Verizon Wireless Dynamic Mobile Network Routing LTE - Cisco Integrated Services Router (ISR) And Connected Grid Router

Mobile Router Configuration Guide for On-Demand Backup Verizon Wireless Access

Revision 3.8

August 2015
Introduction

Verizon Wireless Dynamic Mobile Network Routing (DMNR) is a network-based Mobile IP technology capable of providing dynamic routing and support for mobile or stationary enterprise routers in primary wireless access or automatic wireless backup configurations. It enables integration between wireless and wireline enterprise services (fourth-generation [4G] wireless WAN [WWAN]) by using the Mobile IPv4 NETwork MObility (NeMo) protocol, without the need for end-to-end overlay tunneling.

DMNR is part of the Verizon Wireless Mobile Private Network (MPN). DMNR is compatible with the Cisco IOS® Software Mobile IP Mobile Networks feature. Please note that not all features specific to Cisco are supported by the DMNR service. DMNR uses the Collocated-Care-of-Address (CCOA) option and supports IP subnet registration, routing, and forwarding. DMNR does not support any other additional Cisco Mobile IP Mobile Networks features such as mobile networks multipath or mobile networks multicast.

This configuration guide shows an example of using the Cisco® Mobile IP Mobile Networks feature with Verizon Wireless Dynamic Mobile Network Routing service to provide on-demand backup communications over Verizon Wireless Long Term Evolution/evolved high-rate packet data (LTE/eHRPD) Access and Mobile Private Networks between an enterprise branch office and a data center connected to the Verizon Wireless Private IP Multiprotocol Label Switching/VPN (MPLS/VPN) network.

On-demand LTE backup may be appropriate for some environments (e.g. dual carrier with LTE as tertiary backup). Always-on backup is generally preferred, as it allows for monitoring of the backup path during normal operations.

There are three example configurations, for ISR G2 LTE eHWIC, ISR 4K LTE NIM, and 819. GRWIC and 899 configurations are similar to eHIWC and 819 respectively.

Notes

1. Cisco Integrated Services Routers Generation 2 (ISR G2) and CGR routers with integrated 4G LTE cards are supported (V or VZ SKUs, 1900, 2900, 3900, and CGR2010 Series with LTE GRWIC). Cisco 819 and 899 ISRs with embedded LTE are supported. Cisco ISR 4Ks (4321, 4331, 4351, 4431, 4451) with LTE NIM are supported.

2. The minimum Cisco IOS software release depends on the LTE modem firmware level (seen via IOS command “show cell 0/x/0 hardware” for LTE eHWIC/NIM/GRWIC, “show cell 0 hardware” for 819/899).
 a. EHWIC-4G-LTE-V, C819G-4G-V-K9, GRWIC-4G-LTE-V: Firmware release 1.0.9.3 is no longer recommended. It should be upgraded to firmware 3.5.10.6. IOS 15.2(4M2) should be used to upgrade the firmware. Firmware 3.5.10.6 and install instructions are available at: http://software.cisco.com/download/release.html?i=ly&mdfid=284772061&softwareid=284285628&release=3.5.10.6&os=

 b. EHWIC-4G-LTE-V, C819G-4G-V-K9, GRWIC-4G-LTE-V: Firmware release 3.5.10.6 is the recommended release. The IOS recommended release with LTE firmware 3.5.10.6 is IOS 15.5(2)T or later T release. The minimum mainline release is 15.4(3)M2.

 c. EHWIC-4G-LTE-VZ, NIM-4G-LTE-VZ, 8x9 VZ models (XLTE models): Firmware release 5.5.58.1 is the minimum release. The recommended IOS release is 15.5(2)T or later T release for ISR 1900/2900/3900 series, and IOS XE 3.16 for ISR 4000 series.
3. ISR 1900, 2900, 3900 and 4000 series require an IOS Software data license for MPN/DMNR (NeMo support). This is included by default with 800 series. The data license is acquired by ordering the AppX license. A 60 day temporary data license can be immediately generated using an IOS configuration mode command (requires an IOS reload to take effect). Below are examples for ISR G2 and 4K series.

license boot module c1900 technology-package datak9. The keyword following "module" varies based on ISR model c1900, c2900, c3900. For ISR 4000 series, the configuration mode command is as follows:

license boot level appxk9 the command is the same for all ISR 4K models.

