Cisco Meeting Server

Cisco Meeting Server Release 3.0
Single Split Server Deployment Guide

September 02, 2020
Contents

What’s new .. 8

1 Introduction ... 9
 1.1 Supported Apps for joining Meeting Server hosted conferences 10
 1.2 Using the Cisco Expressway-E as the edge device in Meeting Server deployments 10
 1.3 Using the Cisco Expressway-C with the Meeting Server in the core network 12
 1.3.1 Supported deployments ... 13
 1.3.2 Using the Cisco Expressway H.323 gateway component 14
 1.4 How to use this guide .. 14
 1.4.1 Commands .. 16
 1.5 Configuring the Meeting Server ... 16
 1.5.1 MMP and API Interfaces ... 17
 1.5.2 New tools to ease configuring Meeting Server 17
 1.6 Obtaining information on hosted conferences .. 19
 1.6.1 Call Detail Records (CDRs) ... 19
 1.6.2 Events .. 20
 1.7 Cisco licensing ... 20
 1.7.1 Smart Licensing .. 20
 1.7.2 Smart Account and Virtual Account information 22
 1.7.3 How Smart licenses work in Meeting Server – overview 22
 1.7.4 Expired license feature enforcement actions ... 24
 1.7.5 How to retrieve Licensing information (Smart Licensing) 25
 1.7.6 Cisco Meeting Server licensing ... 25
 1.7.7 Smart Licensing registration process ... 27
 1.7.8 Obtaining Cisco user licenses using the traditional licensing method 28
 1.7.9 Assigning Personal Multiparty licenses to users 29
 1.7.10 How Cisco Multiparty licenses are assigned 29
 1.7.11 Determining Cisco Multiparty licensing usage 29
 1.7.12 Calculating SMP Plus license usage .. 30
 1.7.13 Retrieving license usage snapshots from a Meeting Server 31
 1.7.14 License reporting .. 31

2 General concepts for deployment ... 32
 2.1 Web Admin ... 32
 2.2 Call Bridge .. 33
 2.2.1 Call Bridge license .. 33
2.3 Database ... 33
2.4 Web Bridge 3 ... 33
2.5 Hosting branding files locally ... 34
2.6 On screen messaging ... 35
2.7 TURN server .. 35
2.8 SIP trunks and routing ... 36
2.9 Support for Lync and Skype for Business ... 36
 2.9.1 Support for Lync and Skype for Business clients .. 36
 2.9.2 Support for Dual Homed Conferencing ... 37
2.10 Recording meetings ... 37
 2.10.1 License keys for recording .. 38
2.11 Streaming meetings ... 38
 2.11.1 License keys for streaming .. 38
2.12 Diagnostics and troubleshooting ... 38
 2.12.1 SIP Tracing ... 38
 2.12.2 Log bundle ... 39
 2.12.3 Ability to generate a keyframe for a specific call leg ... 39
 2.12.4 Reporting registered media modules in syslog .. 40

3 Prerequisites .. 41
 3.1 Prerequisites .. 41
 3.1.1 DNS configuration .. 41
 3.1.2 Security certificates .. 41
 3.1.3 Firewall configuration .. 41
 3.1.4 Syslog server ... 41
 3.1.5 Network Time Protocol server ... 42
 3.1.6 Call Detail Record support .. 43
 3.1.7 Host name ... 43
 3.1.8 Other requirements .. 44
 3.1.9 Specific prerequisites for a virtualized deployment .. 44

4 Configuring the MMP .. 45
 4.1 Creating and managing MMP and Web Admin interface user accounts 45
 4.2 Upgrading software ... 45
 4.3 Configuring the Call Bridge listening interface ... 46
 4.4 Configuring the Web Admin interface for HTTPS access 47
 4.5 Configuring Web Bridge 3 ... 48
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>4.5.1</td>
<td>Useful information to help configure Web Bridge 3</td>
</tr>
<tr>
<td></td>
<td>4.5.2</td>
<td>Configuring Meeting Server to use Web Bridge 3</td>
</tr>
<tr>
<td></td>
<td>4.5.3</td>
<td>Configuring Call bridge to use C2W connections</td>
</tr>
<tr>
<td>4.6</td>
<td></td>
<td>Configuring the TURN server</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>LDAP configuration</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>Why use LDAP?</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>Meeting Server settings</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>Example</td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td>Enforcing passcode protection for non-member access to all user spaces</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Dial plan configuration — overview</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>Web Admin Interface configuration pages that handle calls</td>
</tr>
<tr>
<td></td>
<td>6.2.1</td>
<td>Outbound calls page</td>
</tr>
<tr>
<td></td>
<td>6.2.2</td>
<td>Incoming call page: call matching</td>
</tr>
<tr>
<td></td>
<td>6.2.3</td>
<td>Call forwarding</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>Dial Transforms</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Dial plan configuration — SIP endpoints</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>SIP video endpoints dialing a meeting hosted on the Meeting Server</td>
</tr>
<tr>
<td></td>
<td>7.2.1</td>
<td>SIP call control configuration</td>
</tr>
<tr>
<td></td>
<td>7.2.2</td>
<td>Meeting Server configuration</td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td>Media encryption for SIP calls</td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td>Enabling TIP support</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>IVR configuration</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>Next steps</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Dial plan configuration — integrating Lync/Skype for Business</td>
</tr>
<tr>
<td></td>
<td>8.1</td>
<td>Lync clients dialing into a call on the Meeting Server</td>
</tr>
<tr>
<td></td>
<td>8.1.1</td>
<td>Lync Front End (FE) server configuration</td>
</tr>
<tr>
<td></td>
<td>8.1.2</td>
<td>Adding a dial plan rule on the Meeting Server</td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>Integrating SIP endpoints and Lync clients</td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td>Adding calls between Lync clients and SIP video endpoints</td>
</tr>
<tr>
<td></td>
<td>8.3.1</td>
<td>Lync Front End server configuration</td>
</tr>
<tr>
<td></td>
<td>8.3.2</td>
<td>VCS configuration</td>
</tr>
<tr>
<td></td>
<td>8.3.3</td>
<td>Meeting Server configuration</td>
</tr>
</tbody>
</table>
8.4 Integrating web app with SIP and Lync clients ... 82
8.5 Integrating Lync using Lync Edge service .. 83
 8.5.1 Lync Edge call flow ... 83
 8.5.2 Configuration on Meeting Server to use Lync Edge 84
8.6 Direct Lync federation ... 86
8.7 Calling into scheduled Lync meetings directly and via IVR 87
8.8 Choosing Call Bridge mode to connect participants to Lync conferences 89

9 Office 365 Dual Homed Experience with OBTP Scheduling 90
 9.1 Overview ... 90
 9.2 Configuration ... 90
 9.3 In-conference experience ... 91

11 Web Admin interface settings for the TURN server .. 93
 11.1 TURN server connections .. 93
 11.2 TURN server settings ... 96

12 Settings for Web Bridge 3 .. 97
 12.1 Web Bridge 3 connections ... 97
 12.1.1 Web Bridge 3 call flow .. 98
 12.2 Web Bridge 3 settings ... 99
 12.2.1 How to create and apply a web bridge profile example 100

13 Recording and Streaming meetings ... 102
 13.1 Feature benefits of the new internal SIP recorder and streamer 102
 13.2 Points to note when implementing the new internal SIP recorder and streamer: 102
 13.3 Recording overview ... 103
 13.3.1 Third-party external SIP recorder support .. 103
 13.3.2 Meeting Server internal SIP recorder component support 104
 13.4 Example of deploying the new internal SIP recorder component on a VM server 106
 13.5 Configuring an external third-party SIP recorder .. 109
 13.6 Finding out recording status ... 109
 13.7 Recording indicator for dual homed conferences ... 109
 13.8 Recording with Vbrick ... 110
 13.8.1 Prerequisites for the Meeting Server ... 111
 13.8.2 Configuring the Meeting Server to work with Vbrick 112
 13.9 Streaming meetings ... 114
 13.10 Deploying the new SIP streamer component on a VM server 115
13.10.1 Known Limitations ... 118

14 Support for ActiveControl ... 119
 14.1 ActiveControl on the Meeting Server .. 119
 14.2 Limitations ... 119
 14.3 Overview on ActiveControl and the iX protocol 119
 14.4 Disabling UDT within SIP calls .. 120
 14.5 Enabling iX support in Cisco Unified Communications Manager ... 120
 14.6 Filtering iX in Cisco VCS ... 121
 14.7 iX troubleshooting ... 122

15 Additional security considerations & QoS .. 123
 15.1 Common Access Card (CAC) integration 123
 15.2 Online Certificate Status Protocol (OCSP) 123
 15.3 FIPS .. 123
 15.4 TLS certificate verification ... 124
 15.5 User controls .. 124
 15.6 Firewall rules .. 124
 15.7 DSCP .. 125

16 Diagnostic tools to help Cisco Support troubleshoot issues 126
 16.1 Log bundle .. 126
 16.2 Ability to generate a keyframe for a specific call leg 126
 16.3 Reporting registered media modules in syslog 127

Appendix A DNS records needed for the deployment 128

Appendix B Ports required for the deployment 130
 B.1 Configuring the Meeting Server .. 130
 B.2 Connecting services .. 131
 B.3 Using Meeting Server components 131

Appendix C Call capacities by Cisco Meeting Server platform 135
 C.1 Cisco Meeting Server web app call capacities 137
 C.1.1 Cisco Meeting Server web app call capacities – external calling 137
 C.1.2 Cisco Meeting Server web app capacities – mixed (internal + external) calling 137

Appendix D Activation key for unencrypted SIP media 139
 D.1 Unencrypted SIP media mode .. 139
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2</td>
<td>Determining the Call Bridge media mode</td>
<td>140</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Dual Homed Conferencing</td>
<td>141</td>
</tr>
<tr>
<td>E.1</td>
<td>Overview</td>
<td>141</td>
</tr>
<tr>
<td>E.2</td>
<td>Consistent meeting experience in dual homed conferences</td>
<td>141</td>
</tr>
<tr>
<td>E.2.1</td>
<td>Summary of user experiences</td>
<td>142</td>
</tr>
<tr>
<td>E.3</td>
<td>Mute/unmute meeting controls in dual homed conferences</td>
<td>143</td>
</tr>
<tr>
<td>E.4</td>
<td>Configuring the Dual Homed Lync functionality</td>
<td>144</td>
</tr>
<tr>
<td>E.4.1</td>
<td>Troubleshooting</td>
<td>144</td>
</tr>
<tr>
<td>Appendix F</td>
<td>More information on LDAP field mappings</td>
<td>146</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Using TURN servers behind NAT</td>
<td>148</td>
</tr>
<tr>
<td>G.1</td>
<td>Identifying candidates</td>
<td>148</td>
</tr>
<tr>
<td>G.1.1</td>
<td>Host candidate</td>
<td>148</td>
</tr>
<tr>
<td>G.1.2</td>
<td>Server Reflexive candidate</td>
<td>148</td>
</tr>
<tr>
<td>G.1.3</td>
<td>Relay candidate</td>
<td>149</td>
</tr>
<tr>
<td>G.2</td>
<td>Checking connectivity</td>
<td>151</td>
</tr>
<tr>
<td>G.3</td>
<td>NAT in front of the TURN server</td>
<td>152</td>
</tr>
<tr>
<td>G.4</td>
<td>TURN server, NAT and the web app</td>
<td>154</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Using a standby Meeting Server</td>
<td>158</td>
</tr>
<tr>
<td>H.1</td>
<td>Backing up the currently used configuration</td>
<td>158</td>
</tr>
<tr>
<td>H.2</td>
<td>Transferring a backup to the standby server</td>
<td>158</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Web Admin Interface — Configuration menu options</td>
<td>161</td>
</tr>
<tr>
<td>I.1</td>
<td>General</td>
<td>161</td>
</tr>
<tr>
<td>I.2</td>
<td>Active Directory</td>
<td>162</td>
</tr>
<tr>
<td>I.3</td>
<td>Call settings</td>
<td>162</td>
</tr>
<tr>
<td>I.4</td>
<td>Outbound calls and Incoming calls</td>
<td>163</td>
</tr>
<tr>
<td>I.5</td>
<td>CDR settings</td>
<td>163</td>
</tr>
<tr>
<td>I.6</td>
<td>Spaces</td>
<td>164</td>
</tr>
<tr>
<td>I.7</td>
<td>API</td>
<td>164</td>
</tr>
<tr>
<td>Cisco Legal Information</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Cisco Trademark</td>
<td>167</td>
<td></td>
</tr>
</tbody>
</table>
What's new

<table>
<thead>
<tr>
<th>Version</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 02, 2020</td>
<td>Minor edit to clarify VM minimum requirement to 4 vCPU cores for Recorder/Streamer.</td>
</tr>
</tbody>
</table>
1 Introduction

The Cisco Meeting Server software can be hosted on specific servers based on Cisco Unified Computing Server (UCS) technology or on a specification-based VM server. Cisco Meeting Server is referred to as the Meeting Server throughout this document.

Note: Cisco Meeting Server software version 3.0 does not support X-Series servers.

This guide covers the Meeting Server deployed as a split server deployment, the deployment has no scalability or resilience. The server comprises a number of components, see Figure 1.

Note: All of the Meeting Servers in the deployment must run the same version of software.

Note: Meeting Server 3.0 introduces a mandatory requirement to have Cisco Meeting Management 3.0 (or later). Meeting Management handles the product registration and interaction with your Smart Account (if set up) for Smart Licensing support. For more details on Smart Licensing, see Section 1.7.

Figure 1 and Figure 2 show the components available in a split server deployment. Figure 1 shows the TURN services provided by Cisco Expressway, and Figure 2 shows the TURN services provided by the Meeting Server using the TURN server component in the Meeting Server. Note that Web Bridge 3 moves to the Edge server if the TURN server component in the Meeting Server is enabled. The Recorder, Uploader and Streamer components should be enabled on a separate core server to that hosting the meetings.

Figure 1: Split server deployment with Cisco Expressway providing TURN services

![Diagram of split server deployment with Cisco Expressway providing TURN services]
Not all of these components need to be configured, you only need to configure the components that are appropriate to your deployment. This is discussed in Chapter 2.

Note: Both the core and edge server must run the same version of software.

1.1 Supported Apps for joining Meeting Server hosted conferences

The Cisco Meeting Server web app and Cisco Jabber are the supported apps to join Meeting Server hosted conferences. This is in addition to SIP endpoints, and Lync/Skype for Business clients in dual homed conferences.

1.2 Using the Cisco Expressway-E as the edge device in Meeting Server deployments

Over the previous few releases of Cisco Expressway software, edge features have been developed to enable the Cisco Expressway-E to be used as the edge device in Meeting Server deployments. Use the TURN server capabilities in Cisco Expressway-E to enable:

- participants using the browser based Meeting Server web app to join conferences hosted on the Meeting Server,
- remote Lync and Skype for Business clients to join conferences hosted on the Meeting Server.

In addition, the Cisco Expressway-E can be used as a SIP Registrar to register SIP endpoints or to proxy registrations to the internal call control platform (Cisco Unified Communications Manager or Cisco Expressway-C).
CAUTION: Important notes for Expressway users
If you are deploying Web Bridge 3 and web app you must use Expressway version X12.6 or later, earlier Expressway versions are not supported by Web Bridge 3.

Table 1 below indicates the configuration documentation that covers setting up Cisco Expressway-E to perform these functions. Table 2 below shows the introduction of the features by release.

Note: Cisco Expressway-E can not be used between on premises Microsoft infrastructure and the Meeting Server. In deployments with on-premises Microsoft infrastructure and the Meeting Server, the Meeting Server must use the Microsoft Edge server to traverse Microsoft calls into and out of the organization.

Note: If you are configuring dual homed conferencing between on-premises Meeting Server and on-premises Microsoft Skype for Business infrastructure, then the Meeting Server automatically uses the TURN services of the Skype for Business Edge.

Table 1: Documentation covering Cisco Expressway as the edge device for the Meeting Server

<table>
<thead>
<tr>
<th>Edge feature</th>
<th>Configuration covered in this guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect remote browser based Meeting Server web apps</td>
<td>Cisco Expressway Web Proxy for Cisco Meeting Server Deployment Guide</td>
</tr>
<tr>
<td>Connect remote Lync and Skype for Business clients</td>
<td>Cisco Meeting Server with Cisco Expressway Deployment Guide</td>
</tr>
<tr>
<td>SIP Registrar or to proxy registrations to the internal call control platform</td>
<td>Cisco Expressway-E and Expressway-C Basic Configuration (X12.6)</td>
</tr>
</tbody>
</table>

Table 2: Expressway edge support for the Meeting Server

<table>
<thead>
<tr>
<th>Cisco Expressway-E version</th>
<th>Edge feature</th>
<th>Meeting Server version</th>
</tr>
</thead>
<tbody>
<tr>
<td>X12.6</td>
<td>Supports Cisco Meeting Server web app. See Cisco Expressway Web Proxy for Cisco Meeting Server (X12.6)</td>
<td>2.9 and later</td>
</tr>
</tbody>
</table>
1.3 Using the Cisco Expressway-C with the Meeting Server in the core network

In addition to deploying Cisco Expressway-E at the edge of the network, Cisco Expressway-C can be deployed in the core network with the Meeting Server. If deployed between the Meeting Server and an on-premises Microsoft Skype for Business infrastructure, the Cisco Expressway-C can provide IM&P and video integration. In addition the Cisco Expressway-C can provide the following functionality:

- a SIP Registrar,
- an H.323 Gatekeeper,
- call control in Meeting Server deployments with Call Bridge groups configured to load balance conferences across Meeting Server nodes.

Table 3: Additional documentation covering Cisco Expressway-C and the Meeting Server

<table>
<thead>
<tr>
<th>Feature</th>
<th>Configuration covered in this guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call control device to load balance clustered Meeting Servers</td>
<td>Cisco Meeting Server 2.9, Load Balancing Calls Across Cisco Meeting Servers</td>
</tr>
<tr>
<td>SIP Registrar</td>
<td>Cisco Expressway-E and Expressway-C Basic Configuration (X12.6)</td>
</tr>
<tr>
<td>H.323 Gatekeeper</td>
<td>Cisco Expressway-E and Expressway-C Basic Configuration (X12.6)</td>
</tr>
</tbody>
</table>
1.3.1 Supported deployments

Figure 3 and Figure 4 illustrate recommended Meeting Server deployments. Both deployments show an Expressway pair (Expressway-C and Expressway-E) being used as the edge device for the Meeting Server. The Expressway-E is located in the DMZ, while the Expressway-C is located in the internal network between the Meeting Server and Cisco Unified Communications Manager.

The Cisco Meeting Server web app connects via the TURN server on the Expressway-E. Figure 4 illustrates Microsoft infrastructure added to the deployment to support dual homed conferencing.

Figure 3: Cisco Unified Communications Manager-centric deployment example
1.3.2 Using the Cisco Expressway H.323 gateway component

In line with Cisco’s goal of a single Edge solution across the Cisco Meeting Server and Cisco Expressway, Cisco has removed the H.323 Gateway component from version 3.0 of the Meeting Server software. Customers are encouraged to migrate to the more mature H.323 Gateway component in the Cisco Expressway.

Any H.323 endpoints registered to Expressway–E or Expressway–C will not consume Rich Media Session (RMS) licenses when calling into the Cisco Meeting Server from Expressway version X8.10 onwards.

1.4 How to use this guide

This deployment guide follows on from the appropriate Installation Guide for your server, and assumes that you have completed the installation instructions already. This guide should be read and used in conjunction with the appropriate Certificate Guidelines.

In addition to this deployment guide and the Certificate Guidelines, the reference material shown in the figure below can be found on the Cisco Meeting Server documentation page.

Note: Throughout this guide, the term coSpace has been renamed space.
Figure 5: Overview of guides covering the Meeting Server

Guides for Apps (web app, Lync)

Guides for Cisco Meeting Server

Planning your deployment
- Release Notes
- Planning and Preparation Deployment Guide
- Installation Guides

Deploying your Cisco Meeting Server
- Single Combined Server Deployment Guide
- Single Split Server Deployment Guide
- Scalability and Resilience Deployment Guide
- Certificate Guidelines- Scalable and Resilient Server Deployments
- Load Balancing Calls Across Cisco Meeting Servers
- Multi-tenancy Considerations
- Cisco Expressway Configuration Guides
- Deployments with Cisco Unified Communications Manager
- Deployments with Third Party Call Control

Configuration and Advanced Reference
- MMP Command Line Reference Guide
- API Reference Guide
- Call Detail Records (CDR) Guide
- Events Guide
- Screen Layout Quick Reference Guide
- MIB: SNMP, SNMP Health, Syslog

Customization
- Customization Guidelines

Guides for Management (Cisco Meeting Management, Cisco TelePresence Management Suite (TMS))
Note: The address ranges we use in Cisco user documentation are those defined in RFC 5737 which are explicitly reserved for documentation purposes. IP addresses in Meeting Server user documentation should be replaced with correct IP addresses routable in your network, unless otherwise stated.

1.4.1 Commands

In this document, commands are shown in black and must be entered as given—replacing any parameters in <> brackets with your appropriate values. Examples are shown in blue and must be adapted to your deployment.

1.5 Configuring the Meeting Server

There are two layers to the Cisco Meeting Server software: a Platform and an Application.

- The Platform is configured through the Mainboard Management Processor (MMP). The MMP is used for low level bootstrapping, and configuration via its command line interface. For example, the MMP is used to enable the Web Bridge, Database clustering and various other components.

- The Application runs on the MMP platform. Administration of the application level (call and media management) can be done via the Call Bridge’s Web Admin interface or through the Application Programming Interface (API) if you prefer. The API uses HTTPS as a transport mechanism and is designed to be scalable in order to manage the potentially very large numbers of active calls and spaces available in a deployment.

From version 2.9, the application level administration can all be done via the Call Bridge’s Web Admin Interface both for single and clustered Meeting Servers.

Note: Prior to version 2.9 software you need to configure multiple Call Bridges using the API and third party API tools, such as POSTMAN; only use the Web Admin interface for configuring a single Call Bridge.
1.5.1 MMP and API Interfaces

Table 4: Network interfaces configured for the MMP and API on the different Meeting Server platforms

<table>
<thead>
<tr>
<th>Platform</th>
<th>Access to MMP</th>
<th>Access to Web Admin interface and API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Meeting Server 2000</td>
<td>Serial over LAN (SoL) connection on blade 1. Note: Before accessing the MMP you need to configure the network settings for the Fabric Interconnect modules</td>
<td>Interface A created during the configuration of MMP. It is a virtual connection that is connected to the external network through uplinks configured on Port 1 of the Fabric Interconnect modules. Note: Cisco Meeting Server 2000 platform does not support more than one interface (i.e. configuring 'ipv4 b</td>
</tr>
<tr>
<td>Cisco Meeting Server 1000 and other virtualized deployments</td>
<td>Virtual interface A</td>
<td>One Ethernet interface (A) is created, but up to three more can be added (B, C and D). The Call Bridge Web Admin interface and the API can be configured to run on any one of the A-D Ethernet interfaces.</td>
</tr>
</tbody>
</table>

1.5.2 New tools to ease configuring Meeting Server

The following tools are available to help administrators configure and deploy Meeting Server:

- **Installation Assistant** (a new tool from version 2.8). Simplifies the creation of a simple Cisco Meeting Server installation for demonstrations, lab environments, or as the starting point for basic installations.

- **Provisioning Cisco Meeting App users and Cisco Meeting Server web app users through Cisco Meeting Management**, available from version 2.9.

- **API access through the Meeting Server web interface.** From version 2.9, the Meeting Server API can be accessed via the **Configuration** tab of the Meeting Server Web Admin interface. Some examples in this guide have been changed from using API methods POST and PUT, to using API access through the web interface.

Installation Assistant tool

Use the Installation Assistant to simplify the creation of a single Cisco Meeting Server installation for demonstrations, lab environments, or as the starting point for basic installations. The tool configures Meeting Server based on the best practice deployment described in the **Cisco Meeting Server X.X Single Server Simplified Deployment guide**. It is a standalone tool that uses a browser interface to collect information about your setup and then pushes that configuration to the server without you needing to use utilities to access the API, sFTP or the Meeting Server’s command line interface. The Installation Assistant must be run on a computer separate from Meeting Server. Refer to the **Installation and Configuration guide for Installation Assistant** for the software requirements for the client computer, details on installing and running the software, and the steps to configuring a Meeting Server.
Installation Assistant configures Meeting Server to be a SIP MCU capable of making and receiving calls and optionally enables the Cisco Meeting Server web app.

Installation Assistant is intended to be used on an empty, non-configured Meeting Server. It is not a management tool for Meeting Server, nor is it for re-configuring existing Meeting Server installations. The tool is built for configuring Meeting Server virtual machines only. It is not for use with the Cisco Meeting Server 2000 platform.

Using Cisco Meeting Management to provision Cisco Meeting Server web app users

Cisco Meeting Management connected to a Meeting Server or Meeting Server cluster, provides the facility to provision LDAP authenticated Cisco Meeting Server web app users, rather than needing to use the Meeting Server API. The feature also allows admins to create space templates that can be used by web app users to create their own space.

Refer to the [Cisco Meeting Management User Guide for Administrators](#) for information on connecting LDAP servers to Meeting Server clusters, how to add one or more user imports, how to create a space template, reviewing and committing the changes and finally running the LDAP sync.

API access on the web interface

To simplify using the API without the need for third-party applications, version 2.9 introduced a user interface for the API that can be accessed via the *Configuration* tab of the Meeting Server web interface, as shown in Figure 6.

Note: To access the API via the web interface you still need to do the initial Meeting Server configuration settings and authentication using the MMP as you would if you were using a third party application. See the MMP Command reference guide for details.
Figure 6: Accessing the API via the Meeting Server web interface

Note: If you wish to delete any configured API objects, select Allow delete on the right-hand side of the screen. By default deletion is disallowed and Require delete confirmation is checked to help prevent unintentional deletions.

1.6 Obtaining information on hosted conferences

There are two mechanisms for obtaining information on conferences hosted on the Meeting Server which remove the need to constantly poll the API: Call Detail Records and Events.

Note: You can configure Cisco Meeting Management as a CDR (Call Detail Record) receiver and events client on each Call Bridge to get information about active meetings via API requests, CDRs, and Meeting Server events. For more information, see the Meeting Management User Guide for Administrators.

1.6.1 Call Detail Records (CDRs)

The Meeting Server generates Call Detail Records (CDRs) internally for key call-related events, such as a new SIP connection arriving at the server, or a call being activated or deactivated. The server can be configured to send these records to a remote system to be collected and analyzed. There is no provision for records to be stored on a long-term basis on the Meeting Server, nor any way to browse CDRs on the Meeting Server itself.
The CDR system can be used in conjunction with the Meeting Server API, with the call ID and call leg IDs values being consistent between the two systems to allow cross referencing of events and diagnostics.

The Meeting Server supports up to four CDR receivers, enabling you to deploy different management tools or multiple instances of the same management tool, such as Cisco Meeting Management. For more information, see the Cisco Meeting Server Call Detail Records Guide.

1.6.2 Events

Meeting Server can notify an "events client" in real-time of changes that are occurring on the Meeting Server. The Meeting Server acts as a server for the events, and the events client could be for example, a web-based management application. Cisco Meeting Management acts as an events client.

Note: You can construct your own events client, which is similar to constructing an API client. The events client needs to support HTTP and WebSocket libraries, both are available in common scripting languages like Python. The events port on the Meeting Server is the same port as you configured for the Web Admin, typically TCP port 443 on interface A.

Rather than continually poll an API resource on the Meeting Server, an events client can subscribe to an event resource to receive updates. For example, after establishing a WebSocket connection between the events client and the Meeting Server, the events client can subscribe to the event resource `callRoster` and receive updates on the participant list of an active conference to find out when a new participant joins, or an existing participant changes layout etc.

For more information, see the Cisco Meeting Server Events Guide.

1.7 Cisco licensing

You will need licenses for the Cisco Meeting Server. From version 3.0 Meeting Server supports Smart Licensing as well as the traditional method of licensing for existing users. This section covers both methods and contains license information common to both methods. Where information is specific to either Smart or traditional licensing, this is highlighted.

1.7.1 Smart Licensing

Version 3.0 introduces support for Smart Licensing on Cisco Meeting Server using Cisco Meeting Management version 3.0 (or later). This transition to the software licensing model, i.e. moving from traditional Product Activation Key (PAK) licenses to Smart Licensing, improves the user experience of license purchasing, registration and software administration. It also aligns Meeting Server with other Cisco products' approach to software licensing and utilizes Cisco Smart Account – a central repository where you can view, store, and manage licenses across your entire organization.
All new license purchases still receive a PAK code – retain for reference – as all licenses will be available in the Smart Account that Meeting Management will sync to.

For further information and to create a Smart Account, go to: https://software.cisco.com and choose Smart Licensing.

Note: The term "overage" is used to describe a situation where license usage is higher than the entitlement.

