Newer Cisco Validated Design Guides Available

This guide is part of an older series of Cisco Validated Designs.

Cisco strives to update and enhance CVD guides on a regular basis. As we develop a new series of CVD guides, we test them together, as a complete system. To ensure the mutual compatibility of designs in CVD guides, you should use guides that belong to the same series.

- Open the latest version of this guide
- Access the latest series of CVD Guides
- Continue reading this archived version
Web Security Using Cisco WSA
TECHNOLOGY DESIGN GUIDE

August 2013
Table of Contents

Preface ..1

CVD Navigator ...2
 Use Cases ...2
 Scope ..2
 Proficiency ..2

Introduction ...3
 Technology Use Case ..3
 Use Case: Manage the Safe Use of Web-based and Social Networking Applications with an On-premise Security Appliance ..3
 Design Overview ...4

Deployment Details ...7
 Configuring Cisco WSA ..8
 High Availability and Resilience ..27
 Additional Information ...38
 Monitoring ..38
 Troubleshooting ...38
 Summary ..38

Appendix A: Product List ...39
Cisco Validated Designs (CVDs) provide the framework for systems design based on common use cases or current engineering system priorities. They incorporate a broad set of technologies, features, and applications to address customer needs. Cisco engineers have comprehensively tested and documented each CVD in order to ensure faster, more reliable, and fully predictable deployment.

CVDs include two guide types that provide tested and validated design and deployment details:

- **Technology design guides** provide deployment details, information about validated products and software, and best practices for specific types of technology.
- **Solution design guides** integrate or reference existing CVDs, but also include product features and functionality across Cisco products and may include information about third-party integration.

Both CVD types provide a tested starting point for Cisco partners or customers to begin designing and deploying systems using their own setup and configuration.

How to Read Commands

Many CVD guides tell you how to use a command-line interface (CLI) to configure network devices. This section describes the conventions used to specify commands that you must enter.

Commands to enter at a CLI appear as follows:

```
configure terminal
```

Commands that specify a value for a variable appear as follows:

```
ntp server 10.10.48.17
```

Commands with variables that you must define appear as follows:

```
class-map [highest class name]
```

Commands at a CLI or script prompt appear as follows:

```
Router# enable
```

Long commands that line wrap are underlined. Enter them as one command:

```
police rate 10000 pps burst 10000 packets conform-action set-discard-class-transmit 48 exceed-action transmit
```

Noteworthy parts of system output or device configuration files appear highlighted, as follows:

```
interface Vlan64
  ip address 10.5.204.5 255.255.255.0
```

Comments and Questions

If you would like to comment on a guide or ask questions, please use the feedback form.

For the most recent CVD guides, see the following site:

http://www.cisco.com/go/cvd
The CVD Navigator helps you determine the applicability of this guide by summarizing its key elements: the use cases, the scope or breadth of the technology covered, the proficiency or experience recommended, and CVDs related to this guide. This section is a quick reference only. For more details, see the Introduction.

Use Cases

This guide addresses the following technology use cases:

- **Manage the Safe Use of Web-based and Social Networking Applications with an On-premise Security Appliance**—All web traffic from the primary-site and remote-site networks accesses the Internet through a centralized Cisco Adaptive Security Appliance (ASA) firewall. Cisco Web Security Appliance (WSA) complements the deep packet inspection and stateful filtering capabilities of the firewall by providing additional web security using a dedicated on-premises appliance.

For more information, see the “Use Cases” section in this guide.

Scope

This guide covers the following areas of technology and products:

- Cisco ASA 5500-X Series Adaptive Security Appliances for Internet edge firewall security
- Cisco Web Security Appliance for granular control over all web content that is accessed
- Integration of the above with the LAN switching infrastructure

For more information, see the “Design Overview” section in this guide.

Proficiency

This guide is for people with the following technical proficiencies—or equivalent experience:

- **CCNA Routing and Switching**—1 to 3 years installing, configuring, and maintaining routed and switched networks
- **CCNA Security**—1 to 3 years installing, monitoring, and troubleshooting network devices to maintain integrity, confidentiality, and availability of data and devices

To view the related CVD guides, click the titles or visit the following site: http://www.cisco.com/go/cvd
Introduction

Technology Use Case

Web access is a requirement for the day-to-day functions of most organizations, but a challenge exists to maintain appropriate web access for everyone in the organization, while minimizing unacceptable or risky use. A solution is needed to control policy-based web access to ensure employees work effectively and ensure that personal web activity does not waste bandwidth, affect productivity, or expose the organization to undue risk.

Another risk associated with Internet access for the organization is the pervasive threat that exists from accessing sites and content. As the monetary gain for malicious activities on the Internet has grown and developed, the methods used to affect these malicious and or illegal activities has grown and become more sophisticated. Botnets, one of the greatest threats that exists in the Internet today, is that of malicious Internet servers (mostly web) being used to host content that then attacks innocent users’ browsers as they view the content. These types of attacks have been used very successfully by “bot herders” to gather in millions of infected members that are subject to the whims of the people who now control their machines. Other threats include the still popular and very broad threats of viruses and trojans, in which a user receives a file in some manner and is tricked into running it, and the file then executes malicious code. The third variant uses directed attacks over the network. Examples of these attacks are the Internet worms that gathered so much attention in the early to mid-2000s. These types of risks are depicted in the figure below.

Figure 1 - Potential risks associated with Internet access

Use Case: Manage the Safe Use of Web-based and Social Networking Applications with an On-premise Security Appliance

All web traffic from the primary site and remote-site networks accesses the Internet through a centralized Cisco ASA firewall. Cisco Web Security Appliance (WSA) complements the deep packet inspection and stateful filtering capabilities of the firewall by providing additional web security using a dedicated on-premises appliance.
This design guide enables the following security capabilities:

- **Transparent redirection of user web traffic**—Through seamless integration with the Cisco ASA firewall, web traffic is transparently redirected to Cisco WSA service. No configuration changes are required on user devices.

