Locator Identifier Separation Protocol (LISP) Mobility Troubleshooting Guide

June 10, 2012
LISP Mobility Troubleshooting Guide

This document outlines and describes some basic troubleshooting steps for implementation of the Locator/ID Separation Protocol (LISP) with EID mobility. This guide assumes basic knowledge of IOS, NX-OS, and LISP.

LISP Terminology

ASM—across subnet mode; allows for EID mobility between LISP sites without a Layer 2 extension in place
EID—end-point identifier; IP address of host who’s traffic will be encapsulated and sent using LISP
ESM—extended subnet mode; allows for EID mobility between LISP sites but requires a Layer 2 extension between LISP sites
Map-Notify—message used by an xTR that has detected an EID to update the other xTRs in the same LISP site about that discovery; also used by the map-server to confirm that a map-register has been received and processed
Map-Register—used by an xTR to register an EID with the map-server
RLOC—routing locator; IP address of xTR that outer encapsulation layer should be addressed to reach EID
SMR—solicit-map-request; control plane message used to tell remote xTRs to update the mappings they have cached
xTR—ingress/egress tunnel router; router responsible for encapsulating/decapsulating EID packets
Map-Server—receives map-register messages from xTRs and maintains database of EID to RLOC mappings

Basic Verification and Sanity Checks

This section explains how LISP EID mobility functions when working correctly and walks through a migration of an EID between two LISP sites. These steps will help verify that a LISP installation is working as expected.

Note: All procedures in this document use appropriate corresponding IOS and NX-OS commands accompanied by configuration examples.
This section walks through a migration of an EID in Extended Subnet Mode and verifies that all LISP components are working correctly. In this example, there are two data center sites that will be hosting the EID and a branch site with traffic to the EID that will be LISP encapsulated. The two data centers are connected together with a Layer 2 extension (Figure 1-1).

Figure 1-1 Branch Site Migration to a LISP Encapsulated EID

Step 1 With the EID in the first LISP site, start a ping from the EID to a remote branch site. Verify that the dynamic EID is present in the `show lisp dynamic-eid summary` output on the xTRs in that site.

```bash
dcla-agg-7k1# show lisp dynamic-eid summary
LISP Dynamic EID Summary for VRF "default"
* = Dyn-EID learned by site-based Map-Notify
Dyn-EID Name Dynamic-EID Interface Uptime Last Packet Ping Count
EXTVLAN2533-1 10.25.33.50 Vlan2533 5d21h 5d21h 0
```

Step 2 The originating LISP site should have a LISP host route for the EID.

```bash
dcla-agg-7k1# show ip route 10.25.33.50
IP Route Table for VRF "default"
'**' denotes best ucast next-hop
'*' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
10.25.33.50/32, ubest/mbest: 1/0, attached
  *via 10.25.33.50, Vlan2533, [251/0], 00:00:30, lisp, dyn-eid
```

Step 3 The destination LISP site where the EID will be migrated should have a host null route installed for the EID.

```bash
dc2a-agg-7k1# show ip route 10.25.33.50
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
```
'***' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]

10.25.33.50/32, ubest/mbest: 1/0, attached
 *via Null0, [252/0], 00:00:15, lisp, dyn-eid

Step 4 The dynamic EID should also be registered on the map-server with the correct RLOC addresses. Verify with `show lisp site detail`.

```
dc1a-agg-7k1-otv# show lisp site DATACENTER detail
LISP Site Registration Information for VRF "default"
* = truncated IPv6 address, -x = more-specifics count
Site name:  "DATACENTER"
Description: LISP site DATACENTER; key dci
Allowed configured locators: any
Configured EID-prefix: 10.25.0.0/16, instance-id: 0
  More-specifics registered: 4
  Currently registered: yes
  First registered: 2w1d
  Last registered: 00:00:42
  Who last registered: 1.1.1.47
  Routing table tag: 0
  Proxy Replying: no
  Wants Map-Notifications: yes
  Registered TTL: 1440 minutes
  Registered locators:
    1.1.1.35 (up), priority: 1, weight: 10
    1.1.1.47 (up), priority: 1, weight: 10
Registration errors:
  Authentication failures: 0
  Allowed locators mismatch: 0
  More-specific EID-prefix: 10.25.33.50/32, instance-id: 0
  Currently registered: yes
  First registered: lw5d
  Last registered: 00:00:45
  Who last registered: 20.1.1.2
  Routing table tag: 0
  Proxy Replying: no
  Wants Map-Notifications: yes
  Registered TTL: 1440 minutes
  Registered locators:
    1.1.1.35 (up), priority: 1, weight: 10
    1.1.1.47 (up), priority: 1, weight: 10
Registration errors:
  Authentication failures: 0
  Allowed locators mismatch: 0
```

Step 5 Check the map-cache on the relevant xTRs and verify that the RLOC addresses are correct.

```
dc1a-agg-7k1# show ip lisp map-cache
LISP IP Mapping Cache for VRF "default" (iid 0), 1 entries
* = Locator data counters are cumulative across all EID-prefixes
120.120.120.0/24, uptime: 6d16h, expires: 07:26:34, via map-reply, auth
  Locator  Uptime  State  Priority/  Data     Control
  Weight   in/out in/out
  8.8.8.1  6d16h   up    1/100    20937/  0/0

dca-branch1#show ip lisp map-cache
LISP IPv4 Mapping Cache for EID-table default (IID 0), 3 entries
0.0.0.0/0, uptime: 5d20h, expires: never, via static send map-request
```

