Software Configuration Guide for Cisco IOS Release 15.2(1)GC

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number: OL-24065-01
## CONTENTS

Preface vii

Audience vii

Organization viii

Related Documentation viii

Conventions ix

Commands in Task Tables x

Obtaining Documentation, Support, and Security Guidelines x

### CHAPTER 1

**Product Overview** 1-1

Transmit Flow Control 1-1

IP Mobility 1-1

New MANET Features 1-1

### CHAPTER 2

**IP Mobility** 2-1

Introduction to the Cisco Mobile Ad-hoc Network 2-1

Effective Networking in a MANET 2-2

Routing Challenges for MANETs 2-2

Highly Dynamic Routing Topologies 2-3

Topology Databases 2-3

Router-to-Radio Links 2-3

Link-status Signaling 2-3

Link-Quality Reporting 2-3

Link-Quality Metrics 2-3

Dynamic Reporting 2-4

Tunable Hysteresis 2-4

Neighbor Up/Down Signaling 2-4

Neighbor Sessions 2-5

OSPFv3 or EIGRP 2-5

Increased Performance 2-5

Dynamic Radio Capacities 2-6

Credit-based Flow Control 2-6

Metrics Scaling 2-6
### CHAPTER 3
**Using the Command Line** 3-1
- Accessing the CLI 3-1
- Performing Command Line Processing 3-1
- Performing History Substitution 3-2
- Understanding Cisco IOS Command Modes 3-2
  - Working with Frequently Used Command Modes 3-3
  - Using the “do” Command 3-4
- Getting a List of Commands and Syntax 3-5

### CHAPTER 4
**Configuring the Interfaces** 4-1
- Using the Interface Command 4-1
- Configuring FastEthernet Interface Features 4-3
  - Configuring an IP Address 4-3
  - Adding a Description for an Interface 4-3
- Monitoring and Maintaining Interfaces 4-4
  - Monitoring Interface and Controller Status 4-4
  - Clearing and Resetting the Interface Counters 4-6

### CHAPTER 5
**Introduction to Radio Aware Routing and MANET** 5-1
- Introduction to RAR 5-1
- MANET Protocols 5-2
- Understanding Virtual Templates 5-3
- Configuring QoS 5-3
  - QoS Configuration Types 5-3
  - CDR-based QoS 5-4
  - Standard IOS QoS 5-4
    - Traffic Class Configuration 5-4
    - Policy Map Configuration 5-4
    - Policy Assignment 5-5

### CHAPTER 6
**Understanding and Configuring DLEP** 6-1
- Prerequisite Reading 6-1
- Configuring DLEP 6-1
  - Configuring the Physical Interface 6-1
  - Disabling Virtual Template Subinterfaces 6-3
  - Creating the Virtual Template 6-3
  - Configuring the VMI 6-4
  - Configuring Optional Timers 6-6
CHAPTER 7

Configuring R2CP  7-1
Prerequisite Reading  7-1
R2CP Configuration  7-1
Configuring R2CP on the Router  7-1
   Configuring the Heartbeat Threshold  7-2
   Configuring the Node Terminate ACK Threshold  7-3
   Configuring the Node Terminate ACK Timeout  7-4
   Configuring the Port Number for the Server  7-5
   Configuring the Session Activity Timeout  7-6
   Configuring the Session Terminate ACK Threshold  7-7
   Configuring the Session Terminate ACK Timeout  7-8
   Configuring the Virtual Access Template Number  7-9
Verifying R2CP Configuration  7-10
   Displaying Radio Clients on an R2CP Interface  7-11
   Displaying R2CP Router Configuration  7-12
   Displaying Neighbors on an R2CP Interface  7-12

CHAPTER 8

Configuring PPPoE  8-1
Prerequisite Reading  8-1
PPPoE in a MANET  8-1
VMI in a MANET  8-2
   Link-Quality Metrics  8-3
   Neighbor Signaling  8-4
   PPPoE Credit-based Flow Control  8-5
   Point-to-Point Protocol over Ethernet  8-5
PPPoE and VMI  8-6
   Continuing with PPPoE Configuration  8-6
Configuring PPPoE for use with VMI  8-7
   Creating a Subscriber Profile  8-7
   Configuring PPPoE Service Selection  8-8
   Configuring PPPoE on an Ethernet Interface  8-9
   Configuring a Virtual Template Interface  8-10
   Mapping Outgoing Packets  8-12
Configuring Multicast Support 8-14
  Using Aggregate Mode 8-14
  Using Bypass Mode 8-16
  Enabling Multicast Support on a VMI 8-16
  Showing VMI Neighbors 8-18

CHAPTER 9
OSPFv3 Address Families 9-1
  Configuring OSPFv3 Address Families 9-1
    Enabling IPv6 9-2
    Enabling IPv6 on the Interface 9-3
    Configuring OSPFv3 for a Unicast Address Family 9-3
      Configuring OSPFv3 for an IPv6 Unicast Address Family 9-4
      Configuring OSPFv3 for an IPv4 Unicast Address Family 9-7
    Working with Multiple Address Families 9-11
  Redistributing IPv4 Routes 9-12
  Verifying OSPFv3 Address Families Configuration and Operation 9-14

CHAPTER 10
Configuring OSPFv3 for a MANET 10-1
  OSPFv3 for MANET 10-1
    Cooperative Radios 10-2
  Initial Configuration Procedures 10-2
    Enabling IPv6 Routing 10-2
    Enabling IPv6 on the Interface 10-3
    Configuring the OSPFv3 Process 10-4
    Configuring the Interface for OSPFv3 MANETs 10-5
  Radio Aware Routing in a MANET 10-8
    Prerequisites 10-8
    Link Metrics 10-8
      Fine-Tuning RAR Configurations 10-8
    Selective Peering for Efficiency 10-11
      Determining Peering Criteria 10-12
        Link Costs 10-12
        Enabling Selective Peering 10-12
        Preventing Full Peering over Poor Links 10-14
        Fine-Tuning Selective Peering 10-15
          Higher Costs without the Fine-Tuning 10-15
          Improved Cost-Effectiveness through Fine-Tuning 10-16
        Verifying OSPFv3 MANET Configuration and Operation 10-18
CHAPTER 11 Configuring EIGRP in a MANET 11-1

Understanding The Enhanced Interior Gateway Protocol 11-1
Using EIGRP Cost Metrics for VMI Interfaces 11-2
Understanding VMI Metric to EIGRP Metric Conversion 11-4
Understanding EIGRP Metric Dampening for VMI 11-5
Understanding Neighbor Up/Down Signaling for EIGRP 11-6
Enabling EIGRP for IPv4 11-7
Activating EIGRP IPv4 on a Configured VMI 11-8
Enabling EIGRP for IPv6 11-9
Setting the EIGRP Metric Change-based Dampening for VMI 11-11
Setting the EIGRP Interval-based Metric Dampening for VMI 11-12

APPENDIX A Command Reference A-1

Debug Commands A-1
List of Commands A-2
Commands A-3

APPENDIX B Technical Support Reference B-1

Default Settings for DLEP B-1
Configuring the Heartbeat Threshold B-2

APPENDIX C Acronyms and Glossary Terms C-1
Preface

This preface describes the audience, organization, and documentation conventions for this guide and provides information on how to obtain related documents and technical assistance.

This preface includes the following major sections:

- Audience, page vii
- Organization, page viii
- Related Documentation, page viii
- Conventions, page ix
- Obtaining Documentation, Support, and Security Guidelines, page x

Audience

This guide is for experienced network administrators responsible for configuring routers for use in a Mobile Ad-hoc Network (MANET).

This guide is also intended for system integrators incorporating the Cisco 5915 Embedded Services Router (ESR) or the Cisco 5940 ESR into their designs. This book documents the Cisco IOS.
Organization

This guide is organized into the following chapters:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Product Overview</td>
<td>Introduces new features</td>
</tr>
<tr>
<td>2</td>
<td>IP Mobility</td>
<td>Introduces Cisco IP mobility</td>
</tr>
<tr>
<td>3</td>
<td>Using the Command Line</td>
<td>Describes how to use the Command Line Interface (CLI)</td>
</tr>
<tr>
<td>4</td>
<td>Configuring the Interfaces</td>
<td>Describes configuring interfaces and verifying</td>
</tr>
<tr>
<td></td>
<td></td>
<td>connectivity</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Radio Aware Routing and MANET</td>
<td>Provides an overview of the protocols supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for MANET</td>
</tr>
<tr>
<td>6</td>
<td>Understanding and Configuring DLEP</td>
<td>Describes how to configure the Dynamic Link Exchange Protocol (DLEP)</td>
</tr>
<tr>
<td>7</td>
<td>Configuring R2CP</td>
<td>Describes how to configure the Router-to-Radio Control Protocol (R2CP)</td>
</tr>
<tr>
<td>8</td>
<td>Configuring PPPoE</td>
<td>Describes how to configure Point-to-Point Protocol over Ethernet (PPPoE)</td>
</tr>
<tr>
<td>9</td>
<td>OSPFv3 Address Families</td>
<td>Describes how to use OSPFv3 address families to route IPv6 packets over OSPFv3—using IPv4 or IPv6 addresses. This chapter also describes how to configure and use OSPFv3 address families in conjunction with MANETs and RAR</td>
</tr>
<tr>
<td>10</td>
<td>Configuring OSPFv3 for a MANET</td>
<td>Describes how to configure OSPFv3 in a MANET</td>
</tr>
<tr>
<td>11</td>
<td>Configuring EIGRP in a MANET</td>
<td>Describes how to configure the Enhanced Interior Gateway Routing Protocol (EIGRP) in a MANET</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Command Reference</td>
<td>Describes the commands referenced in this book</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Technical Support Reference</td>
<td>Provides information intended only for reference while working with a Cisco Support engineer</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Acronyms and Abbreviations</td>
<td>Defines acronyms and abbreviations used in this book</td>
</tr>
</tbody>
</table>

Related Documentation

Documentation for Cisco IOS Release 15.2(1)GC includes the following documents:

- Release Notes for Cisco IOS Software Release 15.2(1)GC
Preface

- Cisco 5940 ESR Technical Hardware Guide
- Cisco 5915 ESR Technical Hardware Guide

These documents are located at the following URL:

For all documentation related to the main release, Cisco IOS Release 15.2(1)T, see the following URL:

Conventions

This document uses the following typographical conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>boldface</strong> font</td>
<td>Commands, command options, and keywords are in <strong>boldface</strong>.</td>
</tr>
<tr>
<td><em>italic</em> font</td>
<td>Command arguments for which you supply values are in <em>italics</em>.</td>
</tr>
<tr>
<td>[    ]</td>
<td>Command elements in square brackets are optional.</td>
</tr>
<tr>
<td>{ x</td>
<td>y</td>
</tr>
<tr>
<td>[ x</td>
<td>y</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string because the string will include the quotation marks.</td>
</tr>
<tr>
<td><strong>screen</strong> font</td>
<td>System displays are in <strong>screen</strong> font.</td>
</tr>
<tr>
<td><strong>boldface</strong> <strong>screen</strong> font</td>
<td>Information you must enter verbatim is in <strong>boldface</strong> <strong>screen</strong> font.</td>
</tr>
<tr>
<td><em>italic</em> <strong>screen</strong> font</td>
<td>Arguments for which you supply values are in <em>italic</em> <strong>screen</strong> font.</td>
</tr>
<tr>
<td></td>
<td>This pointer highlights an important line of text in an example.</td>
</tr>
<tr>
<td>^</td>
<td>Represents the key labeled Control—for example, the key combination ^D in a screen display means hold down the Control key while you press the D key.</td>
</tr>
<tr>
<td>&lt; &gt;</td>
<td>Nonprinting characters such as passwords are in angle brackets.</td>
</tr>
</tbody>
</table>

Notes use the following conventions:

- **Note**
  Means *reader take note*. Notes contain helpful suggestions or references to material not covered in the publication.

Cautions use the following conventions:

- **Caution**
  Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.
Warnings use the following conventions:

Safety warnings appear throughout this publication in procedures that, if performed incorrectly, may cause harm to you or the equipment. A warning symbol precedes each warning statement.

**Commands in Task Tables**

Commands listed in task tables show only the relevant information for completing the task and not all available options for the command. For a complete description of a command, see Appendix A, “Command Reference.”

**Obtaining Documentation, Support, and Security Guidelines**

For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at the following URL:

Product Overview

This chapter provides the following major sections to introduce the new features supported in this release of the Cisco IOS software release:

- Transmit Flow Control, page 1-1
- IP Mobility, page 1-1

Transmit Flow Control

You can enable and disable transmit flow control on a per interface basis.

IP Mobility

Using a Mobile Ad-hoc Network (MANET) for router-to-radio communications addresses the challenges faced when merging Internet Protocol (IP) routing with mobile radio communications.

The Cisco solution for MANETs provides optimal performance by providing such capabilities as route selection based on real-time reporting from the radio network; fast convergence when nodes join and leave the network; integration of point-to-point, directional radio topologies with multi-hop routing; flow-controlled router-radio communications; OSPFv3 for MANET features; and more.

For more information on the Cisco MANET solution, see Chapter 2, “IP Mobility.”

New MANET Features

This section describes IP Mobility features introduced in this release.

- Dynamic Link Exchange Protocol (DLEP)—Similar to R2CP, DLEP is a Radio Aware Routing (RAR) protocol providing efficient routing over Radio Frequencies (RF). DLEP provides all of the functionality that R2CP provides plus features such as the following:
  - IP Multicast support across Broadcast Multi-Access (BMA)
  - DLEP server interaction with an existing MANET infrastructure
- DLEP server interaction with an existing Virtual Multipoint Interface (VMI)
- Supported interaction between DLEP (and/or the underlying MANET infrastructure) and capabilities such as Address Resolution Protocol (ARP) and Cisco IOS Timer Services

For more information, see Chapter 6, “Understanding and Configuring DLEP.”
This chapter provides the following major sections to describe the Cisco Mobile Ad-hoc Network (MANET):

- **Introduction to the Cisco Mobile Ad-hoc Network**, page 2-1
- **Router-to-Radio Links**, page 2-3
- **Link-Quality Reporting**, page 2-3
- **Neighbor Up/Down Signaling**, page 2-4
- **Credit-based Flow Control**, page 2-6

### Introduction to the Cisco Mobile Ad-hoc Network

The Cisco solution for MANETs provides the following capabilities:

- Optimal route selection based on Layer 2 feedback from the radio network
- Faster convergence when nodes join and leave the network
- Efficient integration of point-to-point, directional radio topologies with multi-hop routing
- Flow-controlled communications between each radio and its partner router
- OSPFv3 MANET features
  - OSPFv3 MANET Per Node Overlapping Relays
  - OSPFv3 MANET Selective Peering
- OSPFv3 Address Families
- VMI NBMA-Mode Multicast
- Dynamic Link Exchange Protocol (DLEP)—Similar to R2CP, DLEP is a Radio Aware Routing (RAR) protocol providing efficient routing over Radio Frequencies (RF). DLEP provides all of the functionality that R2CP provides plus features such as the following:
  - IP Multicast support across Broadcast Multi-Access (BMA)
  - DLEP server interaction with an existing MANET infrastructure
  - DLEP server interaction with an existing Virtual Multipoint Interface (VMI)
Chapter 2      IP Mobility

Introduction to the Cisco Mobile Ad-hoc Network

- Supported interaction between DLEP (and/or the underlying MANET infrastructure) and capabilities such as Address Resolution Protocol (ARP) and Cisco IOS Timer Services

- Router-Radio Control Protocol (R2CP)—R2CP is a RAR protocol providing efficient routing over Radio Frequencies (RF). R2CP provides a bidirectional, event-driven communication channel between router and modem. Event-driven communication reduces convergence time and decreases the overhead traffic that must be sent to the radio link. R2CP allows real-time link quality metrics on a neighbor-by-neighbor basis. R2CP supports Broadcast Multi-Access (BMA) radios that operate in rapidly changing mobile environments. For more information, see Chapter 7, “Configuring R2CP.”

- Mobile Ad-hoc Network (MANET)—Cisco MANETs for router-to-radio communications address the challenges faced when merging IP routing with mobile radio communications. For more information, see Chapter 5, “Introduction to Radio Aware Routing and MANET.”

- Virtual Multipoint Interfaces (VMI)—VMI provides services that map outgoing packets to the appropriate Point-to-Point Protocol over Ethernet (PPPoE) sessions. The VMI also provides a broadcast service that emulates a set of point-to-point connections as a point-to-multipoint interface with broadcast ability. For more information, see Chapter 8, “Configuring PPPoE” and Chapter 5, “Configuring Virtual Multipoint Interfaces.”

- Enhanced Interior Gateway Routing Protocol (EIGRP)—EIGRP integrates the capabilities of link-state protocols into distance-vector protocols. In addition to providing fast convergence, EIGRP is distinguished from other routing protocols by supporting variable-length subnet masks, partial updates, and multiple network layer protocols. For more information, see Chapter 11, “Configuring EIGRP in a MANET.”

Effective Networking in a MANET

The following are benefits of effective networking in a MANET environment:

- Routers and radios can interoperate efficiently, and without impacting operation of the radio network
- Radio point-to-point and router point-to-multipoint paradigms can be rationalized
- Radios can report status to routers for each link and each neighbor
- Routers can use this information to optimize routing decisions

Routing Challenges for MANETs

MANETs enable users deployed in areas with no fixed communications infrastructure to access critical voice, video, and data services. For example, soldiers in the field can employ unified communications, multimedia applications, and real-time information dissemination to improve situational awareness and respond quickly to changing battlefield conditions. Disaster managers can use video conferences, database access, and collaborative tools to coordinate multi-agency responses within an Incident Command System (ICS) framework. For event planners and trade show managers, MANETs represent a cost-effective way to accommodate mobile end users on a short-term basis. MANETs set the stage for more timely information sharing and faster, more effective decision-making.
Highly Dynamic Routing Topologies

In a Cisco MANET environment, highly mobile nodes communicate with each other across bandwidth-constrained radio links. An individual node includes both a radio and a network router, with the two devices interconnected over an Ethernet. Since these nodes can rapidly join or leave the network, MANET routing topologies are highly dynamic. Fast convergence in a MANET is challenging because the state of a node can change well before the event is detected by the normal timing mechanisms of the routing protocol.

Radio link quality in MANETs can vary dramatically because it can be affected by a variety of factors such as noise, fading, interference, and power fluctuation. As a result, avoiding congestion and determining optimal routing paths also pose significant challenges for the router network.

Topology Databases

Finally, directional radios that operate on a narrow beam tend to model the network as a series of physical point-to-point connections with neighbor nodes. This point-to-point model does not translate gracefully to multi-hop, multipoint router environments, as it increases the size of each router's topology database and reduces routing efficiency.

Router-to-Radio Links

Through the router-to-radio link, a radio can inform the router immediately when a node joins or leaves, and this enables the router to recognize topology changes more quickly than if it had to rely on timers. The link-status notification from the radio enables the router to respond faster to network topology changes. The radio passes metric information regarding the quality of a link to the router, enabling the router to more intelligently decide on which link to use.

Link-status Signaling

With link-status signaling provided by the router-to-radio link, applications such as voice and video work better because outages caused by topology changes are reduced or eliminated. Sessions are more stable.

Link-Quality Reporting

The quality of a radio link has a direct impact on throughput. The Cisco IOS software implements DLEP, R2CP. RFC5578, OSFPv3, and EIGRP such that the route cost to a neighbor is updated dynamically based on radio-reported metrics, thus allowing the best route to be selected within a given set of radio links.

Link-Quality Metrics

Each routing protocol receives raw, radio-link data and computes a composite quality metric per link. In computing these metrics, the router may consider the following factors:

- Maximum Data Rate (MDR) — theoretical MDR of radio link, in scaled bits per second (bps)
• Current Data Rate (CDR) — CDR achieved on the link, in scaled bps
• Latency — encountered transmission-delay packets, in milliseconds
• Resources — a percentage (0-100) indicating remaining resource availability (such as battery power)
• Relative Link Quality (RLQ) — a numeric value (0-100) representing relative quality, where 100 indicates the highest quality

Router metrics can be weighted during the configuration process to emphasize or de-emphasize particular characteristics. For example, if throughput is a particular concern, you can weight the throughput metric so that it is factored more heavily into the composite route cost. Similarly, a metric of no concern can be omitted from the composite calculation.

Dynamic Reporting

Link metrics change rapidly, which can result in a flood of trivial routing updates. In a worst-case scenario, the network churns while reacting to relentless, minor variations. To prevent such churn, the Cisco IOS software provides a tunable dampening mechanism, thereby allowing you to configure thresholds. Any change in metrics below a configured threshold is ignored.

When the routing protocol is OSPFv3 or EIGRP, the connection quality for a neighbor session is determined by characteristics of that interface. The routing protocol receives dynamic, raw, radio-ink characteristics and computes a composite metric that is used to reduce the effect of frequent routing changes.

Tunable Hysteresis

A tunable hysteresis mechanism allows you to adjust the threshold to the routing changes that occur when the router receives a signal that a new peer has been discovered, or that an existing peer is unreachable. The tunable metric is weighted and adjusted dynamically to account for the following characteristics:
• Current and Maximum Bandwidth
• Latency
• Resources
• Relative Link Quality (RLQ)

Individual weights can be deconfigured and all weights can be cleared so that the cost returns to the default value per interface type. Based on the routing changes, cost can be determined by the application of these metrics.

Neighbor Up/Down Signaling

MANETs are highly dynamic environments. Neighbors enter and exit radio range rapidly. Each time a node joins or leaves the network, routers must reconstruct the topology logically. Routing protocols typically track topology changes with the use of timer-driven “hello” messages or neighbor timeouts. MANETs, however, cannot rely on such mechanisms given unacceptably slow convergence.
Neighbor Sessions

Each radio-router pair is a roaming client (or potential neighbor), constantly seeking new neighbors while checking for the continued existence of those already established. Neighbor discovery occurs when one radio discovers another. Each time a radio-to-radio link is established (between one neighbor and another), the radio initiates a neighbor session with its local router. When this neighbor session is successfully created and becomes active at both ends, router-to-router communication ensues—thereby completing the successful formation of a new neighbor session.

The neighbor up/down signaling capability in the Cisco IOS software provides faster network convergence by using link-status signals received from the local radio. The local radio notifies the router each time a link to a neighbor is established (up) or terminated (down), as depicted in Figure 2-1. This change in link status occurs each time DLEP, R2CP, or RFC5578 creates or terminates a neighbor session.

**Figure 2-1 Up and Down Signaling Sequence**

OSPFv3 or EIGRP

The Cisco IOS routing protocol (OSPFv3 or EIGRP) responds immediately to each link-status signal by expediting a new adjacency (up—for a new neighbor) or tearing down an adjacency (down—for a neighbor suddenly lost). For example, if a vehicle drives behind a building and loses its connection, the router immediately senses the loss and establishes a new route to the vehicle through neighbors that are not blocked. This high-speed network convergence is essential for minimizing dropped voice calls and video disruptions.

When using VMI with RAR protocol and the link status changes (indicating a new or lost neighbor), the radio informs the router immediately of the topology change. Immediately upon receiving the link-status signal, the router declares the change and updates the routing tables.

Increased Performance

Link-status signaling provides the following benefits:
- Reduced routing delays
- Prevention of application time-outs
- Reliable and quick delivery of network-based applications and information over directional radio links
Credit-based Flow Control

The flow-control solution implements a credit-based mechanism documented in RFC 5578. When the PPPoE session is established, the radio can request a flow-controlled session. If the router acknowledges the request, all subsequent traffic must be flow-controlled. If a flow-control session has been requested and cannot be supported by the router, the session is terminated. Typically, both radio and router grant credits during session discovery. Once a device exhausts its credits, it must stop sending until additional credits have been granted. Credits can be added incrementally over the course of a session.

Metrics Scaling

High-performance radios use metrics scaling to meet high-speed link requirements. The radio can express the maximum and Current Data Rates (CDRs) with varying scalar values. Credit scaling allows a radio to change the default credit grant (or scaling factor) from 64 bytes to its default value.

You can use the `show vmi neighbor detail` command to display scalar values and maximum and current data rates (MDRs and CDRs).
Using the Command Line

This chapter describes the Command Line Interface (CLI) you use to configure platforms utilizing Cisco IOS 15.1(2) GC. This chapter includes the following major sections:

- Accessing the CLI, page 3-1
- Performing Command Line Processing, page 3-1
- Performing History Substitution, page 3-2
- Understanding Cisco IOS Command Modes, page 3-2
- Getting a List of Commands and Syntax, page 3-5

Note
Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Note
The examples in this chapter are not specific to the Cisco 5940.

Accessing the CLI

You can access the Cisco IOS CLI through the Gigabit Ethernet 0/0 interface using Secure Shell (SSH) or Telnet to establish a Virtual Teletype (VTY) session with the router.

After accessing the CLI on the router, the screen displays the following message:

Press Return for Console prompt

Router> enable
Password:< >
Router#

Performing Command Line Processing

Commands are not case-sensitive. You can abbreviate commands and parameters if the abbreviations contain enough letters to be different from any other currently available commands or parameters.

You can scroll through the last 20 commands stored in the history buffer and enter or edit a command at the prompt. Table 3-1 lists the keyboard shortcuts for entering and editing commands.
Performing History Substitution

The history buffer stores the last 20 command lines you entered. History substitution enables you to access these command lines without retyping them. Table 3-2 lists the history substitution commands.

Table 3-2 History Substitution Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-P or the Up Arrow key¹</td>
<td>Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall older commands successively.</td>
</tr>
<tr>
<td>Ctrl-N or the Down Arrow key¹</td>
<td>Returns to more recent commands in the history buffer after commands have been recalled with Ctrl-P or the Up Arrow key. Repeat the key sequence to recall more recent commands.</td>
</tr>
<tr>
<td>Router# show history</td>
<td>Lists the last several commands you entered in EXEC mode.</td>
</tr>
</tbody>
</table>

¹. The Arrow keys function only on ANSI-compatible terminals such as VT100s.

Understanding Cisco IOS Command Modes

The Cisco IOS user interface has many different modes: user EXEC, privileged EXEC (enable), global configuration, interface, subinterface, and protocol-specific modes. The commands available to you are dependent on your current command mode. To get a list of the commands in a given mode, enter a question mark (?) at the system prompt. See the Getting a List of Commands and Syntax section for more information.

Note

Working with Frequently Used Command Modes

When you start a session, you begin in user mode, also called user EXEC mode. Only a small subset of commands are available in EXEC mode. To have access to all commands, you must enter privileged EXEC mode, also called enable mode. To access the privileged EXEC mode, you must enter a password. When you are in the privileged EXEC mode, you can enter any EXEC command or access global configuration mode. Most EXEC commands are one-time commands, such as `show` commands, which display the current configuration status, and `clear` commands, which reset counters or interfaces. The EXEC commands are not saved when the Cisco router is rebooted.

The configuration modes allow you to make changes to the running configuration. If you save the configuration, these commands are stored when you reboot the router. You must start in global configuration mode. From global configuration mode, you can enter interface configuration mode, subinterface configuration mode, and a variety of protocol-specific modes.

Table 3-3 lists and describes frequently used Cisco IOS modes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>What You Use It For</th>
<th>How to Access</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>To connect to remote devices, change terminal settings on a temporary basis, perform basic tests, and display system information.</td>
<td>Log in.</td>
<td>Router&gt;</td>
</tr>
<tr>
<td>Privileged EXEC (enable)</td>
<td>To set operating parameters. The privileged command set includes the commands in user EXEC mode, as well as the <code>configure</code> command. Use the <code>configure</code> command to access the other command modes.</td>
<td>From user EXEC mode, enter the <code>enable</code> command and the enable password (if a password has been configured).</td>
<td>Router#</td>
</tr>
<tr>
<td>Global configuration</td>
<td>To configure features that affect the system as a whole, such as the system time or router name.</td>
<td>From privileged EXEC mode, enter the <code>configure terminal</code> command.</td>
<td>Router(config)#</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>To enable or modify the operation of a Gigabit Ethernet, Fast Ethernet, E1/T1, or smart serial interface with <code>interface</code> commands.</td>
<td>From global configuration mode, enter the <code>interface</code> <code>type</code> <code>location</code> command.</td>
<td>Router(config-if)#</td>
</tr>
</tbody>
</table>

The Cisco IOS command interpreter, called the EXEC, interprets and runs the commands you enter. You can abbreviate commands and keywords by entering just enough characters to make the command unique from other commands. For example, you can abbreviate the `show` command to `sh` and the `configure terminal` command to `conf t`.

When you type `exit`, the router backs out one level. To exit configuration mode completely and return to privileged EXEC mode, press `Ctrl-Z`.

When you type `end`, the router returns to EXEC mode.
Using the “do” Command

EXEC-level commands, such as the `show` commands, are not listed on the same modes as the subcommand modes, such as SEU configuration. Use this command to execute EXEC commands (such as show, clear, and debug commands) while configuring your routing device. After the EXEC command is executed, the system will return to the configuration mode you were using.

To execute an EXEC-level command from global configuration mode or any configuration submode, use the `do` command in any configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# do command</code></td>
<td>Allows execution of an EXEC-level command from global configuration mode or any configuration submode.</td>
</tr>
</tbody>
</table>

The following example implements the `show r2cp config` command from global configuration mode:

```
Router(config)# do show r2cp config
R2CP Configuration from FastEthernet0/1
R2CP Server IP=12.12.12.101:28672
  node heartbeat missed threshold=3
  node terminate ack timeout=1000 milliseconds
  node terminate ack missed threshold=3
  session activity timeout=1 minutes
  session terminate ack timeout=1000 milliseconds
  session terminate ack missed threshold=3
No Virtual Template defined.

Router(config)#
```
Getting a List of Commands and Syntax

In any command mode, you can get a list of available commands by entering a question mark (?). To obtain a list of commands that begin with a particular character sequence, enter those characters followed by the question mark (?). Do not include a space before the question mark. This form of help is called word help, because it completes a word for you.

To list keywords or arguments, enter a question mark in place of a keyword or argument. Include a space before the question mark. This form of help is called command syntax help, because it reminds you which keywords or arguments are applicable based on the command, keywords, and arguments you have already entered.

Router# show cdp ?
  entry Information for specific neighbor entry
  interface CDP interface status and configuration
  neighbors CDP neighbor entries
  traffic CDP statistics
  | Output modifiers
  <cr>

Router#

To redisplay a command you previously entered, press the Up Arrow key or Ctrl-P. You can continue to press the Up Arrow key to see the last 20 commands you entered.

Tip

If you are having trouble entering a command, check the system prompt and enter the question mark (?) for a list of available commands. You might be in the wrong command mode or using incorrect syntax.

Type exit to return to the previous mode. Press Ctrl-Z or enter the end command in any mode to immediately return to privileged EXEC mode.
CHAPTER 4

Configuring the Interfaces

This chapter provides the following major sections to describe how to configure and verify a router-to-modem interface.

- Using the Interface Command, page 4-1
- Configuring FastEthernet Interface Features, page 4-3
- Monitoring and Maintaining Interfaces, page 4-4

Note

For complete command syntax and usage, see Appendix A, “Command Reference.”

Using the Interface Command

The following general instructions apply to all interface-configuration processes:

**Step 1**
At the privileged EXEC prompt, enter the **configure terminal** command to enter global configuration mode:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#
```

**Step 2**
In global configuration mode, enter the **interface** command. Identify the interface type and the number of the connector on the interface card. The following example shows how to select a fastEthernet interface of 0:

```
Router(config)# interface fastEthernet 0/0
Router(config-if)#
```

Note

You do not need to add a space between the interface type and interface number. For example, in the preceding line you can specify either fastEthernet0/0 or fastEthernet 0/0.

**Step 3**
Interface numbers are assigned at the factory at the time of installation. Enter the **show interfaces** EXEC command to see a list of all interfaces installed on your router. A report is provided for each interface that your router supports, as shown in this display:

```
Router(config-if)# Ctrl-Z
Router# show interfaces
FastEthernet0/0 is up, line protocol is up
    Hardware is MV96340 Ethernet, address is 001f.ca0f.6508 (bia 001f.ca0f.6508)
```
Step 4  Follow each interface command with the interface-configuration commands your particular interface requires. The commands you enter define the protocols and applications that run on the interface. The commands are collected and applied to the interface command until you enter another interface command or press Ctrl-Z to exit interface configuration mode and return to privileged EXEC mode.

Step 5  You can use the exit command to exit interface configuration mode and return to global configuration mode.

Step 6  After you configure an interface, you can check the status of the interface by using the EXEC show commands listed in the “Monitoring and Maintaining Interfaces” section on page 4-4.
Configuring FastEthernet Interface Features

The following subsections describe fastEthernet interface configuration procedures:

- Configuring an IP Address, page 4-3
- Adding a Description for an Interface, page 4-3

Configuring an IP Address

To configure an IPv4 address and subnet mask on an interface, perform the following task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface fastEthernet interface</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address ip-addr mask</td>
</tr>
</tbody>
</table>

Example

The following example shows how to set the IPv4 address 10.108.1.27 with subnet mask 255.255.255.0 on interface fastEthernet 0/0:

Router(config)# interface fastEthernet 0/0
Router(config-if)# ip address 10.108.1.27 255.255.255.0

Adding a Description for an Interface

You can add a description about an interface to help you remember its function. The description displays in the output of the following commands: show configuration, show running-config, and show interfaces.

To add a description for an interface, enter the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# description string</td>
<td>Adds a description for an interface.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to add the description Operations on fastEthernet interface 0/0:

Router(config)# interface fastEthernet 0/0
Router(config-if)# description Operations
Router(config-if)# end
This example shows how to verify the configuration:

```
Router# show interface fastEthernet 0/0
FastEthernet0/0 is up, line protocol is up
    Hardware is MV96340 Ethernet, address is 001f.ca0f.6508 (bia 001f.ca0f.6508)
    Description: OPERATIONS ACCESS - DO NOT CHANGE ADDRESS
    Internet address is 10.108.1.27/24
    MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
    reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation ARPA, loopback not set
    Keepalive set (10 sec)
    Full-duplex, 100Mb/s, 100BaseTX/FX
    ARP type: ARPA, ARP Timeout 04:00:00
    Last input 00:00:02, output 00:00:09, output hang never
    Last clearing of "show interface" counters never
    Input queue: 0/75/38054/0 (size/max/drops/flushes); Total output drops: 0
    Queueing strategy: fifo
    Output queue: 0/40 (size/max)
    5 minute input rate 0 bits/sec, 0 packets/sec
    5 minute output rate 0 bits/sec, 0 packets/sec
    3289500 packets input, 1652322462 bytes
    Received 18932 broadcasts (0 IP multicasts)
    0 runts, 0 giants, 37924 throttles
    1933147 input errors, 0 CRC, 0 frame, 0 overrun, 1933147 ignored
    0 watchdog
    0 input packets with dribble condition detected
    133400 packets output, 13054277 bytes, 0 underruns
    0 output errors, 0 collisions, 0 interface resets
    0 unknown protocol drops
    0 babbles, 0 late collision, 0 deferred
    0 lost carrier, 0 no carrier
    0 output buffer failures, 0 output buffers swapped out
```

Monitoring and Maintaining Interfaces

The following sections describe how to monitor and maintain the interfaces:

- Monitoring Interface and Controller Status, page 4-4
- Clearing and Resetting the Interface Counters, page 4-6

Monitoring Interface and Controller Status

The router contains commands that you can enter at the EXEC prompt to display information about the interface. The following table lists some of the interface monitoring commands. You can display the full list of `show` commands by entering the `show ?` command at the EXEC prompt. These commands are fully described in the `Interface Command Reference`. 
To display information about the interface, enter any of the following commands in user EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router#show interfaces [type interface]</td>
<td>Displays the status and configuration of a specific interface or all interfaces.</td>
</tr>
<tr>
<td>Router#show running-config</td>
<td>Displays the configuration currently running in RAM.</td>
</tr>
<tr>
<td>Router#show protocols [type interface]</td>
<td>Displays the global (system-wide) and interface-specific status of any configured protocol.</td>
</tr>
<tr>
<td>Router#show version</td>
<td>Displays the hardware configuration, software version, names and sources of configuration files, and boot images.</td>
</tr>
</tbody>
</table>

This example shows how to display information about fastEthernet interface 0/0:

```plaintext
Router# show interfaces fastEthernet 0/0
FastEthernet0/0 is up, line protocol is up
    Hardware is MV96340 Ethernet, address is 001f.ca0f.6508 (bia 001f.ca0f.6508)
    Description: OPERATIONS ACCESS - DO NOT CHANGE ADDRESS
    Internet address is 10.108.1.27/24
    MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
    reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation ARPA, loopback not set
    Keepalive set (10 sec)
    Full-duplex, 100Mb/s, 100BaseTX/FX
    ARP type: ARPA, ARP Timeout 04:00:00
    Last input 00:00:25, output 00:00:03, output hang never
    Last clearing of "show interface" counters never
    Input queue: 0/75/38054/0 (size/max/drops/flushes); Total output drops: 0
    Queueing strategy: fifo
    Output queue: 0/40 (size/max)
    5 minute input rate 0 bits/sec, 0 packets/sec
    5 minute output rate 0 bits/sec, 0 packets/sec
    3289537 packets input, 1652328854 bytes
    Received 18949 broadcasts (0 IP multicasts)
    0 runts, 0 giants, 37924 throttles
    1933147 input errors, 0 CRC, 0 frame, 0 overrun, 1933147 ignored
    0 watchdog
    0 input packets with dribble condition detected
    133525 packets output, 13066527 bytes, 0 underruns
    0 output errors, 0 collisions, 0 interface resets
    0 unknown protocol drops
    0 babbles, 0 late collision, 0 deferred
    0 lost carrier, 0 no carrier
    0 output buffer failures, 0 output buffers swapped out

Router#  
```
### Clearing and Resetting the Interface Counters

To clear the interface counters shown with the `show interfaces` command, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router#clear counters {type interface}</code></td>
<td>Clears interface counters.</td>
</tr>
</tbody>
</table>

This example shows how to clear and reset the counters on fastEthernet interface 0/0:

```
Router#clear counters fastEthernet 0/0
Clear "show interface" counters on this interface [confirm] y
Router#
*Sep 30 08:42:55: %CLEAR-5-COUNTERS: Clear counter on interface fastEthernet0/0
by vty1 (171.69.115.10)
Router#
```

The `clear counters` command (without any arguments) clears all the current interface counters from all interfaces.

**Note**

The `clear counters` command does not clear counters retrieved with SNMP; it clears only those counters displayed with the EXEC `show interfaces` command.
Introduction to Radio Aware Routing and MANET

After configuring the interfaces and verifying connectivity as described in Chapter 4, “Configuring the Interfaces,” you will need to configure each interface with the appropriate protocol.

This chapter provides the following major sections to describe Radio Aware Routing (RAR) for use in a Mobile Ad-hoc Network (MANET):

- Introduction to RAR, page 5-1
- MANET Protocols, page 5-2
- Understanding Virtual Templates, page 5-3
- Configuring QoS, page 5-3

Introduction to RAR

The Radio Aware Routing (RAR) (Figure 5-1) strategy relies on a hierarchy of routing interfaces. At the top-most level is the Virtual Multipoint Interface, or VMI. The VMI provides a single, unified representation of the MANET to routing protocols (OSPFv3 or EIGRP), and to the rest of the attached topology.

For traffic originating outside the MANET, the VMI represents the ingress and egress point to and from the MANET. As traffic comes into the router, destined for the MANET, the router passes the traffic to the VMI interface. The VMI, in turn, fans the traffic out (based on destination) to the correct Virtual-Access interface, where QoS policy can be applied to queue the traffic based on the radio characteristics of the next hop. After applying (potentially different) QoS parameters on the Virtual-Access interfaces, the Virtual-Access interface funnels the traffic to the physical interface for transmission to the radio device.

The Virtual-Access interfaces are logically “underneath” the VMI interface. Each Virtual-Access interface represents a “destination” which is either a routing next-hop, or a multicast group. The QoS logic and associated queues on the Virtual-Access interfaces facilitate the fine-grained QoS. The Virtual-Access interface that exists for each next-hop or group gives the ability to vary QoS behavior on a hop-by-hop (or group-by-group) basis.

At the bottom of the interface hierarchy is the actual physical interface connecting the router and radio.
MANET Protocols

The protocols described in this guide support Mobile Ad-hoc Networks (MANETs). MANET-routing protocols provide signaling among MANET routers, including scope-limited flooding and point-to-point delivery of MANET routing protocol signaling in a multi-hop network. Packets may be unicast or multicast and use any appropriate transport protocol.

The RAR protocols supported Cisco IOS Release 15.2(1) GC provide the capabilities listed in Table 5-1.

### Table 5-1 RAR Protocols

<table>
<thead>
<tr>
<th>Feature</th>
<th>RFC 5578</th>
<th>Router-to-Radio Control Protocol (R2CP)</th>
<th>Dynamic Link Exchange Protocol (DLEP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>Point-to-Point Protocol over Ethernet (PPPoE)</td>
<td>UDP</td>
<td>UDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet Transport</td>
<td>Point-to-Point</td>
<td>Broadcast Multi-access</td>
<td>Broadcast Multi-access</td>
</tr>
<tr>
<td></td>
<td>Point to Multipoint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Control</td>
<td>Credit or Rate-based</td>
<td>Rate-based</td>
<td>Rate-based</td>
</tr>
<tr>
<td>Convergence Events</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Metrics</td>
<td>Defined in RFC 5578</td>
<td>Same metrics as RFC 5578, draft-dubois-r2cp-00</td>
<td>Same metrics as RFC 5578, draft-ietf-manet-dlep-00</td>
</tr>
<tr>
<td>Modem Support</td>
<td>Split-stack PPPoE to router</td>
<td>UDP to router Transparent bridge on data path</td>
<td>UDP to router Transparent bridge on data path</td>
</tr>
<tr>
<td>RFC Status</td>
<td>Informational</td>
<td>Informational (submitted, not yet approved)</td>
<td>Standards-track (submitted, not yet approved)</td>
</tr>
</tbody>
</table>
Understanding Virtual Templates

Each RAR protocol requires a virtual template. The virtual template is used to create Virtual-Access interfaces. All Virtual-Access interfaces inherit the attributes of the virtual template. When configuring each RAR protocol, you will assign a virtual-template number. To configure virtual templates for each RAR protocol, see the chapter in this manual on the specific protocol.

Configuring QoS

When using RAR, QoS is applied at the Virtual-Access interfaces. Defining and enforcing QoS profiles is configured on a next-hop basis. Traffic prioritization to one peer system should not impact traffic prioritization to other peers.

Configuring Quality of Service (QoS) varies per protocol:

- MQC—For RFC 5578, DLEP, and R2CP, Modular QoS CLI (MQC) configurations are supported. Full MQC configurations include remarking, shaping, and policing.
- CDR-based QoS—For DLEP and R2CP, QoS configuration is based entirely on Current Data Rate (CDR) shaping.

For more information about CDR-based QoS configurations, see CDR-based QoS, page 5-4.

QoS Configuration Types

Configuring Quality of Service (QoS) can follow one of various approaches:

- CDR-based QoS, page 5-4
CDR-based QoS

The only QoS configuration required for DLEP or R2CP is the shaping definition. When DLEP or R2CP detects a new neighbor, a set of metrics is exchanged from radio to router. These metrics include a Current Data Rate (CDR) value. When configuring rate-based shaping, the router shapes the traffic destined for each neighbor based on its CDR rate.

Reporting CDR Values

When using rate-based shaping, the parent policy includes a percent value for the shaping command. This allows the radio to report a different CDR value and the shaping to adapt to the new value on the router. While you can use a static bandwidth on the shaping command, it may not represent the link properly, resulting in traffic that can queue unpredictably.

Traffic Queues

Traffic queues are based on the child policy-map while the parent policy-map shapes the traffic. Most of the configuration is a normal hierarchical configuration.

For more information on normal hierarchical configuration, go to the following URL:

Standard IOS QoS

Standard QoS configuration requires the following:

1. Traffic Class Configuration, page 5-4
2. Policy Map Configuration, page 5-4
3. Policy Assignment, page 5-5

For general information on configuring QoS, go to the following URL:

Traffic Class Configuration

You must configure traffic classes for QoS. Traffic classes contain a traffic class name, a match command, and instructions on how to evaluate match commands. Once configured, you can assign the QoS policy to the Virtual-Access interface.

For information on how to configure classes, refer to the following URL:

Policy Map Configuration

You must configure policy maps for QoS. After configuring policies, you can attach the policies to a Virtual-Access interface.
For information on how to configure policies, refer to the following URL:

Policy Assignment

After configuring traffic classes and policy maps, you can assign policies to the virtual interface. You assign policies to the Virtual-Access interface to apply QoS shaping to the previously created virtual template. Policies are applied to every peer that the RAR protocol creates.

For information on how to assign policies to the virtual template, refer to the following URL:
After configuring the interfaces and verifying connectivity as described in Chapter 4, “Configuring the Interfaces,” the next step is to configure the protocols for those interfaces. The Dynamic Link Exchange Protocol (DLEP) is a radio aware routing (RAR) protocol.

Prerequisite Reading

Read the following chapters before selecting the appropriate protocol per each interface configured in Chapter 4, “Configuring the Interfaces,”:

- Chapter 5, “Introduction to Radio Aware Routing and MANET”

Note: See Appendix A, “Command Reference” for detailed command reference.

Configuring DLEP

This chapter provides the following major sections for initiating, verifying, and managing all aspects of Dynamic Link Exchange Protocol (DLEP) on an interface:

- Configuring the Physical Interface, page 6-1
- Disabling Virtual Template Subinterfaces, page 6-3
- Creating the Virtual Template, page 6-3
- Configuring the VMI, page 6-4
- Verifying DLEP Configuration, page 6-6
- Technical Support for DLEP, page 6-8

Configuring the Physical Interface

In addition to configuring a description, IP address, and other interface characteristics, you must specify that the physical interface use a virtual template which is the source for all of the DLEP Virtual-Access interfaces.

To configure the virtual template for an interface, perform the following procedure. For completeness sake, this procedure shows ....
SUMMARY STEPS

1. enable
2. configure terminal
3. interface FastEthernet0/1
4. description description
5. ip address A.B.C.D a.b.c.d
6. no ip proxy-arp
7. ip dlep vtemplate number
8. duplex auto
9. speed auto
10. ipv6 enable

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Enter configuration commands, one per line.</td>
<td></td>
</tr>
<tr>
<td>End with CNTRL/Z.</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface fastethernet number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface fastethernet0/1</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> description description</td>
<td>Specifies a description for the interface.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# description DLEP RADIO CONNECTION</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ip address A.B.C.D a.b.c.d</td>
<td>Specifies the IP address and subnet mask for the physical interface.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.10.10.4 255.255.255.0</td>
<td>In this example, the IP address is set to 10.10.10.4 and the subnet mask is 255.255.255.0.</td>
</tr>
</tbody>
</table>
Disabling Virtual Template Subinterfaces

By default, Cisco IOS configures virtual-access interfaces as subinterfaces. You must enter the `no virtual-template subinterface` command so that the virtual access interfaces are not configured as sub-interfaces.

Creating the Virtual Template

Perform this task to create the DLEP virtual template:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface virtualtemplate *number*
4. ip unnumbered FastEthernet0/1
5. exit
Configuring DLEP

**CHAPTER 6      UNDERSTANDING AND CONFIGURING DLEP**

**CONCEPT**

**Command or Action**

**Purpose**

**Step 1**

`enable`

Enables privileged EXEC mode.

- Enter your password if prompted.

**Example:**

Router> enable  
Router#

**Step 2**

`configure terminal`

Enters global configuration mode.

**Example:**

Router# configure terminal  
Enter configuration commands, one per line.  
End with CTRL/Z.  
Router(config)#

**Step 3**

`interface virtualtemplate number`

Creates a virtual template for DLEP.

**Example:**

Router(config)# interface virtualtemplate 13  
Router(config-if)#

This example creates virtual template 13.

**Step 4**

`ip unnumbered FastEthernet0/1`

Specifies the physical interface where the VMI retrieves the IP address for the physical interface.

**Example:**

Router(config-if)# ip unnumbered FastEthernet0/1

**Step 5**

`exit`

Exits the current mode.

**Example:**

Router(config-if)# exit  
Router(config)#

---

**Configuring the VMI**

The VMI is the upper level in the RAR environment that communicates with the routing protocols. It is important to set the IP address to unnumbered and to the physical interface so that the VMI knows where to get the IP address for each virtual-access interface.

It is equally important to set the physical interface correctly, so that DLEP knows where to insert the packets for delivery.

To configure the VMI, perform the following procedure:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface vmi number
4. ip unnumbered FastEthernet0/1
5. physical-interface Fast-Ethernet0/1
### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable            | Enables privileged EXEC mode.  
   | • Enter your password if prompted. |
| **Example:**                 |         |
| Router> enable               |         |
| Router#                      |         |
| **Step 2** configure terminal| Enters global configuration mode. |
| **Example:**                 |         |
| Router# configure terminal    |         |
| Enter configuration commands, one per line.  
   End with CNTL/Z.  
   Router(config)# |         |
| **Step 3** interface vmi number | Creates a VMI and enters interface configuration mode.  
   | This example creates VMI1. |
| **Example:**                 |         |
| Router(config)# interface vmi1 |         |
| Router(config-if)#           |         |
| **Step 4** ip unnumbered FastEthernet0/1 | Specifies the physical interface where the VMI retrieves the IP address for the physical interface. |
| **Example:**                 |         |
| Router(config-if)# ip unnumbered FastEthernet0/1 |         |
| **Step 5** physical-interface FastEthernet0/1 | Specifies where the Virtual-Access interface inserts packets for delivery. |
| **Example:**                 |         |
| Router(config-if)# physical-interface FastEthernet0/1 |         |
| **Step 6** ipv6 enable       | Enables IPv6 on the VMI |
| **Example:**                 |         |
| Router(config-if)# ipv6 enable |         |
**Configuring Optional Timers**

DLEP has several optional timers that you can configure. Cisco recommends that you use the defaults settings for these timers. These commands are documented in the Appendix A, “Command Reference.”

- `ip dlep set heartbeat-threshold count`, page A-16
- `ip dlep set nbr-activity-timeout seconds`, page A-17
- `ip dlep set nbr-down-ack-timeout seconds`, page A-18
- `ip dlep set peer-terminate-ack-timeout seconds`, page A-19

**Verifying DLEP Configuration**

The following examples show how to verify DLEP configuration on the router interface:

- Displaying Information for DLEP Clients, page 6-7
- Displaying DLEP Router Configuration, page 6-7
- Displaying Neighbors on a DLEP Interface, page 6-7

*Note* You can display general information per the following examples:

- For DLEP clients:
  
  ```
  Router> show dlep clients 
  FastEthernet  FastEthernet IEEE 802.3
  Vlan          Vlan IEEE 802.1q
  |             Output modifiers
  <cr>
  ```

- For the DLEP server configuration:
  
  ```
  Router> show dlep config 
  FastEthernet  FastEthernet IEEE 802.3
  Vlan          Vlan IEEE 802.1q
  |             Output modifiers
  <cr>
  ```

- For DLEP neighbors:
Displaying Information for DLEP Clients

This example shows how to display router-to-radio peer associations on DLEP interfaces.

Router> show dlep clients

DLEP Clients for all interfaces:

DLEP Clients for Interface FastEthernet0/1
DLEP Server IP=12.12.12.101:55555 Sock=1

DLEP Client IP=12.12.12.7:38681
Peer ID=1, Virtual template=13
Description: DLEP_Radio_Sim_1
Peer Timers (all values in seconds):
  Heartbeat=10, Dead Interval=40, Terminate ACK=10
Neighbor Timers (all values in seconds):
  Activity timeout=0, Neighbor Down ACK=10

Displaying DLEP Router Configuration

This example shows how to display configuration details for the DLEP server configuration:

Router> show dlep config

DLEP Configuration for FastEthernet0/1.5
DLEP Server IP=10.10.5.4:55555
Virtual template=13
Missed heartbeat threshold=4, Peer Terminate ACK timeout=10
Neighbor activity timeout=0, Neighbor Down ACK timeout=10

Displaying Neighbors on a DLEP Interface

This example shows how to display information about established neighbor sessions on DLEP interfaces.

Router> show dlep neighbors

DLEP Neighbors for Interface FastEthernet0/1
DLEP Server IP=12.12.12.101:55555 Sock=1

SID=2150  MAC_Address=1122.3344.5566
Addresses:
  No Layer 3 addresses are specified.
Metrics:  rlq=100  resources=100  latency=250 milliseconds
cdr=100000000 bps  mdr=100000000 bps
Technical Support for DLEP

Contact your Cisco Support engineer for any troubleshooting support you may need. The following information is available for your reference:

- Debug Commands, page A-1
- Default Settings for DLEP, page B-1

⚠️ Caution ⚠️ We do not recommend that you change the default DLEP configuration unless a Cisco Support engineer instructs you to do so.
Configuring R2CP

After configuring the interfaces and verifying connectivity as described in Chapter 4, “Configuring the Interfaces,” the next step is configuring the protocols for those interfaces.

Prerequisite Reading

Read the following chapters before selecting the appropriate protocol per interface:

- Chapter 5, “Introduction to Radio Aware Routing and MANET”

Note


R2CP Configuration

This chapter provides the following major sections for initiating, verifying, and managing all aspects of R2CP on an interface:

- Configuring R2CP on the Router, page 7-1
- Verifying R2CP Configuration, page 7-10

Configuring R2CP on the Router

When configuring R2CP on the router you must perform the following tasks:

- Configuring the Heartbeat Threshold, page 7-2
- Configuring the Node Terminate ACK Threshold, page 7-3
- Configuring the Node Terminate ACK Timeout, page 7-4
- Configuring the Port Number for the Server, page 7-5
- Configuring the Session Activity Timeout, page 7-6
- Configuring the Session Terminate ACK Threshold, page 7-7
- Configuring the Session Terminate ACK Timeout, page 7-8
- Configuring the Virtual Access Template Number, page 7-9
Note
You must perform all tasks to properly configure R2CP on the router.

Configuring the Heartbeat Threshold

Perform this task to configure the heartbeat threshold on the router. The heartbeat threshold determines the number of heartbeats allowed by R2CP before declaring a failed association.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface [type slot/port]
4. ip r2cp heartbeat-threshold count
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**  
enable | Enables privileged EXEC mode. |
| **Example:**  
Router> enable  
Router# | • Enter your password if prompted. |
| **Step 2**  
configure terminal | Enters global configuration mode. |
| **Example:**  
Router# configure terminal  
Enter configuration commands, one per line.  
End with CNTL/Z.  
Router(config)# | |
| **Step 3**  
interface [type slot/port] | Enters interface configuration mode. |
| **Example:**  
Router(config)# interface fastEthernet 0/1  
Router(config-if)# | |
### Configuring the Node Terminate ACK Threshold

Perform this task to configure the node terminate acknowledgement (ACK) threshold. You configure the node terminate acknowledgement threshold to set the number of missed and/or lost node acknowledgements performed before declaring the terminate effort complete.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface [type slot/port]
4. **ip r2cp node-terminate-ack-threshold** value
5. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Enter configuration commands, one per line.</td>
<td></td>
</tr>
<tr>
<td>End with CNTL/Z.</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring the Node Terminate ACK Timeout

Perform this task to configure the node terminate acknowledgement timeout. You configure the node terminate acknowledgement timeout to set the duration allowed when waiting for the node terminate acknowledgement.

**Note**

The duration of the node terminate acknowledgement timeout is set in milliseconds.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface [type slot/port]`
4. `ip r2cp node-terminate-ack-timeout milliseconds`
5. `exit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Enter configuration commands, one per line.</td>
<td></td>
</tr>
<tr>
<td>End with CNTL/Z.</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface [type slot/port]</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface fastEthernet 0/1</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip r2cp node-terminate-ack-timeout milliseconds</td>
<td>Sets the node terminate acknowledgement timeout. The node-terminate ACK timeout ranges between 100 and 5000 milliseconds.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip r2cp node-terminate-ack-timeout 2200</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the Port Number for the Server

Perform this task to configure the port number for the server. You configure the port number for the server to set the port number on which the server listens.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface [type slot/port]
4. ip r2cp port number
5. exit
Chapter 7
Configuring R2CP

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Enter configuration commands,</td>
<td></td>
</tr>
<tr>
<td>one per line.</td>
<td></td>
</tr>
<tr>
<td>End with CNTL/Z.</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface [type slot/port]</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface</td>
<td></td>
</tr>
<tr>
<td>fastEthernet 0/1</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip r2cp port number</td>
<td>Sets the port number on which the server listens. The port number ranges between 1 and 65534.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip r2cp</td>
<td></td>
</tr>
<tr>
<td>port 5858</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring the Session Activity Timeout**

Perform this task to configure the session activity timeout. You configure the session activity timeout to set a guard timer duration in order to catch stale sessions. The session activity timeout terminates when the timer expires.

**Note**
The duration of the session activity timeout is set in seconds.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface [type slot/port]
4. ip r2cp session-activity-timeout seconds
Chapter 7      Configuring R2CP

5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Enter configuration commands, one per line.</td>
<td></td>
</tr>
<tr>
<td>End with CNTRL/Z.</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface [type slot/port]</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface fastEthernet 0/1</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip r2cp session-activity-timeout seconds</td>
<td>Sets the session activity timeout. The session activity guard</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip r2cp</td>
<td></td>
</tr>
<tr>
<td>session-activity-timeout 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the Session Terminate ACK Threshold

Perform this task to configure the session terminate acknowledgement threshold. You configure the session terminate acknowledgement threshold to set the number of missed and/or lost session acknowledgements allowed before declaring the terminate effort complete.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface [type slot/port]
4. ip r2cp session-terminate-ack-threshold value
5. exit
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Enter configuration commands, one per line.</td>
<td></td>
</tr>
<tr>
<td>End with CTRL/Z.</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface [type slot/port]</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface fastEthernet 0/1</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip r2cp session-terminate-ack-threshold value</td>
<td>Sets the threshold of missed session-terminate acknowledgements (ACKs). The session-terminate ACK threshold ranges between 1 and 5 sessions.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip r2cp</td>
<td></td>
</tr>
<tr>
<td>session-terminate-ack-threshold 4</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring the Session Terminate ACK Timeout**

Perform this task to configure the session terminate acknowledgement timeout. You configure the session terminate acknowledgement timeout to set the time duration allowed when waiting for the session terminate acknowledgement.

**Note**

The duration of the node terminate acknowledgement timeout is set in milliseconds.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface [type slot/port]
4. `ip r2cp session-terminate-ack-timeout milliseconds`
5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  • Enter your password if prompted. |
| Example:  
  `Router> enable`  
  `Router#` | |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example:  
  `Router# configure terminal`  
  Enter configuration commands, one per line.  
  End with CNTL/Z.  
  `Router(config)#` | |
| **Step 3** interface [type slot/port] | Enters interface configuration mode. |
| Example:  
  `Router(config)# interface fastEthernet 0/1`  
  `Router(config-if)#` | |
| **Step 4** `ip r2cp session-terminate-ack-timeout milliseconds` | Sets the session-terminate ACK guard timer duration. The session-terminate ACK timeout ranges between 100 and 5000 milliseconds. |
| Example:  
  `Router(config-if)# ip r2cp session-terminate-ack-timeout 2400`  
  `Router(config-if)#` | |
| **Step 5** `exit` | Exits the current mode. |
| Example:  
  `Router(config-if)# exit`  
  `Router(config)#` | |

Configuring the Virtual Access Template Number

Perform this task to configure the virtual access template number. You configure the virtual access template number to determine which virtual template to use when creating the virtual access interface.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface [type slot/port]`
4. `ip r2cp virtual-template number`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  * Enter your password if prompted. |
| Example:  
  Router> enable  
  Router# | |
| **Step 2** configure
terminal | Enters global configuration mode. |
| Example:  
  Router# configure
terminal  
  Enter configuration commands, one per line.  
  End with CNTL/Z.  
  Router(config)# | |
| **Step 3** interface [type slot/port] | Enters interface configuration mode. |
| Example:  
  Router(config)# interface fastEthernet 0/1  
  Router(config-if)# | |
| **Step 4** ip r2cp virtual-template number | Sets the virtual access template number. The virtual access template number ranges between 0 and 2147483647. |
| Example:  
  Router(config-if)# ip r2cp virtual-template 224  
  Router(config-if)# | |
| **Step 5** exit | Exits the current mode. |
| Example:  
  Router(config-if)# exit  
  Router(config)# | |

Verifying R2CP Configuration

The following procedures are available for verifying the R2CP configuration on the router:

- Displaying Radio Clients on an R2CP Interface, page 7-11
- Displaying R2CP Router Configuration, page 7-12
- Displaying Neighbors on an R2CP Interface, page 7-12

Note: You can show general details related to Fast Ethernet, VLAN, and output modifiers for all R2CP clients.
Example

General R2CP Client Details

The following example shows how to display general radio client details:

Router> `show r2cp clients ?`
FastEthernet  FastEthernet IEEE 802.3
Vlan          Vlan IEEE 802.1q
|             Output modifiers
|<cr>

Displaying Radio Clients on an R2CP Interface

You show radio clients to exchange metric information with the radio for either all radio clients on all interfaces or for one radio client on a specific interface.

Examples

All Radio Clients on all Interfaces

The following example shows how to display all radio clients on all interfaces:

Router> `show r2cp clients`
R2CP Clients for all interfaces:

R2CP Clients for Interface FastEthernet0/1
R2CP Server IP=12.12.12.101:28672 Sock=1

R2CP Client ID=1 IP=12.12.12.7:5500
node heartbeat missed count=0
node heartbeat interval=5 seconds
node heartbeat missed threshold=3
node terminate ack missed count=0
node terminate ack timeout=1000 milliseconds
node terminate ack missed threshold=3
session activity timeout=1 minutes
session terminate ack timeout=1000 milliseconds
session terminate ack missed threshold=3
No Virtual Template defined.

One Radio Client on a Specific Interface

The following example shows how to display one radio client on a specific interface:

Router> `show r2cp fastEthernet 0/1`
r2cp clients fastEthernet 0/1

R2CP Clients for Interface FastEthernet0/1
R2CP Server IP=12.12.12.101:28672 Sock=1

R2CP Client ID=1 IP=12.12.12.7:5500
node heartbeat missed count=0
node heartbeat interval=5 seconds
node heartbeat missed threshold=3
node terminate ack missed count=0
node terminate ack timeout=1000 milliseconds
node terminate ack missed threshold=3
session activity timeout=1 minutes
session terminate ack timeout=1000 milliseconds
session terminate ack missed threshold=3
No Virtual Template defined.
Displaying R2CP Router Configuration

You can display router configuration information details for the R2CP interface. These configuration details include the following components:

- Heartbeat threshold
- Node-terminate acknowledgement (ACK) threshold
- Node-terminate ACK timeout
- Port number
- Session-activity timeout
- Session-terminate ACK threshold
- Session-terminate ACK timeout
- Virtual-access template number

Example

Displaying R2CP Router Configuration

The following example shows how to display configuration details for the R2CP interface:

Router> `show r2cp config`
R2CP Configuration from FastEthernet0/1

R2CP Server IP=12.12.12.101:28672
node heartbeat missed threshold=3
node terminate ack timeout=2200 milliseconds
node terminate ack missed threshold=2
session activity timeout=3 minutes
session terminate ack timeout=1000 milliseconds
session terminate ack missed threshold=5
virtual template=220

Displaying Neighbors on an R2CP Interface

You show neighbors on an R2CP interface to display information about the neighbors with which the radio can talk from a Layer 3, next-hop perspective. Show R2CP neighbors allows you to get metric data associated with a next-hop, so you can better understand the paths that the traffic is taking.

Example

Displaying Two Radio Neighbors/Sessions

This example shows how to display a configuration that includes two radio neighbors/sessions:

Router> `show r2cp neighbors`

R2CP Neighbors for all interfaces:

R2CP Neighbors for Interface FastEthernet0/1
R2CP Server IP=12.12.12.101:28672 Sock=1

    Global Session ID=101
    MAC Address: 1122.3344.5566
    Vlan ID: 0
Metrics: \( rlq=100 \) \( resources=100 \) \( latency=10 \) milliseconds
\( cdr=100000 \) Kbps \( mdr=100000 \) Kbps

Global Session ID=102
MAC Address: 2222.3344.5566
Vlan ID: 0
Metrics: \( rlq=100 \) \( resources=100 \) \( latency=10 \) milliseconds
\( cdr=100000 \) Kbps \( mdr=100000 \) Kbps
Configuring PPPoE

After configuring the interfaces and verifying connectivity as described in Chapter 4, “Configuring the Interfaces,” the next step is configuring the protocols.

Prerequisite Reading

Read the following chapter before selecting a RAR protocol:

- Chapter 5, “Introduction to Radio Aware Routing and MANET”

Note

You can use only one RAR protocol per interface.

This chapter contains the following sections:

- PPPoE in a MANET, page 8-1
- VMI in a MANET, page 8-2
- PPPoE and VMI, page 8-6
- Configuring PPPoE for use with VMI, page 8-7
- Showing VMI Neighbors, page 8-18

PPPoE in a MANET

The Cisco MANET solution employs PPPoE sessions to enable intra-nodal communications between a router and its partner radio. Each radio initiates the PPPoE session as soon as the radio establishes a radio link to another radio. After the PPPoE sessions are active, a PPP session is established end-to-end (router-to-router.) This is duplicated each time a radio establishes a new radio link. VMI on the router can aggregate multiple PPPoE sessions and multiplex them to look like a single interface to the routing processes. Underneath VMI are virtual access interfaces that are associated with each of the PPP/PPPoE connections.

If you are running multicast applications that require the virtual-access interfaces to be exposed to applications above L2 directly, you can configure VMI to operate in bypass mode. Most multicast applications require that the virtual-access interfaces be exposed directly to the routing protocols to ensure that multicast Reverse Path Forwarding (RPF) can operate as expected. When you use the bypass mode, you must define a VMI to handle presentation of cross-layer signals such as neighbor up, neighbor down, and metrics. Applications are aware of the actual underlying virtual-access interfaces and send
packets to the underlying virtual-access interfaces directly. Additional information is required on the virtual template configuration. Operating VMI in bypass mode can cause databases in the applications to be larger than would normally be expected because knowledge of more interfaces is required for normal operation.

A PPPoE session is established between a router and a radio on behalf of every other router/radio neighbor located in the MANET. These L2 sessions are the means by which radio network status gets reported to the Layer 3 (L3) processes in the router. Figure 8-1 illustrates the PPPoE session exchange between mobile routers and directional radios in a MANET.

This capability requires that an RFC-5578 compliant radio be connected to a router using Ethernet. The router always considers the Ethernet link to be up. If the radio side of the link goes down, the router waits until a routing update time-out occurs to declare that the route is down and then updates the routing table. Figure 8-2 illustrates a simple router-to-radio link topology. The routing protocols optimized for VMI PPPoE are EIGRP (IPv4, IPv6) and OSPFv3 (IPv4, IPv6).

VMI provides services that map outgoing packets to the appropriate PPPoE sessions based on the next-hop forwarding address for that packet. VMI also provides a broadcast service that emulates a set of point-to-point connections as a point-to-multipoint interface with broadcast ability. When a packet with a multicast address is forwarded through VMI in aggregate mode, VMI replicates the packet and sends it using the virtual-access interface(s) to each of its neighbors.
Directional radios are frequently used in applications that require greater bandwidth, increased power-to-transmission range, or reduced probability of detection. These radios operate in a point-to-point mode, and generally have no broadcast capability. On the other hand, the routing processes in Cisco’s MANET solution operate most efficiently when viewing the network link as point-to-multipoint, with broadcast capability. For the router, modeling the MANET as a collection of point-to-point nodes has a dramatic impact on the size of its internal database.

VMI within the router can aggregate all of the per-neighbor PPPoE sessions from the Radio Ethernet connection. VMI maps the sessions to appear to L3 routing protocols and applications as a single point-to-multipoint, multi-access, broadcast-capable network. However, VMI preserves the integrity of the PPPoE sessions on the radio side, so that each point-to-point connection can have its own Quality of Service (QoS) queue.

VMI also relays the link quality metric and neighbor up/down signaling from the radio to the routing protocols. Currently, VMI signals are used by Enhanced Interior Gateway Routing Protocol (EIGRP) (for IPv4 and IPv6 neighbors) and OSPFv3 (for IPv6 neighbors).

Link-Quality Metrics

The quality of a radio link has a direct impact on the throughput. The PPPoE protocol has been extended to provide a process by which a router can request report link quality metric information. Cisco’s OSFPv3 and EIGRP implementations are enhanced so that the route cost to a neighbor is dynamically updated based on metrics reported by the radio, thus allowing the best route to be chosen within a given set of radio links.

The routing protocols receive raw radio link data, and compute a composite quality metric for each link. In computing these metrics, the router may consider the following factors:

- Maximum Data Rate—the theoretical maximum data rate of the radio link, in scaled bits per second
- Current Data Rate—the current data rate achieved on the link, in scaled bits per second
- Latency—the transmission delay packets encounter, in milliseconds
- Resources—a percentage (0-100) that can represent the remaining amount of a resource (such as battery power)
- Relative Link Quality—a numeric value (0-100) representing relative quality, with 100 being the highest quality

On the router, metrics can be weighted during the configuration process to emphasize or de-emphasize particular characteristics. For example, if throughput is a particular concern, you can weight the throughput metric so that it is factored more heavily into the composite route cost. Similarly, a metric of no concern can be omitted from the composite calculation.

Link metrics can change rapidly, often by very small degrees, which could result in a flood of meaningless routing updates. In a worst case scenario, the network churns almost continuously as it struggles to react to minor variations in link quality. To alleviate this concern, Cisco provides a tunable dampening mechanism that allows the user to configure threshold values. Any metric change that falls below the threshold is ignored. The quality of a connection to a neighbor varies, based on various characteristics of the interface when OSPFv3 or EIGRP is used as the routing protocol. The routing protocol receives dynamic raw radio link characteristics and computes a composite metric that is used to reduce the effect of frequent routing changes.
A tunable hysteresis mechanism allows you to adjust the threshold to the routing changes that occur when the router receives a signal that a new peer has been discovered, or that an existing peer is unreachable. The tunable metric is weighted and adjusted dynamically to account for the following characteristics:

- Current and Maximum Bandwidth
- Latency
- Resources
- Relative Link Quality (RLQ)

Individual weights can be deconfigured and all weights can be cleared so that the cost returns to the default value for the interface type. Based on the routing changes that occur, cost can be determined by the application of these metrics.

**Neighbor Signaling**

MANETs are highly dynamic environments. Nodes may move into, or out of, radio range at a fast pace. Each time a node joins or leaves the network, topology must be logically reconstructed by the routers. Routing protocols normally use timer-driven “hello” messages or neighbor time-outs to track topology changes, but MANETs reliance on these mechanisms can result in unacceptably slow convergence.

Neighbor up/down signaling capability provides faster network convergence by using link-status signals generated by the radio. The radio notifies the router each time a link to another neighbor is established or terminated by the creation and termination of PPPoE sessions. In the router, the routing protocols (OSPFv3 or EIGRP) respond immediately to these signals by expediting the formation of a new adjacency (for a new neighbor) or tearing down an existing adjacency (if a neighbor is lost). For example, if a vehicle drives behind a building and loses its connection, the router immediately senses the loss and establishes a new route to the vehicle through neighbors that are not blocked. This high speed network convergence is essential for minimizing dropped voice calls and disruptions to video sessions.

When VMI with PPPoE is used and a partner node has left or a new one has joined, the radio informs the router immediately of the topology change. Upon receiving the signal, the router immediately declares the change and updates the routing tables.

The signaling capability provides the following benefits:

- Reduces routing delays and prevents applications from timing out
- Enables network-based applications and information to be delivered reliably and quickly over directional radio links
- Provides faster convergence and optimal route selection so that delay-sensitive traffic such as voice and video are not disrupted
- Reduces impact on radio equipment by minimizing the need for internal queuing/buffering
- Provides consistent Quality of Service (QoS) for networks with multiple radios

The messaging allows for flexible rerouting when necessary because of the following conditions:

- Noise on the Radio links
- Fading of the Radio links
- Congestion of the Radio links
- Radio link power fade
- Utilization of the Radio
Figure 8-3 illustrates the signaling sequence that occurs when radio links go up and down.

Figure 8-3  Up and Down Signaling Sequence

PPPoE Credit-based Flow Control

Each radio initiates a PPPoE session with its local router as soon as the radio establishes a link to another radio. Once the PPPoE sessions are active for each node, a PPP session is then established end-to-end (router-to-router). This process is duplicated each time a radio establishes a new link.

The carrying capacity of each radio link may vary due to location changes or environmental conditions, and many radio transmission systems have limited buffering capabilities. To minimize the need for packet queuing in the radio, Cisco has implemented extensions to the PPPoE protocol that enable the router to control traffic buffering in congestion situations. Implementing flow-control on these router-to-radio sessions also allows the use of fair queuing.

The flow control solution utilizes a credit-granting mechanism documented in RFC 5578. When the PPPoE session is established, the radio can request a flow-controlled session. If the router acknowledges the request, all subsequent traffic must be flow-controlled. If a flow control session has been requested and cannot be supported by the router, the session is terminated. Typically, both the radio and the router initially grant credits during session discovery. Once a device exhausts its credits, it must stop sending until additional credits have been granted. Credits can be added incrementally over the course of a session.

High performance radios that require high-speed links use metrics scaling. The radio can express the maximum and current data rates with different scaler values. Credit scaling allows a radio to change the default credit grant (or scaling factor) of 64 bytes to its default value. You can view the maximum and current data rates and the scalar value set by the radio from the output of the `show vmi neighbor detail` command.

Point-to-Point Protocol over Ethernet

Cross-layer feedback for router-radio integration radio aware routing takes advantage of the functions defined in RFC 5578. RFC 5578 is an Internet Engineering Task Force (IETF) standard that defines Point-to-Point Protocol over Ethernet (PPPoE) extensions for Ethernet-based communications between a router and a device such as a mobile radio that operates in a variable-bandwidth environment and has limited buffering capabilities. These extensions provide a PPPoE session based mechanism for sharing radio network status such as link-quality metrics and establishing flow control between a router and an RFC 5578-capable radio.
An RFC 5578 radio initiates an L2 PPPoE session with its adjacent router on behalf of every router and radio neighbor discovered in the network. These L2 sessions are the means by which radio network status for each neighbor link is reported to the router. The radio establishes correspondence between each PPPoE session and each link to a neighbor.

**PPPoE and VMI**

To use the PPPoE and Virtual Multipoint Interface (VMI) features described in this document, a radio device that implements the PPPoE functionality described in the RFC 2516 and RFC 5578 is required. OSPF enhancements are not tied to the PPPoE/VMI implementations, and as such do not require such radio devices.

VMI provides services that map outgoing packets to the appropriate PPPoE sessions based on the next-hop forwarding address for that packet. VMI also provides a broadcast service that emulates a set of point-to-point connections as a point-to-multipoint interface with broadcast ability. When a packet with a multicast address is forwarded through VMI in aggregate mode, VMI replicates the packet and sends it using the virtual-access interface(s) to each of its neighbors.

*Note*

VMI operates in aggregate mode by default. This release supports VMI in aggregate mode and also in bypass mode.

Directional radios are frequently used in applications that require greater bandwidth, increased power-to-transmission range, or reduced probability of detection. These radios operate in a point-to-point mode, and generally have no broadcast capability.

Conversely, the routing processes in the Cisco MANET solution operate most efficiently when viewing the network link as point-to-multipoint with broadcast capability. For the router, modeling the MANET as a collection of point-to-point nodes has a dramatic impact on the size of its internal database.

VMI within the router can aggregate all of the per-neighbor PPPoE sessions from the radio Ethernet connection. VMI maps the sessions to appear to L3 routing protocols and applications as a single point-to-multipoint, multi-access, broadcast-capable network. However, VMI preserves the integrity of the PPPoE sessions on the radio side, so that each point-to-point connection can have its own Quality of Service (QoS) queue.

VMI also relays the link-quality metric and neighbor up/down signaling from the radio to the routing protocols. Currently, VMI signals are used by Enhanced Interior Gateway Routing Protocol (EIGRP) (for IPv4 and IPv6 neighbors) and OSPFv3 (for IPv6 neighbors).

**Continuing with PPPoE Configuration**

This chapter provides the following major sections to describe how to configure Point-to-Point Protocol over Ethernet (PPPoE) on a specific interface.

- Configuring PPPoE for use with VMI, page 8-7
- Showing VMI Neighbors, page 8-18

*Note*

Configuring PPPoE for use with VMI

This section provides the tasks required to configure PPPoE for use with Virtual Multipoint Interface (VMI):

- Creating a Subscriber Profile, page 8-7
- Configuring PPPoE Service Selection, page 8-8
- Configuring PPPoE on an Ethernet Interface, page 8-9
- Configuring a Virtual Template Interface, page 8-10
- Mapping Outgoing Packets, page 8-12
- Configuring Multicast Support, page 8-14

Creating a Subscriber Profile

Perform this task to configure a subscriber profile for PPPoE service selection.

Note

Configuring a subscriber profile for PPPoE service selection is required for VMI to function properly.

SUMMARY STEPS

1. enable
2. configure terminal
3. exit
4. subscriber authorization enable

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1:</td>
<td></td>
</tr>
<tr>
<td>1. enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2:</td>
<td></td>
</tr>
<tr>
<td>2. configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Configuring PPPoE Service Selection

Perform this task to associate the subscriber profile with a PPPoE profile. In this configuration, the Broadband Access (BBA) group name must match the subscriber profile name defined in the subscriber profile.

Note
In this example, *manet_radio* serves as the subscriber profile name.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. `bba-group pppoe {group-name | global}`
4. virtual-template `template-number`
5. `service profile subscriber-profile-name [refresh minutes]`
6. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> `bba-group pppoe {group-name</td>
<td>global}`</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# <code>bba-group pppoe pppoe_group_1</code></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 8      Configuring PPPoE

Configuring PPPoE for use with VMI

Configuring PPPoE on an Ethernet Interface

Perform this task to assign a PPPoE profile to an Ethernet interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface [type slot/port]
4. pppoe enable [group group-name]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> virtual-template template-number</td>
<td>Specifies the virtual template required for cloning virtual-access interfaces. All PPPoE ports using this PPPoE profile will use this virtual template.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# virtual-template 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> service profile subscriber-profile-name [refresh minutes]</td>
<td>Assigns a subscriber profile to a PPPoE profile.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# service profile subscriber_1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>(Optional) Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring PPPoE for use with VMI

## Configuring a Virtual Template Interface

Perform this task to configure a virtual-template interface. The virtual-template interface is required to clone configurations. For each VMI neighbor, a new virtual-access interface will be created dynamically.

### SUMMARY STEPS

1. enable
2. configure terminal
3. no virtual-template subinterface
4. policy-map policy-map-name
5. class class-default
6. fair-queue
7. exit
8. interface virtual-template 1
9. ip unnumbered vmi1
10. service-policy output FQ
11. keepalive 60 20
12. end

---

### Command or Action | Purpose
--- | ---
**Step 3** interface [type slot/port] | Specifies an interface type and enters interface configuration mode. Valid interfaces include the following interface types:
- Fast Ethernet interface
- Ethernet
- Fast Ethernet
- Gigabit Ethernet
- VLAN or VLAN subinterface

**Example:**

Router(config)# interface fastethernet 1/0

**Step 4** pppoe enable [group group-name] | Enables PPPoE sessions on the interface or subinterface.

**Example:**

Router(config-if)# pppoe enable group pppoe_group_1

**Step 5** end | (Optional) Exits the configuration mode and returns to privileged EXEC mode.

**Example:**

Router(config-if)# end
## Chapter 8  Configuring PPPoE

### Configuring PPPoE for use with VMI

#### Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>no virtual template subinterface</code></td>
<td>Disables the virtual template on the subinterface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# no virtual template subinterface</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>policy-map policy-map-name</code></td>
<td>Enters policy map configuration mode and creates, or modifies, a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pmap)# policy-map FQ</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>class class-default</code></td>
<td>Specifies one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Class Name for the policy you are about to create or change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Default Class (also known as a Class-default Class) for general policy configuration</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pmap)# class class-default</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>fair-queue</code></td>
<td>Enables Weighted Fair Queueing (WFQ) in the policy-map.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pmap)# fair-queue</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>exit</code></td>
<td>Exits the current mode and returns to configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pmap)# exit</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)#</code></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>interface virtual-template number</code></td>
<td>Creates a virtual-template interface for configuration and dynamic application to virtual-access interfaces.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface virtual-template 1</code></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>ip unnumbered interface-type interface-number</code></td>
<td>Enables IP processing of IPv4 on the interface without assigning an explicit IP address.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip unnumbered vmi1</code></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><code>service-policy output policy-map-name</code></td>
<td>Attaches a policy map to an input interface, Virtual Circuit (VC), or output interface. This policy map will serve as the service policy for that interface or VC.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# service-policy output FQ</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring PPPoE for use with VMI

Chapter 8  Configuring PPPoE

Example Configuration