4. To connect a Network Mobility (NEMO) session to the Verizon Wireless Enterprise GateWay (EXGW), the enterprise MPN must be provisioned for 4G, and the subscriber mobile line (subscriber identity module [SIM]) used by the mobile router enhanced high-speed WAN interface card (eHWIC, NIM or GRWIC or embedded in an 819 or 899) must have NEMO permission provisioned by Verizon Wireless.

The enterprise Access Point Name (APN) must be correctly provisioned in the Verizon Wireless network in order to make a successful private network connection. In addition, the APN must be appropriately set on the modem for LTE and eHRPD profiles, either automatically through Over-The-Air Device Management (OTA-DM) or locally on the ISR. If OTA-DM does not update the APN, it can be set manually on the ISR. The method of manually setting the APN is via a single enable-mode IOS command. An example is shown below:

```
cellular 0/0/0 lte profile create 3 ne01.VZWSTATIC
```

(Note that the Data APN is profile 3). The middle “0” can be 0, 1, 2 or 3 depending on which ISR slot the LTE module is installed. For 819 and 899, use “cellular 0”. The value “ne01.VZWSTATIC” is a sample APN. The appropriate APN must be provided by Verizon Wireless.

5. To connect a NEMO session to the EXGW, the mobile router must be configured with the correct Security Parameter Index (SPI) and key. For DMNR, the correct values are provided in this guide.

6. To connect a NEMO session to the EXGW, the mobile router must be configured with the correct IP address of the NEMO High Availability (NEMO-HA) service. The address depends on the location of the EXGW. For the appropriate address, please contact your Verizon representative.

7. At least one ISR interface must be registered by the mobile router when the NEMO call is made to the EXGW. The interface must be in UP/UP state (loopback interface is recommended).

9. It is not recommended to configure secondary IP addresses on the interfaces that are registered by the mobile router unless it is intended by design. In Cisco IOS Software a secondary IP address is listed first under the interface configuration, and its subnet will be the only one that is inserted into the NEMO prefix list from that interface. If secondary IP addresses are required, please refer to configuration guide “DMNR with Secondary IP and Nonconnected Subnets” mentioned above.

10. The EXGW will accept up to 8 subnets in the NEMO registration prefix list. Subnets in excess of 8 will be silently ignored. Registering a summary address using “non-connected-network” stated above may assist.

11. After a successful NEMO registration, the mobile router will automatically bring up a generic-routing-encapsulation (GRE) tunnel interface (Tunnel0) and will install a dynamic Mobile Default route to that interface.

12. Ensure that no static routes pointing to interface **Cellular 0/x/0** (Cellular 0 for 819 or 899) exist in the mobile router configuration.
13. The dynamic Tunnel0 interface will have the IP maximum transmission unit (MTU) of 1476 bytes. IP packets whose lengths exceed 1440 bytes will require fragmentation. For TCP traffic the `ip tcp adjust-mss` command may be used as shown in this guide to avoid fragmentation. If the mobile router needs to handle large non-TCP packets that have the Don’t Fragment (DF) bit set, a route-map that clears the DF bit should be applied to the LAN interface of the mobile router.

14. Ensure that the `ip virtual-reassembly` command is not present on interface Cellular 0/x/0.

15. The Verizon Wireless Network will preserve the quality-of-service (QoS) markings (type of service/differentiated services code point [ToS/DSCP]) that have been set in the original IP packet header.

16. The changes to the subnet (prefix) list registered by the mobile router take effect on EXGW immediately while the NEMO session is running. No coordination is needed to advertise new subnets beyond ISR configuration.

17. While the Wireless/NEMO session is on periodic (~every 10 min) NEMO re-registration packets (~200 bytes) will be sent by the router and replies sent by EHA. At all other times the backup connection state will be maintained but the radio traffic channel will be in a dormant state.

18. The administrative distance for routes learned via NEMO (M routes) can be changed from the default value of 3. The “distance” command can be configured under the “router mobile” stanza.