Locator Identifier Separation Protocol (LISP) Mobility Troubleshooting Guide
Basic Verification and Sanity Checks

Negative cache entry, action: send-map-request
10.25.33.50/32, uptime: 5d20h, expires: 23:59:29, via map-reply, complete
Locator Uptime State Pri/Wgt
1.1.1.35 5d20h up 1/10
1.1.1.47 5d20h up 1/10
16.0.0.0/4, uptime: 00:29:08, expires: 00:00:37, via map-reply, forward-native
Negative cache entry, action: forward-native

Step 6 Perform a migration of the EID to the other LISP site (Figure 1-2). Keep the ping going between the EID and the remote branch site.

Figure 1-2 Branch Site Migration to another LISP Encapsulated EID

Step 7 The EID should now be detected on the xTR in the second site.

dc2a-agg-7k1# show lisp dynamic-eid summary
LISP Dynamic EID Summary for VRF "default"
* = Dyn-EID learned by site-based Map-Notify
Dyn-EID Name Dynamic-EID Interface Uptime Last Packet Ping Count
EXTVLAN2533-1 10.25.33.50 Vlan2533 00:00:11 00:00:11 0

Step 8 The first LISP site should now have a null route for the EID. This null route will stay in the routing table until the EID returns back to the site. This facilitates detection of the EID.

dc1a-agg-7k1# show ip route 10.25.33.50
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
10.25.33.50/32, ubest/mbest: 1/0, attached
*via Null0, [252/0], 00:00:21, lisp, dyn-eid
Step 9 The second LISP site where the EID is now located should have a LISP host route for the EID.

```
dc2a-agg-7k1# show ip route 10.25.33.50
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]

10.25.33.50/32, ubest/mbest: 1/0, attached
  *via 10.25.33.50, Vlan2533, [250/0], 00:01:46, am
  via 10.25.33.50, Vlan2533, [251/0], 00:01:28, lisp, dyn-eid
```

Step 10 Verify that the map-server has been updated with the correct RLOC address for the EID.

```
dcla-agg-7k1-otv# show lisp site DATACENTER detail
LISP Site Registration Information for VRF "default"
  * = truncated IPv6 address, -x = more-specifics count

Site name: "DATACENTER"
Description: LISP site DATACENTER; key dci
Allowed configured locators: any
  Configured EID-prefix: 10.25.0.0/16, instance-id: 0
  More-specifics registered: 4
  Currently registered: yes
  First registered: 2w1d
  Last registered: 00:00:32
  Who last registered: 1.1.1.47
  Routing table tag: 0
  Proxy Replying: no
  Wants Map-Notifications: yes
  Registered TTL: 1440 minutes
  Registered locators:
    1.1.1.35 (up), priority: 1, weight: 10
    1.1.1.47 (up), priority: 1, weight: 10
  Registration errors:
    Authentication failures: 0
  Allowed locators mismatch: 0
  More-specific EID-prefix: 10.25.33.50/32, instance-id: 0
  Currently registered: yes
  First registered: 1w5d
  Last registered: 00:00:24
  Who last registered: 10.35.35.2
  Routing table tag: 0
  Proxy Replying: no
  Wants Map-Notifications: yes
  Registered TTL: 1440 minutes
  Registered locators:
    2.2.2.57 (up), priority: 1, weight: 10
    2.2.2.61 (up), priority: 1, weight: 10
  Registration errors:
    Authentication failures: 0
    Allowed locators mismatch: 0
```

Step 11 Finally, the map-cache in the branch site should have been updated to the correct RLOC address.

```
dca-branch1# show ip lisp map-cache
LISP IPv4 Mapping Cache for EID-table default (IID 0), 3 entries

0.0.0.0/0, uptime: 5d21h, expires: never, via static send map-request
Negative cache entry, action: send-map-request
10.25.33.50/32, uptime: 5d20h, expires: 23:59:38, via map-reply, complete
Locator  Uptime  State   Pri/Wgt
2.2.2.57  00:02:12  up     1/10
2.2.2.61  00:02:12  up     1/10
```
16.0.0.0/4, uptime: 00:02:56, expires: 00:11:56, via map-reply, forward-native
Negative cache entry, action: forward-native

Step 12 Now migrate the EID back to the original site. Verify that the xTRs in the original site properly detect the EID and that map-server is updated with the new RLOC address.

