Cisco Meeting Server

Cisco Meeting Server 2.4 and later
Deployments with Cisco Unified Communications Manager

September 26, 2019
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change History</td>
<td>4</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>1.1 How to Use this Guide</td>
<td>5</td>
</tr>
<tr>
<td>1.1.1 Commands</td>
<td>7</td>
</tr>
<tr>
<td>1.1.2 Terminology</td>
<td>7</td>
</tr>
<tr>
<td>2 Configuring a SIP Trunk to Cisco Unified Communications Manager</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Configuring a secure SIP trunk</td>
<td>8</td>
</tr>
<tr>
<td>2.1.1 Configuration required on the Meeting Server</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 Configuration required on the Cisco Unified Communications Manager</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Configuring a non-secure SIP trunk</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1 Configuration required on the Meeting Server</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2 Configuration required on the Cisco Unified Communications Manager</td>
<td>14</td>
</tr>
<tr>
<td>3 Setting up scheduled and rendezvous calls</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Configuring the Meeting Server</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Configuring Cisco Unified Communications Manager</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1 Configure Route Groups</td>
<td>18</td>
</tr>
<tr>
<td>3.2.2 Configure Route Lists</td>
<td>18</td>
</tr>
<tr>
<td>3.2.3 Configure route patterns (dial plans for outbound calls)</td>
<td>19</td>
</tr>
<tr>
<td>4 Setting up escalated ad hoc calls</td>
<td>21</td>
</tr>
<tr>
<td>4.1 Configuring the Meeting Server</td>
<td>21</td>
</tr>
<tr>
<td>4.2 Configuring Cisco Unified Communications Manager</td>
<td>22</td>
</tr>
<tr>
<td>4.3 Escalated ad hoc calls and licenses</td>
<td>24</td>
</tr>
<tr>
<td>5 Support for ActiveControl</td>
<td>25</td>
</tr>
<tr>
<td>5.1 ActiveControl on the Meeting Server</td>
<td>25</td>
</tr>
<tr>
<td>5.2 Limitations</td>
<td>25</td>
</tr>
<tr>
<td>5.3 Overview on ActiveControl and the iX protocol</td>
<td>25</td>
</tr>
<tr>
<td>5.4 Disabling ActiveControl on the Meeting Server</td>
<td>26</td>
</tr>
<tr>
<td>5.5 Enabling iX support in Cisco Unified Communications Manager</td>
<td>26</td>
</tr>
<tr>
<td>5.6 Filtering iX in Cisco VCS</td>
<td>27</td>
</tr>
<tr>
<td>5.7 iX troubleshooting</td>
<td>28</td>
</tr>
<tr>
<td>6 Overview of load balancing calls</td>
<td>29</td>
</tr>
<tr>
<td>6.1 Configuring Call Bridges for load balancing incoming calls</td>
<td>29</td>
</tr>
</tbody>
</table>
Change History

<table>
<thead>
<tr>
<th>Date</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 26, 2019</td>
<td>Minor correction.</td>
</tr>
<tr>
<td>May 31, 2019</td>
<td>Minor correction.</td>
</tr>
<tr>
<td>February 27, 2019</td>
<td>Note added before step 4 in section 2.1.2</td>
</tr>
<tr>
<td>January 02, 2019</td>
<td>No changes for version 2.5</td>
</tr>
<tr>
<td>October 02, 2018</td>
<td>Minor change to documentation map for version 2.4.</td>
</tr>
<tr>
<td>February 01, 2018</td>
<td>Updated for version 2.3. Added note on TLS 1.2 as default at start of chapter 4.</td>
</tr>
<tr>
<td>January 23, 2018</td>
<td>General minor edits and improvements.</td>
</tr>
<tr>
<td>November 08, 2017</td>
<td>Added Appendix A: Adhoc escalation with multiple clusters, and other minor corrections.</td>
</tr>
<tr>
<td>July 14, 2017</td>
<td>Additional information added to chapter 3.</td>
</tr>
<tr>
<td>May 09, 2017</td>
<td>Updated for version 2.2. Added section on load balancing outgoing calls.</td>
</tr>
<tr>
<td>December 20, 2016</td>
<td>Updated for version 2.1. Added chapter on load balancing calls of incoming calls.</td>
</tr>
<tr>
<td>August 03, 2016</td>
<td>Rebranded for Cisco Meeting Server 2.0</td>
</tr>
</tbody>
</table>
1 Introduction

The Cisco Meeting Server software can be hosted on specific servers based on Cisco Unified Computing Server (UCS) technology as well as on the X-Series hardware, or on a specification-based VM server. Cisco Meeting Server is referred to as the Meeting Server throughout this document.

Note: The term Meeting Server in this document means either a Cisco Meeting Server 2000, Cisco Meeting Server 1000, an Acano X-Series Server or the software running on a virtual host.

This guide provides examples of how to configure the Meeting Server to work with Cisco Unified Communications Manager. The examples may need to be adapted according to your specific deployment. For details on using the Avaya and Polycom call control devices, see the [Deployments with Third Party Call Control Guide](#). If you are using Cisco Expressway, see the [Expressway documentation](#) for more information.

