected to the network using PEAP and this will be stored in a configuration profile. To configure the 802.1X to use certificates and EAP-TLS in Mac OS X 10.8, you will manually create a configuration profile. This process is documented in detail in the white paper [802.1X Authentication](#) available from Apple.

Any device that doesn’t have a certificate that wishes to use 802.1X will use PEAP to gain access to the network. Monitor mode is running on the wired network, so endpoints that aren't configured for 802.1X still get access by using MAC Authentication Bypass (MAB).

Enable Authorization

The network infrastructure is now configured for 802.1X authentication in monitor mode, and you have installed certificates on the endpoints and configured their 802.1X supplicants. Upon successful authentication, the endpoint is granted full network access. However, monitor mode allows for endpoints that fail 802.1X to access the network using MAB. This is a good point in the deployment to stop to verify that certificates are deployed to all endpoints and supplicants are configured correctly without impacting the users’ network connectivity. You can monitor the logs to determine who is failing authentication and then correct those issues.

The next step would be to deploy some form of authorization to control what authenticated endpoints can access on the network. This next phase is called **low-impact mode**. In low-impact mode, endpoints are authenticated with either 802.1X or MAB. MAB is used for devices that require network access but either don’t support 802.1X or don’t have 802.1X configured. In this example, we are using MAB to authenticate IP phones and wireless access points that we will identify with device profiling. Any other device will have to successfully authenticate with 802.1X, or it will not have access to the network. After authentication, the endpoint is given full access to the network, but prior to authentication, the endpoint will only have access to the services necessary for authentication.

Procedure 1: Enable Cisco IP Phone policy

1. **Enable Cisco IP Phone policy**

There is a built-in policy in Cisco ISE for Cisco IP Phones that was disabled in a previous section. You will enable this policy and create an authorization profile for Cisco IP Phones.

1. **Step 1:** Connect to http://ise-1.cisco.local.
2. **Step 2:** From the Policy menu, select Authorization.
3. **Step 3:** For the Profiled Cisco IP Phones rule, click Edit.
4. **Step 4:** Click the grey circle icon at the front of the rule, and then choose Enabled.
5. **Step 5:** Click Done, and then click Save.
Enabling Authorization for Wireless Access Points

1. Create an identity group
2. Create authorization profile
3. Create authorization policy

You will create an authorization profile for wireless access points (APs) that is similar to the one for Cisco IP Phones.

Procedure 1 Create an identity group

Step 1: On the menu bar, mouse over Policy, and then select Profiling.

Step 2: In the **endpoint policies** list, choose **Cisco-Access-Point**.

Step 3: Make sure **Create Matching Identity Group** is selected, and then click **Save**.

![Image of Cisco Identity Services Explorer]

Procedure 2 Create authorization profile

An authorization profile defines the specific access policies granted to the device. You will create a policy for access points to permit full access. Although there is already a built-in profile like this, creating a new one will allow you to modify the policy if you choose to make a more restrictive policy in the future.

Step 1: On the menu bar, mouse over Policy, and then in the Policy Elements section, select **Results**.

Step 2: In the panel on the left, double-click **Authorization**, and then double-click **Authorization Profiles**.

Step 3: Click **Add**.

Step 4: Name the profile **Cisco_AP** and give a description.
Step 5: Select DACL Name and in the list, make sure PERMIT_ALL_TRAFFIC is selected, and then click Submit.

Procedure 3

Create authorization policy

Step 1: On the menu bar, mouse over Policy, and then select Authorization.

Step 2: For the Default rule, on the right, click the black triangle symbol, and then select Insert New Rule Above. A new rule named Standard Rule 1 is created.

Step 3: Rename the rule Profiled Cisco APs.

Step 4: For the new rule, in the Conditions column, next to Any, click the + symbol.

Step 5: From the list, next to Endpoint Identity Groups, click the > symbol and then next to Profiled, click the > symbol.

Step 6: Choose Cisco-Access-Point
Step 7: Under the Permissions column, next to AuthZ Profile, click the + symbol.

Step 8: In the list, next to Standard, click the > symbol, and then choose Cisco_AP.

Step 9: Click Done, and then click Save.

Process

Modifying the MAB Authentication Policy
1. Modify MAB authentication rule

Because you have deployed monitor mode, the current MAB authentication policy allows endpoints access to the network even if they fail authentication. Now that you will be implementing low-impact mode, you need to modify the MAB policy to reject endpoints that fail authentication. This change works with the authorization policies for Cisco IP Phones and access points to be the only devices allowed on the network without performing 802.1X authentication.

Procedure 1 Modify MAB authentication rule

Step 1: On the menu bar, mouse over Policy, and then select Authentication.

Step 2: On the MAB rule, to the right of the and..., click the black triangle. This displays the identity store for this rule.

Step 3: Next to Internal Endpoints, click the + symbol.

Step 4: In the If authentication failed and If user not found lists, choose Reject.
Step 5: Click anywhere in the window to continue, and then click Save.

Procedure 1: Create authorization profile

An authorization profile defines the specific access policies granted to the device. You will create a profile for wired endpoints to permit full access.

Step 1: On the menu bar, mouse over Policy, and then in the Policy Elements section, select Results.

Step 2: In the panel on the left, double-click Authorization, and then double-click Authorization Profiles.

Step 3: Click Add.

Step 4: Name the profile Wired_Dot1X and give a description.

Step 5: Select DAACL Name and in the list, make sure PERMIT_ALL_TRAFFIC is selected, and then click Submit.

Process

Enabling Authorization for Wired Endpoints
1. Create authorization profile
2. Create authorization policy
3. Enable low-impact mode
4. Enable low impact mode on Catalyst 4500
5. Enable change of authorization
6. Enable CoA on Catalyst 4500

You will enable authorization for wired endpoints that authenticate using digital certificates. At this stage, once authenticated, the endpoint will be granted full access to the network. This policy can be modified if you choose a more restrictive policy in the future.
Procedure 2 Create authorization policy

Now you need to define an authorization policy for wired endpoints and apply the authorization profile.

Step 1: On the menu bar, mouse over **Policy**, and then select **Authorization**.

Step 2: For the Default rule, on the right, click the black triangle symbol, and then select **Insert New Rule Above**. A new rule named Standard Rule 1 is created.

Step 3: Rename the rule **Wired Dot1X Endpoints**.

Step 4: For the new rule, in the Conditions column, next to Condition(s), click the + symbol.

Step 5: Click **Select Existing Condition from Library**.

Step 6: In the list, next to Compound Conditions, click the > symbol, and then choose **Wired_802.1X**.

Step 7: Under the Permissions column, next to AuthZ Profile, click the + symbol.

Step 8: In the list, next to Standard, click the > symbol, and then choose **Wired_Dot1X**.
You will now configure the switches for low-impact mode 802.1X using Cisco Prime LMS 4.2 and the Cisco TrustSec Work Center. You need to create an access list to limit what traffic is permitted on a port before it is authenticated. You only want to enable what is required for the port to go through the authentication process. Typically, this means allowing DHCP, DNS, and TFTP to support Preboot Execution Environment, and access to the AD domain controller. For troubleshooting, you also allow ICMP echo and echo-reply traffic. You deny all other traffic and log the denials in order to determine if there is legitimate traffic that is getting denied and then make changes to the access list.