- **Web filtering**—Cisco WSA supports filters based on predefined content categories, as well as custom categories. The filtering rules can be configured to block, monitor or warn based on the specific web usage policies of an organization.

- **Malware protection**—Cisco WSA analyzes every web request to determine if content is malicious. Cisco Cloud Web Security (CWS) updates its malware protection policies by using the Cisco Security Intelligence Operations (SIO), which is designed to help organizations secure business applications and processes through identification, prevention, and remediation of threats.

- **Differentiated policies**—Policies for Cisco WSA are applied on a per-group basis. Group membership is determined by identity, which can include authenticated user information or the source IP address of the web request.

Design Overview

Cisco Web Security Appliance (WSA) addresses the need for a corporate web security policy by offering a combination of web usage controls with category and reputation-based control, malware filtering, and data protection.

Figure 2 - Web security deployment

Browsing websites can be risky, and many websites inadvertently end up distributing compromised or malicious content as a result of inattention to update requirements or lax security configurations. The websites that serve the compromised and malicious content are constantly changing as human-operated and worm-infested computers scan the Internet in search of additional web servers that they can infect in order to continue propagating. This dynamic environment introduces significant challenges to maintain up-to-date Internet threat profiles.

The Cisco WSA family is a web proxy that works with other Cisco network components such as firewalls, routers, or switches in order to monitor and control web content requests from within the organization. It also scrubs the return traffic for malicious content.
Cisco WSA is connected by one interface to the inside network of the Cisco Adaptive Security Appliance (ASA). In the Internet edge design, Cisco WSA connects to the same LAN switch as the Cisco ASA appliance and on the same VLAN as the inside interface of the appliance. Cisco ASA redirects HTTP and HTTPS connections to Cisco WSA by using the Web Cache Communication Protocol (WCCP).

Cisco WSA uses several mechanisms to apply web security and content control. Cisco WSA begins with basic URL-filtering with predefined, category-based web usage controls. These controls are based on an active database that includes analysis of sites in 190 countries and over 50 languages. Content is filtered by the reputation database. The Cisco Security Intelligence Operations updates the reputation database every five minutes. These updates contain threat information gleaned from multiple Internet-based resources, as well as content reputation information obtained from customers with Cisco security appliances that choose to participate in the Cisco SenderBase network. If no details of the website or its content are known, Cisco WSA applies dynamic content analysis to determine the nature of the content in real time, and findings are fed back to the SenderBase repository if the customer has elected to participate.

Cisco WSA uses an on-premise appliance for web security that is similar in function to Cisco Cloud Web Security (CWS), which is a cloud-based method of implementing web security. This guide is focused on the deployment of Cisco WSA.
Some key differences between Cisco CWS and Cisco WSA include the items listed in the following table.

Table 1 - Cisco Web Security solution comparison

<table>
<thead>
<tr>
<th></th>
<th>Cisco WSA</th>
<th>Cisco CWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web/URL filtering</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Supported protocols</td>
<td>HTTP/HTTPS, FTP</td>
<td>HTTP/HTTPS</td>
</tr>
<tr>
<td>Outbreak Intelligence</td>
<td>Yes (URL/IP reputation filtering, Multiple scanners for malware)</td>
<td>Yes (Multiple scanners for malware)</td>
</tr>
<tr>
<td>(Zero Day Malware)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote user security</td>
<td>VPN backhaul</td>
<td>Direct to cloud using Cisco AnyConnect</td>
</tr>
<tr>
<td>Remote user security</td>
<td>VPN backhaul</td>
<td>VPN backhaul</td>
</tr>
<tr>
<td>(mobile devices)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deployment</td>
<td>On Premise Redirect</td>
<td>Redirect to cloud service</td>
</tr>
<tr>
<td>Policy and reporting</td>
<td>On Premise</td>
<td>Web portal (cloud)</td>
</tr>
</tbody>
</table>

Cisco WSA inspects the content for remote-access VPN connected users in both the integrated and standalone deployment models as described in the Remote Access VPN Design Guide.

Figure 4 - Web security for remote-access VPN
The first step to planning the Cisco WSA deployment is to determine how to redirect web traffic to the appliance. There are two possible methods to accomplish the redirection of traffic to Cisco WSA: transparent proxy mode and explicit proxy mode.

In a transparent proxy deployment, a WCCP v2-capable network device redirects all TCP traffic with a destination of port 80 or 443 to Cisco WSA, without any configuration on the client. The transparent proxy deployment is used in this design, and the Cisco ASA firewall is used to redirect traffic to the appliance because all of the outbound web traffic passes through the device and is generally managed by the same operations staff who manage Cisco WSA.

In an explicit proxy deployment, a client application, such as a web browser, is configured to use an HTTP proxy, such as Cisco WSA. From an application support standpoint, this method introduces the least amount of complications, as the proxy-aware applications know about and work with Cisco WSA directly to provide the requested content. However, from a deployment standpoint, the explicit proxy method presents challenges as to how the administrator configures every client in the organization with the Cisco WSA proxy settings and how they configure devices not under the organization’s control. Web Proxy Auto-Discovery and proxy automatic configuration scripts, along with other tools, such as Microsoft Group and System policy controls within Microsoft Active Directory, make deploying this method simpler, but a discussion of those tools is beyond the scope of this guide.

It is possible to use both options—explicit proxy and transparent proxy—at the same time on a single Cisco WSA appliance. Explicit proxy is also a good way to test the Cisco WSA configuration, as explicit proxy mode does not depend on anything else in the network to function.

The next step in planning a Cisco WSA deployment is to determine what type of physical topology you are going to use. Cisco WSA has multiple interfaces and can be configured in different ways. In the Internet edge designs, Cisco WSA is deployed using a single interface for both proxy and management traffic.