These instructions apply equally to all Meeting Server deployment topologies (single server and scaled/resilient deployments).

1.1 How to Use this Guide

This guide is part of the documentation set (shown in Figure 1) for the Meeting Server.

These documents can be found on cisco.com.
Figure 1: Cisco Meeting Server documentation set

Guides for Apps (Cisco Meeting App, Lync, WebRTC)

Guides for Cisco Meeting Server

Planning your deployment
- Release Notes
- Planning and Preparation Deployment Guide
- Installation Guides

Deploying your Cisco Meeting Server
- Single Combined Server Deployment Guide
- Single Split Server Deployment Guide
- Scalability and Resilience Deployment Guide
- Certificate Guidelines - Scalable and Resilient Server Deployments
- Load Balancing Calls Across Cisco Meeting Servers
- H.323 Gateway Deployment Guide
- Multi-tenancy Considerations
- Cisco Expressway Configuration Guides
- Deployments with Cisco Unified Communications Manager
- Deployments with Third Party Call Control

Configuration and Advanced Reference
- MMP Command Line Reference Guide
- API Reference Guide
- Call Detail Records (CDR) Guide
- Events Guide
- Screen Layout Quick Reference Guide
- MIB: SNMP, SNMP Health, Syslog

Customization
- Customization Guidelines

Guides for Management (Cisco Meeting Management, Cisco TelePresence Manager Suite (TMS))

FAQs
1.1.1 Commands
In this document, commands are shown in **black** and must be entered as given – replacing any parameters in <> brackets with your appropriate values. Examples are shown in **blue** and must be adapted to your deployment.

1.1.2 Terminology
Throughout this document the conferencing types mentioned are those as defined in Table 1.

Table 1: Conferencing Types

<table>
<thead>
<tr>
<th>Conference type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendezvous (also known as personal CMR or VMR)</td>
<td>Pre-defined, permanently available addresses that allow conferencing without previous scheduling. The host shares the address with other users, who can call in to that address at any time.</td>
</tr>
<tr>
<td>Ad hoc</td>
<td>Instant or escalated conferencing, for example manually escalated from a point-to-point call to a multiparty call with three or more participants.</td>
</tr>
<tr>
<td>Scheduled</td>
<td>Pre-booked conferences with a start and end time.</td>
</tr>
</tbody>
</table>
2 Configuring a SIP Trunk to Cisco Unified Communications Manager

This chapter explains how to set up a SIP trunk between Cisco Unified Communications Manager and a Meeting Server. The Meeting Server can be configured as:

- a single combined server, or
- a Core server in a split server deployment or a scalable and resilient deployment.

Note: For scalable and resilient deployments, SIP trunks should be set up between each Cisco Unified Communications Manager and each Meeting Server. A single trunk for multiple Call Bridges is not advisable. For ad hoc calls it is a requirement to have a separate trunk set up to each Call Bridge node.

Cisco recommends setting up secure SIP trunks, however if your company policy is for traffic within your organization to be non secure, then non-secure SIP trunks can be configured. However, the escalation of a 2-way call on Cisco Unified Communications Manager to a conference on the Meeting Server, requires the Cisco Unified Communications Manager to communicate with the API of the Cisco Meeting Server. The API requires HTTPS communication, so certificates need to be created and uploaded to both the Cisco Meeting Server and Cisco Unified Communications Manager, and Cisco Unified Communications Manager needs to trust the Meeting Server’s certificate, in order for escalated ad hoc calls to work.

If you are just allowing scheduled or rendezvous calls between the Meeting Server and Cisco Unified Communications Manager, and you set the SIP trunks as non-secure, then certificates are not required. Definitions of call types are given in Section 1.1.2.

Note: If you are not your organization’s Cisco Unified Communications Manager server administrator, then Cisco strongly advises you to seek the advice of your local administrator on the best way to implement the equivalent on your server’s configuration.

If you want to configure a secure SIP trunk, see Section 2.1. If you want to configure a non-secure SIP trunk, go straight to Section 2.2.

2.1 Configuring a secure SIP trunk

Follow the steps in Section 2.1.1 and Section 2.1.2 to set up the secure SIP trunk, then Chapter 4 to enable escalation of a 2-way call on Cisco Unified Communications Manager to a conference on the Meeting Server.
2.1.1 Configuration required on the Meeting Server

Follow the Cisco Meeting Server deployment guides to configure your Meeting Server, once configured, follow these steps for each Call Bridge:

1. SSH into the MMP of the Meeting Server.

2. If you have not already done so, specify a listening interface using the MMP command `callbridge listen`.

3. Generate a private key and Certificate Signing Request (.csr) file for the Call Bridge. For details on how to create a private key and Certificate Signing Request (.csr) file, refer to the appropriate Certificate Guidelines for the Meeting Server deployment.

Note: The Call Bridge certificate must have a CN that matches the FQDN of the network interface that the Call Bridge is listening on.

Cisco Unified Communications Manager has some requirements on what TLS certificates it will accept. You should ensure that the Call Bridge certificate has the SSL client and SSL server purposes enabled. This is done during the certificate signing stage.