Step 1: Connect to Cisco Prime LMS with a web browser, for example: https://lms.cisco.local.

Step 2: Mouse over Work Centers and in the TrustSec section, click Identity Configuration.

Step 3: In the Navigator panel on the left, click Manage Identity Configuration.

Step 4: In the pie chart, click the Monitor Mode slice. A list of the devices that have ports configured for this mode appears.
Step 8: In the Authentication profile and host mode section, set the following values:

- Define Authentication Profile—802.1X, then MAB
- Define Host Mode—Multidomain
- Action to be taken on security violation—No Change

Step 9: In the MAC Configuration section, make sure only Enable MAC Move is selected.

Step 10: In the Additional Configurations section, select Advanced Options. In the Adhoc commands box, enter the following commands, and then click Next.

```plaintext
ip device tracking
ip access-list extended PreAuth
permit ip any host 10.4.48.10
permit udp any eq bootpc any eq bootps
permit udp any any eq domain
permit udp any any eq tftp
permit icmp any any echo
permit icmp any any echo-reply
deny ip any any log
```

Step 11: In the Job Description box, enter a description, and then click Finish. The job is submitted and a confirmation message appears. Click OK.
The TrustSec Work Center supports TrustSec 2.0 features, which does not include support for Cisco Catalyst 4500. However, Catalyst 4500 does support all of the features in use. You will have to configure these using the NetConfig feature of Cisco LMS. This procedure covers configuring 802.1X in low impact mode.

Step 1: Connect to the Cisco Prime LMS server by browsing to https://lms.cisco.local:1741.

Step 2: Mouse over Configuration, and then, from the Tools section, choose NetConfig.

Step 3: In the NetConfig Job Browser, click Create.

Step 4: Select Device Based for the NetConfig Job Type, and then click Go.

Step 5: In the Device Selector, expand All Devices, select the devices where you want to enable low impact mode.

Step 6: In the Task Selector, expand All Tasks, select Adhoc, and then click Next.

Step 7: Click Add Instance, and then, in the new window, enter the CLI commands necessary to configure low impact mode.

```
ip device tracking
ip access-list extended PreAuth
  permit ip any host 10.4.48.10
  permit udp any eq bootpc any eq bootps
  permit udp any any eq domain
  permit udp any any eq tftp
  permit icmp any any echo
  permit icmp any any echo-reply
  deny ip any any log

interface [interface]
ip access-group PreAuth in
authentication host-mode multi-domain
```

Step 8: Click Applicable Devices, select the switch to which you want to apply this configuration, and then click Close.

Step 9: For the command mode, choose Config, and then click Save.
Step 10: After returning to the Add Tasks window, click **Next**.

Step 11: Fill in a description for the job, and then click **Next**. The job is submitted for immediate deployment.

Step 12: Click **Finish**, and then when you receive a notice that the job was submitted successfully, click **OK**.

Step 13: Navigate to **Configuration > Tools > NetConfig**. This opens the Job Browser.

Step 14: Click **Create**. This enables you to configure a new job.

Step 15: Select **Port based**, and then click **Go**.

Step 16: In the tree, next to All Devices, click the + symbol, select the switch you are configuring, and then click **Next**.

Tech Tip

In this example, only one switch is being configured, but you can select multiple switches to accommodate a large deployment. The Group Selector allows you to choose switches by pre-defined groups or by model.

Step 17: Select **Define an Ad-Hoc Rule**. This brings up a new screen.

Step 18: For the ad-hoc rule, in the **Rule text** section, click **Include**.

Step 19: In the Include List section, expand **Devices**, and then select the switch you want to configure for low impact mode.

Step 20: Choose the ports you want to configure for low impact mode, and then click **Include**. The window closes.

Step 21: Move to step 3 of the wizard by clicking **Next**.

Step 22: In the Task Selector, select **Adhoc Task**, and then click **Next**.

Step 23: Click **Add Instance**, and then, in the new window, enter the CLI commands necessary in order to enable monitor mode and to remove the port security configuration.

```
ip access-group PreAuth in
authentication host-mode multi-domain
```
Step 24: Click **Applicable Devices**, select the switch to which you want to apply this configuration, click **Close**, and then click **Save**.

Procedure 5 Enable change of authorization

Authorization requires the use of RADIUS Change of Authorization (CoA) in order to change the state of the port after authentication. This is not enabled by default, and you will need to enable it. You can do this by using the TrustSec Work Center of Cisco Prime LMS 4.2.

Step 1: In Cisco Prime LMS, mouse over **Work Centers**, and then, in the TrustSec section, click **Identity Configuration**.

Step 2: In the Navigator panel on the left, click **Change of Authorization**.

Step 3: Select the built-in **Identity** template, and then click **Next**.

Step 4: In the Device Selector, expand **All Devices**, select the switches you want to enable for CoA, and then click **Next**.

Step 25: After returning to the Add Tasks window, click **Next**.

Step 26: Fill in a description for the job, and then click **Next**. The job is submitted for immediate deployment.

Step 27: Click **Finish**, and then when you receive a notice that the job was submitted successfully, click **OK**.

Step 28: Repeat this procedure for each Cisco Catalyst 4500 where you need to configure low impact mode.
Step 5: Enter the IP address of the primary Cisco ISE administration node, provide the RADIUS key, and then click **Next**.

Step 6: The Adhoc Configuration page allows you to add commands to the device in addition to the ones generated by the wizard. At this point, you don’t need additional commands. Click **Next**.

Step 7: Give the job a description, and then click **Finish**.

Step 8: Repeat these steps for the secondary Cisco ISE administration node.

The global commands added to the switch configuration at the completion of this procedure are as follows.

```
aaa server radius dynamic-author
  client 10.4.48.41 server-key [key]
  client 10.4.48.42 server-key [key]
  auth-type any
```

Procedure 6 Enable CoA on Catalyst 4500

The TrustSec Work Center supports TrustSec 2.0 features, which does not include support for Cisco Catalyst 4500. However, Catalyst 4500 does support all of the features in use. You will have to configure these using the NetConfig feature of Cisco LMS. This procedure covers configuring RADIUS change of authorization.

Step 1: Connect to the Cisco Prime LMS server by browsing to https://lms.cisco.local:1741.

Step 2: Mouse over **Configuration**, and then, from the Tools section, choose **NetConfig**.

Step 3: In the NetConfig Job Browser, click **Create**.

Step 4: Select **Device Based** for the NetConfig Job Type, and then click **Go**.

Step 5: In the Device Selector, expand **All Devices**, select the devices where you want to enable change of authorization.

Step 6: In the Task Selector, expand **All Tasks**, select **Adhoc**, and then click **Next**.

Step 7: Click **Add Instance**, and then, in the new window, enter the CLI commands necessary to enable change of authorization.

```
aaa server radius dynamic-author
  client 10.4.48.41 server-key [key]
  client 10.4.48.42 server-key [key]
  auth-type any
```
Step 8: Click **Applicable Devices**, select the switch to which you want to apply this configuration, click **Close**, choose **Config** for the command mode, and then click **Save**.

Step 9: After returning to the Add Tasks window, click **Next**.

Step 10: Fill in a description for the job, and then click **Next**. The job is submitted for immediate deployment.

Step 11: Click **Finish**, and then when you receive a notice that the job was submitted successfully, click **OK**.