```plaintext
no virtual-template subinterface

! policy-map FQ
 class class-default
    fair-queue

! interface Virtual-Template1
 ip unnumbered vmi1
 keepalive 60 20
 service-policy output FQ
!end
```

Mapping Outgoing Packets

Perform this task so that VMI can map outgoing packets to the appropriate PPPoE sessions. VMI will use the next-hop forwarding address from each outgoing packet perform this mapping.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface vmi interface-number
4. ip address ip_addr subnet_mask
5. physical-interface interface-type/slot
6. end
### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface vmi number</td>
<td>Creates a VMI interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# interface vmi1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip address ip_addr isubnet_mask</td>
<td>Specifies the IP address and subnet mask for the VMMI interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# ip address 10.2.2.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> physical-interface interface-type/slot</td>
<td>Creates the physical subinterface to be associated with VMI on the router.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# physical-interface fa0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>(Optional) Exits the configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Examples

The following examples show the IP address coordination needed between virtual-template configuration and VMI configuration.

#### VMI in Aggregate Mode for IPv6

The following example shows the configuration of VMI in aggregate mode for IPv6.

```plaintext
interface Virtual-Template1
ipv6 enable
service-policy output FQ
!
interface vmi1
ipv6 enable
physical-interface FastEthernet0/0
!```
Configuring PPPoE for use with VMI

Chapter 8  Configuring PPPoE

8-14

Configuring PPPoE in Aggregate Mode for IPv4

The following example shows the configuration of VMI in aggregate mode for IPv4.

interface Virtual-Template1
  ip unnumbered vmi1
  service-policy output FQ
!
interface vmi1
  ip address 10.2.2.1 255.255.255.0
  physical-interface FastEthernet0/0
!

Configuring PPPoE for use with VMI in Aggregate Mode for IPv4 and IPv6

The following example shows the configuration of VMI in aggregate mode for IPv4 and IPv6.

interface Virtual-Template1
  ip unnumbered vmi1
  ipv6 enable
  service-policy output FQ
!
interface vmi1
  ip address 10.2.2.1 255.255.255.0
  ipv6 enable
  physical-interface FastEthernet0/0
!

Configuring Multicast Support

This section identifies the recommended modes and tasks for working with multicast:

- Using Aggregate Mode, page 8-14
- Using Bypass Mode, page 8-16
- Enabling Multicast Support on a VMI, page 8-16

Using Aggregate Mode

VMI operates in aggregate mode by default. All of the virtual-access interfaces created by PPPoE sessions are aggregated logically under the configured VMI. Applications above Layer 2 (L2), such as Enhanced Interior Gateway Routing Protocol (EIGRP) and OSPFv3, should be defined only on VMI. Packets sent to VMI are forwarded to the correct virtual-access interface(s). Aggregate mode VMIs operate in Non-Broadcast Multiple Access (NBMA) mode. Multicast traffic is forwarded only to the NBMA neighbors where a listener for that group is present. This is the preferred mode when operating in PIM sparse mode.

Note

NBMA multicasting only supports IPv4 and sparse mode.

Perform this task to configure interface vmi1 to operate in NBMA mode and PIM sparse mode:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface vmi interface-number
4. `ip address ip_addr subnet_mask`
5. `ip pim nbma-mode`
6. `ip pim sparse-mode`
7. `load-interval number`
8. `physical-interface interface-type/slot`
9. `end`

**Detailed Steps**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface vmi number</td>
<td>Creates a VMI interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface vmi1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip address ip_addr isubnet_mask</td>
<td>Specifies the IP address and subnet mask for the VMMI interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.2.2.2 255.255.255.0</td>
<td>This example sets the IP address to 10.2.2.2 and the subnet mask to 255.255.255.0</td>
</tr>
<tr>
<td><strong>Step 5</strong> ip pim nbma-mode</td>
<td>Enables NBMA mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong> ip pim sparse-mode</td>
<td>Enables sparse mode.</td>
</tr>
<tr>
<td><strong>Note</strong> You must set this to sparse mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> load interval seconds</td>
<td>Specifies the load interval in seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#load-interval 30</td>
<td>This example sets the load interval to 30 seconds.</td>
</tr>
</tbody>
</table>
Using Bypass Mode

Using bypass mode is recommended for multicast applications.

In bypass mode, the virtual-access interfaces are directly exposed to applications running above L2. In bypass mode, you must still define a VMI because VMI continues to manage presentation of cross-layer signals, such as, neighbor up, neighbor down, and metrics. However, applications will still be aware of the actual underlying virtual-access interfaces and send packets to them directly.

Using bypass mode can cause databases in the applications to be larger because knowledge of more interfaces are required for normal operation.

If you are running multicast applications that require virtual-access interfaces to be exposed to applications above L2 directly, you can configure VMI to operate in bypass mode. Most multicast applications require that the virtual-access interfaces be exposed directly to routing protocols in order for the multicast Reverse Path Forwarding (RPF) to operate as expected. When you use the bypass mode, you must define a VMI to handle cross-layer signals such as neighbor up, neighbor down, and metrics. Applications will be aware of the actual underlying virtual-access interfaces, and will send packets to them directly. Operating VMI in bypass mode can cause databases in the applications to be larger than normally expected because knowledge of more interfaces is required for normal operation.

Enabling Multicast Support on a VMI

Perform this task to enable bypass mode on a VMI and override the default aggregation that occurs on VMI. This configuration assumes that you have already configured a virtual template and appropriate PPPoE sessions for VMI.

After you enter the enable bypass mode, Cisco recommends that you copy the running configuration to Non-Volatile Random Access Memory (NVRAM) because the default mode of operation for VMI is to logically aggregate the virtual-access interfaces.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface vmi number
4. mode bypass
5. exit
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface vmi number</td>
<td>Enters interface configuration mode and relates a VMI interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# interface vmi1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> mode bypass</td>
<td>Overrides the default aggregation on the VMI interface and sets the mode to bypass to support multicast traffic on the interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# mode bypass</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# exit Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>

**Examples**

**Note** VMI is required to have IP addresses assigned for VMI to work even though it will be shown as down/down while in bypass mode.

**VMI in Bypass Mode for IPv6**

The following example shows the configuration of VMI in bypass mode for IPv6.

```plaintext
interface Virtual-Template1
ipv6 enable
service-policy output FQ
!
interface vmi1
ipv6 enable
mode bypass
physical-interface FastEthernet0/0
!
```

**VMI in Bypass Mode for IPv4**

The following example shows the configuration of VMI in bypass mode for IPv4.
**Note**  The IPv4 address configured on VMI will not be advertised or used. Instead, the IPv4 address on the virtual-template will be used.

```plaintext
interface Virtual-Template1
 ip address 10.1.1.1 255.255.255.0
 service-policy output FQ

interface vmi1
 ip address 2.2.2.1 255.255.255.0
 mode bypass
 physical-interface FastEthernet0/0
```

## VMI in Bypass Mode for IPv4 and IPv6

The following example shows the configuration of VMI in bypass mode for IPV4 and IPv6.

```plaintext
interface Virtual-Template1
 ip address 10.1.1.1 255.255.255.0
 ipv6 enable
 service-policy output FQ

interface vmi1
 ip address 2.2.2.1 255.255.255.0
 ipv6 enable
 mode bypass
 physical-interface FastEthernet0/0
```

## Showing VMI Neighbors

To display information about neighbor connections to VMI, use the `show vmi neighbors` command in User EXEC mode.

The following example shows how to display neighbors created dynamically on a VMI:

**Example**

The following example shows the details about known VMI neighbors.

**Example**

```plaintext
Router# show vmi neighbors vmi1

1 vmi1 Neighbors

<table>
<thead>
<tr>
<th>Interface</th>
<th>IPv6 Address</th>
<th>IPv4 Address</th>
<th>Transmit Packets</th>
<th>Receive Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmi1</td>
<td>::</td>
<td>10.3.3.2</td>
<td>00:02:11</td>
<td>0000000008</td>
</tr>
</tbody>
</table>

Router#
```

```plaintext
Router# show vmi neighbors detail

1 vmi1 Neighbors

vmi1   IPv6 Address=FE80::A8BB:CCFF:FE00:C00
 IPv4 Address=12.12.12.2, Uptime=00:12:19
 Output pkts=0, Input pkts=0
 METRIC DATA: Total rcvd=3, Avg arrival rate (ms)=234952
 CURRENT: MDR=2048000, CDR=1024000, Lat=70, Res=100, RLQ=95, load=1
```
Chapter 8      Configuring PPPoE

Showing VMI Neighbors

<table>
<thead>
<tr>
<th>Metric</th>
<th>Max</th>
<th>Min</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDR</td>
<td>102400000</td>
<td>20480000</td>
<td>4795050</td>
</tr>
<tr>
<td>CDR</td>
<td>102400000</td>
<td>10240000</td>
<td>4104192</td>
</tr>
<tr>
<td>Latency</td>
<td>1000</td>
<td>70</td>
<td>380</td>
</tr>
<tr>
<td>Resource</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>RLQ</td>
<td>100</td>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>Load</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Transport PPPoE, Session ID=1

INTERFACE STATS:
- VMI Interface=vmi1,
  Input qcount=0, drops=0, Output qcount=0, drops=0
- V-Access intf=Virtual-Access2,
  Input qcount=0, drops=0, Output qcount=0, drops=0
- Physical intf=Ethernet0/0,
  Input qcount=0, drops=0, Output qcount=0, drops=0

PPPoE Flow Control Stats
- Local Credits: 65296
- Peer Credits: 65196
- Credit Grant Threshold: 28000
- Max Credits per grant: 65534
- PADG Seq Num: 696
- PADG Timer index: 0
- PADG last rcvd Seq Num: 697
- PADG last nonzero Seq Num: 0
- PADG last nonzero rcvd amount: 0
- PADG Timers: [0]-1000 [1]-2000 [2]-3000 [3]-4000
- PADG xmit: 698 rcvd: 698
- PADC xmit: 698 rcvd: 698
- PADQ xmit: 0 rcvd: 2

Router#
CHAPTER 9

OSPFv3 Address Families

This chapter describes how to use OSPFv3 address families to route IPv6 packets over OSPFv3—using IPv4 or IPv6 addresses. This chapter also describes how to configure and use OSPFv3 address families in conjunction with Mobile Ad-hoc Network (MANETs) and Radio Aware Routing (RAR).

This chapter includes the following major sections:
- Configuring OSPFv3 Address Families, page 9-1
- Working with Multiple Address Families, page 9-11
- Redistributing IPv4 Routes, page 9-12
- Verifying OSPFv3 Address Families Configuration and Operation, page 9-14

OSPFv3 is defined to support IPv6 unicast prefixes. The Internet draft, *Support of Address Families in OSPFv3 (IETF RFC 5838)*, extends OSPFv3 to support multiple address families. Cisco IOS implemented this extension, which allows IPv4 unicast addresses to be supported.

Configuring OSPFv3 Address Families

This section describes how to configure OSPFv3 Address Families for IPv6 and IPv4.

The Cisco OSPFv3 Address Families feature implements RFC 5838 and enables the ability to concurrently route IPv4 and IPv6 prefixes. The Cisco OSPFv3 Address Families feature is turned on in conjunction with the OSPFv3 MANET feature, which supports routing of IPv4 and IPv6 addresses and prefixes in mobile environments.

Configuring OSPFv3 Address Families is similar to configuring traditional IPv6 OSPFv3—the main difference being parameter usage in the CLI configuration commands. When configuring OSPFv3 Address Families, the new parameter `ospfv3` replaces the deprecated `ipv6 ospf` parameter.

See Appendix A, “Command Reference” for complete command reference information.

Working with IPv6 and OSPFv3 involves the following tasks:
1. Enabling IPv6, page 9-2
2. Enabling IPv6 on the Interface, page 9-3
3. Configuring OSPFv3 for a Unicast Address Family, page 9-3
Enabling IPv6

This task explains how to enable IPv6 routing, which is disabled by default.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ipv6 unicast-routing`
4. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router&gt; enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>ipv6 unicast-routing</code></td>
<td>Enables the forwarding of IPv6 unicast datagrams.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# ipv6 unicast-routing</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>exit</code></td>
<td>Exits global configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>
Enabling IPv6 on the Interface

This task explains how to enable IPv6 on an interface. This is a prerequisite to configuring OSPFv3 on the interface. IPv6 is disabled on the interface by default.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface [type number]
4. ipv6 enable
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface [type number]</td>
<td>Specifies an interface type and number and places the router in interface-configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface ethernet 0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 ipv6 enable</td>
<td>Enables IPv6 processing on an interface that has not been configured with an explicit IPv6 address.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 enable</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits global configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring OSPFv3 for a Unicast Address Family

Perform one of the following tasks:

- Configuring OSPFv3 for an IPv6 Unicast Address Family, page 9-4
- Configuring OSPFv3 for an IPv4 Unicast Address Family, page 9-7
Configuring OSPFv3 for an IPv6 Unicast Address Family

Configuring OSPFv3 for an IPv6 unicast address family involves the following tasks:

- Configuring the OSPFv3 IPv6 Address Family Instance on the Interface, page 9-4
- Configuring the OSPFv3 IPv6 Address Family Process, page 9-6

Configuring the OSPFv3 IPv6 Address Family Instance on the Interface

This task explains how to enable IPv6 packet forwarding and IPv6 routing. By default, both are disabled.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface [type number]`
4. `ospfv3 [process-id] area [area-id] ipv6 [instance instance-id]`
5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** `enable` | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| **Example:**  
`Router> enable` | |
| **Step 2** `configure terminal` | Enters global configuration mode. |
| **Example:**  
`Router# configure terminal` | |
| **Step 3** `interface [type number]` | Configures an interface type. |
| **Example:**  
`Router(config)# interface Ethernet 0/0` | |
| **Step 4** `ospfv3 [process-id] area [area-id] ipv6 [instance instance-id]` | Attaches the OSPFv3 process to an interface.  
Process ID: Valid range is 1 to 65535.  
Instance ID: 0 (Default value)  
The valid range is 0 to 31. |
| **Example:**  
`Router(config-if)# ospfv3 6 area 0 ipv6` | |
| **Step 5** `exit` | Exits global configuration mode and returns the router to privileged EXEC mode. |
| **Example:**  
`Router(config-if)# exit` | |
Example

The following is a configuration example:

```plaintext
version 15.1
!
hostname Router1
!
boot-start-marker
boot-end-marker
!
no aaa new-model
ip cef
!
ipv6 unicast-routing
!
interface Ethernet0/0
ipv6 enable
ospfv3 6 area 0 ipv6
!
interface Ethernet0/1
no ip address
shutdown
!
interface Ethernet0/2
no ip address
shutdown
!
interface Ethernet0/3
no ip address
shutdown
!
ip forward-protocol nd
!
no ip http server
!
router ospfv3 6
router-id 6.6.6.6
log-adjacency-changes
address-family ipv6 unicast
exit-address-family
!
control-plane
!
!
line con 0
line aux 0
line vty 0 4
login
!
end
```
Configuring the OSPFv3 IPv6 Address Family Process

This task explains how to enable an OSPFv3 routing process and configure the address family.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `router ospfv3 [process-id]`
4. `router-id [OSPFv3 router-id in IP address format]`
5. `address-family ipv6 unicast`
6. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router&gt; enable</strong></td>
</tr>
<tr>
<td></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router# configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>router ospfv3 [process-id]</code></td>
<td>Enables an OSPFv3 routing process to route IPv6 address-family traffic in IPv6 networks and enters router configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router (config)# router ospfv3 6</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>router-id [OSPFv3 router-id in IP address format]</code></td>
<td>Identifies a specific router rather than allowing the dynamic assignment of the router ID to occur.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router (config-rtr)# Router-id 10.1.1.1</strong></td>
</tr>
<tr>
<td><strong>Step 5</strong> <code>address-family ipv6 unicast</code></td>
<td>Places the router in address family configuration mode for IPv6 address family.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router(config-rtr)# address-family ipv6 unicast</strong></td>
</tr>
<tr>
<td><strong>Step 6</strong> <code>exit</code></td>
<td>Exits global configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router (config-router-af)# exit</strong></td>
</tr>
</tbody>
</table>
## Configuring OSPFv3 for an IPv4 Unicast Address Family

Configuring an IPv4 unicast address family involves the following tasks:

1. Configuring the OSPFv3 IPv4 Address Family Instance on the Interface, page 9-7
2. Configuring an IPv4 Address on the Interface, page 9-9
3. Configuring the OSPFv3 IPv4 Address Family Process, page 9-10

### Configuring the OSPFv3 IPv4 Address Family Instance on the Interface

This task explains how to enable IPv4 packet forwarding and IPv4 routing. By default, both are disabled.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface [type number]`
4. `ospfv3 [process-id] area [area-id] ipv4 [instance instance-id]`
5. `exit`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| **Example:**       |         |
| [Router]**> enable** |         |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:**       |         |
| [Router]**# configure terminal** |         |
| **Step 3** interface [type number] | Specifies the interface type and number and places the router in interface-configuration mode. |
| **Example:**       |         |
| [Router](config)# interface Ethernet 0/0 |         |
| **Step 4** ospfv3 [process-id] area [area-id] ipv4 [instance instance-id] | Configures the OSPFv3 process ID. The valid range is 1 to 65535.  
Optional—Instance ID: 64 (Default value)  
The valid range is 64 to 95. |
| **Example:**       |         |
| [Router](config-if)# ospfv3 4 area 0 ipv4 |         |
| **Step 5** exit | Exits global configuration mode and returns the router to privileged EXEC mode. |
| **Example:**       |         |
| [Router](config-if)# exit |         |
Example

The following is a configuration example:

version 15.1
!
hostname Router1
!
boot-start-marker
boot-end-marker
!
no aaa new-model
ip cef
!
ipv6 unicast-routing
!
interface Ethernet0/0
  ip address 64.1.1.1 255.255.255.0
  ipv6 enable
  ospfv3 4 area 0 ipv4
!
interface Ethernet0/1
  no ip address
  shutdown
!
interface Ethernet0/2
  no ip address
  shutdown
!
interface Ethernet0/3
  no ip address
  shutdown
!
ip forward-protocol nd
!
no ip http server
!
router ospfv3 4
  router-id 4.4.4.4
  log-adjacency-changes
  address-family ipv4 unicast
  exit-address-family
  !
  control-plane
  !
  line con 0
  line aux 0
  line vty 0 4
  login
!
end
Configuring an IPv4 Address on the Interface

This task configures an IPv4 address on the interface. You can assign a primary IP address for a network interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface [type number]
4. ip address [ip address] [net mask]
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  - Enter your password if prompted. |

**Example:**
Router> enable

| **Step 2** configure terminal | Enters global configuration mode. |

**Example:**
router# configure terminal

| **Step 3** interface [type number] | Specifies an interface type and number and places the router in interface configuration mode. |

**Example:**
Router(config)# interface ethernet 0/0

| **Step 4** ip address [ip address] [net mask] | Assigns an IPv4 address to the interface. |

**Example:**
Router(config-if)# ip address 64.1.1.1 255.255.255.0

| **Step 5** exit | Exits global configuration mode and returns the router to privileged EXEC mode. |

**Example:**
Router(config-if)# exit
Configuring OSPFv3 Address Families

Configuring OSPFv3 IPv4 Address Family Process

This task explains how to enable an OSPFv3 routing process and configure the address family.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `router ospfv3 [process-id]`
4. `router-id [OSPFv3 router-id in IP address format]`
5. `address-family ipv4 unicast`
6. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>enable</code> Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router&gt; enable</code> Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>configure terminal</code> Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router# configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>router ospfv3 [process-id]</code> Enables an OSPFv3 routing process to route IPv4 address-family traffic in IPv6 networks and enters router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router (config)# router ospfv3 4</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>router-id [OSPFv3 router-id in IP address format]</code> Identifies a specific router rather than allowing the dynamic assignment of the router ID to occur.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router (config-rtr)# Router-id 10.1.1.1</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>address-family ipv4 unicast</code> Places the router in address family configuration mode for IPv4 address family.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router (config-rtr)# address-family ipv4 unicast</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>exit</code> Exits global configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router (config-router-af)# exit</code></td>
</tr>
</tbody>
</table>
Working with Multiple Address Families

You can run Address Families OSPFv3 for IPv4 and IPv6 simultaneously on one interface.

**Note**  
To configure OSPFv3 for IPv4 and IPv6 simultaneously—with MANET and RAR features included, use tasks from this chapter and Chapter 10, “Configuring OSPFv3 for a MANET.” The following example shows how to do this.

**Example**

```
version 15.1
!
hostname Router1
!
boot-start-marker
boot-end-marker
!
no aaa new-model
!
ip cef
ipv6 unicast-routing
!
subscriber authorization enable
!
subscriber profile Dargo7
  pppoe service manet_radio
!
multilink bundle-name authenticated
!
no virtual-template subinterface
!
bb-group pppoe Group1
  virtual-template 1
  service profile Dargo7
!
interface Ethernet0/0
  no ip address
  pppoe enable group Group1
!
interface Ethernet0/1
  no ip address
  shutdown
!
interface Ethernet0/2
  no ip address
  shutdown
!
interface Ethernet0/3
  no ip address
  shutdown
!
interface Virtual-Template1
  no ip address
  ipv6 enable
  no peer default ip address
  no keepalive
```
Redistributing IPv4 Routes

Should you need to redistribute IPv4 routes between OSPFv3 Address Families and OSPFv2, be aware of common issues when redistributing IPv4 routes between OSPF processes as documented here:


Example:
The following example shows how to redistribute IPv4 routes from OSPFv2 process 22 into OSPFv3 Address Families process 4:

```plaintext
Router (config-router)#router ospfv3 4
Router (config-router)#router-id 4.4.4.4
Router (config-router)#address-family ipv4 unicast
Router (config-router-af)#redistribute ?
bgp Border Gateway Protocol (BGP)
connected Connected
eigrp Enhanced Interior Gateway Routing Protocol (EIGRP)
isis ISO IS-IS
iso-igrp IGRP for OSI networks
lisp Locator ID Separation Protocol (LISP)
mobile Mobile routes
odr On Demand stub Routes
ospf Open Shortest Path First (OSPF)
ospfv3 OSPFv3
rip Routing Information Protocol (RIP)
static Static routes
```
Example:
The following example shows how to redistribute IPv4 routes from OSPFv3 Address Families process 4 into OSPFv2 process 22:

Router (config)#router ospf 22
Router (config-router)#redistribute ospfv3

Router (config-router)#redistribute ospfv3 4 subnets

Router (config-router)#redistribute ospfv3 4 subnets
Verifying OSPFv3 Address Families Configuration and Operation

You can use any combination of the commands listed in this section to check the operation status of OSPFv3 for Address Families.

Note

You must be in privileged EXEC mode to enter the command listed in this section.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show run</td>
<td>Verify a configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>show ospfv3</td>
<td>Displays general information about all OSPFv3 routing processes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>show ospfv3 neighbor</td>
<td>Displays OSPFv3 neighbor information per routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>show ospfv3 interface [interface-type interface-number]</td>
<td>Displays all OSPFv3 routing information for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>

The `show ospfv3` command can be used to show general information about the OSPFv3 Address Family router process.

```bash
Router# show ospfv3
Routing Process 'ospfv3 4' with ID 4.4.4.4
Supports IPv4 Address Family
Event-log enabled, Maximum number of events: 1000, Mode: cyclic
Initial SPF schedule delay 1000 msecs
Minimum hold time between two consecutive SPFs 2000 msecs
Maximum wait time between two consecutive SPFs 2000 msecs
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Graceful restart helper support enabled
Reference bandwidth unit is 100 mbps
Relay willingness value is 128
```
Pushback timer value is 2000 msecs
Relay acknowledgement timer value is 1000 msecs
LSA cache Disabled: current count 0, maximum 1000
ACK cache Disabled: current count 0, maximum 1000
Selective Peering is not enabled
Hello requests and responses will be sent multicast
Area BACKBONE(0) (Inactive)
  Number of interfaces in this area is 1
  SPF algorithm executed 0 times
  Number of LSA 0, Checksum Sum 0x000000
  Number of DCbitless LSA 0
  Number of indication LSA 0
  Number of DoNotAge LSA 0
  Flood list length 0

Router# show ospfv3 neighbor

OSPFv3 Router with ID (4.4.4.4) (Process ID 4)

<table>
<thead>
<tr>
<th>Neighbor ID</th>
<th>Pri</th>
<th>State</th>
<th>Dead Time</th>
<th>Interface ID</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2.2</td>
<td>0</td>
<td>FULL/</td>
<td>00:00:19</td>
<td>3</td>
<td>Ethernet0/0</td>
</tr>
</tbody>
</table>

Router# show ospfv3 interface e0/0

Ethernet0/0 is up, line protocol is up
  Link Local Address FE80::A8BB:CCFF:FE01:5500, Interface ID 3
  Area 0, Process ID 100, Instance ID 0, Router ID 4.4.4.4
  Network Type MANET, Cost: 10 (dynamic), Cost Hysteresis: Disabled
  Cost Weights: Throughput 100, Resources 100, Latency 100, L2-factor 100
  Transmit Delay is 1 sec, State POINT_TO_MULTIPOINT
  Timer intervals configured, Hello 30, Dead 120, Wait 120, Retransmit 5
  Hello due in 00:00:01
  Graceful restart helper support enabled
  Index 1/1/1, flood queue length 0
  Next 0x0(0)/0x0(0)/0x0(0)
  Last flood scan length is 1, maximum is 1
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 1, Adjacent neighbor count is 1
  Adjacent with neighbor 2.2.2.2
  Suppress hello for 0 neighbor(s)
  Incremental Hello is enabled
  Local SCS number 1
  Relaying enabled
OSPFv3 for MANET

Configuring OSPFv3 for a MANET has similar requirements to many traditional OSPFv3 configurations. The primary difference is to configure the network type of OSPFv3 as a MANET. To optimize the use of OSPFv3 with MANETs, Cisco IOS implements extensions to OSPFv3 as defined in IETF RFC 5820. The result is a well-understood routing protocol designed for a constantly changing network topology constrained by limited bandwidth.

This is accomplished in several ways:

- Radio Aware Routing (RAR): Provides tight coupling of OSPFv3 with cooperative radios (fast convergence and re-convergence through neighbor-presence indicators). Determines accurate, real-time, link-metric costs.
- Incremental Hello: Minimizes OSPFv3 packet size.
- Caching Multicast Link-State Advertisements (LSAs): Minimizes OSPFv3 packet transmissions.
- Optimized Flooding (Overlapping Relay): Minimizes the number of flooded LSAs.
- Selective Peering: Reduces OSPFv3 network overhead by limiting redundant full-peering adjacencies.
Cooperative Radios

While non-cooperative radios are supported, OSPFv3 in a MANET operates best when used with cooperative radios, which is a configuration requiring Virtual Multipoint Interfaces (VMIs). See Chapter 5, “Introduction to Radio Aware Routing and MANET” for detailed information.

Note

This document defines a Cooperative radio as a radio containing the firmware and software required to support RAR-based flows.

Initial Configuration Procedures

Configuring OSPFv3 for a MANET begins with the following tasks:
2. Enabling IPv6 on the Interface, page 10-3
3. Configuring the OSPFv3 Process, page 10-4
4. Configuring the Interface for OSPFv3 MANETs, page 10-5

Enabling IPv6 Routing

This task enables IPv6 packet forwarding and IPv6 routing, both disabled by default.

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 unicast-routing
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 10  Configuring OSPFv3 for a MANET

Initial Configuration Procedures

Command or Action | Purpose
---|---
Step 3  ipv6 unicast-routing | Enables the forwarding of IPv6 unicast datagrams.
Example: Router(config)# ipv6 unicast-routing
Step 4  exit | Exits global configuration mode and returns the router to privileged EXEC mode.
Example: Router(config)# exit

Enabling IPv6 on the Interface

This task enables IPv6 on an interface—a prerequisite to configuring OSPFv3 on the interface. IPv6 is disabled by default.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface [type number]
4. ipv6 enable
5. exit

DETAILED STEPS

Command or Action | Purpose
---|---
Step 1  enable | Enables privileged EXEC mode.
Example: Router> enable
- Enter your password if prompted.
Step 2  configure terminal | Enters global configuration mode.
Example: Router# configure terminal
Step 3  interface [type number] | Specifies an interface type and number and places the router in interface configuration mode.
Example: Router(config)# interface ethernet 0/0
Chapter 10  Configuring OSPFv3 for a MANET

Initial Configuration Procedures

Configuring the OSPFv3 Process

This task configures the OSPFv3 process for IPv6 or IPv4.

Note

The commands in this task indicate IPv6. If you want to configure the OSPFv3 process for IPv4 instead, see the detailed steps for examples.

SUMMARY STEPS

1. enable
2. configure terminal
3. router ospfv3 [process-id]
4. router-id [OSPFv3 router-id in IP address format]
5. address-family ipv6 unicast
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>ipv6 enable</td>
<td>Enables IPv6 processing on an interface that has not been configured with an explicit IPv6 address.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 enable</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits global configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Command or Action          | Purpose
---------------------------|-------------------------------------------------------------------------|
Step 1                     |                                                                         |
enable                      | Enables privileged EXEC mode.                                          |
Example:                    |                                                                         |
Router> enable              |                                                                         |
Step 2                     |                                                                         |
configure terminal          | Enters global configuration mode.                                      |
Example:                    |                                                                         |
Router# configure terminal  |                                                                         |
Chapter 10  Configuring OSPFv3 for a MANET

Initial Configuration Procedures

Configuring the Interface for OSPFv3 MANETs

This configures the OSPFv3 process for IPv6 or IPv4.

### Command or Action | Purpose
---|---
**Step 3**
router ospfv3 [process-id] | Enables OSPFv3 for IPv6 router configuration mode.

**Example:**
Router(config)# router ospfv3 6

**Example for IPv4:**
Router(config)# router ospfv3 4

**Step 4**
router-id [OSPFv3 router-id in IP address format] | Enables the use of a fixed router ID.

**Example:**
Router(config-rtr)# router-id 10.1.1.1

**Step 5**
adress-family ipv6 unicast | Enables the address family for IPv6.

**Example:**
Router(config-rtr)# address-family ipv6 unicast

**Example for IPv4:**
Router(config-rtr)# address-family ipv4 unicast

**Step 6**
exit | Exits global configuration mode and returns the router to privileged EXEC mode.

**Example:**
Router(config-rtr)# exit

### Note
The commands in this task indicate IPv6. If you want to configure the OSPFv3 process for IPv4 instead, see the detailed steps for examples.

### SUMMARY STEPS

1. enable
2. configure terminal
3. interface [type number]
4. ospfv3 [process-id] area area-id ipv6 [instance instance-id]
5. ospfv3 [process-id] network manet
6. exit
## Initial Configuration Procedures

### Chapter 10  Configuring OSPFv3 for a MANET

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong>&lt;br&gt;Enables privileged EXEC mode.**&lt;br&gt;• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router&gt; enable</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>configure terminal</strong>&lt;br&gt;Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router# configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>interface [type number]</strong>&lt;br&gt;Configures an interface type.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router(config)# interface vmi1</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>ospfv3 [process-id] area area-id ipv6 [instance instance-id]</strong>&lt;br&gt;Attaches the OSPFv3 process to an interface. <strong>&lt;br&gt;Note The instance number defaults to 0 for ipv6.</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>(Router-if)# ospfv3 6 area 0 ipv6</strong></td>
</tr>
<tr>
<td><strong>Example for IPv4:</strong></td>
<td><strong>(Router-if)# ospfv3 6 area 0 ipv4</strong></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>ospfv3 [process-id] network manet</strong>&lt;br&gt;Configures the OSPFv3 network type to MANET.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router(config-if)# ospfv3 6 network manet</strong></td>
</tr>
<tr>
<td><strong>Example for IPv4:</strong></td>
<td><strong>Router(config-if)# ospfv3 4 network manet</strong></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>exit</strong>&lt;br&gt;Exits global configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router(config-if)# exit</strong></td>
</tr>
</tbody>
</table>
EXAMPLE

version 15.1
!
hostname Router1
!
<output truncated>
...
interface Ethernet0/0
no ip address
ipv6 enable
ospfv3 6 network manet
ospfv3 6 area 0 ipv6
!
interface Ethernet0/1
ip address 4.4.4.4 255.255.255.0
ipv6 enable
ospfv3 4 network manet
ospfv3 4 area 0 ipv4
shutdown
!
interface Ethernet0/2
no ip address
shutdown
!
interface Ethernet0/3
no ip address
shutdown
!
ip forward-protocol nd
!
no ip http server
!
router ospfv3 6
router-id 1.1.1.1
address-family ipv6 unicast
log-adjacency-changes
!
router ospfv3 4
router-id 4.4.4.4
address-family ipv4 unicast
log-adjacency-changes
...
<output truncated>
...
end
Radio Aware Routing in a MANET

This section describes how to configure OSPFv3 in MANETs for Radio Aware Routing (RAR).

Prerequisites

All radios in OSPFv3 for MANET must be cooperative radios attached to a Virtual Multipoint Interface (VMI).

Before performing the tasks in this section, you must configure OSPFv3 for MANETs on a VMI as described in Chapter 5, “Configuring Virtual Multipoint Interfaces”.