4. Submit the Call Bridge certificate to the CA (public CA or internal CA) for signing. An internal CA signed certificate is acceptable.

5. Once signed, check that the certificate is OK using openSSL or the `pki inspect` command:

 - Enter `pki inspect <certificatename>` and check under X509v3 Extended Key Usage: TLS Web Server Authentication, TLS Web Client Authentication.

 or

 - Enter: `openssl x509 -in <certificatename> -noout -text -purpose` for example

 `openssl x509 -in callBridge1.crt -noout -text -purpose`

 The important lines in the output are SSL client and SSL server which must have a Yes against them, for example:

 Certificate purposes:
 SSL client : Yes
 SSL client CA : No
 SSL server : Yes
6. Upload the signed certificate, and intermediate CA bundle (if any) using SFTP to the Call Bridge.

7. Assign the certificate and private key to the Call Bridge:
 a. SSH into the MMP
 b. Enter the command:

      ```
callbridge certs <keyfile> <certificatefile>[<cert-bundle>]
      ```

 where `keyfile` and `certificatefile` are the filenames of the matching private key and certificate. If your CA provides a certificate bundle then also include the bundle as a separate file to the certificate.

 For example:

      ```
callbridge certs callBridge1.key callBridge1.crt callBridge1-bundle.crt
      ```

 c. Restart the Call Bridge interface to apply the changes.

      ```
callbridge restart
      ```

 If the certificate installs successfully on the Call Bridge, then the following is displayed:

 SUCCESS: listen interface configured
 SUCCESS: Key and certificate pair match

 If the certificate fails to install, the following error message is displayed:

 FAILURE: Key and certificate problem: certificate and key do not match

 Note: Your CallManagers will have to trust the CA and any Intermediate CAs that signed the Call Bridge’s certificate by loading their certificates to the CallManager-trust store, see step 2 in Section 2.1.2

2.1.2 Configuration required on the Cisco Unified Communications Manager

Our testing has been done on trunks without Media Termination Point (MTP) configured. Therefore:

- Disable MTP if this will not negatively affect your deployment. Turning off MTP might have a negative impact on your deployment if you are using SCCP phones and need to send DTMF to the Meeting Server.

- If the above is not a valid implementation, you may need to increase the MTP capacity on the Cisco Unified Communications Manager depending on the number of simultaneous calls.
1. If not done so already, install a CA signed certificate for the CallManager service on each Cisco Unified Communications Manager which has the CallManager service activated. Note: This is a recommendation and not a requirement as Meeting Server does not validate received certificates by default, it accepts all valid certificates and will accept Call Manager’s self-signed certificate.
 a. Log into the Cisco Unified Communications Manager OS Administration page, choose Security > Certificate Management.
 b. In the Certificate List window, click Generate CSR.
 c. From the Certificate Name drop-down list, choose CallManager.
 d. Click Generate CSR to generate a Certificate Signing Request.
 e. Once the CSR is successfully generated, click Download CSR. From the Download Signing Request dialog box choose CallManager and click Download CSR.
 f. Get this CSR signed by a Certificate Authority. An internal CA signed certificate is acceptable.
 g. Once a certificate is returned from the CA, go to the Upload Certificate/Certificate chain window. From the Certificate Purpose drop-down list select CallManager-trust. Browse and upload first the root certificate, followed by the intermediate certificates. From the Certificate Purpose drop-down list select CallManager. Browse and upload the certificate for the CallManager Service.
 h. For the new certificate to take effect you need to restart the CallManager service in Cisco Unified Serviceability, do this during a maintenance period.

2. Upload the root and intermediate certificates of the certificate you generated in step 4 of Section 2.1.1 to the CallManager-trust store.
 a. From the Cisco Unified Communications Manager OS Administration page, choose Security > Certificate Management.
 c. From the Certificate Purpose drop-down list choose CallManager-trust.
 d. Browse and upload first the root certificate, followed by the intermediate certificates to CallManager-trust.

3. Create a SIP trunk security profile.

 Cisco Unified Communications Manager applies a default security profile called Non Secure SIP Trunk when you create the SIP Trunk, this is for TCP. To use TLS, or something other than the standard security profile, follow these steps:
 a. Log into Cisco Unified Communications Manager Administration.
 b. Go to System > Security > SIP Trunk Security Profile.
c. Click **Add New**.

d. Complete the fields as follows:

- **Name** = type in a name, e.g. "CMS_SecureTrunk"
- **Device Security Mode** = select **Encrypted**
- **Incoming Transport Type** = select **TLS**
- **Outgoing Transport Type** = select **TLS**
- **X.509 Subject Name** = enter the CN of the Call Bridge certificate.
- **Incoming Port** = enter the port which will receive TLS requests. The default for TLS is 5061
- **Accept Replaces Header** = check this box if you intend to use Call Bridge Grouping (see **Section 6**).

e. Click **Save**

Note: For an Ad Hoc conference with at least two conference participants capable of video, Cisco Unified Communications Manager will allocate an encrypted audio conference bridge when the **Device Security Mode** is set to **Encrypted** and if the Service Parameter **Choose Encrypted Audio Conference Instead of Video Conference** is set to **true** (the default). If the parameter has been set to **false** then Cisco Unified Communications Manager will allocate an unencrypted video conference bridge, because encrypted video conference bridges are not currently supported by Cisco Unified Communications Manager. To reset Service Parameter **Choose Encrypted Audio Conference Instead of Video Conference** go to **System > Service Parameters > Clusterwide Parameters (Feature - Conference)**.