Step 12: Repeat this procedure for each Cisco Catalyst 4500 switch where you want to enable RADIUS change of authorization.

Enabling Authorization for Wireless Endpoints

1. Create authorization profile
2. Create authorization policy

You will enable authorization for wireless endpoints that authenticate using digital certificates. At this stage, once authenticated, the endpoint will be granted full access to the network. This policy can be modified if you choose a more restrictive policy in the future.

Procedure 1 Create authorization profile

An authorization profile defines the specific access policies granted to the device. You will create a policy for wireless endpoints to permit full access. By default, a client is given full access when joining the wireless network, so you will not need to define an access list at this point.

Step 1: In a browser, access the primary engine’s GUI at `http://ise-1.cisco.local`. On the menu bar, mouse over **Policy**, and then in the Policy Elements section, select **Results**.

Procedure 2 Create authorization policy

Now you need to define an authorization policy for wireless endpoints and apply the authorization profile.

Step 1: On the menu bar, mouse over **Policy**, and then select **Authorization**.
Step 2: For the Default rule, on the right, click the black triangle symbol, and then select **Insert New Rule Above**. A new rule named Standard Rule 1 is created.

Step 3: Rename the rule **Wireless Dot1X Endpoints**.

Step 4: For the new rule, in the Conditions column, next to Condition(s), click the + symbol.

Step 5: Click **Select Existing Condition from Library**.

Step 6: In the list, next to Compound Conditions, click the > symbol, and then choose **Wireless_802.1X**.

Step 7: Under the Permissions column, next to AuthZ Profile, click the + symbol.
Step 8: In the list, next to Standard, click the > symbol, and then choose Wireless Dot1X.

Step 9: Click Done, and then click Save.

Process

Modify Authorization Policy to be Closed

1. Modify default rule

The current authorization policy is an open policy. The default rule at the end specifies that if an incoming authorization request doesn’t match one of the specific rules defined, it would then just permit access to the network. Now that you have enabled low-impact mode, you will need to change this rule to deny access to any request that doesn’t match one of the specific rules.

Procedure 1 Modify default rule

Step 1: On the menu bar, mouse over Policy, and then select Authorization.

Step 2: For the default rule, click Edit.

Step 3: In the Conditions column, next to PermitAccess, click the + symbol.
Step 4: In the list, next to Standard, click the > symbol, and then choose **DenyAccess**.

Step 5: Click **Done**, and then click **Save**.

Enabling EAP Chaining

1. Enable EAP Chaining
2. Create authentication policy
3. Create authorization profile
4. Create authorization rule
5. Configure AnyConnect wired profile
6. Configure AnyConnect wireless profile

You have deployed both machine certificates and user certificates to Microsoft Windows workstations. However, only one of the certificates is used for authentication—the user certificate when a user is logged in and the machine certificate when one isn’t. EAP Chaining allows you to authenticate using both certificates by using the Cisco AnyConnect Secure Mobility Client 3.1.

Procedure 1: Enable EAP Chaining

Step 1: Connect to https://ise-1.cisco.local.

Step 2: On the menu bar, mouse over **Policy**, and then, from the Policy Elements section of the menu, choose **Results**.

Step 3: In the left pane, double-click **Authentication**. This expands the options.

Step 4: Double-click **Allowed Protocols**, and then select **Default Network Access**.
Procedure 2 Create authentication policy

You have authentication rules defined for both machine and user authentication. You need to create a new rule for EAP chaining for both wired and wireless endpoints.

Step 1: Mouse over Policy, and then choose Authentication.

Step 2: For the Wired-Dot1X rule, to the right of and..., click the black triangle. This brings up the identity store used for this rule.

Step 3: Next to the first rule, in the Actions list, choose Insert new row above.

Step 4: Give the rule a name, and then next to the Enter Condition box, click the box symbol. The Expression Builder opens.

Step 5: Click Create New Condition (Advance Option).

Step 6: In the Expression list, next to Select Attribute, click the arrow.

Step 7: Next to Network Access, click the arrow, and then select EapAuthentication.

Step 8: In the second list, choose Equals, and then in the last list, choose EAP-TLS.

Step 9: Click the gear icon at the end of the condition, and then choose Add Attribute/Value.

Step 10: In the Expression list, next to Select Attribute, click the arrow.

Step 11: Next to Radius, click the arrow, and then choose User-name.

Step 5: Select Enable EAP Chaining, and then click Save.
Step 12: In the second list, choose **Equals**, and then in the last box, type **anonymous**, and then click **OK**.

Step 13: Next to Internal Users, click the + symbol.

Step 14: In the **Identity Source** list, choose the identity source sequence for machine authentication that you created in Procedure 2, “Create machine authentication policies,” use the default options for this identity source, and then click anywhere in the window to continue.

Step 15: Click **Save**.

Step 16: Repeat Step 2 through Step 15 for the Wireless-Dot1X rule.

Procedure 3 Create authorization profile

An authorization profile defines the specific access policies granted to the device. You will create a policy to permit full access for devices that pass both user and machine authentication. Although there is already a built-in profile that permits full access, creating a new one will allow you to modify the policy if you choose to make a more restrictive policy in the future.

Step 1: On the menu bar, mouse over **Policy**, and then in the Policy Elements section, click **Results**.

Step 2: In the panel on the left, double-click **Authorization**, and then double-click **Authorization Profiles**.

Step 3: Click **Add**.

Step 4: Name the profile **User+Machine-Cert** and give a description.
Step 5: Select DACL Name and in the list, choose PERMIT_ALL_TRAFFIC, and then click Submit.

Step 6: Under Expression, next to Select Attribute, click the arrow. The menu opens.

Step 7: Next to Network Access, click the > symbol, and then choose EapAuthentication.

Step 8: In the first list, choose Equals, and then, in the second list, choose EAP-TLS.

Step 9: Click the gear icon at the end of the rule, and then select Add Attribute/Value.

Step 10: In the new rule, under Expression, next to Select Attribute, click the arrow. The menu opens.

Step 11: Next to Network Access, click the > symbol, and then choose EapTunnel.

Step 12: In the first list, choose Equals, and then, in the second list, choose EAP-FAST.

Step 13: Click the gear icon at the end of the rule, and then select Add Attribute/Value.

Step 14: In the new rule, under Expression, next to Select Attribute, click the arrow. The menu opens.

Step 15: Next to Network Access, click the > symbol, and then choose EapChainingResult.

Step 16: In the first list, choose Equals, and then, in the second list, choose User and machine both succeeded then click anywhere to continue.

Step 17: In the Permissions section, next to AuthZ Profile(s), click the + symbol.

Step 18: In the Select an item list, next to Standard, click the > symbol.

Step 19: Choose the User+Machine-Cert authorization profile that you created in Procedure 3, “Create authorization profile.”

Step 20: Click Done, and then click Save.
Procedure 5 Configure AnyConnect wired profile

The AnyConnect client was installed in the process “Deploying Cisco AnyConnect on Windows Endpoints.” You now configure the Cisco AnyConnect Secure Mobility Client to use EAP Chaining.

Step 1: On the client running AnyConnect, Launch the Profile Editor by navigating to Start > All Programs > Cisco > Cisco AnyConnect Profiler Editor > Network Access Manager Profile Editor.

Step 2: From the File menu, choose Open, and then select C:\ProgramData\Cisco\Cisco AnyConnect Secure Mobility Client\Network Access Manager\system\configuration.xml.