The Meeting Server licensing changes and behaviors in 3.0 are:

- Cisco Meeting Management version 3.0 (or later) is mandatory in version 3.0 – Meeting Management reads the Meeting Server license file, and can handle the product registration and interaction with your Smart Account (if set up).
- You can now license multiple clusters with one set of Meeting Server licenses in your Smart Account and you no longer need to load the license file onto each individual Meeting Server instance as was the case prior to 3.0.
- Meeting Management with Smart Licensing tracks how many Call Bridges per cluster, thereby eliminating the need for the R-CMS-K9 activation license.
- For a new deployment with no existing licenses:
 - Newly purchased licenses may be Smart-enabled by default and require a Smart Account – once you have entered the license details into Meeting Management, it will validate the license details against those held in the Smart Account.
- For an existing deployment with a local license file on each Call Bridge:
 - You can upgrade to 3.0 without a Smart Account, and Meeting Management will read the existing license file(s) as per the traditional licensing method.
 - You can move to a Smart Account using the Cisco Smart Software Manager (CSSM) portal and choose the option to convert your existing licenses to Smart.
- SMP and PMP license usage is combined to decide if a day is counted as overage (if either license is over, the whole day is regarded as usage higher than the entitlement). For other feature licenses (for example, recording or custom layout), they are assessed separately and enabled with entitlement via Meeting Management (assuming the license exists in your Smart account).

Note: As Meeting Management is required for all 3.0 deployments, for larger customer deployments, Meeting Management can be deployed in new licensing-only mode without active meeting management.

For information on purchasing and assigning licenses using the traditional licensing method, see Section 1.7.8 and Section 1.7.9.
1.7.2 Smart Account and Virtual Account information

Smart Accounts can contain Virtual Accounts which allow you to organize your licenses by any designation of your choice, for example, by department. Here are some important points to note when using a Smart Virtual Account with Meeting Server and Meeting Management:

- Each Meeting Server cluster(s) to a single Meeting Management should be linked to a user-defined Smart Virtual Account.
- Each Virtual Account can only connect with a single Meeting Management server that is configured to handle Smart Licensing.
- Only configure a single Meeting Management to Smart – we recommend you do not configure a second redundant Meeting Management for Smart Licensing as double counting of license usage will occur.
- PMP, SMP and Recording/Streaming licenses can be shared across multiple clusters with a single Meeting Management instance and Smart Licensing in a single Virtual Account.
- ACU licensing is not available with the Meeting Management licensing dashboard – ACUs are not supported in 3.0 and later.

1.7.3 How Smart licenses work in Meeting Server – overview

Note: For full details on using Cisco Meeting Management to administer Smart Licensing, see the [Meeting Management 3.0 Administrator Guide](#).

Meeting Management is mandatory for licensing to work on Meeting Server 3.0 and later. Version 3.0 introduces a new trust and interaction between Meeting Server and Meeting Management to support the new licensing using Smart or for existing customers use of installed licensing files – it’s this trusted link that enables Meeting Management to license Meeting Server. A high level work flow for implementing Smart Licensing is as follows:

1. Register your Meeting Management to Smart Licensing Virtual Account.
2. When a Meeting Server first starts up it will have no license status values defined.

Note: You can use Trial Mode for a 90 day full featured period without licenses.

3. When Meeting Server first connects to a Meeting Management instance set up to administer Smart Licensing, it checks to see if the Meeting Server has previously had a license applied. If not, it will set the license expiry date to 90 days in the future.

The expiry date for a license is shown in Meeting Management and also returned in the clusterLicensing API, as shown in Section.
Note: The expiry date for any feature license will only ever be up to a maximum of 90 days in the future.

4. Meeting Management collates Meeting Server licensing usage for the cluster and reports to your Smart Account on a daily basis to check that it has the licenses required to ensure the Meeting Server is in compliance. The Smart Account responds to Meeting Management to indicate if the Meeting Server is compliant or not. Meeting Management then sets the expiry dates as appropriate as follows:

 a. If the Meeting Management identifies that a license exists and is below entitlement for a particular feature, the expiry date will be extended to 90 days in the future.

 Note: If Meeting Server doesn’t connect to Meeting Management and send usage data for a period of 90 days then the Meeting Server's license won’t get refreshed and will therefore expire. For information on the enforcement actions when a license expires, see Section 1.7.4.

If a license usage is higher than the entitlement, or a license is not found, then enforcement occurs as follows.

 b. If Meeting Management identifies that less than 15 out of the last 90 days are non-compliant, it will allow this and reset the Meeting Server expiry date to 90 days in the future from that point. The admin will get a visual warning to notify "Insufficient licenses".

 c. If Meeting Management identifies that more than 15 of the last 90 days are non-compliant, the first level of enforcement (Alarm 1) will occur, i.e. out of compliance notifications on the Meeting Management interface.

 d. If overage continues, Meeting Management does not reset the 90 day clock, it gives you a countdown in xx days in which to add new licenses otherwise Alarm levels 2 and 3 will be enabled for all participants joining a meeting as shown in Figure 7.

Figure 7 shows the enforcement flow from initial start up in trial mode on the left-hand side through to overage enforcement as shown on the right-hand side.
1.7.4 Expired license feature enforcement actions

Previously, Meeting Server would evaluate its license file on restart only. From 3.0 the current status of whether a feature is licensed or not can change dynamically, for example, because a feature license expires (previously this would not have been evident until a restart), or there has been an API change. Meeting Management will calculate enforcement actions with Smart Licensing or traditional license file mode.

Note: You can use the Smart Licensing portal to enable email notifications for "insufficient licenses".

When a license feature has expired the following actions will occur:
Table 5: Expired license enforcement actions

<table>
<thead>
<tr>
<th>Feature</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>callBridge</td>
<td>When expired: a visual text message displays on screen lasting 30 seconds and an audio prompt plays on joining a meeting for all participants/all meetings. (Alarm level 2)</td>
</tr>
<tr>
<td>callBridgeNoEncryption</td>
<td>When expired more than 90 days ago or no license present: the same as before but the visual message is permanent. The audio prompt plays “Your deployment is out of licensing compliance, please contact your administrator”. (Alarm level 3)</td>
</tr>
<tr>
<td>PMP/SMP</td>
<td>Note: you only need callBridge or callBridgeNoEncryption to prevent the above action.</td>
</tr>
<tr>
<td>customizations</td>
<td>When expired or not present, customization features will not be active during a meeting.</td>
</tr>
<tr>
<td>recording</td>
<td>When expired or not present you will not be able to start a new recording (regardless of whether it is a 3rd party recorder or not). This license represents recording and streaming so the same restrictions also apply to streaming.</td>
</tr>
</tbody>
</table>

To turn off Alarms 2 and 3, simply add more licenses to your Smart Account.

1.7.5 How to retrieve Licensing information (Smart Licensing)

To retrieve licensing information for a cluster using the Meeting Server Web Admin interface:

1. Log in to the Meeting Server Web Admin interface and select Configuration > API:
2. From the list of API objects, tap the ► after /api/v1/clusterLicensing
3. The current license status for the cluster is displayed as shown in this example:

![clusterLicensing API – license status](image)

1.7.6 Cisco Meeting Server licensing

The following features require a license:
- Call Bridge
- Call Bridge No Encryption
- Customizations (for custom layouts)
- Recording or Streaming

In addition to feature licenses, user licenses also need to be purchased, there are 2 different types of user licenses:
- PMP Plus,
- SMP Plus,

Note: You can use Trial Mode for a 90 day full featured period without licenses.

For information on user licensing, see Section 1.7.9.

Note: You have the choice of purchasing an activation key with SIP media encryption enabled or SIP media encryption disabled (unencrypted SIP media) for the Cisco Meeting Server 1000, Cisco Meeting Server and the VM software image. For more information on the unencrypted SIP media mode and activation key see Appendix D.

1.7.6.1 *Personal Multiparty plus licensing*

Personal Multiparty Plus (PMP Plus) provides a named host license assigned to each specific user who frequently hosts video meetings. This can be purchased through Cisco UWL Meeting or Flex Meetings (which includes PMP Plus). Personal Multiparty Plus is an all-in-one licensing offer for video conferencing. It allows users to host conferences of any size (within the limits of the Cisco Meeting Server hardware deployed). Anyone can join a meeting from any endpoint, and the license supports up to full HD 1080p60 quality video, audio, and content sharing.

Note: Using Unified Communications Manager, the initiator of an Ad Hoc conference can be identified and if they have been assigned a PMP Plus license then that is used for the conference.

Note: To determine the number of active calls using the PMP Plus licence of an individual, use the parameter `callsActive` on API object `/system/multipartyLicensing/activePersonalLicenses`. We generally allow 2 calls to be active allowing for one starting and other finishing. If the call is on a cluster of Call Bridges then use the parameter `weightedCallsActive` on API object `/system/multipartyLicensing/activePersonalLicenses` for each Call Bridge in the cluster. The sum of `weightedCallsActive` across the cluster matches the number of distinct calls on the cluster using the individual’s PMP Plus license. If a PMP Plus licence is exceeded, then SMP Plus licences are assigned, see Section 1.7.10.
1.7.6.2 *Shared Multiparty plus licensing*

Shared Multiparty Plus (SMP Plus) provides a concurrent license that is shared by multiple users who host video meetings infrequently. Shared Multiparty Plus enables all employees who do not have PMP Plus host license to access video conferencing. It is ideal for customers that have room systems deployed that are shared among many employees. All users with PMP Plus or using SMP Plus licenses have the same great experience, they can host a meeting with their space, initiate an ad-hoc meeting or schedule a future one. Each shared host license supports one concurrent video meeting of any size (within the limits of the hardware deployed).

Note: To determine the number of SMP Plus licences required, use the parameter `callsWithoutPersonalLicense` on API object `/system/multipartyLicensing`. If the calls are on a cluster of Call Bridges then use the parameter `weightedCallsWithoutPersonalLicense` on API object `/system/multipartyLicensing` for each Call Bridge in the cluster. The sum of `weightedCallsWithoutPersonalLicense` across the cluster matches the number of distinct calls on the cluster which require an SMP Plus license.

1.7.7 Smart Licensing registration process

To enable Smart Licensing:

1. Sign in to Cisco Smart Software Manager (CSSM) portal and choose Virtual Account with Meeting Server Licenses.
2. Generate a registration token.
3. Copy the token to your clipboard.
4. Open the instance of Meeting Management that you want to use for license reporting.
5. Go to the **Settings** page, **Licensing** tab.
6. Click **Change**.
7. Choose **Smart Licensing** and **Save**.
8. Click **Register**.
9. Paste the registration token (this allows Meeting Management to connect to the Smart Licensing portal).
10. Click **Register**.
11. When you have registered, check how many licenses you have in your Virtual Account.
12. In Meeting Management, go to the **Licenses** page.
13. Enter the license information for the licenses you have in your Virtual Account.

If any licenses are not shown in your Virtual Account, use the **Convert Licenses** tab, search by PAK to find them, then choose **Convert Licenses** as shown in Figure 9. (If you can't find a license(s), open a case by sending an email to licensing@cisco.com.)
Figure 9: License conversion for Smart Licensing

1.7.8 Obtaining Cisco user licenses using the traditional licensing method

This section assumes that you have already purchased the licenses that will be required for your Meeting Server from your Cisco Partner and you have received your PAK code(s).

Follow these steps to register the PAK code with the MAC address of your Meeting Server using the Cisco License Registration Portal.

1. Obtain the MAC address of your Meeting Server by logging in to the MMP of your server, and enter the MMP command: `iface a`

 Note: This is the MAC address of your VM, not the MAC address of the server platform that the VM is installed on.

2. Open the Cisco License Registration Portal and register the PAK code(s) and the MAC address of your Meeting Server.
3. If your PAK does not have an R-CMS-K9 activation license, you will need this PAK in addition to your feature licenses.
4. The license portal will email a zipped copy of the license file. Extract the zip file and rename the resulting `xxxxx.lic` file to `cms.lic`.
5. Using your SFTP client, log into Meeting Server and copy the `cms.lic` file to the Meeting Server file system.
6. Restart the Call Bridge using the MMP command `callbridge restart`.
7. After restarting the Call Bridge, check the license status by entering the MMP command `license`.

 The activated features and expirations will be displayed.
1.7.9 Assigning Personal Multiparty licenses to users

This process requires that users are imported from a single LDAP source. See the "Provisioning – Import users" chapter in the Meeting Management 3.0 Administrator Guide for full details.

1.7.9.1 To determine whether a specific user has a license:

1. From the list of API objects, tap the ► after /users
 a. Select the object id of the specific user
 b. Identify the object id of the userProfile associated with this user

2. From the list of API objects, tap the ► /userProfiles
 a. Select the object id of the specific userProfile
 b. Find the setting for parameter hasLicence. If set to true then the user identified in step 1 is associated with a Cisco Multiparty user license. If set to false the user is NOT associated with a Cisco Multiparty user license.

 Note: If the userProfile is deleted, then the userProfile is unset for the ldapSource and the imported users.

1.7.10 How Cisco Multiparty licenses are assigned

When a meeting starts in a space, a Cisco license is assigned to the space. Which license is assigned by the Cisco Meeting Server is determined by the following rules:

- if the space owner is defined and corresponds to a Meeting Server imported LDAP user with an assigned Cisco PMP Plus license, the license of that owner is assigned irrespective of whether the person is active in the conference, if not, then

- if the meeting was created via ad hoc escalation from Cisco Unified Communications Manager, then Cisco Unified Communications Manager provides the GUID of the user escalating the meeting. If that GUID corresponds to a Meeting Server imported LDAP user with an assigned Cisco PMP Plus license, the license of that user is assigned, if not, then

- if the meeting was scheduled via Cisco TMS version 15.6 or newer, then TMS will provide the owner of the meeting. If that user corresponds to a Meeting Server imported LDAP user by user ID/email address with an assigned Cisco PMP Plus license, the license of that user is assigned to the meeting, if not then,

- a Cisco SMP Plus license is assigned.

1.7.11 Determining Cisco Multiparty licensing usage

We recommend you use Meeting Management to view your Multiparty licensing usage. However, the API can be used.
Table 6 below lists the API objects and parameters that can be used to determine the consumption of Multiparty licenses.

<table>
<thead>
<tr>
<th>API object</th>
<th>Parameter (s)</th>
<th>Use to</th>
</tr>
</thead>
<tbody>
<tr>
<td>/system/licensing</td>
<td>personal, shared</td>
<td>determine whether components of the Cisco Meeting Server have a Multiparty license and are activated. Values are: noLicense, activated, grace, expired. Also provides date of expiry and number limit.</td>
</tr>
<tr>
<td>/system/multipartyLicensing</td>
<td>personalLicenseLimit, sharedLicenseLimit, personalLicenses, callsWithoutPersonalLicense, weightedCallsWithoutPersonalLicense</td>
<td>indicates the number of licenses available and in use</td>
</tr>
<tr>
<td>/system/multipartyLicensing/activePersonalLicenses</td>
<td>callsActive, weightedCallsActive</td>
<td>indicates the number of active calls that are using a Personal Multiparty Plus user license,</td>
</tr>
<tr>
<td>/userProfiles</td>
<td>hasLicense</td>
<td>indicates whether or not a user is associated with a Cisco Multiparty user license</td>
</tr>
</tbody>
</table>

For more information on these additional object and fields to support Cisco Multiparty licensing, refer to the Cisco Meeting Server API Reference Guide.

1.7.12 Calculating SMP Plus license usage

For the following specific scenarios, the SMP Plus license consumed for a meeting is reduced to 1/6th of a full SMP Plus license:

- an audio-only conference where no attendees are using video,
- a Lync gateway call unless the Meeting Server is recording or streaming, at which point it is considered a full conference and a full SMP Plus license is consumed,
- a point to point call involving a web app and a SIP endpoint, or two web apps, unless the Meeting Server is recording or streaming, at which point it is considered a full conference and a full SMP Plus license is consumed.

A full SMP Plus license is consumed for any audio-video conference instantiated from a space with the owner property undefined, owned by an imported LDAP user without a PMP Plus license, or owned by an imported LDAP user whose PMP Plus license has already been consumed, this is irrespective of the number of participants.
Note: A point to point call is defined as:
- having no permanent space on the Meeting Server,
- two or less participants, including the recorder or streamer
- no participants hosted on the Lync AVMCU,

This includes Lync Gateway calls as well as other types of calls: point-to-point web app to web app, web app to SIP and SIP to SIP.

1.7.13 Retrieving license usage snapshots from a Meeting Server

An administrator can retrieve license usage from the Meeting Server. These cannot be accessed though the Web Admin Interface, instead use an API tool such as POSTMAN:

Use GET on `/system/MPLicenseUsage/knownHosts` to retrieve host ids of the Meeting Servers in the deployment. Supply an offset and limit if required to retrieve host ids other than those on the first page of the list.

Use GET on `/system/MPLicenseUsage` to retrieve license usage from the Call Bridge of the Meeting Server with the specified host id. Supply a start and end time for the snapshot. Provides information on number of personal licenses in use, number of shared licenses in use which are audio only, point to point, or neither audio or point to point, number of calls being recorded and number of streamed calls.

Note: Note: personal and shared licenses are normalized over the number of Call Bridges that the call spans.

1.7.14 License reporting

Meeting Management has license reporting/usage information for the last 90 days, and Cisco Smart Software Manager also contains license reporting information. The usage of recording licenses indicates the number of conferences recording concurrently, similarly the streaming license usage indicates the number of conferences streaming concurrently.
2 General concepts for deployment

This chapter provides an overview of the general concepts for deploying the Meeting Server in a split server deployment. Figure 10 illustrates a typical deployment with the TURN server and Web Bridge 3 components enabled on a VM Meeting Server in the DMZ.

Note: Both the core and edge server must run the same version of software.

Figure 10: Example of a Meeting Server deployment using the TURN server component in a split server deployment

Note: The Meeting Server includes a Recording facility and a Streaming facility. Only enable the Recorder/Streamer on the same server as the Call Bridge if you are simply evaluating the features. For normal deployment enable the Recorder/Streamer on a different server to the Call Bridge. If you intend to deploy the Recorder and Streamer on the same Meeting Server, you will need to size the server appropriately for both uses. For more information on recording and streaming, see Section 13.

2.1 Web Admin

The Web Admin is a web based interface to configure the Meeting Server.
After configuring the Web Admin Interface for HTTPS access, as described in the Meeting Server installation guide, type the hostname or IP address of the server in a web browser to reach the login screen of the Web Admin Interface. See Web Admin Interface — Configuration menu options for details of the configuration accessible through the Web Admin Interface. From version 2.9, the API can be accessed via the Configuration tab of the Web Admin Interface.

An alternative to using the Web Admin Interface, is to use a REST API tool for example Postman or Chrome Poster, to access the Meeting Server’s API. The Meeting Server API is routed through the Web Admin Interface, so an HTTPS connection is setup between the browser and the Meeting Server. The API Reference Guide is available here.

2.2 Call Bridge

The Call Bridge is the component on the Meeting Server that bridges the conference connections, enabling multiple participants to join meetings hosted on the Meeting Server or Lync AVMCU’s. The Call Bridge exchanges audio and video streams so that participants can see and hear each other.

2.2.1 Call Bridge license

You will need licenses for the Cisco Meeting Server, including the Call Bridge license to allow the Call Bridge to be used for media calls. From version 3.0 Meeting Server supports Smart Licensing as well as the traditional method of licensing for existing users. For more information, see Section 1.7.

Note: You can use Trial Mode for a 90 day full featured period without licenses.

2.3 Database

The Call Bridge reads from and writes to the database storing the space information, for example, the members of spaces, and recent activity within a space.

In a split deployment the database is created and managed automatically by the Call Bridge and does not require a license or being enabled.

2.4 Web Bridge 3

The original Web Bridge 2 component and Cisco Meeting App for WebRTC are now removed in Cisco Meeting Server version 3.0. Cisco Meeting App for desktop and iOS are also no longer supported. You will now need to use Cisco Meeting Server web app instead of Cisco Meeting App for WebRTC. To do this, you need to deploy Web Bridge 3 – for details on deploying and configuring Web Bridge 3, see Section 4.5 and Section.
Note: If you are not using Cisco Meeting Server web app, you do not need to deploy Web Bridge 3.

If you are using Cisco Meeting Server web app (i.e. you have deployed Web Bridge 3), see Cisco Meeting Server web app Important Information for details on when features are released and issues resolved for the web app.

All information relevant to the web app is contained in this separate document and is not included in the Meeting Server release notes.

The Important Information guide describes the following:

- Any new or changed feature in the web app, and details of fixed issues and open issues associated with the web app with an indication of the version of Meeting Server where this feature/fix is available.

- Any upcoming changes in browsers affecting the web app, and the affected versions of the web app with recommended workarounds.

Note: There is no automatic upgrade migration from Web Bridge 2 to Web Bridge 3. If you have already deployed Web Bridge 3 in version 2.9, you should check your settings after upgrade because they will not be migrated across from the Web Admin or old settings in /webBridges/<webbridge id>.

Version 3.0 introduces customization and branding for your Cisco Meeting Server web app sign–in page. For more information, see Cisco Meeting Server 3.0 Customization Guidelines.

2.5 Hosting branding files locally

One set of branding files can be held locally on the Meeting Server. These locally hosted branding files are available to the Call Bridge and Web Bridge once the Meeting Server is operational, removing the risk of delays in applying customization due to problems with the web server. The images and audio prompts replace the equivalent files built into the Meeting Server software; during start up, these branding files are detected and used instead of the default files. Locally hosted branding files are overridden by any remote branding from a web server.

You can change these locally hosted files simply by uploading a newer version of the files and restarting the Call Bridge and Web Bridge. If you remove the locally hosted files, the Meeting Server will revert to using the built–in (US English) branding files after the Call Bridge and Web Bridge have been restarted, providing a web server has not been set up to provide the branding files.

Note: To use multiple sets of branding files, you still need to use an external web server.

For more information on hosting branding files locally, see the Cisco Meeting Server Customization Guidelines.
2.6 On screen messaging

The Meeting Server provides the ability to display an on-screen text message to participants in a meeting hosted on the Meeting Server; only one message can be shown at a time. Using the API, the duration that the message is displayed can be set, or made permanent until a new message is configured. Use the messageText, messagePosition and messageDuration parameters for API object /calls.

For users of SIP endpoints and Lync/Skype for Business clients, the on-screen text message is displayed in the video pane. The position of the message in the video pane can be selected from top, middle or bottom.

On screen messaging is also sent to other devices that are using ActiveControl in the deployment, for instance CE8.3 endpoints, and individual Meeting Servers not in a cluster but with the in-call message feature enabled. Meeting Servers in a cluster also support on screen messaging through a proprietary mechanism.

2.7 TURN server

Note: The TURN server component in Cisco Meeting Server software is retained in version 3.0. Customers are encouraged to use Cisco Expressway as the edge device in the DMZ. However, some customers may prefer to use the TURN server component in the Meeting Server to allow Cisco Meeting Server web app users to connect to Meeting Server hosted conferences. In this situation deploy the TURN server and Web Bridge 3 components on the same Meeting Server in the DMZ.

The TURN server provides firewall traversal technology, allowing the Meeting Server to be deployed behind a Firewall or NAT. To connect to the deployment from Meeting Server web app, external Lync clients, or SIP endpoints registered to a SIP or voice call control device, you need to enable the TURN server, refer to the sections on Configuring the MMP and Web Admin interface settings for the TURN server. If you are using Cisco Meeting Server web apps you also need to configure the Web Admin interface to allow the Call Bridge and external clients to access the TURN server. Using the TURN server does not require a license.

The TURN server listens on both ports 443 and 3478 for both UDP and TCP connections. Media sent over TCP is encrypted using TLS. The TURN server supports TCP to UDP interworking (see Figure 11). A browser can send TCP media to the TURN server which converts it to standard UDP media. This is useful when UDP traffic from browsers is blocked.
The default configuration of the TURN server has changed. By default, the TURN server now listens on port 3478 for TCP communication from the Call Bridge, instead of port 443 as in previous releases. If you are using the TURN server in your deployment, then you need to open ports UDP 3478 and TCP 3478 in your firewall.

2.8 SIP trunks and routing

The Meeting Server requires SIP trunks to be set up from one or more of the following: SIP Call Control, Voice Call Control and Lync Front End (FE) server. Changes to the call routing configuration on these devices are required to route calls to the Meeting Server that require the Web Bridge service for interoperability.

2.9 Support for Lync and Skype for Business

2.9.1 Support for Lync and Skype for Business clients

You can use Skype for Business clients, and Lync 2010 and Lync 2013 clients connected to a Skype for Business server, Lync 2010 or 2013 server. From version 2.6, the Meeting Server supports Skype for Business 2019.

The Meeting Server uses:

- the RTV codec transcoding up to 1080p with the 2010 Lync Windows client and 2011 Lync Mac clients,
- the H.264 codec with the 2013 Lync Windows client and Skype for Business client.

The Meeting Server will provide both RTV and H.264 streams when a mixture of clients versions are connected.

Lync 2010 and 2013 clients and Skype for Business clients can share content. The Meeting Server transcodes the content from native Lync RDP into the video format used by other
participants in the meeting and sends it as a separate stream. Lync and Skype for Business clients also receive content over a RDP stream and can display it separately from the main video. The Lync FE Server will need a Trusted SIP Trunk configured to route calls originating from Lync endpoints through to the SIP video endpoints i.e. to route calls with destination in the SIP video endpoint domain through to the Call Bridge.

The SIP Call Control will require configuration changes to route calls destined to the Lync/Skype for Business client domain to the Call Bridge so that SIP video endpoints can call Lync/Skype for Business clients.

The dial plan routes Lync/Skype for Business calls between these two domains in both directions.

The Meeting Server includes support for Lync Edge to enable Lync/Skype for Business clients outside of your firewall to join spaces.

Dual homed conferencing functionality improves how the Meeting Server communicates with the Lync AVMCU, resulting in a richer meeting experience for both Lync/Skype for Business and Cisco Meeting Server web app users. Appendix E describes the dual homed conference experience.

2.9.2 Support for Dual Homed Conferencing

Dual homed conferencing requires the Lync Edge settings to be configured on the Lync Edge server settings on the Meeting Server for conference lookup. If you already have an on-prem Lync deployment or Lync Federation deployment working with the Meeting Server deployment, then no additional configuration is required on the Meeting Server. If this is a new deployment, then you need to setup the Meeting Server to use the Lync Edge server, see Chapter 8.

For information on the features which improves the experience of participants in Lync/Skype for Business meetings, see:

- FAQ on the improvements in meeting experience for Lync participants,
- FAQ on RDP support,
- FAQ on multiple video encoder support.

2.10 Recording meetings

Prior to 3.0, Meeting Server’s internal recorder and streamer components were dependent upon the Meeting Server’s internal XMPP server component – in 3.0 this XMPP server is removed. Version 3.0 introduces a new internal recorder and streamer, both SIP-based.

The new internal recorder and streamer components and dialing out to third-party SIP recorders are all configured using SIP URIs, so when recording or streaming is started the administrator-configured SIP URI is called.
The Recorder component on the Meeting Server adds the capability of recording meetings and saving the recordings to a document storage such as a network file system (NFS).

For more information on recording meetings, see Section 13.

2.10.1 License keys for recording

You will need one or more licenses for recording. One ‘recording’ license supports 1 concurrent streaming or 1 recording, existing recording licences will allow streaming. Contact your Cisco sales representative or partner to discuss your licensing requirements.

2.11 Streaming meetings

The Streamer component adds the capability of streaming meetings held in a space to the RTMP URL configured on the space.

An external streaming server needs to be configured to be listening on this RTMP URL. The external streaming server can then offer live streaming to users, or it can record the live stream for later playback.

Note: The Streamer component supports the RTMP standard in order to work with third party streaming servers that also support the RTMP standard. Vbrick is the officially supported external streaming server, however, other servers have also been tested.

2.11.1 License keys for streaming

You will need one or more licenses for streaming. One ‘recording’ license supports 1 concurrent streaming or 1 recording, existing recording licences will allow streaming. Contact your Cisco sales representative or partner to discuss your licensing requirements.

2.12 Diagnostics and troubleshooting

In addition to using Syslog records (see Section 3.1.4) to help diagnose deployment issues, the following features are available on the Meeting Server:

- SIP tracing
- log bundle
- generate keyframe for specific call leg
- regular reporting of registered media modules

2.12.1 SIP Tracing

You can enable additional SIP tracing using the Logs > Detailed tracing page in the Web Admin Interface. These logs may be useful when investigating call setup failure issues for SIP endpoints
and should be disabled at all other times. To prevent the verbose logging being enabled for longer than necessary, it automatically shuts off after a choice of 1 minute, 10 minutes, 30 minutes or 24 hours. Refer to the Meeting Server Support FAQs on the Cisco website for more troubleshooting information.

Diagnostics for failed login attempts include:

- the IP address of the far end included in event log messages relating to logins
- audit messages generated for unsuccessful logins (minus the user name) and log in session timeouts. They are also generated for successful logins.

2.12.2 Log bundle

Meeting Server can produce a log bundle containing the configuration and state of various components in the Meeting Server. This log bundle will help Cisco Support speed up their analysis of your issue.

If you need to contact Cisco support with an issue, follow these steps to download the log bundle from the Meeting Server.

1. Connect your SFTP client to the IP address of the MMP.
2. Log in using the credentials of an MMP admin user.
3. Copy the file logbundle.tar.gz to a local folder.
4. Rename the file, changing the logbundle part of the filename to identify which server produced the file. This is important in a multi-server deployment.
5. Send the renamed file to your Cisco Support contact for analysis.

Note: In the event that you are not able to download the logbundle due to a slow network connection between a computer and the Meeting Server, you can download the log and live.json files to send to Cisco Support.

2.12.3 Ability to generate a keyframe for a specific call leg

A `generateKeyframe` object has been added to `/callLegs/<call leg id>`. This is a debug facility, and Cisco Support may ask you to use the feature when diagnosing an issue.

Using the Web Admin interface, select **Configuration > API**, then

1. From the list of API objects, tap the ► after `/callLegs`
2. Click on the **object id** of the call leg
3. From the list of **Related objects** at the top of the page, click `/callLegs/<call leg id>/generateKeyframe`
4. Click **Create**
This will trigger the generation of a new keyframe in the outgoing video streams for the call leg in question

2.12.4 Reporting registered media modules in syslog

syslog can print a message every 15 minutes to allow people to monitor whether all media modules are alive and well.