19. Please refer to the notes in the configuration syntax for an explanation of the commands.

Design Requirements and Recommendations

1. If an LTE connection cannot be made, the APN value on the LTE eHWIC modem should be checked (ISR command `show cellular 0/x/0 profile`). If it is not the enterprise APN, please refer to planning section above.

2. Although this configuration guide should be used first, additional information is available at:
 - www.cisco.com/go/4g under “Configuration and Deployment Guides”
 - The CGR-2010 LTE GRWIC is configured in the same manner as the LTE eHWIC.
Backup Access Design Requirements

This configuration example is based on the following logical design requirements:

1. When the primary circuit is operational, the backup wireless link must be deactivated.
2. Switch to backup must be triggered by the physical or logical failure on the primary circuit (such as loss of routing).
3. Only select traffic from the branch office will be allowed to use the backup wireless link.
4. When the primary circuit is restored, all traffic must be reverted to the primary path and the backup wireless link must be deactivated. During the transient time when the primary path is operational and the wireless backup is pending, the disconnect traffic will be routed over the primary path symmetrically.
5. Figure 1 shows the customer design scenario.
NEMO Router Configuration for ISR G2 - EHWIC-4G-LTE-V, EHWIC-4G-LTE-VZ

command allowing for “LTE test cellular” enable mode commands

```
service internal
```

Load appropriate IOS image

```
boot system flash: c1900-universalk9-mz.SPA.155-2.T.bin
```

CHAT Script to make a data call, name is case-sensitive

```
chat-script LTE "AT!CALL1" TIMEOUT 20 "OK"
```

T1 Controller for Primary Circuit

```
controller T1 0/1/0
  channel-group 0 timeslots 1-24
```

This Loopback and IP are required to setup NEMO. This address is not routable and is used as a placeholder “dummy” address. It may be the same on all routers. Any interface number and any IP can be used. Please use 1.2.3.4 for consistency if possible.

```
interface Loopback1234
  description ### NEMO Router Home Address – Dummy non-Routable IP ###
  ip address 1.2.3.4 255.255.255.255
```

This Subnet will be routed by NEMO

```
interface Loopback255
  ip address 10.0.255.1 255.255.255.255
```

This subnet is routed by NEMO. The maximum TCP MSS is set to 1390 bytes. The route-map clears DF bits in the IP headers.

```
interface GigabitEthernet0/0
  ip address 10.20.59.129 255.255.255.128
  ip tcp adjust-mss 1390
  ip policy route-map clear-df
```

This subnet is not routed by NEMO and will not be backed up.

```
interface GigabitEthernet0/1
  ip address 10.10.20.233 255.255.255.0
```

Interface Cellular – the LTE and NEMO interface. Receives Pool/WAN IP (dynamic or static) from EXGW. The backup is activated using the Dialer Watch group. See the Dialer Watch section for the backup timers. By default the “dialer idle-timeout” is set to 120 sec. The value of this timer should not exceed 9 min. This timer and the “dialer watch-group 1 delay disconnect” timer are used to set the time period to disconnect LTE after the primary circuit becomes operational.

```
interface Cellular0/0/0
  ip address negotiated
  no ip unreachables
  ip mobile router-service roam
```
ip mobile router-service collocated ccoa-only
encapsulation slip
load-interval 30
dialer in-band
dialer idle-timeout 0
dialer enable-timeout 1
dialer string LTE
dialer watch-group 1
async mode interactive
pulse-time 0

This is the Primary access circuit. Interface Dialer1 is used to backup this circuit in the event of a physical failure on this circuit.

interface Serial0/1/0:0
 ip address 128.43.1.170 255.255.255.252

This stanza enables NEMO Routing. Admin distance can be adjusted
router mobile

This is the BGP routing process for the primary circuit. BGP administrative distance is set to 2 so that routing can revert to BGP from Mobile routes [Admin. Distance = 3] when Primary Circuit recovers.
router bgp 65435
 bgp log-neighbor-changes
 neighbor 128.43.1.169 remote-as 19262

 address-family ipv4
 redistribute connected
 neighbor 128.43.1.169 activate
distance bgp 2 2 2
 no auto-summary
 no synchronization
exit-address-family

This command configures NEMO Authentication with EXGW. Use the appropriate EXGW IP address based on the geographic location. Note that SPI and KEY must match to what is set on the EXGW under the NEMO service. Note that the algorithm must be set to "hmac-md5".
ip mobile secure home-agent 66.174.X.Y spi decimal 256 key ascii VzWNeMo algorithm hmac-md5