dc1a-agg-7k1# show lisp dynamic-eid summary
LISP Dynamic EID Summary for VRF "default"
* = Dyn-EID learned by site-based Map-Notify
Dyn-EID Name Dynamic-EID Interface Uptime Last Pending
Packet Ping Count
EXTVLAN2533-1 10.25.33.50 Vlan2533 00:00:28 00:00:28 0

dc1a-agg-7k1-otv# show lisp site DATACENTER detail
LISP Site Registration Information for VRF "default"
* = truncated IPv6 address, -x = more-specifics count
Site name: "DATACENTER"
Description: LISP site DATACENTER; key dci
Allowed configured locators: any
 Configured EID-prefix: 10.25.0.0/16, instance-id: 0
 More-specifics registered: 4
 Currently registered: yes
 First registered: 2wld
 Last registered: 00:00:39
 Who last registered: 1.1.1.47
 Routing table tag: 0
 Proxy Replying: no
 Wants Map-Notifications: yes
 Registered TTL: 1440 minutes
 Registered locators:
 1.1.1.35 (up), priority: 1, weight: 10
 1.1.1.47 (up), priority: 1, weight: 10
 Registration errors:
 Authentication failures: 0
 Allowed locators mismatch: 0
 More-specific EID-prefix: 10.25.33.50/32, instance-id: 0
 Currently registered: yes
 First registered: 1w5d
 Last registered: 00:00:44
 Who last registered: 20.1.1.2
 Routing table tag: 0
 Proxy Replying: no
 Wants Map-Notifications: yes
 Registered TTL: 1440 minutes
 Registered locators:
 1.1.1.35 (up), priority: 1, weight: 10
 1.1.1.47 (up), priority: 1, weight: 10
 Registration errors:
 Authentication failures: 0
 Allowed locators mismatch: 0

Step 13 The routing table entries for the EID should now be back as they were originally.

dc1a-agg-7k1# show ip route 10.25.33.50
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'***' denotes best mcast next-hop
'[{x/y}]' denotes [preference/metric]

10.25.33.50/32, ubest/mbest: 1/0, attached
 *via 10.25.33.50, Vlan2533, [251/0], 00:00:20, lisp, dyn-eid
dc2a-agg-7k1# show ip route 10.25.33.50
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]

10.25.33.50/32, ubest/mbest: 1/0, attached
 *via Null0, [252/0], 00:00:15, lisp, dyn-eid

Step 14 Finally, verify that the map-cache on the branch also got updated.

dca-branch1# show ip lisp map-cache
LISP IPv4 Mapping Cache for EID-table default (IID 0), 3 entries

 0.0.0.0/0, uptime: 5d21h, expires: never, via static send map-request
 Negative cache entry, action: send-map-request
 10.25.33.50/32, uptime: 5d21h, expires: 23:59:28, via map-reply, complete
 Locator Uptime State Pri/Wgt
 1.1.1.35 00:03:22 up 1/10
 1.1.1.47 00:03:22 up 1/10
 16.0.0.0/4, uptime: 00:08:32, expires: 00:06:20, via map-reply, forward-native
 Negative cache entry, action: forward-native

ASM

This section walks through a migration of an EID in Across Subnet Mode and verifies that all of the LISP components are working correctly (Figure 1-3). In this example, there are two datacenter sites that will be hosting the EID and a branch site whose traffic to the EID will be LISP encapsulated. The first data center will be the home site (i.e. location where EID’s subnet is located) and the second data center will be the remote site. The two data centers only have Layer 3 connectivity and do not have a Layer 2 extension.
Basic Verification and Sanity Checks

Step 1 With the EID in the home LISP site, start a ping from the EID to a remote branch site. Verify that the dynamic EID is not present in the `show lisp dynamic-eid summary` output.

```
dcb-agg-7k1# show lisp dynamic-eid summary
LISP Dynamic EID Summary for VRF "default"
* = Dyn-EID learned by site-based Map-Notify

Dyn-EID Name  Dynamic-EID      Interface     Uptime    Last      Pending
Packet    Ping Count
```

Step 2 The routing table for the home site should only have a directly connected route for the EID.

```
dcb-agg-7k1# show ip route 10.25.33.201
IP Route Table for VRF "default"
'**' denotes best mcast next-hop

10.25.33.0/24, ubest/mbest: 1/0, attached
  *via 10.25.33.253, Vlan3633, [0/0], 00:02:12, direct
```

Step 3 The routing table for the remote site should have general null route installed.

```
dcb-agg-7k1# show ip route 10.25.33.201
IP Route Table for VRF "default"
'**' denotes best mcast next-hop

10.25.33.0/24, ubest/mbest: 1/0
  *via Null0, [251/0], 2w0d, lisp, dyn-eid
```
Step 4 Also, the dynamic EID will not be registered on the map-server. Verify with the `show lisp site detail` output. Note that this output has a more general 10.25.0.0/16 prefix registered but not one specifically for the EID.

```
dc1b-agg-7k1# show lisp site DATACENTER detail
LISP Site Registration Information for VRF "default"
  * = truncated IPv6 address, -x = more-specifics count

Site name:  "DATACENTER"
Description: LISP site DATACENTER; key dci
Allowed configured locators: any
  Configured EID-prefix: 10.25.0.0/16, instance-id: 0
    More-specifics registered: 0
    Currently registered: yes
    First registered: never
    Last registered: 00:00:01
    Who last registered: 1.1.1.35
    Routing table tag: 0
    Proxy Replying: no
    Wants Map-Notifications: yes
    Registered TTL: 1440 minutes
    Registered locators:
      1.1.1.35 (up), priority: 1, weight: 10
      1.1.1.50 (up), priority: 1, weight: 10
Registration errors:
  Authentication failures: 0
  Allowed locators mismatch: 0
```