Step 3: First, you will create a wired profile for EAP Chaining.

Step 4: Click Networks, and then click Add.

Step 5: Enter a name for the profile, select Wired (802.3) Network, and then click Next.

Step 6: Select Authenticating Network, and then click Next.

Step 7: Select Machine and User Connection, and then click Next.

Step 8: For the machine authentication method, select EAP-FAST.

Step 9: In the Inner Methods based on Credentials Source section, select Authenticate using a certificate and Send client certificate using EAP-TLS in the tunnel.

Step 10: Make sure Use PACs is selected, and then click Next.

Step 11: For the Certificates tab, click Next. This accepts the default values.

Step 12: For the PAC Files tab, click Next. This accepts the default values.

Step 13: Enter an unprotected identity pattern. In this deployment, use host/anonymous.
Step 14: Enter a protected identity pattern. In this deployment, use `host/[username],[domain]`, and then click Next.

Step 15: For the user authentication method, select EAP-FAST.

Step 16: In the Inner Methods based on Credentials Source section, select **Authenticate using a certificate** and **Send client certificate using EAP-TLS in the tunnel**.

Step 17: Make sure **Use PACs** is selected, and then click Next.

Step 18: For the Certificates tab, click Next. This accepts the default values.

Step 19: For the PAC Files tab, click Next. This accepts the default values.

Step 20: Enter an unprotected identity pattern. In this deployment, use **anonymous**.

Step 21: Enter a protected identity pattern. In this deployment, use `[username]@[domain]`.

Step 22: In the User Credentials section, select **Prompt for Credentials**, and then select **Remember while User is Logged On**.
Step 23: Under Certificate Sources, select Smart Card or OS certificates, and then click **Done**.

Procedure 6 Configure AnyConnect wireless profile

You will now create a wireless profile for EAP Chaining.

Step 1: Click **Networks**, and then click **Add**.

Step 2: Enter a name for the profile.

Step 3: In the Choose Your Network Media section, select **Wi-Fi (wireless) Network**. For SSID, enter your wireless SSID, and then click **Next**.

Step 4: Select **Authenticating Network**, choose **WPA2 Enterprise (AES)** for Association Mode, and then click **Next**.

Step 5: Select **Machine and User Connection**, and then click **Next**.

Step 6: For the machine authentication method, select **EAP-FAST**.

Step 7: In the Inner Methods based on Credentials Source section, select **Authenticate using a certificate** and **Send client certificate using EAP-TLS in the tunnel**.

Step 8: Make sure **Use PACs** is selected, and then click **Next**.

Step 9: For the Certificates tab, click **Next**. This accepts the default values.

Step 10: For the PAC Files tab, click **Next**. This accepts the default values.
Step 11: Enter an unprotected identity pattern. In this deployment, use `host/anonymous`.

Step 12: Enter a protected identity pattern. In this deployment, use `host/[username],[domain]`, and then click **Next**.

Step 13: For the user authentication method, select **EAP-FAST**.

Step 14: In the Inner Methods based on Credentials Source section, select **Authenticate using a certificate** and **Send client certificate using EAP-TLS in the tunnel**.

Step 15: Make sure **Use PACs** is selected, and then click **Next**.

Step 16: For the Certificates tab, click **Next**. This accepts the default values.

Step 17: For the PAC Files tab, click **Next**. This accepts the default values.

Step 18: Enter an unprotected identity pattern. In this deployment, use `anonymous`.

Step 19: Enter a protected identity pattern. In this deployment, use `[username]@[domain]`.

Step 20: In the User Credentials section, select **Prompt for Credentials**, and then select **Remember while User isLogged On**.

Step 21: Under **Certificate Sources**, select **Smart Card or OS certificates**, and then click **Done**.

Step 22: From the **File** menu, choose **Save**. This updates the configuration file.

Process

Enabling Downloadable Access Lists

1. Add Active Directory groups to ISE
2. Create wired access list
3. Create authorization profile
4. Create authorization policy
5. Configure WLC for authorization

You have now configured access for any user who authenticates successfully to be granted full access to the network. The next step will be to provide differentiated access to users based on their Active Directory (AD) group. You will create an authorization policy that verifies the user's AD group and then applies an access list to the switch or wireless access point for that user.

Procedure 1 Add Active Directory groups to ISE

Step 1: In a browser, access the primary engine's GUI at http://ise-1.cisco.local.

Step 2: Mouse over **Administration**, and then, from the Identity Management section of the menu, choose **External Identity Sources**.

Step 3: In the left panel, click **Active Directory**.

Step 4: Click the Groups tab, click **Add**, and then click **Select Groups from Directory**.

Step 5: Search for the groups you wish to add. The domain box is already filled in. The default filter is a wildcard to list all groups. Click **Retrieve Groups** to get a list of all groups in your domain.
Step 6: Select the groups you want to use for authentication, and then click OK. In this example deployment, select the following groups:

- cisco.local/Users/Finance
- cisco.local/Users/HR
- cisco.local/Users/IT
- cisco.local/Users/Research

Select Directory Groups
This dialog is used to select groups from the Directory. Click "Retrieve Groups" to read directory.
Use the wildcard search (i.e. admin*). Search filter applies to group name and not the fully qualified path.

<table>
<thead>
<tr>
<th>Domain: cisco.local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter: *</td>
</tr>
<tr>
<td>Number of Groups Retrieved: 77 (Limit is 100)</td>
</tr>
</tbody>
</table>

Step 7: Click Save Configuration.

Procedure 2 Create wired access list
You will need to create an access list to deploy on the switches that will limit what portions of the network members of the group can access. The access list will use standard IOS syntax.

Step 1: On the menu bar, mouse over Policy, and then, in the Policy Elements section, choose Results.

Step 2: In the left pane, double-click Authorization, and then select Downloadable ACLs.

Step 3: Click Add.

Step 4: Enter a name (example: IT) and a description for the policy.

Step 5: In the DACL content section, enter the ACL by using IOS syntax, and then click Submit.

Procedure 3 Create authorization profile
An authorization profile defines the specific access policies granted to the device. You will create a policy to apply an access list to the access device to limit what the endpoint has access to on the network.

Step 1: On the menu bar, mouse over Policy, and then, in the Policy Elements section, choose Results.

Step 2: In the left pane, double-click Authorization, and then select Authorization Profiles.

Step 3: Click Add.

Step 4: Enter a name (example: IT) and a description for the policy.

Step 5: In the Common Task section, select DACL Name, and then select the ACL that you configured in Procedure 2, “Create wired access list.” In the example, the ACL is “IT.”

Step 6: In the Common Task section, select Airespace ACL Name, and then enter the name of the ACL that you are applying to the WLC. In this example, the ACL is “IT.”

Step 7: Click Submit.
Procedure 4 Create authorization policy

Step 1: On the menu bar, mouse over **Policy**, and then click **Authorization**.

Step 2: For the Wired Dot1X Endpoints rule, on the right, click the black triangle symbol, and then select **Insert New Rule Above**. A new rule named Standard Rule 1 is created.

Step 3: Rename Standard Rule 1 to **IT**.

Step 4: In the **Condition(s)** list, choose the + symbol, and then click **Create New Condition (Advance Option)**.

Step 5: Under Expression, next to Select Attribute, click the arrow. The menu opens.