Link Metrics

Cooperative radios in the MANET report link-quality metrics, which can include the following information:

- Maximum Data Rate—the theoretical maximum data rate of the radio link, in bytes per second
- Current Data Rate—the current data rate achieved on the link, in bytes per second
- Latency—the transmission delay packets encounter, in milliseconds
- Resources—a percentage (0-100) that can represent the remaining amount of a resource (such as battery power)
- Relative Link Quality—a numeric value (0-100) representing relative quality, with 100 being the highest quality

Fine-Tuning RAR Configurations

You can fine-tune RAR configurations within a MANET by converting the link metrics to OSPFv3 link costs and configuring a hysteresis threshold. Configuring a hysteresis threshold on the resultant link costs helps minimize the propagation of LSAs responding to link-metric changes.

Metrics can be weighted during the configuration process to emphasize or de-emphasize particular characteristics. For example, if throughput is highly important, the metric for Current Data Rate (CDR) could be weighted more heavily into the composite metric. Similarly, a metric that is of no concern can be omitted.

Link metrics can change rapidly, often by very small degrees, which can result in a flood of meaningless routing updates. In a worst case scenario, the network will churn almost continuously as it struggles to react to minor variations in link quality. To alleviate this concern, Cisco provides a tunable dampening mechanism that allows the user to configure threshold values. Any metric change that falls below the threshold is ignored.

A tunable hysteresis mechanism allows users to adjust the threshold to the routing changes that occur when the router receives a signal that a new peer has been discovered, or that an existing peer is unreachable. The tunable metric is weighted and is adjusted dynamically to account for the following characteristics:

- Current and Maximum Bandwidth
- Latency
- Resources
Chapter 10 Configuring OSPFv3 for a MANET

Radio Aware Routing in a MANET

- Hysteresis

Individual weights can be deconfigured and all weights cleared so that the cost is set back to the default value for the interface type. Based on the routing changes that occur, cost can be determined by the application of these metrics.

The dynamic cost metric used for interfaces is computed based on the Layer 2 (L2) feedback to Layer 3 (L3), where the metric calculations are as follows:

OC = maximum-data-rate
S1 = ospfv3 6 dynamic weight throughput (Bandwidth component)
S2 = ospfv3 6 dynamic weight resources (Resources component)
S3 = ospfv3 6 dynamic weight latency (Latency component)
S4 = ospfv3 6 dynamic weight L2 factor (L2 factor component)

Note

While the commands and output in this section reflect IPv6 configurations, all examples and commands work for IPv4 as well.

Throughput = (current-data-rate)/(maximum-data-rate)

Router-dynamic cost = OC + (S1) + (S2) + (S3) + (S4)

For a dynamic cost to have the same cost as a default cost, all parameters must equal zero.

Each L2 feedback can contribute a cost in the range of 0 to 65535. To tune down this cost range, use the optional weight keyword in conjunction with the throughput, resources, latency, or L2-factor keyword. Each of these weights has a default value of 100 percent and can be configured in a range from 0 to 100. When 0 is configured for a specific weight, that weight does not contribute to the OSPFv3 cost.

Because cost components can change rapidly, you may need to dampen the amount of changes in order to reduce network-wide churn. Use the optional hysteresis keyword with the threshold threshold-value keyword and argument to set a cost change threshold. Any cost change below this threshold is ignored.

You can use the hysteresis keyword to specify a hysteresis value based on the percentage of change of the currently stored value in the routing table for the peer.

Each time the router receives a new PADQ packet from the radio for a peer, a new cost will be calculated for it. The hysteresis keyword specifies the amount of change required before saving the new value.

The hysteresis percent calculated is performed as follows:

If the absolute value of (new_cost - saved_cost) is greater than (hysteresis_percent*saved_cost), then the new_cost will be saved.

Because cost components can change rapidly, it might be necessary to dampen the volume of changes to reduce network-wide churn. The recommended values for S2, S3, and S4 are based on network simulations that may reduce the rate of network changes. The recommended value for S1 is zero to eliminate this variable from the route cost calculation.

While each network might have unique characteristics that require different settings to optimize actual network performance, these are recommended values intended as a starting point for optimizing an OSPFv3 network. Table 10-1 lists the recommended value settings for OSPFv3 cost metrics.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Metric Description</th>
<th>Default Value</th>
<th>Recommended Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>ospfv3 6 dynamic weight throughout</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>ospfv3 6 dynamic weight resources</td>
<td>100</td>
<td>29</td>
</tr>
</tbody>
</table>
Radio Aware Routing in a MANET

The overall link cost is computed using the following formula:

\[
\text{LinkCost} = \frac{1}{\text{BW}} \left( \frac{\text{Throughput-weight}}{100} \right) + \frac{2}{\text{Resources}} \left( \frac{\text{Resources-weight}}{100} \right) + \frac{3}{\text{Latency}} \left( \frac{\text{Latency-weight}}{100} \right) + \frac{4}{\text{L2-factor}} \left( \frac{\text{L2-weight}}{100} \right)
\]

\[
\text{OC} = \left[ \frac{(\text{cppf-reference-bw})}{(\text{MDR})(100)} \right]
\]

\[
\text{BW} = \frac{(66535)(100 - \text{MDR})}{100}
\]

\[
\text{Resources} = \frac{(100 - \text{resources})^3 (66535)}{10000000}
\]

\[
\text{Latency} = \text{latency}
\]

\[
\text{L2-factor} = \frac{(100 - \text{RLQ})(66535)}{100}
\]

**Example**

To illustrate these settings, the following example shows how OSPFv3 cost metrics can be defined for a VMI interface with one type of radio:

```plaintext
interface vmi1
  ospfv3 6 cost dynamic hysteresis percent 10
  ospfv3 6 cost dynamic weight throughput 0
  ospfv3 6 cost dynamic weight resources 29
  ospfv3 6 cost dynamic weight latency 29
  ospfv3 6 cost dynamic weight L2-factor 29
```

**Example**

The following is an IPv6 example of configuration:

```plaintext
version 15.1
hostname Router1
boot-start-marker
boot-end-marker
no aaa new-model
ip cef
ipv6 unicast-routing
ipv6 cef
subscriber authorization enable
subscriber profile pppoe_group_1
  pppoe service manet_radio
```

**Table 10-1**  Recommended Value Settings for OSPFv3 Cost Metrics

<table>
<thead>
<tr>
<th>Setting</th>
<th>Metric Description</th>
<th>Default Value</th>
<th>Recommended Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>ospfv3 6 dynamic weight latency</td>
<td>100</td>
<td>29</td>
</tr>
<tr>
<td>S4</td>
<td>ospfv3 6 dynamic weight L2-factor</td>
<td>100</td>
<td>29</td>
</tr>
</tbody>
</table>
Selective Peering for Efficiency

Use selective peering to minimize network costs by minimizing each node’s redundant adjacencies. For each OSPFv3 MANET node, you can restrict full-peering rights to the adjacent neighbors that enhance reachability while remaining cost-effective. For each neighbor adjacency calculated to cause excessive link costs, you can use selective peering to keep that neighbor in a 2-way state. This reduces the need for control-plane bandwidth by reducing database exchanges and routing updates.
Selective peering does not reduce dataplane connectivity. User traffic will flow over 2-way links when provided with the best path through the network.

**Determining Peering Criteria**

Upon discovery of each new neighbor within an OSPFv3 MANET node, selective peering determines whether the forming of an adjacency is cost-effective:

- **Yes**—Form the full-peering adjacency if the neighbor is not in the OSPFv3 link-state database or reachable via the Shortest Path Tree (SPT).
- **No**—Instead of forming a full-peering adjacency, maintain a 2-way state when the neighbor is in the OSPFv3 link-state database, reachable, and configured with a redundant-path threshold.

Because dynamic topologies can cause a neighbor path redundancy level to fall below the configured threshold, selective peering can change a neighbor 2-way state to full peering.

**Link Costs**

Selective peering includes link cost as a factor when determining adjacency formation. Ideally, only the links having the lowest costs are granted full-peering adjacency. You can configure OSPFv3 link costs manually, and with cooperative radio interfaces, link costs are obtained directly from the radios through the VMI.

Working with selective peering involves the following tasks:

- Enabling Selective Peering, page 10-12
- Preventing Full Peering over Poor Links, page 10-14
- Fine-Tuning Selective Peering, page 10-15

**Enabling Selective Peering**

This task explains how to enable OSPFv3 selective peering for IPv6 or IPv4.

**Note**

The commands in this task indicate IPv6. If you want to configure the OSPFv3 process for IPv4 instead, see the detailed steps for examples.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `router ospfv3 [process-id]`
4. `address-family ipv6 unicast`
5. `manet peering selective [redundancy <level>] [per-interface]`
6. `exit`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>router ospfv3 [process-id]</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# router ospfv3 6</td>
</tr>
<tr>
<td><strong>Example for IPv4:</strong></td>
<td>Router(config)# router ospfv3 4</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>address-family ipv6 unicast</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# address-family ipv6 unicast</td>
</tr>
<tr>
<td><strong>Example for IPv4:</strong></td>
<td>Router(config)# address-family ipv4 unicast</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>manet peering selective [redundancy &lt;level&gt;] [per-interface]</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-rtr)# manet peering selective redundancy 2</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>exit</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-rtr)# exit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preventing Full Peering over Poor Links

You can prevent full peering over poor links by performing this optional task, which configures the following:

- Configure OSPFv3 to wait for link metrics before considering a neighbor for OSPFv3 peering. (A cooperative radio may not advertise link metrics to the router before being discovered as a new OSPFv3 neighbor.)
- Configure OSPFv3 with a minimum metric threshold. If the radio-reported link metric is above this threshold, the neighbor will be held in 2-way state.

Note
The commands in this task indicate IPv6. If you want to configure the OSPFv3 process for IPv4 instead, see the detailed steps for examples.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface [type number]`
4. `ospfv3 [process-id] manet peering link-metrics [<threshold>]`
5. `exit`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface [type number]</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# interface vmi1</code></td>
<td></td>
</tr>
</tbody>
</table>
Selective Peering for Efficiency

This section describes how to optimize dynamic path costs by means of fine-tuning selective peering. Given a scenario without fine-tuning, each one-hop neighbor is awarded full-peering capabilities upon discovery, regardless of link cost:

- Selective-peering redundancy level is greater than zero
- Link metrics are good (as determined by the configuration settings established in the “Preventing Full Peering over Poor Links” section on page 10-14)

As each additional neighbor is discovered, dynamic path costs are measurable immediately. To minimize path costs dynamically, you can configure the higher-cost links to remain in 2-way states until other peering opportunities become available.

Higher Costs without the Fine-Tuning

Consider the topology shown in Figure 10-1.

**Figure 10-1   Peering Costs**

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfv3 [process-id] manet peering link-metrics [&lt;threshold&gt;]</td>
<td>Requires receipt of link metrics from each radio before considering the new neighbor for selective peering. If the threshold (0-65535) is specified, the resultant link cost must be less than the threshold. Otherwise, the neighbor remains in a 2-way state.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Exits global configuration mode and returns the router to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>
Given the example shown in Figure 10-1, we have a static snapshot of a dynamic topology, beginning from this point:

- The redundancy level is set to 1 (the default value)—Router A attempts to maintain two paths for each one-hop neighbor.
- From the perspective of Router A, established neighbor sessions exist only with Routers B and C. Router D will join later.
- Router A has a full-peering relationship established with each of these known routers (B and C).
- The link cost for each of these neighbor sessions has a value of 50.
- At this point, only Router B has a link up to Router D—its peering relationship is full, and the link cost has a value of 30.

Change is then introduced between Router A and Router D:

1. Router D comes into radio range of Router A with a link cost of 70.
2. Router A establishes a full-peering relationship with this new neighbor. (The number of paths from Router A to Router D is currently 1 (through Router B).

The conclusion in this scenario (assigning full-peering capabilities between Routers A and D) is allowed given the original condition specified—the selective-peering redundancy level being greater than zero.

Improved Cost-Effectiveness through Fine-Tuning

To prevent the kind of scenario described in the “Higher Costs without the Fine-Tuning” section on page 10-15, you can fine-tune selective peering so that Routers A and D remain in a 2-way state until the link cost improves or an additional router comes into range—one with better link costs available to both routers (A and D).

Cost Thresholds for Redundant Paths

Setting a redundant-path cost threshold requires each redundant path to cost less than the existing, best path cost by a minimum value. For example, if the best link cost is 80, and you set the threshold value to 20, the new link cost must be less than 60 (80 minus 20).

The incremental improvement can be an absolute value or percentage.

Given the topology from Figure 10-1, if you set the redundant-path cost threshold to 20, you can prevent full peering between Routers A and D. This changes the outcome of our scenario, then, as follows:

1. Router D comes into radio range of Router A with a link cost of 70.
2. Selective peering compares link costs:
   - 80—Existing link cost between Routers A and D; the sum of link costs via Router B (50 + 30)
   - 70—The additional link cost between Routers A and D, if full peering is granted
3. The additional link cost (70) is incrementally better than the existing link cost (80) by a value of 10.
4. The incremental improvement (10) does not meet the minimum threshold (20); therefore, Routers A and D remain in the 2-way state.

The commands in this task indicate IPv6. If you want to configure the OSPFv3 process for IPv4 instead, see the detailed steps for examples.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface\[type number]\n4. ospfv3 [process-id] manet peering cost \{threshold <0-65535> | percent <0-100>\}
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface [type number]\</td>
<td>Configures an interface type.</td>
</tr>
<tr>
<td>Example: Router(config)# interface vmil</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ospfv3 [process-id] manet peering cost {threshold &lt;0-65535&gt;</td>
<td>percent &lt;0-100&gt;}</td>
</tr>
<tr>
<td>Example: Router(config-if)# ospfv3 6 manet cost percent 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits global configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>
You can use any combination of the commands listed in this section to check the operation status of OSPFv3 MANET for IPv6 or IPv4. See Appendix A, “Command Reference” for detailed command reference.

**Note**  
You must be in privileged EXEC mode to enter the command listed in this section.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show run</code></td>
<td>Verify a configuration.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# show run</code></td>
<td></td>
</tr>
<tr>
<td><code>show ospfv3 [process-id]</code></td>
<td>Displays general information about all OSPFv3 routing processes.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# show ospfv3 6</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example for IPv4:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# show ospfv3 4</code></td>
<td></td>
</tr>
<tr>
<td><code>show ospfv3 neighbor</code></td>
<td>Displays OSPFv3 neighbor information per routing process.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# show ospfv3 neighbor</code></td>
<td></td>
</tr>
<tr>
<td><code>show ospfv3 neighbor detail</code></td>
<td>Displays a detailed list of all neighbors.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# show ospfv3 neighbor detail</code></td>
<td></td>
</tr>
<tr>
<td><code>show ospfv3 neighbor manet</code></td>
<td>Displays all neighbors in a MANET.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# show ospfv3 neighbor manet</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# show ospfv3 6 interface ethernet0/0</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example for IPv4:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# show ospfv3 4 interface ethernet0/0</code></td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLES

The examples in this section show how you can use the show ospfv3 command to display general information about the OSPFv3 router process.

Example:

Router# show ospfv3
Routing Process "ospfv3 6" with ID 1.1.1.1
Supports IPv6 Address Family
Event-log enabled, Maximum number of events: 1000, Mode: cyclic
Initial SPF schedule delay 1000 msecs
Minimum hold time between two consecutive SPFs 2000 msecs
Maximum wait time between two consecutive SPFs 2000 msecs
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of area in this router is 1. 1 normal 0 stub 0 nssa
Graceful restart helper support enabled
Reference bandwidth unit is 100 mbps
Relay willingness value is 128
Pushback timer value is 2000 msecs
Relay acknowledgement timer value is 1000 msecs
LSA cache Disabled : current count 0, maximum 1000
ACK cache Disabled : current count 0, maximum 1000
Selective Peering is not enabled
Hello requests and responses will be sent multicast
Area BACKBONE(0) (Inactive)
    Number of interfaces in this area is 1
    SPF algorithm executed 0 times
    Number of LSA 0. Checksum Sum 0x000000
    Number of DCbitless LSA 0
    Number of indication LSA 0
    Number of DoNotAge LSA 0
    Flood list length 0

Example:

Router# show ospfv3 neighbor
OSPFv3 Router with ID (1.1.1.1) (Process ID 6)

Neighbor ID Pri State Dead Time Interface ID Interface
2.2.2.2 0 FULL/ - 00:00:19 3 Ethernet0/0

Example:

Router# show ospfv3 neighbor manet
OSPFv3 Router with ID (1.1.1.1) (Process ID 6)

Area BACKBONE(0) (Inactive)
Codes: D - cost dynamic default, R - received link cost,
    I - inherited from interface

Neighbor ID State Nbr Relay Cost Interface
2.2.2.2 FULL Nbr - 10 (I) Ethernet0/0
Example:
Router# show ospfv3 interface e0/0
Ethernet0/0 is up, line protocol is up
  Link Local Address FE80::A8BB:CCFF:FE01:5500, Interface ID 3
  Area 0, Process ID 100, Instance ID 0, Router ID 1.1.1.1
  Network Type MANET, Cost: 10 (dynamic), Cost Hysteresis: Disabled
  Cost Weights: Throughput 100, Resources 100, Latency 100, L2-factor 100
  Transmit Delay is 1 sec, State POINT_TO_MULTIPOINT
  Timer intervals configured, Hello 30, Dead 120, Wait 120, Retransmit 5
    Hello due in 00:00:01
    Graceful restart helper support enabled
    Index 1/1/1, flood queue length 0
    Next 0x0(0)/0x0(0)/0x0(0)
    Last flood scan length is 1, maximum is 1
    Last flood scan time is 0 msec, maximum is 0 msec
    Neighbor Count is 1, Adjacent neighbor count is 1
      Adjacent with neighbor 2.2.2.2
    Suppress hello for 0 neighbor(s)
    Incremental Hello is enabled
    Local SCS number 1
    Relaying enabled
Configuring EIGRP in a MANET

This chapter explains how to configure the Enhanced Interior Gateway Routing Protocol (EIGRP) in a MANET.

This chapter includes the following major sections:

- Understanding The Enhanced Interior Gateway Protocol, page 11-1
- Using EIGRP Cost Metrics for VMI Interfaces, page 11-2
- Understanding VMI Metric to EIGRP Metric Conversion, page 11-4
- Understanding EIGRP Metric Dampening for VMI, page 11-5
- Understanding Neighbor Up/Down Signaling for EIGRP, page 11-6
- Enabling EIGRP for IPv4, page 11-7
- Activating EIGRP IPv4 on a Configured VMI, page 11-8
- Enabling EIGRP for IPv6, page 11-9
- Setting the EIGRP Metric Change-based Dampening for VMI, page 11-11
- Setting the EIGRP Interval-based Metric Dampening for VMI, page 11-12

Understanding The Enhanced Interior Gateway Protocol

The Enhanced Interior Gateway Routing Protocol (EIGRP) integrates the capabilities of link-state protocols into distance vector protocols. EIGRP is distinguished from other routing protocols by the following key capabilities:

- Fast convergence
- Supports variable-length subnet mask
- Supports partial updates
- Supports multiple network layer protocols

A router running EIGRP stores all of its neighbors’ routing tables so that the router running EIGRP can quickly adapt to alternate routes. If no appropriate route exists, EIGRP queries its neighbors to discover an alternate route. These queries propagate until an alternate route is found.

EIGRP supports variable-length subnet masks permitting routes to be automatically summarized on a network number boundary. EIGRP can be configured to summarize on any bit boundary at any interface.

EIGRP does not make periodic updates. EIGRP sends partial updates when the route metric changes. Propagation of partial updates is automatically bounded, so only routers needing the information update. EIGRP consumes significantly less bandwidth than the Interior Gateway Routing Protocol (IGRP).
Using EIGRP Cost Metrics for VMI Interfaces

When using EIGRP as the routing protocol, metrics allow EIGRP to respond to routing changes. The link-state metric is advertised as the link cost in the router link advertisement. The reply sent to any routing query always contains the latest metric information. The following exceptions result in an immediate update being sent:

- A down interface
- A down route
- Any change in metrics that result in the router selecting a new next hop

EIGRP receives dynamic raw radio link characteristics and computes a composite EIGRP metric based on a proprietary formula. To avoid churn in the network as a result of the change in the link characteristics, EIGRP uses a tunable dampening mechanism.

EIGRP uses the metric weights along with a set of vector metrics to compute the composite metric for local Routing Information Base (RIB) installation and route selections. The EIGRP composite metric is calculated using the formula:

\[
\text{metric} = [K1 \times \text{BW} + (K2 \times \text{BW}) / (256 - \text{Load}) + K3 \times \text{Delay}] \times [K5 / (\text{Reliability} + K4)]
\]

Note

Use K values only after careful planning. Mismatched K values prevent a neighbor relationship from being built, which can cause your network to fail to converge.

Note

If K5 = 0, the formula reduces to \( \text{metric} = [K1 \times \text{BW} + (K2 \times \text{BW}) / (256 - \text{Load}) + K3 \times \text{Delay}] \).

Table 11-1 lists the EIGRP vector metrics and their descriptions.

<table>
<thead>
<tr>
<th>Vector Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW</td>
<td>Minimum bandwidth of the route in kilobits per second. It can be 0 or any positive integer.</td>
</tr>
<tr>
<td>Delay</td>
<td>Route delay in tens of microseconds. It can be 0 or any positive number that is a multiple of 39.1 nanoseconds.</td>
</tr>
<tr>
<td>Reliability</td>
<td>Likelihood of successful packet transmission expressed as a number between 0 and 255. The value 255 means 100 percent reliability; 0 means no reliability.</td>
</tr>
<tr>
<td>Load</td>
<td>Effective load of the route expressed as a number from 0 to 255 (255 is 100 percent loading).</td>
</tr>
<tr>
<td>MTU</td>
<td>Minimum Maximum Transmission Unit (MTU) size of the route in bytes. It can be 0 or any positive integer.</td>
</tr>
</tbody>
</table>
EIGRP monitors metric weights on an interface to allow for the tuning of EIGRP metric calculations and indicate Type of Service (ToS). Table 11-2 lists the K-values and their default.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>1</td>
</tr>
<tr>
<td>K2</td>
<td>0</td>
</tr>
<tr>
<td>K3</td>
<td>1</td>
</tr>
<tr>
<td>K4</td>
<td>0</td>
</tr>
<tr>
<td>K5</td>
<td>0</td>
</tr>
</tbody>
</table>

As shown in Table 11-2, cost configurations use the first two metrics—delay and bandwidth. The default formula of \((\text{BW} + \text{Delay})\) is the EIGRP metric. The bandwidth for the formula is scaled and inverted by the following formula:

\[
(10^7/\text{minimum BW in kilobits per second})
\]

Note: You can change the weights, but these weights must be the same on all the routers.

For example, look at an EIGRP link where the bandwidth to a particular destination is 128k and the Relative Link Quality (RLQ) is 50 percent.

\[
\text{BW} = (256 \times 10000000) / 128 = 20000000
\]

\[
\text{Delay} = (((10000000000 / 128) \times 100) / (50 \times 1000)) \times 256 = (40000000 / 10) = 4000000
\]

Using the cut-down formula, the EIGRP metric calculation would simplify to \(256 \times (\text{BW} + \text{Delay})\), resulting in the following value:

\[
\text{Metric} = (\text{BW} + \text{Delay}) = 20000000 + 4000000 = 24000000
\]
Understanding VMI Metric to EIGRP Metric Conversion

With the VMI interface, the quality of connection to a neighbor varies based on a number of characteristics computed dynamically as a result of layer 2 feedback to layer 3. Table 11-3 lists the metrics and their significance.

Table 11-3 MANET Metrics for VMI Interfaces

<table>
<thead>
<tr>
<th>Metric</th>
<th>Format</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>current data rate</td>
<td>uint64_t</td>
<td>The current data rate reported from the radio. EIGRP converts the value into kilobits per second.</td>
</tr>
<tr>
<td>max data rate</td>
<td>uint64_t</td>
<td>The maximum data rate reported from the radio. EIGRP converts the value into kilobits per second.</td>
</tr>
<tr>
<td>latency</td>
<td>unsigned int</td>
<td>The latency computed and reported by the radio in milliseconds.</td>
</tr>
<tr>
<td>resources</td>
<td>unsigned int</td>
<td>The resources computed by the radio. A representation of resources, such as battery power, ranges from 0 to 100. If a radio does not report dynamic resources, the value is always 100.</td>
</tr>
<tr>
<td>relative link quality</td>
<td>unsigned int</td>
<td>An opaque number that ranges from 0 to 100 is computed by the radio, representing radio's view of link quality. 0 represents the worst possible link, 100 represents the best possible link.</td>
</tr>
<tr>
<td>link-load</td>
<td>unsigned int</td>
<td>An opaque number that ranges from 0 to 100 is computed by VMI, representing the load on the Ethernet link. 0 represents an idle Ethernet link, 100 represents a fully loaded Ethernet link. Note that this is not associated with the radio link.</td>
</tr>
</tbody>
</table>
Table 11-4 lists these EIGRP vector metric values map to the basic EIGRP interface parameters.

**Note**

Although not explicit in Table 11-4, all variables are converted to the proper units.

<table>
<thead>
<tr>
<th>Metric</th>
<th>EIGRP Metric</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>current data rate</td>
<td>Bandwidth</td>
<td>Calculated:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bandwidth = (256 * 10000000) / (current data rate / 1000)</td>
</tr>
<tr>
<td>relative link quality</td>
<td>Reliability</td>
<td>Calculated:</td>
</tr>
<tr>
<td>resources</td>
<td></td>
<td>reliability = (255 * (relative link quality) / 100)) * (resources / 100)</td>
</tr>
<tr>
<td>current data rate</td>
<td>Delay</td>
<td>Calculated:</td>
</tr>
<tr>
<td>relative link quality</td>
<td></td>
<td>delay = 256 * (1E10 / (current data rate / 1000)) * ((100 / relative link quality) / 1000) / 10</td>
</tr>
<tr>
<td>load</td>
<td>Load</td>
<td>Calculated:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>load = ((255 * link-load) / 100)</td>
</tr>
</tbody>
</table>

**Understanding EIGRP Metric Dampening for VMI**

Because metric components can change rapidly, the frequency of the changes have an impact on the network. Frequent changes require that prefixes learned though the VMI be updated and sent to all adjacencies. This update can result in further updates and, in a worst-case scenario, cause network-wide churn. To prevent such effects, metrics can be dampened, or thresholds set, so that any change that does not exceed the dampening threshold is ignored.

The following network changes cause an immediate update:

- A down interface
- A down route
- Any change in a metric that results in the router selecting a new next hop

Dampening the metric changes can be configured based on change or time intervals.

If the dampening method is change-based, changes in routes learned though a specific interface, or in the metrics for a specific interface, are not advertised to adjacencies until the computed metric changes from the last advertised value significantly enough to cause an update to be sent.

If the dampening method is interval-based, changes in routes learned though a specific interface, or in the metrics for a specific interface, are not advertised to adjacencies until the specified interval is met, unless the change results in a new route path selection.

When the timer expires, any routes with outstanding changes to report are sent out. If a route changes, such that the final metric of the route matches the last updated metric, no update is sent.
Understanding Neighbor Up/Down Signaling for EIGRP

MANETs are highly dynamic environments. Nodes may move in to, or out of, radio range at a fast pace. Each time a node joins or leaves, the network topology must be logically reconstructed by the routers. Routing protocols normally use timer-driven “hello” messages or neighbor time-outs to track topology changes. MANETs reliance on these mechanisms can result in unacceptably slow convergence.

This signaling capability provides faster network convergence by using link-status signals generated by the radio. The radio notifies the router each time a link to another neighbor is established or terminated by the creation and termination of PPPoE sessions. In the router, the EIGRP responds immediately to these signals by expediting the formation of a new adjacency (for a new neighbor) or tearing down an existing adjacency (if a neighbor is lost). For example, if a vehicle drives behind a building and loses its connection, the router immediately senses the loss and establishes a new route to the vehicle through neighbors that are not blocked. This high speed network convergence is essential for minimizing dropped voice calls and disruptions to video sessions.

When VMI with PPPoE is used and a partner node has left or a new one has joined, the radio informs the router immediately of the topology change. Upon receiving the signal, the router immediately declares the change and updates the routing tables.

The signaling capability offers the following benefits:

- Reduces routing delays and prevents applications from timing out
- Enables network-based applications and information to be delivered reliably and quickly over directional radio links
- Provides faster convergence and optimal route selection so that delay-sensitive traffic such as voice and video are not disrupted
- Reduces impact on radio equipment by minimizing the need for internal queuing/buffering
- Provides consistent Quality of Service (QoS) for networks with multiple radios

The messaging allows for flexible rerouting when necessary because of the following factors:

- Noise on the Radio links
- Fading of the Radio links
- Congestion of the Radio links
- Radio link power fade
- Utilization of the Radio

Figure 11-1 illustrates the signaling sequence that occurs when radio links go up and down.
Enabling EIGRP for IPv4

To create an EIGRP routing process, use the following commands beginning in global configuration mode:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. router eigrp as-number
4. network network-number
5. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>router(config)# router eigrp as-number</td>
</tr>
<tr>
<td>Example:</td>
<td>router eigrp 1</td>
</tr>
<tr>
<td></td>
<td>Router(config)# network network-number</td>
</tr>
<tr>
<td></td>
<td>Network 10.2.2.0 0.0.0.255</td>
</tr>
<tr>
<td>Step 4</td>
<td>End</td>
</tr>
<tr>
<td>Example:</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# end</td>
</tr>
</tbody>
</table>
Activating EIGRP IPv4 on a Configured VMI

Perform this task to activate EIGRP IPv4 on a configured VMI.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface vmi interface-number
4. no ip redirects
5. no ip split-horizon eigrp as-number
6. exit
7. router eigrp as-number
8. network network-number ip-mask
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-number</td>
<td>Specifies the number of the VMI.</td>
</tr>
<tr>
<td>Example: Router(config-if)# interface vmi 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 no ip redirect</td>
<td>Disables the sending of ICMP redirect messages if the Cisco IOS software is forced to resend a packet through the same interface on which it was received.</td>
</tr>
<tr>
<td>Example: Router(config)# no ip redirect</td>
<td></td>
</tr>
<tr>
<td>Step 5 no ip split-horizon eigrp as-number</td>
<td>Disables the split horizon mechanism for the specified session.</td>
</tr>
<tr>
<td>Example: Router(config)# no ip split-horizon eigrp 1</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits a command mode to the next higher mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Enabling EIGRP for IPv6

Perform the following task to enable EIGRP for IPv6 on a specified interface. EIGRP for IPv6 is directly configured on the interfaces over which it runs, which allows EIGRP for IPv6 to be configured without the use of a global IPv6 address.

### SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 unicast-routing
4. interface type number
5. ipv6 enable
6. ipv6 eigrp as-number
7. no shutdown
8. ipv6 router eigrp as-number
9. router-id \{ip-address \| ipv6-address\}
10. no shutdown
11. end

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 \textbf{router eigrp as-number}</td>
<td>Enables EIGRP routing on the router and identifies the autonomous system number.</td>
</tr>
<tr>
<td>Example: \texttt{Router(config)# router eigrp 1}</td>
<td></td>
</tr>
<tr>
<td>Step 8 \textbf{network network-number ip-mask}</td>
<td>Identifies the EIGRP network.</td>
</tr>
<tr>
<td>Example: \texttt{Router(config)# network 10.1.1.0 0.0.0.255}</td>
<td></td>
</tr>
<tr>
<td>Step 9 \textbf{end}</td>
<td>(Optional) Exits the configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: \texttt{Router(config)# end}</td>
<td></td>
</tr>
</tbody>
</table>
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ipv6 unicast-routing</td>
<td>Enables IPv6 unicast routing.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# ipv6 unicast-routing</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> interface type number</td>
<td>Creates a VMI.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface vmi1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ipv6 enable</td>
<td>Enables IPv6 routing on the virtual template.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ipv6 enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> ipv6 eigrp as-number</td>
<td>Enables EIGRP for IPv6 on a specified interface and specifies the Autonomous System (AS) number.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ipv6 eigrp 100</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> no shutdown</td>
<td>Restarts a disabled interface or prevents the interface from being shut down.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# no shutdown</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> ipv6 router eigrp as-number</td>
<td>Places the router in router configuration mode, creates an EIGRP routing process in IPv6, and allows you to enter additional commands to configure this process.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ipv6 router eigrp 101</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> router-id (ip-address</td>
<td>Enables the use of a fixed router ID.</td>
</tr>
<tr>
<td>or ipv6-address)</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-router)# router-id 10.1.1.1</code></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 11      Configuring EIGRP in a MANET

Setting the EIGRP Metric Change-based Dampening for VMI

Perform the following tasks to set the change-based dampening interval for VMI:

This configuration assumes that a virtual template and appropriate PPPoE configurations have already been completed. Refer to the Cisco IOS IP Mobility Configuration Guide for VMI configuration details.

This configuration sets the threshold to 50 percent tolerance routing updates involving VMIs and peers.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. eigrp as-number interface [dampening-change value] [dampening-interval value]
5. physical-interface interface-type/slot
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Enters interface configuration and creates a VMI.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# interface vmi 1</td>
<td></td>
</tr>
</tbody>
</table>
Setting the EIGRP Interval-based Metric Dampening for VMI

Perform this task to set an interval-based dampening interval for VMI interfaces.

This configuration assumes that a virtual template and appropriate PPPoE configurations have already been completed. Refer to the Cisco IOS IP Mobility Configuration Guide for VMI configuration details.

This configuration sets the interval to 30 seconds at which updates occur for topology changes that affect VMI interfaces and peers:

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `eigrp as-number interface [dampening-change value] [dampening-interval value]`
5. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>eigrp as-number interface [dampening-change value] [dampening-interval value]</strong></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-if)# eigrp 1 interface dampening-change 50</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>physical-interface interface-type/slot</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-if)# physical-interface Ethernet0/0</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>end</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-rtr)# end</code></td>
</tr>
</tbody>
</table>
Chapter 11  Configuring EIGRP in a MANET

Setting the EIGRP Interval-based Metric Dampening for VMI

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface type number</td>
<td>Enters interface configuration and creates a VMI.</td>
</tr>
</tbody>
</table>

**Example:**

Router(config)# interface vmi 1

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>eigrp as-number interface [dampening-change value] [dampening-interval value]</td>
<td>Sets the EIGRP interval-based dampening interval.</td>
</tr>
</tbody>
</table>

**Example:**

Router(config-if)# eigrp 1 interface dampening-interval 15

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End</td>
<td>Exits interface configuration.</td>
</tr>
</tbody>
</table>

**Example:**

Router(config-if)# end

**Examples**

**Basic VMI PPPoE Configuration with EIGRP IPv4**

The following example illustrates the simplest configuration using EIGRP as the routing protocol. This configuration includes one VMI.

```text
...<output truncated>
...!
subscriber authorization enable
!
subscriber profile host1
pppoe service manet_radio
!
!
multilink bundle-name authenticated
policy-map FQ
  class class-default
    fair-queue
!
bba-group pppoe MANET1
virtual-template 1
service profile host1
!
interface FastEthernet0/0
no ip address
pppoe enable group MANET1
!
interface Virtual-Templatel
ip unnumbered vmi1
service-policy output FQ
!
interface vmi1
ip address 10.3.3.1 255.255.255.0
no ip redirects
physical-interface FastEthernet0/0
!
router eigrp 1
```
network 10.3.0.0 0.0.255.255
auto-summary
!
!
line con 0
line aux 0
line vty 0 4
login
!
end

**Basic VMI PPPoE Configuration Using EIGRP for IPv6**

This example shows the basic requirements for configuring a VMI that uses EIGRP for IPv6 as the routing protocol. It includes one VMI.

... 
<output truncated>
...
!
ipv6 unicast-routing
ipv6 cef
subscriber authorization enable
!
subscriber profile host1
pppoe service manet_radio
!
!
multilink bundle-name authenticated
!
policy-map FQ

class class-default
  fair-queue
!
!
bbm-group pppoe MANET1
  virtual-template 1
  service profile host1
!
!
interface FastEthernet0/0
  no ip address
  pppoe enable group MANET1
!
!
interface Virtual-Template1
  no ip address
  ipv6 unnumbered vmi1
  ipv6 enable
  service-policy output FQ
!
interface vmi1
  no ip address
  ipv6 address 2001:DB1:2::1/96
  ipv6 enable
  no ipv6 redirects
  ipv6 eigrp 101
  no ipv6 split-horizon eigrp 101
  physical-interface FastEthernet0/0
!
ipv6 route eigrp 101
router-id 10.9.1.1
no shutdown
!
!
line con 0
line aux 0
line vty 0 4
  login
 !
end

VMI PPPoE Configuration Using EIGRP for IPv4 and IPv6

The following examples shows the configuration VMI PPPoE using EIGRP as the IP routing protocol when you have both IPv4 and IPv6 addresses configured on the interface. This configuration includes one VMI. While EIGRP allows you to use the same AS number on an IPv4 EIGRP process and on an IPv6 process, we recommend using a unique AS number for each process for clarity.

...<output truncated>
...!
ipv6 unicast-routing
ipv6 cef
subscriber authorization enable
!
subscriber profile host1
  pppoe service manet_radio
  
  policy-map FQ
    class class-default
      fair-queue
    
    bba-group pppoe MANET1
    virtual-template 1
    service profile host1
    
    interface FastEthernet0/0
      no ip address
      pppoe enable group MANET1
      
    interface Virtual-Template1
      ip unnumbered vmi1
      ipv6 unnumbered vmi1
      ipv6 enable
      service-policy output FQ
      
    interface vmi1
      ip address 10.3.3.1 255.255.255.0
      no ip redirects
      no ip split-horizon eigrp 1
      ipv6 address 2001:0DB1:2::1/64
      ipv6 enable
      no ipv6 redirects
      ipv6 eigrp 101
      no ipv6 split-horizon eigrp 1
      eigrp 1 interface dampening-interval 30
      eigrp 101 interface dampening-interval 30
      physical-interface FastEthernet0/0
      
    router eigrp 1
    network 10.3.0.0 0.0.255.255
Setting the EIGRP Interval-based Metric Dampening for VMI

EIGRP Metric Dampening for VMI Interfaces
The `eigrp interface` command advertises routing changes for EIGRP traffic only.
The `REPLY` sent to any `QUERY` will always contain the latest metric information. The following exceptions result in an immediate UPDATE:

- A down interface
- A down route
- Any change in metric which results in the router selecting a new next hop

To prevent network-wide churn from frequent metric changes from impacting the network, even causing network-wide churn, metrics can be dampened, or thresholds set, so that any change that does not exceed the dampening threshold is ignored. The examples in this section show how to set the EIGRP dampening intervals to avoid such impacts.