A single Cisco WSA appliance was deployed in the Internet edge design to support up to 5,000 users. For those who need either additional performance or resilience, a simple upgrade solution is possible by adding an additional appliance. When deployed in high availability mode, the two appliances load-share the outgoing connections. If one device fails, the load is moved to the other appliance. It is possible that network performance could be degraded if one device is handling the load that was designed for two, but Internet web access remains available and protected.
Configuring Cisco WSA

1. Configure the distribution switch
2. Configure management access
3. Complete the System Setup Wizard
4. Install system updates
5. Install the feature keys
6. Update web usage controls and test
7. Enable logging
8. Create custom URL categories
9. Configure access policies
10. Configure WCCP on Cisco WSA
11. Configure WCCP on the firewall
12. Configure default tunnel gateway
13. Set up HTTPS proxy
14. Configure authentication

Procedure 1 Configure the distribution switch

The LAN distribution switch is the path to the organization’s internal network. As configured in the Firewall and IPS Design Guide, a unique VLAN supports the Internet edge devices and the routing protocol peers with the appliances across this network.

Reader Tip

Before you continue, ensure that the distribution switch has been configured following the guidance in the Campus Wired LAN Design Guide.

Step 1: Configure the interfaces that are connected to the distribution switch.

```bash
interface GigabitEthernet1/0/22
description WSAs370 M1 Management interface
switchport access vlan 300
switchport host
macro apply EgressQoS
logging event link-status
no shutdown
```
Procedure 2 Configure management access

Step 1: Connect a standard null modem cable, with the terminal emulator settings of 8-1-none-9600 baud, to the appliance’s serial console port.

Tech Tip

The default username is admin, and the default password is ironport.

ironport.example.com> interfaceconfig

Currently configured interfaces:
1. Management (192.168.42.42/24 on Management: ironport.example.com)

Choose the operation you want to perform:
- NEW - Create a new interface.
- EDIT - Modify an interface.
- DELETE - Remove an interface.

[]>EDIT

Enter the number of the interface you wish to edit.
[]> 1

IP Address (Ex: 192.168.1.2):
[192.168.42.42]> 10.4.24.15

Netmask (Ex: “255.255.255.0” or “0xffffffff”):
[255.255.255.0]> 255.255.255.224

Hostname:
[ironport.example.com]> WSAs370.cisco.local

Do you want to enable FTP on this interface? [Y]> y
Which port do you want to use for FTP?
[21]> 21

Do you want to enable SSH on this interface? [Y]> y
Which port do you want to use for SSH?
[22]> 22

Do you want to enable HTTP on this interface? [Y]> y
Which port do you want to use for HTTP?
[8080]> 8080
Do you want to enable HTTPS on this interface? [Y]> y
Which port do you want to use for HTTPS?[8443]> 8443

You have not entered an HTTPS certificate. To assure privacy, run “certconfig” first. You may use the demo, but this will not be secure.
Do you really wish to use a demo certificate? [Y]> y

Both HTTP and HTTPS are enabled for this interface, should HTTP requests redirect to the secure service? [Y]> y

The interface you edited might be the one you are currently logged into. Are you sure you want to change it? [Y]> y

Currently configured interfaces:
1. Management (10.4.24.15/27 on Management: WSAs370.cisco.local)

Choose the operation you want to perform:
- NEW - Create a new interface.
- EDIT - Modify an interface.
- DELETE - Remove an interface.
[]> <Return>

Tech Tip

The appliance console displays the following message, which corresponds to the default IP address of the Cisco WSA appliance:

ironport.example.com> setgateway

Please run System Setup Wizard at http://192.168.42.42:8080
Do not connect to the GUI at this address.

ironport.example.com> setgateway

Warning: setting an incorrect default gateway may cause the current connection to be interrupted when the changes are committed.
1. Management Default Gateway
2. Data Default Gateway
[]> 1

Enter new default gateway:
[]> 10.4.24.1

ironport.example.com> commit

Please enter some comments describing your changes:
[]> initial setup
Changes committed: Thu Dec 06 23:31:13 2012 GMT
After you configure Cisco WSA, it should be able to ping devices on the network, assuming appropriate network access has been created (on the firewall, if needed). The following output is a capture of Cisco WSA pinging its default gateway:

```
WSA.cisco.local> ping 10.4.24.1
Press Ctrl-C to stop.
PING 10.4.24.1 (10.4.24.1): 56 data bytes
64 bytes from 10.4.24.1: icmp_seq=0 ttl=255 time=0.497 ms
64 bytes from 10.4.24.1: icmp_seq=1 ttl=255 time=9.387 ms
64 bytes from 10.4.24.1: icmp_seq=2 ttl=255 time=0.491 ms
^C
```

Procedure 3 Complete the System Setup Wizard

It is recommended that you configure only the basic network settings, DNS information, time settings, and username/password information through the System Setup Wizard, and you configure the more advanced settings in the respective sections in the UI.

The System Setup Wizard screens and options vary by code version. Depending on the starting code version of the appliance that you are configuring, the screens may differ from those shown below.

Step 1: From a client on the internal network, navigate and log in to the appliance. The GUI uses HTTPS on port 8443. (Example: https://10.4.24.15:8443).

Tech Tip

The default username is **admin**, and the default password is **ironport**.

Step 2: Log in, and then navigate to **System Administration > System Setup Wizard**.

Step 3: On the Start page, read the license, click **I accept**, and then click **Begin Setup**.

Step 4: On the System Settings page, in the **Default System Hostname** box, enter the appliance hostname. (Example: WSAs370.cisco.local)

Step 5: Select **Use these DNS Servers**, and then enter the internal DNS server. (Example: 10.4.48.10).