Step 5 Check the map-cache on the relevant xTRs and verify that the RLOC addresses are correct. In this case, traffic sent to the EID from the branch will leverage the 10.25.0.0/16 prefix.

```
dc1b-agg-7k1# show ip lisp map-cache
LISP IPv4 Mapping Cache, 3 entries
  0.0.0.0/0, uptime: 1w1d, expires: never, via static
    Negative cache entry, action: send-map-request
  10.25.0.0/16, uptime: 1w1d, expires: 23:59:31, via map-reply, complete
    Locator Uptime State Pri/Wgt
    1.1.1.35 1w1d up 1/10
    1.1.1.50 1w1d up 1/10
  16.0.0.0/4, uptime: 00:12:45, expires: 00:02:07, via map-reply, forward-native
    Negative cache entry, action: forward-native
```

```
dcb-branch1# show ip lisp map-cache
LISP IPv4 Mapping Cache, 3 entries
  0.0.0.0/0, uptime: 1w1d, expires: never, via static
    Negative cache entry, action: send-map-request
  10.25.0.0/16, uptime: 1w1d, expires: 23:59:31, via map-reply, complete
    Locator Uptime State Pri/Wgt
    1.1.1.35 1w1d up 1/10
    1.1.1.50 1w1d up 1/10
  16.0.0.0/4, uptime: 00:12:45, expires: 00:02:07, via map-reply, forward-native
    Negative cache entry, action: forward-native
```

Step 6 Perform a migration of the EID to the remote LISP site (Figure 1-4). Keep the ping going between the EID and the remote branch site.
Basic Verification and Sanity Checks

Figure 1-4 Branch Site Migration to another LISP Encapsulated EID

Step 7 The EID should now be detected on the xTR in the remote site.

```
dc2b-agg-7k1# show lisp dynamic-eid summary
LISP Dynamic EID Summary for VRF "default"
* = Dyn-EID learned by site-based Map-Notify
<table>
<thead>
<tr>
<th>Dyn-EID Name</th>
<th>Dynamic-EID</th>
<th>Interface</th>
<th>Uptime</th>
<th>Last</th>
<th>Pending Packet</th>
<th>Ping Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETWORK_10.25.10.25.33.201</td>
<td>Vlan3633</td>
<td>00:00:46</td>
<td>00:00:46</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Step 8 The routing table on the home site should now have a null route installed for the EID.

```
dc1b-agg-7k1# show ip route 10.25.33.201
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
10.25.33.201/32, ubest/mbest: 1/0, attached
  *via Null0, [252/0], 00:00:31, lisp, dyn-eid
```

Step 9 The routing table on the remote site should have a LISP route installed for the EID.