An example from a Meeting Server 2000:

```
2020-08-06T13:21:39.316Z user.info cms2kapp host:server INFO : media module status 1111111 (1111111/1111111) 7/7 (full media capacity)
```
3 Prerequisites

3.1 Prerequisites

This chapter describes the changes to your network configuration that you need to consider before installing and configuring the Meeting Server; some of these items can be configured beforehand.

3.1.1 DNS configuration

The Meeting Server needs a number of DNS SRV and A records. See Appendix A for a full list, but specific records are also mentioned elsewhere.

3.1.2 Security certificates

You will need to generate and install X.509 certificates and keys for services which use TLS; for example, Call Bridge, Web Admin Interface (the Call Bridge’s interface), Web Bridge 3, TURN server, and the Load Balancer (if used).

The Certificates Guidelines for split deployments contains both background information on certificates and instructions, including how to generate self-signed certificates using the Meeting Server’s MMP commands. These certificates are useful for testing your configuration in the lab. However, in a production environment we strongly recommend using certificates signed by a Certificate Authority (CA).

Instructions that were previously in this guide concerning certificates have been removed and replaced by a single step referencing the Certificate Guidelines.

Note: If you self-sign a certificate, and use it, you may see a warning message that the service is untrusted. To avoid these messages re-issue the certificate and have it signed by a trusted CA: this can be an internal CA unless you want public access to this component.

3.1.3 Firewall configuration

See Appendix B for the list of ports which need to be opened on your firewall, and Section 15.6 for advice on creating Firewall rules.

3.1.4 Syslog server

The Meeting Server creates Syslog records which are stored locally and can also be sent to a remote location. These records are useful when troubleshooting because they contain more detailed logging than is available on a Meeting Server’s own internal log page. Internal syslog messages can be downloaded over SFTP, however Cisco recommends that the host servers
(Edge and Core) are configured to send debug information to a remote Syslog server. Both Meeting Servers must use the same Syslog server; when using a Syslog server for troubleshooting, remember to look in the logs for both Meeting Servers.

Note: The Syslog server must use TCP, not UDP. Check that your Syslog server is configured to use TCP.

Follow the instructions below on each Meeting Server to define a Syslog server.

1. SSH into the MMP and log in.
2. Enter the following command, `syslog server add <server address> [port]`

 Examples:
   ```
   syslog server add syslog01.example.com 514
   syslog server add 192.168.3.4 514
   ```
3. Enable the Syslog server by entering:
   ```
   syslog enable
   ```
4. Optionally, if you want to send the audit log to a Syslog server follow these steps.
 (The audit log facility records configuration changes and significant low-level events. For example, changes made to the dial plan or configuration of a space via the Web Admin Interface or the API, are tracked in this log file, and tagged with the name of the user that made the change. The file is also available via SFTP.)

 a. Create a user with the audit role.
      ```
      user add <username> (admin|crypto|audit|appadmin)
      user add audituser audit
      ```
 b. Log out of the MMP and log back in with the newly created user account.
 c. Enter the command (this command can only be run by a user with the audit role):
      ```
      syslog audit add <servername>
      syslog audit add audit-server.example.org
      ```

Note: Normally local Syslog files are overwritten in time, but you can permanently store system and audit log files using the `syslog rotate <filename>` and `syslog audit rotate <filename>` commands. These files can also be downloaded over SFTP. See the MMP Command Reference.

3.1.5 Network Time Protocol server

Configure one or more Network Time Protocol (NTP) servers to synchronize time between the Meeting Server components.
Note: Sharing a common view of time is important for multiple reasons, it is necessary when checking for certificate validity and to prevent replay attacks. It also ensures that timings in the logs are consistent.

On each Meeting Server:

1. If necessary, SSH into the MMP and log in.

2. To set up an NTP server, type:

 `ntp server add <domain name or IP address of NTP server>`

To find the status of configured NTP servers, type `ntp status`

See the [MMP Command Reference](#) for a full list of `ntp` commands.

3.1.6 Call Detail Record support

The Meeting Server generates Call Detail Records (CDRs) internally for key call-related events, such as a new SIP connection arriving at the server, or a call being activated or deactivated. It can be configured to send these CDRs to a remote system to be collected and analyzed. There is no provision for records to be stored on a long-term basis on the Meeting Server, nor any way to browse CDRs on the Meeting Server.

The core server in a single split server deployment supports up to four CDR receivers, enabling you to deploy different management tools such as Meeting Management, or more than one instance of Meeting Management for resiliency.

For more information on setting up Meeting Management as a CDR receiver, see the [Cisco Meeting Management Admin Guide](#).

You can use either the Web Admin Interface or the API to configure the core Meeting Server with the URI of the CDR receivers. If you are using the Web Admin interface go to Configuration > CDR settings and enter the URI of the CDR receivers. Refer to the [Call Detail Records Guide](#) or the [API Reference guide](#) for details on using the API to configure the Core Meeting Server with the URIs of the CDR receivers.

3.1.7 Host name

Cisco recommends that each Meeting Server is given its own hostname.

1. If necessary, SSH into the MMP and log in.

2. Type:

   ```
   hostname <name>
   hostname london1
   hostname mybox.example.com
   ```

3. Type:

   ```
   reboot
   ```
Note: A reboot is required after issuing this command.

3.1.8 Other requirements

- Access to an LDAP server to import users. This can be a Microsoft Active Directory (AD) server or an OpenLDAP server.

 If you plan for users to utilise the web apps to connect to the Meeting Server, then you must have an LDAP server. User accounts are imported from the LDAP server. You can create user names by importing fields from LDAP as described in LDAP configuration. The passwords are not cached on the Meeting Server, they are managed centrally and securely on the LDAP server.

- Decision on a dial plan to use to reach calls hosted on the Call Bridge. The dial plan will depend on your environment; that is whether you are making one or more of the following types of call: Lync, SIP (including voice) or web app calls. Instructions for deploying this dial plan are given in Chapter .

- Access to one or more of the following to test the solution: Lync clients, SIP endpoints, SIP phones and/or web apps as appropriate.

- Access to a SIP Call Control platform if you intend to make SIP calls. Chapter 7 and Chapter explain how to set up a SIP trunk to the Cisco VCS and summarizes the required dial plan configuration changes. Information on setting up the SIP Trunk to a Cisco Unified Communications Manager (CUCM), the Avaya CM and Polycom DMA is provided in the Cisco Meeting Server Deployments with Call Control guide; you can use other call control devices not listed in the guide.

- If you intend to integrate the Meeting Server with an audio deployment, the Meeting Server must connect to a Voice Call Control device attached to a PBX; it is not possible to connect a Meeting Server directly to a PBX.

- If deploying in a Lync environment, access to the Lync Front End (FE) server to make dial plan configuration changes there. The changes required are given in this document.

3.1.9 Specific prerequisites for a virtualized deployment

- A host server that complies with the resources specified in the Installation Guide for Cisco Meeting Server Virtualized Deployments.
4 Configuring the MMP

The Meeting Server components are configured using the MMP.

4.1 Creating and managing MMP and Web Admin interface user accounts

You should have created an MMP administrator user account on each Meeting Server by following the Cisco Meeting Server Installation Guide; if so, go on to the next section. The same account is used to access the Web Admin Interface.

(If you do not have these MMP administrator user accounts, you will have to use the emergency admin recovery procedure detailed in the Installation Guide appropriate to your deployment.)

Note: See the MMP Command Reference Guide for the full range of MMP commands, including setting up additional administrator user accounts and user accounts with other roles.

4.2 Upgrading software

The Cisco Meeting Server 2000, and Cisco Meeting Server 1000 ship with the latest software release available at the time of shipment, but may not be up-to-date. Equally, if you downloaded the software some days ago, we advise you to check on the Cisco website in case a later version is available, and if so, upgrade to the latest version.

The following instructions apply to all types of deployment:

1. To find out which software version is running on the Meeting Server, SSH into the MMP of the server, log in and type:
 version

2. Before upgrading your Meeting Servers:
 a. take a backup of the current configuration on each server. Save the backup safely to a local server. See the MMP Command Reference guide for full details. Do NOT use the automatic backup file that is created during the upgrade process.
 b. save the cms.lic and certificate files to the local server.
 c. using the Web Admin interface, check that all calls (SIP and clients) are working and no fault conditions are listed.

3. To upgrade, first download the appropriate software file from the Cisco website. Click on this link, then click on the appropriate Meeting Server type listed in the right hand column of the web page and follow any instructions displayed with the download link.

4. Use an SFTP client to upload the new software image to the MMP of the Meeting Server. For example:
sftp admin@10.1.124.10
put upgrade.img
where 10.1.x.y is an IP address or domain name.

5. Upgrade the Core server, connect via SSH to the MMP and type:
 upgrade
 wait approximately 10 to 12 minutes for the server to restart, and for the Web Admin interface to be available.

6. To verify that the upgrade was successful, SSH into the MMP of each server, log in and type the following command:
 version

7. Upgrade the Edge server and verify that the upgrade was successful.

This completes the upgrading of the Meeting Server deployment. Now verify that:

- dial plans are intact,
- and no fault conditions are reported on the Web Admin interface and log files.

Check that you are able to connect using SIP and web app (as well as Web Bridge 3 if that is supported).

Note on rollback procedure: If anything unexpected happens after you upgrade the servers and you decide to downgrade, simply upload the software release for the previous version, and type upgrade. Then use the MMP command factory_reset app on each server. Once the server has rebooted from a factory reset, use the backup rollback <name> command to restore the backup configuration files on each server. Providing you restore the backup file that was created from the server, the license file and certificate files will match the server.

4.3 Configuring the Call Bridge listening interface

The Call Bridge needs a key and certificate pair that is used to establish TLS connections with SIP Call Control devices and with the Lync Front End (FE) server. If you are using Lync, this certificate will need to be trusted by the Lync FE server.

Note: SIP and Lync calls can traverse local firewalls using the SIP Edge component, this is a beta feature and should not be used in production environments. If you plan to evaluate this feature, note that you need to configure trust between the Call Bridge and the SIP Edge, for more information see Chapter.

Note: SIP and Lync calls can traverse local firewalls using the Cisco Expressway, you will need to configure trust between the Call Bridge and the Cisco Expressway. Cisco Expressway must be
running X8.9 or later. For more information, see Cisco Expressway Options with Cisco Meeting Server and/or Microsoft Infrastructure (Expressway X8.9.2) or if running X8.10 see Cisco Expressway Web Proxy for Cisco Meeting Server (X8.10) and Cisco Expressway Session Classification Deployment Guide (X8.10).

The command `callbridge listen <interface>` allows you to configure a listening interface (chosen from A, B, C or D). By default the Call Bridge listens on no interfaces.

1. Create and upload the certificate as described in the Certificate Guidelines.
2. Sign into the MMP and configure the Call Bridge to listen on interface A.
   ```bash
callbridge listen a
   ```
 Note: the Call Bridge must be listening on a network interface that is not NAT’d to another IP address. This is because the Call Bridge is required to convey the same IP that is configured on the interface in SIP messages when talking to a remote site.

3. Configure the Call Bridge to use the certificates by using the following command so that a TLS connection can be established between the Lync FE server and the Call Bridge, for example:
   ```bash
callbridge certs callbridge.key callbridge.crt
   ```
 The full command and using a certificate bundle as provided by your CA, is described in the Certificate Guidelines.

4. Restart the Call Bridge interface to apply the changes.
   ```bash
callbridge restart
   ```

4.4 Configuring the Web Admin interface for HTTPS access

The Web Admin Interface is the Call Bridge’s user interface. You should have set up the certificate for the Web Admin Interface (by following one of the Installation Guides). If you have not, do so now.

1. The installation automatically set up the Web Admin Interface to use port 443 on interface A. However, the Web Bridge also uses TCP port 443. If both the Web Admin Interface and the Web Bridge use the same interface, then you need to change the port for the Web Admin Interface to a non-standard port such as 445, use the MMP command `webadmin listen <interface> <port>`. For example:
   ```bash
   webadmin listen a 445
   ```

2. To test that you can access the Web Admin Interface, type your equivalent into your web browser: https://meetingserver.example.com:445
If it works, proceed to the next section.

3. If you cannot reach the Web Admin Interface:
 a. Sign into the MMP, type the following and look at the output:

      ```
      webadmin
      ```
 The last line of the output should say "webadmin running".
 b. If it does not there is a configuration problem with your Web Admin Interface. Check that you have enabled it by typing:

      ```
      webadmin enable
      ```
 c. The output of the `webadmin` command should also tell you the names of the certificates you have installed, e.g. `webadmin.key` and `webadmin.crt`.

 Note: They should be the same names of the certificates you uploaded previously.

 Assuming these are the names then type:

      ```
      pki match webadmin.key webadmin.crt
      ```
 This will check that the key and certificate match.
 d. If you are still experiencing issues, troubleshoot the problem as explained in the [Certificates Guidelines](#).

4.5 Configuring Web Bridge 3

Web Bridge 3 is used by the web app. If you are deploying web app you need to set the network interface for the Web Bridge 3 and then enable it. You then need to configure Call bridge to use C2W connections.

Note: If you are not using the web app, skip this section.

CAUTION: Important notes for Expressway users

If you are deploying Web Bridge 3 and web app you must use Expressway version X12.6 or later, earlier Expressway versions are not supported by Web Bridge 3.

Note: For more information on the web app, see [Cisco Meeting Server web app Important Information](#).

4.5.1 Useful information to help configure Web Bridge 3

The following is useful information to help you configure Web Bridge 3 so that you can use web app:
"Call Bridge to Web Bridge" protocol (C2W) is the link between the callbridge and webbridge3.

A port must be opened on an interface (using `webbridge3 c2w listen`) to allow the callbridge to connect to the webbridge3 (the webbridge listens on that port). This is why you have to give the address with this port when you do the API request to tell a callbridge about this webbridge. This connection must be secured with certificates.

We recommend you protect that opened port from external access—it only needs to be reachable from callbridges.

The callbridge uses the certificate set using `callbridge certs` and the webbridge uses the certificate set set using `webbridge3 c2w certs`.

The webbridge will trust certificates of callbridges that have been signed by one of those in its trust store, set by `webbridge3 c2w trust`.

The callbridge will trust webbridges that have certificates signed by one of those in its trust store, set by `callbridge trust c2w`.

The webbridge3 https certificates and ports are the same as used for webbridge2, it allows you to reach the web client using https and can be used in the same deployment at the same time.

If the webbridge3 c2w certificate requires extended key usage, it should be "server authentication", and the callbridge certificate extended key usage should be "client authentication". However, these extensions are optional and if the certificate doesn’t have them, the Web Bridge 3 will assume any usage is possible.

You do not need a certificate signed by a public authority—you can use self-signed certificates created within the MMP.

The SAN/CN must match the FQDN or IP address that is used in the c2w:// url used to register the Web Bridge 3 in the callbridge API. (If this does not match, the callbridge will fail the TLS negotiation, rejecting the certificate presented by the webbridge, and will fail to connect with the webbridge.)

For general certificate information, see the Certificate Guidelines appropriate for your deployment.

4.5 shows the flow of a typical Web Bridge 3 setup.

Figure 12: Web Bridge 3 setup flow diagram
4.5.2 Configuring Meeting Server to use Web Bridge 3

When upgrading your Meeting Server to 3.0, you will need to deploy Web Bridge 3 if you wish to use web app. Web Bridge 3 uses Call Bridge to Web Bridge (C2W) protocol connections which uses the C2W connection port as shown in Figure 12.

Web Bridge 3 configuration and setup is done using MMP commands via SSH. The main difference is that Web Bridge 2 required configuring an HTTPs port, whereas Web Bridge 3 requires configuring an HTTPS port and a C2W port.

To configure Meeting Server to use Web Bridge 3:

1. SSH into the MMP and log in.
2. Use the `webbridge3` command in the MMP to configure webbridge3. To display the webbridge3 usage, enter: `help webbridge3`

```plaintext
> help webbridge3

Usage:
webbridge3
webbridge3 restart
webbridge3 enable
webbridge3 disable
webbridge3 https listen <interface:port whitelist>
webbridge3 https certs <key-file> <crt-fullchain-file>
webbridge3 https certs none
webbridge3 http-redirect (enable [port]|disable)
webbridge3 c2w listen <interface:port whitelist>
```
webbridge3 c2w certs <key-file> <crt-fullchain-file>
webbridge3 c2w certs none
webbridge3 c2w trust <crt-bundle>
webbridge3 c2w trust none
webbridge3 options <space-separated options>
webbridge3 options none
webbridge3 status

More detail can be found in the latest Cisco Meeting Server MMP Command Line Reference.

3. (Optional) Set up a port for HTTP connections. This port will be opened for all Meeting Server interfaces on which the web app has been configured. Incoming HTTP connections will be automatically redirected to the matching HTTPS port for the interface they arrived on. The default port, if you don’t specify one in `webbridge3 http-redirect enable [port]`, is 80.

4. Configure the port for the HTTPS service to listen to. To configure it to listen on port 443 of the a interface:

 `webbridge3 https listen a:443`

5. Set the HTTPS certificates. These are the certificates that will be presented to web browsers so they need to be signed by a certification authority and the hostname/purpose etc needs to match. (The certificate file is the full chain of certificates that starts with the end entity certificate and finishes with the root certificate.) Enter the command:

 `webbridge3 https certs wb3-https.key wb3-https-fullchain.crt`

6. Configure the C2W connection. We recommend that you make this address/port accessible from the Call Bridge(s) only. The following command sets it in port 9999 of interface a:

 `webbridge3 c2w listen a:9999`

 Note that here we use the example of port 9999, however, it can be any available port on your network. It’s not a fixed port, unlike 443.

7. Configure the C2W connection certificates. You need to configure the SSL Server certificates used for the C2W connection. (See "Configuring Web Bridge 3" on page 48 for certificate requirements, and more information can be found in this FAQ.)

 `webbridge3 c2w certs wb3-c2w.key wb3-c2w-fullchain.crt`

8. The Web Bridge 3 C2W server is expecting Call Bridges to present a client certificate — it will verify whether to trust them using the trust bundle provided by the following command:

 `webbridge3 c2w trust wb3-c2w-trust-bundle.crt`
9. Now enable Web Bridge 3:

 webbridge3 enable

4.5.3 Configuring Call bridge to use C2W connections

C2W certificates are used for the connection between Call Bridge and Web Bridge 3. For the Call Bridge to make a C2W connection to a Web Bridge 3, you need to specify a C2W trust store to verify certificates against, i.e. the ones presented by the Web Bridge 3 that were configured in step 7 above.

1. Use the callbridge command in the MMP to display the Call Bridge usage, enter: help callbridge
to display:

 > help callbridge
 Configure CMS callbridge

 Usage:

 callbridge listen <interface whitelist>
callbridge prefer <interface>
callbridge certs <key-file> <crt-file> [<cert-bundle>]
callbridge certs none
callbridge trust c2w <bundle>
callbridge trust c2w none
callbridge add edge <ip address>:<port>
callbridge del edge
callbridge trust edge <trusted edge certificate bundle>
callbridge trust cluster none
callbridge trust cluster <trusted cluster certificate bundle>
callbridge restart

2. Set the certificates for the Call Bridge:

 callbridge certs cert.key cert.crt

3. Set the C2W trust store that will be used to validate the SSL Server certificate presented by the Web Bridge 3. (For more information, see this FAQ.)

 callbridge trust c2w c2w-callbridge-trust-store.crt

4. Now restart Call Bridge:

 callbridge restart

5. Go to the Web Admin user interface, select Configuration > API and select /api/v1/webBridges to register the Web Bridge 3 URL to the running callbridge REST API as shown below. The URL protocol indicates it is webbridge3, i.e. specify c2w:// protocol in the URL so it is handled as a webbridge3 connection.
4.6 Configuring the TURN server

CAUTION: Your TURN server password and credentials must be unique. Do not reuse your admin username or password.

1. SSH into the MMP.
2. Configure the TURN server with the following command:

   ```
   turn credentials <username> <password> <realm>
   ```

 The following is an example where username is `myusername`, the password is `mypassword` and it uses the realm `example.com`.

   ```
   turn credentials myTurnUsername myTurnPassword example.com
   ```

3. If the TURN server has a public IP address rather than being NAT’ed (see Figure 14), this step is not required, go on to step 4. If the TURN server is located behind a NAT, set the public IP Address that the TURN Server will advertise using:

   ```
   turn public-ip <ip address>
   ```

 The following is an example where a public IP address is set to 5.10.20.99

   ```
   turn public-ip 5.10.20.99
   ```

CAUTION: Locating the TURN server behind a NAT requires careful configuration of the NAT, to ensure connectivity always works. This is due to how Interactive Connectivity Establishment (ICE) works, and is not a problem specific to the TURN deployment within the Meeting Server. For information on deploying a TURN server behind NAT, see Appendix G.
Note: The IP address set here should not be confused with the IP addresses set in the Web Admin Interface Configuration > General page. The MMP commands configure the TURN server itself, while the Configuration > General page settings allow the Call Bridge and external clients to access the TURN server, and are explained in Web Admin interface settings for the TURN server.

Figure 14: TURN server public IP address (not NAT’ed) - Split server deployment

Note: Although the port range between the TURN server and the external clients is shown as 32768–65535, currently only 50000–51000 is used. The required range is likely to be larger in future releases.

4. Configure the TURN Server to listen on a specific interface using:

```plaintext
turn listen <interface whitelist>
```

For example:

```plaintext
turn listen c
```
Note: You can specify more than one interface for the TURN server to listen on. If specifying multiple interfaces for the TURN server, the first one must be the public interface, i.e. the one on the public network, or the one that a NAT forwards to. For example, `turn listen b a` where `b` is the NAT’d interface and `a` is the private internal interface.

5. Select the port for the TURN server to listen on using:

 `turn tls <port|none>`

 for example:

 `turn tls 443`

 Note: For maximum connectivity from external locations, Cisco recommends that port 443 is used for both the TURN Server and the Web Bridge. However, to set up TCP to UDP interworking on a TURN server, the Web Bridge and TURN Server must listen on different interface:port combinations.

 To run both the TURN server and the Web Bridge on port 443 requires them to be run on separate servers/VMs, or if on the same server/VM they need to be on different interfaces and different subnets.

 If this is not possible then select a non-standard port for the TURN server, for example: `turn tls 447` and use the `tcpPortNumberOverride` parameter to configure the port on the Call Bridge (see step 7).

6. Since media sent over TCP is encrypted using TLS, a certificate is required on each TURN server that carries out TCP to UDP interworking. The certificate should be signed by the same CA as that used for the Web Bridge.

 a. Generate a private key and the Certificate Signing Request (.csr) file for the TURN server. For information on how to generate a private key and .csr file, refer to the Certificate Guidelines.

 Note: The public key is created and held within the .csr file.

 b. Submit the .csr file to the CA for signing.

 c. SSH into the MMP

 d. Disable the TURN server interface before assigning the certificate

 `turn disable`

 e. Upload the signed certificate and intermediate CA bundle (if any) to the Meeting Server using SFTP.

 f. Check that the certificate (and certificate bundle) and the private key match
pki match <certificatefile> <cert bundle/CA cert> [<CA cert>]
g. Check that the specified certificate is signed by the root CA using the certificate bundle to determine the chain of trust
 pki verify <certificatefile> <cert bundle/CA cert> [<CA cert>]
h. Assign the certificate (and certificate bundle) and private key pair to the TURN server
 turn certs <keyfile> <certificatefile> [<cert-bundle>]
i. Re-enable the TURN server
 turn enable

7. If in step 5 you set a non-standard port for TCP on the TURN Server, use the API parameter tcpPortNumberOverride on object /turnServers/<turn Server id> to configure this value on the Call Bridge.

 For example, for the TURN server which will interwork the media, POST to the Call Bridge’s /turnServers node the following parameter values replaced by your values:
 tcpPortNumberOverride = 447

 Note: This parameter is not required for configured Lync Edge servers, where the TCP port number can always be determined automatically.

8. Use the Web Admin interface to configure the settings through which the Call Bridge communicates with the TURN server, see Chapter 11.
5 LDAP configuration

If you plan for users to utilize the web apps to connect to the Meeting Server, then you must have an LDAP server (currently Microsoft Active Directory, OpenLDAP or Oracle Internet Directory LDAP3, see note below). The Meeting Server imports the User accounts from the LDAP server.

You can create user names by importing fields from LDAP, as described in this section. The passwords are not cached on the Meeting Server, a call is made to the LDAP server when a web app authenticates, and therefore passwords are managed centrally and securely on the LDAP server.

Note: When configuring the Meeting Server for LDAP/AD sync, the fields which accept LDAP/AD attributes require that attributes are entered in their case-sensitive format. For example, if the username mapping uses the attribute userPrincipalName then $userPrincipalName$ can result in successful sync but $UserPrincipalName$ will result in sync failure. You are advised to check that each LDAP attribute is entered in the correct case.

Note: From version 2.1, the Meeting Server supports Oracle Internet Directory (LDAP version 3). This must be configured through the API, not the Web Admin interface.

To configure the Meeting Server to support Oracle Internet Directory, the Meeting Server should not use the LDAP paged results control in search operations during LDAP sync. POST to /ldapServers or PUT to /ldapServers/<ldap server id> the request parameter usePagedResults set to false.

5.1 Why use LDAP?

Using LDAP to configure the Meeting Server is a powerful and scalable way to set up your environment: defining your organization’s calling requirements within the LDAP structure minimizes the amount of configuration required on the Meeting Server.

The server uses the concept of filters, rules and templates, which allow you to separate users into groups, for example:

- Everyone in the HR department
- Staff at grade 11 and above
- Job title = ‘director’
- People whose surname starts with 'B'
5.2 Meeting Server settings

The examples in this section explain how to configure a single LDAP server (in this case Active Directory), using the Web Admin interface on the Meeting Server. However, the Meeting Server supports multiple LDAP servers which can be configured via the API, see the LDAP Methods section in the API Reference guide.

When configuring a cluster of Call Bridges, the simplest method is to use the API. If configuring multiple Call Bridges via the Web Admin interface, each must have identical configuration.

Note: The Web Admin Interface only allows you to configure one LDAP server.

To set up the Meeting Server to work with Active Directory, follow these steps:

1. Sign in to the Web Admin Interface and go to Configuration > Active Directory.

2. Configure the connection to the LDAP server in the first section with the following:

 - **Address**: this is the hostname or IP address of your LDAP server
 - **Port**: usually 636
 - **Username**: the Distinguished Name (DN) of a registered user. You may want to create a user specifically for this purpose.
 - **Password**: the password for the user name you are using
 - **Secure Connection**: tick this box for a secure connection

 For example:

 Address: ldap.example.com
 Port: 636
 Username: cn=Fred Bloggs,cn=Users,OU=Sales,dc=YourCompany,dc=com
 Password: password

 Note: For further details of the permissions required by the user name and password credentials, see Appendix F.

Note: The Meeting Server supports secure LDAP. By default the LDAP server runs on port 636 for secure communications and port 389 for insecure communications. The Meeting Server supports both, but we recommend using 636. Note that you must select Secure Connection (see above) for communications to be secure: using port 636 alone is not enough.

Note: When LDAP servers are configured with secure connection, connections are not fully secure until TLS certificate verification has been configured using the `tls ldap` command on the MMP.
3. Type the Import Settings which will be used to control which users will be imported.

- Base Distinguished Name = the node in the LDAP tree from which to import users. The following is a sensible choice for base DN to import users
 \[\text{cn=Users,dc=sales,dc=YourCompany,dc=com}\]

- Filter = a filter expression that must be satisfied by the attribute values in a user’s LDAP record. The syntax for the Filter field is described in rfc4515.

A rule for importing people into the main database might reasonably be 'import anyone with an email address', and this is expressed by the following filter:

\[\text{mail=*}\]

For testing purposes you may want to import a named user (e.g. fred.bloggs) and a group of test users whose email address starts with "test"; for example:

\[(!(\text{mail=fred.bloggs*})(\text{mail=test*}))\]

If you wanted to import everyone apart from one named user (e.g. fred.bloggs), use this format:

\[!(\text{mail=fred.bloggs*})\]

To import users that belong to a specific group, you can filter on the memberOf attribute. For example:

\[\text{memberOf=cn=apac,cn=Users,dc=Example,dc=com}\]

This imports both groups and people that are members of the APAC group.