Step 6: In the **NTP Server** box, enter the internal NTP server. (Example: 10.4.48.17)
Step 7: For the time zone, enter the following information, and then click Next:
- **Region—** America
- **Country—** United States
- **Time Zone / GMT Offset—** Pacific Time (Los_Angeles)

![Time Zone Configuration](image1.png)

Step 8: On the Network Context page, click Next.

Step 9: On the Network Interfaces and Wiring page, click Next. When you completed Procedure 2, “Configure management access,” you completed the necessary configuration for this page.

Tech Tip

In this deployment, for simplicity, M1 is used for both management and proxy services and is the only interface used. Do not select **Use M1 port for Management only**. Do not use interface P1.
Step 10: On the Routes for Management and Data Traffic page, click **Next**. When you completed Procedure 2, “Configure management access,” you completed the necessary configuration for this page.

Step 11: On the Transparent Connections Settings page, click **Next**.

Step 12: On the Administrative Settings page, in the **Administrator Password** box, enter and confirm the administrator password.

Step 13: In the **Email system alerts to** box, enter the administrator’s email address (Example: admin@cisco.local).

Step 14: In the **Send Email via SMTP Relay Host** box, enter the internal mail server (Example: internal-exchange.cisco.local), and then click **Next**.

Tech Tip

On this page, you can also elect to participate in the Cisco SenderBase network and select a participation level.
Step 15: On the Security Settings page, use the default settings, and then click **Next**.

Step 16: On the Review page, review the configuration, and then click **Install This Configuration**.

Procedure 4 Install system updates

It is important to look at system upgrades for Cisco WSA before going any further. HTTP or HTTPS Internet access for the appliance is required in order to proceed.

Tech Tip

It is not possible to downgrade software versions, so be certain that an upgrade is desired before proceeding. It is possible that an appliance can receive different upgrade options if it is on an early release list.

Step 1: Navigate to **System Administration > System Upgrade**. The display shows the current software version.

Step 2: Click **Available Upgrades**.

If newer versions are available, they should be selected and installed. In general, all upgrades should be installed. Each upgrade usually requires a reboot of the appliance. The entire process can take some time.
Procedure 5 Install the feature keys

It is important to install the feature keys for Cisco WSA before going any further. HTTP or HTTPS Internet access for the appliance is required in order to proceed. When installing feature keys, Cisco WSA makes a connection to the license service and submits a query to see if it has all the features it is allowed to run. It is very likely that after upgrading code, especially if many upgrades were applied, there will be missing feature keys.

Step 1: Navigate to System Administration > Feature Keys.

Step 2: Click Check for New Keys.

The figure below shows what an appliance feature key display may look like after being upgraded to the latest version of code and then checking for updated feature keys.

![Feature Keys](image)

Tech Tip

If the appliance is missing keys or the duration of the keys is not correct, contact a trusted partner or Cisco reseller to resolve the issue. Have the appliance serial number available. You can find the serial number at the top of the Feature Key page.

Procedure 6 Update web usage controls and test

Step 1: Navigate to Security Services > Acceptable Use Controls.

Step 2: Click Update Now, and then wait until the page reports back success.
Step 3: Ensure that at least some of the controls have an update that is current or very nearly so.

Tech Tip

Due to randomness of update schedules, it is impossible to know when updates will come out for each component. The Web Categories Prefix Filters and the Web Categories List are updated fairly often and show recent update histories.

Step 4: Set up a client on the inside of the network with Cisco WSA as the explicit proxy in the web browser of their choice. Use the IP address of the appliance as the proxy, and then set the port to 3128.
Step 5: Test two different addresses, as follows:

- One address should be resolvable externally, for instance www.cisco.com, which should return without issue. This proves the client has Internet access but does not prove the connection is going through Cisco WSA.

- The other address should be something not resolvable externally. This request should return an error from Cisco WSA, not the browser, proving that Cisco WSA is serving the content.

Cisco WSA returns an error like that shown below:

![Error Message](image1.png)

If the web request is not directed to Cisco WSA, your web browser returns an error. An example with the Firefox browser returns an error like that shown below:

![Firefox Error Message](image2.png)
Procedure 7
Enable logging

To monitor web usage, the appliance stores client access data for a relatively short duration and it rotates logs for space reasons. For users looking for long-term compliance reporting, they should look into the Cisco solution that comes as part of the Cisco Content Security Management Appliance. This guide does not cover the installation or use of the Cisco Content Security Management Appliance.

For the reporting product to work, Cisco WSA needs to send its logs to an FTP server where the reporting device can access them. For this deployment, it is assumed that an FTP server is already deployed and configured. The following configuration moves the access logs off of Cisco WSA and onto an FTP server.

Step 1: Navigate to System Administration > Log Subscriptions, and then click Add Log Subscription.

Step 2: On the New Log Subscription page, add the new logging information, click Submit, and then click Commit Changes.

Step 3: In the Uncommitted Changes pane, enter a comment to describe the change, and then click Commit Changes.
Procedure 8 Create custom URL categories

Next, you set up standard custom URL categories that most administrators find they need to implement for their desired URL filtering.

Step 1: Navigate to Web Security Manager > Custom URL Categories, and then click Add Custom Category.

You create four placeholder categories for different action exceptions.

Step 2: In the Edit Custom URL Category pane, in the Category Name box, enter Block List.

Step 3: In the Sites box, enter a placeholder URL (Example: block.com), and then click Submit.

Tech Tip

A placeholder URL (block.com) has to be entered because it is not possible to create a category and have it be empty. In the future, when a URL is found that needs to be blocked, add it to the list, and then delete the placeholder.

Step 4: Create three more lists by repeating Step 1 through Step 3. In the Category Name box, name the new lists Monitor List, Warn List, and Allow List. The List Order value increments with each new category; use the suggested value.