EIGRP Change-based Metric Dampening for VMI Interfaces
The following example sets the threshold to 50 percent tolerance routing updates involving VMIs and peers:

```
interface vmi1
 ip address 10.2.2.1 255.255.255.0
 no ip redirects
 no ip split-horizon eigrp 1
 ipv6 address 2001:0DB1:2::1/64
 ipv6 enable
 no ipv6 redirects
 ipv6 eigrp 101
 no ipv6 split-horizon eigrp 101
 eigrp 1 interface dampening-change 50
 eigrp 101 interface dampening-change 50
 physical-interface FastEthernet0/0
```
**EIGRP Interval-based Metric Dampening for VMI Interfaces**

The following example sets the interval to 30 seconds at which updates occur for topology changes that affect VMIs and peers:

```plaintext
interface vmi1
ip address 10.2.2.1 255.255.255.0
no ip redirects
no ip split-horizon eigrp 1
ipv6 address 2001:0DB1:2::1/64
ipv6 enable
no ipv6 redirects
ipv6 eigrp 101
no ipv6 split-horizon eigrp 101
eigrp 1 interface dampening-interval 30
eigrp 101 interface dampening-interval 30
physical-interface FastEthernet0/0
```

**EIGRP VMI Bypass Mode**

The following examples show the configuration of VMI bypass mode with EIGRP IPv4, EIGRP IPv6, and EIGRP for IPv4 and IPv6.

**VMI Bypass mode PPPoE Configuration Using EIGRP for IPv6:**

```plaintext
... hostname host1
! no ip domain lookup
! ipv6 unicast-routing
! ipv6 cef
! subscriber authorization enable
! subscriber profile host1
  pppoe service manet_radio
! multilink bundle-name authenticated
  no virtual-template subinterface
! policy-map FQ
  class class-default
    fair-queue
  !
! bba-group pppoe VMI1
  virtual-template 1
  service profile host1
! interface Loopback1
  load-interval 30
  ipv6 address 3514:1::1/64
  ipv6 enable
  ipv6 eigrp 1
! interface FastEthernet0/0
  no ip address
  no ip mroute-cache
  load-interval 30
  speed 100
```
full-duplex
ppoe enable group VMI1
!
interface Virtual-Template1
no ip address
load-interval 30
ipv6 address 3514:2::1/64
ipv6 enable
ipv6 eigrp 1
no keepalive
service-policy output FQ
!
interface vmi1
no ip address
load-interval 30
ipv6 enable
physical-interface FastEthernet0/0
mode bypass
!
ipv6 router eigrp 1
no shutdown
redistribute connected
...
end

VMI Bypass mode PPPoE Configuration with EIGRP IPv4:
hostname host1
!
ip cef
!
no ip domain lookup
!
subscriber authorization enable
!
subscriber profile host1
ppoe service manet_radio
!
multilink bundle-name authenticated
!
no virtual-template subinterface
!
archive
!
log config
!
policy-map FQ
class class-default
fair-queue
!
!
bba-group pppoe VMI1
virtual-template 1
service profile host1
!
!
interface Loopback1
ip address 35.9.1.1 255.255.255.0
load-interval 30
!
interface FastEthernet0/0
no ip address
no ip mroute-cache
load-interval 30
speed 100
full-duplex
pppoe enable group VMI1
!
interface Virtual-Template1
ip address 4.3.3.1 255.255.255.0
load-interval 30
no keepalive
service-policy output FQ
!
interface vmi1
! the IP Address of the vmi1 interface needs to be defined,
! but it will not be routable since the vmi interface will be
! down/down.
ip address 4.3.9.1 255.255.255.0
load-interval 30
physical-interface FastEthernet0/0
mode bypass
!
router eigrp 1
redistribute connected
network 4.2.0.0 0.0.255.255
network 4.3.0.0 0.0.255.255
auto-summary
!
...
end

VMI Bypass mode PPPoE Configuration Using EIGRP for IPv4 and IPv6:

... hostname host1
! ip cef
! no ip domain lookup
! ipv6 unicast-routing
! ipv6 cef
! subscriber authorization enable
! subscriber profile host1
  pppoe service manet_radio
! multilink bundle-name authenticated
! no virtual-template subinterface
! policy-map FQ
  class class-default
    fair-queue
!
  bba-group pppoe VMI1
  virtual-template 1
  service profile host1
!
! interface Loopback1
ip address 35.9.1.1 255.255.255.0
load-interval 30
ipv6 address 3514:1::1/64
ipv6 enable
ipv6 eigrp 1
!
interface FastEthernet0/0
  no ip address
  no ip mroute-cache
  load-interval 30
  speed 100
  full-duplex
  pppoe enable group VMI1
!
interface Virtual-Template1
  ip address 4.3.3.1 255.255.255.0
  load-interval 30
  ipv6 address 3514:2::1/64
  ipv6 enable
  ipv6 eigrp 1
  no keepalive
  service-policy output FQ
!
interface vmi1
  ip address 4.3.9.1 255.255.255.0
  load-interval 30
  ipv6 enable
  physical-interface FastEthernet0/0
  mode bypass
!
router eigrp 1
  redistribute connected
  network 4.2.0.0 0.0.255.255
  network 4.3.0.0 0.0.255.255
  auto-summary
!
ipv6 router eigrp 1
  eigrp router-id 35.9.1.1
  no shutdown
  redistribute connected
...
end
Command Reference

This appendix provides command reference documentation in the following major sections:

- **Debug Commands**
- **List of Commands, page A-2**
- **Commands, page A-3**

**Debug Commands**

You can search for `debug` commands from privileged EXEC mode.

⚠️ **Caution**

Do not use debug commands unless a Cisco Support engineer instructs you to do so.

**Example for DLEP**

This example shows how to display `debug` commands for Dynamic Link Exchange Protocol (DLEP):

```plaintext
debug dlep ?
client  debug DLEP client information
neighbor DLEP neighbor transaction information
server  DLEP server transaction information
timer display DLEP timer information
```

**Example for R2CP**

This example shows how to display `debug` commands for Router-to-Radio Control Protocol (R2CP):

```plaintext
debug r2cp ?
client  debug R2CP client information
neighbor R2CP neighbor transaction information
server  R2CP server transaction information
timer display R2CP timer information
```
List of Commands

This section lists the mobility commands modified or introduced in this Configuration Guide:

- clear dlep client, page A-6
- clear dlep counters, page A-7
- clear pppoe relay context, page A-9
- clear vmi counters, page A-10
- flowcontrol send, page A-13
- interface vmi, page A-14
- ip dlep set heartbeat-threshold, page A-16
- ip dlep set nbr-activity-timeout, page A-17
- ip dlep set nbr-down-ack-timeout, page A-18
- ip dlep set peer-terminate-ack-timeout, page A-19
- ip dlep vtemplate, page A-20
- ip r2cp heartbeat-threshold, page A-21
- ip r2cp node-terminate-ack-threshold, page A-22
- ip r2cp node-terminate-ack-timeout, page A-23
- ip r2cp port, page A-24
- ip r2cp session-activity-timeout, page A-25
- ip r2cp session-terminate-ack-threshold, page A-26
- ip r2cp session-terminate-ack-timeout, page A-27
- ip r2cp virtual-template, page A-28
- ipv6 redirects, page A-29
- keepalive, page A-31
- manet cache, page A-33
- manet hello unicast, page A-35
- manet peering selective, page A-36
- manet willingness, page A-37
- mode, page A-39
- ospfv3 area, page A-41
- ospfv3 cost dynamic default, page A-44
- ospfv3 cost dynamic hysteresis, page A-45
- ospfv3 cost dynamic weight, page A-47
- ospfv3 dead-interval, page A-49
- ospfv3 hello-interval, page A-50
- ospfv3 manet peering cost, page A-51
- ospfv3 manet peering link-metrics, page A-53
- ospfv3 network, page A-54
- physical-interface, page A-56
• router ospfv3, page A-57
• show dlep clients, page A-58
• show dlep config, page A-59
• show dlep counters, page A-60
• show dlep counters, page A-60
• show ip eigrp neighbors, page A-63
• show ip redirects, page A-64
• show ipv6 eigrp neighbors, page A-65
• show ospfv3, page A-66
• show ospfv3 database, page A-68
• show ospfv3 flood-list, page A-71
• show ospfv3 interface, page A-73
• show ospfv3 neighbor, page A-75
• show ospfv3 neighbor manet, page A-79
• show ospfv3 promiscuous acknowledgments, page A-80
• show pppoe, page A-81
• show pppoe derived, page A-83
• show pppoe session, page A-84
• show r2cp clients, page A-86
• show r2cp config, page A-88
• show r2cp neighbors, page A-90
• show vmi counters, page A-91
• show vmi neighbors, page A-94
• summary-prefix (OSPFv3), page A-98
• timers manet, page A-100
• timers throttle spf, page A-102

**Commands**

This section provides the complete reference pages for all commands listed in this appendix.
clear ospfv3

To clear redistribution by the IPv4 OSPFv3 routing process, use the `clear ospfv3` command in privileged EXEC mode.

`clear ospfv3 [process-id] [counters [neighbor [neighbor-interface] [neighbor-id] | force-spf | process | redistribution | traffic [interface-id]]]`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>process-id</code></td>
<td>(Optional) Process ID.</td>
</tr>
<tr>
<td><code>counters</code></td>
<td>OSPF counters.</td>
</tr>
<tr>
<td><code>neighbor</code></td>
<td>(Optional) Neighbor statistics per interface.</td>
</tr>
<tr>
<td><code>neighbor-interface</code></td>
<td>(Optional) Neighbor interface.</td>
</tr>
<tr>
<td><code>neighbor-id</code></td>
<td>(Optional) Neighbor ID.</td>
</tr>
<tr>
<td><code>force-spf</code></td>
<td>Run SPF for the OSPF process.</td>
</tr>
<tr>
<td><code>process</code></td>
<td>Reset the OSPF process.</td>
</tr>
<tr>
<td><code>redistribution</code></td>
<td>Clear OSPF route redistribution.</td>
</tr>
<tr>
<td><code>traffic</code></td>
<td>Clear traffic-related statistics.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `process-id` argument to clear only one OSPF process. If `process-id` is not specified, all OSPF processes are cleared.

**Examples**

The following example clears all OSPFv3 processes:

```
router# clear ospfv3 process
Reset ALL OSPFv3 processes? [no]: yes
router#
```

The following example clears the OSPFv3 counters for neighbor s19/0.

```
router# clear ospfv3 counters neighbor s19/0
Reset OSPFv3 counters? [no]: yes
router#
```

The following example now shows that there have been 0 state changes since using the `clear ospfv3 counters neighbor s19/0` command:

```
Router# show ospfv3 counters neighbor detail
Neighbor 172.16.4.4
```
In the area 0 via interface POS4/0
Neighbor: interface-id 14, link-local address FE80::205:5FFF:FED3:5406
Neighbor priority is 1, State is FULL, 6 state changes
Options is 0x63AD1B0D
Dead timer due in 00:00:33
Neighbor is up for 00:48:56
Index 1/1/1, retransmission queue length 0, number of retransmission 1
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
Last retransmission scan length is 1, maximum is 1
Last retransmission scan time is 0 msec, maximum is 0 msec
Neighbor 172.16.3.3
In the area 1 via interface FastEthernet0/0
Neighbor: interface-id 3, link-local address FE80::205:5FFF:FED3:5808
Neighbor priority is 1, State is FULL, 6 state changes
DR is 172.16.6.6 BDR is 172.16.3.3
Options is 0x63F813E9
Dead timer due in 00:00:33
Neighbor is up for 00:09:00
Index 1/1/2, retransmission queue length 0, number of retransmission 2
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
Last retransmission scan length is 1, maximum is 2
Last retransmission scan time is 0 msec, maximum is 0 msec
Neighbor 172.16.5.5
In the area 2 via interface ATM3/0
Neighbor: interface-id 13, link-local address FE80::205:5FFF:FED3:6006
Neighbor priority is 1, State is FULL, 6 state changes
Options is 0x63F7D249
Dead timer due in 00:00:38
Neighbor is up for 00:10:01
Index 1/1/3, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
Router#

The following example shows the `clear ospfv3 force-spf` command:

Router1# clear ospfv3 force-spf

The following example clears all OSPF processes:

router# clear ospfv3 process

Reset ALL OSPFv3 processes? [no]: yes
router#

The following example clears all OSPF processes for neighbors:

router# clear ospfv3 process neighbor

The following example shows the `clear ospfv3 redistribution` command:

router# clear ospfv3 redistribution

The following example shows the `clear ospfv3 traffic` command:

router# clear ospfv3 traffic

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ospfv3 neighbor</td>
<td>Displays OSPF neighbor information on a per-interface basis.</td>
</tr>
</tbody>
</table>
clear dlep client

To clear a router-to-radio peer association, use the clear dlep client command in privileged EXEC mode.

```
clear dlep client [interface] [peer-id]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>FastEthernet or Vlan</td>
</tr>
<tr>
<td>peer-id</td>
<td>Peer ID with valid range from 1 to 2147483647</td>
</tr>
</tbody>
</table>

Cleared a specific router-to-radio peer association (client) identified in the output of the `show dlep clients` command.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use this command to clear a router-to-radio peer association.

The following example clears a router-to-radio peer association on the fa0/1 interface (with a peer ID value of 11):

```
Router# clear dlep client fa0/1 11
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dlep clients</td>
<td>Displays router-to-radio peer associations.</td>
</tr>
</tbody>
</table>
clear dlep counters

To clear DLEP counters, use the `clear dlep counters` command in privileged EXEC mode.

```
clear dlep counters [interface]
```

**Syntax Description**

```
interface (Optional) Interface where DLEP is configured.
```

**Command Default**

If no arguments are specified, all counters on all VMI interfaces with DLEP configured are cleared.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to clear counters on one DLEP interface:

```
Router# clear dlep counters gigabitEthernet 0/1.5
```
clear dlep neighbor

To clear a neighbor session, use the clear dlep neighbor command in privileged EXEC mode.

```
clear dlep neighbor [interface] [session-id]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>FastEthernet or Vlan</td>
</tr>
<tr>
<td>session-id</td>
<td>Session ID with valid range from 1 to 2147483647</td>
</tr>
</tbody>
</table>

Cleans a neighbor session with a specific neighbor identified in the output of the show dlep neighbors command.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to clear the neighbor session on the specified interface.

**Examples**

The following example clears a DLEP neighbor session on a specific FastEthernet interface—where the interface is fa0/1 and the session ID is 11:

```
Router# clear dlep neighbor fa0/1 11
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dlep neighbors</td>
<td>Displays neighbor sessions on the specified interface.</td>
</tr>
</tbody>
</table>
clear pppoe relay context

To clear the PPP over Ethernet (PPPoE) relay context created for relaying PPPoE Active Discovery (PAD) messages, use the `clear pppoe relay context` command in privileged EXEC mode.

```
clear pppoe relay context {all | id session-id}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Clears all relay contexts.</td>
</tr>
<tr>
<td>id session-id</td>
<td>Clears a specific context identified in the output of the <code>show pppoe relay context all</code> command.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(28)SB</td>
<td>This command was integrated into Cisco IOS Release 12.2(28)SB.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to clear relay contexts created for relaying PAD messages.

**Examples**

The following example clears all PPPoE relay contexts created for relaying PAD messages:

```
Router# clear pppoe relay context all
```
clear vmi counters

To clear VMI counters, use the `clear vmi counters` command in privileged EXEC mode.

```
clear vmi counters [vmi-interface]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmi-interface</td>
<td>(Optional) Number assigned to the VMI.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If no VMI interfaces are specified, counters on all VMI interfaces are cleared.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privileged EXEC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15.2(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following example shows how to clear counters on VMI 1:</td>
<td></td>
</tr>
</tbody>
</table>

```
Router# clear vmi counters vmi1
```
eigrp interface

To set a threshold value to minimize hysteresis in a router-to-radio configuration, use the `eigrp interface` command in interface-configuration mode. To reset the hysteresis threshold to the default value, use the `no` form of this command.

```
eigrp vmi-interface-number interface [dampening-change value] [dampening-interval value]
no eigrp vmi-interface-number interface [dampening-change value] [dampening-interval value]
```

**Syntax Description**

- `vmi-interface-number`: The number assigned to the Virtual Multipoint Interface (VMI).
- `dampening-change value` *(Optional)*: Value used to minimize the effect of frequent routing changes in router-to-radio configurations. Percent interface metric must change to cause update. Value ranges from 1 to 100.
- `dampening-interval value` *(Optional)*: Specifies the time interval in seconds to check the interface metrics at which advertising of routing changes occurs. The default value is 30 seconds. Value ranges from 1 to 65535.

**Command Default**

Default for change-based dampening is 50 percent of the computed metric.
Default for interval-based dampening is 30 seconds.

**Command Modes**

- Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(15)XF</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.4(15)T</td>
<td>This command was integrated into Cisco IOS Release 12.4(15)T.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command advertises routing changes for Enhanced Interior Gateway Routing Protocol (EIGRP) traffic only.

The REPLY sent to any QUERY always contains the latest metric information. Exceptions that result in an immediate UPDATE being sent include the following replies:

- A down interface
- A down route
- Any change in metric which results in the router selecting a new next hop

**Change-based Dampening**

The `default` value for the change tolerance will be 50 percent of the computed metric. It can be configured in a range of 0 to 100 percent. If the metric change of the interface is not greater (or less) than the current metric plus or minus the specified amount, the change will not result in a routing change, and no update will be sent to other adjacencies.
**Interval-based Dampening**

The default value for the update intervals is 30 seconds. It can be configured in the range from 0 to 64535 seconds. If this option is specified, changes in routes learned through this interface, or in the interface metrics, will not be advertised to adjacencies until the specified interval is met. When the timer expires, any changes detected in any routes learned through the interface, or the metric reported by the interfaces will be sent out.

**Examples**

**Change-based Dampening Example**

The following example sets the threshold to 50 percent tolerance routing updates involving VMI interfaces and peers:

```plaintext
interface vmi1
 ip address 10.2.2.1 255.255.255.0
 ipv6 address 2001:0DB1:2::1/96
 ipv6 enable
eigrp 1 interface dampening-change 50
 physical-interface Ethernet0/0
```

**Interval-based Dampening Example**

The following example sets the interval to 30 seconds at which updates occur for topology changes that affect VMI interfaces and peers:

```plaintext
interface vmi1
 ip address 10.2.2.1 255.255.255.0
 ipv6 address 2001:0DB1:2::1/96
 ipv6 enable
eigrp 1 interface dampening-interval 30
 physical-interface Ethernet0/0
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug vmi</td>
<td>Displays debugging output for VMIs.</td>
</tr>
<tr>
<td>eigrp interface</td>
<td>Sets a threshold value to minimize hysteresis in a router-to-radio configuration.</td>
</tr>
<tr>
<td>interface vmi</td>
<td>Creates a VMI that can be configured and applied dynamically.</td>
</tr>
</tbody>
</table>
flowcontrol send

To enable transmit flow control on an interface, use the `flowcontrol send` command in interface-configuration mode. To disable transmit flow control, use the `no` form of this command.

```
flowcontrol send

no control send
```

**Command Default**
Transmit flow control is disabled.

**Command Modes**
Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2(1)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
The following example shows how to enable transmit flow control on interface FastEthernet 0/0:

```
router (config)#interface fastethernet0/0
router (config-if)#flowcontrol send
router (config-if)#end
```
interface vmi

To create a Virtual Multipoint Interface (VMI) for dynamic configuration and application, use the interface vmi command in global-configuration mode. To remove a VMI interface, use the no form of this command.

```
interface vmi interface-number
no interface vmi interface-number
```

**Syntax Description**

- **interface-number**: Number assigned to the VMI. The value range for VMI interface numbers is from 1 to 2147483647.

**Command Default**

No VMI is defined.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(15)XF</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.4(15)T</td>
<td>This command was integrated into Cisco IOS Release 12.4(15)T.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**VMI Interface Aggregation Point**

The VMI interface acts as an aggregation point for multiple PPPoE connections from one or more radios over one or more physical interfaces.

**OSPFv3 and EIGRP Route Advertisements**

All OSPFv3, EIGRPv4, and EIGRPv6 route advertisements that are received over the PPPoE connections are reported to the routing protocol as coming from a single interface, thus simplifying the routing protocol topology table and providing scalability benefits of each of the routing protocols.

**Examples**

The following example shows how to create a VMI interface:

```
interface vmi 1
ip address 10.2.1.1 255.255.255.0
ipv6 address 2001:0DB8:1:1:FFFF:FFFF:FFFF:FFFE/64
ipv6 enable
physical-interface GigabitEthernet 0/0
end
```
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug vmi</code></td>
<td>Displays debugging output for VMIs.</td>
</tr>
<tr>
<td><code>eigrp interface</code></td>
<td>Sets a threshold value to minimize hysteresis in a router-to-radio configuration.</td>
</tr>
<tr>
<td><code>mode bypass</code></td>
<td>Enables VMIs to support multicast traffic.</td>
</tr>
<tr>
<td><code>physical interface</code></td>
<td>Creates a physical subinterface to be associated with the VMIs on a router.</td>
</tr>
</tbody>
</table>
# ip dlep set heartbeat-threshold

To set the maximum number of consecutively missed heartbeats allowed on the DLEP router-to-radio association, use the `ip dlep set heartbeat-threshold` command in interface-configuration mode.

```
ip dlep set heartbeat-threshold count
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>count</th>
<th>Maximum number of missed heartbeats allowed. The valid range is from 2 to 8.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>The default DLEP heartbeat threshold is 4.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Interface configuration (config-if)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15.1(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>Use the <code>ip dlep set heartbeat-threshold</code> command to set the maximum number of consecutively missed heartbeats allowed on the DLEP router-to-radio association before declaring a failed association.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example sets the DLEP heartbeat threshold to 4: Route\er{config-if}# ip dlep set heartbeat-threshold 4</th>
</tr>
</thead>
</table>
ip dlep set nbr-activity-timeout

To set the maximum time allowed for inactivity before ending a neighbor session, use the ip dlep set
nbr-activity-timeout command in interface-configuration mode. To reset the timeout to the default
value, use the no form of this command.

    ip dlep set nbr-activity-timeout seconds
    no ip dlep set nbr-activity-timeout seconds

Syntax Description
seconds The valid range is from 0 to 240 seconds.

Command Default
The default neighbor-activity timeout is 0 (the timer is disabled).

Command Modes
Interface configuration (config-if)

Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the ip dlep set nbr-activity-timeout command to set the maximum number of seconds before a
neighbor session-timer determines a neighbor session is stale.

Examples
The following example sets the neighbor-activity timeout to 2 seconds:
Router(config-if)# ip dlep set nbr-activity-timeout 2
ip dlep set nbr-down-ack-timeout

To set the maximum number of seconds allowed for neighbor sessioning against a lost neighbor-down acknowledgement, use the `ip dlep set nbr-down-ack-timeout` command in interface-configuration mode. To reset the timeout to the default value, use the `no` form of this command.

```
ip dlep set nbr-down-ack-timeout seconds
no ip dlep set nbr-down-ack-timeout seconds
```

**Syntax Description**

- `seconds` The valid range is from 0 to 50 seconds.

**Command Default**

The default neighbor-down-ack timeout is 10 seconds.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `ip dlep set nbr-down-ack-timeout` command to set the maximum number of seconds allowed for neighbor sessioning against a lost neighbor-down acknowledgement.

**Examples**

The following example sets the neighbor-down-ack timeout to 12 seconds:

```
Router(config-if)# ip dlep set nbr-down-ack-timeout 12
```
ip dlep set peer-terminate-ack-timeout

To set the maximum number of seconds allowed for neighbor sessioning against a lost peer-terminate-acknowledgement, use `ip dlep set peer-terminate-ack-timeout` command in interface-configuration mode. To reset the timeout to the default value, use the `no` form of this command.

```
ip dlep set peer-terminate-ack-timeout seconds
no ip dlep set peer-terminate-ack-timeout seconds
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>The valid range is from 0 to 50 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

The default neighbor-down-ack timeout is 10 seconds.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `ip dlep set nbr-down-ack-timeout` command to set the maximum number of seconds allowed for neighbor sessioning against a lost peer-terminate-acknowledgement.

**Examples**

The following example sets the neighbor-down ack timeout to 12 seconds:

```
Router(config-if)# ip dlep set peer-terminate-ack-timeout 12
```
ip dlep vtemplate

To initiate DLEP on the interface (and set the virtual-template interface number), use the **ip dlep vtemplate** command in interface-configuration mode. To disable DLEP on the interface, use the **no** form of this command.

```
ip dlep vtemplate number [port number]
oip dlep vtemplate number [port number]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vtemplate</th>
<th>Sets the virtual-template interface number for DLEP.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
<td>The valid range is from 1 to 4096.</td>
</tr>
<tr>
<td></td>
<td>port number</td>
<td>(Optional) Keyword and port number to designate the port used for the virtual-template interface. The port number valid range is from 1 to 65534.</td>
</tr>
</tbody>
</table>

**Command Default**

If you do not specify a port number, the default port number used is 55555.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the **ip dlep vtemplate** command to specify a virtual-template interface number for DLEP. When assigning this number, you are initiating DLEP on the interface.

To change the virtual-template interface number for DLEP, you must enter the **no** version of the last **ip dlep vtemplate** command you entered before entering the new **ip dlep vtemplate** command.

**Examples**

The following example shows how to set the DLEP virtual-template interface number to 88:

```
Router(config-if)# ip dlep vtemplate 88
```

The following example shows how to set the DLEP virtual-template interface number to 88 and then change it to 96:

```
Router(config-if)# ip dlep vtemplate 88
Router(config-if)# no ip dlep vtemplate 88
Router(config-if)# ip dlep vtemplate 96
```
ip r2cp heartbeat-threshold

To set the maximum number of missed R2CP heartbeat messages allowed before declaring the router-to-radio association failed, use the `ip r2cp heartbeat-threshold` command in interface-configuration mode.

```
interface(config-if) # ip r2cp heartbeat-threshold 3
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>heartbeat-threshold</code></td>
<td>The number of missed R2CP heartbeats allowed before declaring a failed association between the router and locally attached radio.</td>
</tr>
<tr>
<td><code>count</code></td>
<td>The valid range is from 2 to 8.</td>
</tr>
</tbody>
</table>

### Command Default

The default R2CP heartbeat threshold is 3.

### Command Modes

Interface configuration (config-if)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use the `ip r2cp heartbeat-threshold` command to set the R2CP heartbeat threshold. This heartbeat threshold is the number of consecutively missed R2CP heartbeats allowed before declaring the router-to-radio association failed.

### Examples

The following example sets the R2CP heartbeat threshold to 3:

```
Router(config-if)# ip r2cp heartbeat-threshold 3
```
ip r2cp node-terminate-ack-threshold

To set the R2CP node-terminate acknowledgement threshold, use the ip r2cp node-terminate-ack-threshold command in interface-configuration mode. To reset the default-node terminate acknowledgement threshold to the default value, use the no form of this command.

```
ip r2cp node-terminate-ack-threshold value
no ip r2cp node-terminate-ack-threshold value
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>node-terminate-ack-threshold</th>
<th>The number of missed and/or lost R2CP node acknowledgements allowed before declaring the terminate effort complete.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>value</td>
<td>The valid range is from 1 to 5.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>The default R2CP node-terminate acknowledgement threshold is 3.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Interface configuration (config-if)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15.1(2) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>Use the ip r2cp node-terminate-ack-threshold command to set the number of missed and/or lost R2CP node acknowledgements allowed before declaring the terminate effort complete.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example sets the R2CP node-terminate-ack-threshold to 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router(config-if)# ip r2cp node-terminate-ack-threshold 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>node-terminate-ack-timeout</td>
<td>Sets the number of milliseconds the client waits for the node-terminate acknowledgment.</td>
</tr>
</tbody>
</table>
ip r2cp node-terminate-ack-timeout

To set the R2CP node-terminate acknowledgement timeout, use the `ip r2cp node-terminate-ack-timeout` command in interface-configuration mode. To reset the R2CP node-terminate acknowledgement timeout to the default value, use the `no` form of this command.

```
ip r2cp node-terminate-ack-timeout milliseconds
no ip r2cp node-terminate-ack-timeout milliseconds
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node-terminate-ack-timeout</td>
<td>The maximum number of milliseconds allowed by R2CP when waiting for the node-terminate acknowledgement.</td>
</tr>
<tr>
<td>milliseconds</td>
<td>The timeout range is between 100 and 5000 milliseconds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The default node-terminate acknowledgement timeout is 1000 milliseconds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface configuration (config-if)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>15.1(2) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use the <code>ip r2cp node-terminate-ack-timeout</code> command to set the maximum number of milliseconds the client can wait for a node-terminate acknowledgement.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The following example sets the node-terminate acknowledgement timeout to 2200 milliseconds for R2CP:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip r2cp node-terminate-ack-timeout 2200</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node-terminate-ack-threshold</td>
<td>Sets the number of missed and/or lost node acknowledgements allowed by R2CP before declaring the terminate effort complete.</td>
</tr>
</tbody>
</table>
**ip r2cp port**

To specify a port for R2CP, use the `ip r2cp port` command in interface-configuration mode. To reset the R2CP port number to the default value, use the no form of this command.

```
ip r2cp port number
no ip r2cp port number
```

**Syntax Description**

<table>
<thead>
<tr>
<th><strong>port</strong></th>
<th>The port specified for R2CP.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>number</strong></td>
<td>The port number valid range is from 1 to 65534.</td>
</tr>
</tbody>
</table>

**Command Default**

The default port number is 28672.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th><strong>Release</strong></th>
<th><strong>Modification</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `ip r2cp port` command to specify the port for R2CP.

**Examples**

The following example sets the R2CP port to 5858:

```
Router(config-if)# ip r2cp port 5858
```
ip r2cp session-activity-timeout

To configure the R2CP neighbor session-activity timeout, use the `ip r2cp session-activity-timeout` command in interface-configuration mode. To reset the neighbor session-terminate activity timeout to the default value, use the `no` form of this command.

```
ip r2cp session-activity-timeout seconds
no ip r2cp session-activity-timeout seconds
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>session-activity-timeout</code></td>
<td>The port specified for R2CP.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>The valid range for R2CP neighbor session-activity timeout is from 0 to 4 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

The default neighbor session-activity timeout is 1 second.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `ip r2cp session-activity-timeout` command to set the maximum number of seconds before a neighbor session-timer determines a neighbor session is stale.

**Examples**

The following example sets the neighbor-session activity timeout for R2CP to 2 seconds:
```
Router(config-if)# ip r2cp session-activity-timeout 2
```
ip r2cp session-terminate-ack-threshold

To set the R2CP neighbor session-terminate acknowledgement threshold, use the `ip r2cp session-terminate-ack-threshold` command in interface-configuration mode. To reset the R2CP neighbor session terminate-acknowledgement threshold to the default value, use the `no` form of this command.

```
ip r2cp session-terminate-ack-threshold value
no ip r2cp session-terminate-ack-threshold value
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>session-terminate-ack-threshold</code></td>
<td>The number of missed and/or lost R2CP neighbor session acknowledgements allowed before declaring the terminate effort complete.</td>
</tr>
<tr>
<td><code>value</code></td>
<td>The value range is from 1 to 5 sessions.</td>
</tr>
</tbody>
</table>

**Command Default**

The default neighbor session-terminate acknowledgement threshold is 3.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `ip r2cp session-terminate-acknowledgement-threshold` command to set the number of missed and/or lost R2CP neighbor session acknowledgements allowed before declaring the terminate effort complete.

**Examples**

The following example sets the R2CP neighbor session-terminate acknowledgement threshold to 4:

```
Router(config-if)# ip r2cp session-terminate-ack-threshold 4
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>session-terminate-ack-timeout</td>
<td>Sets the amount of time the client waits for the neighbor session terminate acknowledgment in milliseconds.</td>
</tr>
</tbody>
</table>
The following example sets the neighbor session terminate-acknowledgement timeout to 2400 milliseconds for R2CP:

Router(config-if)# ip r2cp session-terminate-ack-timeout 2400

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>session-terminate-ack-threshold</td>
<td>Sets the number of missed and/or lost session acknowledgements allowed by R2CP before declaring the terminate effort complete.</td>
</tr>
</tbody>
</table>
ip r2cp virtual-template

To set a virtual-template access number for R2CP, use the `ip r2cp virtual-template` command in interface-configuration mode. To free a virtual template from R2CP, use the `no` form of this command.

```
ip r2cp virtual-template number
no ip r2cp virtual-template number
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>virtual-template</td>
<td>Sets the virtual-template access number for R2CP.</td>
</tr>
<tr>
<td>number</td>
<td>The valid range is from 0 to 2147483647.</td>
</tr>
</tbody>
</table>

### Command Default

The default virtual-template number is 0.

### Command Modes

Interface configuration (config-if)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use the `ip r2cp virtual-template` command to specify a virtual-template access number for R2CP. When creating a virtual-access interface, R2CP requires this access number for virtual-template selection.

### Examples

The following example sets the R2CP virtual-template access number to 224:

```
Router(config-if)# ip r2cp virtual-template 224
```
ipv6 redirects

To enable the sending of ICMP IPv6 redirect messages if Cisco IOS software is forced to resend a packet through the same interface on which the packet was received, use the `ipv6 redirects` command in interface-configuration mode. To disable the sending of redirect messages, use the `no` form of this command.

```
ipv6 redirects
no ipv6 redirects
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
The sending of ICMP IPv6 redirect messages is enabled.

**Command Modes**
Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(21)ST</td>
<td>This command was integrated into Cisco IOS Release 12.0(21)ST.</td>
</tr>
<tr>
<td>12.0(22)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(22)S.</td>
</tr>
<tr>
<td>12.2(14)S</td>
<td>This command was integrated into Cisco IOS Release 12.2(14)S.</td>
</tr>
<tr>
<td>12.2(28)SB</td>
<td>This command was integrated into Cisco IOS Release 12.2(28)SB.</td>
</tr>
<tr>
<td>12.2(25)SG</td>
<td>This command was integrated into Cisco IOS Release 12.2(25)SG.</td>
</tr>
<tr>
<td>12.2(33)SRA</td>
<td>This command was integrated into Cisco IOS Release 12.2(33)SRA.</td>
</tr>
<tr>
<td>12.2(33)SXH</td>
<td>This command was integrated into Cisco IOS Release 12.2(33)SXH.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The rate at which the router generates all IPv6 ICMP error messages can be limited by using the `ipv6 icmp error-interval` command.

**Examples**
The following example disables the sending of ICMP IPv6 redirect messages on Ethernet interface 0/0 and reenables the messages on Ethernet interface 0/1:

```
Router(config)# interface ethernet0/0
Router(config-if)# no ipv6 redirects
Router(config)# interface ethernet0/1
Router(config-if)# ipv6 redirects
```
To verify whether the sending of IPv6 redirect messages is enabled or disabled on an interface, enter the
`show ipv6 interface` command:

```
Router# show ipv6 interface
Ethernet0 is up, line protocol is up
  IPv6 is stalled, link-local address is FE80::1
  Global unicast address(es):
    2000::1, subnet is 2000::/64
    3000::1, subnet is 3000::/64
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF00:1
  MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are disabled
  ND DAD is enabled, number of DAD attempts: 1
  ND reachable time is 30000 milliseconds
  ND advertised reachable time is 0 milliseconds
  ND advertised retransmit interval is 0 milliseconds
  ND router advertisements are sent every 200 seconds
  ND router advertisements live for 1800 seconds
  Hosts use stateless autoconfig for addresses.
Ethemet1 is up, line protocol is up
  IPv6 is stalled, link-local address is FE80::2
  Global unicast address(es):
    2000::2, subnet is 2000::/64
    3000::3, subnet is 3000::/64
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF00:1
  MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
  ND DAD is disabled, number of DAD attempts: 0
  ND reachable time is 30000 milliseconds
  ND advertised reachable time is 0 milliseconds
  ND advertised retransmit interval is 0 milliseconds
  ND router advertisements are sent every 200 seconds
  ND router advertisements live for 1800 seconds
  Hosts use stateless autoconfig for addresses.
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 icmp</td>
<td></td>
</tr>
<tr>
<td>error-interval</td>
<td>Configures the interval for IPv6 ICMP error messages.</td>
</tr>
</tbody>
</table>
keepalive

To enable keepalive packets and to specify the number of times that the Cisco IOS software tries to send keepalive packets without a response before bringing down the interface or before bringing the tunnel protocol down for a specific interface, use the keepalive command in interface-configuration mode.

To turn off keepalive packets entirely, use the no form of this command.

```
keepalive [period [retries]]

no keepalive [period [retries]]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>(Optional) Integer value, in seconds, that represents the time interval between messages sent by the Cisco IOS software to ensure that a network interface is alive. Value must be greater than 0, and the default is 10.</td>
</tr>
<tr>
<td>retries</td>
<td>(Optional) Number of times that the device will continue to send keepalive packets without response before bringing the interface down. Integer value greater than 1 and less than 255. If omitted, the value that was previously set is used; if no value was specified previously, the default of 5 is used. If this command is used with a tunnel interface, specifies the number of times that the device will continue to send keepalive packets without response before bringing the tunnel interface protocol down.</td>
</tr>
</tbody>
</table>

**Defaults**

- `seconds`: 10 seconds
- `retries`: 3

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(8)T</td>
<td>The retries argument was added and made available on tunnel interfaces.</td>
</tr>
<tr>
<td>12.2(13)T</td>
<td>The default value for the retries argument was increased to 5.</td>
</tr>
<tr>
<td>12.2(14)S</td>
<td>This command was integrated into Cisco IOS release 12.2(14)S.</td>
</tr>
<tr>
<td>12.2(28)SB</td>
<td>This command was integrated into Cisco IOS Release 12.2(28)SB.</td>
</tr>
<tr>
<td>12.2(33)SRA</td>
<td>This command was integrated into Cisco IOS Release 12.2(33)SRA.</td>
</tr>
<tr>
<td>12.2SX</td>
<td>This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.</td>
</tr>
</tbody>
</table>
Usage Guidelines

Defaults for keepalive command
If you enter only the `keepalive` command with no arguments, defaults for both arguments are used. If you enter the `keepalive` command and the timeout parameter, the default number of retries (5) is used. If you enter the `no` form of the command, keepalive packets are disabled on the interface.