To restrict to people (and omit groups), use:

\[&\text{(memberOf=cn=apac,cn=Users,dc=Example,dc=com)}\text{(objectClass=person)}\]

Using an extensible matching rule (LDAP_MATCHING_RULE_IN_CHAIN / 1.2.840.113556.1.4.1941), it is possible to filter on membership of any group in a membership hierarchy (below the specified group); for example:

\[&\text{(memberOf:1.2.840.113556.1.4.1941:=cn=apac,cn=Users,dc=Example,dc=com)}\text{(objectClass=person)}\]

Other good examples which you can adapt to your LDAP setup include:

Filter that adds all Person and User except the ones defined with a !

\[&\text{(objectCategory=person)}\text{(objectClass=user)}(!(\text{cn=Administrator})||(\text{cn=Guest}))(||!(\text{cn=krbtgt}))\]

Filter that adds same as above (minus krbtgt user) and only adds if they have a sAMAccountName
(&\{objectCategory=person\} \{objectClass=user\} (! (cn=Administrator)) (! (cn=Guest)) (sAMAccountName=*))

Filter that adds same as above (Including krbtgt user) and only adds if they have a
sAMAccountName

(&\{objectCategory=person\} \{objectClass=user\} (! (cn=Administrator)) (! (cn=Guest)) (! (cn=krbtgt)) (sAMAccountName=*))

This filter only imports specified users within ((tree

(&\{objectCategory=person\} \{objectClass=user\} (! (cn=accountname) (cn=anotheraccountname))))

Global Catalog query to import only members of specified security group (signified with
=cn=xxxxx

(&\{memberOf:1.2.840.113556.1.4.1941:=cn=groupname,cn=Users, dc=example,dc=com\} \{objectClass=person\})

4. Set up the Field Mapping Expressions

The field mapping expressions control how the field values in the Meeting Server’s user
records are constructed from those in the corresponding LDAP records. Currently, the
following fields are populated in this way:

- Display Name
- User name
- space Name
- space URI user part (i.e. the URI minus the domain name)
- space Secondary URI user part (optional alternate URI for space)
- space call id (unique ID for space for use by WebRTC client guest calls)

Field mapping expressions can contain a mixture of literal text and LDAP field values, as fol-
lows:

$\{LDAP field name\}$

As an example, the expression

$\{sAMAccountName\}@$example.com

Generates:

fred@example.com

For more information see More Information on LDAP Field Mappings.
Note: Each imported user must have a unique user ID (JID), constructed using the JID field in the Field Mapping Expressions section of the Configuration > Active Directory. In order to construct a valid JID, any LDAP attribute used in the JID field mapping expression must be present in each LDAP record that is to be imported. To ensure that only records that have these attributes present are imported, we recommend that you include presence filters (i.e. those of the form (<attribute name>=*)) using a ‘&’ (AND) in the Filter field under Import Settings for each attribute used in the JID field mapping expression.

For example, suppose your JID field mapping expression is $sAMAccountName$@company.com, and you wish to import users who are members of the group cn=Sales,cn=Users,dc=company,dc=com, an appropriate import filter would be:

```
(& (memberOf=cn=Sales,cn=Users,dc=company,dc=com) (sAMAccountName=*))
```

5. To synchronize with Active Directory, select Sync now or activate the synchronization by using the appropriate API call (see the Cisco Meeting Server API Reference Guide).

Note: that you must manually resynchronize whenever entries in the LDAP server change.

6. View the result of the synchronization by going to Status > Users.

It is possible to choose whether to use OU separation when importing from the LDAP server. In the Web Admin Interface, go to Configuration > Active Directory and in the Corporate Directory Settings section select Restrict Search to Searcher OU to enable the search only within the OU of the user account.

5.3 Example

This example assigns a space to a particular group of users and a Call ID for this space using an 88 prefix in front of the regular telephone number.

1. Create the group in the LDAP structure called “space” and assign the required members to that group.

2. Use the following filter which uses the extensible matching rule (LDAP_MATCHING_RULE_IN_CHAIN / 1.2.840.113556.1.4.1941) to find all the users that are a member of the “space” group:

```
(& (memberOf:1.2.840.113556.1.4.1941:=cn=space,cn=Users,dc=lync, dc=example,dc=com) (objectClass=person))
```
3. Then synchronizing a particular user in the directory called:

\[-\text{cn} = \text{Fred Blogs}\]
\[-\text{TelePhoneNumber} = 7655\]
\[-\text{sAMAccountName} = \text{fred.blogs}\]

creates the following space which can be viewed on the Status > Users page.

<table>
<thead>
<tr>
<th>Name</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred Blogs</td>
<td>fred.blogs@example.com</td>
</tr>
</tbody>
</table>

And the following space that can be viewed on the Configuration > space page.

<table>
<thead>
<tr>
<th>Name</th>
<th>URI user part</th>
</tr>
</thead>
<tbody>
<tr>
<td>fred.blogs</td>
<td>fred.blogs.space</td>
</tr>
</tbody>
</table>

5.4 Enforcing passcode protection for non-member access to all user spaces

When spaces are auto-generated via an LDAP sync, they are all created without a passcode. By default, nonMemberAccess is set to true so that the existing behavior remains unchanged, no passcode is required to access the space and non-members are able to access the created spaces.

Setting nonMemberAccess to false allows a company to enforce passcode protection for non-member access to all user spaces.
To ensure the member must configure non-member access and set a passcode as part of the LDAP sync:

- Either POST to `/ldapSources` or PUT to `/ldapSources/<ldap source id>` the request parameter `nonMemberAccess` set to `false`.
- To retrieve the `nonMemberAccess` setting, use GET on `/ldapSources/<ldap source id>`.

Note: Spaces created before version 2.4 (when this parameter was introduced) are unaffected by any LDAP syncs.
6 Dial plan configuration – overview

6.1 Introduction

For the Meeting Server to be integrated in a SIP, Lync and voice environment, connections need to be set up from the SIP Call Control, Lync FE Server and Voice Call Control to the Meeting Server. Changes to the call routing configuration on these devices is required in order to correctly route the calls that require the Meeting Server.

Figure 15 assumes a company deployment which has a mix of SIP video endpoints, Lync clients and IP phones: the Meeting Server enables connectivity between Lync clients and SIP video endpoints, and between Lync clients and IP phones.

The SIP video endpoints are configured on a domain called vc.example.com and the Lync clients on example.com. You will need to adapt the example, as appropriate.

Figure 15: Example deployment for dial plan configuration

As shown in the figure above, the Lync FE server needs a trusted SIP Trunk to the Meeting Server, configured to route calls originating from Lync clients through to Meeting Server spaces, Cisco Meeting Server web app users and also SIP video endpoints. The subdomains vc.example.com (for SIP video endpoints) and meetingserver.example.com (for spaces) should be routed through this trunk from the Lync FE server to the Meeting Server.
Note: Connections to Office 365 or on-premise Lync deployments in another organization, should route to a Cisco Expressway. See the Expressway deployment guides for more information.

The SIP Call Control platform needs a SIP trunk set up to route calls to the example.com domain (for Lync Clients) and meetingserver.example.com (for spaces and web apps) to the Meeting Server.

The Meeting Server requires a dial plan to route calls with domain example.com to the Lync FE server and subdomain vc.example.com to the SIP Call Control platform.

The next section discusses the two configuration pages in the Web Admin interface of the Meeting Server that determine how the Meeting Server handles incoming calls and outbound calls.

Following this chapter, Chapter 7 and Chapter 8 provide step-by-step instructions on configuring the total solution.

6.2 Web Admin Interface configuration pages that handle calls

This section explains the configuration pages in the Web Admin interface that the Meeting Server uses to determine how to handle each call.

Two configuration pages in the Web Admin Interface control how the Meeting Server behaves for incoming and outgoing calls: Outbound calls and Incoming calls. The Outbound Calls page controls how outbound calls are handled; the incoming calls page determines whether incoming calls are rejected. If they are not rejected, but matched and forwarded, then information about how to forward them is required and the Incoming Calls page has two tables – one to configure matching/rejection and the other to configure the forwarding behavior.

6.2.1 Outbound calls page

The Outbound Calls page allows you to configure appropriate dial plans comprising a number of dial plan rules. A dial transform can be applied to Outbound calls to control the routing of the outbound calls, see Dial Transforms.

Outbound calls page

<table>
<thead>
<tr>
<th>Domain</th>
<th>SIP prefix to use</th>
<th>Local contact domain</th>
<th>Local from domain</th>
<th>Trunk type</th>
<th>Behavior</th>
<th>Priority</th>
<th>Encryption</th>
<th>Freeze</th>
<th>Call Bridge Name</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>example.com</td>
<td>888-calls cust</td>
<td>meetingserver.example.com</td>
<td>example.com</td>
<td>Lync</td>
<td>Step</td>
<td>2</td>
<td>Auto</td>
<td>No</td>
<td>All</td>
<td>Add Route</td>
</tr>
</tbody>
</table>

Domain: the domain to match in order to apply the dial plan rule; either a complete value (e.g. "example.com") or a "wildcarded" one (e.g. "*.com").
SIP proxy to use: each entry/rule in a dial plan matches on the Domain of the outgoing call (see below) and determines which SIP proxy to use (or whether it is a direct call).

Local contact domain: is the domain that will be used for the contact URI for calls using this dial plan rule.

CAUTION: If you are using Lync, we suggest that you use the Local contact domain. If you are not using Lync we recommend that the Local contact domain field is left blank to avoid unexpected issues with the SIP call flow.

CAUTION: For each Lync domain you need to create an outbound rule — follow the procedures described in this section. If you have many Lync domains you can consider creating an outbound rule with a wildcard domain.

Local from domain: is the domain the call uses as its originator ID/Caller ID.

Trunk type: usually, you set up rules to route calls out to third party SIP control devices such as CiscoExpressway, Avaya Manager or Lync servers. Therefore, there are currently three types of SIP trunks you can configure: Standard SIP, Avaya and Lync.

Note: A common use of the Meeting Server is with an Avaya PBX; these calls will be audio-only. However, the Meeting Server does not impose this restriction on interoperability with Avaya products (some of which support video also): therefore a call of type of ‘avaya’ does not imply that the call is audio-only.

Behavior and **Priority:** Dial plan rules are tried in the order of the Priority values. If a rule is matched, but the call cannot be made, then other lower priority rules may be tried. If a rule has a behavior of STOP, then no further rules are used.

Encryption: select from **Auto, Encrypted, Unencrypted**.

CAUTION: The default Encryption behavior mode is **Auto**. Ensure all "Lync" outbound dialing rules are explicitly set to **Encrypted** mode to prevent the Call Bridge attempting to use unencrypted TCP for these connections in the event of the TLS connection attempt failing.

6.2.2 Incoming call page: call matching

The top table in the Incoming Call page is the Call Matching table. The rules defined in the Call Matching table govern how the Meeting Server handles incoming SIP calls. Any call routed to the Meeting Server on any domain can be tested for a match for IVRs, web app users or for preconfigured spaces on that server.

The example Call matching rule below seeks to match all calls coming in on the meetingserver.example.com domain to both web app users and spaces.
For example, if the incoming call was to `name.space@meetingserver.example.com` and there was a configured space called `name.space` the call would be routed to the space with that name. If the incoming call was to `firstname.lastname@meetingserver.example.com` the call would be routed to that user with that first and last name.

Alternatively, you can choose not to route calls to users or spaces on a per domain basis; that is, you can use one incoming domain for spaces and another for users.

It is recommended that rules are created for every domain expected for incoming calls. With some call control solutions the domain may be the IP address or hostname of the server. In these cases the highest priority domain is expected to be the main domain, with IP address and hostname rules having lower priority.

Rules with a higher priority value are matched first. In cases where multiple rules have the same priority then matching occurs based on alphabetical order of the domain.

After a rule is executed rules further down the list are ignored for the call.

If all Call Matching rules fail, the next table (Call Forwarding) is used as described in the next section.

Points to note:
- Matching for space and/or users is only done on the part of the URI before the @.
- The highest priority rule that matches a space is used to form the URI in the invitation text. It is expected that the highest priority rules are for the deployment as a whole rather than for individual IP addresses or hostnames.
- Do not leave the Domain field blank in a rule, otherwise the Call Bridge will refuse the call.
- No rules in the Call matching table will result in all domains being matched.

6.2.3 Call forwarding

If an incoming call fails to match any of the rules in the Call Matching table, the call will be handled according to the Call Forwarding table. In this table you can have rules to decide whether to reject the call outright or to forward the call in bridge mode, for example resolving to a Lync conference. By defining rules, you decide whether to forward the call or not. It might be appropriate to “catch” certain calls and reject them.
Rules can overlap, and the **Domain matching pattern** can include wildcards, for example: exa*.com; but do not use “*” as a match all, otherwise you will create call loops. Order rules using the **Priority** value; higher numbered rules are tried first.

For calls that will be forwarded, you can rewrite the destination domain using the **Forwarding domain**. A new call is created to the specified domain. The **Caller ID** setting allows the forwarded call to either preserve the original calling party’s ID or to generate a new one. Select **pass through** to preserve the calling party’s ID or **use dial plan** to generate a new calling party ID according to your call routing configuration.

The example Call Forwarding rule below forwards calls for the domain lync.example.com and the routing is determined by the call routing rules.

An incoming call is terminated if does not match any of the rules in the Call Matching table and does not match any of the **Domain matching patterns** in the Call Forwarding table.

6.3 Dial Transforms

Dial Transforms are applied to outgoing calls prior to the Outbound rules taking effect. When dial transforms are applied, the outbound dial plan rules are applied to the transformed number. Dial Transforms only affect Outbound calls, they do NOT affect gateway calls.

There are three stages to the transform:

- A “type” is applied, which defines the type of preprocessing to apply to the transform.
 - Raw: produces one component - $1
 - Strip: removes dots, dashes, spaces and produces one component - $1
 - Phone: use to transform to an international phone number - produces two components $1 county code and $2 number

 Note: A phone URI is recognized as a purely numeric string (optionally prefixed by a ‘+’) when it begins with a valid international dial code (e.g. 44 for UK or 1 for US) followed by the correct number of digits for a phone number for that region.

- The components are matched using regular expressions to see if the rule is valid
- An output string is created from the components according to the defined transform
Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Match</th>
<th>Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>For US numbers, use ‘vcs1’ directly</td>
<td>Phone</td>
<td>($1/01/)</td>
<td>$2@vcs1</td>
</tr>
<tr>
<td>For UK numbers, add a prefix and use ‘vcs2’</td>
<td>Phone</td>
<td>($1/44/)</td>
<td>90044$2@vcs2</td>
</tr>
<tr>
<td>For UK numbers starting with a 7, add ‘90044’ as a prefix, add ‘123@mobilevcs’ as a suffix</td>
<td>Phone</td>
<td>($1/44/$2/^7/)</td>
<td>90044$2{123@mobilevcs}</td>
</tr>
<tr>
<td>For unrecognized all-digit strings, use ‘@vcs3’ as a suffix</td>
<td>Strip</td>
<td>($1/\d6/)</td>
<td>$1@vcs3</td>
</tr>
<tr>
<td>Replace + with 00</td>
<td>Strip</td>
<td>($1/+(d)/)</td>
<td>$1{/+/00/}</td>
</tr>
<tr>
<td>Replace an alphanumeric regex e.g. (*@example.com and replace with \1.endpoint@vc.example.com</td>
<td>Raw</td>
<td>($1/.*/@example.com/)</td>
<td>$1/@example.com$/ .endpoint@vc.example.com/</td>
</tr>
</tbody>
</table>

For a single Meeting Server, use the Configuration > Outbound Calls page in the Web Admin Interface to control how dialed numbers are transformed. If a match expression is provided, the regular expression determines whether the specified transform expression is applied.

For example, the dial plan in the screen shot below ensures that outbound “+1” (US) calls use one Call Bridge and +44 (UK) calls use another.
7 Dial plan configuration – SIP endpoints

7.1 Introduction
This chapter describes the configuration to enable SIP video endpoints to dial into a meeting hosted on the Meeting Server. Work through the steps in the order provided, adapting the example as appropriate.

7.2 SIP video endpoints dialing a meeting hosted on the Meeting Server
This first step considers the configuration required on the call control device and on the Meeting Server to direct SIP video endpoints to meetings hosted on the Meeting Server.

Figure 16: Example of SIP video endpoints calling into Meeting Server hosted calls

7.2.1 SIP call control configuration
This example assumes the SIP Call Control is a Cisco VCS, but similar steps are required on other call control devices, for example using the Cisco Unified Communications Manager, see the Cisco Meeting Server with Cisco Unified Communications Manager Deployment Guide.
1. Sign in to the VCS as an administrator.
2. Set up a zone to route calls to the Meeting Server
 a. Go to VCS Configuration > Zones > New.
 b. Create the zone with the following:
 - H.323 Mode = Off.
 - SIP Mode = On
 - SIP Port = 5060 (5061 if using TLS)
 - SIP Transport = TCP or TLS, as appropriate
 - SIP Accept Proxyed Registrations = Allow
 - Authentication Policy = Treat as authenticated
 - SIP Authentication Trust Mode = Off
 - Peer 1 Address = the IP address of the Call Bridge
3. Add a search rule to route calls to the Meeting Server. For example to route any calls on SIP endpoints to a meeting on the Meeting Server using the domain meetingserver.example.com.
 a. Go to VCS Configuration > Dial Plan > Search rules
 b. Give the rule a suitable name, e.g. Route EPs to Meeting Server.
 c. Set the following:
 - Source = Any
 - Request Must Be Authenticated = No
 - Mode = Alias pattern match
 - Pattern Type = Regex
 - Pattern String = .*@meetingserver.example.com
 - Pattern Behavior = Leave
 - On Successful Match = Stop
 - Target = the zone you created for the Meeting Server.

7.2.2 Meeting Server configuration
1. Sign in to the Web Admin Interface on the Meeting Server.
2. Either create a space on the Meeting Server for endpoints to dial into:
 a. Go to Configuration > space
 b. Add a space with:
7 Dial plan configuration – SIP endpoints

- **Name** = <string>, for example. **Call 001**
- **URI** = <user part of the URI>, for example. **88001**

or use an already existing space.

Note: spaces can also be created or modified from the API. See the API Reference guide.

3. Add an inbound dial plan rule for incoming calls to the Meeting Server.

a. Go to **Configuration > Inbound Calls** and add a dial plan rule with the following details:

 - **Domain name** = <FQDN of the Meeting Server>, for example **meetingserver.example.com**
 - **Targets spaces** = yes
 - **Targets IVRs** = yes
 - **Targets users** = yes
 - **Targets Lync** = yes Note: this is required later in Section 8.1.2

Note: See Section 1.2.2 for more information on the **inbound calls** page of the Web Admin interface.

4. Add an outbound dial plan rule for outbound calls to SIP endpoints via the VCS.

a. Go to **Configuration > Outbound Calls** and add a dial plan rule with the following details:

 - **Domain** = <domain to match> such as **example.com** or ***.com**
 - **SIP Proxy to use** = <the IP address or FQDN of your VCS>
 - **Local Contact Domain** =

 Note: The local contact domain field should be left blank unless setting up a trunk to Lync (as in Section 8.1.2).

 - **Local From Domain** = <FQDN of the Meeting Server>
 - **Trunk type** = **Standard SIP**.

Note: See Section 1.2.1 for more information on the **Outbound calls** page of the Web Admin interface.

SIP video endpoints can now dial into a call 88001 hosted on the Meeting Server by dialing **88001@meetingserver.example.com**, and the Meeting Server can call out to SIP endpoints.

Before moving onto creating dial plans for Lync in **Chapter 8**, consider whether to:
configure the media encryption setting, see Section 7.3,

enable TIP support for Cisco CTS endpoints, see Section 7.4,

configure an Interactive Voice Response (IVR), see Section 7.5.

7.3 Media encryption for SIP calls

The Meeting Server supports media encryption for SIP connections, including Lync calls, made to or from the Meeting Server. This is configured in the Configuration > Call settings page in the Web Admin Interface.

1. Sign in to the Web Admin Interface and go to Configuration > Call settings
2. Select the appropriate SIP media encryption setting (allowed, required or disabled).
3. Change the bandwidth settings for SIP, CMA (web app) or Server reflexive.
4. To select applying these changes to SIP calls already in progress, click the Apply to Active Calls button at the end of the page, or to select applying these changes to future SIP calls click the Submit button.

Note: The SIP Encryption field in the Web Admin Interface Configuration > Outbound Calls page allows you to set the SIP control encryption behavior for each Outbound Calls rule. This separates the control and media encryption behavior, allowing a TLS control connection to be used in the absence of media encryption; you can also set the behavior via the API.

7.4 Enabling TIP support

If you use endpoints such as the Cisco CTS range, you need to select TIP protocol support. Enable it as follows:

1. In the Web Admin Interface go to Configuration > Call settings and in the SIP Settings section, set TIP (Telepresence Interoperability Protocol) to enabled.
2. Set both SIP Bandwidth Settings to at least 4000000.

3. Click Submit.

7.5 IVR configuration

You can configure an Interactive Voice Response (IVR) to manually route to pre-configured calls. Incoming calls can be routed to the IVR where callers are greeted by a prerecorded voice message inviting them to enter the ID number of the call or space that they want to join. Video participants will see a welcome splash screen. After entering the ID, users are routed to the appropriate call or space, or prompted to enter a PIN if the call or space has one. (Callers are disconnected after the third incorrect call ID.)

If you intend to use an IVR follow these instructions:

1. Sign into the Web Admin Interface and go to Configuration > General.

2. In the IVR section, configure the following:
 - **IVR numeric ID** = <numeric call ID that users call to reach the IVR>
 - **Joining scheduled Lync conferences by ID** = “not allowed” or “allowed” depending on your policy.

3. On Configuration > Incoming Calls set **Target IVRs** = "yes" to match incoming calls to the IVR.

4. Configure the appropriate routing on your SIP Call Control to ensure that calls to the numbers set in the previous step are routed to the Meeting Server.

7.6 Next steps

Now follow the steps in Chapter 8 to configure dial plans to integrate Meeting Server with Lync deployments.
8 Dial plan configuration – integrating Lync/Skype for Business

Throughout this chapter, references to Microsoft Lync also mean Microsoft Skype for Business.

Note: For Call Bridge integration with Lync Edge, the Call Bridge needs its own login account. For each Lync call to or from the Call Bridge, the server requests TURN resources from the Lync Edge using that account. Until that call is disconnected, that resource is considered "Used" from a Lync point of view. Lync will only allow up to 12 TURN allocations per user account; therefore, with 1 registration, only 12 calls are possible.

8.1 Lync clients dialing into a call on the Meeting Server

This section details the configuration required to enable Lync endpoints to join a meeting hosted on the Meeting Server. It uses the same call number/URI as used in Section 7.2; adapt the example as appropriate.

Figure 17: Example Lync clients calling into Meeting Server hosted meetings
8.1.1 Lync Front End (FE) server configuration

CAUTION: This section provides an example for configuring a static route between a Lync FE server and the Meeting Server, it is only a guideline and is not meant to be an explicit set of instructions for you to follow. Cisco strongly advises you to seek the advice of your local Lync server administrator on the best way to implement the equivalent on your server’s configuration.

Note: Before configuring a static route from the Lync FE server, ensure that you have installed certificates on the Meeting Server which will be trusted by the Lync FE server – as described in the [Certificate Guidelines](#).

To route calls originating from Lync clients to the Meeting Server, add a Lync static route pointing to the Meeting Server. This involves setting the Meeting Server as a trusted application for the Lync FE server and adding the static route.

1. Open the Lync Server Management Shell.

2. Create a new application pool that will contain the Meeting Server as a trusted application.
   ```powershell
   New-CsTrustedApplicationPool -Identity fqdn.meetingserver.com -ComputerFqdn fqdn.meetingserver.com -Registrar fqdn.lyncserver.com -site 1 -RequiresReplication $false -ThrottleAsServer $true -TreatAsAuthenticated $true
   ```
 Replacing
 - `fqdn.meetingserver.com` with the FQDN of the Meeting Server, the identity MUST be the CN specified in the Call Bridge’s certificate.
 - `fqdn.lyncserver.com` with your Lync FE Server or FE Pool FQDN

3. Add the Meeting Server as a trusted application to the application pool.
   ```powershell
   New-CsTrustedApplication -ApplicationId meetingserver-application -TrustedApplicationPoolFqdn fqdn.meetingserver.com -Port 5061
   ```
 Replacing
 - `meetingserver-application` with name of your choice
 - `fqdn.meetingserver.com` with the FQDN of the Meeting Server

4. Create the static route between the Meeting Server and the Lync FE server.
   ```powershell
   $x=New-CsStaticRoute -TLSRoute -Destination "fqdn.meetingserver.com" -MatchUri "meetingserver.example.com" -Port 5061 -UseDefaultCertificate $true
   ```
 Replacing
 - `fqdn.meetingserver.com` with your FQDN of the Meeting Server
 - `meetingserver.example.com` with the URI matching the domain used for all of your Meeting Server calls.
5. Add the new static route to the existing collection of static routes

 `Set-CsStaticRoutingConfiguration -Identity global -Route @(Add=$x)`

6. Optional. Before enabling the static route, consider changing the default screen resolution for Lync calls from the default of VGA to HD720p. To enable HD720p on Lync:

 `Set-CsMediaConfiguration -MaxVideoRateAllowed Hd720p15M`

7. Enable the new static route.

 `Enable-CsTopology`

Note: Users may have to logout and login again to update to the new HD720p setting, all other settings are automatic and should work within a few minutes.

8.1.2 Adding a dial plan rule on the Meeting Server

1. Sign in to the Web Admin Interface of the Meeting Server, go to **Configuration > Outbound Calls**

2. At the bottom of the Outbound calls table, create a new dial plan rule

 a. In the **Domain** field, enter the Lync domain that will be matched for calls that need to be sent to Lync. For example, `example.com`

 b. **SIP Proxy to Use** field, enter the address (IP address or FQDN) of the proxy device through which to make the call.

 - Either leave this field blank and the server will perform a DNS SRV lookup for the called domain using `_sipinternaltls._tcp.<yourlyncdomain>.com`
 - or enter the IP address or FQDN of the Front End Pool (or Lync sip domain) and the server will first perform a DNS SRV lookup for that defined domain using `_sipinternaltls._tcp.<Server address>.com` and then perform a DNS A record lookup for the Host entered if the SRV lookup fails to resolve
 - or enter the IP address or FQDN of your Lync FE server

 c. **Local Contact Domain** field, enter the FQDN of your Meeting Server. For example: `meetingserver.example.com`

 Note: The only case in which this field should be set is when setting up a trunk to Lync; otherwise it should be left blank.

 d. **Local From Domain** field, enter the domain that you want the call to be seen as coming from (the Caller ID) e.g. `meetingserver.example.com`

 Note: If you leave **Local From Domain** blank, the domain used for the Caller ID defaults to that entered as the Local Contact Domain.
e. **Trunk Type** field, select **Lync**

f. In the **Behavior** field, select **stop** or **continue** depending on whether the next outbound dial plan rule is tried if this rule fails to result in a connected call.

g. **Priority** field, assign a Priority level to determine the order in which dial plan rules will be applied. Rules with higher priority values are applied first.

h. **Encryption** field, select **Auto**, **Encrypted** or **Unencrypted** according to whether encrypted SIP control traffic on calls made via this rule, is enforced.

i. Select **Add New**.

Note: Tenant and Call Bridge scope can only be set through the API.

After completion you should be able to call from the Lync environment to the Meeting Server and from the Meeting Server to Lync.

In the example, the Lync clients can now dial into a call 88001 hosted on the Meeting Server by dialing 88001@example.com.

8.2 Integrating SIP endpoints and Lync clients

To allow SIP endpoints to dial a Meeting Server space, implement the steps in **Section 7.2**; to allow Lync clients to dial a Meeting Server space, implement **Section 8.1**.

Then both SIP video endpoint users and Lync client users can enter the same call by dialing `<call_id>@meetingserver.example.com`.

Figure 18: Example of SIP video endpoints and Lync clients calling into Meeting Server hosted meetings
8.3 Adding calls between Lync clients and SIP video endpoints

This section assumes the completion of the configuration described in the two dial plan configuration sections (Section 7.2 and Section 8.1). It expands the example to allow Lync and SIP video endpoints to call each other in a call using the Meeting Server as a gateway to transcoding the video and audio (see the figure below).

Note: The Outbound Calls page was used previously to set up a SIP trunk from the Meeting Server to the Cisco VCS. In order to configure the Meeting Server to act as a “point-to-point bridge” between Lync and SIP environments, you need to configure call forwarding as described in this section and also set up a SIP trunk from the Meeting Server to other SIP call control devices you are using such as the Lync FE server, Cisco VCS, CUCM, Avaya CM or Polycom DMA.

![Figure 19: Example of SIP video endpoints and Lync clients in calls](image)

In this example:

- A Lync user can dial `<name>@vc.example.com` to set up a call with a SIP video endpoint, for example `meetingroom1@vc.example.com`.
- A SIP video endpoint can dial `<name>@example.com` to set up a call with a Lync endpoint, for example `roberta.smith@example.com`.

Adapt the example as appropriate.

8.3.1 Lync Front End server configuration

To allow Lync clients to call SIP video endpoints:
Add a Lync static route pointing to the Meeting Server that will redirect calls for
@vc.example.com. Follow the steps on creating a Lync static route given in Section 8.1
this will route Lync client calls to SIP video endpoints.

8.3.2 VCS configuration
To allow SIP video endpoint to call Lync clients:
- Add a search rule on the VCS (SIP call control device) to route calls with the suffix
 @example.com to the Meeting Server.
this will route SIP video endpoint calls to Lync clients.

8.3.3 Meeting Server configuration
Create two forwarding rules on the Meeting Server, one to forward calls to SIP endpoints, and
the other to forward calls to Lync clients. Then create two outbound dial plan rules one to route
outbound calls to SIP endpoints, and the other to route outbound calls to Lync clients.
1. Sign in to the Web Admin Interface and go to Configuration > Incoming Calls.
2. In the Call forwarding section, create two new rules:
 a. Create a call forwarding rule for calls to vc.example.com
 - Domain matching pattern = vc.exa*.com
 Wildcards are permitted in any part of a domain matching pattern, but do not use
 “*” as a match all, otherwise you will create call loops.
 - Priority = <number> any value is acceptable, including 0 if there are no other
 forwarding rules configured. To ensure a rule is always used, set its priority as the
 highest of any rules configured.
 (Rules are checked in order of priority; highest priority first. If two Domain Matching
 Patterns match a destination domain, the rule with the higher priority is used.)
 - Forward = forward
 (If you select “reject”, calls that matched the Domain Matching Pattern are not
 forwarded but terminate.)
 - Caller ID = use dial plan this will use the domain from the outbound dial plan.
 - Rewrite Domain = no
 The call will be forwarded using the domain that was called.
 (If you select yes here, you must then complete the Forwarding domain field. The
 original domain will be replaced with the one you enter in Forwarding domain before
 the call is forwarded.)
 b. Click Add new
b. Create a call forwarding rule for calls to example.com
 - **Domain matching pattern** = *exa*.com
 - **Priority**: <number>
 - **Forward** = forward
 - **Caller ID** = use dial plan
 - **Rewrite Domain** = no
 - Click Add new.