4. Check that your SIP Profile is configured correctly. If using the default **Standard SIP Profile For TelePresence Conferencing** on Cisco Unified Communications Manager version 10.5.2 or later, this should be sufficient. (If using an older version of Cisco Unified Communications Manager, see **Section 5.5**.) The key values to ensure are checked are: **Allow iX Application Media**, **Use Fully Qualified Domain Name in SIP Requests**, and **Allow Presentation Sharing use BFCP**.

5. Create the SIP trunk

a. In Cisco Unified Communications Manager, go to **Device >Trunk**.

b. Click **Add New**.

c. Configure these fields:

- **Trunk Type** = SIP trunk
- **DeviceProtocol** = SIP
- **Trunk Service Type** = None (default)
d. Click Next

e. Configure the destination information for the SIP trunk, see Table 2 below.

Table 2: Destination information for the SIP Trunk

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device name</td>
<td>Type in a name e.g. CiscoMeetingServer (no spaces allowed)</td>
</tr>
<tr>
<td>Device pool</td>
<td>The pool you want your device to belong to (as configured in System > Device Pool in Cisco Unified Communications Manager)</td>
</tr>
<tr>
<td>SRTP Allowed</td>
<td>Select SRTP Allowed to allow media encryption</td>
</tr>
<tr>
<td>Inbound Calls > Calling Search Space</td>
<td>Select default, not required if only allowing escalated 2-way adhoc calls from Cisco Unified Communications Manager to a meeting on the Meeting Server.</td>
</tr>
<tr>
<td>Outbound Calls > Calling Party Transformation CSS</td>
<td>Select as appropriate.</td>
</tr>
<tr>
<td>SIP Information > Destination address</td>
<td>Enter the FQDN of a single Meeting Server, it must match the CN of the Meeting Server certificate. Note: For clusters, enter the FQDN of a single Meeting Server</td>
</tr>
<tr>
<td>SIP Information > Destination Port</td>
<td>Enter 5061 for TLS</td>
</tr>
<tr>
<td>SIP Trunk Security Profile</td>
<td>Select the security profile that you created in step 3.</td>
</tr>
<tr>
<td>Rerouting Calling Search Space</td>
<td>When doing call bridge grouping, set this to a calling search space that contains the partitions of the calling parties.</td>
</tr>
<tr>
<td>SIP Profile</td>
<td>Select the Standard SIP Profile For TelePresence Conferencing</td>
</tr>
<tr>
<td>Normalization Script</td>
<td>Assign cisco-telepresence-conductor-interop to this SIP trunk. Note: ideally download the latest normalization script from the Cisco website. Even if you do not have a Conductor, the Meeting Server has the same interop issues that Conductor would have, and therefore this script is suitable for a trunk to the core Meeting Server.</td>
</tr>
<tr>
<td>Run On All Active Unified CM Nodes</td>
<td>Check this checkbox if you wish calls to egress other CUCM nodes as well.</td>
</tr>
</tbody>
</table>

6. Click Save and apply the configuration. Use the Trunk List to confirm that the trunk goes into service after a few minutes.

2.2 Configuring a non-secure SIP trunk

Follow the steps in Section 2.2.1 and Section 2.2.2 to set up a non-secure SIP trunk, then follow Chapter 3 to enable rendezvous and scheduled calls between Cisco Unified Communications Manager and Meeting Server.
2.2.1 Configuration required on the Meeting Server

Follow the Cisco Meeting Server deployment guides to configure your Meeting Server, once configured:

1. SSH into the MMP of the Meeting Server
2. If you have not already done so, specify a listening interface using the MMP command
 `callbridge listen`

2.2.2 Configuration required on the Cisco Unified Communications Manager

Our testing has been done on trunks without Media Termination Point (MTP) configured. Therefore:

- Disable MTP if this will not negatively affect your deployment. Turning off MTP might have a negative impact on your deployment if you are using SCCP phones and need to send DTMF to the Meeting Server.
- If the above is not a valid implementation, you may need to increase the MTP capacity on the Cisco Unified Communications Manager depending on the number of simultaneous calls.