Step 6: Next to AD1, click the > symbol, and then choose **ExternalGroups**.

Step 7: In the first list, choose **Equals**, and then, in the second list, choose cisco.local/Users/IT.

Step 8: In the Permissions section, next to AuthZ Profile(s), click the + symbol.

Step 9: In the Select an item list, next to Standard, choose the > symbol.
- Select the IT authorization profile that was created in Procedure 3, “Create authorization profile.”

Step 10: Click **Done**, and then click **Save**.

Step 11: For each group that you want to define a policy for, repeat Procedure 2, “Create wired access list,” Procedure 3, “Create authorization profile,” and Procedure 4, “Create authorization policy.” In this example deployment, you will create additional policies for the Finance, HR, and Research groups.

Procedure 5 Configure WLC for authorization

Configure every WLC in the environment, with the exception of the guest WLC in the DMZ, with access lists to support these newly defined policies. Each ACL that is referenced by the authorization profiles needs to be defined on the WLC. When clients in the campus, and at remote sites with a local controller, connect to the WLC and authenticate, Cisco ISE passes a RADIUS attribute requesting the ACL be applied for this client.

Step 1: In your browser, enter **https://wlc1.cisco.local**. This takes you to the WLC console.

Step 2: On the menu bar, click **Security**.

Step 3: In the left pane, expand **Access Control Lists**, and then click **Access Control Lists**.

Step 4: Click **New**.

Step 5: Name the access list, and then click **Apply**.

Step 6: Click the name in the list. This allows you to edit the newly created access list.

Step 7: Click **Add New Rule**.
Step 8: Create a new access list rule based on your security policy, and then click **Apply**. In our example deployment, members of the IT group are only allowed access to the internal network (10.4.0.0/16). The access list needs to have entries for the traffic in both directions, so make sure you have pairs of access list rules for both inbound and outbound traffic. Also, there is an implicit "deny all" rule at the end of the access list so any traffic not explicitly permitted is denied.

Tech Tip

The access list needs to have entries for the traffic in both directions, so make sure you have pairs of access list rules for both inbound and outbound traffic. Also, there is an implicit "deny all" rule at the end of the access list so any traffic not explicitly permitted is denied.

Step 9: Repeat Step 3 through Step 8 in this procedure for each access list that you defined in the authorization profiles in Cisco ISE.

Step 10: On the menu bar, click **WLANs**.

Next, you enable WLC in order to allow Cisco ISE to use RADIUS to override the current settings, so that the access list can be applied to the wireless LAN.

Step 11: Click the WLAN ID of the wireless network that the wireless personal devices are accessing.

Step 12: Click **Advanced**, and then select **Allow AAA Override**.

Step 13: Click **Apply**, and then click **Save Configuration**.
Security Group Access (SGA) technology allows user identity information to be associated with their network traffic and then passed throughout the network. This information can then be used to enforce an access policy using Security Group Tags (SGT) and Security Group Access Control Lists (SGACL).

The SGT Exchange Protocol (SXP) is used to propagate the IP-to-SGT bindings across network devices that do not support SGTs. In this example, we are passing SGT information from the access layer devices to Cisco ASA in the data center.

SXP establishes a peering relationship between two devices to exchange the IP-to-SGT bindings. There are two roles in the relationship: the speaker and the listener. The speaker passes the IP-to-SGT bindings to the listener. In our example, the access layer switch needs to pass these bindings to Cisco ASA in the data center. You could have the switch peer directly with the ASA appliance, however, that may not scale well in larger environments. It is a best practice to minimize the number of peers a device has by aggregating connections. For example, campus access layer switches would peer with a distribution switch, which then would peer with the ASA appliance.

Procedure 1 Define Security Group Tags

Step 1: In a browser, access the primary engine’s GUI at http://ise-1.cisco.local.

Step 2: On the menu bar, mouse over Policy, and then in the Policy Elements section, select Results.

Step 3: In the panel on the left, double-click Security Group Access, and then click Security Groups.

Step 4: Click Add.

Step 5: Give the group a name and description, and then click Submit.

Step 6: Repeat Step 4 and Step 5 for each tag you wish to create. In this example deployment, you create tags for each of the following groups: Finance_Users, HR_Users, IT_Users, Research_Users, and Network_Devices.
Add ASA as network device

In order to allow Cisco ISE to provide SGT enforcement on Cisco ASA, the ASA appliance needs to be added as a network device in ISE.

Step 1: On the menu bar, mouse over Administration, and then in the Network Resources section, click Network Devices.

Step 2: Click Add.

Step 3: Enter the hostname of the ASA appliance and give it a description.

Step 4: For the IP address, enter 10.4.53.126.

Step 5: Select Authentication Settings.

Step 6: Enter the RADIUS shared secret.

Step 7: Select Advanced TrustSec Settings.

Step 8: In the Device Authentication Settings section, make sure Use Device ID for SGA Identification is selected, and enter a password.

Step 9: In the SGA Notifications and Updates section, accept the default values.

Step 10: In the Out of Band (OOB) SGA PAC section, click Generate PAC.

Step 11: Enter an encryption key and the PAC time to live, and then click Generate PAC.
Step 12: You are prompted to save the file to your local machine. Choose a location, and then click **OK**.

Step 13: Click **Submit**.

Procedure 3
Modify authorization policy

In Procedure 4, “Create authorization policy,” of the previous section, you created authorization policies that limited network access based on Active Directory group membership by using access lists. In this procedure, you will modify those policies to instead use SGTs.

Step 1: On the menu bar, mouse over **Policy**, and then click **Authorization**.

Step 2: For the IT rule, click **Edit**.

Step 3: In the Permissions column, click the + symbol next to IT.

Step 4: Click the + symbol to add a new permission.

Step 5: Expand the drop-down menu and click the > symbol next to **Security Group**.

Step 6: Select **IT_Users**.

Step 7: Click **Done**, and then click **Save**.

Step 8: Repeat Step 2 through Step 7 for each policy you need to modify to support SGTs. In this example deployment, you will edit the Finance, HR and Research policies.

Procedure 4
Configure SXP on IOS devices

Step 1: Connect to the Cisco Prime LMS server by browsing to https://lms.cisco.local:1741.

Step 2: Mouse over **Configuration**, and then, from the Tools section, choose **NetConfig**.

Step 3: In the NetConfig Job Browser, click **Create**.

Step 4: Select **Device Based** for the NetConfig Job Type, and then click **Go**.

Step 5: In the Device Selector, expand **All Devices**, and then select the devices where you want to enable SXP.

Step 6: In the Task Selector, expand **All Tasks**, select **Adhoc**, and then click **Next**.

Step 7: Click **Add Instance**, and then, in the new window, enter the CLI commands necessary to enable SXP.

```plaintext
cs sxp enable
cs sxp default password <password>
cs sxp default source-ip <IP-address-of-switch>
cs sxp connection peer <IP-address-of-peer> password default mode local [speaker|listener]
```

Step 8: Click **Applicable Devices**, select the switch to which you want to apply this configuration, click **Close**, choose **Config** for the command mode, and then click **Save**.

Step 9: After returning to the Add Tasks window, click **Next**.

Step 10: Fill in a description for the job, and then click **Next**. The job is submitted for immediate deployment.

Step 11: Click **Finish**, and then when you receive a notice that the job was submitted successfully, click **OK**.