3. Go to Configuration>Outbound calls page, create two new rules:

 a. Create a dial plan for calls to domain vc.example.com for SIP endpoints, this is a repeat of step 4 in Section 7.2.2.
 - In the **Domain** field, enter the SIP domain that will be matched for calls that need to be sent to SIP endpoints. For example, **vc.example.com**
 - **SIP Proxy to use** = <the IP address or FQDN of your VCS>
 - **Local Contact Domain** =

 Note: The local contact domain field should be left blank.

 - **Local From Domain** = <FQDN of the Meeting Server>
 - **Trunk type** = Standard SIP.
 - Select Add New.

 b. Create a dial plan rule for calls to domain example.com for Lync clients, this is a repeat of Section 8.1.2.
 - In the **Domain** field, enter the Lync domain that will be matched for calls that need to be sent to Lync. For example, **example.com**
 - **SIP Proxy to Use** field, enter the address (IP address or FQDN) of the proxy device through which to make the call.
 - Either leave this field blank and the server will perform a DNS SRV lookup for the called domain using _sipinternaltls._tcp.<yourlyncdomain>.com
 - or enter the IP address or FQDN of the Front End Pool (or Lync sip domain) and the server will first perform a DNS SRV lookup for that defined domain using _sipinternaltls._tcp.<yourlyncdomain>.com and then perform a DNS A record lookup for the Host entered if the SRV lookup fails to resolve
 - or enter the IP address or FQDN of your Lync FE server
 - **Local Contact Domain** field, enter the FQDN of your Meeting Server. For example: **meetingserver.example.com**
Note: The only case in which this field should be set is when setting up a trunk to Lync; otherwise it should be left blank.

- **Local From Domain** field, enter the domain that you want the call to be seen as coming from (the Caller ID), this will be the FQDN of the Call Bridge, e.g. `meetingserver.example.com`

Note: If you leave **Local From Domain** blank, the domain used for the Caller ID defaults to that entered as the Local Contact Domain.

- **Trunk Type** field, select **Lync**
 - In the **Behavior** field, select **stop** or **continue** depending on whether the next outbound dial plan rule is tried if this rule fails to result in a connected call.
 - **Priority** field, assign a Priority level to determine the order in which dial plan rules will be applied. Rules with higher priority values are applied first.
 - **Encryption** field, select **Auto, Encrypted** or **Unencrypted** according to whether encrypted SIP control traffic on calls made via this rule, is enforced.
 - Select **Add New**.

SIP video endpoints can now call Lync clients by dialing `<name>@example.com`, and Lync clients can call SIP video endpoints by dialing `<endpoint>@vc.example.com`.

8.4 Integrating web app with SIP and Lync clients

Note: web app users are not permitted to call out to Lync meetings.

Refer to the sections on [LDAP Configuration](#) for instructions on configuring your Meeting Server to use the web app.

If you are using the same LDAP configuration to create both Lync accounts and web app accounts, and using the Meeting Server as a Lync gateway, then problems can occur with users calling web app clients rather than the intended Lync client. To prevent this happening set up rules for Call matching and Call forwarding, this is explained below.

For example, assume there is an account `fred@example.com` on the Meeting Server and a `fred@lync.example.com` account on the Lync FE server. If a call arrives at the Meeting Server and no Call matching rules are configured, the Meeting Server will ignore the domain and the call will go to the Meeting Server’s `fred@example.com` account. The Meeting Server check’s whether there is a user “fred” locally, ignoring the `xxxx` in `fred@xxxx`.

The solution is to configure a **Call matching** rule on the **Incoming Calls** page to match the domain for local web app users and a **Call forwarding** rule to forward calls to Lync clients. For the **Call matching** rule, set the **Domain name** field to something distinct from the domain that the
Lync FE server uses, for example example.com. In the Call forwarding section create a rule specifying the Lync domain in the Domain matching pattern field, for example lync.example.com. A call to fred@example.com will reach the web app user but a call to fred@lync.example.com will be forwarded to Fred’s Lync client.

8.5 Integrating Lync using Lync Edge service

For NAT traversal using the Lync Edge server, follow the configuration steps in this section to configure Lync Edge settings on the Meeting Server. This is required to support Dual Homed Conferencing or if the Lync Edge performs the TURN/ICE role for Lync calls, rather than the Meeting Server.

8.5.1 Lync Edge call flow

To establish a call from the Meeting Server to the Lync Edge server (see Figure 20 below):

1. The Call Bridge makes a “register” SIP call to the Lync FE server.
2. The “register” is acknowledged.
3. The Call Bridge sends a “service” to the Lync FE server.
4. The FE server returns the URI of the media relay authentication server (MRAS). (The Lync Edge Server acts as a MRAS.)
5. The Lync client initiates an incoming call.
6. The Call Bridge sends “service” messages to the Lync FE server to request MRAS credentials to use the Lync Edge MRAS service
7. The Lync FE server returns the credentials for the Call Bridge to use, as well as the UDP and TCP ports, and the MRAS URI once again
8. The Call Bridge resolves this MRAS URI using DNS and starts sending STUN messages directly to the Lync Edge server
9. The call media then flows directly between the Call Bridge and Lync Edge’s TURN server on UDP port 3478 and returns from the Lync Edge server to the Call Bridge on a port in the ephemeral range above.

Therefore the following ports need to be opened in the firewall for the media between Call Bridge and the Lync Edge server: UDP 3478 outgoing and 32768–65535 incoming.
8.5.2 Configuration on Meeting Server to use Lync Edge

To use a Lync Edge server, log into the Web Admin Interface of the Meeting Server, go to **Configuration > General** and configure the Lync Edge Settings. (When a Lync Edge server is configured, it takes the TURN / ICE role for Lync calls, and so at some level is an alternative to the TURN server settings above).
You also need to create a Lync user client account to set up the Meeting Server–Lync Server Edge configuration. Follow these steps to set up the Meeting Server to use the Lync Edge server:

1. Ensure that you have the appropriate DNS records in place; see Appendix 1 for a list of DNS records needed for the split server type deployment.

2. Create a new user in your LDAP directory, just as you would any other user in your directory, for example, firstname="edge", second name = “user”.

3. Log into the user manager on your Lync FE Server and create a Lync Client user from the user you created in the previous step. Do this in the same way as you would any other user to enable them to use Lync. Using the example name above creates a Lync client user called edge.user@lync.example.com

4. Sign in to the Web Admin Interface of the Meeting Server, and go to Configuration > General. Configure the Lync Edge Settings by entering the Lync FE Server Address (or a host name that resolves to this). For Username enter the Lync client user name created in the previous step.

5. Complete the Number of Registrations field, if necessary. This field overcomes a feature of the Lync Edge server that limits the number of simultaneous calls that it will run for one registered device. By entering a number greater than 1, the Call Bridge will make that number of registrations, thereby increasing the number of simultaneous calls that the Meeting Server can make out through the Lync Edge Server.

Entering a number greater than 1 adds a number to the end of your Lync Edge username and registers with the resulting username. For example, if you configured Username as edge.user@lync.example.com and set Number of Registrations to 3, you will need to create the following users in your Lync environment so that they can be used with the Edge server:

edge.user1@lync.example.com
edge.user2@lync.example.com
edge.user3@lync.example.com

We recognize that this requires some administrative overhead; however it is due to a limitation of the Lync Edge server as explained above.

Leave the Number of Registrations blank to only make a single registration as edge.user@lync.example.com.

 bó There is no need to enter the password for the Lync users because the Lync FE server trusts the Call Bridge.
Points to note about configuring the Lync Edge:

- The Meeting Server supports Lync content (presentations contributed over RDP) from external Lync clients whose media arrives via the Lync Edge server. In addition, space (URLs) now report back as busy or available based on how many participants are currently in the space so that Lync clients that have spaces in their favorites can see the space status.
- If you are using a Lync AVMCU, you need to configure the Lync edge settings in order to register with the Lync FE server.
- web apps continue to use the Meeting Server TURN server even if a Lync Edge server is configured.
- If you have a Lync Edge server configured, all Lync calls will use that server for ICE candidate gathering and external media connectivity. If you do not have a Lync Edge server configured, but have configured a Cisco Expressway in your deployment, then the Lync calls will be handled by the configured TURN server in the Expressway.
- In a typical Lync Edge deployment, the internal interface of the Lync Edge server will not have a default gateway defined; only the external interface has a default gateway defined. If the Call Bridge interface is not on the same local subnet as the internal interface of the Lync Edge server, then you must define a static and persistent network route to the Lync Edge server so it can route packets to the Meeting Server correctly, using the internal interface. To add a static and persistent network route to the Lync Edge Server, open CMD and issue the command below, replacing the example data with your own IP information.

Example Command:

```bash
route add -p 10.255.200.0 mask 255.255.255.0 10.255.106.1
```

In this example a network route is added that allows the entire subnet of 10.255.200.0 to route through the gateway of 10.255.106.1; 10.255.106.1 is the gateway of the subnet for the internal interface on the Lync Edge server.

Failure to add this route will result in all STUN packets sent by the Meeting Server to the Lync Edge server to go unanswered, which can result in call failures.

8.6 Direct Lync federation

The Meeting Server supports direct federation with Microsoft Lync, by putting the Call Bridge on a public IP address with no involvement from NAT. This allows calls to be made from the Meeting Server direct to any Lync domain and vice versa.

To allow inbound calls you must:

1. Create the DNS SRV record _sipfederationtls._tcp.domain.com that points to the FQDN of the Meeting Server. This step is required as Call Bridge will need to have a public IP, and NAT is not supported in this scenario.
2. Add a DNS A record that resolves the FQDN of the Meeting Server to a public IP address.

3. Upload a certificate and certificate bundle to the Meeting Server that complies with the following:
 a. The certificate must have the FQDN as the CN, or if using a certificate with a SAN list then ensure that the FQDN is also in the SAN list. Note: if the certificate contains a SAN list, then Lync will ignore the CN field and only use the SAN list.
 b. The certificate must be signed by a public CA.

 Note: you are advised to use the same Certificate Authority (CA) that is trusted by Lync FE servers. Contact your Lync adviser for details of the CA and for support on the Meeting Server-Lync integration.

 c. The certificate bundle must contain the Root CA’s certificate and all intermediate certificates in the chain in sequence, so that a chain of trust can be established.

 Note: for more information on certificates refer to the Introduction in the [Cisco Meeting Server Certificate Guidelines](#).

 d. Open the appropriate Firewall ports as stated in Appendix 1 for example: TCP 5061, UDP 3478, UDP 32768-65535, TCP 32768-65535

For outbound calls from the Meeting Server:

1. Create an outbound dial rule, leave the **Domain** and **SIP proxy** fields blank, and set **Trunk** type as Lync. Also set the appropriate **Local contact domain** and the **Local from domain** fields.

 If specifying individual domains in outbound dial plan rules, ensure that all domains configured on the Lync side have been added. The domains in use can be read from the Lync Server Topology Builder. Note that if additional domains are later added to Lync, then these should also be added to the outbound dial plan rules.

8.7 Calling into scheduled Lync meetings directly and via IVR

Pre-requisite on Lync deployment: This feature requires a working Lync deployment with telephone dial-in capabilities already enabled. The Lync deployment requires one or more on-prem Lync FE servers to be configured.

Note: The on-prem Lync FE servers need to be configured even if your Lync deployment does not support external Lync or Skype for Business clients.
The Meeting Server supports calling into a scheduled Lync meeting from WebRTC or SIP endpoint, using the Lync call ID to join the call; Cisco Meeting App users can only be added to a Lync meeting by a Lync client. This feature requires one or more Lync FE servers to be configured on the Meeting Server for conference lookup. You can configure one via the Web Admin interface under the Lync Edge settings from **Configuration > General**, and one or more via the API (create them as TURN servers with type "lyncEdge"). Refer to **Configuration on Meeting Server to use Lync Edge** for instructions on how to do this. If there are multiple FE servers in a Pool, use the Pool FQDN as the Server Address.

Note: For Lync meeting resolution, the Meeting Server uses the Lync meeting ID and DNS lookup of _sipinternaltls_tcp.lync_domain, rather than outbound rules. Set DNS SRV record _sipinternaltls_tcp.lync_domain on your DNS server or if you do not want to use a DNS SRV record then setup a record on the Meeting Server with the command `dns app add rr <DNS RR>.` For more information on using the dns app command see the **MMP Command Line Reference**; for a list of DNS records needed for the split type deployment see **Appendix 1**.

Configure the Lync FE servers, then follow the task sequence in Table 7 below:

Table 7: Task sequence to configure Lync FE servers

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Task</th>
<th>On the Web Admin Interface</th>
<th>Via the API</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Configure the Call Bridge IVR(s) to allow entry of Lync conference IDs</td>
<td>If you have set up an IVR via the Web Admin Interface:</td>
<td>If you have set up IVRs through the API:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Go to Configuration > General in the IVR section, set Joining scheduled Lync conferences by ID to allowed</td>
<td>Set <code>resolveLync ConferenceIds</code> to <code>true</code> for the configured IVR</td>
</tr>
<tr>
<td>2</td>
<td>Allow direct dialing to Lync conference IDs from standard SIP systems. Note: you may choose to extend an existing configured domain to allow Lync conference access, or to create a new one for this purpose.</td>
<td>Go to Configuration > Incoming calls, and for one or more configured call matching domains, set <code>Targets Lync</code> to <code>yes</code></td>
<td>Set <code>resolveToLync Conferences</code> to <code>true</code> on the incoming dial plan rule</td>
</tr>
<tr>
<td>3</td>
<td>Allow Lync conference ID entry via the Web Bridge call join interface</td>
<td>If you have set up the Web Bridge via the Web Admin Interface:</td>
<td>If you have set up Web Bridges through the API:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Go to Configuration > General in the Web bridge settings section ensure that Joining scheduled Lync conferences by ID is set to allowed</td>
<td>Set <code>resolveLync ConferenceIds</code> to <code>true</code> on the Web Bridge</td>
</tr>
</tbody>
</table>

If a call is being matched against Lync conference IDs, the Call Bridge first checks that the call ID does not apply to a space, if it does not then the Call Bridge identifies a Lync FE server that it has
been configured with, that has advertised itself as having the capability to resolve IDs. The Call Bridge queries the Lync FE server to determine whether the call ID in question corresponds to a Lync conference - if it does, the look up is deemed to have been successful and the call is joined to the Lync call. If the call ID is not recognized as corresponding to a Lync conference then no further Lync FE servers will be queried.

Note: You may get unexpected results if you add the settings of multiple Lync FE servers that are in different Lync deployments. For instance, if multiple Lync conferences in different Lync deployments use the same call ID, then more than one Lync FE server may respond positively to the lookup, in which case the "first" successful Lync resolution is used.

Note: Each participant connecting through a Meeting Server to a Lync meeting is required to have a unique "from:" SIP address to avoid participant conflicts in the Lync AVMCU. Telephone participants connecting through a PSTN gateway are at a high risk of encountering participant conflicts due to the generic outgoing callerID information. It is recommended that all telephone participants connect to Lync meetings through the Lync PSTN Conferencing/Mediation Server rather than through the Meeting Server Dual Home gateway.

The text in the invitations sent for scheduled Lync meetings can be customized to include the necessary details to allow users to join via the Meeting Server. These details should be placed in the custom footer section. For example ‘For SIP/H.323 endpoints, join by calling join@example.com and entering the conference ID above. For WebRTC go to join.example.com and enter the conference ID above.’ The URIs in this must match those configured above. Please see the Microsoft documentation https://technet.microsoft.com/en-us/library/gg398638.aspx for more details.

8.8 Choosing Call Bridge mode to connect participants to Lync conferences

You can choose the behavior of the Call Bridge when connecting participants to Lync conferences, using the Meeting Server API. A request parameter `lyncConferenceMode` has been added when POSTing to `/callProfiles` or PUTing to `/callProfile/<call profile id>`.

Set to `dualHomeCallBridge` if you want the calls on the same Call Bridge to be combined into one conference. This will result in a single conference on the Call Bridge, the Call Bridge will call out to the AVMCU meeting.

Set to `gateway` if you do not want the calls to be combined into one conference. Each SIP participant will be in their own conference with an associated call out to the AVMCU meeting.

Note: Set `lyncConferenceMode` to `gateway` to disable dual home conferencing.
9 Office 365 Dual Homed Experience with OBTP Scheduling

9.1 Overview

“Office 365 Dual Homed Experience with OBTP (One Button To Push) Scheduling” allows participants to join Office 365 meetings using Cisco endpoints that support OBTP.

The host schedules a meeting using Microsoft Outlook with Skype for Business plugin, and adds participants and conference rooms (including OBTP-enabled endpoints) and a location to meet in.

To join the meeting, participants using a OBTP-enabled endpoint simply push the OBTP button on the endpoint or touchscreen. Skype for Business clients click a link to join the meeting as normal.

Note: If using Office 365, only invited OBTP-enabled endpoints or Skype for Business clients with Office 365 can join the Lync meeting; Cisco endpoints cannot join the meeting manually, via the Meeting Server IVR. This is a key difference to an on-premise Lync deployment, which allows any Cisco endpoint to join manually via the Meeting Server IVR.

Note: “Office 365 Dual Homed Experience with OBTP (One Button To Push) Scheduling” is supported from Version 2.2, and requires Cisco TMS 15.5, and Cisco TMS XE 5.5 or later.

9.2 Configuration

Note: This feature requires the Call Bridge to connect to the public internet in order to contact Office 365. You will need to open TCP port 443 on your firewall for outgoing traffic.

To set up this method of joining Office 365 meetings, sign into the Web Admin interface of the Meeting Server, navigate to **Configuration>Incoming calls** and configure a **Call matching** rule for incoming calls with the **Targets Lync Simplejoin** field set to **true**. This tells the Meeting Server how to resolve the Lync Simple Meet URL sent in the Office 365 invite.

To have the ability to call participants as well as meetings, use an existing outbound dial plan rule to route the outbound calls, or create a new outbound dial plan rule.
9.3 In-conference experience

"Office 365 Dual Homed Experience with OBTP Scheduling" provides the “dual homed experience” with 2-way audio, video and content sharing. Office 365 clients have the familiar in-conference experience determined by the Lync AVMCU, and participants using OBTP enabled endpoints have a video conferencing experience determined by the Meeting Server. All see the combined participants lists.

Note: Controls on clients do not work conference wide, and can give rise to some strange behavior. For example, if a Skype for Business client mutes an endpoint connected to the Meeting Server then the endpoint will mute, but no notification is sent to the endpoint to say it has been muted; the endpoint cannot unmute itself. If a Skype for Business client mutes all endpoints connected to the Meeting Server and then unmutes them, all the endpoints will remain muted.

Note: ActiveControl functionality such as muting and dropping participants only affect participants on the local Call Bridge and not on the Lync AVMCU.
11 Web Admin interface settings for the TURN server

Note: Cisco plans to remove the TURN server component from the Cisco Meeting Server software in a future version. Customers are encouraged to plan their migration over to using Cisco Expressway for TURN, see the Cisco Expressway Traffic Classification Deployment guide for deployment information.

This section explains how to configure the settings through which the Call Bridge communicates with the TURN server. The TURN server allows you to use the built-in firewall traversal technology when traversing a firewall or NAT. See also Chapter for information on the SIP Edge beta feature for call traversal of local firewalls for SIP and Lync calls.

Follow the instructions in Section 11.2 in the order provided at any time after the initial Meeting Server configuration has been completed.

11.1 TURN server connections

The TURN server listens on both ports 443 and 3478 for both UDP and TCP connections. From version 2.0.4, the TURN server will never listen on port 443 on the loopback interface and by default, the Call Bridge tries to contact the TURN server using TCP port 3478 rather than TCP port 443 as in previous releases.

Figure 21 and Table 8 show the ports used by the TURN server.
Figure 21: Ports used by TURN Server

Key:
- Media
- Media if 32768-65535 not open
- 32768 - 65535 Open part
Table 8: Ports required for TURN server connections

<table>
<thead>
<tr>
<th>Component</th>
<th>Connecting to</th>
<th>Destination port to open</th>
<th>Traffic type</th>
<th>Traffic direction with respect to component</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURN server</td>
<td>Call Bridge and remote devices</td>
<td>32768-65535 (note 2)</td>
<td>Media TCP (RTP)</td>
<td>Incoming and outgoing</td>
<td></td>
</tr>
<tr>
<td>TURN server</td>
<td>Call Bridge and remote devices</td>
<td>32768-65535 (notes 2 and 3)</td>
<td>Media UDP (STUN RTP)</td>
<td>Incoming and outgoing</td>
<td></td>
</tr>
<tr>
<td>TURN server</td>
<td>Call Bridge and remote devices</td>
<td>3478 (note 3)</td>
<td>UDP (STUN)</td>
<td>Incoming</td>
<td></td>
</tr>
<tr>
<td>TURN server</td>
<td>Call Bridge and remote devices</td>
<td>3478 (note 3)</td>
<td>TCP (STUN)</td>
<td>Incoming</td>
<td>Typically won’t be used by remote devices and doesn’t need opening in external firewall.</td>
</tr>
<tr>
<td>TURN server</td>
<td>Call Bridge and remote devices</td>
<td>443 (see notes 3,4,5)</td>
<td>UDP (STUN)</td>
<td>Incoming</td>
<td>Typically won’t be used by remote devices and doesn’t need opening in external firewall.</td>
</tr>
<tr>
<td>TURN server</td>
<td>Call Bridge and remote devices</td>
<td>443 (see notes 3,4,5)</td>
<td>TCP (STUN)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1) Remote devices include web app and SIP endpoints or voice control.
2) Although the range is shown as 32768-65535, currently only 50000-51000 is used. A wider range is likely to be required in future releases.
3) If the media ports (32768-65535) are not open then TCP/UDP port 3478/443 used to connect to the TURN server will be used to relay media.
4) UDP/TCP port /443 can be changed. Using the MMP command `turn tls <port>` will change the UDP/TCP port that the TURN server listens.
5) The TURN server will not listen on port 443 on the loopback interface. This is to avoid port clashes with other services that may be running on port 443 on the loopback interface.
11.2 TURN server settings

Follow the steps in order.

1. Ensure that you have configured the TURN server.

2. Log into the Web Admin Interface and configure the Meeting Server as follows:
 a. Go to Configuration > General.
 b. Set the following:

 - TURN Server Address (Server) = internal server IP address that the Call Bridge will use to access the TURN server to avoid firewall traversal for internal call control
 - TURN Server Address (Clients) = public IP address assigned to the TURN server that external clients will use to access the TURN server. This will be the IP address entered in Section 4 when you configured the TURN server.

Note:
For example, if the interface of the TURN Server is on IP address XX.XX.XX.XX and NAT’ed to an external IP address YY.YY.YY.YY then enter XX.XX.XX.XX as the TURN Server Address (Server) and YY.YY.YY.YY as TURN Server Address (Client). If the interface is on the external IP then no need to enter a client address.

You can enter a DNS name instead of an IP address in both fields, if the DNS name resolves to the appropriate IP address.

If you are using a public IP address, leave TURN Server Address (Clients) address blank and set TURN Server Address (Server) to the public IP address or DNS name used

- Username and Password = your information

<table>
<thead>
<tr>
<th>TURN Server settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURN Server address (server)</td>
</tr>
<tr>
<td>TURN Server address (clients)</td>
</tr>
<tr>
<td>Username</td>
</tr>
<tr>
<td>Password</td>
</tr>
<tr>
<td>Confirm password</td>
</tr>
</tbody>
</table>
12 Settings for Web Bridge 3

This section explains how to configure the settings through which the Call Bridge communicates with Web Bridge 3. This allows you to use web app video calls and meetings.

If you are testing the web app, follow the instructions in Section 12.2 in the order provided at any time after the initial Meeting Server configuration has been completed. If you are not using web app, skip this chapter.

12.1 Web Bridge 3 connections

Table 9 show the ports used for web app connections. Section 12.1.1 describes the call flow between the web app and components in the Meeting Server.

Figure 22: web app port usage
Table 9: Ports required for web app connections

<table>
<thead>
<tr>
<th>Component</th>
<th>Connecting to</th>
<th>Destination port to open</th>
<th>Traffic type</th>
<th>Traffic direction with respect to component</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Bridge 3</td>
<td>web app</td>
<td>443 (note 1)</td>
<td>TCP (HTTPS)</td>
<td>Incoming</td>
<td>Destination port to open: configurable by the user; traffic type: TCP (C2W); direction: outgoing</td>
</tr>
<tr>
<td>Web Bridge 3</td>
<td>web app</td>
<td>80</td>
<td>TCP (HTTP)</td>
<td>Incoming</td>
<td></td>
</tr>
<tr>
<td>Call Bridge</td>
<td>Web Bridge 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.1.1 Web Bridge 3 call flow

This section describes the call flow between the web app and components in the Meeting Server.

1. The web browser opens an HTTPS connection.
2. User is prompted to **Join meeting** (see step 3) or **Sign in** (see step 4)
3. If **Join meeting** is selected, user is prompted to enter the Call ID/URI and passcode and set their name.
 a. Call details are sent over HTTPS to Web bridge 3; Web Bridge 3 queries the Call Bridge over the C2W connection to validate call details.
 b. If successful, the user is asked to pick media settings.
 c. After choosing media settings, the call details and desired name are sent over HTTPS to the Web Bridge 3; forwarded over C2W to the Call Bridge. Call Bridge will respond with a call access token which is returned to the browser and details the TURN servers to be used by the browser.
 d. Call Bridge requests allocations from its configured TURN server.
 e. Web app requests allocations from the provided TURN server.
 f. The browser opens a websocket connection to the Web Bridge 3, which is forwarded over C2W connection to the Call Bridge. The call access token is sent over this websocket.
 g. The browser and Call Bridge exchange SDP over websocket containing local media IP address/ports as well as media relay address/ports.
 h. ICE negotiation sends UDP packets between all browser media IP address/port
combinations and all Call Bridge address/port combinations; attempts TCP connections to TCP media relay address/ports.

i. Shortest successful media path is used for transmitting media between the browser and Call Bridge, either directly, through a TURN UDP relay, or through a TURN TCP relay (with the TURN server translating media packets between TCP stream and UDP).

4. If Sign in is selected, user is prompted to enter Username and Password.
 a. Sent over HTTPS to web bridge, which is forwarded to call bridge to obtain an portal access token if successful.
 b. Enters user portal, all requests are made over HTTPS sending portal access token as header.
 c. If a join call request is made, the flow is the same as above from step 3c onwards, except instead of sending call details and desired name to obtain a call access token, the browser instead sends call details and portal access token.

Useful information: call access tokens and portal access tokens are different, although similar. The portal access token is valid for 24 hours and allows a user to access the user portal. The call access token is only valid for the duration of a user’s participation in the call, and is used only to join a call. The only way to obtain a portal access token is by signing in with a user name and password. A call access token can be obtained either by doing a guest join, or by using the portal access token along with the details of the meeting the user wants to join.

12.2 Web Bridge 3 settings

Version 3.0 allows you to configure some Web Bridge configuration options in a common place rather than solely on a per Web Bridge basis – you can now apply the same settings for all, or a specified group of Web Bridges.

The new /webBridgeProfiles API object is introduced which contains the various Web Bridge configuration options. A newly defined Web Bridge profile can be assigned to the individual webBridge objects, or to the top level (global) profile or tenants.

See the sections on Web Bridge and Web Bridge Profile Methods in the API Reference Guide for more information.

However, there is one configuration setting that needs to be entered via the Web Admin Interface on the Web Bridge 3, this is the Web Bridge URI used to generate meeting invites and the cross launch URL for the web app. Go to Configuration > General. In the External access section enter the Web Bridge URI.
12.2.1 How to create and apply a web bridge profile example

Note: In a single split deployment the Web Bridge 3 configuration must point to the Edge server.