This creates an ordered list of custom categories.
Step 5: Click Commit Changes.

Step 6: In the Uncommitted Changes pane, enter a comment to describe the change, and then click Commit Changes.

Procedure 9 Configure access policies

Now that you have created the custom URL categories, you need to enable them for use and define actions for each.

Step 1: Navigate to Web Security Manager > Access Policies, and then under URL Filtering, click the link.

![Access Policies](image1)

Step 2: Click Select Custom Categories. The policies created in the previous procedure appear.

Step 3: For each custom URL category, in the Setting Selection list, choose Include in Policy, and then click Apply.

![Select Custom Categories for this Policy](image2)

Step 4: On the Access Policies: URL Filtering: Global Policy page, click in the appropriate boxes in order to change the action of the category to correspond with its name. (Example: Block should be the action for the Block List category, and Monitor should be the action for the Monitor List category.)

![Access Policies: URL Filtering: Global Policy](image3)
Step 5: Click Submit.

Additionally, on the Access Policies page, the organization's web-acceptable use policy can be implemented. This policy can include the category of the URL (adult, sports, or streaming media), the actions desired (monitor, warn, or block), as well as whether a time-based factor is involved.

Step 6: On the Access Policies page, under URL Filtering, click the link.

Step 7: For testing purposes, next to Gambling select Block, next to Sports and Recreation select Warn, and then click Submit. You may need to scroll to see all predefined URL categories.

![Predefined URL Category Filtering](image)

Step 8: Click Commit Changes.

Step 9: In the Uncommitted Changes pane, enter a comment to describe the change, and then click Commit Changes.

Step 10: Using a browser explicitly pointing to the appliance, browse to a well-known gambling site. Cisco WSA should return the following message:

![This Page Cannot Be Displayed](image)
Now that Cisco WSA is working and applying an access policy for HTTP traffic, you can implement WCCP on the appliance and the appliance firewall. Implementing WCCP allows the Cisco WSA appliance to begin to receive traffic transparently (redirected from the firewall) instead of having browsers configured to use Cisco WSA as an explicit proxy.

Step 1: Navigate to Network > Transparent Redirection, and then click Edit Device.

Step 2: In the Type list, choose WCCP v2 Router, and then click Submit.

Step 3: In the Transparent Redirection pane, under WCCPv2 Services, click Add Service.

Step 4: In the WCCP v2 Service pane, ensure the Service Profile Name is HTTP_and_HTTPS_WCCP.

Step 5: In the Service section, in the Dynamic service ID box, enter 90. This is the number used to define this policy and is the ID used by Cisco ASA to request the policy.

Step 6: In the Port numbers box, enter 80, 443. In this policy, redirect ports are HTTP and HTTPS.

Step 7: In the Router IP Addresses box, enter the IP address of the inside interface of your firewall (Example: 10.4.24.30) and then click Submit.

Tech Tip

HTTPS proxy has not yet been set up on Cisco WSA, so if WCCP redirect were to be initiated for HTTPS immediately, those connections would fail. If the Cisco WSA or Cisco ASA deployment is live and operational and cannot have downtime, create an additional policy for just HTTP temporarily. After configuring the HTTPS policy on the Cisco WSA, change the policy used on Cisco ASA to instead reference the HTTP and HTTPS policy.
Step 8: If you want to create an HTTP-only policy, repeat Step 3 through Step 7 using the following information:

- Service Profile Name—Standard_HTTP_Only_WCCP
- Service—Standard Service ID
- Router IP Addresses—10.4.24.30

After completion, the WCCP services panel should look like the following figure.

Step 9: Click Commit Changes.

Step 10: In the Uncommitted Changes pane, enter a comment to describe the change, and then click Commit Changes.

Procedure 11 Configure WCCP on the firewall

The WCCP policy configured redirects all HTTP and HTTPS traffic to Cisco WSA. This includes any traffic from the inside network to the DMZ web servers and any device management traffic that uses HTTP or HTTPS. It is unnecessary to send any of this traffic to Cisco WSA. To avoid having any of this traffic redirected to Cisco WSA, you must create an access control list (ACL) on the firewall in order to filter out any HTTP or HTTPS traffic destined to RFC 1918 addresses.

This procedure assumes that the Internet edge firewall has already been configured following the guidance in Firewall and IPS Design Guide.

Step 1: From a client on the internal network, navigate to the firewall’s inside IP address, and then launch the Cisco ASA Security Device Manager (ASDM). (Example: https://10.4.24.30)

Step 2: Navigate to Configuration > Device Management > Advanced > WCCP > Service Groups, and then click Add.

Step 3: If you are configuring an HTTP and HTTPS policy, on the Add Service Group dialog box, select Dynamic Service Number, and then enter the value of 90 that was configured as a service ID in Procedure 10, Step 5.

If you are configuring a temporary HTTP-only policy, then select Web Cache.
Step 4: On the Add Service Group dialog box, next to Redirect List, click Manage.

Step 5: In the ACL Manager window, click Add.

Step 6: Click Add ACL.

Step 7: On the Add ACL dialog box, in the ACL Name box, enter WCCP_Redirect_List, and then click OK.

Step 8: Repeat Step 9 and Step 10 for all entries in Table 2.

Table 2 - Access control entries for WCCP redirect

<table>
<thead>
<tr>
<th>Action</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deny</td>
<td>any4</td>
<td>10.0.0.0/8</td>
<td>ip</td>
<td>Block RFC-1918 10.0.0.0/8</td>
</tr>
<tr>
<td>deny</td>
<td>any4</td>
<td>172.16.0.0/12</td>
<td>ip</td>
<td>Block RFC-1918 172.16.0.0/12</td>
</tr>
<tr>
<td>deny</td>
<td>any4</td>
<td>192.168.0.0/16</td>
<td>ip</td>
<td>Block RFC-1918 192.168.0.0/16</td>
</tr>
<tr>
<td>permit</td>
<td>any4</td>
<td>any4</td>
<td>ip</td>
<td>Permit all others</td>
</tr>
</tbody>
</table>

Step 9: In ACL Manager window, select the WCCP_Redirect_List ACL, click Add, and then click Add ACE.
Step 10: In the Add ACE dialog box, using the fields from Table 2, select the Action and then enter the Source, Destination, Service and Description fields.