Keepalive Time Interval
You can configure the keepalive time interval, which is the frequency at which the Cisco IOS software sends messages to itself (Ethernet and Token Ring) or to the other end (serial and tunnel), to ensure that a network interface is alive. The interval is adjustable in 1-second increments down to 1 second. An interface is declared down after five update intervals have passed without receiving a keepalive packet unless the retry value is set higher. If you are running a Cisco IOS image prior to Cisco IOS Release 12.2(13)T, the default retry value is 3.

Examples
The following example shows how to enable keepalive packets and set the keepalive interval to 3 seconds:

```
Router(config)# interface ethernet 0/0
Router(config-if)# keepalive 3
```

The following example shows how to enable keepalive packets and set the keepalive interval to 3 seconds and the retry value to 7:

```
Router(config)# interface tunnel 1
Router(config-if)# keepalive 3 7
```
**manet cache**

To configure the number of MANET cached LSA updates and acknowledgments, use the `manet cache` command in router-configuration mode. To restore the default values, use the `no` form of this command.

```
manet cache {update update-value | acknowledgment ack-value}
no manet cache {update | acknowledgment}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>update</code></td>
<td>Cached LSA updates.</td>
</tr>
<tr>
<td><code>update-value</code></td>
<td>The number of cached LSA updates. The value ranges from 0 to 4294967295. The default value is 1000.</td>
</tr>
<tr>
<td><code>acknowledgment</code></td>
<td>Cached LSA acknowledgments.</td>
</tr>
<tr>
<td><code>ack-value</code></td>
<td>The number of cached LSA acknowledgments. The value ranges from 0 to 4294967295. The default value is 1000.</td>
</tr>
</tbody>
</table>

**Defaults**

1000 updates or 1000 acknowledgments

**Command Modes**

Router configuration (config-router)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.4(24) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Setting the Cache Size**

When you set the cache size, the router keeps a larger number of temp LSAs and ACKs. If the cache fills up before the timers expire, the LSAs and ACKs are deleted from the cache. In some cases, the deleted ACKs can cause the router to flood 1-hop neighbors because the router no longer knows about the deleted ACKs.

**Increasing the Cache Size**

If you increase the size of the cache, you might prevent non-primary relay routes from flooding in the case when ACKs were deleted because the cache became full before the ACK timer expired. Increasing the cache size reduces the amount of memory available for the cache storage.

**Caution**

Before you decide to increase the cache size, ensure that the free memory is not reduced to levels that can affect basic route processing.

**Assessing How Cache Size Affects Performance**

It is difficult to assess the number of times that flooding occurs because LSAs and ACKs have been deleted before the ACK timer expired. Use the `show ospfv3` command to compare the current and maximum cache values. Over time, if the two values are very close, it indicates that the cache is filling up faster than the timer expiration is occurring. In that case, increasing the cache size may be helpful.
The following example uses cache size for the LSA update and LSA ACKs. The `manet cache update` command optimizes the exchange of the LS database while forming adjacencies with new neighbors in the radio environment. The result is minimized OSPF control traffic and reduced use of radio bandwidth. The ACK cache size improves the dynamic relaying of the LSA update information:

```
Router(config)# ipv6 unicast-routing
Router(config)# router ospfv3 1
Router(config-router)# manet cache acknowledgment 2000
Router(config-router)# manet cache update 2000
Router(config-router)# ^Z

Router# show ospfv3 1
Routing Process "ospfv3 1" with ID 172.27.76.13
  Supports IPv6 Address Family
  Event-log enabled, Maximum number of events: 1000, Mode: cyclic
  Initial SPF schedule delay 1000 msecs
  Minimum hold time between two consecutive SPFss 2000 msecs
  Maximum wait time between two consecutive SPFss 2000 msecs
  Minimum LSA interval 5 secs
  Minimum LSA arrival 1000 msecs
  LSA group pacing timer 240 secs
  Interface flood pacing timer 33 msecs
  Retransmission pacing timer 66 msecs
  Number of external LSA 0, Checksum Sum 0x00000000
  Number of areas in this router is 1, 1 normal 0 stub 0 nssa
  Graceful restart helper support enabled
  Reference bandwidth unit is 100 mbps
  Relay willingness value is 128
  Pushback timer value is 2000 msecs
  Relay acknowledgement timer value is 1000 msecs
  LSA cache Enabled : current count 0, maximum 2000
  ACK cache Enabled : current count 0, maximum 2000
  Selective Peering is not enabled
  Hello requests and responses will be sent multicast
  Area BACKBONE(0) (Inactive)
    Number of interfaces in this area is 1
    SPF algorithm executed 2 times
    Number of LSA 2, Checksum Sum 0x0116AD
    Number of DChitless LSA 0
    Number of indication LSA 0
    Number of DoNotAge LSA 0
    Flood list length 0
```

The lines that begin with "LSA cache Disabled" and "ACK cache Disabled" contain the cache size information.

### Examples

The following example uses cache size for the LSA update and LSA ACKs. The `manet cache update` command optimizes the exchange of the LS database while forming adjacencies with new neighbors in the radio environment. The result is minimized OSPF control traffic and reduced use of radio bandwidth. The ACK cache size improves the dynamic relaying of the LSA update information:

```
Router(config)# ipv6 unicast-routing
Router(config)# router ospfv3 1
Router(config-router)# manet cache acknowledgment 2000
Router(config-router)# manet cache update 2000
Router(config-router)# ^Z

Router# show ospfv3 1
Routing Process "ospfv3 1" with ID 172.27.76.13
  Supports IPv6 Address Family
  Event-log enabled, Maximum number of events: 1000, Mode: cyclic
  Initial SPF schedule delay 1000 msecs
  Minimum hold time between two consecutive SPFss 2000 msecs
  Maximum wait time between two consecutive SPFss 2000 msecs
  Minimum LSA interval 5 secs
  Minimum LSA arrival 1000 msecs
  LSA group pacing timer 240 secs
  Interface flood pacing timer 33 msecs
  Retransmission pacing timer 66 msecs
  Number of external LSA 0, Checksum Sum 0x00000000
  Number of areas in this router is 1, 1 normal 0 stub 0 nssa
  Graceful restart helper support enabled
  Reference bandwidth unit is 100 mbps
  Relay willingness value is 128
  Pushback timer value is 2000 msecs
  Relay acknowledgement timer value is 1000 msecs
  LSA cache Enabled : current count 0, maximum 2000
  ACK cache Enabled : current count 0, maximum 2000
  Selective Peering is not enabled
  Hello requests and responses will be sent multicast
  Area BACKBONE(0) (Inactive)
    Number of interfaces in this area is 1
    SPF algorithm executed 2 times
    Number of LSA 2, Checksum Sum 0x0116AD
    Number of DChitless LSA 0
    Number of indication LSA 0
    Number of DoNotAge LSA 0
    Flood list length 0
```

The lines that begin with "LSA cache Disabled" and "ACK cache Disabled" contain the cache size information.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timers manet</td>
<td>Configures MANET timer parameters.</td>
</tr>
</tbody>
</table>
manet hello unicast

To configure whether MANET hello requests and responses are sent as unicast packets or multicast packets use the manet hello unicast command in router-configuration mode. To return to multicast MANET hello requests, use the no form of this command.

    manet hello unicast

    no manet hello unicast

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unicast</td>
<td>Configures manet hello requests and responses to send in unicast.</td>
</tr>
</tbody>
</table>

Command Default

The default is multicast manet hello requests.

Command Modes

Router configuration (config-rtr)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For broadcast radios, multicast mode typically provides improved performance with reduced bandwidth utilization. For point-to-point radios, unicast mode typically provides improved performance and reduced bandwidth utilization.

Note

For optimal performance, configure all nodes consistently.

Examples

The following example shows how to configure the manet hello unicast command.

    Router# configure terminal
    Enter configuration commands, one per line. End with CNTL/Z.
    Router(config)# router ospfv3 1
    Router(config)# manet hello unicast
    Router(config-rtr)# end
manet peering selective

To enable selective peering on a per-area or per-interface basis and configure the maximum number of redundant paths to each neighbor, use the `manet peering selective` command in router-configuration mode. To disable selective MANET peering, use the `no` form of this command.

```
manet peering selective [redundancy redundancy-count] [per-interface]

no manet peering selective
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>redundancy</td>
<td>To only count redundant paths on a per-interface basis, rather than across all interfaces.</td>
</tr>
<tr>
<td>redundancy-count</td>
<td>Change the preferred number of redundant paths to any given peer. The default redundancy count if not specified is 1 (2 paths).</td>
</tr>
<tr>
<td>per-interface</td>
<td>To only specify the maximum number of redundant paths desired to a given peer. The range of this value is 0-10. A value of 0 indicates only a single path is desired.</td>
</tr>
</tbody>
</table>

**Command Modes**

Router configuration (config-rtr)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Selective peering will only be enabled for instances of the OSPF process for which the corresponding interface have been configured with the `ospfv3 network manet` command.

**Examples**

The following example shows how to enable manet selective peering per interface with a redundancy of 10.

```
router(config)#router ospfv3 1
router(config-rtr)#manet peering selective per-interface redundancy 10
```
manet willingness

To configure the overlapping relay willingness value on a MANET router, use the `manet willingness` command in router-configuration mode. To disable a willingness value, use the `no` form of this command which restores the default willingness value of 128.

```
manet willingness will-value
no manet willingness
```

**Syntax Description**

`will-value`  
The willingness value range is from 0 to 255.

**Defaults**

The willingness default value is 128.

**Command Modes**

Router configuration (config-rtr)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Willingness is a one-octet unsigned integer describing the willingness of the sender to act as an active overlapping relay for its peers. A willingness value of 100 is less willing to become a relay than a value of 128.

A willingness value of 0 means that the router will NEVER be chosen as an active relay by its peers. A willingness value of 255 means that the router will ALWAYS be chosen as an active relay by its peers.

**Examples**

The following example shows how to control the willingness of the router to be an active relay for the MANET network:

```
Router(config)# router ospfv3 100
Router(config-rtr)# manet willingness 100
Router(config-rtr)# end
Router# show ospfv3 100
Routing Process "ospfv3 100" with ID 5.5.5.5
Supports IPv6 Address Family
Supports Link-local Signaling (LLS)
It is an autonomous system boundary router
Redistributing External Routes from, connected
SPF schedule delay 1 secs, Hold time between two SPFss 1 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 3. Checksum Sum 0x00AAB6
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Reference bandwidth unit is 100 mbps
```
Relay willingness value is 100
Pushback timer value is 2000 msecs
Relay acknowledgement timer value is 1000 msecs
LSA cache Enabled: current count 0, maximum 1000
ACK cache Enabled: current count 0, maximum 1000
Selective Peering is not enabled
Hello requests and responses will be sent multicast
Area BACKBONE(0)
Number of interfaces in this area is 1
SPF algorithm executed 2 times
Number of LSA 6. Checksum Sum 0x02D90A
Number of DCbitless LSA 0
Number of indication LSA 0
Number of DoNotAge LSA 0
Flood list length 0

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show ospfv3</td>
<td>Displays general information about OSPF routing processes.</td>
</tr>
</tbody>
</table>
mode

To enable VMI to support multicast traffic, use the `mode` command in interface-configuration mode. To return the interface to the default mode (aggregate), use the `no` form of this command.

```
mode {aggregate | bypass}
no mode {aggregate | bypass}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>aggregate</th>
<th>bypass</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregate</td>
<td>Keyword to set the mode to aggregate. All virtual-access interfaces created by PPPoE neighbor sessions are logically aggregated under the VMI.</td>
<td>Keyword to set the mode to bypass.</td>
</tr>
</tbody>
</table>

### Command Default

The default mode is aggregate.

### Command Modes

Interface configuration (config-if)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(15)XF</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.4(15)T</td>
<td>This command was integrated into Cisco IOS Release 12.4(15)T to support multicast traffic on Virtual Multipoint Interfaces (VMIs).</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use this command to support multicast traffic in router-to-radio configurations.

**Aggregate Mode**

Aggregate mode is the default mode for VMI, where VMI aggregates all virtual-access interfaces logically. To enable VMI to forward packets to the correct virtual-access interface, you must define applications such as EIGRP and OSPFv3 (all applications above Layer 2) on VMI.

**Bypass Mode**

Using bypass mode is recommended for multicast applications.

In bypass mode, the virtual-access interfaces are directly exposed to applications running above Layer 2. In bypass mode, definition of a VMI is still required because the VMI continues to manage presentation of cross-layer signals such as neighbor up, neighbor down, and metrics. However, applications will still be aware on the actual underlying virtual-access interfaces and send packets to them directly.

Using bypass mode can cause databases in the applications to be larger because knowledge of more interfaces are required for normal operation.

After you enter the `mode` command, Cisco recommends that you copy the running configuration to NVRAM because the default mode of operation for VMI is to logically aggregate the virtual-access interfaces.
Examples

The following examples set the interface mode to bypass:

Router# enable
Router# configure terminal
Router(config)# interface vmi1
Router(config-if)# mode bypass

The following example shows how to enable Multicast Support on a VMI Interface:

Note

Enabling Multicast on VMI interfaces includes changing the VMI interface to bypass mode and enabling "ip pim" on the virtual-template interface.

! interface Virtual-Template1
  ip address 4.3.3.1 255.255.255.0
  load-interval 30
  no keepalive
  ip pim sparse-dense-mode
  service-policy output FQ
  !
  ! interface vmi1
  ip address 4.3.9.1 255.255.255.0
  load-interval 30
  physical-interface FastEthernet0/0
  mode bypass
  !
  end

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface vmi</td>
<td>Creates a VMI interface.</td>
</tr>
</tbody>
</table>
ospfv3 area

To attach an interface to a specific OSPFv3 area and enable routing of IPv6 network traffic using IPv4 or IPv6 addresses, use the `ospfv3 area` command in interface-configuration mode. To detach the interface from the OSPFv3 area, use the `no` form of this command.

```
ospfv3 process-id area area-number {ipv4 | ipv6} [instance instance-number]
no ospfv3 [process-id] area area-number {ipv4 | ipv6} instance instance-number
```

**Syntax Description**

- **process-id**: OSPFv3 process ID. This ID number must match the process ID used in the router OSPFv3 global configuration command. The `process-id` is not optional in the `ospfv3 area` command.
- **area area-number**: Keyword and area number to specify OSPF area for the OSPF process-id.
- **ipv4**: Keyword to define that the OSPFv3 instance that will use IPv4 routing tables to route IPv6 traffic.
- **ipv6**: Keyword to define that the OSPFv3 instance that will use IPv6 routing tables to route IPv6 traffic.
- **instance instance-number** (Optional): Keyword to specify an OSPFv3 instance with instance number. The valid instance number can range from 0 to 31 for IPv6 address families and 64 to 95 for IPv4 address families. The default IPv6 instance is 0. The default instance for IPv4 is 64.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must enter this command to attach an interface to a specific OSPFv3 process and instance. After you have attached an interface to a specific OSPFv3 process and interface, you can enter other OSPFv3 characteristics.

An interface can only support one IPv4 address family process and one IPv6 address family process at the same time.

**Examples**

The following example shows a typical configuration with both IPv6 and IPv4 routing in OSPF that use the default instance numbers.

```
Router(config)# interface ethernet0/0
Router(config-if)# ip address 1.1.1.1 255.0.0.0
Router(config-if)# ospfv3 1 area 0 ipv6
Router(config-if)# ospfv3 2 area 0 ipv4
```
ospfv3 cost dynamic

To specify that the OSPF cost associated with a path on an interface is dynamic, use the ospfv3 cost dynamic command in interface-configuration mode.

ospfv3 [process-id] cost dynamic

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>process-id</td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, MANET interfaces are set to use dynamic costs. Non-MANET networks are set to use static costs.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To reset the OSPF cost associated with an interface to a static cost, enter the OSPFv3 cost command.

When the network type is set to MANET, the OSPF cost associated with an interface automatically sets to dynamic. All other network types, keep the interface cost, and you must enter the ospfv3 cost dynamic command to change the cost to dynamic.

**Examples**

The following example shows how to configure the OSPFv3 instance 4 to use dynamic costing for the OSPF interface:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface Ethernet 0/0
Router(config-if)# ospfv3 4 cost dynamic
Router(config-if)# exit
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfv3 cost dynamic</td>
<td>Configure default metric value to use until metric information is received from the radio.</td>
</tr>
<tr>
<td>default</td>
<td></td>
</tr>
<tr>
<td>ospfv3 cost hysteresis</td>
<td>Dampen cost changes.</td>
</tr>
<tr>
<td>ospfv3 cost dynamic</td>
<td>Amount of impact a link metric change has on the dynamic cost.</td>
</tr>
<tr>
<td>weight</td>
<td></td>
</tr>
</tbody>
</table>
### Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ospfv3 interface</code></td>
<td>Displays information on the OSPFv3 interfaces.</td>
</tr>
<tr>
<td><code>show ospfv3 neighbor manet</code></td>
<td>Displays information on costs for MANET networks.</td>
</tr>
</tbody>
</table>
ospfv3 cost dynamic default

To specify that the OSPF interface cost associated as dynamic, but use a static value until link metric data arrive, use the `ospfv3 cost dynamic default` command in interface-configuration mode. To reset the interface cost, use the `no` form of this command.

```
ospfv3 [process-id] cost dynamic default interface-cost

no ospfv3 [process-id] cost dynamic default
```

**Syntax Description**
- **process-id** (Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.
- **interface-cost** OSPF interface cost to use until link metric data arrive. Valid values range from 0 to 65535.

**Command Modes**
- Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

For a MANET interface, if you do not specify a default dynamic cost, OSPF uses the interface cost until it receives link metric data.

**Examples**

The following example shows how to configure the OSPFv3 instance 4 to use 30 as the default cost until link metric data arrive for dynamic costing:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface Ethernet 0/0
Router(config-if)# ospfv3 4 cost dynamic default 30
Router(config-if)# exit
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfv3 cost hysteresis</td>
<td>Dampen cost changes.</td>
</tr>
<tr>
<td>ospfv3 cost dynamic weight</td>
<td>Amount of impact a link metric change has on the dynamic cost.</td>
</tr>
<tr>
<td>show ospfv3 interface</td>
<td>Displays information on the OSPFv3 interfaces.</td>
</tr>
<tr>
<td>show ospfv3 neighbor manet</td>
<td>Displays information on costs for MANET networks.</td>
</tr>
</tbody>
</table>
ospfv3 cost dynamic hysteresis

To enable cost dynamic hysteresis, use the `ospfv3 cost dynamic hysteresis` command in interface-configuration mode. To disable cost dynamic hysteresis use the `no` form of this command.

```
ospfv3 [process-id] cost dynamic hysteresis [threshold threshold_value | percent percent_value]
```

```
no ospfv3 [process-id] cost dynamic hysteresis [threshold threshold_value | percent percent_value]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>process-id</td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 0 to 65535.</td>
</tr>
<tr>
<td>percent</td>
<td>(Optional) Configure threshold by percentage. The <code>percent</code> value can range from 0 to 100.</td>
</tr>
<tr>
<td>threshold</td>
<td>(Optional) Cost change threshold at which hysteresis will be implemented. The threshold range is from 0 to 64K, and the default threshold value is 10K.</td>
</tr>
</tbody>
</table>

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24)GC</td>
<td>The <code>percent</code> option was added in this version.</td>
</tr>
<tr>
<td>12.4(15)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to dampen the frequency of OSPFv3 route cost changes due to small changes in link metrics. The threshold option specifies the magnitude of change in cost before OSPFv3 is notified. The percent option specifies the change relative to the original cost necessary before OSPFv3 is notified.

The `no ospfv3 cost dynamic hysteresis` command disables cost dynamic hysteresis. The `no ospfv3 cost dynamic hysteresis` command with the `threshold` or `percent` keywords leaves hysteresis enabled and returns the type and value to their defaults.

If hysteresis is enabled without a mode, the default mode is threshold and the default threshold-value is 10.

The higher the threshold or percent value is set, the larger the change in link quality required to change OSPF route costs.

**Examples**

The following example sets the cost dynamic hysteresis to 10 percent for OSPFv3 process 4:

```
Router(config)# interface vmi1
Router(config-if)# ospfv3 & cost dynamic hysteresis percent 10
Router(config-if)# end
```
## ospfv3 cost dynamic hysteresis

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ospfv3 cost dynamic default</code></td>
<td>Configure default metric value to use until metric information is received from the radio.</td>
</tr>
<tr>
<td><code>ospfv3 cost dynamic weight</code></td>
<td>Amount of impact a link metric change has on the dynamic cost.</td>
</tr>
<tr>
<td><code>show ospfv3 interface</code></td>
<td>Displays information on the OSPFv3 interfaces.</td>
</tr>
<tr>
<td><code>show ospfv3 neighbor manet</code></td>
<td>Displays information on costs for MANET networks.</td>
</tr>
</tbody>
</table>
ospfv3 cost dynamic weight

When dynamic cost is configured, OSPF route cost is calculated from a set of link metrics. To change how each link metric affects route cost, use the **ospfv3 cost dynamic weight** command in interface-configuration mode. The **no** version of this command sets the weight to the default weight for the specified metric.

```
ospfv3 process-id cost dynamic weight [threshold threshold_value | percent percent_value]
no ospfv3 process-id cost dynamic weight [threshold threshold_value | percent percent_value]
```

### Syntax Description

- **process-id** *(Optional)* Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.

- **throughput** **percent** Throughput weight of the Layer 2 link, expressed as a percentage. The **percent** value can be in the range from 0 to 100. The default value is 100.

- **resources** **percent** Resources weight (such as battery life) of the router at the Layer 2 link, expressed as a percentage. The **percent** value can range from 0 to 100. The default value is 100.

- **latency** **percent** Latency weight of the Layer 2 link, expressed as a percentage. The **percent** value can range from 0 to 100. The default value is 100.

- **L2-factor** **percent** Quality weight of the Layer 2 link expressed as a percentage. The **percent** value can range from 0 to 100. The default value is 100.

### Command Modes

Interface configuration (config-if)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The default weight for throughput, resources, latency, and L 2-factor is 100%.

The higher the threshold or percent value is set, the larger the change in link quality required to change OSPF route costs.

### Examples

The following example sets the cost dynamic weight for latency to 20%:

```
Router(config)#interface vmi1
Router(config-if)#ospfv3 4 cost dynamic weight latency 20
Router(config-if)#end
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ospfv3 cost dynamic default</strong></td>
<td>Configure default metric value to use until metric information is received from the radio.</td>
</tr>
<tr>
<td><strong>ospfv3 cost hysteresis</strong></td>
<td>Dampen cost changes.</td>
</tr>
<tr>
<td><strong>show ospfv3 interface</strong></td>
<td>Displays information on the OSPFv3 interfaces including weights.</td>
</tr>
<tr>
<td><strong>show ospfv3 neighbor manet</strong></td>
<td>Displays information on costs for MANET networks.</td>
</tr>
</tbody>
</table>
ospfv3 dead-interval

To set the time period for which hello packets must not be seen before neighbors declare the router down, use the `ospfv3 dead-interval` command in interface-configuration mode. To return to the default time, use the `no` form of this command.

`ospfv3 [process-id] dead-interval seconds`

`no ospfv3 [process-id] dead-interval`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>process-id</td>
<td>(Optional) Internal identification. It is locally assigned and can be any</td>
</tr>
<tr>
<td></td>
<td>positive integer. The number used here may be assigned administratively</td>
</tr>
<tr>
<td></td>
<td>when OSPF routing is enabled. The range is 1 to 65535.</td>
</tr>
<tr>
<td>seconds</td>
<td>Specifies the interval (in seconds). The value must be the same for all</td>
</tr>
<tr>
<td></td>
<td>nodes on the network.</td>
</tr>
</tbody>
</table>

**Command Default**

The default interval is four times the interval set by the `ospfv3 hello-interval` command.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If no hello-interval is specified, the default dead-interval is 120 seconds for MANETs and 40 seconds for all other network types.

The interval is advertised in router hello packets. This value must be the same for all routers and access servers on a specific network.

**Examples**

The following example sets the OSPF dead interval to 60 seconds for OSPFv3 process 6:

```
Router(config)#interface ethernet1/0
Router(config-if)#ospfv3 6 dead-interval 60
Router(config-if)#end
Router#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfv3 hello-interval</td>
<td>Specifies the interval between hello packets that the Cisco IOS software sends on the interface.</td>
</tr>
<tr>
<td>ospfv3 network</td>
<td>Specifies the network type for the interface</td>
</tr>
<tr>
<td>show ospfv3 interface</td>
<td>Displays information about the OSPFv3 parameters for an interface, including the dead-interval.</td>
</tr>
</tbody>
</table>
ospfv3 hello-interval

To specify the interval between hello packets that the Cisco IOS software sends on the interface where the OSPFv3 address family is defined, use the ospfv3 hello-interval command in interface-configuration mode. To return to the default time, use the no form of this command.

ospfv3 [process-id] hello-interval seconds

no ospfv3 [process-id] hello-interval

**Syntax Description**

- **process-id** (Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.

- **seconds** Specifies the interval (in seconds). The value must be the same for all nodes on a specific network. The range is from 1 to 65535.

**Defaults**

- 30 seconds for MANETs
- 10 seconds for all other network types

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.(24)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This value is advertised in the hello packets. The smaller the hello interval, the faster topological changes will be detected, but more routing traffic will ensue. This value must be the same for all routers and access servers on a specific network.

**Examples**

The following example sets the interval between hello packets to 15 seconds for OSPFv3 process 4:

```
Router(config)#interface Ethernet0/0
Router(config-if)#ospfv3 4 hello-interval 15
Router(config-if)#end
Router#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfv3 dead-interval</td>
<td>Sets the time period for which hello packets must not have been seen before neighbors declare the router down.</td>
</tr>
<tr>
<td>show ospfv3 interface</td>
<td>Displays information about the OSPFv3 parameters for an interface, including the hello-interval.</td>
</tr>
</tbody>
</table>
ospfv3 manet peering cost

Use selective peering to minimize the full neighbor adjacencies in a MANET. To set a minimum cost change threshold necessary before a new neighbor is considered for selective peering, use the `ospfv3 manet peering cost` command in interface-configuration mode. To exclude cost considerations from the selective peering decision, use the `no` form of this command.

ospfv3 [process-id] manet peering cost {threshold threshold_value | percent percent_value}

no ospfv3 [process-id] manet peering cost

**Syntax Description**

- **process-id** (Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.
- **threshold threshold-value** Absolute improvement in cost relative (relative to current cost) necessary to consider a new neighbor for selective peering. Valid values range from 0 to 65535.
- **percent percent-value** Configure threshold by percentage. The `percent-value` can range from 0 to 100.

**Command Default**
The default MANET peering cost is 0. No incremental improvement in route cost is required to consider selective peering with a new neighbor.

**Command Modes**
Interface configuration (config-if)

**Usage Guidelines**
When selective peering is configured at a given redundancy level, the first 50% of redundant paths do not consider the cost change threshold associated with this command. This allows a minimum OSPFv3 topology to be established in high cost networks.

For example, if you configure selective peering to have a redundancy level of 3 (a total of four paths allowed), the first two neighbors are considered for selective peering, regardless of the neighbor cost. Only the subsequent paths are held to the relative cost change requirements.

**Examples**
The following example shows how to set the MANET peering cost threshold to 3000.

Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface Ethernet 0/0
Router(config-if)#ospfv3 4 manet peering cost threshold 3000
ospfv3 manet peering cost

Router(config-if)#exit
Router(config)#

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ospfv3 manet peering</td>
<td>OSPF may be configured to not respond until metrics and link cost are known.</td>
</tr>
<tr>
<td></td>
<td>link-metrics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>manet peering selectivity</td>
<td>Used to enable selective peering on a per-area or per-interface basis and configure the maximum number of redundant paths to each neighbor.</td>
</tr>
</tbody>
</table>
ospfv3 manet peering link-metrics

To configure and OSPFv3 process to wait for link metrics from a neighbor before attempting selective peering with that neighbor, use the `ospfv3 manet peering link-metrics` command in interface-configuration mode. The threshold value specifies a minimum incremental improvement over the existing OSPFv3 route cost before attempting selective peering. The `no` version of the command disables the requirement to wait for link metrics before attempting selective peering.

ospfv3 [process-id] manet peering link-metrics threshold

no ospfv3 [process-id] manet peering link-metrics

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>process-id</td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.</td>
</tr>
<tr>
<td>threshold-value</td>
<td>Absolute improvement in OSPFv3 route cost derived from link metrics necessary to begin selective peering process with neighbor. Valid values range from 0 to 65535.</td>
</tr>
</tbody>
</table>

**Command Modes**

- Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

By default, selective peering does not require initial link metrics. If you enter this command without a specified threshold, the default threshold is 0.

**Examples**

The following example shows how to set the peering link metrics threshold to 3000 for OSPFv3 process 4.

```
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface Ethernet 0/0
Router(config-if)#ospfv3 4 manet peering link-metrics 3000
Router(config-if)#exit
Router(config)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfv3 manet peering cost</td>
<td>Set peering cost for OSPFv3 process</td>
</tr>
<tr>
<td>manet peering selective</td>
<td>Enable selective peering on a per-area or per-interface basis and configure the maximum number of redundant paths to each neighbor.</td>
</tr>
</tbody>
</table>
ospfv3 network

To configure the OSPFv3 network type to a type other than the default for a given medium, use the `ospfv3 network` command in interface-configuration mode. To return to the default value, use the `no` form of this command.

```
ospfv3 [process-id] network {broadcast | non-broadcast | {point-to-multipoint [non-broadcast] | point-to-point | manet}}
```

```
no ospfv3 [process-id] network
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>process-id</strong></td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.</td>
</tr>
<tr>
<td><strong>network broadcast</strong></td>
<td>Sets the network type to broadcast.</td>
</tr>
<tr>
<td><strong>network manet</strong></td>
<td>Sets the network type to MANET.</td>
</tr>
<tr>
<td><strong>network non-broadcast</strong></td>
<td>Sets the network type to Non Broadcast Multi Access (NBMA).</td>
</tr>
<tr>
<td><strong>network point-to-multipoint</strong> [non-broadcast]</td>
<td>Sets the network type to point-to-multipoint. The optional non-broadcast keyword sets the point-to-multipoint network to non-broadcast. If you use the non-broadcast keyword, the neighbor command is required.</td>
</tr>
<tr>
<td><strong>network point-to-point</strong></td>
<td>Sets the network type to point-to-point.</td>
</tr>
</tbody>
</table>

**Defaults**

The default network type is broadcast.

**Command Modes**

Interface configuration (config-if)

**Command History**

```
Release      Modification
12.4(24)GC   This command was introduced.
```

**Usage Guidelines**

**MANET Networks**

Use the `ospfv3 network manet` command to enable relaying and caching of LSA updates and LSA ACKs on the MANET interface. This will result in a reduction of OSPF traffic and save radio bandwidth.

By default, selective peering is disabled on MANET interfaces.

By default, the OSPFv3 dynamic cost timer is enabled for the MANET network type, as well as caching of LSAs and LSA ACKs received on the MANET interface. The following default values are applied for cache and timers:

```
<table>
<thead>
<tr>
<th>LSA cache</th>
<th>Default = 1000 messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA timer</td>
<td>Default = 10 minutes</td>
</tr>
</tbody>
</table>
```
NBMA Networks
Using this feature, you can configure broadcast networks as NBMA networks when, for example, routers in your network do not support multicast addressing. You can also configure non-broadcast multiaccess networks (such as X.25, Frame Relay, and Switched Multimegabit Data Service (SMDS)) as broadcast networks. This feature saves you from needing to configure neighbors.

Configuring NBMA networks as either broadcast or non-broadcast assumes that there are virtual circuits from every router to every router or fully meshed network. There are other configurations where this assumption is not true, for example, a partially meshed network. In these cases, you can configure the OSPF network type as a point-to-multipoint network. Routing between two routers that are not directly connected will go through the router that has virtual circuits to both routers. You need not configure neighbors when using this feature.

If this command is issued on an interface that does not allow it, this command will be ignored.

Point-to-Multipoint Networks
OSPF has two features related to point-to-multipoint networks. One feature applies to broadcast networks; the other feature applies to non-broadcast networks:

- On point-to-multipoint broadcast networks, you can use the `neighbor` command, and you must specify a cost to that neighbor.
- On point-to-multipoint non-broadcast networks, you must use the `neighbor` command to identify neighbors. Assigning a cost to a neighbor is optional.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfv3 cost dynamic</td>
<td>Configure default metric value to use until metric information is received from the radio.</td>
</tr>
<tr>
<td>ospfv3 cost dynamic</td>
<td>Dampen cost changes.</td>
</tr>
<tr>
<td>ospfv3 cost dynamic</td>
<td>Amount of impact a link metric change has on the dynamic cost.</td>
</tr>
</tbody>
</table>
physical-interface

To associate physical interfaces with the VMI on a router, use the `physical-interface` command in interface-configuration mode. To remove the interface associated interface, use the `no` form of this command.

```
physical-interface interface-type/slot

no physical-interface
```

**Syntax Description**

- **interface-type** Specifies the type of interface or subinterface; value can be Ethernet, Fast Ethernet, or Gigabit Ethernet.
- **slot** Indicates the slot in which the interface is present.

**Command Default**

No physical interface exists.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(15)XF</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.4(15)T</td>
<td>This command was integrated into Cisco IOS Release 12.4(15)T to support VMIs in Mobile Ad Hoc Router-to-Radio Networks.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `physical-interface` command to create a physical subinterface.

Only one physical interface can be assigned to a VMI interface. Because a very high number of VMI interfaces can be used, assign a new VMI for each physical interface.

**Examples**

The following examples shows how to configure the physical interface for vmi1 to FastEthernet0/1.

```
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface vmi1
Router(config-router-if)#physical-interface FastEthernet0/1
Router(config-router-if)#exit
Router(config)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface vmi</td>
<td>Creates a VMI interface.</td>
</tr>
<tr>
<td>mode bypass</td>
<td>Enables VMI to support multicast traffic</td>
</tr>
</tbody>
</table>
## router ospfv3

To enter router configuration mode and enable an OSPFv3 routing process to route IPv6 or IPv4 address-family traffic in IPv6 networks, use the `router ospfv3` command in global configuration mode. To terminate an OSPFv3 routing process, use the `no` form of this command.

```
router ospfv3 process-id
no router ospfv3 process-id
```

### Syntax Description

| process-id          | (Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535. |

### Defaults

No OSPFv3 routing process is defined.

### Command Modes

- Global configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You can specify multiple IP OSPFv3 routing processes in each router. The `router ospfv3` command must be followed by the `address-family` command for routing of IPv6 traffic to occur.

Each OSPFv3 routing process must have a unique router ID. If a router ID is not configured manually (using the `router-id` A.B.C.D command), Cisco IOS attempts to auto-generate a router ID for this process from the IPv4 address of a configured interface. If Cisco IOS cannot generate a unique router-id, the OSPFv3 process remains inactive.

When you use the `no` form of the global `router ospfv3 process-id` command, the associated interface configuration `ospfv3 process-id` command is automatically removed from your configuration.

### Examples

The following example configures an OSPF routing process and assign a process number of 4:

```
Router(config)# router ospfv3 4
Router(config-router)# router-id 1.1.1.1
Router(config-router)# address-family ipv4 unicast
Router(config-router)# exit
Router(config)#
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfv3 area</td>
<td>Defines the interfaces on which OSPFv3 runs and defines the area ID for those interfaces.</td>
</tr>
</tbody>
</table>
show dlep clients

To display router-to-radio peer associations, use the `show dlep clients` command in privileged EXEC mode.

```
show dlep clients [FastEthernet | Vlan] [peer-id]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>peer-id</code></td>
<td>Peer ID with valid range from 1 to 2147483647</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2(4) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show dlep clients` command to display router-to-radio peer associations.

**Examples**

The following example shows how to display router-to-radio peer associations on all interfaces:

```
Router# show dlep clients

DLEP Clients for all interfaces:

DLEP Clients for Interface FastEthernet0/1
DLEP Server IP=12.12.12.101:55555 Sock=1
DLEP Client IP=12.12.12.7:38681
Peer ID=1, Virtual template=1
Description: DLEP_Radio_Sim_1
Peer Timers (all values in seconds):
  Heartbeat=10, Dead Interval=40, Terminate ACK=10
Neighbor Timers (all values in seconds):
  Activity timeout=0, Neighbor Down ACK=10
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dlep config</code></td>
<td>Displays the DLEP server configuration.</td>
</tr>
<tr>
<td><code>show dlep neighbors</code></td>
<td>Displays neighbor sessions on the specified interface.</td>
</tr>
</tbody>
</table>
show dlep config

To display the DLEP server configuration, use the show dlep config command in privileged EXEC mode.

    show dlep config interface [interface-type interface-number]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>FastEthernet or Vlan</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2(4) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the show dlep config command to display the DLEP server configuration.

Display DLEP server configuration example

The following example shows how to display the DLEP server configuration:

    Router# show dlep config
    DLEP Configuration for FastEthernet0/1
    Virtual template=1
    Timers (all values are in seconds):
    Missed heartbeat threshold=4, Peer Terminate ACK timeout=10
    Neighbor activity timeout=0, Neighbor Down ACK timeout=10

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dlep clients</td>
<td>Displays router-to-radio peer associations.</td>
</tr>
<tr>
<td>show dlep neighbors</td>
<td>Displays neighbor sessions on the specified interface.</td>
</tr>
</tbody>
</table>
show dlep counters

To display DLEP counters, use the **show dlep counters** command in privileged EXEC mode.