```
dc2b-agg-7k1# show ip route 10.25.33.201
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
10.25.33.201/32, ubest/mbest: 1/0, attached
  *via 10.25.33.201, Vlan3633, [251/0], 00:00:46, lisp, dyn-eid
```

Step 10 The EID should now be registered on the map-server with the correct RLOC.
dc1b-agg-7k1# show lisp site DATACENTER detail
LISP Site Registration Information for VRF "default"
* = truncated IPv6 address, -x = more-specifics count

Site name: "DATACENTER"
Description: LISP site DATACENTER; key dci
Allowed configured locators: any
Configured EID-prefix: 10.25.0.0/16, instance-id: 0
 More-specifics registered: 1
 Currently registered: yes
 First registered: never
 Last registered: 00:00:18
 Who last registered: 1.1.1.35
 Routing table tag: 0
 Proxy Replying: no
 Wants Map-Notifications: yes
 Registered TTL: 1440 minutes
 Registered locators:
 1.1.1.35 (up), priority: 1, weight: 10
 1.1.1.50 (up), priority: 1, weight: 10
Registration errors:
 Authentication failures: 0
 Allowed locators mismatch: 0
More-specific EID-prefix: 10.25.33.201/32, instance-id: 0
 Currently registered: yes
 First registered: 00:01:14
 Last registered: 00:00:15
 Who last registered: 10.35.35.2
 Routing table tag: 0
 Proxy Replying: no
 Wants Map-Notifications: yes
 Registered TTL: 1440 minutes
 Registered locators:
 2.2.2.73 (up), priority: 1, weight: 10
 2.2.2.78 (up), priority: 1, weight: 10
Registration errors:
 Authentication failures: 0
 Allowed locators mismatch: 0

Step 11 Finally, the map-cache in the branch site should have been updated to the correct RLOC address.

dcb-branch1# show ip lisp map-cache
LISP IPv4 Mapping Cache, 4 entries

0.0.0.0/0, uptime: 1w1d, expires: never, via static
 Negative cache entry, action: send-map-request
10.25.0.0/16, uptime: 1w1d, expires: 23:59:34, via map-reply, complete
 Locator Uptime State Pri/Wgt
 1.1.1.35 1w1d up 1/10
 1.1.1.50 1w1d up 1/10
10.25.33.201/32, uptime: 00:02:02, expires: 23:59:52, via map-reply, complete
 Locator Uptime State Pri/Wgt
 2.2.2.73 00:02:02 up 1/10
 2.2.2.78 00:02:02 up 1/10
16.0.0.0/4, uptime: 00:22:53, expires: 00:06:52, via map-reply, forward-native
 Negative cache entry, action: forward-native

Step 12 Now migrate the EID back to the home site. Initially, the EID will be detected by the xTR in the home site and will be registered on the map-server, but these will time out within approximately five minutes.

dc1b-agg-7k1# show lisp dynamic-eid summary
LISP Dynamic EID Summary for VRF "default"
* = Dyn-EID learned by site-based Map-Notify
 Dyn-EID Name Dynamic-EID Interface Uptime Last Pending
Step 13 The null route at the home site should be replaced by a LISP route for the EID. However, these entries will also time out within approximately five minutes and will be replaced by a directly connected route.

dc1b-agg-7k1# show lisp site DATACENTER detail
LISP Site Registration Information for VRF "default"
* = truncated IPv6 address, -x = more-specifics count

Site name: "DATACENTER"
Description: LISP site DATACENTER; key dci
Allowed configured locators: any
 Configured EID-prefix: 10.25.0.0/16, instance-id: 0
 More-specifics registered: 1
 Currently registered: yes
 First registered: never
 Last registered: 00:00:35
 Who last registered: 1.1.1.35
 Routing table tag: 0
 Proxy Replying: no
 Wants Map-Notifications: yes
 Registered TTL: 1440 minutes
 Registered locators:
 1.1.1.35 (up), priority: 1, weight: 10
 1.1.1.50 (up), priority: 1, weight: 10
 Registration errors:
 Authentication failures: 0
 Allowed locators mismatch: 0
 More-specific EID-prefix: 10.25.33.201/32, instance-id: 0
 Currently registered: yes
 First registered: 00:00:26
 Last registered: 00:00:26
 Who last registered: 19.98.1.2
 Routing table tag: 0
 Proxy Replying: no
 Wants Map-Notifications: yes
 Registered TTL: 1440 minutes
 Registered locators:
 1.1.1.35 (up), priority: 1, weight: 10
 1.1.1.50 (up), priority: 1, weight: 10
 Registration errors:
 Authentication failures: 0
 Allowed locators mismatch: 0

Step 14 The specific LISP route should have been removed on the remote site leaving the general LISP null route.

dc2b-agg-7k1# show ip route 10.25.33.201
IP Route Table for VRF "default"
 '*' denotes best ucast next-hop
 '**' denotes best mcast next-hop
 '[x/y]' denotes [preference/metric]

10.25.33.201/32, ubest/mbest: 1/0, attached
 *via 10.25.33.201, Vlan3633, [250/0], 00:00:15, am
 via 10.25.33.201, Vlan3633, [251/0], 00:00:15, lisp, dyn-eid

Step 13 The null route at the home site should be replaced by a LISP route for the EID. However, these entries will also time out within approximately five minutes and will be replaced by a directly connected route.

dc1b-agg-7k1# show lisp site DATACENTER detail
LISP Site Registration Information for VRF "default"
* = truncated IPv6 address, -x = more-specifics count

Site name: "DATACENTER"
Description: LISP site DATACENTER; key dci
Allowed configured locators: any
 Configured EID-prefix: 10.25.0.0/16, instance-id: 0
 More-specifics registered: 1
 Currently registered: yes
 First registered: never
 Last registered: 00:00:35
 Who last registered: 1.1.1.35
 Routing table tag: 0
 Proxy Replying: no
 Wants Map-Notifications: yes
 Registered TTL: 1440 minutes
 Registered locators:
 1.1.1.35 (up), priority: 1, weight: 10
 1.1.1.50 (up), priority: 1, weight: 10
 Registration errors:
 Authentication failures: 0
 Allowed locators mismatch: 0
 More-specific EID-prefix: 10.25.33.201/32, instance-id: 0
 Currently registered: yes
 First registered: 00:00:26
 Last registered: 00:00:26
 Who last registered: 19.98.1.2
 Routing table tag: 0
 Proxy Replying: no
 Wants Map-Notifications: yes
 Registered TTL: 1440 minutes
 Registered locators:
 1.1.1.35 (up), priority: 1, weight: 10
 1.1.1.50 (up), priority: 1, weight: 10
 Registration errors:
 Authentication failures: 0
 Allowed locators mismatch: 0

Step 14 The specific LISP route should have been removed on the remote site leaving the general LISP null route.

dc2b-agg-7k1# show ip route 10.25.33.201
IP Route Table for VRF "default"
 '*' denotes best ucast next-hop
 '**' denotes best mcast next-hop
 '[x/y]' denotes [preference/metric]

10.25.33.201/32, ubest/mbest: 1/0, attached
 *via 10.25.33.201, Vlan3633, [250/0], 00:00:15, am
 via 10.25.33.201, Vlan3633, [251/0], 00:00:15, lisp, dyn-eid
10.25.33.0/24, ubest/mbest: 1/0
*via Null0, [251/0], 2w0d, lisp, dyn-eid

Finally, verify that the map-cache on the branch also got updated. Note that the specific EID entry will time out after 24 hours.

dcb-branch1#show ip lisp map-cache
LISP IPv4 Mapping Cache, 4 entries

0.0.0.0/0, uptime: 00:10:48, expires: never, via static
 Negative cache entry, action: send-map-request
10.25.0.0/16, uptime: 00:10:48, expires: 23:59:47, via map-reply, complete
 Locator Uptime State Pri/Wgt
 1.1.1.35 00:10:48 up 1/10
 1.1.1.50 00:10:48 up 1/10
10.25.33.201/32, uptime: 00:02:49, expires: 23:59:43, via map-reply, complete
 Locator Uptime State Pri/Wgt
 1.1.1.35 00:00:09 up 1/10
 1.1.1.50 00:00:09 up 1/10
16.0.0.0/4, uptime: 00:08:30, expires: 00:06:22, via map-reply, forward-native
 Negative cache entry, action: forward-native

LISP Debugs

The following LISP debugs are helpful in troubleshooting issues.

NX-OS
- debug ip lisp mapping control
- debug lisp mapping register
- debug lisp smr
- debug lisp ha
- debug lisp loc-reach-algorithm receive-probe
- debug lisp loc-reach-algorithm send-probe
- debug ip mroute map_notify_addr/32 detail
- debug ip lisp mapping data

IOS
- debug lisp control-plane all

Show Commands

NX-OS/IOS
- show ip lisp—view LISP status and configuration
- show ip lisp map-cache—view LISP mapping cache
- show lisp site detail—view configured LISP sites on map-server and see registered locators for those sites
- show ip route lisp—displays routes that LISP process has entered into routing table
Common Issues

This section outlines common issues that may be faced with LISP and possible resolutions to those issues.

Branch SMR Update

It’s possible that at some point an SMR message might not be received or acted upon correctly by an xTR router, and the RLOC data in the affected router’s map-cache will become stale, resulting in black-holing of traffic due to the incorrect mapping. If you suspect this to be the case, the following procedure may help identify and clear problematic mapping data.

Step 1 Displays the map-cache data. If you know that all of your servers are located in “Site 1”, but one of the servers still shows as being in “Site 2”, you have a stale map-cache entry that should be cleared.