Step 11: After completing in the ACL Manager window all entries in Table 2, click OK.
Step 12: On the Add Service Group dialog box, in the Redirect List list, choose the ACL created above (Example: WCCP_Redirect_List), and then click OK.

Step 13: On the Service Groups pane, click Apply.

Step 14: Navigate to Configuration > Device Management > Advanced > WCCP > Redirection, and then click Add.

Step 15: If you are configuring an HTTP and HTTPS policy, on the Add WCCP Redirection dialog box, in the Interface list, choose inside, in the Service Group list, choose 90, and then click OK.

If you are configuring an HTTP-only policy, in the Interface list, choose inside, in the Service Group list, choose web-cache, and then click OK.

Step 16: On the Redirection pane, click Apply.

Step 17: If you want to test the configuration, use a browser that is not already configured to go to the appliance as an explicit proxy (or remove the explicit proxy settings), and test to the following sites:

- A resolvable allowed address, such as www.cisco.com
- A resolvable blocked address (from one of the previously configured Blocked categories)

Next, in Cisco ASDM, you check that WCCP redirection is working.

The status window should show a router ID that is the highest IP address of the appliance and the number of cache engines is 1, which is the Cisco WSA appliance. If things are working correctly and redirections are occurring, the Total Packets Redirected counter increases.

High Availability and Resilience

For availability purposes, if Cisco WSA fails, the WCCP reports that fact to the appliance, and it stops redirecting traffic to Cisco WSA by default. If web security resilience is a requirement, two or more Cisco WSAs can be deployed. To deploy multiple devices, define multiple WCCP routers on the appliance, and the WCCP protocol load-balances between them. If one is down, the appliance takes that device out of the list until it comes back online and starts responding to WCCP requests again.

Procedure 12 Configure default tunnel gateway

This procedure is required when using the integrated deployment model for firewall and remote-access VPN. If you are using the standalone deployment model, the default tunnel gateway is already configured, skip to Procedure 13, “Set up HTTPS proxy.”

Cisco WSA must inspect traffic from remote-access VPN clients to and from the Internet. To accomplish this, all traffic to and from the VPN clients must be routed toward the LAN distribution switch, regardless of the traffic’s destination, so that the Cisco ASA appliance can properly redirect the traffic to the Cisco WSA appliance.

Step 1: From a client on the internal network, navigate to the firewall’s inside IP address, and then launch Cisco ASA Security Device Manager. (Example: https://10.4.24.30)

Step 2: In Configuration > Device Setup > Routing > Static Routes, click Add.
Step 3: On the Add Static Route dialog box, configure the following values, and then click OK.

- **Interface**: `inside`
- **Network**: `any4`
- **Gateway IP**: `10.4.24.1`
- **Options**: Tunneled (Default tunnel gateway for VPN traffic)

![Add Static Route dialog box](image)

Step 4: Verify the configuration, and then click Apply.
Procedure 13 Set up HTTPS proxy

To set up Cisco WSA to proxy HTTPS connections, start by enabling the feature.

Step 1: On the Cisco WSA appliance, navigate to Security Services > HTTPS Proxy, and then click Enable and Edit Settings.

Step 2: On the HTTPS Proxy License Agreement page, click Accept.

Tech Tip

You need to generate a certificate for Cisco WSA to use on the client side of the proxy connection. Generating a self-signed certificate causes the client browser to warn about the certificate for each connection to an HTTPS website. To avoid this, upload a certificate that was issued from an organization’s trusted certificate authority to the appliance. If the clients already have the trusted root certificate loaded on their machines, the HTTPS proxy does not generate errors related to unknown certificate authority.

Step 3: On the Edit HTTPS Proxy Settings page, in the Root Certificate for Signing section, select Use Generated Certificate and Key, and then click Generate New Certificate and Key.

Step 4: In the Generate Certificate and Key dialog box, enter values relevant to your organization, and then click Generate.
Step 5: In the Invalid Certificate Handling section, define the action that Cisco WSA should take when it encounters an invalid certificate on the HTTPS server. The choices, depending on the certificate error, can range from dropping the connection, decrypting it, or monitoring it. This example uses the default setting of **Monitor** for all errors.

![Invalid Certificate Handling](image)

Step 6: When you are finished editing, click **Submit**, and then click **Commit Changes**.

Step 7: In the Uncommitted Changes pane, enter a comment to describe the change, and then click **Commit Changes**.

![Reader Tip](image)

For more information about using certificates as part of the Cisco WSA HTTPS proxy mechanism, see the **Cisco WSA End-User Guides** at http://www.cisco.com/en/US/products/ps10164/products_user_guide_list.html, or consult a trusted partner or Cisco sales representative.

Next you configure policies for the HTTPS proxy.

Step 8: Navigate to **Web Security Manager > Custom URL Categories**, and then click **Add Custom Category**. You create three placeholder categories for different action-exceptions.

Step 9: In the Edit Custom URL Category pane, in the **category name** box, enter **Drop List**.

Step 10: In the **Sites** box, enter a placeholder URL (Example: drop.com), and then click **Submit**.
Step 11: Repeat Step 9 and Step 10 to create two more custom categories. For the category names, enter Decrypt List and Pass Through List, and then click Commit Changes.

Step 12: In the Uncommitted Changes pane, enter a comment to describe the change, and then click Commit Changes.

Step 14: Under the URL Filtering box, click the link.