```
show dlep counters [vmi-interface]
```

### Syntax Description

- **vmi-interface** (Optional) Interface where DLEP is configured.

### Command Default

If no arguments are specified, counters on all VMI interfaces with DLEP configured are displayed.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Examples

The following is example output from the **show dlep counters** command used to display input and output DLEP counts on the gigabitEthernet interface:

```
Router# show dlep counters gigabitEthernet 0/1.5

Peer Counters:
RX Peer Discovery  0  TX Peer Offer  0
RX Heartbeat       22 TX Heartbeat  22
RX Peer Terminate   0  TX Peer Terminate Ack  0
RX Peer Terminate Ack  0 TX Peer Terminate  0

Neighbor Counters:
RX Neighbor Up       0  TX Neighbor Up Ack  0
RX Metric            27  
RX Neighbor Down     0  TX Neighbor Down Ack  0
RX Neighbor Down Ack  0 TX Neighbor Down  0

Exception Counters:
RX Invalid Message   0  RX Unknown Message  0
Pre-Existing Neighbor 0  Neighbor Resource Error  0
Neighbor Not Found    0  Neighbor Msg Peer Not Up  0

Timer Counters:
Peer Heartbeat Timer  22  
Peer Terminate Ack Timer  0
Neighbor Terminate Ack Timer  0
Neighbor Activity Timer  0

Router#  
```

*Table A-9* describes the significant count definitions in the **show dlep counters** command display.
## show dlep counters

### Table A-1  show dlep counters Count Definitions

<table>
<thead>
<tr>
<th>Count</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer Counter</td>
<td></td>
</tr>
<tr>
<td>RX Peer Discovery</td>
<td>Number of receive Peer Discovery messages.</td>
</tr>
<tr>
<td>TX Peer Offer</td>
<td>Number of transmit Peer Offer messages.</td>
</tr>
<tr>
<td>RX Heartbeat</td>
<td>Number of receive Heartbeat messages.</td>
</tr>
<tr>
<td>TX Heartbeat</td>
<td>Number of transmit Heartbeat messages.</td>
</tr>
<tr>
<td>RX Peer Terminate</td>
<td>Number of receive Peer Terminate messages.</td>
</tr>
<tr>
<td>TX Peer Terminate Ack</td>
<td>Number of transmit Peer Terminate acknowledgement messages.</td>
</tr>
<tr>
<td>RX Peer Terminate Ack</td>
<td>Number of receive Peer Terminate acknowledgement messages.</td>
</tr>
<tr>
<td>TX Peer Terminate</td>
<td>Number of transmit Peer Terminate messages.</td>
</tr>
<tr>
<td>Neighbor Counter</td>
<td></td>
</tr>
<tr>
<td>RX Neighbor Up</td>
<td>Number of receive Neighbor Up messages.</td>
</tr>
<tr>
<td>TX Neighbor Up Ack</td>
<td>Number of transmit Neighbor Up acknowledgement messages.</td>
</tr>
<tr>
<td>RX Metric</td>
<td>Number of receive Metric messages.</td>
</tr>
<tr>
<td>RX Neighbor Down</td>
<td>Number of receive Neighbor Down messages.</td>
</tr>
<tr>
<td>TX Neighbor Down Ack</td>
<td>Number of transmit Neighbor Down acknowledgement messages.</td>
</tr>
<tr>
<td>RX Neighbor Down Ack</td>
<td>Number of receive Neighbor Down acknowledgement messages.</td>
</tr>
<tr>
<td>TX Neighbor Down</td>
<td>Number of transmit Neighbor Down messages.</td>
</tr>
<tr>
<td>Exception Counters</td>
<td></td>
</tr>
<tr>
<td>RX Invalid Message</td>
<td>Number of messages received of a type not expected.</td>
</tr>
<tr>
<td>RX Unknown Message</td>
<td>Number of messages received of unknown type.</td>
</tr>
<tr>
<td>Preexisting Neighbor</td>
<td>Number of messages received on a preexisting neighbor.</td>
</tr>
<tr>
<td>Neighbor Resource</td>
<td>Number of resource errors during a neighbor operation.</td>
</tr>
<tr>
<td>Neighbor Not Found</td>
<td>Number of messages received for a non-existent neighbor.</td>
</tr>
<tr>
<td>Neighbor Msg Peer Not Up</td>
<td>Number of neighbor messages received when the peer state was down.</td>
</tr>
<tr>
<td>Timer Counters</td>
<td></td>
</tr>
<tr>
<td>Peer Heartbeat Timer</td>
<td>Number of timer expirations for Peer Heartbeat.</td>
</tr>
<tr>
<td>Peer Terminate Ack Timer</td>
<td>Number of timer expirations for Peer Terminate acknowledgement.</td>
</tr>
<tr>
<td>Neighbor Terminate Ack Timer</td>
<td>Number of timer expirations for Neighbor Terminate acknowledgements.</td>
</tr>
<tr>
<td>Neighbor Activity Timer</td>
<td>Number of timer expirations for Neighbor Activity.</td>
</tr>
</tbody>
</table>
show dlep neighbors

To display neighbor sessions on the specified interface, use the **show dlep neighbors** command in privileged EXEC mode.

    show dlep neighbors interface

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>FastEthernet or Vlan</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the **show dlep neighbors** command to display the established neighbor sessions.

**Display neighbors example**

The following example shows how to display the established neighbor sessions on all interfaces:

    Router# show dlep neighbors
    DLEP Neighbors for all interfaces:
    DLEP Neighbors for Interface FastEthernet0/1
    DLEP Server IP=12.12.12.101:28672 Sock=1
    Global Session ID=101
    MAC Address: 1122.3344.5566
    Vlan ID: 0
    Metrics: rlq=100 resources=100 latency=10 milliseconds
cdr=100000 Kbps mdr=100000 Kbps

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dlep clients</td>
<td>Displays router-to-radio peer associations.</td>
</tr>
<tr>
<td>show dlep config</td>
<td>Displays the DLEP server configuration.</td>
</tr>
</tbody>
</table>
show ip eigrp neighbors

To display neighbors discovered by Enhanced Interior Gateway Routing Protocol (EIGRP), use the `show ip eigrp neighbors` command in EXEC mode.

```
show ip eigrp neighbors [interface-type | as-number | static | detail]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-type</code></td>
<td>(Optional) Filters that output by interface.</td>
</tr>
<tr>
<td><code>as-number</code></td>
<td>(Optional) Filters that output by autonomous system number.</td>
</tr>
<tr>
<td><code>static</code></td>
<td>(Optional) Displays static routes.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>(Optional) Displays detailed neighbor information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>USER EXEC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.3</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td></td>
<td>12.0(7)T</td>
<td>The <code>static</code> keyword was added.</td>
</tr>
<tr>
<td></td>
<td>12.2(15)T</td>
<td>Support for NSF restart operations was integrated into the output.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRA</td>
<td>This command was integrated into Cisco IOS Release 12.2(33)SRA.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ip eigrp neighbors` command to determine when neighbors become active and inactive. The `show ip eigrp neighbors` command is also useful for debugging certain types of transport problems.

**Examples**

The following is example output from the `show ip eigrp neighbors` command:

```
Router# show ip eigrp neighbors
P-EIGRP Neighbors for process 77
Address    Interface       Holdtime Uptime   Q  Seq  SRTT  RTO
           (secs)         (h:m:s)  Count Num (ms) (ms)
172.16.81.28 Ethernet1  13 0:00:41  0   11   4   20
172.16.80.28 Ethernet0  14 0:02:01  0   10   12  24
172.16.80.31 Ethernet0  12 0:02:02  0   4    5   20
```
show ip redirects

To display the address of a default gateway (router) and the address of hosts for which an ICMP redirect message has been received, use the **show ip redirects** command in user EXEC or privileged EXEC mode.

```
show ip redirects
```

### Command Modes

User EXEC

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(33)SRA</td>
<td>This command was integrated into Cisco IOS Release 12.2(33)SRA.</td>
</tr>
<tr>
<td>12.2SX</td>
<td>This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

This command displays the default router (gateway) as configured by the **ip default-gateway** command. The **ip mtu** command enables the router to send ICMP redirect messages.

### Examples

The following is example output from the show ip redirects command:

```
Router# show ip redirects
Default gateway is 172.16.80.29
Host          Gateway         Last Use Total Uses Interface
172.16.1.111   172.16.80.240   0:00        9   Ethernet0
172.16.1.4     172.16.80.240   0:00        4   Ethernet0
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip default-gateway</td>
<td>Defines a default gateway (router) when IP routing is disabled.</td>
</tr>
<tr>
<td>ip mtu</td>
<td>Enables the sending of ICMP redirect messages if the Cisco IOS software is forced to resend a packet through the same interface on which it was received.</td>
</tr>
</tbody>
</table>
**show ipv6 eigrp neighbors**

To display the neighbors discovered by EIGRP for IPv6, use the `show ipv6 eigrp neighbors` command in user EXEC or privileged EXEC mode.

```
show ipv6 eigrp neighbors [interface-type | as-number | static | detail]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-type</code></td>
<td>(Optional) Interface type.</td>
</tr>
<tr>
<td><code>as-number</code></td>
<td>(Optional) Autonomous system number.</td>
</tr>
<tr>
<td><code>static</code></td>
<td>(Optional) Displays static routes.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>(Optional) Displays detailed neighbor information.</td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC
- Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(6)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(33)SRB</td>
<td>This command was integrated into Cisco IOS Release 12.2(33)SRB.</td>
</tr>
<tr>
<td>12.2(33)SXH</td>
<td>This command was integrated into Cisco IOS Release 12.2(33)SXH.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ipv6 eigrp neighbors` command to determine when neighbors become active and inactive. It is also useful for debugging certain types of transport problems.

**Examples**

The following is example output from the `show ipv6 eigrp neighbors` command:

```
Router# show ipv6 eigrp neighbors
IPv6-EIGRP neighbors for process 1
H Address                  Interface      Hold      Uptime    SRTT    RTO   Q    Seq (sec)               (ms)  Num
-------                  -------          -------      -------    -------    ---   ---  ---
0 Link-local address:    Et0/0          14         00:00:13   11      200   0     2 0 FE80::A8BB:CCFF:FE00:200
```

Software Configuration Guide for Cisco IOS Release 15.2(1) GC
show ospfv3

To display information about one or more OSPFv3 routing processes, use the `show ospfv3` command in user EXEC or privileged EXEC mode.

```
show ospfv3 [process-id]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>process-id</code></td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.</td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC
- Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>The syntax for the command changed from <code>show IPv6 OSPF</code> to <code>show ospfv3</code>. This output for this command was expanded to include IPv4 and IPv6 address family information.</td>
</tr>
</tbody>
</table>

**Examples**

The following is example output from the `show ospfv3` command:

```
Router# show ospfv3 100
Routing Process "ospfv3 100" with ID 5.5.5.5
Supports IPv4 Address Family
Supports Link-local Signaling (LLS)
It is an autonomous system boundary router
Redistributing External Routes from, connected
SPF schedule delay 1 secs, Hold time between two SPF's 1 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 2. Checksum Sum 0x01C812
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Reference bandwidth unit is 100 mbps
Relay willingness value is 128
Pushback timer value is 2000 msecs
Relay acknowledgement timer value is 1000 msecs
LSA cache Enabled : current count 0, maximum 1000
ACK cache Enabled : current count 0, maximum 1000
Selective Peering is enabled per node
Redundancy level: 1
Peering delay timer: 250 msecs
Hello requests and responses will be sent multicast
Area BACKBONE(0)
  Number of interfaces in this area is 4
  SPF algorithm executed 13 times
  Number of LSA 6. Checksum Sum 0x0208A7
  Number of DChitless LSA 0
  Number of indication LSA 0
  Number of DoNotAge LSA 0
```
show ospfv3

Flood list length 0
show ospfv3 database

To display the contents of the OSPFv3 Link State Advertisement (LSA) database, or selective parts thereof, use the **show ospfv3 database** command in privileged EXEC mode. The various forms of this command deliver information about different OSPF LSAs.

```
show ospfv3 [process-id] [area-id] database
show ospfv3 [process-id] [area-id] database [adv-router [router-id]]
show ospfv3 [process-id] [area-id] database [database-summary]
show ospfv3 [process-id] [area-id] database [external [link-state-id] [adv-router | internal | self-originate] [ipv6-address]]
show ospfv3 [process-id] [area-id] database [inter-area prefix [link-state-id] [adv-router | internal | self-originate] [ipv6-address]]
show ospfv3 [process-id] [area-id] database [inter-area router [link-state-id] [adv-router | internal | self-originate] [destination-router-id]]
show ospfv3 [process-id] [area-id] database [link [link-state-id] [adv-router | internal | self-originate] [interface [interface-name]]
show ospfv3 [process-id] [area-id] database [network [link-state-id] [adv-router | internal | self-originate]]
show ospfv3 [process-id] [area-id] database [nssa-external [link-state-id] [adv-router | internal | self-originate] [ipv6-address]]
show ospfv3 [process-id] [area-id] database [prefix [link-state-id] [adv-router | internal | self-originate] [router | network]]
show ospfv3 [process-id] [area-id] database [promiscuous]
show ospfv3 [process-id] [area-id] database [router [adv-router | internal | self-originate] [link-state-id]]
show ospfv3 [process-id] [area-id] database [self-originate] [link-state-id]
```

<table>
<thead>
<tr>
<th><strong>Syntax Description</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>process-id</strong></td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.</td>
</tr>
<tr>
<td><strong>area-id</strong></td>
<td>(Optional) Displays information only about a specified area of the database.</td>
</tr>
<tr>
<td><strong>adv-router</strong> [router-id]</td>
<td>(Optional) Displays all the LSAs of the specified router. This argument must be in the form documented in RFC 2740 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td><strong>database-summary</strong></td>
<td>(Optional) Displays how many of each type of LSA for each area there are in the database, and the total.</td>
</tr>
</tbody>
</table>
show ospfv3 database

Command Reference

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(24)S</td>
<td>This command was introduced as show ipv6 OSPF database.</td>
</tr>
<tr>
<td>12.4(24)GC</td>
<td>The promiscuous keyword was added.</td>
</tr>
<tr>
<td>15.1(2)GC</td>
<td>The syntax for the command changed from show IPv6 OSPF database to show ospfv3 database. The output for this command was expanded to include IPv4 and IPv6 address family information.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **adv-router** keyword requires a router ID. The **self-originate** keyword displays only those LSAs that originated from the local router. Both of these keywords can be appended to all other keywords used with the **show ospfv3 database** command to provide more detailed information.
Examples

The following is example output from the `show ospfv3 database` command when no arguments or keywords are used:

```
Router# show ospfv3 database

OSPFv3 Router with ID (172.16.4.4) (Process ID 1)

Router Link States (Area 0)

ADV Router Age Seq# Fragment ID Link count Bits
172.16.4.4 239 0x80000003 0 1 B
172.16.6.6 239 0x80000003 0 1 B

Inter Area Prefix Link States (Area 0)

ADV Router Age Seq# Prefix
172.16.4.4 249 0x80000001 FEC0:3344::/32
172.16.4.4 219 0x80000001 FEC0:3366::/32
172.16.6.6 247 0x80000001 FEC0:3366::/32
172.16.6.6 193 0x80000001 FEC0:3344::/32
172.16.6.6 82 0x80000001 FEC0::/32

Inter Area Router Link States (Area 0)

ADV Router Age Seq# Link ID Dest RtrID
172.16.4.4 219 0x80000001 50529027 172.16.3.3
172.16.6.6 193 0x80000001 50529027 172.16.3.3

Link (Type-8) Link States (Area 0)

ADV Router Age Seq# Link ID Interface
172.16.4.4 242 0x80000002 14 PO4/0
172.16.6.6 252 0x80000002 14 PO4/0

Intra Area Prefix Link States (Area 0)

ADV Router Age Seq# Link ID Ref-lstype Ref-LSID
172.16.4.4 242 0x80000002 0 0x2001 0
172.16.6.6 252 0x80000002 0 0x2001 0
```

Table A-2 describes the significant fields shown in the display.

**Table A-2**  `show ospfv3 database` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV Router</td>
<td>Advertising router ID.</td>
</tr>
<tr>
<td>Age</td>
<td>Link-state age.</td>
</tr>
<tr>
<td>Seq#</td>
<td>Link-state sequence number (detects old or duplicate LSAs).</td>
</tr>
<tr>
<td>Link ID</td>
<td>Interface ID number.</td>
</tr>
<tr>
<td>Ref-lstype</td>
<td>Referenced link-state type.</td>
</tr>
<tr>
<td>Ref-LSID</td>
<td>Referenced link-state ID.</td>
</tr>
</tbody>
</table>
show ospfv3 flood-list

To display a list of OSPFv3 LSAs waiting to be flooded over an interface, use the `show ospfv3 flood-list` command in user EXEC or privileged EXEC mode.

```
show ospfv3 [process-id] flood-list [interface-type interface-number]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>process-id</code></td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.</td>
</tr>
<tr>
<td><code>interface-type</code></td>
<td>Interface type over which the LSAs will be flooded.</td>
</tr>
<tr>
<td><code>interface-number</code></td>
<td>Interface number over which the LSAs will be flooded.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24)GC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>15.1(2)GC</td>
<td>The syntax for the command changed from <code>show IPv6 OSPF flood-list</code> to <code>show ospfv3 flood-list</code>. This output for this command was expanded to include IPv4 and IPv6 address family information.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to display OSPF packet pacing.

**Examples**

The following is example output from the `show ospfv3 flood-list` command:

```
Router# show ospfv3 flood-list

OSPFV3 Router with ID (172.16.6.6) (Process ID 1)

Interface POS4/0, Queue length 1
Link state retransmission due in 14 msec

<table>
<thead>
<tr>
<th>Type</th>
<th>LS ID</th>
<th>ADV RTR</th>
<th>Seq NO</th>
<th>Age</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2001</td>
<td>0</td>
<td>172.16.6.6</td>
<td>0x80000031</td>
<td>0</td>
<td>0x1971</td>
</tr>
</tbody>
</table>

Interface FastEthernet0/0, Queue length 0

Interface ATM3/0, Queue length 0

Router#
```
Table A-3 describes the significant fields shown in the display.

**Table A-3 show ospfv3 flood-list Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPFv3 Router with ID (172.16.6.6) (Process ID 1)</td>
<td>Identification of the router for which information is displayed.</td>
</tr>
<tr>
<td>Interface POS4/0</td>
<td>Interface for which information is displayed.</td>
</tr>
<tr>
<td>Queue length</td>
<td>Number of LSAs waiting to be flooded.</td>
</tr>
<tr>
<td>Link state retransmission due in</td>
<td>Length of time before next link-state transmission.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of LSA.</td>
</tr>
<tr>
<td>LS ID</td>
<td>Link-state ID of the LSA.</td>
</tr>
<tr>
<td>ADV RTR</td>
<td>IP address of advertising router.</td>
</tr>
<tr>
<td>Seq NO</td>
<td>Sequence number of LSA.</td>
</tr>
<tr>
<td>Age</td>
<td>Age of LSA (in seconds).</td>
</tr>
<tr>
<td>Checksum</td>
<td>Checksum of LSA.</td>
</tr>
</tbody>
</table>
show ospfv3 interface

To display OSPF-related interface information, use the `show ospfv3 interface` command in privileged EXEC mode.

```
show ospfv3 [process-id] interface [interface-type interface-number] [brief]
```

**Syntax Description**

- **process-id**  (Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.
- **interface-type**  (Optional) Interface type and number.
- **interface-number**  (Optional) Interface type and number.
- **brief**  (Optional) Displays brief overview information for OSPF interfaces, states, addresses and masks, and areas on the router.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2)GC</td>
<td>The syntax for the command changed from <code>show IPv6 OSPF interface</code> to <code>show ospfv3 interface</code>.</td>
</tr>
<tr>
<td></td>
<td>This output for this command was expanded to include IPv4 and IPv6 address family information.</td>
</tr>
</tbody>
</table>

**Examples**

The following is example output from the `show ospfv3 interface` command:

```
Router# show ospfv3 interface

Ethernet0/0 is up, line protocol is up
  Link Local Address FE80::A8BB:CCFF:FE01:5500, Interface ID 3
  Area 0, Process ID 100, Instance ID 0, Router ID 172.16.3.3
  Network Type MANET, Cost: 10 (dynamic), Cost Hysteresis: Disabled
  Cost Weights: Throughput 100, Resources 100, Latency 100, L2-factor 100
  Transmit Delay is 1 sec, State POINT_TO_MULTIPOINT,
  Timer intervals configured, Hello 5, Dead 20, Wait 20, Retransmit 5
  Hello due in 00:00:01
  Supports Link-local Signaling (LLS)
  Index 1/1/1, flood queue length 0
  Next 0x0(0)/0x0(0)/0x0(0)
  Last flood scan length is 2, maximum is 2
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 1, Adjacent neighbor count is 1
  Adjacent with neighbor 2.2.2.2
  Suppress hello for 0 neighbor(s)
  Incremental Hello is enabled
  Local SCS number 1
  Relaying enabled
  Next 0x0(0)/0x0(0)/0x0(0)
  Last flood scan length is 12, maximum is 12
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 1, Adjacent neighbor count is 1
```
Adjacent with neighbor 172.16.6.6 (Designated Router)
Suppress hello for 0 neighbor(s)

Router#

Table A-4 describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0/0</td>
<td>Status of the physical link and operational status of protocol</td>
</tr>
<tr>
<td>Link Local Address</td>
<td>Interface IPv6 address.</td>
</tr>
<tr>
<td>Area 0, Process ID 100, Instance ID 0, Router ID 172.16.3.3</td>
<td>The area ID, process ID, instance ID, and router ID of the area from which this route is learned.</td>
</tr>
<tr>
<td>Network Type MANET, Cost: 10 (dynamic), Cost hysteresis: Disabled</td>
<td>Network type and link-state cost.</td>
</tr>
<tr>
<td>Transmit Delay</td>
<td>Transmit delay, interface state, and router priority.</td>
</tr>
<tr>
<td>Timer intervals configured</td>
<td>Configuration of timer intervals, including hello-increment and dead-interval.</td>
</tr>
<tr>
<td>Hello due in 00:00:01</td>
<td>Number of seconds until the next hello packet is sent out this interface.</td>
</tr>
<tr>
<td>Supports Link-local Signaling (LLS)</td>
<td>Indicates that LLS is supported</td>
</tr>
<tr>
<td>Last flood scan length is 2, maximum is 2</td>
<td>Indicates length of last flood scan and the maximum length</td>
</tr>
<tr>
<td>Last flood scan time is 0 msec, maximum is 0 msec</td>
<td>Indicates how many milliseconds the last flood scan occurred and the maximum time length</td>
</tr>
<tr>
<td>Neighbor Count</td>
<td>Count of network neighbors and list of adjacent neighbors.</td>
</tr>
<tr>
<td>Adjacent with neighbor 2.2.2.2</td>
<td>Lists the adjacent neighbor</td>
</tr>
<tr>
<td>Suppress hello for 0 neighbor(s)</td>
<td>Indicates the number of neighbors to suppress hello messages</td>
</tr>
</tbody>
</table>
show ospfv3 neighbor

To display OSPF neighbor information on a per-interface basis, use the `show ospfv3 neighbor` command in privileged EXEC mode.

The `show ospfv3 neighbor` command without the process-id displays OSPFv3 neighbor information for both IPv4 and IPv6 address families for all OSPFv3 processes.

```
show ospfv3 [process-id] neighbor [interface-type interface-number] [neighbor-id] [detail]
```

### Syntax Description

- **process-id** *(Optional)* Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. The range is 1 to 65535.
- **interface-type** *(Optional)* Interface type and number.
- **interface-number** *(Optional)* Interface ID.
- **neighbor-id** *(Optional)* Neighbor ID.
- **detail** *(Optional)* Displays all neighbors in detail (lists all neighbors).

### Command Modes

Privileged EXEC

### Command History

**Release** | **Modification**
--- | ---
15.1(2)GC | The syntax for the command changed from `show IPv6 OSPF neighbor` to `show ospfv3 neighbor`.

This output for this command was expanded to include IPv4 and IPv6 address family information.

### Examples

The following is example output from the `show ospfv3 neighbor` command:

```
Router# show ospfv3 neighbor
OSPFv3 Router with ID (42.1.1.1) (Process ID 42)
Neighbor ID Pri State  Dead Time Interface ID  Interface
44.4.4.4  1  FULL/ -  00:00:39  12  vml

OSPFv3 Router with ID (1.1.1.1) (Process ID 100)
Neighbor ID Pri State  Dead Time Interface ID  Interface
44.4.4.4  1  FULL/ -  00:00:35  12  vml
```

The following is example output from the `show ospfv3 neighbor` command with the `detail` keyword:

```
Router# show ospfv3 neighbor detail
Neighbor 44.4.4.4, interface address 4.4.4.4
Neighbor: interface-id 12, link-local address FE80::ABE::CCFF:FE01:5800
Neighbor priority is 1, State is FULL, 6 state changes
Options is 0x000012 in Hello (E-Bit, R-bit, AF-Bit, L-Bit, I-Bit, F-Bit)
Options is 0x000112 in DBD (E-Bit, R-bit, AF-Bit)
Dead timer due in 00:00:33
Neighbor is up for 00:09:43
```
show ospfv3 neighbor

Index 1/1/1, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
Neighbor is incremental Hello capable
Last known SCS number 1
Neighbor's willingness 128
We are standby relay for the neighbor
This neighbor is standby relay for us
Neighbor is running Manet Version 10
Neighbor 4.4.4.4
In the process ID 100 area 0 via interface vmi1
Neighbor: interface-id 12, link-local address FE80::A8BB:CCFF:FE01:5800
Neighbor priority is 1, State is FULL, 6 state changes
Options is 0x00000013 in Hello (V6-Bit, E-Bit, R-bit, L-Bit, I-Bit, F-Bit)
Options is 0x00000013 in DBD (V6-Bit, E-Bit, R-bit)
Dead timer due in 00:00:37
Neighbor is up for 00:09:43
Index 1/1/1, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
Neighbor is incremental Hello capable
Last known SCS number 1
Neighbor's willingness 128
Two-hop neighbors:
  5.5.5.5
  We are standby relay for the neighbor
  This neighbor is active relay for us
  Neighbor is running Manet Version 10
  Selective Peering is enabled
  1 paths to this neighbor
Neighbor peering state: Slave, local peering state: Master,
  Default cost metric is 0
  Minimum incremental cost is 10

Table A-5 describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor ID; Neighbor</td>
<td>Neighbor router ID.</td>
</tr>
<tr>
<td>In the area</td>
<td>Area and interface through which the OSPF neighbor is known.</td>
</tr>
<tr>
<td>Pri; Neighbor priority</td>
<td>Router priority of the neighbor, neighbor state.</td>
</tr>
<tr>
<td>State</td>
<td>OSPF state.</td>
</tr>
<tr>
<td>State changes</td>
<td>Number of state changes since the neighbor was created.</td>
</tr>
<tr>
<td>Options</td>
<td>Hello packet options field contents. (E-bit only. Possible values are 0 and 2; 2 indicates area is not a stub; 0 indicates area is a stub.)</td>
</tr>
<tr>
<td>Dead timer due in</td>
<td>Expected time before Cisco IOS software will declare the neighbor dead.</td>
</tr>
<tr>
<td>Neighbor is up for</td>
<td>Number of hours:minutes:seconds since the neighbor went into two-way state.</td>
</tr>
</tbody>
</table>
### Table A-5  show ospfv3 neighbor Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Neighbor location in the area-wide and autonomous system-wide retransmission queue.</td>
</tr>
<tr>
<td>retransmission queue length</td>
<td>Number of elements in the retransmission queue.</td>
</tr>
<tr>
<td>number of retransmission</td>
<td>Number of times update packets have been resent during flooding.</td>
</tr>
<tr>
<td>First</td>
<td>Memory location of the flooding details.</td>
</tr>
<tr>
<td>Next</td>
<td>Memory location of the flooding details.</td>
</tr>
<tr>
<td>Last retransmission scan length</td>
<td>Number of link state advertisements (LSAs) in the last retransmission packet.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum number of LSAs sent in any retransmission packet.</td>
</tr>
<tr>
<td>Last retransmission scan time</td>
<td>Time taken to build last retransmission packet.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum time taken to build any retransmission packet.</td>
</tr>
<tr>
<td>Neighbor is incremental Hello capable</td>
<td>The MANET neighbor interface is capable of receiving incremental Hello messages.</td>
</tr>
<tr>
<td></td>
<td>A neighbor must be capable of sending and receiving incremental Hello packets to be a full neighbor on a MANET interface.</td>
</tr>
<tr>
<td>Last known SCS number 1</td>
<td>Indicates the last received MANET state. The State Change Sequence number is included in the incremental Hello packet.</td>
</tr>
<tr>
<td>Neighbor’s willingness 128</td>
<td>Indicates the neighbors willingness to act as an Active Relay for this router, on a scale of 0 (not willing) to 255 (always willing).</td>
</tr>
<tr>
<td></td>
<td>Willingness is used as a tiebreaker when electing an Active Relay.</td>
</tr>
<tr>
<td>We are standby relay for neighbor</td>
<td>Indicates that this router will not flood LSAs received from this neighbor until one or more of our neighbors fails to acknowledge receiving the LSA flood from another neighbor.</td>
</tr>
<tr>
<td>Neighbor is running Manet Version 10</td>
<td>Indicates Manet Version number. Routers cannot establish full adjacency unless they are running the same Manet Version.</td>
</tr>
<tr>
<td>Two-hop neighbors</td>
<td>Lists the router-ids of all full neighbors of the specified router that are not also neighbors of this router.</td>
</tr>
<tr>
<td>Selective Peering is enabled</td>
<td>The MANET interface has selective peering enabled.</td>
</tr>
<tr>
<td>1 paths to this neighbor</td>
<td>Indicates the number of unique paths to this router that exist in the routing table. This number may exceed the redundancy level configured for this OSPFv3 process.</td>
</tr>
</tbody>
</table>
### Table A-5  show ospfv3 neighbor Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Neighbor peering state...     | Indicates which router is entitled to make the selective peering decision.  
                                 | Generally speaking, the entitled router has the smaller number of full neighbors at the time the routers discover each other.               |
| Default cost metric is 0      | Indicates the maximum OSPF cost to a new neighbor in order to be considered for selective peering.  
                                 | If 0, a_threshold OSPF cost is not required for consideration.                                                                           |
| Minimum incremental cost is 10| Indicates the minimum cost increment for the specified interface.                                                                           |
show ospfv3 neighbor manet

To display OSPF neighbor information, use the **show ospfv3 neighbor manet** command in privileged EXEC mode.

The **show ospfv3 neighbor manet** command displays manet neighbor information.

```
show ospfv3 [process-id] [area-id] neighbor manet
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>process-id</strong></td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here may be assigned administratively when OSPF routing is enabled. Valid values range from 1 to 65535.</td>
</tr>
<tr>
<td><strong>area-id</strong></td>
<td>(Optional) Identifier to display information about a specified area of the database.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24)GC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>15.1(2)GC</td>
<td>This output for this command was expanded to include IPv4 and IPv6 address family information.</td>
</tr>
</tbody>
</table>

**Examples**

The following is example output from the **show ospfv3 neighbor manet** command:

```
Router# show ospfv3 neighbor manet

OSPFv3 Router with ID (4.4.4.4) (Process ID 4)

Area BACKBONE(0) (Inactive)
Codes: D - cost dynamic default, R - received link cost, I - inherited from interface

Neighbor ID State Nbr Relay Cost Interface
2.2.2.2 FULL - 10 (I) Ethernet0/0
```
show ospfv3 promiscuous acknowledgments

To display the cache of temporary acknowledgments, use the **show ospfv3 promiscuous acknowledgments** command in privileged EXEC mode.

```
show ospfv3 [process-id] promiscuous acknowledgments [detail]
```

**Syntax Description**

- **process-id** (Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled. The range is 1 to 65535.
- **detail** (Optional) Displays all neighbors in detail (lists all neighbors).

**Command Modes**

Privileged EXEC

**Command History**

- **Release**
  - **15.1(2)GC**
    - The syntax for the command changed from `show IPv6 OSPF promiscuous acknowledgements` to `show ospfv3 promiscuous acknowledgements`.
    - This output for this command was expanded to include IPv4 and IPv6 address family information.

**Examples**

The following is example output from the `show ospfv3 promiscuous acknowledgments` command using the `detail` keyword. It shows that the cache of temporary acknowledgements is not allocated for the router.

```
Router# show ospfv3 promiscuous acknowledgments detail

OSPFv3 Router with ID (5.5.5.5) (Process ID 100), (Area 0)

Type LS ID ADV RTR Seq# Age Scope
0x4005 2 7.7.7.7 0x80000001 114 AS
  Ack received from the following router-ids:
  1.1.1.1
0x4005 8 7.7.7.7 0x80000002 2 AS
  Ack received from the following router-ids:
  7.7.7.7
0x4005 10 7.7.7.7 0x80000002 2 AS
  Ack received from the following router-ids:
  7.7.7.7

Router#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ospfv3 database</td>
<td>Displays lists of information related to the OSPF database for a specific router.</td>
</tr>
</tbody>
</table>
show pppoe

To display information about active PPPoE neighbor sessions, use the `show pppoe` command in privileged EXEC mode.

```
show pppoe { derived group | relay [context all] | session [all | interface | packets] | summary | throttled mac }
```

**Syntax Description**

- `derived group` Displays information about the cached PPPoE configuration for the specified PPPoE group.
- `relay` Displays PPPoE relay information.
- `context all` Displays PPPoE information about all relay contexts.
- `session` Displays summary information about PPPoE neighbor sessions.
- `all` Displays detailed information on all PPPoE neighbor sessions.
- `interface` Displays detailed neighbor session information for the specified interface.
- `packets` Displays PPPoE neighbor session packet statistics.
- `summary` Displays summary information about PPPoE neighbor sessions.
- `throttled mac` Displays information about PPPoE MAC addresses that are throttled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(24)S</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.3(4)T</td>
<td>This command was integrated into Cisco IOS Release 12.3(4)T and was enhanced to display information about relayed PPPoE Active Discovery (PAD) messages.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows output for the `show pppoe session` command:

```
Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total

Uniq ID PPPoE RemMAC Port Source VA State
SID LocMAC VA-st
Uniq ID PPPoE SID RemMAC Port VT VA State LocMAC VA-st
N/A 10 aabb.cc01.5830 Et0/3 Vt1 Vi3 PTA aabb.cc01.5930 UP
```
Table A-6 describes the significant fields shown in the display.

**Table A-6  show pppoe sessions Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniq ID</td>
<td>The unique identifier for the PPPoE neighbor session.</td>
</tr>
<tr>
<td>PPPoE SID</td>
<td>The PPPoE neighbor session identifier.</td>
</tr>
<tr>
<td>RemMAC</td>
<td>The MAC address for remote end point of the PPPoE neighbor session and the MAC address for the router interface of the PPPoE neighbor session.</td>
</tr>
<tr>
<td>Local MAC</td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>The interface on the router in the PPPoE neighbor session.</td>
</tr>
<tr>
<td>VT</td>
<td>The virtual terminal in the PPPoE neighbor session.</td>
</tr>
<tr>
<td>VA</td>
<td>The virtual access and virtual access state for the PPPoE neighbor session.</td>
</tr>
<tr>
<td>VA-st</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>The state of the PPPoE neighbor session.</td>
</tr>
</tbody>
</table>
show pppoe derived

To display the cached PPPoE configuration that is derived from the subscriber profile for a specified PPPoE profile, use the `show pppoe derived` command in privileged EXEC mode.

```plaintext
show pppoe derived group group-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group group-name</code></td>
<td>PPPoE profile for which the cached PPPoE configuration displays.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A subscriber profile can be configured locally on the router or remotely on a AAA server. The PPPoE configuration that is derived from a subscriber profile is cached locally under the PPPoE profile. Use the `show pppoe derived` command to display the cached PPPoE configuration that is derived from the subscriber profile for a specified PPPoE profile.

A subscriber profile contains a list of PPPoE service names. The PPPoE server will advertise the service names that are listed in the subscriber profile to each PPPoE client connection that uses the configured PPPoE profile. A subscriber profile is assigned to a PPPoE profile by using the `service profile` command in BBA group configuration mode.

**Examples**

The following example shows the PPPoE configuration for PPPoE profile that is derived from subscriber profile. The services are advertised to each PPPoE client connection that uses PPPoE profile.