Step 12: Repeat this procedure for each IOS device where you need to configure SXP.

Procedure 5
Configure SXP on WLCs

Step 1: Navigate to the WLC console by browsing to https://wlc1.cisco.local.

Step 2: On the menu bar, click **Security**.

Step 3: In the left pane, click **TrustSec SXP**.
Step 4: In the SXP State pull-down, select Enabled.

Step 5: Enter the default password. This password must match what is configured on the peer.

Step 6: Add a new peer by clicking New.

Step 7: Enter the IP address of the peer, and then click Apply. The SXP Configuration page appears.

Step 8: Click Apply

Step 8: In the Configure AAA Server Group window, click Add.

Step 9: In the AAA Server Group field, enter ISE-Group.

Procedure 6 Configure SXP on ASA

Step 1: You now configure SXP on Cisco ASA and create a policy that limits access to servers in the data center based on the SGTs.

Step 2: In a browser, navigate to the Cisco ASA management console at https://DC-ASA5585X.cisco.local, and then click Run ASDM.

Step 3: Navigate to Configuration > Firewall > Identity by TrustSec.

Step 4: Select Enable SGT Exchange Protocol (SXP).

Step 5: For the Default Source field, enter the IP address of the interface of the Cisco ASA appliance used for management.

Step 6: Enter a password, and then verify it.

Step 7: In the Server Group Setup section, click Manage.
Step 10: For Accounting Mode, select Simultaneous, and then click OK.

Step 11: In the Selected Group section, for Servers, click Add.

Step 12: In the list, choose the firewall interface outside.

Step 13: In the RADIUS Parameters sections, enter the Shared Secret Key, accept the defaults for the remaining parameters, and then click OK.

Step 14: Repeat Step 10 through Step 12 for the secondary Cisco ISE administration node, ise-2.cisco.local.

Step 15: Click OK. The Configure AAA Server Groups window closes.

Step 16: Click Import PAC.

Step 17: Click Browse, and then locate the PAC file you saved to your machine in Step 12, Procedure 2, “Add ASA as network device.”
Step 18: Enter the PAC password, and then confirm it. Click Import.

Step 19: Now you will add SXP peers to Cisco ASA.

Step 20: Click Add.

Step 21: Enter the IP address of the peer.

Step 22: For Password, choose Default, for Mode, choose Local, and for Role, choose Listener, and then click OK.

Step 23: Repeat Step 18 through Step 20 for each peer you need to add.

Step 24: Click Apply.

Procedure 7 Configure firewall policy

Step 1: In the Cisco SBA -- Data Center Deployment Guide, organizational servers were defined. In this procedure, you will create policy to limit access to each server based on SGTs. In this example, you will create a rule for the server for the IT group.

Step 2: In Cisco ASDM, navigate to Configuration > Firewall > Access Rules.

Step 3: Click Add.

Step 4: From the Interface menu, choose Any.

Step 5: Select the Permit action.

Step 6: In the Source Criteria section, enter any for the Source, and then click the ellipses at the end of Security Group.
Step 7: Choose Existing Security Group

Step 8: Select IT_Users, and then click Add.

Step 9: Click OK. The Add Access Rule window opens.

Step 10: In the Destination Criteria section, click the ellipses for the Destination.

Step 11: Double-click IT_Web_Server, and then click OK. The Add Access Rule window appears.

Step 12: For the service, enter tcp/http, tcp/https, and then click OK.

Step 13: Repeat Step 2 through Step 11 for each server that you wish to create an SGT policy for. In this deployment, the remaining groups are Finance, HR, and Research.
Procedure 8 Monitoring SGTs on Cisco ASA

You will use ASDM to verify SXP is working properly and SGTs are being passed to Cisco ASA.

Step 1: In Cisco ASDM, navigate to **Monitoring > Properties > Identity by TrustSec > SXP Connections.** This shows all the current SXP connections to the ASA.

Step 2: In Cisco ASDM, navigate to **Monitoring > Properties > Identity by TrustSec > IP Mappings.** This shows all the current IP to SGT mappings passed to the ASA.

Procedure 9 Monitoring SGTs on the switches

From the command line of the switch, you monitor SXP connections and the SGT assignments using a few show commands.

Step 1: Verify the SGT assigned to a switch port after user authorization on an access layer switch.

```
show authentication session interface <interface>
```

```
A3750X# show authentication session interface GigabitEthernet 2/0/1

Interface: GigabitEthernet2/0/1  
MAC Address: 0050.56b9.007c  
IP Address: 10.4.2.13  
User-Name: alex.reed  
Status: Authz Success  
Domain: DATA  
Security Policy: Should Secure  
Security Status: Unsecure  
Oper host mode: multi-auth  
Oper control dir: both  
Authorized By: Authentication Server  
Vlan Policy: N/A  
SGT: 0004-0  
Session timeout: N/A  
Idle timeout: N/A  
Common Session ID: 0A040F06000001778A321722  
Acct Session ID: 0x00000B5D  
Handle: 0xCB000178
```
Step 2: Verify the SXP connections on a switch.

 show cts sxp connections

D6500VSS# show cts sxp connections
SXP : Enabled
Highest Version Supported: 3
Default Password : Set
Default Source IP: 10.4.15.254
Connection retry open period: 120 secs
Reconcile period: 120 secs
Retry open timer is not running

Peer IP : 10.4.15.5
Source IP : 10.4.15.254
Conn status : On
Conn version : 2
Local mode : SXP Listener
Connection inst# : 4
TCP conn fd : 3
TCP conn password: default SXP password
Duration since last state change: 11:20:31:22 (dd:hr:mm:sec)

Procedure 10 Monitoring SGTs on the WLC

You use the GUI of the WLC to monitor the SGT assignments and SXP connections.

First, verify the SGT assigned to a client after user authorization on a WLC.

Step 1: In the web console, click Monitor, and then click Clients.

Step 2: Click the client MAC address. The Details window opens.
Step 3: Scroll down to the Security Information section.

Next, verify SXP connections from the WLC.

Step 4: In the web console, click Security.

Step 5: In the navigation pane on the left, click TrustSec SXP.

The configuration of the network infrastructure is complete. Now it’s time to answer the what, when, where, and who questions regarding network access by using the reporting functionality of Cisco ISE to gain a better understanding of current activity on the network.

Cisco ISE is now configured to authenticate users and to profile endpoints based on RADIUS and DHCP information. The reporting capabilities of Cisco ISE allow you to determine what type of device is connecting to your network, when it connects, and where it connects from. Also, you will know who is connecting to your network and what authentication method was used.

Procedure 1: View the Cisco ISE dashboard

The first place to view this information is on the Cisco ISE home dashboard. It gives a summary view of the health status of the servers in the group, how devices are authenticating, and what types of devices have been profiled.

Step 1: On the menu bar, click Home.
Step 2: If you want to view additional information for a section, click the upper-right corner of that section. The section expands.

Procedure 2 Configure identity groups

Cisco ISE has more in-depth reporting options to give more details on the devices connecting to the network. To help identify the endpoints, you can use identity groups to classify profiled endpoints and to generate reports.

The example below describes how to do this for an Apple iPad. The procedure for other types of devices is similar.

Step 1: In the menu bar, mouse over Policy, and then choose Profiling.