This section configures the NEMO Mobile Router parameters and defines what router interfaces and their subnets to be included into the NEMO registration with E-HA.
ip mobile router
 address 1.2.3.4 255.255.255.0
collocated single-tunnel
home-agent 66.174.X.Y
mobile-network Loopback255
mobile-network GigabitEthernet0/0
register extend expire 10 retry 3 interval 5
reverse-tunnel
tunnel mode gre

!### This ACL specifies that during backup only IP traffic from the NEMO-routed sub-nets to IP address 11.11.11.11 is allowed. Note that this ACL is applied as OUTBOUND. This means that it will be in effect for traffic going through the router. The traffic that is originated from the router itself (such as an ICMP PING) will be allowed. ###

ip access-list extended BACKUP-TRAFFIC
 permit ip any host X.11.11.11
 deny ip any any

!### This route-map clears the DF-bit in IP packets that come into the router from the FE0/0 interface. ###
route-map clear-df permit 10
 set ip df 0

!### This section defines the backup activation and deactivation triggers and timers. ###

!### The backup will be triggered if the default 0.0.0.0 route is removed from the routing table. ###

!### The router will wait for 60 sec. before activating the backup after the initial boot. ###

!### The router will wait 3 sec. after the default route has been lost before activating the backup. ###

!### The router will disconnect the backup after 10 sec. following the expiration of the “dialer idle-timeout” value of 120 sec. ###

!### The dialer will track IP packets. ###

dialer watch-list 1 ip 0.0.0.0 0.0.0.0
 dialer watch-list 1 delay route-check initial 60
 dialer watch-list 1 delay connect 3
 dialer watch-list 1 delay disconnect 10
 dialer-list 1 protocol ip permit
 line 0/0/0
 script dialer LTE
 modem InOut
 no exec
 transport input telnet

command allowing for “LTE test cellular” enable mode commands

```
service internal
```

![### IOS 15.5(2)T and later is recommended ###]

```
boot system flash:c800-universalk9-mz.SPA.155-2.T.bin
```

```
ip cef
```

![### CHAT Script to make a data call, name is case-sensitive ###]

```
chat-script LTE "" AT!CALL1" TIMEOUT 20 "OK"
```

![### This Loopback and IP are required to setup NEMO. This address is not routable and is used as a placeholder "dummy" address. It may be the same on all routers. Any interface number and any IP can be used. Please use 1.2.3.4 for consistency if possible. ###]

```
interface Loopback1234
description ### NEMO Router Home Address – Dummy non-Routable IP ###
ip address 1.2.3.4 255.255.255.255
```

![### This subnet will be routed by NEMO ###]

```
interface Loopback255
  ip address 10.0.255.1 255.255.255.255
```

![### This subnet is routed by NEMO. The maximum TCP MSS is set to 1390 bytes. The route-map clears DF bits in the IP headers. ###]

```
interface VLAN1
  ip address 10.20.59.129 255.255.255.128
  ip tcp adjust-mss 1390
  ip policy route-map clear-df
```

![### Interface Cellular – the LTE and NEMO interface. Receives Pool/WAN IP (dynamic or static) from EXGW. The backup is activated using the Dialer Watch group. See the Dialer Watch section for the backup timers. By default the “dialer idle-timeout” is set to 120 sec. The value of this timer should not exceed 9 min. This timer and the “dialer watch-group 1 delay disconnect” timer are used to set the time period to disconnect LTE after the primary circuit becomes operational. ###]

```
interface Cellular0
  ip address negotiated
  no ip unreachables
  ip mobile router-service roam
  ip mobile router-service collocated ccoa-only
  encapsulation slip
  load-interval 30
  dialer in-band
  dialer idle-timeout 0
  dialer enable-timeout 1
  dialer string LTE
  dialer watch-group 1
```
async mode interactive
pulse-time 0

This is the Primary access circuit. Interface Cellular0 is used to backup this circuit in the event of a physical failure on this circuit.