Step 16: In the Select Custom Categories for this Policy window, for each of the three new custom categories, in the Setting Selection list, choose Include in policy, and then click Apply.
Step 17: On the Decryption Policies: URL Filtering: Global Policy page, change the action of the category to correspond with its name, (Example: Drop should be the action for the Drop List category) and then click **Submit**.

![Decryption Policies: URL Filtering: Global Policy](Image)

Step 18: Click **Commit Changes**.

Step 19: In the Uncommitted Changes pane, enter a comment to describe the change, and then click **Commit Changes**.

Step 21: Under the URL Filtering box, click the link.

The predefined URL categories at the bottom of the page allow an administrator to create and enforce a policy around how Cisco WSA handles specific types of websites with relation to decryption. Some organizations have strict policies about not decrypting certain sites, such as health care or financial websites. The categories on this page allow an administrator to enforce that policy on the appliance. For example, it is possible to configure Cisco WSA so that financial HTTPS websites are set to Pass Through so they are not proxied, while gambling sites are set to Drop.

Step 22: Change the action for Gambling to **Drop**, and change the action for Finance to **Pass Through**, and then click **Submit**.

![Predefined URL Category Filtering](Image)

Step 23: Click **Commit Changes**.

Step 24: In the Uncommitted Changes pane, enter a comment to describe the change, and then click **Commit Changes**.

Step 25: If your Cisco ASA is configured to use an HTTP and HTTPS policy, skip to Step 28.

If your Cisco ASA was configured with an HTTP-only policy, you should now change to the HTTP and HTTPS policy. On the Cisco ASA appliance, navigate to Configuration > Device Management > Advanced > WCCP > Redirection, and then click **Edit**.
Step 26: In the Edit WCCP Redirection dialog box, in the Service Group list, choose 90, and then click OK.

![Edit WCCP Redirection](image)

Step 27: On the Redirection pane, click Apply.

Step 28: If you want to test the new configuration, set up categories for webpages that you know are encrypted (HTTPS) and then use those URLs in the testing process. Because the administrator has to know whether the site uses HTTPS, use a custom URL category and put the address in the Drop List. When that site is accessed, Cisco WSA should drop the connection.

Procedure 14 Configure authentication

Authentication is the act of confirming the identity of a user. When authentication is enabled, Cisco WSA authenticates clients on the network before allowing them to connect to a destination server. When using authentication, it is possible to set up different web access policies by user or group membership, using a central user directory. Another primary driver for using authentication is that of user tracking, so that when a user violates an acceptable-use policy, Cisco WSA can match the user with the violation instead of just using an IP address. The last reason for authentication of web sessions is for compliance reporting.

Cisco WSA supports two different authentication protocols: Lightweight Directory Access Protocol (LDAP) and NT LAN Manager (NTLM). Because most organizations have an Active Directory server, they use NTLM. Single Sign-On is also only available when using NTLM.

When Cisco WSA is deployed in transparent mode with authentication enabled and a transaction requires authentication, Cisco WSA asks for authentication credentials from the client application. However, not all client applications support authentication, so they have no way to prompt users to provide their user names and passwords. These applications might have issues when Cisco WSA is deployed in transparent mode because the application tries to run non-HTTPS traffic over port 80 and cannot handle an attempt by Cisco WSA to authenticate the connection.

Here is a partial list of applications that do not support authentication (these are subject to change as newer code versions are released):

- Mozilla Thunderbird
- Adobe Acrobat Updates
- Microsoft Windows Update
- Outlook Exchange (when trying to retrieve Internet-based pictures for email messages)

If applications need to access a particular URL, then it is possible to create an identity based on a custom User Agent category that does not require authentication. When this happens, the client application is not asked for authentication.
For organizations that require authentication, consult a trusted Cisco Partner or reseller or your Cisco account team. They can assist in setting up an authentication solution that meets the organization’s requirements, while minimizing any possible complications.

The first step in setting up authentication is to build an authentication realm. A realm defines how authentication is supposed to occur.

In this deployment, a realm was built for NTLM authentication to the Active Directory server.

Step 1: Navigate to Network > Authentication, and then click on Add Realm.

Step 2: On the Add Realm page, specify the Active Directory Server and the Active Directory Domain, and then click Join Domain.

Step 3: In the Computer Account Credentials dialog box, enter the Active Directory domain administrator credentials (or ask an administrator to enter them), and then click Create Account.

Step 4: On the Add Realm page, click Start Test. This tests the NTLM connection to the Active Directory domain.
Step 5: In the Test Authentication Realm Settings box, monitor the results.

Step 6: When the test is completed successfully, click Submit, and then click Commit Changes.

Step 7: In the Uncommitted Changes pane, enter a comment to describe the change, and then click Commit Changes.

Next you configure identity groups. Identities are based on the identity of the client or the transaction itself.

Step 8: Navigate to Web Security Manager > Identities, and then click Add Identity.

You create two different sample identities: Exempt Subnets and Exempt User Agents.

Step 9: On the Add Identity page, in the Name box, enter Exempt Subnets.

Identities: Add Identity

Step 10: In the Define Members by Subnet box, enter the subnet(s) that you want to allow to access the Internet without authentication.
Step 11: In the Define Members by Authentication list, choose No Authentication, and then click Submit.

Tech Tip
Performing this action defeats the purpose of running authentication for that IP address, and log information from Cisco WSA will never have authentication data from employees using that IP address. Even so, taking this action may be required in certain cases and is given here as an example of how to change the operational policy of Cisco WSA.

Step 12: On the Identities page, click Add Identity.

Step 13: On the Add Identity page, in the Name box, enter Exempt User Agents, and then click Advanced.

Step 14: In the Advanced section, next to User Agents, click None Selected.

Step 15: On the Membership by User Agent page, Under Common User Agents click Others.