Step 2: Click Apple-iPad. This enables you to edit this policy.

Step 3: Select Create Matching Identity Group, and then click Save.

You can repeat these steps for other endpoint types as needed. You can also investigate the rules used to profile the endpoint to understand the process. In the case of the Apple iPad, Cisco ISE uses two rules. One is based on DHCP information, and the other is based on HTTP.

Procedure 3 Add a custom profile

Although there are many pre-defined profiles, you may find that a device you want to profile doesn’t have an existing profile. You can create a new one using unique characteristics of the device. Review some of the existing profiles to get an idea of the options and methods available to you for device profiling.

The example below creates a profile for the Amazon Kindle Fire by using information obtained from the device’s DHCP request and from HTTP requests.

Step 1: Connect to https://ise-1.cisco.local.

Step 2: Mouse over Policy, and then, from the drop-down menu, choose Profiling.

Step 3: Click Add.

Step 4: Give the policy the name Kindle-Fire and a description.
Step 5: In the rules section, next to Conditions, click the + symbol, and then click Create New Condition (Advance Option).

Step 6: In the Expression list, next to DHCP, click the > symbol, and then choose host-name.

Step 7: In the second list, choose CONTAINS, and then, in the final box, enter kindle.

Step 8: Choose Certainty Factor Increases, and then set the value to 10.

Step 9: Click the gear icon at the end of the rule, and then select Insert new rule below.

Step 10: Next to Conditions, click the + symbol, and then click Create New Condition (Advance Option).

Step 11: In the Expression list, next to IP, click the > symbol, and then choose User-Agent.

Step 12: In the second list, choose CONTAINS, and then, in the final box, enter kindle.

Step 13: Choose Certainty Factor Increases, set the value to 20, and then click Submit.
Procedure 4 Examining the authentication log

Step 1: On the menu bar, mouse over Operations, and then choose Authentications. The authentication log displays. The default option is to display the last 20 records from the last 24 hours.

For devices that authenticated via MAB, the MAC address of the client is listed as the user name and the endpoint. For devices that authenticated via RADIUS over wireless or VPN, the user name is displayed.

If the device was able to be profiled, that information is displayed.

Step 2: In the details column of the MAB record, click the “paper with magnifying glass” icon. This displays detailed authentication information for the record.

In the Authentication Summary section, the network device lists the IP address and the port of the switch that the endpoint is connected to.

You can find additional details, such as the Identity Group and Identity Policy, in the Authentication Details section.

Procedure 5 Create custom authentication reports

The default authentication log view is limited to displaying only the most recent entries. To get in-depth reporting, you need to create a custom report.

Step 1: On the menu bar, mouse over Operations, and then, in the Reports section, choose Catalog.
Step 2: In the left pane, select AAA Protocol.

Step 3: Select RADIUS Authentication.

Step 4: Click Run. Different time ranges for producing the default report are displayed.

Step 5: If you wish to use one of the default time ranges, choose that time range.

If you wish to select a time range that is not listed, choose Query and Run. All the parameters available for the report display.

Step 6: After choosing the parameters you want, click Run to generate the report.

Procedure 6 Identify endpoints

Using information gleaned from the RADIUS and DHCP requests, Cisco ISE can identify what types of devices are connecting to the network. This can assist in determining the network security policy based on the type of device that is in use.

Step 1: On the menu bar, mouse over Operations, and then, in the Reports section, choose Catalog.

Step 2: In the left pane, click Endpoint. This displays the available endpoint reports.

Step 3: Select Endpoint Profiler Summary, and then click Run.
Step 4: Select the desired time period to run the report.

Step 5: Once the report is generated, you can view the details of a profiled endpoint by clicking the magnifying glass icon.

The details given in the summary section are the MAC address, the endpoint policy, and the identity group for the endpoint. Additional details, such as IP address and network access devices, are available in the Endpoint Details section. For wireless and remote-access VPN endpoints that authenticated with RADIUS, the user name is also listed.

Figure 3 - Endpoint profile summary

Figure 4 - Endpoint Details
Procedure 7 Create device-type reports

You can create reports to identify specific devices based on the identity groups configured previously. This example uses the group created to identify Apple iPads.

Step 1: On the menu bar, mouse over Operations, and then, in the Reports section, choose Catalog.

Step 2: In the left pane, click AAA Protocol.

Step 3: Select RADIUS Authentication.

Step 4: Click Run, and then choose Query and Run.

Step 5: For the identity group you want to query, next the Identity Group field, click Select. A search window appears.

Step 6: Leave the search field empty, and then click Search. The search returns all groups.

Step 7: Select the group Profiled:AppleiPad, and then click Apply.

Figure 5 - Sample report
Appendix A: Product List

Network Management

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity Management</td>
<td>Cisco Identity Services Engine Virtual Appliance</td>
<td>ISE-VM-K9=</td>
<td>1.1.2.145</td>
</tr>
<tr>
<td></td>
<td>Cisco ISE Base License for 2500 Endpoints</td>
<td>L-ISE-BSE-2500=</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ISE Base License for 3500 Endpoints</td>
<td>L-ISE-BSE-3500=</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ISE Base License for 5000 Endpoints</td>
<td>L-ISE-BSE-5K=</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ISE Base License for 10,000 Endpoints</td>
<td>L-ISE-BSE-10K=</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ISE Advanced 3-year License for 2500 Endpoints</td>
<td>L-ISE-ADV3Y-2500=</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ISE Advanced 3-year License for 3500 Endpoints</td>
<td>L-ISE-ADV3Y-3500=</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ISE Advanced 3-year License for 5000 Endpoints</td>
<td>L-ISE-ADV3Y-5K=</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ISE Advanced 3-year License for 10,000 Endpoints</td>
<td>L-ISE-ADV3Y-10K=</td>
<td></td>
</tr>
<tr>
<td>Network Management</td>
<td>Cisco Prime Infrastructure 1.1</td>
<td>R-PI-1.1-K9</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Prime Infrastructure 1.1 Software – 50 Device Base License</td>
<td>R-PI-1.1-50-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prime Infrastructure 1.1 Software – 100 Device Base License</td>
<td>R-PI-1.1-100-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prime Infrastructure 1.1 Software – 500 Device Base License</td>
<td>R-PI-1.1-500-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prime Infrastructure 1.1 Software – 1K Device Base License</td>
<td>R-PI-1.1-1K-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prime Infrastructure 1.1 Software – 2.5K Device Base License</td>
<td>R-PI-1.1-2.5K-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prime Infrastructure 1.1 Software – 5K Device Base License</td>
<td>R-PI-1.1-5K-K9</td>
<td></td>
</tr>
</tbody>
</table>

LAN Access Layer

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular Access Layer Switch</td>
<td>Cisco Catalyst 4507R+E 7-slot Chassis with 48Gbps per slot</td>
<td>WS-C4507R+E</td>
<td>3.3.0.SG(15.1-1SG) IP Base license</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500 E-Series Supervisor Engine 7L-E</td>
<td>WS-X45-SUP7L-E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500 E-Series 48 Ethernet 10/100/1000 (RJ45) PoE+ ports</td>
<td>WS-X4648-RJ45V+E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500 E-Series 48 Ethernet 10/100/1000 (RJ45) PoE+UPoE ports</td>
<td>WS-X4748-UPOE+E</td>
<td></td>
</tr>
</tbody>
</table>
Functional Area