interface GigabitEthernet0
 ip address 128.43.1.170 255.255.255.252

This stanza enables NEMO Routing. Admin distance can be adjusted
router mobile

This is the BGP routing process for the primary circuit. BGP administrative distance is set to 2 so that routing can revert to BGP from Mobile routes [Admin. Distance = 3] when Primary Circuit recovers.
router bgp 65435
 bgp log-neighbor-changes
 neighbor 128.43.1.169 remote-as 19262
 address-family ipv4
 redistribute connected
 neighbor 128.43.1.169 activate
distance bgp 2 2 2
 no auto-summary
 no synchronization
 exit-address-family

This command configures NEMO Authentication with EXGW. Use the appropriate EXGW IP address based on the geographic location. Note that SPI and KEY must match to what is set on the EXGW under the NEMO service. Note that the algorithm must be set to "hmac-md5".
ip mobile secure home-agent 66.174.X.Y spi decimal 256 key ascii VzWNeMo
 algorithm hmac-md5

This section configures NEMO Mobile Router parameters and defines what router interfaces/subnets to include in the NEMO registration with EXGW.
ip mobile router
 address 1.2.3.4 255.255.255.0
 collocated single-tunnel
 home-agent 66.174.X.Y
 mobile-network Loopback255
 mobile-network VLAN1
 register extend expire 10 retry 3 interval 5
 reverse-tunnel
tunnel mode gre

This ACL specifies that during backup only IP traffic from the NEMO-routed sub-nets to IP address 11.11.11.11 is allowed. Note that this ACL is applied as OUTBOUND. This means that it will be in effect for traffic going through the router. The traffic that is originated from the router itself (such as an ICMP PING) will be allowed.
ip access-list extended BACKUP-TRAFFIC
permit ip any host X.11.11.11
deny ip any any
!
This route-map clears the DF-bit in IP packets that come into the router from the FE0/0 interface.
route-map clear-df permit 10
 set ip df 0
!

This section defines wireless call activation triggers and timers.
!
The backup will be triggered if the default 0.0.0.0 route is removed from the routing table.
dialer watch-list 1 ip 0.0.0.0 0.0.0.0
The router will wait for 60 sec. before activating the backup after the initial boot.
dialer watch-list 1 delay route-check initial 60
The router will wait 3 sec. after the default route has been lost before activating the backup.
dialer watch-list 1 delay connect 3
The router will disconnect the backup after 10 sec. following the expiration of the “dialer idle-timeout” value of 120 sec.
dialer watch-list 1 delay disconnect 10
The dialer will track IP packets.
dialer-list 1 protocol ip permit
line 3
 script dialer LTE
 modem InOut
 no exec
 transport input telnet
NEMO Router Configuration for ISR 4K NIM-4G-LTE-VZ

Chat script and cellular line definitions not needed w/ISR4K
command allowing for "LTE test cellular" enable mode commands

service internal

hostname C4321-4G

IOS XE 3.16 or later
boot-start-marker
boot system bootflash:isr4300-universalk9.03.16.00.S.155-3.S-ext.SPA.bin
boot-end-marker

This Loopback and IP are required to setup NEMO. This address is not routable and is used as a placeholder "dummy" address. It may be the same on all routers. Any interface number and any IP can be used. Please use 1.2.3.4 for consistency if possible.

interface Loopback1234
 description ### NEMO Router Home Address – Dummy non-Routable IP ###
 ip address 1.2.3.4 255.255.255.255

This Subnet will be routed by NEMO

interface Loopback255
 ip address 10.0.255.1 255.255.255.255

This subnet is routed by NEMO. The maximum TCP MSS is set to 1390 bytes. The route-map clears DF bits in the IP headers.

interface GigabitEthernet0/0/0
 ip address 10.20.59.129 255.255.255.128
 ip tcp adjust-mss 1390
 ip policy route-map clear-df

This is the Primary access circuit. Cellular Interface is used to backup this circuit in the event of a physical failure on this circuit.

interface GigabitEthernet0/0/1
 ip address 128.43.1.170 255.255.255.252

Interface Cellular – the LTE and NEMO interface. Receives Pool/WAN IP (dynamic or static) from EXGW. The backup is activated using the Dialer Watch group. See the Dialer Watch section for the backup timers. By default the “dialer idle-timeout” is set to 120 sec. The value of this timer should not exceed 9 min. This timer and the “dialer watch-group 1 delay disconnect” timer are used to set the time period to disconnect LTE after the primary circuit becomes operational.