Tech Tip
Selecting these agents means that when connections over HTTP with those User Agents in the HTTP Header are seen, no authentication is requested.
Step 17: In the Custom User Agents box, enter any application that uses HTTP and is failing authentication, and then click Done.

Tech Tip

If it is not possible to enter the application that is failing, then a specific custom URL category can be built and then used in the Advanced tab for URL categories.

Step 18: On the Identities: Add Identity page, click Submit.

Step 19: On the Identities page, at the bottom of the Client/Transaction Identity Definitions section, click Global Identity Policy.

This is the identity group for anybody who does not meet one of the preceding two groups you just built. Since those groups were built for the purpose of not authenticating, change the global identity to authenticate everybody else.

Step 21: In the Select a Realm or Sequence list, choose All Realms.

Step 22: In the Select a Scheme list, choose Basic or NTLMSSP, and then click Submit.

Step 23: Click Commit Changes.

Step 24: In the Uncommitted Changes pane, enter a comment to describe the change, and then click Commit Changes.

It is now possible to test the deployment to ensure that the system is enforcing policy as expected, that all applications and processes work as before, and that the data that the system is logging meets all of your needs or requirements.
Additional Information

Monitoring

To monitor the health of Cisco WSA and the actions being taken by the appliance on traffic it is examining, there are a variety of reports available on the Monitor tab. These reports allow an administrator to track statistics for client web activity, malware types, web reputation filters, system status, and more.

Because the appliance itself stores data for only a limited amount of time, you need to use the Cisco Content Security Management Appliance in order to allow for long-term storage and reporting of events from Cisco WSA.

Consult with your Cisco account team or your trusted partner for more information on the Cisco Content Security Management Appliance and long-term reporting.

Troubleshooting

To determine why Cisco WSA took the action it did on a web connection to a specific site from a specific user, an administrator can run the Trace tool by navigating to **System Administration > Policy Trace**.

By filling out the tool, you can test a specific URL to find out what the expected response from the appliance would be if it processed the URL. This information is especially useful if some of the more advanced features are used.

Summary

You have now installed Cisco WSA. A basic configuration has been applied, and the device can be inserted into the network and receive redirects from the appliance firewall. A default policy has been built that allows an organization to set up access controls for HTTP and HTTPS. A policy has been built to configure HTTPS decryption. And authentication has been set up to allow Cisco WSA to authenticate users and tie usernames with the access controls in the logs.

A more detailed discussion about specific implementation of policy should be initiated with a trusted partner or Cisco account representative.

Reader Tip

For additional Cisco WSA user documentation, see the documentation here:

Appendix A: Product List

Web Security

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Security Appliance</td>
<td>Cisco Web Security Appliance S370</td>
<td>S370-BUN-R-NA</td>
<td>AsyncOS 7.5.0-833</td>
</tr>
</tbody>
</table>

Internet Edge

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall</td>
<td>Cisco ASA 5545-X IPS Edition - security appliance</td>
<td>ASA5545-IPS-K9</td>
<td>ASA 9.0(1) IPS 7.1(7)E4</td>
</tr>
<tr>
<td></td>
<td>Cisco ASA 5525-X IPS Edition - security appliance</td>
<td>ASA5525-IPS-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ASA 5515-X IPS Edition - security appliance</td>
<td>ASA5515-IPS-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ASA 5512-X IPS Edition - security appliance</td>
<td>ASA5512-IPS-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ASA5512-X Security Plus license</td>
<td>ASA5512-SEC-PL</td>
<td></td>
</tr>
<tr>
<td>Firewall Management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LAN Distribution Layer

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular Distribution</td>
<td>Cisco Catalyst 6500 E-Series 6-Slot Chassis</td>
<td>WS-C6506-E</td>
<td>15.1(1)SY IP Services license</td>
</tr>
<tr>
<td>Layer Virtual Switch Pair</td>
<td>Cisco Catalyst 6500 VSS Supervisor 2T with 2 ports 10GbE and PFC4</td>
<td>VS-S2T-10G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 6500 4-port 40GbE/16-port 10GbE Fiber Module with DFC4</td>
<td>WS-X6904-40G-2T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 6500 4-port 10GbE SFP+ adapter for WX-X6904-40G module</td>
<td>CVR-CFP-4SFP10G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 6500 24-port GbE SFP Fiber Module with DFC4</td>
<td>WS-X6824-SFP-2T</td>
<td></td>
</tr>
<tr>
<td>Stackable Distribution</td>
<td>Cisco Catalyst 4507R+E 7-slot Chassis with 48Gbps per slot</td>
<td>WS-C4507R+E</td>
<td>3.4.0.SG(15.1-2SG) Enterprise Services license</td>
</tr>
<tr>
<td>Layer Switch</td>
<td>Cisco Catalyst 4500 E-Series Supervisor Engine 7-E, 848Gbps</td>
<td>WS-X45-SUP7-E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500 E-Series 24-port GbE SFP Fiber Module</td>
<td>WS-X4624-SFP-E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500 E-Series 12-port 10GbE SFP+ Fiber Module</td>
<td>WS-X4712-SFP+E</td>
<td></td>
</tr>
<tr>
<td>Stackable Distribution</td>
<td>Cisco Catalyst 3750-X Series Stackable 12 GbE SFP ports</td>
<td>WS-C3750X-12S-E</td>
<td>15.0(2)SE2 IP Services license</td>
</tr>
<tr>
<td>Layer Switch</td>
<td>Cisco Catalyst 3750-X Series Two 10GbE SFP+ and Two GbE SFP ports network module</td>
<td>C3KX-NM-10G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3750-X Series Four GbE SFP ports network module</td>
<td>C3KX-NM-1G</td>
<td></td>
</tr>
</tbody>
</table>
Feedback

Please use the feedback form to send comments and suggestions about this guide.