```
show ip lisp map-cache
```

Step 2 Clear the stale map-cache entry to allow a new SMR process to take place and update the mapping-data.

```
clear ip lisp map-cache ip_address/netmask
```

```
lisp-router# clear ip lisp map-cache 10.25.33.50/32
```

Step 3 Displays the map-cache data. After clearing the old map-cache data, a new SMR process should have been initiated and the RLOC should be updated to show it is now in “Location A”.

```
show ip lisp map-cache
```

Example

In this example, the EIDs are located in the first LISP site and should be mapped to RLOCs 1.1.1.35 and 1.1.1.47. However, the lisp map-cache on the branch router still has the RLOC for the second site for EID 10.25.33.50/32.

```
dca-branch1# show ip lisp map-cache
LISP IPv4 Mapping Cache for EID-table default (IID 0), 5 entries
0.0.0.0/0, uptime: 6d00h, expires: never, via static send map-request
Negative cache entry, action: send-map-request
10.25.33.50/32, uptime: 6d00h, expires: 23:59:44, via map-reply, complete
Locator Uptime State Pri/Wgt
```

- **show ip route eid_addr**—verify correct routes have been installed into routing table for EID
- **show ip mroute**—verify that the xTR has mroutes for all of the map-notify-groups

NX-OS

- **show run lisp**—view LISP related configuration
- **show lisp dynamic-eid summary**—look at dynamic EIDs that have been detected on the xTR
- **show forwarding route vrf all**—verify that forwarding tables are programmed correctly for LISP routes
- **show lisp internal event-history options**—displays log of internal LISP events
Dynamic EID Not Detected by xTR

Dynamic EID discovery relies on Unicast Reverse Path Forwarding (URPF) to detect whether a specific EID is located in a given LISP site. This is accomplished by the LISP process installing a null route to the EID in the routing table. When a packet originates from the EID, the xTR performs a URPF check to verify that there is a corresponding return route to the EID on the interface where the packet was received. In the case of a null route, an exception is raised. This exception causes the initial packet to be punted to the supervisor so that the LISP process on the xTR can handle the EID learning process, populate the map-cache, update the map-server, and install a LISP route into the routing table of the switch.

Verify URPF is Enabled

The following procedure verifies that URPF is enabled.

Step 1 Connect to module where EID traffic enters to be LISP encapsulated.
attach module module_num

```bash
switch# attach module 3
```

Step 2 View internal hardware forwarding information.

```bash
show hardware internal forwarding interface interface
```

```bash
module-3# show hardware internal forwarding interface vlan 3633
```

Step 3 Verify that reverse path forwarding is enabled.

Verify that `v4_rpf_mode` is set to one.

Example if URPF Enablement

```bash
dc1b-agg-7k1# attach module 3
Attaching to module 3 ...
To exit type 'exit', to abort type '$.'</d
```