Before you begin, ensure that you have installed the Web Bridge 3 certificate and configured the Web Bridge 3 as detailed in Section 4.5. Then follow these steps:

1. To create a webBridgeProfile using the Meeting Server Web Admin interface:
 a. Log in to the Meeting Server Web Admin interface and select **Configuration > API**.
 b. From the list of API objects, tap the ➤ after `/api/v1/webBridgeProfiles`.
 c. Click **Create new**.
 d. Set the **name** field to the name you wish to call this web bridge profile.
 e. Set the **resourceArchive** field to the address of any customization archive file that the Meeting Server should use for web bridges using this web bridge profile.
 f. Set the **allowPasscodes** field to either **true** or **false**. This field determines whether or not web bridges using this web bridge profile should allow users to lookup coSpaces (and coSpace access methods) with passcodes in combination with an numeric ID/URI. If this parameter is not supplied, it defaults to **true**.
 g. Set the **allowSecrets** field to either **true** or **false**. This field determines whether or not web bridges using this web bridge profile should allow users to access coSpaces (and coSpace access methods) through a meeting join link with a numeric ID and secret. If this parameter is not supplied, it defaults to **true**.
 h. Set the **userPortalEnabled** field to either **true** or **false**. This field determines whether or not web bridges using this web bridge profile should display the sign-in tab on the index page. If this parameter is not supplied, it defaults to **true**.
 i. Set the **allowUnauthenticatedGuests** field to either **true** or **false**. If set to **true**, guest access is allowed from the landing screen on web bridges using this web bridge profile. If set to false, visitor access is only allowed once users have logged into the User Portal. If this parameter is not supplied, it defaults to **true**.
 j. Set the **resolveCoSpaceCallIds** field to either **true** or **false**. This field determines whether or not web bridges using this web bridge profile should accept coSpace and coSpace access method call IDs for the purpose of allowing visitors to join cospace meetings. If this parameter is not supplied, it defaults to **true**.
 k. Set the **resolveLyncConferenceIds** field to either **true** or **false**. This field determines whether or not web bridges using this web bridge profile should accept IDs to be resolved to Lync scheduled conference IDs. If this parameter is not supplied, it defaults to **false**. (This field is visible but non-functional in 3.0.)
I. Set the `resolveCoSpaceUris` field to either `off`, `domainSuggestionDisabled` or `domainSuggestionEnabled`. This field determines whether or not this web bridge should accept coSpace and coSpace access method SIP URLs for the purpose of allowing visitors to join cospace meetings. When set to `off`, join by URI is disabled; when set to `domainSuggestionDisabled`, join by URI is enabled but the domain of the URI won’t be auto-completed or verified on this web bridge; when set to `domainSuggestionEnabled` join by URI is enabled and the domain of the URI can be auto-completed and verified on this web bridge. If this parameter is not supplied, it defaults to `off`.

m. Click **Create**.

2. Assign the ID of the newly created `webBridgeProfile` to any or all of the following, as required:
 - Top level (global) profile (`/api/v1/system/profiles`)
 - Tenants (`/api/v1/tenants/<id>/`)
 - WebBridges (`/api/v1/webBridges/<id>/`)

In this example an updated `webBridgeProfile` is assigned to the top level (global) profile as follows:
 a. From the list of API objects tap the ► after `/api/v1/system/profiles`
 b. Click **View or edit**
 c. Scroll down the parameters to `webBridgeProfile` and click **Choose**.
 d. From the resulting "webBridgeProfile object selector window", click **Select** for the object id of the `webBridgeProfile` that you have just created in Step 1 that you wish to assign to the top level global profile.
 e. Click **Modify**.
 f. The newly assigned `webBridgeProfile` object id should now be listed under **Object configuration**.

Version 3.0 introduces customization and branding for your Cisco Meeting Server web app sign-in page. For more information, see **Cisco Meeting Server 3.0 Customization Guidelines**.

Note: For more information on the web app, see **Cisco Meeting Server web app Important Information**.
13 Recording and Streaming meetings

Prior to 3.0, Meeting Server’s internal recorder and streamer components were dependent upon the Meeting Server’s internal XMPP server component – in 3.0 this XMPP server is removed. Version 3.0 introduces a new internal recorder and streamer, both SIP-based. The new internal recorder and streamer components and dialing out to third-party SIP recorders are all configured using SIP URIs, so when recording or streaming is started the administrator-configured SIP URI is called.

13.1 Feature benefits of the new internal SIP recorder and streamer

- The new recorder and streamer support changing layouts. The recorder/streamer get its layout in a similar way to other SIP calls, i.e. from the defaultLayout parameter on the callLegProfile hierarchy or coSpace object. You can also change the layout parameter in the callLeg.
- Custom layouts can be set using the layoutTemplate parameter (you will need a customizations license to implement custom layouts).
- You can control the maximum resolution on a per callLeg basis using the qualityMain parameter in callLegProfiles and callLegs.
- Previously the XMPP streamer only supported 720p resolution, however the new streamer supports up to 1080p resolution and 3.0 allows you to select the streamer resolution using the MMP comand streamer sip resolution.
- You can choose whether the streamer/recorder receives presentation by changing the presentationViewingAllowed parameter setting in the callLegProfile.
- Improved scalability with the introduction of the new MMP command recorder limit and streamer limit.

13.2 Points to note when implementing the new internal SIP recorder and streamer:

The recommended deployment for production usage of the recorder is to run it on a dedicated VM with a minimum of 4 vCPU cores and 4GB of RAM. The following table provides an idea of performance and resource usage for each of the recording types.
Table 10: Internal SIP recorder performance and resource usage

<table>
<thead>
<tr>
<th>Recording Setting</th>
<th>Recordings per vCPU</th>
<th>RAM required per recording</th>
<th>Disk budget per hour</th>
<th>Maximum concurrent recording</th>
</tr>
</thead>
<tbody>
<tr>
<td>720p</td>
<td>2</td>
<td>0.5GB</td>
<td>1GB</td>
<td>40</td>
</tr>
<tr>
<td>1080p</td>
<td>1</td>
<td>1GB</td>
<td>2GB</td>
<td>20</td>
</tr>
<tr>
<td>audio</td>
<td>16</td>
<td>100MB</td>
<td>150MB</td>
<td>100</td>
</tr>
</tbody>
</table>

Key point to note (applies to new internal recorder component only):
- Performance scales linearly adding vCPUs up to the number of host physical cores.

The recommended deployment for production usage of the streamer is to run it on a dedicated VM with a minimum of 4 vCPU cores and 4GB of RAM. The following table gives an idea of 3 recommended minimum specifications and the number of streams they can handle.

Table 11: Internal SIP streamer recommended specifications

<table>
<thead>
<tr>
<th>Number of vCPUs</th>
<th>RAM</th>
<th>Number of 720p streams</th>
<th>Number of 1080p streams</th>
<th>Number of audio-only streams</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4GB</td>
<td>50</td>
<td>37</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>8GB</td>
<td>100</td>
<td>75</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>8GB</td>
<td>200</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>

Key points to note (applies to both new internal recorder and streamer components):
- Number of vCPUs should not oversubscribe the number of physical cores.
- Maximum number of 720p streams supported is 200 regardless of adding more vCPUs
- Maximum number of 1080p streams supported is 150 regardless of adding more vCPUs.
- Maximum number of audio-only streams supported is 200 regardless of adding more vCPUs.

13.3 Recording overview

There are two methods of recording meetings when using Meeting Server:
- **Third-party external SIP recorder**
- **Meeting Server internal SIP recorder component**

13.3.1 Third-party external SIP recorder support

Meeting Server allows configuration of a third-party external SIP recorder so that when recording is started an administrator-configured SIP URI is called in the same way as the new
Meeting Server internal SIP recorder component.

Note: Support for an external third-party SIP recorder still requires Meeting Server recording licenses.

The third-party external SIP recorder feature:

- allows recorders to negotiate BFCP in order to receive separate video and content streams. This gives more flexible options for how recordings are formatted.
- supports the same resolutions as we do for standard SIP calls
- supports the same audio and video codecs as standard SIP calls
- as with the existing Meeting Server internal recorder, any media content sent by the SIP recorder is discarded.

Note: The SIP recorder feature does not support TIP or Active Control.

13.3.2 Meeting Server internal SIP recorder component support

The Recorder component on the Meeting Server adds the capability of recording meetings and saving the recordings to a document storage such as a network file system (NFS).

The Recorder should be enabled on a different Meeting Server to the server hosting the conferences, see Figure 23. Only locate the Recorder on the same Meeting Server as the Call Bridge which is hosting the conferences (local) for the purposes of testing the deployment.

Where possible it is recommended that the Recorder is deployed in the same physical locality as the target file system to ensure low latency and high network bandwidth. It is expected that the NFS is located within a secure network.

Note: Depending on the mechanism you use to store the recordings you may need to open external firewall ports so that the recorder, uploader and storage system can communicate. For example: NFS running version 2 or 3 of the port mapper protocol uses TCP or UDP ports 2049 and 111.

Note: Do not use the Firewall component on the Meeting Server if using either the Recorder or Uploader.

Note: At the end of recording a meeting, the recording is automatically converted to MP4. The converted file is suitable for placing within a document storage/distribution system, for example, in a network file system (NFS) they are stored in the NFS folder spaces/<space ID>; tenant spaces are stored in tenants/<tenant ID>/spaces/<space ID>.

The following figures show the various permitted recording deployments.
Figure 23: Permitted deployment for recording: remote mode

Figure 24: Permitted deployment for testing purposes only: local mode
13.4 Example of deploying the new internal SIP recorder component on a VM server

Note: If you plan to save the recordings on a NFS server running Windows 2008 R2 SP1, there is a windows hotfix required to fix permission issues: https://support.microsoft.com/en-us/kb/2485529. Consult your Microsoft Windows Administrator before applying this fix.

This is a two stage process:

- [Configuring a Meeting Server recorder via the MMP](#)
- [Configuring the recorder URI via the API](#)

Task 1: Configuring a Meeting Server recorder via the MMP

1. Upgrade to version 3.0.
2. SSH into the MMP and login to configure the recorder (enter the MMP command, `recorder` to see a list of all available commands).
3. Enter `recorder nfs <hostname/IP>:<directory>` to configure the NFS location.
4. Enter `recorder resolution <audio|720p|1080p>` to configure the desired resolution (or to only record the audio of calls).
5. Configure the listening interface of the recorder and the SIP TCP and TLS ports to listen on using the MMP command `recorder sip listen <interface> <tcp-port|none> <tls-port|none>`. Set the respective port to `none` to disable the service:
 a. For example, if you want to only listen on the TLS port and not the TCP port, enter `recorder sip listen a none 6000`
 b. Make a note of the ports you’ve configured if they’re not the default TCP/TLS ports (5060/5061) as they will be needed later.

 Note: If you want to listen on the default SIP TCP/TLS ports (5060/5061) you MUST ensure that the Call Bridge is not listening on the same interface, otherwise the ports will clash. You must disable the Call Bridge by removing the corresponding interface, by entering the MMP command `callbridge listen none`.

6. Optionally, if TLS is configured, configure the SIP TLS certificates you would like to use:
 a. Enter the MMP command `recorder sip certs <key-file> <crt-file> [crt-bundle]`

 Note: Note that if SIP TLS certificates are not configured with this option, the SIP TLS service will fail to start.
7. Optionally, if TLS is configured, you can perform TLS verification for SIP on the recorder as follows:
 a. Enter the MMP command `tls sip trust [<crt-bundle>]`
 b. Enter the MMP command `tls sip verify enable`

 Note: For the TLS connection to be secure we recommend enabling TLS verification.

8. Check the configuration is correct – enter the MMP command `recorder` to view the configuration.

9. Enter the MMP command `recorder enable` to enable the recorder service.

Task 2: Configuring the recorder URI via the API

Once the new SIP recorder is enabled, it can be configured and used in the Call Bridge in the same way as a third-party SIP recorder, using the `sipRecorderUri` API parameter specified in the API call profile object.

If you wish, you can also configure a custom URI that maps to an outboundDialPlan rule (the domain can be anything of your choice, e.g. "recording.com"). You will need to configure an outboundDialPlan rule which tells Meeting Server how to route the domain used in `sipRecorderUri` to the recorder. This will allow you to control priority values, encryption, etc. For more information on configuring outboundDialPlan rules, see the "Dial plan configuration – overview" chapter.

Note: The user part of the configured URI (i.e. the part before the '@' symbol) has no special meaning, and for the new internal SIP recorder component, although required, it can usually be anything, e.g. "recording@recorder.com". However, this may not be the case for third-party SIP recorders which may use the user part of the URI for user credentials, for example. The important part of the URI is the domain part.

To configure the `sipRecorderUri` parameter using the Meeting Server Web Admin interface:

1. Log in to the Meeting Server Web Admin interface and select **Configuration > API**:
2. From the list of API objects, tap the ► after `/api/v1/callProfiles`
3. To configure or modify an existing call profile, select the object id of the required callProfile and fill in the `sipRecorderUri` field with your chosen URI.

 Note: When using the new SIP recorder you only need to use one SIP URI, e.g recording@recorder.com, you don’t need to have different SIP URIs on different profiles (it makes no difference).
4. If you haven’t done so already, set the `recordingMode` field to either, manual or automatic (depending on how you want meetings to be recorded).

5. Click Modify.

The updated callProfile can then be assigned to coSpaces, tenants or the top level (global) profile, as required. In this example an updated callProfile is assigned at the global level as follows:

1. Using the Web Admin interface, select Configuration > API:
 a. From the list of API objects tap the ▶ after `/api/v1/system/profiles`.
 b. Click View or edit.
 c. Scroll down the parameters to callProfile and click Choose.
 d. From the resulting "callProfile object selector window", click Select for the object id of the callProfile you wish to assign to the top level global profile.
 e. Click Modify.
 f. The newly assigned callProfile object id should now be listed under Object configuration.

13.4.0.1 callProfile configuration example (if using a matching outbound dial plan rule):

In this example, `recordingMode` is set to automatic and `sipRecorderUri` to `recording@recorder.com` using the steps above.

From the Meeting Server Web Admin interface select Configuration > Outbound calls to see the matching outbound dial plan rule:

If you configured the recorder in the MMP to use SIP TCP/TLS ports which are different from the default standard ports (5060/5061), you MUST specify the listening port in the `sipRecorderUri` field or in the matching outbound dial plan rule if you are using one, as shown below:

If using an outbound dial plan rule, make sure the service of the port specified matches the encryption type, for example, if using the SIP TLS port, set the Encryption mode to Encrypted.
13.5 Configuring an external third-party SIP recorder

- Specify the SIP recorder – use the sipRecorderUri API parameter for /callProfile objects. If set, this URI is used to dial out to when recording is enabled. If unset, the Meeting Server recorder component (if configured in /recorders) is used.
 a. Use the Web Admin interface of the Meeting Server, select Configuration > API
 b. From the list of API objects, tap the ► after /callProfiles
 c. Either click on the object id of an existing call profile or create a new one
 d. Set the sipRecorderUri parameter

- Use the recordingMode parameter on the API object /callProfiles or /callProfiles/<call profile id> to select whether a meeting can be recorded or not. Options for this are:
 - automatic – recording occurs without any user intervention, if recording cannot occur the meeting still occurs.
 - manual – users can manually start and stop the recording using DTMF.
 - disabled – no users can record.

- Control which users have permission to start and stop recording by setting the recordingControlAllowed parameter on callLegProfiles.

- Use the startRecording and stopRecording parameters for /dtmfProfiles and /dtmfProfiles/<dtmf profile id> to map the DTMF tones for starting and stopping recording.

Note: The additional API objects are given in the Cisco Meeting Server API Reference guide.

13.6 Finding out recording status

To find out the recording status:

- Use the Web Admin interface of the Meeting Server, select Configuration > API
- From the list of API objects, tap the ► after /callLegs
- Click on the object id of an existing call leg

Perform a GET on callLegs/<call leg id> – the recording value in the status output found here indicates whether this callLeg is recording (true) or not (false).

13.7 Recording indicator for dual homed conferences

For dual homed conferences, recording should be done using the Microsoft recording method on the Lync/Skype endpoint. We do not recommend using Cisco Meeting Server to record dual homed conferences.
A recording icon indicates to SIP participants connected to the Meeting Server that a Lync/Skype endpoint is recording the conference on the Lync/Skype side. Meeting Server adds a recording icon to the video pane composed for non-ActiveControl endpoints. Table 12 below shows the icons that Meeting Server will display to indicate that a dual homed conference is being recorded.

Table 12: Recording indicators

<table>
<thead>
<tr>
<th>Icon displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meeting is being recorded via the Meeting Server.</td>
</tr>
<tr>
<td></td>
<td>Meeting is being recorded by a Lync/Skype endpoint</td>
</tr>
<tr>
<td></td>
<td>Meeting is being recorded via the Meeting Server and by a Lync/Skype endpoint.</td>
</tr>
<tr>
<td></td>
<td>The meeting is not being recorded (no icon displayed).</td>
</tr>
</tbody>
</table>

Note: web app shows the recording state using its own icons, they do not distinguish between local and remote recording. Meeting Server icons are not overlaid on the web app video pane.

13.8 Recording with Vbrick

Note: This section only applies to the Meeting Server internal Recorder component.

The Uploader component simplifies the work flow for uploading Meeting Server recordings to the video content manager, Vbrick, from a configured NFS connected to a Meeting Server. No manual importing of recordings is required.

Once the Uploader component is configured and enabled, recordings are pushed from the NFS to Vbrick, and an owner is assigned to the recording. The Rev portal applies security configured by your administrator to your video content, only allowing a user to access the content that they are permitted to access. Vbrick emails the owner when the recording is available in the owner’s Rev portal. Owners of a recording access the video content through their Rev portal, and can edit and distribute as necessary.
Note: If a file is added to the NFS share within a space directory, the file will be uploaded to Vbrick as though it were a valid recording. Take care to apply permissions to your NFS share so that only the Recorder can write to it.

Note: Depending on the mechanism you use to store the recordings you may need to open external firewall ports so that the recorder, uploader and storage system can communicate. For example: NFS running version 2 or 3 of the port mapper protocol uses TCP or UDP ports 2049 and 111.

Note: Do not use the Firewall component on the Meeting Server if using either the Recorder or Uploader.

13.8.1 Prerequisites for the Meeting Server

Uploader installation. The Uploader component can be installed on the same server as the Recorder component, or on a separate server. If installed on the same server as the Recorder, then add a couple of vCPUs for it to use. If run on a different server, then use the same server specification as for the Recorder: dedicated VM with a minimum of 4 physical cores and 4GB of RAM.

CAUTION: The Uploader must run on a different Meeting Server to the Call Bridge hosting the conferences.

Read and Write access to the NFS share. The Meeting Server running the Uploader will require Read and Write permissions for the NFS. Write permission is required to allow the Uploader to re-write the name of the mp4 file when upload is completed.

Note: If the NFS is set or becomes Read Only, then the Uploader component will continuously upload the same video recording to Vbrick. This is a result of the Uploader being unable to mark the file as upload complete. To avoid this, ensure that the NFS provides read/write access.

API Access to Vbrick Rev. Configure API access for a user on Vbrick Rev.

API Access to Call Bridge. Configure API access for a user on the Meeting Server running the Call Bridge.

Trust Store Store the certificate chains from the Vbrick Rev server, and the Meeting Server running the Web Admin interface for the Call Bridge. The Uploader needs to trust both the Vbrick Rev and the Call Bridge.

Decide who has access to the video recordings. Access to uploaded video recordings can be set to: All Users, Private, and for only space owners and members.

Default state of video recordings. Decide whether the video recordings are immediately available after upload (Active), or that the owner of the video recording needs to publish it to make the recording available (Inactive).
Table 13: Port Requirements

<table>
<thead>
<tr>
<th>Component</th>
<th>Connecting to</th>
<th>Destination port to open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Bridge</td>
<td>NFS (version 3)</td>
<td>2049</td>
</tr>
<tr>
<td>Uploader</td>
<td>Web Admin of Call Bridge</td>
<td>443 or port specified in Uploader configuration</td>
</tr>
<tr>
<td>Uploader</td>
<td>Vbrick Rev server</td>
<td>443 for video uploads and API access to Vbrick Rev server</td>
</tr>
</tbody>
</table>

13.8.2 Configuring the Meeting Server to work with Vbrick

These steps assume that you have already setup the NFS to store recordings.

1. Establish an SSH connection to the MMP of the Meeting Server where you want to run the Uploader. Log in.
2. For new Vbrick installations, ignore this step. If you are reconfiguring a Vbrick installation then first disable Vbrick access to the Meeting Server.
   ```
   uploader disable
   ```
3. Specify the NFS that the Uploader will monitor.
   ```
   uploader nfs <hostname/IP>:<directory>
   ```
4. Specify the Meeting Server that the Uploader will query for recording information, for example the name of the Meeting Server hosting the space associated with the recording.
   ```
   uploader cms host <hostname>
   ```
5. Specify the Web Admin port on the Meeting Server running the Call Bridge. If a port is not specified, it defaults to port 443.
   ```
   uploader cms port <port>
   ```
6. Specify the user with API access on the Meeting Server running the Call Bridge. The password is entered separately.
   ```
   uploader cms user <username>
   ```
7. Set the password for the user specified in step 6. Type
   ```
   uploader cms password
   ```
 you will be prompted for the password.
8. Create a certificate bundle (crt-bundle) holding a copy of the Root CA’s certificate and all intermediate certificates in the chain for the Web Admin on the Meeting Server running the Call Bridge.
9. Add the certificate bundle created in step 8 to the Meeting Server trust store.
   ```
   uploader cms trust <crt-bundle>
   ```
10. Configure the Vbrick host and the port to which the Uploader will connect.
    ```
    uploader rev host <hostname>
    uploader rev port <port>
    ```

Note: The port defaults to 443 unless otherwise specified.
11. Add a Vbrick Rev user who has API permission to upload video recordings.
 `uploader rev user <username>`

12. Set the password for the user specified in step 11. Type
 `uploader rev password`
 you will be prompted for the password.

13. Create a certificate bundle (crt-bundle) holding a copy of the Root CA’s certificate and all
 intermediate certificates in the chain for the Vbrick Rev server.

14. Add the certificate bundle created in step 13 to the Vbrick Rev trust store.
 `uploader rev trust <crt-bundle>`

15. Set access to the video recording.
 `uploader access <Private|Public|AllUsers>`

16. Give members of the space the ability to view or edit the recordings.
 `uploader cospace_member_access <view|edit|none>`

 Note: This step requires the listed members to have valid email addresses which are
 associated with accounts on Vbrick. For example `user1@example.com`

17. Decide whether the owner of the space is the single owner of the video recordings.
 `uploader recording_owned_by_cospace_owner <true|false>`

 Note: This step also requires the owner of the video recordings to have a valid email address
 which is associated with an account on Vbrick.

18. If the owner of the space is not listed in Vbrick Rev, then set the username of the fallback
 owner. If the fallback owner is not specified, then owner will default to the user configured
 on the MMP.
 `uploader fallback_owner <vbrick-user>`

19. Enable comments to the video recordings.
 `uploader comments enable`

20. Enable ratings for the video recordings.
 `uploader ratings enable`

21. Set the download permission for the video recordings.
 `uploader downloads enable`

22. Set the default state of the video recording when first uploaded to Vbrick Rev.
 `uploader initial_state <active|inactive>`

23. Decide whether to delete the video recording from the NFS after upload is complete
 `uploader delete_after_upload <true|false>`

24. Enable the Uploader to access the Meeting Server
 `uploader enable`
Note: Set `messageBoardEnabled` to `true` to see the messages being posted in the space indicating that the recording is available.

13.9 Streaming meetings

The Streamer component adds the capability of streaming meetings held in a space to the RTMP URL configured on the space.

An external streaming server needs to be configured to be listening on this RTMP URL. The external streaming server can then offer live streaming to users, or it can record the live stream for later playback.

Note: The Streamer component supports the RTMP standard in order to work with third party streaming servers that also support the RTMP standard. Vbrick is the officially supported external streaming server, however, other servers have also been tested.

Note: The Streamer component supports the RTMP standard in order to work with third party streaming servers that also support the RTMP standard. Vbrick is the officially supported external streaming server, however, other servers have also been tested.

Note: You may need to open firewall ports if the streaming destination RTMP URLs are on the external side of a firewall.

The following figure shows the permitted streamer deployment.
For testing purposes only, the Streamer can be co-located on the same server as the Call Bridge. This may support between 1 to 2 simultaneous streamings.

13.10 Deploying the new SIP streamer component on a VM server

This is a two stage process:

- Configuring a Meeting Server streamer via the MMP
- Configuring the streamer URI via the API

Task 1: Configuring a Meeting Server streamer via the MMP

1. Upgrade to version 3.0.
2. SSH into the MMP and login to configure the recorder (enter the MMP command, `streamer help` to see a list of all available commands).

3. Configure the listening interface of the streamer and the SIP TCP and TLS ports to listen on using the MMP command `streamer sip listen <interface> <tcp-port|none> <tls-port|none>`. Set the respective port to `none` to disable the service:
 a. For example, if you want to only listen on the TLS port and not the TCP port, enter `streamer sip listen a none 6000`
b. Make a note of the ports you’ve configured if they’re not the default TCP/TLS ports (5060/5061), as they will be needed later.

4. Optionally, you can set the maximum resolution that you want the streamer to do (or to only stream the audio of calls) using the MMP command `streamer sip resolution <audio|720p|1080p>`, if not specified, the default is 720p.

 a. For example, if you want to set it to 1080p, enter `streamer sip resolution 1080p`

 Note: If you want to use 1080p we recommend that you increase your transmit SIP call bandwidth to 3,500,000 bits per second to optimize the video quality. To do this, on the Web Admin UI go to **Configuration > Call settings > Bandwidth settings (SIP)** and set as required.

5. Optionally, if TLS is configured, configure the SIP TLS certificates you would like to use:

 a. Enter the MMP command `streamer sip certs <key-file> <crt-file> [<crt-bundle>]`

 Note: Note that if SIP TLS certificates are not configured with this option, the SIP TLS service will fail to start.

6. Optionally, if TLS is configured, you can perform TLS verification for SIP on the streamer as follows:

 a. Enter the MMP command `tls sip trust [<crt-bundle>]`

 b. Enter the MMP command `tls sip verify enable`

 Note: For the TLS connection to be secure we recommend enabling TLS verification.

7. Check the configuration is correct — enter the MMP command `streamer` to view the configuration.

8. Enter the MMP command `streamer enable` to enable the streamer service.

Task 2: Configuring the streamer URI via the API

Once the new SIP streamer is enabled, it can be configured and used in the Call Bridge using the `sipStreamerUri` API parameter specified in the API call profile object.

If you wish, you can also configure a custom URI that maps to an outboundDialPlan rule (the domain can be anything of your choice, e.g. "streaming.com"). You will need to configure an outboundDialPlan rule which tells Meeting Server how to route the domain used in `sipStreamerUri` to the streamer. This will allow you to control priority values, encryption, etc.

For more information on configuring `/outboundDialPlanRules`, see the "Dial plan configuration - overview" chapter of your deployment guide.
Note: The user part of the configured URI (i.e. the part before the '@' symbol) has no special meaning, and for the new internal SIP streamer component, although required, it can usually be anything, e.g. "streaming@streamer.com". The important part of the URI is the domain part.

To configure the `sipStreamerUri` parameter using the Meeting Server Web Admin interface:

1. Log in to the Meeting Server Web Admin interface and select Configuration > API:
2. From the list of API objects, tap the ► after `/api/v1/callProfiles`
3. To configure or modify an existing call profile, select the object id of the required callProfile and fill in the `sipStreamerUri` field with your chosen URI.

Note: When using the new SIP streamer you only need to use one SIP URI, e.g. `streaming@streamer.com`, you don’t need to have different SIP URIs on different profiles.

4. If you haven’t done so already, set the `streamingMode` parameter to either, `manual` or `automatic` (depending on how you want meetings to be streamed).
5. Click Modify.

The updated callProfile can then be assigned to coSpaces, tenants or the top level (global) profile, as required. In this example an updated callProfile is assigned at the global level as follows:

1. Using the Web Admin interface, select Configuration > API:
 a. From the list of API objects tap the ► after `/api/v1/system/profiles`
 b. Click View or edit
 c. Scroll down the parameters to callProfile and click Choose.
 d. From the resulting "callProfile object selector window", click Select for the object id of the callProfile you wish to assign to the top level global profile.
 e. Click Modify.
 f. The newly assigned callProfile object id should now be listed under Object configuration.

For each coSpace in the API that you wish to enable streaming for, you must configure the `streamUrl` coSpace API field with the RTMP stream URL to stream to (e.g. "rtmp://mystream.com/live/app"). To configure this:

1. Log in to the Meeting Server Web Admin interface and select Configuration > API:
2. From the list of API objects, tap the ► after `/api/v1/coSpaces`
3. To configure or modify an existing coSpace, select the object id of the required coSpace
and fill in the `streamUrl` field with the RTMP stream URL to stream to.

4. Click `Modify`.

13.10.1 Known Limitations

CAUTION: Be warned that the stream URL is sent via SIP headers, so any RTMP stream URLs containing login credentials could potentially be exposed to call control providers which may log them.

The new SIP Streamer component does not support RTMPS.
14 Support for ActiveControl

The Meeting Server supports ActiveControl for hosted calls. For participants using a Cisco SX, MX or DX endpoint with CE 8.3+ software installed, ActiveControl allows the meeting participant to receive details of the meeting and perform a few administrative tasks during the meeting, using the endpoint interface.

14.1 ActiveControl on the Meeting Server

The Meeting Server supports sending the following meeting information to ActiveControl enabled endpoints:

- Participant list (also known as the roster list) so that you can see the names of the other people in the call and the total number of participants,
- indicator of audio activity for the currently speaking participant,
- indicator of which participant is currently presenting,
- Indicators telling whether the meeting is being recorded or streamed, and if there are any non-secure endpoints in the call,
- on screen message which will be displayed to all participants,

and supports these administrative tasks on ActiveControl enabled endpoints:

- select the layout to be used for the endpoint,
- disconnect other participants in the meeting.

14.2 Limitations

- If an ActiveControl enabled call traverses a Unified CM trunk with a Unified CM version lower than 9.1(2), the call may fail. ActiveControl should not be enabled on older Unified CM trunks (Unified CM 8.x or earlier).
- ActiveControl is a SIP only feature. H.323 interworking scenarios are not supported.