```plaintext
Router# show pppoe derived group subscriber_1
Derived configuration from subscriber profile 'subscriber_1':
Service names:
  manet_radio
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear pppoe derived</td>
<td>Clears the cached PPPoE configuration of a PPPoE profile and forces the PPPoE profile to reread the configuration from the assigned subscriber profile.</td>
</tr>
<tr>
<td>pppoe service</td>
<td>Adds a PPPoE service name to a local subscriber profile.</td>
</tr>
<tr>
<td>service profile</td>
<td>Assigns a subscriber profile to a PPPoE profile.</td>
</tr>
<tr>
<td>subscriber profile</td>
<td>Defines Subscriber Service Switch policy for searches of a subscriber profile database.</td>
</tr>
</tbody>
</table>
show pppoe session

To display information about currently active PPPoE neighbor sessions, use the `show pppoe session` command in privileged EXEC mode.

```
show pppoe session [all | packets]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>(Optional) Displays detailed information about the PPPoE neighbor session.</td>
</tr>
<tr>
<td>packets</td>
<td>(Optional) Displays packet statistics for the PPPoE neighbor session.</td>
</tr>
</tbody>
</table>

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)YG</td>
<td>This command was introduced on the Cisco SOHO 76, 77, and 77H routers.</td>
</tr>
<tr>
<td>12.3(4)T</td>
<td>This command was integrated into Cisco IOS Release 12.3(4)T and was enhanced to display information about relayed PPPoE Active Discovery (PAD) messages.</td>
</tr>
<tr>
<td>12.2(28)SB</td>
<td>This command was integrated into Cisco IOS Release 12.2(28)SB and support was added for the Cisco 7200, 7301, 7600, and 10000 series platforms.</td>
</tr>
<tr>
<td>12.2(31)SB2</td>
<td>This command was integrated into Cisco IOS Release 12.2(31)SB2 and the output following the use of the <code>all</code> keyword was modified to indicate if a neighbor session is Interworking Functionality (IWF)-specific or if the <code>tag ppp-max-payload</code> tag is in the discovery frame and accepted.</td>
</tr>
<tr>
<td>12.4(15)XF</td>
<td>The output was modified to display VMI and PPPoE process-level values.</td>
</tr>
<tr>
<td>12.4(15)T</td>
<td>This command was integrated into Cisco IOS Release 12.4(15)T to support VMIs in MANETs.</td>
</tr>
<tr>
<td>12.2(33)SRC</td>
<td>This command was integrated into Cisco IOS Release 12.2(33)SRC.</td>
</tr>
</tbody>
</table>

### Examples

**Single Neighbor Session: Example**

The following is example output from the `show pppoe session` command:

```
Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total

Uniq ID PPoE RemMAC Port Source VA State
SID LocMAC VA-st
Uniq ID  PPoE SID  RemMAC Port VT VA State LocMAC VA-st
N/A      10        aabb.cc01.5830 Et0/3 Vt1 Vi3 PTA aabb.cc01.5930 UP
```

Table A-7 describes the significant fields shown in the displays.
### Table A-7 show pppoe session Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniq ID</td>
<td>Unique identifier for the PPPoE neighbor session.</td>
</tr>
<tr>
<td>PPPoE SID</td>
<td>PPPoE neighbor session identifier.</td>
</tr>
<tr>
<td>RemMAC</td>
<td>Remote MAC address.</td>
</tr>
<tr>
<td>Port</td>
<td>Port type and number.</td>
</tr>
<tr>
<td>VT</td>
<td>Virtual-template interface.</td>
</tr>
<tr>
<td>VA</td>
<td>Virtual access interface.</td>
</tr>
<tr>
<td>State</td>
<td>Displays the state of the neighbor session, which will be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• FORWARDED</td>
</tr>
<tr>
<td></td>
<td>• FORWARDING</td>
</tr>
<tr>
<td></td>
<td>• LCP_NEGOTIATION</td>
</tr>
<tr>
<td></td>
<td>• LOCALLY_TERMINATED</td>
</tr>
<tr>
<td></td>
<td>• PPP_START</td>
</tr>
<tr>
<td></td>
<td>• PTA</td>
</tr>
<tr>
<td></td>
<td>• RELFWD (a PPPoE neighbor session was forwarded for which the Active discovery messages were relayed)</td>
</tr>
<tr>
<td></td>
<td>• SHUTTING_DOWN</td>
</tr>
<tr>
<td></td>
<td>• VACCESS_REQUESTED</td>
</tr>
<tr>
<td>LocMAC</td>
<td>Local MAC address.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear pppoe relay context</td>
<td>Clears PPPoE relay contexts created for relaying PAD messages.</td>
</tr>
<tr>
<td>show pppoe relay context</td>
<td>Displays PPPoE relay contexts created for relaying PAD messages.</td>
</tr>
<tr>
<td>all</td>
<td></td>
</tr>
</tbody>
</table>
show r2cp clients

To display R2CP clients, use the **show r2cp clients** command in privileged EXEC mode.

```
show r2cp clients
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>show r2cp clients</th>
<th>Displays all radio clients on all interfaces</th>
</tr>
</thead>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the **show r2cp clients** command to exchange metric information with the radio—either for all radio clients on all interfaces or for one radio client on a specific interface.

**Examples**

**Show all radio clients on all interfaces example**

The following example shows how to display all radio clients on all interfaces:

```
Router# show r2cp clients
R2CP Clients for all interfaces:

R2CP Clients for Interface FastEthernet0/1
R2CP Server IP=12.12.12.101:28672 Sock=1

R2CP Client ID=1 IP=12.12.12.7:5500
node heartbeat missed count=0
node heartbeat interval=5 seconds
node heartbeat missed threshold=3
node terminate ack missed count=0
node terminate ack timeout=1000 milliseconds
node terminate ack missed threshold=3
session activity timeout=1 minutes
session terminate ack timeout=1000 milliseconds
session terminate ack missed threshold=3
No Virtual Template defined.
```
Show all radio clients on all interfaces example

The following example shows how to display one radio client on a specific interface:

Router# show r2cp fastethernet 0/1
r2cp clients fastEthernet 0/1

R2CP Clients for Interface FastEthernet0/1
R2CP Server IP=12.12.12.101:28672 Sock=1

R2CP Client ID=1 IP=12.12.12.7:5500
node heartbeat missed count=0
node heartbeat interval=5 seconds
node heartbeat missed threshold=3
node terminate ack missed count=0
node terminate ack timeout=1000 milliseconds
node terminate ack missed threshold=3
session activity timeout=1 minutes
session terminate ack timeout=1000 milliseconds
session terminate ack missed threshold=3
No Virtual Template defined.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show r2cp config</td>
<td>Displays router configuration information details for the R2CP interface.</td>
</tr>
<tr>
<td>show r2cp neighbors</td>
<td>Displays neighbors on an R2CP interface indicating radio capabilities from a Layer 3, next-hop perspective.</td>
</tr>
</tbody>
</table>
show r2cp config

To display R2CP configuration, use the show r2cp config command in privileged EXEC mode.

```
show r2cp config
```

**Syntax Description**

```
config
```

Displays all configuration details for R2CP.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the show r2cp config command to display router configuration details for the R2CP interface. These details include the following components:

- Heartbeat threshold
- Node-terminate acknowledgement threshold
- Node-terminate acknowledgement timeout
- Port number
- Session-activity timeout
- Session-terminate acknowledgement threshold
- Session-terminate acknowledgement timeout
- Virtual access template number

**Examples**

**Display R2CP router configuration details example**

The following example shows how to display configuration details for the R2CP interface:

```
Router# show r2cp config
R2CP Configuration from FastEthernet0/1

R2CP Server IP=12.12.12.101:28672
node heartbeat missed threshold=3
node terminate ack timeout=2200 milliseconds
node terminate ack missed threshold=2
session activity timeout=3 minutes
session terminate ack timeout=1000 milliseconds
session terminate ack missed threshold=5
virtual template=220
```
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show r2cp clients</code></td>
<td>Displays radio client information for one or more clients on the R2CP interface.</td>
</tr>
<tr>
<td><code>show r2cp neighbors</code></td>
<td>Displays neighbors on an R2CP interface radio capabilities from a Layer 3, next-hop perspective.</td>
</tr>
</tbody>
</table>
show r2cp neighbors

To show neighbors for R2CP, use the `show r2cp neighbors` command in privileged EXEC mode.

```
show r2cp neighbors
```

**Syntax Description**

```
neighbors
```

Displays configuration information for R2CP that includes two radio neighbor sessions.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(2) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

View neighbors on an R2CP interface to display information about the neighbor with which the radio can talk from a Layer 3, next-hop perspective. The `show r2cp neighbors` command output allows you to get metric data associated with a next-hop, so you can better understand the paths that the traffic is taking.

**Examples**

The following example shows metric data for R2CP neighbor sessions:

```
Router# show r2cp neighbors

R2CP Neighbors for all interfaces:
R2CP Neighbors for Interface FastEthernet0/1
R2CP Server IP=12.12.12.101:28672 Sock=1
  Global Session ID=101
  MAC Address: 1122.3344.5566
  Vlan ID: 0
  Metrics:  rlq=100  resources=100  latency=10 milliseconds
cdr=100000 Kbps  mdr=100000 Kbps
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show r2cp clients</td>
<td>Displays metric data for R2CP neighbor sessions.</td>
</tr>
<tr>
<td>show r2cp config</td>
<td>Displays detailed R2CP configuration.</td>
</tr>
</tbody>
</table>
show vmi counters

The `show vmi counters` command in privileged EXEC mode displays input and output counts.

```
show vmi counters [vmi-interface]
```

### Syntax Description

<table>
<thead>
<tr>
<th><code>vmi-interface</code></th>
<th>(Optional) Number assigned to the VMI interface.</th>
</tr>
</thead>
</table>

### Command Default

If no VMI interface is specified, counters for all VMI interfaces are displayed.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2(2)GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Examples

The following example shows how to display the VMI input and output counts for DLEP and R2CP:

```
Router# show vmi counters vmi1
1 vmi counters

Input Counts:
  Process Enqueue = 37 (PHY) 18/1 (VM1)
  Fastswitch = 1005
  BMA Fast Path Drop = 0
  BMA Punt Drop:
    Total = 0
    Dot1q Error = 0
    Queue Full = 0
    Not Permitted = 0
  VMI Punt Drop:
    Queue Full = 0
  BMA Mac Match = 8 (mcast) 1016 (ucast)
  BMA Mac NoMatch = 35 (Fast) 35 (Punt)

Output Counts:
  Transmit:
    VMI Process DQ = 31
    Fastswitch VA = 1005
    Fastswitch VMI = 0
  Drops:
    Total = 14
    QOS Error = 0
    Encap Error = 0
    Transport Error = 0
    Interface Error = 0
    L2 Send Error = 0
    Mcast NBR Error = 0
    Ucast NBR Error = 14
```

DPD_2951_1#
Router#

The following example shows vmi counts for PPPoE.

Router# show vmi counters vmi 2

Input Counts:
  Process Enqueue = 10 (VMI)
  Fastswitch = 0
  VMI Punt Drop:
    Queue Full = 0

Output Counts:
  Transmit:
    VMI Process DQ = 2
    Fastswitch VA = 0
    Fastswitch VMI = 0
  Drops:
    Total = 0
    QOS Error = 0
    VMI State Error = 0
    Mcast NBR Error = 0
    Ucast NBR Error = 0

Router#

The following example shows vmi counts for DLEP and R2CP.

Router# show vmi counters vmi 2

Input Counts:
  Process Enqueue = 10 (PHY) 1/0 (VMI)
  Fastswitch = 0
  BMA Fast Path Drop = 0
  BMA Punt Drop:
    Total = 0
    Dot1q Error = 0
    Queue Full = 0
    Not Permitted = 0
  VMI Punt Drop:
    Queue Full = 0
    BMA Mac Match = 1 (mcast) 0 (ucast)
    BMA Mac NoMatch = 9 (Fast) 9 (Punt)

Output Counts:
  Transmit:
    VMI Process DQ = 2
    Fastswitch VA = 0
    Fastswitch VMI = 0
  Drops:
    Total = 0
    QOS Error = 0
    Encap Error = 0
    Transport Error = 0
    Interface Error = 0
    L2 Send Error = 0
    Mcast NBR Error = 0
    Ucast NBR Error = 0

Router#

Table A-9 describes the count definitions in the show vmi counters command display.
### Table A-8  show vmi counters Count Definitions

<table>
<thead>
<tr>
<th>Count</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input Counts:</strong></td>
<td></td>
</tr>
<tr>
<td>Process Enqueue</td>
<td>Number of packets enqueued to the Physical or VMI input queue.</td>
</tr>
<tr>
<td>Fastswitch</td>
<td>Number of packets fastswitched.</td>
</tr>
<tr>
<td>BMA Fast Path Drop</td>
<td>Number of Broadcast Multi-Access (BMA) packets dropped in the fast path due to resource issues.</td>
</tr>
<tr>
<td>BMA Punt Drop Total</td>
<td>Total number of BMA drops</td>
</tr>
<tr>
<td>BMA Punt Drop – Dot1q Error</td>
<td>Number of BMA packets that are unable to match the 802.1q tag.</td>
</tr>
<tr>
<td>BMA Punt Drop – Queue Full</td>
<td>Number of BMA VMI input queue full during BMA punt.</td>
</tr>
<tr>
<td>BMA Punt Drop – Not Permitted</td>
<td>Number of BMA Unicast and Multicast packets NOT permitted on this interface.</td>
</tr>
<tr>
<td>VMI Punt Drop – Queue Full</td>
<td>Number of BMA VMI input queues full during Non-BMA punt.</td>
</tr>
<tr>
<td>BMA Mac Match</td>
<td>Number of Unicast and Multicast packets that match the VMI neighbor.</td>
</tr>
<tr>
<td>BMA Mac NoMatch</td>
<td>Number of BMA Unicast and Multicast packets that do not match a VMI neighbor.</td>
</tr>
<tr>
<td><strong>Output Counts:</strong></td>
<td></td>
</tr>
<tr>
<td>Transmit – VMI Process DQ</td>
<td>Number of packets dequeued from the VMI output queue.</td>
</tr>
<tr>
<td>Transmit – Fastswitch VA</td>
<td>Number of packets fastswitched out the VA interface.</td>
</tr>
<tr>
<td>Transmit – Fastswitch VMI</td>
<td>Number of packets fastswitched out the VMI Interface.</td>
</tr>
<tr>
<td>Drops – Total</td>
<td>Total number of packets dropped.</td>
</tr>
<tr>
<td>Drops – QOS Error</td>
<td>Number of packets dropped due to QoS error.</td>
</tr>
<tr>
<td>Drops – Encap Error</td>
<td>Number of packets dropped when unable to create an encap.</td>
</tr>
<tr>
<td>Drops – Transport Error</td>
<td>Number of packets dropped due to transport mismatch.</td>
</tr>
<tr>
<td>Drops – Interface Error</td>
<td>Number of packets dropped due to interface mismatch.</td>
</tr>
<tr>
<td>Drops – L2 Send Error</td>
<td>Number of packets dropped due to L2 resource error.</td>
</tr>
<tr>
<td>Drops – Mcast NBR Error</td>
<td>Number of packets dropped due to multicast neighbor not found.</td>
</tr>
<tr>
<td>Drops – Ucast NBR Error</td>
<td>Number of packets dropped due to unicast neighbor not found.</td>
</tr>
</tbody>
</table>
show vmi neighbors

To display information about neighbor connections to the VMI, use the `show vmi neighbors` command in privileged EXEC mode.

```
show vmi neighbors [detail] [vmi-interface]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>(Optional) Displays details about the VMI neighbors.</td>
</tr>
<tr>
<td>vmi-interface</td>
<td>(Optional) Number of the VMI interface</td>
</tr>
</tbody>
</table>

**Command Default**

If no arguments are specified, information about all neighbors for all VMI interfaces displays.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(15)XF</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.3(15)T</td>
<td>This command was integrated into Cisco IOS Release 12.4(15)T.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show vmi neighbors` command provides a list of devices that have been dynamically discovered by the connected radio devices in a router-to-radio network, and for which connectivity has been achieved through PPPoE and the radio network.

**Examples**

The following is example output from the `show vmi neighbors` command used to display dynamically created neighbors on a VMI interface:

```
Router# show vmi neighbors vmi1

1 vmi1 Neighbors


<table>
<thead>
<tr>
<th>Interface</th>
<th>IPv6 Address</th>
<th>IPv4 Address</th>
<th>Uptime</th>
<th>Transmit Packets</th>
<th>Receive Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmi1</td>
<td>::</td>
<td>10.3.3.2</td>
<td>00:02:11</td>
<td>00000000008</td>
<td>0000000073</td>
</tr>
</tbody>
</table>

Router#
```

Table A-9 describes the significant fields shown in the `show vmi neighbors` command display.

**Table A-9**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface number.</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>IPv6 address of the neighbor.</td>
</tr>
<tr>
<td>IPv4 Address</td>
<td>IPv4 address of the neighbor.</td>
</tr>
</tbody>
</table>
Table A-9  

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptime</td>
<td>How long the interface has been up. Time shown in hh:mm:ss format.</td>
</tr>
<tr>
<td>Transmit Packets</td>
<td>Number of packets transmitted from the interface during the monitored up time.</td>
</tr>
<tr>
<td>Received Packets</td>
<td>Number of packets received on the interface during the monitored up time.</td>
</tr>
</tbody>
</table>

show vmi neighbors command with detail keyword: Example

The following example shows the details about the known VMI neighbors:

Router# show vmi neighbors detail

1 vmi1 Neighbors

vmi1  IPV6 Address=::
     IPV4 Address=10.20.1.6, Uptime=00:00:23
     Output pkts=0, Input pkts=3
     No Session Metrics have been received for this neighbor.
     Transport PPPoE, Session ID=2
     INTERFACE STATS:
       VMI Interface=vmi1,
       Input qcount=0, drops=0, Output qcount=0, drops=0
       V-Access intf=Virtual-Access3,
       Input qcount=0, drops=0, Output qcount=0, drops=0
       Physical intf=FastEthernet0/0,
       Input qcount=0, drops=0, Output qcount=0, drops=0

PPPoE Flow Control Stats
Local Credits: 65524  Peer Credits: 65524  Scalar Value 64 bytes
Credit Grant Threshold: 28000  Max Credits per grant: 65534
Credit Starved Packets: 0
PADG Seq Num: 24  PADG Timer index: 0
PADG last rcvd Seq Num: 24
PADG last nonzero Seq Num: 0
PADG last nonzero rcvd amount: 0
PADG Timers:  [0]-1000  [1]-2000  [2]-3000  [3]-4000
PADG xmit: 24  rcvd: 24
PADC xmit: 24  rcvd: 24
PADQ xmit: 0  rcvd: 0

Router#
Table A-10 describes the significant fields shown in the **show vmi neighbors detail** command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface number</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>IPv6 address of the neighbor.</td>
</tr>
<tr>
<td>IPv4 Address</td>
<td>IPv4 address of the neighbor.</td>
</tr>
<tr>
<td>Uptime</td>
<td>How long the interface has been up. Time shown in hh:mm:ss format.</td>
</tr>
<tr>
<td>Output pkts</td>
<td>Number of outgoing packets during the recorded up time.</td>
</tr>
<tr>
<td>Input pkts</td>
<td>Number of incoming packets during the recorded up time.</td>
</tr>
<tr>
<td>Metric Data</td>
<td>Metric data statistics:</td>
</tr>
<tr>
<td></td>
<td><strong>Total rcvd</strong>: Total number of packets received on the interface.</td>
</tr>
<tr>
<td></td>
<td><strong>Avg arrival rate</strong>: Average arrival rate for each packet in milliseconds.</td>
</tr>
<tr>
<td></td>
<td><strong>CURRENT</strong>: Current values for the following statistics: Metric Data Rate (MDR), Credit Data Rate (CDR), Latency (Lat), Resource (Res), Root Link Query (RLQ), and the load.</td>
</tr>
<tr>
<td></td>
<td><strong>MDR</strong>: Maximum, minimum, and average metric data rate.</td>
</tr>
<tr>
<td></td>
<td><strong>CDR</strong>: Maximum, minimum, and average credit data rate.</td>
</tr>
<tr>
<td></td>
<td><strong>Latency</strong>: Maximum, minimum, and average latency.</td>
</tr>
<tr>
<td></td>
<td><strong>Resource</strong>: Maximum, minimum, and average resource.</td>
</tr>
<tr>
<td></td>
<td><strong>RQL</strong>: Maximum, minimum, and average RQL.</td>
</tr>
<tr>
<td></td>
<td><strong>Load</strong>: Maximum, minimum, and average load.</td>
</tr>
<tr>
<td>Transport</td>
<td>Routing protocol, in this case–PPPoE.</td>
</tr>
<tr>
<td>Session ID</td>
<td>Identifier of the VMI session.</td>
</tr>
<tr>
<td>INTERFACE STATS</td>
<td>A series of statistics collected on the interface and shows for each of the VMI interface, virtual access interface, and the physical interface. For each interface, statistics display indicating the number of packets in the input and output queues and the number of packets dropped from each queue.</td>
</tr>
</tbody>
</table>
### Table A-10  
*show vmi neighbors*  
**Field Descriptions (continued)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE Flow Control Stats</td>
<td>Statistics collected for PPPoE credit flow:</td>
</tr>
<tr>
<td></td>
<td><strong>Local Credits</strong>: Number of credits belonging to this node.</td>
</tr>
<tr>
<td></td>
<td><strong>Peer Credits</strong>: Number of credits belonging to the peer</td>
</tr>
<tr>
<td></td>
<td><strong>Scalar Value</strong>: Credit grant in bytes specified by the peer</td>
</tr>
<tr>
<td></td>
<td><strong>Credit Grant</strong>: Number of credits below which the peer needs to dip before</td>
</tr>
<tr>
<td></td>
<td><strong>Threshold</strong>: this node sends an inband or out-of-band grant.</td>
</tr>
<tr>
<td></td>
<td><strong>Credit Starved Packets</strong>: Number of packets dropped or queued due to</td>
</tr>
<tr>
<td></td>
<td>insufficient credits from the peer.</td>
</tr>
<tr>
<td>Max Credits per grant:</td>
<td>65534</td>
</tr>
<tr>
<td>PADG Seq Num:</td>
<td>Sequence number for the PPPoE packet discovery grant.</td>
</tr>
<tr>
<td>PADG Timer index:</td>
<td>Timer index for the PPPoE packet discovery grant.</td>
</tr>
<tr>
<td>PADG last rcvd Seq Num:</td>
<td>Sequence number for the previously received PPPoE packet discovery grant.</td>
</tr>
<tr>
<td>PADG last nonzero Seq Num:</td>
<td>Sequence number for the last non-zero PPPoE packet discovery grant.</td>
</tr>
<tr>
<td>PADG last nonzero rcvd amount:</td>
<td>Received amount in the last non-zero PPPoE packet discovery grant.</td>
</tr>
<tr>
<td>PADG Timers:</td>
<td>PPPoE packet discovery grant timers</td>
</tr>
<tr>
<td>PADG xmit: numberic rcvd:</td>
<td>Number of PPPoE packet discovery grants transmitted and received.</td>
</tr>
<tr>
<td>PADC xmit: 133 rcvd: 133:</td>
<td>Number of PPPoE packet discovery grant confirmations transmitted and received.</td>
</tr>
<tr>
<td>PADQ xmit: 0 rcvd:</td>
<td>Number of PPPoE packet discovery quality grants transmitted and received.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug vmi</td>
<td>Displays debugging output for VMIs.</td>
</tr>
<tr>
<td>interface vmi</td>
<td>Creates a virtual multipoint interface (VMI) that can be configured and applied dynamically.</td>
</tr>
</tbody>
</table>
summary-prefix (OSPFv3)

To configure an IPv6 summary prefix, use the `summary-prefix` command in router address-family configuration mode. To restore the default, use the `no` form of this command.

```
summary-prefix prefix [not-advertise | tag tag-value]
```

```
no summary-prefix prefix [not-advertise | tag tag-value]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prefix</code></td>
<td>IPv6 route prefix for the destination.</td>
</tr>
<tr>
<td><code>not-advertise</code></td>
<td>(Optional) Suppress routes that match the specified prefix and mask pair.</td>
</tr>
<tr>
<td><code>tag tag-value</code></td>
<td>(Optional) Tag value that can be used as a “match” value for controlling</td>
</tr>
<tr>
<td></td>
<td>redistribution via route maps. This keyword applies to OSPF only.</td>
</tr>
</tbody>
</table>

### Command Default

No IPv6 summary prefix is defined.

### Command Modes

Router address family configuration (config-rtr-af)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(24)S</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(15)T</td>
<td>This command was integrated into Cisco IOS Release 12.2(15)T.</td>
</tr>
<tr>
<td>12.2(18)S</td>
<td>This command was integrated into Cisco IOS Release 12.2(18)S.</td>
</tr>
<tr>
<td>12.2(28)SB</td>
<td>This command was integrated into Cisco IOS Release 12.2(28)SB.</td>
</tr>
<tr>
<td>12.2(33)SRA</td>
<td>This command was integrated into Cisco IOS Release 12.2(33)SRA.</td>
</tr>
<tr>
<td>12.2(33)SXH</td>
<td>This command was integrated into Cisco IOS Release 12.2(33)SXH.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `summary-prefix` command can be used to summarize routers redistributed from other routing protocols. Multiple groups of addresses can be summarized. The metric used to advertise the summary is the smallest metric of all the more specific routes. This command helps reduce the size of the routing table.

### Examples

In the following example, the summary prefix FEC0::/24 includes addresses FEC0::/1 through FEC0::/24. Only the address FEC0::/24 is advertised in an external LSA.

```
Router(config)# router ospfv3 100
Router(config-rtr)# router-id 4.4.4.4
Router(config-rtr)# address-family ipv4 unicast
Router(config-rtr-af)# summary-prefix FEC0::/24
Router(config-rtr-af)# exit
```
Router# **show ospfv3 summary-prefix**
OSPFv3 Process 100, Summary-prefix
FEC0::/24 Metric 16777215, Type 0, Tag 0
OSPFv3 Process 200, Summary-prefix
Not configured
timers manet

To configure MANET timer parameters, use the `timers manet` command in router-configuration mode. To restore the timer default values, use the `no` form of this command.

```
timers manet {ackwait ackwait-value | peering peering-value | pushback pushback-value}
no timers manet {ackwait ackwait-value | peering peering-value | pushback pushback-value}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ackwait</code></td>
<td>Acknowledgment wait timer.</td>
</tr>
<tr>
<td><code>ackwait-value</code></td>
<td>Value specified in milliseconds. The default value is 1000 milliseconds. Valid values range from 0 to 10,000.</td>
</tr>
<tr>
<td><code>peering</code></td>
<td>Used to specify the redundant peering delay timer value.</td>
</tr>
<tr>
<td><code>peering-value</code></td>
<td>Value specified in milliseconds. The default is 250 milliseconds. Valid values range from 0 to 10,000.</td>
</tr>
<tr>
<td><code>pushback</code></td>
<td>MANET pushback timer set to assist in regulating traffic when flooding occurs because multiple non-primary relays flood at the same time.</td>
</tr>
<tr>
<td><code>pushback-value</code></td>
<td>Value specified in milliseconds. The default is 2000 milliseconds. Valid values range is from 0 to 60,000 milliseconds.</td>
</tr>
</tbody>
</table>

**Command Modes**

Router configuration (config-rtr)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(24) GC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Timers on MANET Interfaces**

Non-active relays do not immediately start helping with flooding. Timers can be configured to delay Non-active relays until the active relay finishes its procedure. The `timers manet` command is used to configure these timers.

**Peering Timers on MANET Interfaces**

When selective peering is enabled, this timer determines how long the OSPFv3 process waits between selective peering decisions. Use the `peering` keyword to specify how long the router waits between selective peering decisions.

**Acknowledgements on MANET Interfaces**

When sending acknowledgments on a MANET interface, a small delay is configured in order to accumulate as many acknowledgments as possible into a single ACK message to reduce the number of messages being sent. Use the `ackwait ackwait-value` keyword and argument to set the acknowledgment wait timer.
Pushback Timers on MANET Interfaces

Use the pushback keyword to help prevent multiple non-primary relays from flooding at the same time. If a relay has already seen all of the acknowledgements from the nodes for which it is going to relay, it will cancel the pushback timer.

The default value for the pushback timer is 50 percent of the retransmit timer value.

Examples

The following example shows how to set the MANET pushback timer to 50,000 milliseconds, the MANET acknowledgement timer to 1001 milliseconds, and the MANET peering timer to 1000 seconds:

```
Router(config)#router ospfv3 100
Router(config-router)#router-id 1.1.1.1
Router(config-router)#address-family ipv6 unicast
Router(config-router-af)#exit
Router(config-router)#timers manet pushback 50000
Router(config-router)#timers manet ackwait 1001
Router(config-router)#timers manet peering 1000
Router(config-router)#end

Router#show running-config | be router ospfv3 100
router ospfv3 100
router-id 1.1.1.1
timers manet ackwait 1001
timers manet pushback 50000
timers manet peering 1000

! address-family ipv6 unicast
! exit-address-family

Router#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>manet cache</td>
<td>Configures the number of MANET cached LSA, updates and acknowledgments.</td>
</tr>
<tr>
<td>manet selective peering</td>
<td>Enables selective peering on a per-area or per-interface basis and configures the maximum number of redundant paths to each neighbor.</td>
</tr>
</tbody>
</table>
timers throttle spf

To turn on Open Shortest Path First (OSPF) for IPv6 shortest path first (SPF) throttling, use the `timers throttle spf` command in router-configuration mode. To turn off SPF throttling, use the `no` form of this command.

```
timers throttle spf delay next-delay holdtime

no timers throttle spf
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delay</td>
<td>Initial delay before the SPF calculation in milliseconds. The default is 10 seconds. Valid values range from 0 to 60,000 milliseconds.</td>
</tr>
<tr>
<td>next-delay</td>
<td>Delay in milliseconds between the first and second SPF calculations receiving a change in the SPF calculation. The default is 5000 milliseconds (5 seconds). Valid values range from 0 to 600000 milliseconds.</td>
</tr>
<tr>
<td>nextdelay holdtime</td>
<td>Hold time (in seconds) between consecutive SPF calculations. The default is 10 seconds. Valid values range from 0 to 600000.</td>
</tr>
</tbody>
</table>

**Command Default**

OSPF for IPv6 throttling is always enabled.

**Command Modes**

Router configuration (config-rtr)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(28)SB</td>
<td>This command was integrated into Cisco IOS Release 12.2(28)SB.</td>
</tr>
<tr>
<td>12.4(24)GC</td>
<td>This command was integrated into Cisco IOS Release 12.4(24)GC.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The first wait interval between SPF calculations is the amount of time in milliseconds specified by the `delay` argument.

Use the `next-delay` argument to set the delay between the first and second SPF calculations.

Each consecutive wait interval is two times the current hold level in milliseconds until the wait time reaches the maximum time in milliseconds as specified by the `holdtime` argument. Subsequent wait times remain at the maximum until the values are reset or an LSA is received between SPF calculations.

When you configure an OSPFv3 network manet for any interface attached to the OSPFv3 process, the default values for the delay, next-delay, and hold time are reduced to 1000 milliseconds, 1000 milliseconds, and 2000 milliseconds respectively.
Examples

The following example shows a router with the *delay* and *next-delay* interval values configured at 40 milliseconds, and the holdtime value to 50 milliseconds:

```
Router(config)# router ospfv3 1
Router(config-router)# timers throttle spf 40 40 50
Router(config-router)# exit
Router#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ospfv3</td>
<td>Displays general information about OSPF for IPv6 routing processes.</td>
</tr>
</tbody>
</table>
timers throttle spf
Technical Support Reference

This appendix provides the following major sections strictly for reference while working with Cisco Technical Support:

- Default Settings for DLEP, page B-1

Default Settings for DLEP

This section provides the following procedure as an example of how to change DLEP configuration settings:

- Configuring the Heartbeat Threshold, page B-2

⚠️ Caution

Do not change the default DLEP configuration unless a Cisco Support engineer instructs you to do so. The procedure in this section is available only for reference while working with Cisco Technical Support.

If directed to do so, see Appendix A, “Command Reference” for the following reference pages:

- `ip dlep set heartbeat-threshold`, page A-16
- `ip dlep set nbr-activity-timeout`, page A-17
- `ip dlep set nbr-down-ack-timeout`, page A-18
- `ip dlep set peer-terminate-ack-timeout`, page A-19
## Configuring the Heartbeat Threshold

The heartbeat threshold indicates the maximum number of consecutively missed heartbeats allowed on the DLEP interface before declaring a failed association.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface`
4. `ip dlep set heartbeat-threshold count`
5. `exit`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** `enable` | Enables privileged EXEC mode.  
• Enter your password if prompted. |
| **Example:** | |
| Router> `enable` | |
| Router# | |
| **Step 2** `configure terminal` | Enters global configuration mode. |
| **Example:** | |
| Router# `configure terminal` | |
| Enter configuration commands, one per line. End with CNTL/Z. | |
| Router(config)# | |
| **Step 3** `interface interface` | Specifies the interface and places the router in interface-configuration mode. |
| **Example:** | |
| Router# `interface fa0/1` | |
| Router(config-if)# | |
| **Step 4** `ip dlep set heartbeat-threshold count` | Sets the heartbeat threshold. The heartbeat-threshold valid range is from 2 to 8. |
| **Example:** | |
| Router(config-if)# `ip dlep set heartbeat-threshold 3` | |
| **Step 5** `exit` | Exits the current mode. |
| **Example:** | |
| Router(config-if)# `exit` | |
| Router(config)# | |
This appendix provides the following tables to describe the acronyms and terms used in this guide:

- Table C-1, “Glossary”
- Table C-2, “Acronyms and Abbreviations”

**Table C-1 Glossary**

<table>
<thead>
<tr>
<th>Glossary Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast Multi-Access (BMA) radio</td>
<td>Radio having the same link characteristics as an Ethernet segment—where multicast/broadcast packets are transmitted physically only once, and where radio neighbors do not operate in any type of connection-oriented (point-to-point) paradigm. See also Non-Broadcast Multi-Access (NBMA) radio.</td>
</tr>
<tr>
<td>Cooperative radio</td>
<td>Radio containing the firmware and software required to support RAR-based flows.</td>
</tr>
<tr>
<td>DLEP client</td>
<td>Router-to-radio association configured to send and receive packets on a DLEP interface</td>
</tr>
<tr>
<td>DLEP neighbor</td>
<td>Adjacent radio client established on the DLEP interface</td>
</tr>
<tr>
<td>DLEP peer</td>
<td>Router-to-radio association (client or server) on a DLEP interface</td>
</tr>
<tr>
<td>DLEP server</td>
<td>DLEP server configuration on the router interface—responsible for receiving, parsing, and sending packets among DLEP clients</td>
</tr>
<tr>
<td>DLEP neighbor session</td>
<td>An established connection on a DLEP interface between local router-radio and one-hop neighbor</td>
</tr>
<tr>
<td>Non-Broadcast Multi-Access (NBMA) radio</td>
<td>Radio having link characteristics compatible for use in NBMA networks, in which data is directed point-to-point only (and not for use in broadcasting or multicasting). See also Broadcast Multi-Access (BMA) radio.</td>
</tr>
<tr>
<td>RAR-compliant radio</td>
<td>See Cooperative radio</td>
</tr>
</tbody>
</table>

**Table C-2 Acronyms and Abbreviations**

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABR</td>
<td>Area Border Router</td>
</tr>
<tr>
<td>ADM</td>
<td>Authentication Digest Manager</td>
</tr>
<tr>
<td>Acronym</td>
<td>Expansion</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>AS</td>
<td>Autonomous System</td>
</tr>
<tr>
<td>ASBR</td>
<td>Autonomous System Boundary Router</td>
</tr>
<tr>
<td>BBA</td>
<td>Broadband Access</td>
</tr>
<tr>
<td>BMA</td>
<td>Broadcast Multi-Access</td>
</tr>
<tr>
<td>CDR</td>
<td>Current Data Rate</td>
</tr>
<tr>
<td>CF</td>
<td>Classic Flood</td>
</tr>
<tr>
<td>CLI</td>
<td>Command-Line Interface</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DLEP</td>
<td>Dynamic Link Exchange Protocol</td>
</tr>
<tr>
<td>DPD</td>
<td>Duplicate Packet Detection</td>
</tr>
<tr>
<td>DSCP</td>
<td>Differentiated Services Code Point</td>
</tr>
<tr>
<td>DVMRP</td>
<td>Distance Vector Multicast Routing Protocol</td>
</tr>
<tr>
<td>EIGRP</td>
<td>Enhanced Interior Gateway Routing Protocol</td>
</tr>
<tr>
<td>ESR</td>
<td>Embedded Services Router</td>
</tr>
<tr>
<td>FSM</td>
<td>Finite State Machine</td>
</tr>
<tr>
<td>HSRP</td>
<td>Hot Standby Router Protocol</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>ISC</td>
<td>Interface Control Specification</td>
</tr>
<tr>
<td>ICV</td>
<td>Integrity Check Value</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>IGRP</td>
<td>Interior Gateway Routing Protocol</td>
</tr>
<tr>
<td>IGMP</td>
<td>Internet Group Management Protocol</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPv4</td>
<td>Internet Protocol Version 4</td>
</tr>
<tr>
<td>IPv6</td>
<td>Internet Protocol Version 6</td>
</tr>
<tr>
<td>kbps</td>
<td>kilobits per second</td>
</tr>
<tr>
<td>LSA</td>
<td>Link-State Advertisement</td>
</tr>
<tr>
<td>MANET</td>
<td>Mobile Ad-hoc Network</td>
</tr>
<tr>
<td>mbps</td>
<td>megabits per second</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>MQC</td>
<td>Modular Quality of Service Command</td>
</tr>
<tr>
<td>MTR</td>
<td>Multi-Topology Routing</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum Transmission Unit</td>
</tr>
<tr>
<td>NBMA</td>
<td>Non-Broadcast Multiple Access</td>
</tr>
<tr>
<td>NVRAM</td>
<td>Nonvolatile Random Access Memory</td>
</tr>
</tbody>
</table>
### Table C-2 Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF</td>
<td>Open Shortest Path First</td>
</tr>
<tr>
<td>OSPFv3</td>
<td>Open Shortest Path First, Version 3</td>
</tr>
<tr>
<td>PAD</td>
<td>PPPoE Active Discovery</td>
</tr>
<tr>
<td>PIM</td>
<td>Protocol-Independent Multicast</td>
</tr>
<tr>
<td>PPP</td>
<td>Point-to-Point Protocol</td>
</tr>
<tr>
<td>PPPoE</td>
<td>Point-to-Point Protocol over Ethernet</td>
</tr>
<tr>
<td>PSN</td>
<td>Packet-Switched Networks</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RAR</td>
<td>Radio Aware Routing</td>
</tr>
<tr>
<td>RIB</td>
<td>Routing Information Base</td>
</tr>
<tr>
<td>RLQ</td>
<td>Relative Link Quality</td>
</tr>
<tr>
<td>RPF</td>
<td>Reverse Path Forwarding</td>
</tr>
<tr>
<td>R2CP</td>
<td>Router-to-Radio Control Protocol</td>
</tr>
<tr>
<td>SMDS</td>
<td>Switched Multimegabit Data Service</td>
</tr>
<tr>
<td>SPT</td>
<td>Shortest Path Tree</td>
</tr>
<tr>
<td>TLV</td>
<td>Type-Length-Value</td>
</tr>
<tr>
<td>ToS</td>
<td>Type of Service</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UNA</td>
<td>Upstream Neighbor Address (field in PIM Join/Prune messages)</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>VLAN</td>
<td>Virtual Local Area Network</td>
</tr>
<tr>
<td>VMI</td>
<td>Virtual Multipoint Interface</td>
</tr>
<tr>
<td>WIN–T</td>
<td>Warfighter Information Network–Tactical</td>
</tr>
</tbody>
</table>