1. Create a SIP trunk security profile

Cisco Unified Communications Manager applies a default security profile called Non Secure SIP Trunk when you create the SIP Trunk, this is for TCP. You can use this default security profile, or you can create a new profile by just giving it a name and leaving the other options at their defaults. To verify the default profile settings or create a new one, follow these steps:

a. Log into Cisco Unified Communications Manager Administration.
b. Go to System > Security > SIP Trunk Security Profile.
c. Click Add New.
d. Complete the Name field as follows:
 - `Name` = type in a name, e.g. "CMS_SecureTrunk"
 and then verify that the default fields are as follows:
 - `Device Security Mode` = select Non Secure
 - `Incoming Transport Type` = select TCP+UDP
 - `Outgoing Transport Type` = select TCP
 - `Incoming Port`. The default for TCP is 5060
 - `Accept Replaces Header` = check this box if you intend to use Call Bridge Grouping (see Section 6).
e. Click Save
2. Create the SIP trunk
 a. In Cisco Unified Communications Manager, go to Device > Trunk.
 b. Click Add New.
 c. Configure these fields:
 - Trunk Type = SIP trunk
 - DeviceProtocol = SIP
 - Trunk Service Type = None (default)
 d. Click Next
 e. Configure the destination information for the SIP trunk, see Table 2 below.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device name</td>
<td>Type in a name e.g. CiscoMeetingServer (no spaces allowed)</td>
</tr>
<tr>
<td>Device pool</td>
<td>The pool you want your device to belong to (as configured in System > Device Pool in Cisco Unified Communications Manager)</td>
</tr>
<tr>
<td>SRTP Allowed</td>
<td>Do not allow SRTP</td>
</tr>
<tr>
<td>Inbound Calls > Calling Search Space</td>
<td>Select default.</td>
</tr>
<tr>
<td>Outbound Calls > Calling Party Transformation CSS</td>
<td>Select as appropriate.</td>
</tr>
<tr>
<td>SIP Information > Destination address</td>
<td>We recommend entering the CUCM FQDN (or rely on the DNS lookups).</td>
</tr>
<tr>
<td>SIP Information > Destination Port</td>
<td>Enter 5060 for TCP</td>
</tr>
<tr>
<td>Rerouting Calling Search Space</td>
<td>When doing call bridge grouping, set this to a calling search space that contains the partitions of the calling parties.</td>
</tr>
<tr>
<td>SIP Trunk Security Profile</td>
<td>Select the security profile created in step 1.</td>
</tr>
<tr>
<td>SIP Profile</td>
<td>Select the Standard SIP Profile For TelePresence Conferencing</td>
</tr>
<tr>
<td>Normalization Script</td>
<td>Not required for a non-secure SIP trunk.</td>
</tr>
</tbody>
</table>

f. Click Save.
3 Setting up scheduled and rendezvous calls

After setting up a secure SIP trunk (Section 1.1) or non-secure SIP trunk (see Section 1.2), follow the steps in Section 3.1 and Section 3.2 to enable rendezvous and scheduled calls to be made from the Meeting Server to Cisco Unified Communications Manager.

3.1 Configuring the Meeting Server

1. Configure an outbound dial plan rule for calls that will be sent to Cisco Unified Communications Manager from the Meeting Server.
 a. Using the Web Admin Interface of the Meeting Server, go to Configuration > Outbound Calls.

 ![Outbound Calls](image)

 b. In the blank row, for Domain, enter the domain that will be matched for calls that need to be sent to Cisco Unified Communications Manager.

 c. For SIP proxy to use, do one of the following:
 - Leave this field blank and the server will perform a DNS SRV lookup for the domain entered in step b using _sips.tcp.<yourcucmdomain>. If this fails to resolve, the server will try a DNS A lookup of <yourcucmdomain>. If this fails it will try an SRV lookup of _sip.tcp.<yourcucmdomain> and it that fails then a look up of _sips.udp.<yourcucmdomain>.
 - Enter the SIP proxy for the server to use, for example the FQDN of your Cisco Unified Communications Manager. This domain will be resolved as described in the bullet point above.
 - Enter the IP address of your Cisco Unified Communications Manager.

 d. For Local contact domain, leave this field blank, it is only required when setting up a SIP trunk to Lync.

 e. For Local from domain, enter the domain that you want the call to be seen as coming from (the Caller ID).
Note: If you leave **Local from domain** blank, the domain used for the Caller ID defaults to that entered in the **Local contact domain**, in this case blank.

f. For **Trunk type** select Standard SIP.

g. Set the **Priority** as required.

h. Select the **Encryption** mode that is appropriate to your deployment. For instance, if traffic is not encrypted on the SIP trunk then select “Unencrypted”.

i. Select **Add New**.

3.2 Configuring Cisco Unified Communications Manager

Cisco Unified Communications Manager uses route patterns, route groups and route lists to direct calls to the correct location.

A route group allows you to designate the order in which trunks are selected. For example, if you use two long-distance carriers, you could add a route group, so long-distance calls to the less expensive carrier are given priority; calls route to the more expensive carrier only if the first trunk is unavailable.

A route list associates a set of route groups in a specified priority order. A route list then associates with one or more route patterns and determines the order in which those route groups are accessed. The order controls the progress of the search for available devices for outgoing calls. A route list can contain only route groups. Each route list should have at least one route group. You can add a route group to any number of route lists.

A route pattern comprises a string of digits (an address) and a set of associated digit manipulations that route calls to a route list or a gateway. Route patterns work in conjunction with route filters and route lists to direct calls to specific devices and to include, exclude, or modify specific digit patterns.