interface Cellular0/1/0
 ip address negotiated
 ip mobile router-service roam
 ip mobile router-service collocated ccoa-only
 dialer in-band
 dialer idle-timeout 0
dialer enable-timeout 1
dialer watch-group 1
pulse-time 0
!
interface GigabitEthernet0
 vrf forwarding Mgmt-intf
 ip address 10.0.0.2 255.255.255.254
 negotiation auto
!
This stanza enables NEMO Routing. Admin distance can be adjusted
router mobile
!
This is the BGP routing process for the primary circuit. BGP administrative distance is set to 2 so that routing can revert to BGP from Mobile routes [Admin. Distance = 3] when Primary Circuit recovers.
!
router bgp 65435
 bgp log-neighbor-changes
 neighbor 128.43.1.169 remote-as 19262
 address-family ipv4
 redistribute connected
 neighbor 128.43.1.169 activate
distance bgp 2 2 2
 no auto-summary
 no synchronization
exit-address-family
!
This command configures NEMO Authentication with EXGW. Use the appropriate EXGW IP address based on the geographic location. Note that SPI and KEY must match to what is set on the EXGW under the NEMO service. Note that the algorithm must be set to "hmac-md5".
!
ip mobile secure home-agent 66.174.X.Y spi decimal 256 key ascii VzWNeMo
 algorithm hmac-md5
!
This section configures NEMO Mobile Router parameters and defines what router interfaces/subnets to include in the NEMO registration with EXGW.
!
ip mobile router
 address 1.2.3.4 255.255.255.0
 collocated single-tunnel
 home-agent 66.174.X.Y
 mobile-network Loopback255
 mobile-network GigabitEthernet0/0/0
 register extend expire 10 retry 3 interval 5
 reverse-tunnel
tunnel mode gre
!
This ACL specifies that during backup only IP traffic from the NEMO-routed sub-nets to IP address 11.11.11.11 is allowed. Note that this ACL is applied as OUTBOUND. This means that it will be in effect for traffic going through the router. The traffic that is originated from the router itself (such as an ICMP PING) will be allowed.
!
ip access-list extended BACKUP-TRAFFIC
permit ip any host X.11.11.11
deny ip any any
!

This route-map clears the DF-bit in IP packets that come into the router from the FE0/0 interface.

route-map clear-df permit 10
 set ip df 0
!

This section defines wireless call activation triggers and timers.

The backup will be triggered if the default 0.0.0.0 route is removed from the routing table.

dialer watch-list 1 ip 0.0.0.0 0.0.0.0

The router will wait for 60 sec. before activating the backup after the initial boot.

dialer watch-list 1 delay route-check initial 60

The router will wait 3 sec. after the default route has been lost before activating the backup.

dialer watch-list 1 delay connect 3

The router will disconnect the backup after 10 sec. following the expiration of the “dialer idle-timeout” value of 120 sec.

dialer watch-list 1 delay disconnect 10

The dialer will track IP packets.

dialer-list 1 protocol ip permit

!
Operation and Show Commands

Primary Path Is Operational - Normal State

c1941-NEM0#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

Gateway of last resort is 128.43.1.169 to network 0.0.0.0

128.43.0.0/30 is subnetted, 1 subnets
C 128.43.1.168 is directly connected, Serial0/1/0:0
10.0.0.0/8 is variably subnetted, 10 subnets, 3 masks
C 10.20.59.128/25 is directly connected, GigabitEthernet0/0
C 10.0.255.0/24 is directly connected, Loopback255
B* 0.0.0.0/0 [2/0] via 128.43.1.169, 01:07:30

c1941-NEM0#show ip bgp summary
BGP router identifier 10.0.255.1, local AS number 65435

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
128.43.1.169 4 19262 150 139 25 0 0 01:07:49 1

c1941-NEM0#show dialer

Ce0/0/0 - dialer type = IN-BAND ASYNC NO-PARITY
Idle timer (120 secs), Fast idle timer (20 secs)
Wait for carrier (30 secs), Re-enable (6 secs)
Dialer state is idle