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Catalyst 3750-X Series Stackable 48 Ethernet 10/100/1000 PoE+ ports</td>
<td>WS-C3750X-48PF-S</td>
<td>15.0(2)SE IP Base license</td>
</tr>
<tr>
<td>Cisco Catalyst 3750-X Series Stackable 24 Ethernet 10/100/1000 PoE+ ports</td>
<td>WS-C3750X-24P-S</td>
<td>15.0(2)SE IP Base license</td>
</tr>
<tr>
<td>Cisco Catalyst 3750-X Series Two 10GbE SFP+ and Two GbE SFP ports network module</td>
<td>C3KX-NM-10G</td>
<td></td>
</tr>
<tr>
<td>Cisco Catalyst 3750-X Series Four GbE SFP ports network module</td>
<td>C3KX-NM-1G</td>
<td></td>
</tr>
<tr>
<td>Cisco Catalyst 3560-X Series Standalone 48 Ethernet 10/100/1000 PoE+ ports</td>
<td>WS-C3560X-48PF-S</td>
<td>15.0(2)SE IP Base license</td>
</tr>
<tr>
<td>Cisco Catalyst 3560-X Series Standalone 24 Ethernet 10/100/1000 PoE+ ports</td>
<td>WS-C3560X-24P-S</td>
<td>15.0(2)SE IP Base license</td>
</tr>
<tr>
<td>Cisco Catalyst 3750-X Series Two 10GbE SFP+ and Two GbE SFP ports network module</td>
<td>C3KX-NM-10G</td>
<td></td>
</tr>
<tr>
<td>Cisco Catalyst 3750-X Series Four GbE SFP ports network module</td>
<td>C3KX-NM-1G</td>
<td></td>
</tr>
<tr>
<td>Cisco Catalyst 2960-S Series 48 Ethernet 10/100/1000 PoE+ ports and Two 10GbE SFP+ Uplink ports</td>
<td>WS-C2960S-48FPD-L</td>
<td>15.0(2)SE LAN Base license</td>
</tr>
<tr>
<td>Cisco Catalyst 2960-S Series 48 Ethernet 10/100/1000 PoE+ ports and Four GbE SFP Uplink ports</td>
<td>WS-C2960S-48FPS-L</td>
<td>15.0(2)SE LAN Base license</td>
</tr>
<tr>
<td>Cisco Catalyst 2960-S Series 24 Ethernet 10/100/1000 PoE+ ports and Two 10GbE SFP+ Uplink ports</td>
<td>WS-C2960S-24PD-L</td>
<td></td>
</tr>
<tr>
<td>Cisco Catalyst 2960-S Series 24 Ethernet 10/100/1000 PoE+ ports and Four GbE SFP Uplink ports</td>
<td>WS-C2960S-24PS-L</td>
<td></td>
</tr>
<tr>
<td>Cisco Catalyst 2960-S Series Flexstack Stack Module</td>
<td>C2960S-STACK</td>
<td></td>
</tr>
</tbody>
</table>

Wireless LAN Controllers

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Site, Remote Site, or Guest Controller</td>
<td>Cisco 5500 Series Wireless Controller for up to 500 Cisco access points</td>
<td>AIR-CT5508-500-K9</td>
<td>7.4.100.0</td>
</tr>
<tr>
<td></td>
<td>Cisco 5500 Series Wireless Controller for up to 250 Cisco access points</td>
<td>AIR-CT5508-250-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 5500 Series Wireless Controller for up to 100 Cisco access points</td>
<td>AIR-CT5508-100-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 5500 Series Wireless Controller for up to 50 Cisco access points</td>
<td>AIR-CT5508-50-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 5500 Series Wireless Controller for up to 25 Cisco access points</td>
<td>AIR-CT5508-25-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 5500 Series Wireless Controller for up to 12 Cisco access points</td>
<td>AIR-CT5508-12-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 5500 Series Wireless Controller for High Availability</td>
<td>AIR-CT5508-HA-K9</td>
<td></td>
</tr>
<tr>
<td>Functional Area</td>
<td>Product Description</td>
<td>Part Numbers</td>
<td>Software</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>On Site Controller, Guest Controller</td>
<td>Cisco 2500 Series Wireless Controller for up to 50 Cisco access points</td>
<td>AIR-CT2504-50-K9</td>
<td>7.4.100.0</td>
</tr>
<tr>
<td></td>
<td>Cisco 2500 Series Wireless Controller for up to 25 Cisco access points</td>
<td>AIR-CT2504-25-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 2500 Series Wireless Controller for up to 15 Cisco access points</td>
<td>AIR-CT2504-15-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 2500 Series Wireless Controller for up to 5 Cisco access points</td>
<td>AIR-CT2504-5-K9</td>
<td></td>
</tr>
</tbody>
</table>

Wireless LAN Access Points

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Access Points</td>
<td>Cisco 3600 Series Access Point Dual Band 802.11a/g/n and CleanAir with Internal Antennas</td>
<td>AIR-CAP3602I-x-K9</td>
<td>7.4.100.0</td>
</tr>
<tr>
<td></td>
<td>Cisco 3600 Series Access Point Dual Band 802.11a/g/n and CleanAir with External Antennas</td>
<td>AIR-CAP3602E-x-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 2600 Series Access Point Dual Band 802.11a/g/n and CleanAir with Internal Antennas</td>
<td>AIR-CAP2602I-x-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 2600 Series Access Point Dual Band 802.11a/g/n and CleanAir with External Antennas</td>
<td>AIR-CAP2602E-x-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 1600 Series Access Point Dual-band controller-based 802.11a/g/n with Internal Antennas</td>
<td>AIR-CAP1602I-x-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 1600 Series Access Point Dual-band controller-based 802.11a/g/n with External Antennas</td>
<td>AIR-CAP1602E-x-K9</td>
<td></td>
</tr>
</tbody>
</table>

Data Center Services

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall</td>
<td>Cisco ASA 5585-X Security Plus IPS Edition SSP-40 and IPS SSP-40 bundle</td>
<td>ASA5585-S40P40-K9</td>
<td>ASA 9.0(1)</td>
</tr>
<tr>
<td></td>
<td>Cisco ASA 5585-X Security Plus IPS Edition SSP-10 and IPS SSP-10 bundle</td>
<td>ASA5585-S10P10XK9</td>
<td>E4</td>
</tr>
</tbody>
</table>
Appendix B: Changes

This appendix summarizes the changes to this guide since the previous Cisco SBA series.

- We upgraded the Cisco ISE appliances to software version 1.1.2.145.
- We upgraded the Cisco Wireless LAN Controllers to software version 7.4.1.52.
- We upgraded the Cisco Catalyst 2960-S Series, 3560-X Series, and 3750-X Series switches to Cisco IOS version 15.0(2)SE.
- We upgraded the Cisco ASA 5500 Series firewall to software version 9.0(1).
- We upgraded the Cisco AnyConnect Secure Mobility Client 3.1.00495.
- We added Security Group Access (SGA) support to our low-impact mode deployment of 802.1X, using Security Group Tags (SGT) and Security Group Firewall (SG-FW) to enforce our access policy.
- We added EAP Chaining support for Microsoft Windows endpoints using the Cisco AnyConnect Mobility Client, allowing them to authenticate using both a machine certificate and a user certificate.