Media resource groups define logical groupings of media servers. You can associate a media resource group with a geographical location or a site, as desired. You can also form media resource groups to control the usage of servers or the type of service (unicast or multicast) that is required.

For more information on route groups, route lists and resource groups, see the [Cisco Unified Communications Manager System Guide](#) for your Cisco Unified Communications Manager version.
3. Setting up scheduled and rendezvous calls

Figure 3: Directing calls to the correct location

```
Route Pattern 1
712xxxx

Route List CMS
Route Group

Route Group
CMS_1
CMS_2
CMS_3
```

Note: If you are not configuring a scalable and resilient Meeting Server deployment then you do not need to set up route groups or route lists on Cisco Unified Communications Manager. When configuring the dial plan for outbound calls from the Cisco Unified Communications Manager simply create a route pattern, for **domain based routing** point the SIP Trunk/Route List to the SIP trunk you configured previously, for **numeric dialing** point the Gateway/Route List to the SIP trunk you configured previously, and then select the Route Option as **Route this pattern**.

3.2.1 Configure Route Groups

1. Log into the Cisco Unified Communications Manager Administration interface:
2. Go to **Call Routing > Route/Hunt > Route Group**. A list of existing Route Groups is displayed.
3. If none are appropriate, click **Add New**.
4. Complete the following:
 - Route Group Name = type a name that reflects the purpose of the Route Group, for instance: CMS_1
 - Select the distribution algorithm from the drop-down, for example **Top Down**
 - Select the appropriate SIP trunk from the **Available Devices** list and click on the **Add to Route Group** button
 - The other fields appropriate to this Route Group
5. Click **Save**.
6. Check that the new Route Group has been created by checking the list of Route Groups.

3.2.2 Configure Route Lists

1. Go to **Call Routing > Route/Hunt > Route List**. A list of existing Route Lists is displayed.
2. If none are appropriate, click **Add New**.
3. Complete the following:
 - Name = type a name that reflects the purpose of the Route List, for instance: Route List US
From the Cisco Unified Communications Manager Group drop-down select Default

- Click Save.
- From the Route List Member Information section, select Add Route Group and select the Route Group to add to the list of Selected Groups.
- The other fields appropriate to this Route List

4. Click Save.

5. Check that the new Route List has been created by checking the list of Route Lists.

3.2.3 Configure route patterns (dial plans for outbound calls)

You can configure domain based routing e.g. @mydomain.example.com or number based routing e.g. 7XXX, to the Meeting Server through the Cisco Unified Communications Manager interface. For example:

Domain based routing example

To route all domain based calls from Cisco Unified Communications Manager to the Meeting Server:

1. Go to Call Routing > Sip Route Pattern.

2. If none are appropriate, click Add New.

3. Complete the following:
 - Pattern Usage = Domain Routing
 - IPv4 pattern something like mydomain.example.com
 - Description = anything you want
 - Route Partition = the route partition you want this rule to belong to

Note: Various dial plan rules are attached to a route partition and a Calling Search Space (CSS) comprises a list of route partitions. You can have a different CSS for different people, each phone, or trunk. When a call is made, Cisco Unified Communications Manager goes through each route partition in the CSS until it finds one that has a matching rule.

4. Click Save.
Numeric dialing example

This basic example routes everything starting with a 7 to the Meeting Server.

1. Go to **Call Routing > Route/Hunt > Route Pattern**. A list of existing Route Patterns is displayed.

2. If none are appropriate, click **Add New**.

3. Complete the following:
 - Route pattern = 703777XXX (Further down the page you can set various transforms e.g. in the Discard Digits field you can select PreDot to strip off the leading 7 in our example.)
 - Route partition = the route partition you want this rule to belong to

 Note: Various dial plan rules are attached to a route partition and a Calling Search Space (CSS) comprises a list of route partitions. You can have a different CSS for different people, each phone, or trunk. When a call is made, Cisco Unified Communications Manager goes through each route partition in the CSS until it finds one that has a matching rule.

 - Description = any appropriate text
 - From the **Gateway/Route List** drop-down, select the Route List to add to the Route Pattern

4. Click **Save**.

5. Make some test calls. You will need an endpoint registered to Cisco Unified Communications Manager, and on the Meeting Server you need to create a space and an inbound dial plan rule to accept the call from Cisco Unified Communications Manager. See the appropriate [Cisco Meeting Server Deployment Guide](https://www.cisco.com) for information on how to do this.
4 Setting up escalated ad hoc calls

After setting up the secure SIP trunk (see Section 1.1), follow the steps in Section 4.1 and Section 4.2 to enable the escalation of a 2-way call on Cisco Unified Communications Manager to a conference on the Meeting Server.

Note: If you decided to set up the SIP trunk as non-secure, you will still need to use certificates, as the escalation of a 2-way call on Cisco Unified Communications Manager to a conference on the Meeting Server, requires the Cisco Unified Communications Manager to communicate with the API of the Cisco Meeting Server. The API requires HTTPS communication, so certificates need to be created and uploaded to both the Cisco Meeting Server and Cisco Unified Communications Manager and each needs to trust the other’s certificate, in order for escalated ad hoc calls to work.