Dial String Successes Failures Last DNIS Last status
#777 0 0 never - Default

c1941-NEM0#ping 11.11.11 source 10.20.59.129

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 11.11.11, timeout is 2 seconds:
Packet sent with a source address of 10.20.59.129
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms
Primary Path Routing Is Lost

c1941-NEMO#config t
Enter configuration commands, one per line. End with CNTL/Z.
c1941-NEMO(config)#router b 65435

c1941-NEMO(config-router)#neighbor 128.43.1.169 shutdown

c1941-NEMO(config-router)#

*May 20 16:59:04.859: %BGP-5-ADJCHANGE: neighbor 128.43.1.169 Down Admin. shutdown
*May 20 16:59:04.859: %BGP_SESSION-5-ADJCHANGE: neighbor 128.43.1.169 IPv4 Unicast topology base removed from session Admin. shutdown

c1941-NEMO#

*May 20 16:59:13.139: %LINK-3-UPDOWN: Interface Cellular0/0/0, changed state to up

c1941-NEMO#

*May 20 16:59:14.327: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up

c1941-NEMO#

c1941-NEMO#sho ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

Gateway of last resort is 0.0.0.0 to network 0.0.0.0

M* 0.0.0.0/0 is directly connected, Tunnel0
 10.0.0.0/8 is variably subnetted, 15 subnets, 3 masks
C 10.0.255.0/24 is directly connected, Loopback255
L 10.0.255.1/32 is directly connected, Loopback255
C 10.20.59.128/25 is directly connected, GigabitEthernet0/0
L 10.20.59.129/32 is directly connected, GigabitEthernet0/0
X 0.0.0.0/32 is subnetted, 1 subnets
C 243.0.1.0 is directly connected, Cellular0/0/0
X 66.0.0.0/32 is subnetted, 2 subnets
C 66.92.XXX is directly connected, Cellular0/0/0
M 66.174.XXX [3/1] via 0.0.0.0, 00:00:30, Cellular0/0/0
128.43.0.0/16 is variably subnetted, 2 subnets, 2 masks
C 128.43.1.168/30 is directly connected, Serial1/1/0:0
L 128.43.1.170/32 is directly connected, Serial1/1/0:0

c1941-NEMO#show ip mobile router

Mobile Router
 Enabled 05/20/10 15:15:10
 Last redundancy state transition NEVER

Configuration:
 Home Address 1.2.3.4 Mask 255.255.255.0
Home Agent 66.174

Priority 100 (best) (current)

Registration lifetime 65534 sec
Retransmit Init 1000, Max 5000 msec, Limit 3
Extend Expire 10, Retry 3, Interval 5
Reverse tunnel required
Request GRE tunnel

Mobile Networks: Loopback255 (10.0.255.0/255.255.255.0)
GigabitEthernet0/0 (10.20.59.128/255.255.255.128)

Monitor:

Mobile Router

Status: Registered
Using collocated care-of address: 243.0.1
On interface Cellular0/0/0
Tunnel0 mode GRE/IP

c1941-NEMO#**show ip mobile tunnel**

Mobile Tunnels:
Total mobile ip tunnels 1
Tunnel0:

src 243.0.1, dest 66.174.10, key 0
encap GRE/IP, mode reverse-allowed, tunnel-users 1
Input ACL users 0, Output ACL users 0

IP MTU 1476 bytes
Path MTU Discovery, mtu: 0, ager: 10 mins, expires: never
outbound interface Cellular0/0/0
MR created, CEF switching enabled, ICMP unreachable enabled
5 minute input rate 0 bits/sec, 1 packets/sec
5 minute output rate 1000 bits/sec, 1 packets/sec
35 packets input, 3100 bytes, 0 drops
54 packets output, 4429 bytes

Template configuration:

ip access-group BACKUP-TRAFFIC out

c1941-NEMO#**show dialer**

Ce0/0/0 - dialer type = IN-BAND ASYNC NO-PARITY
Idle timer (120 secs), Fast idle timer (20 secs)
Wait for carrier (30 secs), Re-enable (6 secs)
Dialer state is data link layer up
Dial reason: Dialing on watched route loss
Time until disconnect 119 secs
Current call connected 00:01:26
Connected to #777