14.3 Overview on ActiveControl and the iX protocol

ActiveControl uses the iX protocol, which is advertised as an application line in the SIP Session Description Protocol (SDP). The Meeting Server automatically supports ActiveControl, but the feature can be disabled, see section Section 14.4. In situations where the far end network is not known or is known to have devices that do not support the iX protocol, it may be safest to disable iX on SIP trunks between the Meeting Server and the other Call control or Video Conferencing devices. For instance:
14 Support for ActiveControl

- for connections to Unified CM 8.x or earlier systems the older Unified CM systems will reject calls from ActiveControl-enabled devices. To avoid these calls failing, leave iX disabled on any trunk towards the Unified CM 8.x device in the network. In cases where the 8.x device is reached via a SIP proxy, ensure that iX is disabled on the trunk towards that proxy.

- for connections to third-party networks. In these cases there is no way to know how the third-party network will handle calls from ActiveControl-enabled devices, the handling mechanism may reject them. To avoid such calls failing, leave iX disabled on all trunks to third-party networks.

- for Cisco VCS-centric deployments which connect to external networks or connect internally to older Unified CM versions. From Cisco VCS X8.1, you can turn on a zone filter to disable iX for INVITE requests sent to external networks or older Unified CM systems. (By default, the filter is off.)

14.4 Disabling UDT within SIP calls

ActiveControl uses the UDT transport protocol for certain features, for example sending roster lists to endpoints, allowing users to disconnect other participants while in a call, and inter-deployment participation lists. UDT is enabled by default. You can disable UDT for diagnostic purposes, for example if your call control does not use UDT, and you believe this is the reason the call control does not receive calls from the Meeting Server.

Using the Web Admin interface of the Meeting Server, select Configuration>API:

1. From the list of API objects, tap the ➤ after /compatibilityProfiles
2. Either click on the object id of an existing compatibility profile or create a new one
3. Set parameter sipUDT = false. Click Modify.
4. From the list of API objects, tap the ➤ after /system/profiles
5. Click the View or edit button
6. Click Choose to the right of parameter compatibilityProfile. Select the object id of the compatibilityProfile created in step 3 above
7. Click Modify.

14.5 Enabling iX support in Cisco Unified Communications Manager

Support for the iX protocol is disabled by default on the Cisco Unified Communications Manager for some SIP profiles. To enable iX support in Unified CM, you must first configure support in the SIP profile and then apply that SIP profile to the SIP trunk.
Configuring iX support in a SIP profile

2. Do one of the following:
 a. To add a new SIP profile, click Add New.
 b. To modify an existing SIP profile, enter the search criteria and click Find. Click the name of the SIP profile that you want to update.

 The SIP Profile Configuration window displays.

3. Check the check box for Allow iX Application Media

4. Make any additional configuration changes.

5. Click Save

Applying the SIP profile to a SIP trunk

1. Choose Device > Trunk.

 The Find and List Trunks window displays.

2. Do one of the following:
 a. To add a new trunk, click Add New.
 b. To modify a trunk, enter the search criteria and click Find. Click the name of the trunk that you want to update.

 The Trunk Configuration window displays.

3. From the SIP Profile drop-down list, choose the appropriate SIP profile.

4. Click Save.

5. To update an existing trunk, click Apply Config to apply the new settings.

14.6 Filtering iX in Cisco VCS

To configure the Cisco VCS to filter out the iX application line for a neighbor zone that does not support the protocol, the zone must be configured with a custom zone profile that has the SIP UDP/IX filter mode advanced configuration option set to On.

To update advanced zone profile option settings:

1. Create a new neighbor zone or select an existing zone (Configuration > Zones > Zones).

2. In the Advanced parameters section, for Zone profile, choose Custom if it is not already selected. The zone profile advanced configuration options display.
3. From the **SIP UDP/IX filter mode** drop-down list, choose *On*.
4. Click **Save**.

14.7 iX troubleshooting

Table 14: Call handling summary for calls that contain an iX header

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified CM 8.x or earlier</td>
<td>Calls fail</td>
</tr>
<tr>
<td>Unified CM 9.x earlier than 9.1(2)</td>
<td>Calls handled normally but no ActiveControl</td>
</tr>
<tr>
<td>Unified CM 9.1(2)</td>
<td>Calls handled normally plus ActiveControl</td>
</tr>
<tr>
<td>Endpoint - no support for iX and no SDP implementation</td>
<td>Endpoint may reboot or calls may fail</td>
</tr>
</tbody>
</table>
15 Additional security considerations & QoS

This chapter discusses other security features available on the Meeting Server that are in addition to authentication provided through X.509 certificates and public keys.

Note: The commands listed in this chapter are also listed in the MMP Command Reference guide.

15.1 Common Access Card (CAC) integration

The Common Access Card (CAC) is used as an authentication token to access computer facilities. The CAC contains a private key which cannot be extracted but can be used by on-card cryptographic hardware to prove the identity of the card holder.

The Meeting Server supports administrative logins to the SSH and Web Admin Interface using CAC. Use the MMP commands in Table 15 below to configure CAC for your deployment.

Table 15: MMP commands to configure CAC logins

<table>
<thead>
<tr>
<th>MMP commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cac enable</td>
<td>disable [strict]</td>
</tr>
<tr>
<td>cac issuer <ca cert-bundle></td>
<td>Identifies trusted certificate bundle to verify CAC certificates</td>
</tr>
<tr>
<td>cac ocsp certs <keyfile> <certificatefile></td>
<td>Identifies certificate and private key for TLS communications with OCSP server, if used</td>
</tr>
<tr>
<td>cac ocsp responder <URL></td>
<td>Identifies URL of OCSP server</td>
</tr>
<tr>
<td>cac ocsp enable</td>
<td>disable</td>
</tr>
</tbody>
</table>

15.2 Online Certificate Status Protocol (OCSP)

OCSP is a mechanism for checking the validity and revocation status of certificates. The MMP can use OCSP to work out whether the CAC used for a login is valid and, in particular, has not been revoked.

15.3 FIPS

You can enable a FIPS 140-2 level 1 certified software cryptographic module, then cryptographic operations are carried out using this module and cryptographic operations are restricted to the FIPS approved cryptographic algorithms.
15.4 TLS certificate verification

You can enable Mutual Authentication for SIP and LDAP in order to validate that the remote certificate is trusted. When enabled, the Call Bridge will always ask for the remote certificate (irrespective of which side initiated the connection) and compare the presented certificate to a trust store that has been uploaded and defined on the server.

<table>
<thead>
<tr>
<th>MMP commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`fips enable</td>
<td>disable`</td>
</tr>
<tr>
<td><code>fips</code></td>
<td>Displays whether FIPS mode is enabled</td>
</tr>
<tr>
<td><code>fips test</code></td>
<td>Runs the built-in FIPS test</td>
</tr>
</tbody>
</table>

15.5 User controls

MMP admin users can:

- Reset another admin user’s password
- Set the maximum number of characters that can be repeated in a user’s password – and there are a number of other user password rule additions
- Limit MMP access by IP address
- Disable MMP accounts after configurable idle period

15.6 Firewall rules

The MMP supports the creation of simple firewall rules for both the media and admin interfaces. Note that this is not intended to be a substitute for a full standalone firewall solution and therefore is not detailed here.
Firewall rules must be specified separately for each interface. After setting up a firewall rule on an interface, remember to enable the firewall on that interface. See the MMP Command Reference for full details and examples.

CAUTION: We recommend using the serial console to configure the firewall, because using SSH means that an error in the rules would make the SSH port inaccessible. If you must use SSH then ensure that an allow ssh rule is created for the ADMIN interface before enabling the firewall.

15.7 DSCP

You can enable DSCP tagging for the different traffic types on the Meeting Server (see the MMP Command Reference).

1. Sign in to the MMP.

2. Use `dscp (4|6) <traffic type> (<DSCP value>|none)` to set the DSCP values as required. For example: `dscp 4 oa&m 0x22` which sets operations, administration and management for IPv4.

3. Alternatively, use the `dscp assured (true|false)` command to force the use of the assured or non-assured DSCP values for the "voice" and "multimedia" traffic types. For example: `dscp assured true`

Note: DSCP tagging is for all packets being sent from the Meeting Server only. For PC Client DSCP tagging, Group Policy must be used to define desired DSCP values because Windows controls this, and normal user accounts have no permissions to set DSCP.
16 Diagnostic tools to help Cisco Support troubleshoot issues

16.1 Log bundle

The Meeting Server can produce a log bundle containing the configuration and state of various components in the Meeting Server. This log bundle will aid Cisco Support speed up their analysis of your issue. It will include some of the following files:

- syslog
- live.json
- dumps
- db

If you need to contact Cisco support with an issue, follow these steps to download the log bundle from the Meeting Server.

1. Connect your SFTP client to the IP address of the MMP.
2. Log in using the credentials of an MMP admin user.
3. Copy the file logbundle.tar.gz to a local folder.
4. Rename the file, changing the logbundle part of the filename to identify which server produced the file. This is important in a multi-server deployment.
5. Send the renamed file to your Cisco Support contact for analysis.

Initial file size of the log bundle.tar.gz is 1 Kb, after transfer via SFTP the size will increase depending on the number of files and their size.

16.2 Ability to generate a keyframe for a specific call leg

A `generateKeyframe` object has been added to `/callLegs/<call leg id>`. This is a debug facility, and Cisco Support may ask you to use the feature when diagnosing an issue.

Using the Web Admin interface, select Configuration > API, then

1. From the list of API objects, tap the ► after `/callLegs`
2. Click on the object id of the call leg
3. From the list of Related objects at the top of the page, click `/callLegs/<call leg id>/generateKeyframe`
4. Click Create
This will trigger the generation of a new keyframe in the outgoing video streams for the call leg in question

16.3 Reporting registered media modules in syslog

syslog can print a message every 15 minutes to allow people to monitor whether all media modules are alive and well.

An example from a Meeting Server 2000:

```
2020-08-06T13:21:39.316Z user.info cms2kapp host:server INFO : media module status 1111111 (1111111/1111111) 7/7 (full media capacity)
```
Appendix A DNS records needed for the deployment

Note: You can configure the DNS resolver(s) to return values which are not configured in external DNS servers or which need to be overridden; custom Resource Records (RRs) can be configured which will be returned instead of querying external DNS servers. (The RR is not available to clients.) See the [MMP Command Reference](#) for details.

Note: Verify that no A or SRV records already exist for any Meeting Servers before defining the records below.

Table 18: DNS records required for deployment

<table>
<thead>
<tr>
<th>Type</th>
<th>Example and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A / AAA</td>
<td>join.example.com</td>
</tr>
<tr>
<td></td>
<td>Resolves to:</td>
</tr>
<tr>
<td></td>
<td>IP address of Web Bridge.</td>
</tr>
<tr>
<td></td>
<td>Description:</td>
</tr>
<tr>
<td></td>
<td>This record is not used by the Meeting Server directly; however, it is common practice to provide an end user with an FQDN to type into the browser which resolves to the Web Bridge. There is no restriction or requirement on the format of this record.</td>
</tr>
</tbody>
</table>

A / AAA	ukedge.example.com
	Resolves to:
	IP address of the Load Balancer.
	Description:
	Used by the Core server to create a trunk to the Load Balancer running on the Edge server.

<p>| A / AAA | ukcore1.example.com |
| | Resolves to: |
| | IP address of the Call Bridge. |
| | Description: |
| | Used by the Lync FE server to contact the Call Bridge. |</p>
<table>
<thead>
<tr>
<th>Type</th>
<th>Example and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A / AAAA</td>
<td>ukcoreadmin.example.com</td>
</tr>
<tr>
<td></td>
<td>ukedgeadmin.example.com</td>
</tr>
<tr>
<td></td>
<td>Resolves to:</td>
</tr>
<tr>
<td></td>
<td>IP address of the MMP Interface</td>
</tr>
<tr>
<td></td>
<td>Description:</td>
</tr>
<tr>
<td></td>
<td>This record is used purely for admin purposes; when system administrators prefer a FQDN</td>
</tr>
<tr>
<td></td>
<td>to remember for each MMP interface.</td>
</tr>
<tr>
<td>SRV(*)</td>
<td>_sipinternaltls.tcp.<yourLyncdomain></td>
</tr>
<tr>
<td></td>
<td>Resolves to:</td>
</tr>
<tr>
<td></td>
<td>The A record of the Lync FE server or FE Pool.</td>
</tr>
<tr>
<td></td>
<td>Description:</td>
</tr>
<tr>
<td></td>
<td>If you have an FE pool, you can have multiple FE records pointing to individual FE</td>
</tr>
<tr>
<td></td>
<td>servers within the pool. You also need this record if you want Meeting Server to</td>
</tr>
<tr>
<td></td>
<td>resolve Lync meetings by Lync meeting IDs.</td>
</tr>
<tr>
<td>A / AAAA</td>
<td>fe.<yourLyncdomain>_</td>
</tr>
<tr>
<td></td>
<td>Resolves to:</td>
</tr>
<tr>
<td></td>
<td>IP address of the Lync FE server.</td>
</tr>
<tr>
<td></td>
<td>Description:</td>
</tr>
<tr>
<td></td>
<td>You will need one record for each individual FE server.</td>
</tr>
<tr>
<td>SRV(*)</td>
<td>_sipfederationtls.tcp.<yourSIPdomain></td>
</tr>
<tr>
<td></td>
<td>Resolves to:</td>
</tr>
<tr>
<td></td>
<td>The FQDN of the Call Bridge.</td>
</tr>
<tr>
<td></td>
<td>Description:</td>
</tr>
<tr>
<td></td>
<td>This record is required for Lync federation.</td>
</tr>
<tr>
<td>A</td>
<td>callbridge.example.com</td>
</tr>
<tr>
<td></td>
<td>Resolves to:</td>
</tr>
<tr>
<td></td>
<td>IP address of the Call Bridge.</td>
</tr>
<tr>
<td></td>
<td>Description:</td>
</tr>
<tr>
<td></td>
<td>Required for Lync federation as the Call Bridge will need to have a public IP address,</td>
</tr>
<tr>
<td></td>
<td>and NAT is not supported in this scenario.</td>
</tr>
</tbody>
</table>

(*) SRV records do not resolve directly to IP addresses. You need to create associated A or AAAA name records in order to satisfy the SRV requirements.
Appendix B Ports required for the deployment

The following diagram shows the connections to the Meeting Server and location of the firewall in a split server deployment. Use the tables below the diagram to identify which ports to open.

Figure 26: Ports that must be open in a split server deployment with Expressway in the DMZ

Figure 27: Ports that must be open in a split server deployment using the TURN server and Web Bridge 3 components in the DMZ

B.1 Configuring the Meeting Server

Table 19 lists the ports to use to configure the Meeting Server.

Table 19: Ports for administration of the Meeting Server

<table>
<thead>
<tr>
<th>Code</th>
<th>Connect to</th>
<th>Destination port to open</th>
<th>Method</th>
<th>Traffic type</th>
<th>Traffic direction with respect to Meeting Server</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>MMP</td>
<td>22</td>
<td>SSH</td>
<td>TCP</td>
<td>Incoming</td>
<td>Secure login to MMP</td>
</tr>
<tr>
<td>F</td>
<td>API or Web Admin</td>
<td>80</td>
<td>HTTP</td>
<td>TCP</td>
<td>Incoming</td>
<td>Port enabled/disabled through MMP</td>
</tr>
<tr>
<td>G</td>
<td>API or Web Admin</td>
<td>443</td>
<td>HTTPS</td>
<td>TCP</td>
<td>Incoming</td>
<td>Port configurable through MMP</td>
</tr>
</tbody>
</table>
B.2 Connecting services

Use Table 20 to identify which ports are used to connect different services to the web app.

Table 20: Ports to open to connect services

<table>
<thead>
<tr>
<th>Code</th>
<th>Component</th>
<th>Connecting to</th>
<th>Destination port to open</th>
<th>Traffic type</th>
<th>Traffic direction with respect to component</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MMP</td>
<td>NTP server</td>
<td>123</td>
<td>TCP or UDP</td>
<td>Outgoing</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>MMP</td>
<td>Syslog server</td>
<td>514</td>
<td>TCP</td>
<td>Outgoing</td>
<td>Default port, different port configurable through MMP</td>
</tr>
<tr>
<td>C1</td>
<td>MMP</td>
<td>SNMP server</td>
<td>161</td>
<td>UDP</td>
<td>Incoming</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>MMP</td>
<td>SNMP TRAP</td>
<td>162</td>
<td>TCP or UDP</td>
<td>Outgoing</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>MMP/Call Bridge/ Web Bridge</td>
<td>DNS server</td>
<td>53</td>
<td>TCP or UDP</td>
<td>Outgoing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Call Bridge</td>
<td>CDR recipient device</td>
<td>TCP</td>
<td>Outgoing</td>
<td>set URI of CDR recipient in Web Admin interface, or API using API object /sys-tem/cdrReceivers/</td>
<td></td>
</tr>
</tbody>
</table>

B.3 Using Meeting Server components

Use Table 21 to identify which ports are used to connect to the components in the Meeting Servers and the ports that need to be open through the firewall.

Table 21: Ports to open to use Meeting Server components

<table>
<thead>
<tr>
<th>Code</th>
<th>Component</th>
<th>Connecting to</th>
<th>Destination port to open</th>
<th>Traffic type</th>
<th>Traffic direction with respect to component</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Call Bridge</td>
<td>3rd party SIP recorder</td>
<td>5060</td>
<td>TCP (SIP)</td>
<td>Outgoing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5060</td>
<td>UDP (SIP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5061</td>
<td>TLS (SIP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Component</td>
<td>Connecting to</td>
<td>Destination port to open</td>
<td>Traffic type</td>
<td>Traffic direction with respect to component</td>
<td>Additional information</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>H1</td>
<td>Call Bridge</td>
<td>3rd party SIP recorder</td>
<td>Media</td>
<td>Outgoing</td>
<td>ports determined by 3rd party SIP recorder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32768-65535</td>
<td>UDP (STUN, RTP, BFCP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Incoming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Call Bridge</td>
<td>Recorder/Streamer</td>
<td>5060</td>
<td>TCP (SIP)</td>
<td>Outgoing</td>
<td>Ports configurable through MMP. For a local recorder use the loopback interface, e.g. lo:8443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5061</td>
<td>TLS (SIP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>Call Bridge</td>
<td>Recorder/Streamer</td>
<td>32768-65535</td>
<td>Media</td>
<td>Outgoing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32768-65535</td>
<td>UDP (STUN, RTP, BFCP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Incoming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2</td>
<td>Recorder</td>
<td>Network File Server (NFS)</td>
<td></td>
<td></td>
<td></td>
<td>Use the MMP command recorder nfs <hostname/IP><directory> to specify where to store the recordings on the NFS</td>
</tr>
<tr>
<td>I3</td>
<td>Streamer</td>
<td>Streamer client</td>
<td>1935</td>
<td>RTMP</td>
<td>Outgoing</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Call Bridge</td>
<td>LDAP/LDAPS (Active Directory)</td>
<td>389/636 (note 1)</td>
<td>TCP/TCP (SIP TLS)</td>
<td></td>
<td>Port configurable through Web Admin interface</td>
</tr>
<tr>
<td>K</td>
<td>Call Bridge</td>
<td>Internal registered SIP endpoint or voice call control</td>
<td>5060</td>
<td>UDP (SIP), TCP (SIP)</td>
<td></td>
<td>InComing and outgoing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5061</td>
<td>TCP (SIP TLS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>Call Bridge</td>
<td>Internal registered SIP endpoint or voice call control</td>
<td>32768-65535</td>
<td>UDP (STUN, RTP, BFCP)</td>
<td></td>
<td>InComing</td>
</tr>
<tr>
<td>L</td>
<td>Call Bridge</td>
<td>Lync FE server/AVMCU</td>
<td>5061</td>
<td>TCP (SIP TLS)</td>
<td></td>
<td>InComing and outgoing</td>
</tr>
</tbody>
</table>
Appendix B Ports required for the deployment

<table>
<thead>
<tr>
<th>Code</th>
<th>Component</th>
<th>Connecting to</th>
<th>Destination port to open</th>
<th>Traffic type</th>
<th>Traffic direction with respect to component</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Call Bridge</td>
<td>Lync client, Lync FE server / AVMCU</td>
<td>1024-65535 (note 2)</td>
<td>UDP (STUN, RTP)</td>
<td>Outgoing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32768-65535</td>
<td>UDP (STUN, RTP)</td>
<td>Incoming</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1024-65535 (note 2)</td>
<td>TCP (RDP)</td>
<td>Outgoing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32768-65535</td>
<td>TCP (RDP)</td>
<td>Incoming</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Call Bridge</td>
<td>Lync Edge server</td>
<td>3478</td>
<td>UDP</td>
<td>Outgoing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>443</td>
<td>TCP</td>
<td>Outgoing</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Call Bridge</td>
<td>Lync Edge server</td>
<td>32768-65535 (note 3)</td>
<td>UDP (STUN, RTP)</td>
<td>Incoming</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>Call Bridge</td>
<td>Web Bridge 3</td>
<td>TCP (C2W)</td>
<td>bidirectional data flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>Call Bridge</td>
<td>TURN Server</td>
<td>1024-65535</td>
<td>UDP (STUN, RTP)</td>
<td>Incoming and outgoing</td>
<td>Port 3478 always in use, ephemeral ports will be allocated within the range as needed per call</td>
</tr>
<tr>
<td>P2</td>
<td>Web Bridge 3</td>
<td>Cisco Meeting Server web app</td>
<td>443</td>
<td>TCP (HTTPS)</td>
<td>Incoming and outgoing</td>
<td>Port 80 optional for HTTP > HTTPS redirect</td>
</tr>
<tr>
<td>P3</td>
<td>TURN server</td>
<td>Cisco Meeting Server web app</td>
<td>32768-65535 (notes 3 and 4)</td>
<td>Media TCP/UDP (STUN RTP)</td>
<td>Incoming and outgoing</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Call Bridge</td>
<td>Database</td>
<td></td>
<td></td>
<td>Internal to Meeting Server, does not require open ports on the firewall</td>
<td></td>
</tr>
</tbody>
</table>

Note:

1) Port 636 (secure) and 389 (non-secure) are commonly used for this function but the port is configurable through the Web Admin interface. The same applies to 3268 and 3269 (non-secure and secure) global catalog LDAP requests.

2) Exact range depends on configuration of Lync server.

3) Although the range is shown as 32768-65535, currently only 50000-51000 is used. A wider range is likely to be
required in future releases.

4) If the media ports (32768–65535) are not open then TCP/UDP port 3478/443, used to connect to the TURN server, will be used to relay media.
Appendix C Call capacities by Cisco Meeting Server platform

Table 22 below details maximum call capacities on Meeting Servers by upgrading to later software versions. Bold indicates a new feature in that software version. Note that there are different capacities for a single or cluster of Meeting Servers compared to load balancing calls within a Call Bridge Group.

Table 22: Evolution in Meeting Server call capacity

<table>
<thead>
<tr>
<th>Software version</th>
<th>2.6 and 2.7</th>
<th>2.8 and 2.9</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
<td>2000</td>
<td>1000 M4</td>
</tr>
<tr>
<td>Individual Meeting Servers or Meeting Servers in a cluster (notes 1, 2, 3 and 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1080p30</td>
<td>48</td>
<td>350</td>
<td>48</td>
</tr>
<tr>
<td>720p30</td>
<td>96</td>
<td>700</td>
<td>96</td>
</tr>
<tr>
<td>SD Audio</td>
<td>192</td>
<td>1000</td>
<td>192</td>
</tr>
<tr>
<td>3000</td>
<td>1700</td>
<td>2200</td>
<td>3000</td>
</tr>
<tr>
<td>HD participants per conference per server</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>web app call capacities (internal calling):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full HD</td>
<td>48</td>
<td>48</td>
<td>350</td>
</tr>
<tr>
<td>HD</td>
<td>96</td>
<td>96</td>
<td>700</td>
</tr>
<tr>
<td>SD Audio calls</td>
<td>192</td>
<td>192</td>
<td>1000</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 22: Evolution in Meeting Server call capacity

<table>
<thead>
<tr>
<th>Software version</th>
<th>2.6 and 2.7</th>
<th>2.8 and 2.9</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
<td>2000</td>
<td>1000 M4</td>
</tr>
<tr>
<td>Individual Meeting Servers or Meeting Servers in a cluster (notes 1, 2, 3 and 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1080p30</td>
<td>48</td>
<td>350</td>
<td>48</td>
</tr>
<tr>
<td>720p30</td>
<td>96</td>
<td>700</td>
<td>96</td>
</tr>
<tr>
<td>SD Audio</td>
<td>192</td>
<td>1000</td>
<td>192</td>
</tr>
<tr>
<td>3000</td>
<td>1700</td>
<td>2200</td>
<td>3000</td>
</tr>
<tr>
<td>HD participants per conference per server</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>web app call capacities (internal calling):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full HD</td>
<td>48</td>
<td>48</td>
<td>350</td>
</tr>
<tr>
<td>HD</td>
<td>96</td>
<td>96</td>
<td>700</td>
</tr>
<tr>
<td>SD Audio calls</td>
<td>192</td>
<td>192</td>
<td>1000</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>500</td>
</tr>
</tbody>
</table>
Table 22: Evolution in Meeting Server call capacity (....continued)

<table>
<thead>
<tr>
<th>Software version</th>
<th>Cisco Meeting Server platform</th>
<th>2.6 and 2.7</th>
<th>2.8 and 2.9</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
<td>2000</td>
<td>1000 M4</td>
<td>1000 M5</td>
</tr>
<tr>
<td>Meeting Servers in a Call Bridge Group</td>
<td>Call type supported</td>
<td>Inbound SIP Outbound SIP Cisco Meeting App</td>
<td>Inbound SIP Outbound SIP Cisco Meeting App</td>
<td>Inbound SIP Outbound SIP Cisco Meeting App</td>
</tr>
<tr>
<td>1080p30 720p30 SD Audio Load limit</td>
<td>48 96 192 3000 96,000</td>
<td>250 700 1000 3000 700,000 (note 5)</td>
<td>48 96 192 1700 96,000</td>
<td>48 96 192 2200 96,000</td>
</tr>
<tr>
<td>Number of HD participants per conference per server</td>
<td>96</td>
<td>450</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>web app call capacities (internal calling):</td>
<td>Full HD HD SD Audio calls</td>
<td>48 96 192 500</td>
<td>192 192 500</td>
<td>96,000 96,000 1000</td>
</tr>
</tbody>
</table>

Note 1: Maximum of 24 Call Bridge nodes per cluster; cluster designs of 8 or more nodes need to be approved by Cisco, contact Cisco Support for more information.

Note 2: Clustered Cisco Meeting Server 2000’s without Call Bridge Groups configured, support integer multiples of maximum calls, for example integer multiples of 700 HD calls.

Note 3: Up to 16,800 HD concurrent calls per cluster (24 nodes x 700 HD calls) applies to SIP or web app calls.

Note 4: A maximum of 2600 participants per conference per cluster depending on the Meeting Servers platforms within the cluster.

Note 5: From version 2.6, the call capacity for Cisco Meeting Server 2000 with Call Bridge Groups enabled, has increased to 700 HD calls, and the loadlimit has increased from 500000 to
700000. The load calculation for the different call resolutions has been updated to match the new 700000 limit. Load limits for other Meeting Server platforms stay as they were previously; these changes only apply to the Cisco Meeting Server 2000.

Note 6: VMWare have made changes in ESXi versions 6.0 update 3, 6.5 update 2 and 6.7 in order to overcome security concerns with Intel chipsets. As a consequence of these changes the throughput of audio calls on Cisco Meeting Server was reduced in version 2.8 (video capacity is unaffected).

Note 7: The call setup rate supported for the cluster is up to 40 calls per second for SIP calls and 20 calls per second for Cisco Meeting Server web app calls.

C.1 Cisco Meeting Server web app call capacities

This section details call capacities for deployments using Web Bridge 3 and web app for external and mixed calling. (For internal calling capacities, see Table 22.)

C.1.1 Cisco Meeting Server web app call capacities – external calling

External calling is when clients use Cisco Expressway as a reverse proxy and TURN server to reach the Web Bridge and Call Bridge.

When using Expressway to proxy web app calls, the Expressway will impose maximum calls restrictions to your calls as shown in Table 23.

Note: If you are deploying Web Bridge 3 and web app you must use Expressway version X12.6 or later, earlier Expressway versions are not supported by Web Bridge 3.

<table>
<thead>
<tr>
<th>Setup</th>
<th>Call Type</th>
<th>CE1200 Platform</th>
<th>Large OVA Expressway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Expressway Pair (X12.6 or later)</td>
<td>Full HD</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

The Expressway capacity can be increased by clustering the Expressway pairs. Expressway pairs clustering is possible up to 6 nodes (where 4 are used for scaling and 2 for redundancy), resulting in a total call capacity of four times the single pair capacity.

Note: The call setup rate for the Expressway cluster should not exceed 6 calls per second for Cisco Meeting Server web app calls.

C.1.2 Cisco Meeting Server web app capacities – mixed (internal + external) calling

Both standalone and clustered deployments can support combined internal and external call usage. When supporting a mix of internal and external participants the total web app capacity
will follow Appendix C for Internal Calls, but the number of participants within the total that can connect from external is still bound by the limits in Table 23.

For example, a single standalone Meeting Server 2000 with a single Expressway pair supports a mix of 1000 audio-only web app calls but the number of participants that are external is limited to a maximum of 200 of the 1000 total.
Appendix D Activation key for unencrypted SIP media

You have the choice of purchasing an activation key with SIP media encryption enabled or SIP media encryption disabled (unencrypted SIP media) for the Cisco Meeting Server 1000, Cisco Meeting Server 2000 and the VM software image. Choose either encrypted or unencrypted options under the software pids R-CMS-K9 and R-CMS-2K-K9. Media includes audio, video, content video and ActiveControl data.