Note: From version 2.3 of the Meeting Server, ad hoc call escalation between the Meeting Server and Cisco Unified Communications Manager by default only uses TLS 1.2. Cisco Unified Communications Manager supports TLS 1.2 from version 11.5(1)SU3. Currently, version 10.5 (2) does not support TLS 1.2 as a client, which is the mode required for ad hoc call escalation with the Meeting Server. For information on how to change the minimum TLS version, see Cisco Meeting Server Release 2.4 MMP Command Line Reference

Note: Cascades between a space and a S4B gateway call are supported. However, dialing into a space and adding an ad hoc call to escalate to the same Meeting Server (i.e. cascading between two spaces) is not supported. Cascading between two spaces on different Meeting Servers is possible but not recommended due to the possibility of poor user experience.

4.1 Configuring the Meeting Server

1. Set up an incoming dial plan on the Meeting Server. See the appropriate Cisco Meeting Server Deployment Guide. (Note: For adhoc calls the trunk address defined in Cisco Unified Communications Manager should be in your inbound call rules, i.e. your trunk address is what your incoming URIs from Cisco Unified Communications Manager will use.)

2. Set up an administrator user account with "api" permission for Cisco Unified Communications Manager to use. See the Cisco Meeting Server MMP Command Line Reference Guide.
4.2 Configuring Cisco Unified Communications Manager

Note: For ad hoc calls, Cisco Unified Communications Manager needs to access the API of the Meeting Server. The Meeting Server requires HTTPS connection, so if you have different certificates for the Call Bridge and Web Admin you need to upload the Meeting Server Web Admin certificate to the CallManager-trust store on Cisco Unified Communications Manager.

This step needs to be done regardless of whether you configured a secure or non-secure SIP trunk. Check that this has been done before proceeding with the next steps.

The Meeting Server is treated as a conference bridge on Cisco Unified Communications Manager.

1. For each Meeting Server, create the Conference Bridge
 a. In Cisco Unified Communications Manager Administration, select Media Resources > Conference Bridge. The Find and List Conference Bridges window displays.
 b. Click Add New. The Conference Bridge Configuration window displays.
 c. Select Cisco Meeting Server from the Conference Bridge Type drop-down list. (If you are using an older version of Cisco Unified Communications Manager software that does not have Cisco Meeting Server as an option, select Cisco TelePresence Conductor.)
 d. Enter a name and description for the Meeting Server in the Device Information pane.
 e. Enter a Conference Bridge Prefix if deploying ad hoc conferencing for a centralized deployment where the Meeting Servers are not directly connected to this Cisco Unified Communications Manager cluster. This is explained in more detail in Appendix A.

 Note: Set a unique Conference Bridge Prefix for each pair of Meeting Server node and Cisco Unified Communications Manager cluster in the deployment.

 f. Select a SIP trunk from the SIP Trunk drop-down list.
 g. Enter the HTTP interface information to create a secure HTTPS connection between Cisco Unified Communications Manager and Cisco Meeting Server. Note:
 i. This must match your Web Admin Interface and port.
 ii. Check the Override SIP Trunk Destination as HTTP Address checkbox if your Web Admin is listening on a different address to your SIP trunk.
 iii. The address field must match your certificate loaded on Web Admin.
 h. Click Save and then click Reset.
 i. Verify the Meeting Server is registered with Cisco Unified Communications Manager.
2. **Add the Meeting Servers to Media Resource Groups (MRGs):**
 The number of MRGs will depend on the topology of your deployment.
 a. Go to Media Resources > Media Resource Group.
 b. Click Add New to create a new media resource group and enter a name.
 c. Move one or more of the conference bridges created in step 1 from the Available Media Resources box to the Selected Media Resources box.
 d. Click Save.

3. **Add the Media Resource Groups (MRGs) to the Media Resource Group Lists (MRGLs).** The number of MRGLs will depend on the topology of your deployment.
 For each MRGL:
 a. Go to Media Resources > Media Resource Group List.
 b. Click Add New to create a new media resource group list and enter a name, or select an existing MRGL and click on it to edit it.
 c. Move one or more of the Media Resource Groups created in step 2 from the Available Media Resource Groups box to the Selected Media Resource Groups box.
 d. Click Save.

4. **Add the MRGL to a Device Pool or Device.**
 Depending on the implementation, either a Device Pool can be configured and applied to all endpoints, or an individual device (i.e. an endpoint) can be assigned to a specific MRGL. If an MRGL is applied to both a Device Pool and an endpoint, the endpoint setting will be used.
 For further information on Device Pools or Devices see the Cisco Unified Communications Manager documentation.
 a. Go to System > Device Pool.
 b. Click Add New to create a new Device Pool and enter a name, or select an existing Device pool and click on it to edit it.
 c. In the Device Pool Settings section, select the appropriate Cisco Unified Communications Manager Group from the drop-down list.
 d. In the Roaming Sensitive Settings section, use the drop-down lists to select the Date/Time Group, Region, and the Media Resource Group List created in step 2f above. Leave other fields as their default (or previously configured) values.
 e. Click Save and Reset for the changes to take effect. If there are devices associated with the pool, they will reboot when Reset is clicked.
 If a new Device Pool has been created:
 f. Go to Device > Phones.
4. Setting up escalated ad hoc calls

g. Click **Find** and select the device to change the Device Pool settings on.
h. Select the Device Pool created in step 3b above from the drop-down list.
 i. Click **Save**.
 j. Click **Apply Config**.
 k. Click **Reset** for the changes to take effect. This will reboot the endpoints when applied.