<table>
<thead>
<tr>
<th>Dial String</th>
<th>Successes</th>
<th>Failures</th>
<th>Last DNIS</th>
<th>Last status</th>
</tr>
</thead>
<tbody>
<tr>
<td>#777</td>
<td>19</td>
<td>0</td>
<td>00:01:26</td>
<td>successful</td>
</tr>
</tbody>
</table>

```
c1941-NEMO#ping 11.11.11 source 10.20.59.129

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 11.11.11, timeout is 2 seconds:
Packet sent with a source address of 10.20.59.129
!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 60/68/72 ms
c1941-NEMO#
```

Primary Path Recovers

```
c1941-NEMO#conf t
Enter configuration commands, one per line. End with CNTL/Z.
c1941-NEMO(config)#router b 65435
c1941-NEMO(config-router)#no neighbor 128.43.1.169 shutdown
c1941-NEMO(config-router)#
*May 20 17:11:55.575: %BGP-5-ADJCHANGE: neighbor 128.43.1.169 Up
```

```
c1941-NEMO#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

Gateway of last resort is 128.43.1.169 to network 0.0.0.0

B* 0.0.0.0/0 [2/0] via 128.43.1.169, 00:00:33
    10.0.0.0/8 is variably subnetted, 15 subnets, 3 masks
    10.0.0.0/8 is variably subnetted, 15 subnets, 3 masks
C  10.0.255.0/24 is directly connected, Loopback255
L  10.0.255.1/32 is directly connected, Loopback255
C  10.20.59.128/25 is directly connected, GigabitEthernet0/0
L  10.20.59.129/32 is directly connected, GigabitEthernet0/0
    200.0.0.32 is subnetted, 1 subnets
C  243.0.1 is directly connected, Cellular0/0/0
    66.0.0.0/32 is subnetted, 2 subnets
C  66.92.0.0 is directly connected, Cellular0/0/0
M  66.174.0.0 [3/1] via 0.0.0.0, 00:13:14, Cellular0/0/0
    128.43.0.0/16 is variably subnetted, 2 subnets, 2 masks
```
C 128.43.1.168/30 is directly connected, Serial0/1/0:0
L 128.43.1.170/32 is directly connected, Serial0/1/0:0

c1941-NEMO# show dial

Ce0/0/0 - dialer type = IN-BAND A3SYNC NO-PARITY
Idle timer (120 secs), Fast idle timer (20 secs)
Wait for carrier (30 secs), Re-enable (6 secs)
Dialer state is data link layer up
Dial reason: Dialing on watched route loss
Time until disconnect 77 secs
Current call connected 00:13:29
Connected to #777

<table>
<thead>
<tr>
<th>Dial String</th>
<th>Successes</th>
<th>Failures</th>
<th>Last DNIS</th>
<th>Last status</th>
</tr>
</thead>
<tbody>
<tr>
<td>#777</td>
<td>19</td>
<td>0</td>
<td>00:13:29</td>
<td>successful</td>
</tr>
</tbody>
</table>

c1941-NEMO# ping 11.11.11 source 10.20.59.129

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 11.11.11, timeout is 2 seconds:
Packet sent with a source address of 10.20.59.129

!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

c1941-NEMO#

*May 20 17:14:07.135: %LINK-5-CHANGED: Interface Cellular0/0/0, changed state to reset

c1941-NEMO#

*May 20 17:14:12.163: %LINK-3-UPDOWN: Interface Cellular0/0/0, changed state to down

c1941-NEMO#

c1941-NEMO# show ip mobile router

Mobile Router
 Enabled 05/20/10 15:15:10
 Last redundancy state transition NEVER

Configuration:
Home Address 1.2.3.4 Mask 255.255.255.0
Home Agent 66.174.12.23 Priority 100 (best) (current)
Registration lifetime 65534 sec
Retransmit Init 1000, Max 5000 msec, Limit 3
Extend Expire 10, Retry 3, Interval 5
Reverse tunnel required
Request GRE tunnel
Mobile Networks: Loopback255 (10.0.255.0/255.255.255.0)
GigabitEthernet0/0 (10.20.59.128/255.255.255.128)

Monitor:

Mobile Router

Status -Isolated-

No active agent

No Tunnel