```bash
module-3# show hardware internal forwarding interface vlan 3633
```

Software Tables:
- Interface = Vlan3633 VDC(1) VLAN(3633) LIF = 0x94
- State(up)

Hardware Tables:

Note: Below L2-LIF entry may not be valid for some ports

Instance: 0x1

L2-LIF entry with index = 0xe231

- `pt_cam_en = 1`
- `ipv4_igmp_snoop = 1`
- `ipv4_pim_snoop = 0`
- `ipv6_mld_snoop = 0`
- `ipv6_pim_snoop = 0`
- `bd = 0x94`
- `12v4 = 0`
- `ingr_lif = 0x94`
- `hdr_gm_en = 0`
- `dsm = 0`
- `ipv4_en = 1`
- `ipv6_en = 1`
- `1213_lkup_cfg = 1`
- `mpls_en = 1`
- `sm_en = 0`
- `red_ids_chk_fail_en = 1`
- `ipv4_igmp_snoop = 1`
- `ipv4_pim_snoop = 0`
- `ipv6_mld_snoop = 0`
- `ipv6_pim_snoop = 0`
- `bd = 0x94`
- `l2v4 = 0`
- `ingr_lif = 0x94`
- `hdr_gm_en = 0`
- `dsm = 0`
- `ipv4_en = 1`
- `ipv6_en = 1`
- `l2l3_lkup_cfg = 1`
- `mpls_en = 1`
- `sm_en = 0`
- `red_ids_chk_fail_en = 1`
- `ldb_rbh_en = 0`
- `age_trm_sel = 1`
- `bndl_port = 0`
- `dl_np = 0`
- `dl_p = 0`
- `dnl = 0`
- `eompls_bd = 0`
- `nf_en = 0`
- `diff = 0`
- `dmn = 1`
- `multi_miss_cap1 = 1`
- `uni_miss_cap1 = 0`

L3-INGRESS-LIF entry with index = 0x94

- `v6_rpf_mode = 0`
- `ecc = 23`
- `v6_vpn = 1`
- `v6_rpfv3_en = 0`
- `ipv6_en = 0`
- `v6_sgt_prio = 0`
- `v6_dgt_prio = 0`
- `expl_null_rpf_en = 0`
- `per_pkt_ls_en = 0`
- `no_stats = 0`
- `v4_sgt_prio = 3`
- `v4_dgt_prio = 1`
- `diag = 0`
- `trust_lif = 0`
- `tunnel_lif = 0`
- `df_mask = 0x0`
- `f_index = 0`
- `non_ipv6_vpn = 1`
- `mpls_vpn_sel = 0`
- `mpls_vpn_acl_en = 0`
- `v4_rpfv3_en = 0`
- `ipv4_en = 1`
- `eompls_en = 0`
- `mpls_en = 0`
- `ipv4_mcast_en = 1`
- `v4_rpf_mode = 1`
- `qppb_recirc_en = 0`
- `qppb_dest_en = 0`
- `bd_lif = 1`
- `eompls_p2p = 0`
- `ipv6_mcast_en = 0`
- `mac_ip_chk_ipv4 = 0`
- `mac_ip_chk_ipv6 = 0`
- `cpp_en = 1`
- `acl_en = 0`
- `qos_en = 0`
- `acct_en = 0`
- `l2_acl_en = 0`
- `l2_cos_sel = 0`
- `recirc_id = 0`
- `lif_label_b = 0`
- `lif_label_a = 0`
- `base_policer_id = 0`
- `mut_map_index = 0`
- `ilm_trig = 0`
- `base_acct_id = 0`

L3-EGRESS-LIF entry with index = 0x94

- `ecc = 406`
- `v6_same_if_check = 1`
- `entry_type = 0`
- `egress_vlan = 3633`
- `dest_index = 0x0`
- `flood = 0`
- `mtu_index = 0`
- `v4_same_if_check = 2`
- `frr_link_down = 0`
- `frr_node_down = 0`
- `use_mpls_key_a = 0`
- `use_mpls_key_b = 0`
- `cpp_lif = 0`
- `group_en = 0`
- `acl_en = 0`
- `qos_en = 1`
- `acct_en = 0`
- `l2_acl_en = 0`
- `l2_cos_sel = 0`
- `recirc_id = 0`
- `lif_label_b = 0`
- `lif_label_a = 0`
- `base_policer_id = 0`
- `mut_map_index = 0`
- `ilm_trig = 0`
- `base_acct_id = 0`
Incorrect ARP Entries for EIDs

Another issue that can be encountered is an incorrect ARP entry for the EID host. For example, the HSRP MAC address may incorrectly be present in the ARP table for the EID host. Verify that the ARP table contains the correct MAC address for the EID.

Clear Invalid ARP Entry

The following procedure clears an invalid ARP entry.

Step 1 Display ARP table entry for EID address.
```
show ip arp eid_addr
switch# show ip arp 10.25.33.50
```

Step 2 Verify that MAC address is correct for EID. If MAC address is incorrect, then delete the entry from the ARP table as specified in step 3.

Step 3 Delete invalid ARP entry.
```
clear ip arp eid_addr
switch# clear ip arp 10.25.33.50
```

Example of Invalid ARP Entry

```
dc1a-agg-7k2# show ip arp 10.25.33.50
show ip arp 10.25.35.50

Flags: * - Adjacencies learnt on non-active FHRP router
+ - Adjacencies synced via CFSoE
# - Adjacencies Throttled for Glean
D - Static Adjacencies attached to down interface

IP ARP Table
Total number of entries: 1
Address         Age       MAC Address     Interface
10.25.33.50     00:00:32   0000.0c07.ac01   Vlan2533
```

Incorrect Host Routes for EIDs

The proper host routes will need to be installed into the routing table by the LISP process in order for EID mobility to function correctly. Please read the “Basic Verification and Sanity Checks” section above for information on what routes should be installed in the routing table for the EID.

When an EID host is migrated away from a site, the LISP process should install a null route. This null route facilitates the URPF EID detection scheme outlined above.