Note: Current Call Bridge activations are unaffected, unless an activation key is uploaded with SIP media encryption disabled.

D.1 Unencrypted SIP media mode

If the activation key for "SIP media encryption disabled" is uploaded to the Meeting Server, then the following occurs:

- media sent between the Meeting Server and SIP devices is unencrypted,
- media sent over distribution links between clustered Call Bridges is unencrypted,
- call signalling remains encrypted,
- media in calls between the Meeting Server and web app, on any platform, remains encrypted,
- an error message is returned if the sipMediaEncryption parameter is set to anything other than prohibited on the following API objects:
 /calls/<call id>/participants
 /calls/<call id>/callLegs
 /callLegs/<call leg id>
 /callLegProfiles and /callLegProfiles/<call leg profile id>
 /callLegs/<call leg id>/callLegProfileTrace
- an error message is displayed if the SIP media encryption field on the the Configuration>Call settings web page of the Web Admin interface is set to anything other than disabled.

Note: If SIP media encryption is disabled, call signaling can still be encrypted on outbound calls, if required, by setting the sipControlEncryption parameter on /outboundDialPlanRules.
D.2 Determining the Call Bridge media mode

To determine whether the Call Bridge uses encrypted or unencrypted SIP media use the Web Admin interface, select Configuration > API, then:

1. From the list of API objects, tap the ▶ after /api/v1/system/licensing

If the features object callBridgeNoEncryption has the status set to activated then an activation key for unencrypted media is loaded on the Call Bridge. Other valid settings for the status of callBridgeNoEncryption are noLicense grace or expired.

callBridgeNoEncryption also has an expiry field in the form of a string.
Appendix E Dual Homed Conferencing

E.1 Overview

Dual homed conferencing also improves the user experience for both Lync client users and web app users in Lync scheduled meetings and in Lync drag and drop style meetings (also known as ad hoc calls). Lync participants can use drag and drop to add web app users to a Lync meeting, and can use conference controls to mute web app users or disconnect them. For web app users joining a Lync scheduled conference, they will see the video from up to five Lync participants, as well as video from the web app users. Lync users see video in a gallery format from all of the web app users, as well as the Lync users in the meeting. Both Lync users and web app users receive a full combined list of participants in the meeting.

Note: The “Add Participant” button on the Lync/Skype for Business client does not work in ad hoc dual homed conferences. Do not use the “Meet Now” button as a workaround, as this will leave an active call between the Meeting Server and the AVMCU.

Lync participants can also directly dial into a Meeting Server space or use drag and drop to add a Meeting Server space to a Lync meeting. These are useful if a large meeting is being held in a Cisco Meeting Server space which the Lync user wants to join. In the first case they will receive a composed layout of multiple participants. When adding a complete space to a Lync meeting, the Lync user will receive only one video stream from the space (the main speaker) and will not receive a full combined participant list. They can continue to add additional Lync participants as normal.

Note: Dual-homed conferences with a Meeting Server cluster are not currently supported with Expressway X8.11 as the edge for the Meeting Server, unless at least some of the Microsoft traffic flows directly between one of the Meeting Servers in the cluster and the Microsoft infrastructure (and not through Expressway). Dual-homing is supported with Expressway X8.11 as the edge for standalone Meeting Servers.

E.2 Consistent meeting experience in dual homed conferences

The Meeting Server sends two H.264 video streams stream per video participant to the AVMCU, a high resolution video stream and a low resolution video stream, see Figure 28. Lync, Skype for Business and O365 clients that support the high resolution, subscribe to and receive the high quality video stream. Clients that select a lower quality, because of bandwidth restrictions, window size, layout, CPU power or being on a mobile device, subscribe to and receive the lower quality streams, and do not reduce the video quality nor degrade the video experience for other participants.
Note: Ensure that the bandwidth of the SIP trunk is set sufficiently high to accommodate the two video streams. We recommend 8MB for LANs and 2.5MB for WANs.

Figure 28: Dual media streams to AVMCU

Note: Any devices using Microsoft RTVideo will not benefit from this feature.

E.2.1 Summary of user experiences

Dual homed conferencing combined with support for RDP and multiple video encoders, results in a richer meeting experience for both Lync and web app users.

- Both Lync client users and web app users see familiar screen layouts.
- Both Lync client users and web app users receive a full combined list of all participants in the meeting, regardless of where they are connected.
- Lync client users see a non-square aspect ratio for video from SIP endpoints and web apps.
- Lync client users see content in a separate area of their screen rather than in the main video area.
- The Meeting Server sends video using the best quality codec supported by each participant in Lync meetings. This optimizes the experience for all Lync client users in a meeting, when a mixture of Lync client versions are used by participants.
- The Meeting Server sends two H.264 video streams stream per video participant to the
AVMCU, a high resolution video stream and a low resolution video stream, to preserve the high resolution experience for clients that support it, when clients that can only support low resolution join the meeting.

- Chat works in Lync AVMCU conferences with web app users in spaces, and in direct calls between a web app user and a Lync client.

Note: For the best user experience during meetings, use Lync 2013, Skype for Business 2015 or later, which allow multiple video streams to be transmitted to the Meeting Server. This enables an endpoint or web app user connecting to the Meeting Server to view multiple Lync participants. Lync 2010 only provides a single loudest speaker stream, if the loudest speaker is on the Meeting Server side of the conference already, then web app users and SIP endpoint users will not view the Lync participants.

For more information on RDP and multiple video encoder support, see these FAQs:

- [RDP support](#).
- [Multiple video encoder support](#).

E.3 Mute/unmute meeting controls in dual homed conferences

Version 2.4 of the Meeting Server software introduced improved mute/unmute meeting controls in dual homed conferences for:

- on-premise and Office 365 Lync/Skype for Business clients,
- end point users,
- web app users.

Note: This section assumes that muting and unmuting is enabled using the API of the Meeting Server.

Muting/unmuting:

- Lync clients can mute and unmute anyone in the dual homed conference, this means themselves and others, and they can mute and unmute the audience too.
- All endpoint users can now mute Lync clients,
- Endpoint users on the Lync side of the AVMCU can now mute and unmute themselves (self) and other endpoints (either on the Lync clients/endpoints connected to the AVMCU or on the Meeting Server side). Prior to version 2.4, only endpoint users on the Meeting Server side of the AVMCU could mute and unmute themselves (self) and others.
For non-ActiveControl endpoints, the Meeting Server sends DTMF key sequences for each mute and unmute, and overlays an icon on the media stream to the endpoint to indicate whether the endpoint is muted or unmuted.

For ActiveControl endpoints running CE 9.2.1 or later software, the endpoint handles the icons and messages (the Meeting Server does not overlay icons).

Once an ActiveControl endpoint is muted it has to be unmuted locally so as to ensure the privacy of any local conversation. For example, when a remote participant mutes an ActiveControl endpoint and then tries to unmute it, the ActiveControl endpoint will mute itself again until it is locally unmuted.

When a remote participant tries to unmute a non-ActiveControl endpoint, the non-ActiveControl endpoint will be unmuted.

web app users and Cisco Meeting Management users can mute and unmute Lync clients. They also see the correct mute state of all participants in the meeting.

Muting/unmuting web app users:

- Information on local muting and unmuting of a web app user is not passed to Lync clients in dual homed conferences. However, if a Lync client remotely mutes a web app user and the web app unmutes itself, the Meeting Server tells the Lync clients about the unmuting.

- When a remote participant tries to unmute a web app user, the web app user will remain locally muted. Note: other participants will still see them as unmuted, although they are actually muted.

- The web app shows the mute/unmute state using its own icons. Meeting Server icons are not overlaid on the web app video pane.

E.4 Configuring the Dual Homed Lync functionality

If you already have an on-prem Lync deployment or Lync Federation deployment working with the Meeting Server deployment, then no additional configuration is required on the Meeting server.

If this is a new deployment, then make sure that you configure the Lync Edge settings on the Meeting Server, see Section 8.5.

E.4.1 Troubleshooting

If users are unable to join a Lync conference via the IVR or using a dial plan rule that resolves to “Lync”, the first thing to do is to verify that the “Lync Edge” settings have been set up – the same mechanism is used to resolve Lync conferences as is used to find the Edge server. The Meeting Server must query the Lync FE server to find both of these.

If this fails, a message will be logged in the event log to say that the conference ID cannot be found:
lync conference resolution: conference "1234" not found

This may mean that the conference does not exist, but there are also other possible causes.

If SIP traffic tracing is enabled, there should be a ‘SERVICE’ message sent to the Lync FE server just before the above message is logged, which should be replied to with a 200 OK. Check that this message is sent to the correct IP, which should be that of a Lync FE server.

If this message is not sent (it does not show up in the logs), then it is possible that the Call Bridge is unable to find the Lync server using a DNS SRV lookup for the _sipinternaltls_tcp._lyncdomain record, and so does not know where to send it. Enabling DNS tracing and retrying should confirm this. However this can also happen if the Lync Edge settings have not been configured on the Meeting Server.

If the Service message is sent but the Lync server replies with “403 unauthorized”, then the most likely cause of this is that the local contact domain in the outbound dial plan rule for this Lync domain is not set correctly. It should be set to the FQDN of the Meeting Server, which should be the same as the FQDN supplied in the CN of the Call Bridge’s certificate.
Appendix F More information on LDAP field mappings

This section provides additional information for LDAP field mappings that you set up for the Meeting Server.

Parts of an LDAP field value can be substituted by means of a sed-like construction, as follows:

\$<LDAP field name>|'/<regex>/<replacement format>/<option>'\$

where:

- `<option>` can be g, to replace every match of `<regex>` with `<replacement format>`, or blank to match only the first
- parts of `<regex>` can be tagged for use in `<replacement format>` by enclosing them in round brackets
- tagged matches can be referenced in `<replacement format>` as \x where x is a digit from 0 to 9. Match 0 corresponds to the entire match, and matches 1-9 the 1st to 9th tagged sub-expressions
- single quotes inside the substitution expression must be escaped with a backslash, as must backslash characters themselves
- any character other than a single quote, a backslash, or the digits 0-9 can be used in place of the forward slash that separates the components of the substitution expression
- if the separating character is to be used as a literal within the expression, it must be escaped with a backslash.

As an example, the following would convert addresses in the format:

firstname.lastname@test.example.com

into the format:

firstname.lastname@example.com JIDs

\$mail|'/@test/@xmpp/'\$

and the following would remove every lower case 'a' from the user's full name:

\$cn|'/a//g'\$

A sensible set of expressions for use might be:

- **Full name**: \$cn\$
- **JID**: \$mail|'/test/'\$
- **space URI**: \$mail|'/@.*//'.$space
- **space dial-in number**: \$ipPhone\$

Note: The LDAP server credentials are used to read the following fields (for security reasons you may want to restrict the fields and permissions available using those credentials):

- mail
- objectGUID
- entryUUID
- nsuniqueid
- telephoneNumber
- mobile
- sn
- givenName
Appendix G Using TURN servers behind NAT

The TURN server can be deployed behind a NAT, and the NAT address specified using the MMP command `turn public-ip`. However, due to how Interactive Connectivity Establishment (ICE) works, careful configuration of the NAT is required to ensure connectivity always works.

This appendix provides an overview of how ICE works. It explains:

- how candidates are identified,
- how connectivity is checked,
- the effect of NAT in front of the TURN server,
- how NAT affects external web app users.

Note: Issues can arise when the only available path includes both relay candidates. This requires the firewall to be correctly configured, so that all clients are able to send and receive video and audio.

G.1 Identifying candidates

ICE works by gathering a list of candidate addresses and ports, and then finding which pairs of these candidates allow media to be exchanged. When multiple candidate pairs are available then a priority scheme is used to determine which pair is used.

Typically, three candidates might exist:

1. Host candidate
2. Server Reflexive candidate
3. Relay candidate

G.1.1 Host candidate

The most simple candidate is the host candidate. This is the address used by the host interface. This is often on a local network and not routable.

G.1.2 Server Reflexive candidate

The server reflexive candidate is the address that the TURN server sees incoming packets coming from. To determine this, the host sends packets to a defined port on the TURN server (normally port 3478) and the TURN server replies with information about where the packets came from.
In cases where the host is behind a firewall carrying out NAT, then this is different to the host candidate. In many cases, packets sent to this port and address will be forwarded back to the host.

G.1.3 Relay candidate

The final candidate is the relay candidate. This candidate is created by the TURN server in response to requests from the host. The relay address of this candidate is the TURN server interface address, when NAT is used the relay address is changed to an address from NAT.
Data sent to this relay address is then sent back to the host via the TURN server.

This relay candidate has a second use. It can also be used by the host to send packets to the far end. This occurs when there is no other path possible. Note that these packets come from the TURN server itself, so will only get their NAT address when rewritten by the firewall.
Figure 33: Host sending packets to the far end

G.2 Checking connectivity

Once candidates are known then connectivity checks are undertaken. Each host tries to contact the far end host, server reflexive and relay addresses directly. It then also uses its relay to attempt connections to the same far end candidates.

Table 24: Candidates for two hosts (using same TURN server)

<table>
<thead>
<tr>
<th>Host</th>
<th>Type</th>
<th>Address:port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Host</td>
<td>192.168.1.1:50010</td>
</tr>
<tr>
<td>1</td>
<td>Server Reflexive</td>
<td>192.0.2.1:50020</td>
</tr>
<tr>
<td>1</td>
<td>Relay</td>
<td>203.0.113.1:50110</td>
</tr>
<tr>
<td>2</td>
<td>Host</td>
<td>172.16.1.1:50100</td>
</tr>
<tr>
<td>2</td>
<td>Server Reflexive</td>
<td>198.51.100.1:50040</td>
</tr>
<tr>
<td>2</td>
<td>Relay</td>
<td>203.0.113.1:50510</td>
</tr>
</tbody>
</table>

Table 25: Candidate pairs formed by host 1

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination Type</th>
<th>Destination address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host (192.168.1.1:50010)</td>
<td>Host</td>
<td>172.16.1.1:50100</td>
</tr>
<tr>
<td>Host (192.168.1.1:50010)</td>
<td>Server Reflexive</td>
<td>198.51.100.1:50040</td>
</tr>
<tr>
<td>Host (192.168.1.1:50010)</td>
<td>Relay</td>
<td>203.0.113.1:50510</td>
</tr>
<tr>
<td>Relay (10.0.1.1:50110)</td>
<td>Host</td>
<td>172.16.1.1:50100</td>
</tr>
</tbody>
</table>
Typically, the relay addresses are only required when the hosts have limited network access. For example, a user in a coffee shop or hotel may not be able to access any higher numbered ports.

When both hosts have restricted access then a path that involves both relay candidates can be formed. In this case, the traffic flows out of one relay candidate and into the other before being forwarded on to the far end.

Figure 34: Host to host media path using relay to relay path (no NAT)

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination Type</th>
<th>Destination address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay (10.0.1.1:50110)</td>
<td>Server Reflexive</td>
<td>198.51.100.1:50040</td>
</tr>
<tr>
<td>Relay (10.0.1.1:50110)</td>
<td>Relay</td>
<td>203.0.113.1:50510</td>
</tr>
</tbody>
</table>

G.3 NAT in front of the TURN server

When NAT is present in front of the TURN server, the flow becomes more complicated. The relay candidates are expecting to receive traffic from one of the other hosts candidates. If the packets are sent from the TURN server’s interface, and are not rewritten by the firewall, then they will appear to be coming from an unknown address. This prevents a succesful connectivity check and in cases where the other paths are not available, there are no routes for media to take.
Figure 35: Host to host media path using relay to relay path (with NAT)

![Diagram of host to host media path using relay to relay path (with NAT)]

Table 26: Host to host media path using relay to relay path (with NAT)

<table>
<thead>
<tr>
<th>Source address (in packets)</th>
<th>Destination</th>
<th>Action at destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1:50010</td>
<td>203.0.113.1:3478 via Firewall</td>
<td>Firewall 1 rewrites source address</td>
</tr>
<tr>
<td>192.0.2.1:50020</td>
<td>203.0.113.1:3478</td>
<td>Firewall 3 rewrites destination address and forwards to the TURN server</td>
</tr>
<tr>
<td>192.0.2.1:50020</td>
<td>10.0.1.1:3478</td>
<td>TURN server internally maps this to the relay address for this source, and sends to far end’s relay.</td>
</tr>
<tr>
<td>10.0.1.1:50110</td>
<td>203.0.113.1:50510 via Firewall</td>
<td>Firewall 3 rewrites destination address</td>
</tr>
<tr>
<td>10.0.1.1:50110</td>
<td>10.0.1.1:50510</td>
<td>TURN server sees unexpected source address and drops traffic.</td>
</tr>
</tbody>
</table>

The solution for this is known as hairpin NAT, loopback NAT or NAT reflection. In this the source address of the traffic is rewritten as well as the destination. The source address is then the address of the firewall, which means it matches one of the candidates.

Table 27: Host to host media path using relay to relay path (with hairpin NAT)

<table>
<thead>
<tr>
<th>Source address (in packets)</th>
<th>Destination</th>
<th>Action at destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1:50010</td>
<td>203.0.113.1:3478 via Firewall</td>
<td>Firewall 1 rewrites source address</td>
</tr>
<tr>
<td>192.0.2.1:50020</td>
<td>203.0.113.1:3478</td>
<td>Firewall 3 rewrites destination address and forwards to the TURN server.</td>
</tr>
</tbody>
</table>
For details on how to enable this functionality, refer to your firewall documentation.

G.4 TURN server, NAT and the web app

The effect of NAT on external web app users needs to be considered in deployments where one Meeting Server is configured as a Core server with an internal interface, while another Meeting Server is configured as an Edge server set up on with two interfaces (internal and external). For web app users working remotely, the web app may be unable to see any ephemeral UDP ports. In this case there is no server reflexive candidate for the Call Bridge, since the address seen by the TURN server is the same as the host candidate.

Figure 36: Split Meeting Server deployment with external web app users (no NAT)
Since the Call Bridge running on the Core server is only on the internal network it has no route to the web app’s host address, server reflexive or the relay address. Likewise the web app cannot see the Call Bridge’s host, or its relay address.

However, the relay ports can see each other, and therefore a path for media can be established.

Figure 37: Relay ports establishing the media path

As in the general case, when the TURN server is behind a NAT this picture is further complicated.
Figure 38: Split Meeting Server deployment with external web app users (with NAT)

The solution for this is identical to the general case. The source address of traffic needs to be rewritten by the firewall so that it appears as coming from the correct address.

Figure 39: Relay ports establishing the media path
Table 28: Host to host media path using relay to relay path (with hairpin NAT)

<table>
<thead>
<tr>
<th>Source address (in packets)</th>
<th>Destination</th>
<th>Action at destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.31:50600</td>
<td>172.16.1.2:3478</td>
<td>TURN internally maps this to the relay address for this source, and sends to the far end’s relay.</td>
</tr>
<tr>
<td>172.24.1.2:50700</td>
<td>203.0.113.32:50710 via Firewall</td>
<td>Firewall 1 rewrites both source and destination addresses.</td>
</tr>
<tr>
<td>203.0.113.32:50700</td>
<td>172.24.1.2:50710</td>
<td>TURN server internally maps traffic from relay to assigned host.</td>
</tr>
<tr>
<td>172.24.1.2:3478</td>
<td>198.51.100.1:50510 via Firewall</td>
<td>Firewall 1 rewrites source address.</td>
</tr>
<tr>
<td>203.0.113.32:3478</td>
<td>198.51.100.1:50510</td>
<td>Firewall 2 rewrites destination address.</td>
</tr>
<tr>
<td>203.0.113.32:3478</td>
<td>172.16.1.1:50100</td>
<td>Arrives at final destination.</td>
</tr>
</tbody>
</table>
Appendix H Using a standby Meeting Server

The instructions in this appendix apply to virtualized deployments, including the Cisco Meeting Server 1000.

H.1 Backing up the currently used configuration

1. Establish an SSH connection to the currently used Meeting Server using an SSH utility such as OpenSSH or PuTTY.

2. Issue the command:

 backup snapshot <name>

 This backup includes IP addresses, passwords and certificates into a file called <name>.bak. We recommend using a name in the format servername_date (for example, test_server_2014_09_04).

 A successful backup creation returns:

 cms> backup snapshot test_server_2014_09_04.bak ready for download

3. Download the backup file using an SFTP client (e.g. WinSCP).

 Note: We recommend backing up your Meeting Servers regularly, e.g. once a day and that you store copies of the backup externally to the Meeting Server and the standby server.

H.2 Transferring a backup to the standby server

We recommend that you keep the standby server running at all times.

1. Copy all the certificates and the cms.lic file from the standby server in case they differ from the original server that the backup was created on. Store them somewhere safe.

2. Establish an SFTP connection with the standby server.

3. Upload the previously saved backup file on to the standby server.

4. Issue the MMP backup list command to confirm that the backup file was successfully uploaded. This should return something similar to:

 cms> backup list test_server_2014_09_

5. Enter the following command and confirm to restore from the backup file:

 backup rollback <name>

 This overwrites the existing configuration and reboots the Meeting Server. Therefore a warning message is displayed. The confirmation is case sensitive and you must press upper case Y, otherwise the operation will be aborted.
Note: It is not possible to create a backup from one type of deployment and roll it back on the other type, for example, from a virtualized Meeting Server 1000 to a Meeting Server 2000, and vice versa.

A successful operation returns:

```
cms> backup list
Jul 23 09:42 test_2020_07_23
 cms> backup rollback test_2020_07_23
 WARNING!!!
 This command will overwrite the existing system configuration
 and result in a reboot of the system. This will cause
 an interruption in service.

 Are you sure you wish to proceed? (Y/n)
 Successful backup extraction
 Stopping Application monitor: app_monitor.
 Rebooting system...
```

Relevant only to "traditional" licensing mode on Meeting Management: When you restore from the backup, everything is overwritten including the IP address, certificates and the cms.lic file. Therefore if you are restoring onto a different server from the one that the backup was made on, you must manually copy the original cms.lic file and any certificates that are not valid on the new server. Note that the cms.lic file is tied to the MAC address of the server; therefore after the backup has been restored to the new server, the license from one server will be invalid on another one. You will therefore need to issue a new license if you are restoring from a new VM. Once you have a valid license, Meeting Management will then consider it licensed and the system will work again as expected.

Relevant only to Smart Licensing users: When you restore from the backup, everything is overwritten including the IP address and certificates. Therefore if you are restoring onto a different server from the one that the backup was made on, you must manually copy any certificates that are not valid on the new server.

1. Establish an SFTP connection with the standby server
2. **Relevant only to "traditional" licensing mode on Meeting Management:** Upload the previously saved original cms.lic file back on to this server.
3. If necessary:
 a. Put back any certificates and private keys (if the restored versions are not valid on the standby server).
 b. Assign these certificates to their corresponding services using the following commands:
      ```
      callbridge certs nameofkey nameofcertificate
      webbridge3 https certs nameofkey nameofcertificate
      ```
webbridge3 c2w certs nameofkey nameofcertificate
webadmin certs nameofkey nameofcertificate
webbridge trust nameofcallbridgecertificate
c. Restart any service for which you changed the certificate
 callbridge restart
 webbridge3 restart
 webadmin restart

After the new server has fully booted up, it will be fully operational, and will take over the services of the original server.
Appendix I Web Admin Interface – Configuration menu options

The Configuration tab on the Call Bridge’s Web Admin interface allows you to configure the following options:

- General
- Active Directory
- Call settings
- Outbound calls and Incoming calls
- CDR settings
- Spaces
- API

1.1 General

Use the Configuration > General page to set up and configure:

- **TURN server settings.** Use these settings to allow the Call Bridge and external clients to access the TURN server. See Web Admin interface settings for the TURN server Use MMP commands to configure the TURN server itself. See Configuring the MMP.

- **Lync Edge settings.** Use these settings if you are integrating your Call Bridge with Lync Edge. See Configuration on Meeting Server to use Lync Edge.

- **Web bridge settings.** Use these settings if you are using web app These settings allow the Call Bridge to communicate with the Web Bridge server. See .

- **IVR.** Use these settings if you are using an Interactive Voice Response (IVR) to manually route to pre-configured calls, so callers are greeted by a prerecorded voice message inviting them to enter the ID number of the call or space that they want to join. See IVR configuration.

- **External access.** Use these settings to enter the URI for the Web bridge that web app will use to access it. This field must be filled in manually on every Call Bridge in the cluster for web app to generate WebRTC URLs.

Enter the IVR telephone number to add an extra option in the invite list, and to provide a call in “Phone” line to the meeting email and invitation templates.
I.2 Active Directory

If you want users to use web apps to connect to the Meeting Server, then you must have an LDAP server. The Meeting Server imports the User accounts from the LDAP server.

Note: You can use OpenLDAP and Oracle Internet Directory (LDAP version 3), however, this needs to be configured via the API—it cannot be configured through the Web Admin interface.

Use the Configuration > Active Directory page to set up the Meeting Server to work with Active Directory. See LDAP configuration.

I.3 Call settings

Use the Configuration > Call settings page to:

- Allow media encryption for SIP calls (including Lync).
- Specify whether participant label overlays are shown on SIP calls.
- Specify the preferred size (in milliseconds) for outgoing audio packets; 10ms, 20ms, or 40ms.
- Enable TIP support. (You need to enable TIP support if you use endpoints such as the Cisco CTS range.)
- Allow presentation video channel operations—if this is set to **prohibited** then no content channel video or BFCP capability will be advertised to the far end.
- If presentation video channel operations are allowed for SIP calls, this setting determines the Call Bridge’s BFCP behavior, one of:
 - **server role only**—this is the normal option for a conferencing device, and is intended for use with BFCP client mode devices (for instance, SIP endpoints).
 - **server and client role**—this option allows the Call Bridge to operate in either BFCP client or BFCP server mode in calls with remote devices.

This setting allows improved presentation video sharing with a remote conference-hosting device.

- Set the value for the Resource–Priority header field in outgoing SIP calls. This setting tells the Meeting Server how much priority you will allow the bandwidth to allocate for presenting. This depends on the bandwidth capability of the network environment and other factors such as if there are any immersive systems that push HD, for example.
- Enable and disable UDP signaling for SIP. Set to one of:
 - **disabled|enabled**: disable if you use SIP over TCP, or require that all of your network traffic is encrypted.
- **enabled, single address** mode corresponds to the SIP over UDP behavior in versions prior to 2.2 and is the default.

- **enabled, multi address** if the Call Bridge is configured to listen on more than one interface.

- Enable Lync presence support. This setting determines whether or not this Call Bridge should supply information on destination URIs it serves to Lync presence subscribers.

- Leave the Lync packet pacing mode set to **default**. Do not change the setting to **delay** unless instructed to do so by Cisco Support.

Note: For more information on each field, you can use the hover-over text that displays for each individual field, or see Dial plan configuration – SIP endpoints.

The **Call settings** page also allows you to change the bandwidth settings for SIP, Cisco Meeting Server (CMA), Server reflexive, Relay, VPN, and Lync content. The settings are measured in bits-per-second, for example, 2000000 is 2Mbps. We dedicate at least 64kbps for audio, and recommend 2Mbps for a 720p30 call, or around 3.5Mbps for a 1080p30 call. More bandwidth would be required for 60fps.

You may need to change some of the bandwidth settings if you allow SIP media encryption, or enable TIP support, for example. In the case of 3 screen TIP calls, the bandwidth numbers seen on the **Call settings** page get automatically tripled, so you do not need to manually set them to 6Mbps for example. However, we would normally recommend (3x) 4Mbps for most CTS calls.

1.4 Outbound calls and Incoming calls

Use the **Configuration > Outbound calls / Incoming calls** pages to determine how the Meeting Server handles each call.

The **Outbound calls** page controls how outbound calls are handled; the **Incoming calls** page determines whether incoming calls are rejected, or matched and forwarded. If they are matched and forwarded, then information about how to forward them is required. The **Incoming calls** page has two tables—one to configure matching/rejection and the other to configure forwarding behavior.

For more information on completing these fields, see **Web Admin Interface configuration pages that handle calls**.

1.5 CDR settings

Use the **Configuration > CDR settings** page to enter the URI of the CDR receivers.

The Meeting Server generates Call Detail Records (CDRs) internally for key call-related events, such as a new SIP connection arriving at the server, or a call being activated or deactivated. It can be configured to send these CDRs to a remote system to be collected and analyzed. You
can not store records on a long-term basis on the Meeting Server, or browse CDRs on the Meeting Server.

For more information on completing these fields, see Call Detail Record support and the Call Details Record Guide.

You can also use the API to configure the Meeting Server with the URI of the CDR receivers. See the API Reference guide.

I.6 Spaces
Use the Configuration > Spaces page to create a space on the Meeting Server to dial into. This allows, for example, endpoints and web app to dial in.

Add a space with:

- **Name** for example. Call 001
- **URI** for example. 88001

On this page you can also optionally specify Secondary URI user part, Call ID, Passcode, and Default Layout.

You can also use the API to create spaces. See the API Reference guide.

I.7 API
From version 2.9, the API can be accessed using the Meeting Server Web Admin Interface rather than using API Methods and third-party applications. After logging in to the Web Admin interface, navigate to the Configuration tab and select API from the pull-down list. See Figure 40.
Figure 40: Accessing the API via the Meeting Server web admin interface

Note: To access the API via the web interface you still need to do the initial Meeting Server configuration settings and authentication using the MMP as you would if you were using a third party application.

Refer to for examples of using the API tool through the Web Admin interface.
Cisco Legal Information

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOSS PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

© 2016–2020 Cisco Systems, Inc. All rights reserved.
Cisco Trademark

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)