```
dc1a-agg-7k2# show ip route 10.25.33.50
show ip route 10.25.35.50

IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]

10.25.33.50/32, ubest/mbest: 1/0, attached
   *via Null0, [252/0], 00:00:44, lisp, dyn-eid
```
Here is an example of a failure where a null route was added but the adjacency manager route was not removed. As a result, the URPF check will not be performed when the EID returns to the site, and the EID will not be detected.

```
dc1b-agg-7k2# show ip route 10.25.33.201
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
10.25.33.201/32, ubest/mbest: 1/0, attached
  * via 10.25.33.201, Vlan3633, [250/0], 00:09:21, am
  via Null0, [252/0], 00:09:22, lisp, dyn-eid
```

In the event that incorrect routes show up, a couple of corrective actions can be taken. First, try to clear the offending routes from the routing table. Second, try clearing the map-cache on the xTR.

Step 1
View the routing table entries that apply to the EID. Note any that are incorrect.

```
show ip route eid_addr
```

```
switch# show ip route 10.25.33.201
```

Step 2
Clear any host routes for the EID.

```
clear ip route eid_addr
```

```
switch# clear ip route 10.25.33.201
```

Step 3
Generate traffic on the EID and verify that EID is detected. If it is not, then proceed to step 4.

```
show lisp dynamic-eid summary
```

Step 4
Clear the map-cache on the xTR where the dynamic EID should be detected. Warning this command could adversely affect other LISP traffic.

```
clear ip lisp map-cache
```

Step 5
Generate traffic on the EID and verify that EID is detected.

```
show lisp dynamic-eid summary
```

Path MTU Discovery

Because LISP adds an encapsulation layer, the MTU of the encapsulated packets is slightly reduced. Jumbo frames are currently not supported with LISP. As a result if a host sends a packet of 1500 bytes with the Don’t Fragment (DF) bit set, the packet will be dropped. Therefore, Path MTU Discovery (PMTUD) needs to be functioning correctly so that hosts can send packets of correct size. PMTUD relies on ICMP to operate. Therefore, blocking ICMP can break PMTUD.

LISP Data Packet Decode Example

Figure 1-5 shows an example of a packet encapsulated inside of a LISP data packet. An IP header, a UDP header, and a LISP header will be added to the original packet. The outer IP packet will be directly addressed between the xTR routers in this case 10.46.1.1 and 1.1.1.47. For data packets, the UDP layer will use destination port 4341. This results in 36 bytes of added overhead due to the encapsulation.
PMTUD Verification

To verify that PMTUD is working correctly, perform a packet capture on the host end-points (Figure 1-6). Start a TCP session and generate traffic. Verify that no packets larger than the path MTU are being sent. If there are packets larger than the path MTU, verify that an ICMP packet (or several) is being received of type 3 (Destination unreachable) and code 4 (Fragmentation needed). The last ICMP packet of this type should have the proper path MTU size in its header. After the host end-point receives this packet, it should start reducing the size of the packets that it sends.
Only One Local xTR Detects EID

For LISP sites that have xTR redundancy, the xTRs rely on map-notify messages to update the other xTR when an EID is detected. If there is a problem with this mechanism, then only one of the xTRs will show the EID in the `show lisp dynamic-eid summary` output. The others will not. Because the xTRs use multicast to send these map-notify messages, issues with multicast can also cause failures. If Protocol Independent Multicast (PIM) is to be configured on the LISP mobility interface, you may then need to add the following loopback with IGMP join statements for the map-notify-groups.

Step 1 Look at the LISP configuration. Note any map-notify-group multicast addresses that are configured. These will be used in steps 4 and 5.

```
show run lisp
```

Step 2 Create a loopback interface and apply an IP address.

```
interface loopback num
ip address ip_addr/mask
```

```
switch(config)# interface loopback 1007
switch(config-if)# ip address 3.3.3.35/32
```

Step 3 Enable PIM sparse-mode on interface.

```
ip pim sparse-mode
```

```
switch(config-if)# ip pim sparse-mode
```

Step 4 Add IGMP join-group for first map-notify-group.

```
ip igmp join-group multicast_addr
```

```
switch(config-if)# ip igmp join-group 239.1.10.10
```

Step 5 Repeat step 4 for remaining map-notify-groups.

```
switch(config-if)# ip igmp join-group 239.1.33.10
switch(config-if)# ip igmp join-group 239.1.41.10
switch(config-if)# ip igmp join-group 239.1.56.10
switch(config-if)# ip igmp join-group 239.1.63.10
```
About the Authors

This document, edited by Matthew Hahn, is the product of the combined effort of the SDU DCI team, who together hold a combined 50+ years of network testing experience. The SDU DCI team is Phil Conoly, Brian Franklin, Matt Hahn, Christine Heflin, Brian Howard, and Durga Nagulpally.
About the Authors

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters
Cisco Systems International BV
Amsterdam, The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

CCDE, CCENT, Cisco.com, Cisco Lumin, Cisco News, Cisco StadiumVision, the Cisco logo, IOS, and Welcome to the Human Networking are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCNP, CCIE, QoS, CONA, CDSP, CDSP-CONP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, IQ Expertise, the IQ logo, IQ Net Readiness Scorecard, Quick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGY, NetVendors, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, Söderberg, SMNPTest, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (805R)