5. If deploying with Cisco Unified Communications Manager Session Management Edition, then either:
 a. set up dial plan rules for calls that have the conference bridge prefix set (step 1e) which point to the appropriate Meeting Server node.
 b. configure the trunks from leaf nodes with an LUA script that strips out the call information header, and configure the dial plan rules to point to all Meeting Server nodes.

Note: See **Appendix A** for the steps in setting up ad hoc call escalation between a Meeting Server node and Cisco Unified Communications Manager. The appendix also provides an example LUA script that strips out the call information header.

4.3 Escalated ad hoc calls and licenses

Escalated ad hoc calls use either PMP Plus or SMP Plus licenses. For a PMP Plus license to be used:

1. Cisco Unified Communications Manager must provide the objectGUID of the user escalating the call.
2. A user with that objectGUID must have been imported into Meeting Server.
3. The user must have a PMP Plus license associated with them.

Note: Cisco Unified Communications Manager currently only provides the objectGUID for users imported from Active Directory. If using another LDAP source, Cisco Unified Communications Manager does not pass the necessary information to Meeting Server.
5 Support for ActiveControl

From version 2.1, the Meeting Server supports ActiveControl for hosted calls. For participants using a Cisco SX, MX or DX endpoint with CE 8.3+ software installed, ActiveControl allows the meeting participant to receive details of the meeting and perform a few administrative tasks during the meeting, using the endpoint interface.

5.1 ActiveControl on the Meeting Server

The Meeting Server supports sending the following meeting information to ActiveControl enabled endpoints:

- Participant list (also known as the roster list) so that you can see the names of the other people in the call and the total number of participants,
- indicator of audio activity for the currently speaking participant,
- indicator of which participant is currently presenting,
- Indicators telling whether the meeting is being recorded or streamed, and if there are any non-secure endpoints in the call,
- on screen message which will be displayed to all participants, see Section 1.0.1,

and supports these administrative tasks on ActiveControl enabled endpoints:

- select the layout to be used for the endpoint,
- disconnect other participants in the meeting, see Section 1.0.4.

5.2 Limitations

- If an ActiveControl enabled call traverses a Unified CM trunk with a Unified CM version lower than 9.1(2), the call may fail. ActiveControl should not be enabled on older Unified CM trunks (Unified CM 8.x or earlier).
- ActiveControl is a SIP only feature. H.323 interworking scenarios are not supported.

Note: Active Control uses UDT transport for certain features, for example sending roster lists to endpoints and allowing users to disconnect other participants while in a call. See for the steps to follow on the Meeting Server.

5.3 Overview on ActiveControl and the iX protocol

ActiveControl uses the iX protocol, which is advertised as an application line in the SIP Session Description Protocol (SDP). The Meeting Server automatically supports ActiveControl, but the
feature can be disabled, see section Section 5.4. In situations where the far end network is not known or is known to have devices that do not support the iX protocol, it may be safest to disable iX on SIP trunks between the Meeting Server and the other Call control or Video Conferencing devices. For instance:

- for connections to Unified CM 8.x or earlier systems the older Unified CM systems will reject calls from ActiveControl-enabled devices. To avoid these calls failing, leave iX disabled on any trunk towards the Unified CM 8.x device in the network. In cases where the 8.x device is reached via a SIP proxy, ensure that iX is disabled on the trunk towards that proxy.

- for connections to third-party networks. In these cases there is no way to know how the third-party network will handle calls from ActiveControl-enabled devices, the handling mechanism may reject them. To avoid such calls failing, leave iX disabled on all trunks to third-party networks.

- for Cisco VCS-centric deployments which connect to external networks or connect internally to older Unified CM versions. From Cisco VCS X8.1, you can turn on a zone filter to disable iX for INVITE requests sent to external networks or older Unified CM systems. (By default, the filter is off.)

5.4 Disabling ActiveControl on the Meeting Server

Follow these steps to set up and disable ActiveControl on the Meeting Server.

Using the Meeting Server API:

1. Create a compatibility profile with the sipUdt parameter set to “false”. Either POST sipUDT=false to the /compatibilityProfiles object or PUT to /compatibilityProfiles/<compatibility profile id> object

2. Disable ActiveControl at the system level, by adding the compatibilityProfile parameter and id (from step 1) to the system profile. PUT compatibityProfile=<compatibility profile id to the /system/profiles/ object.

5.5 Enabling iX support in Cisco Unified Communications Manager

Support for the iX protocol is disabled by default on the Cisco Unified Communications Manager for some SIP profiles. To enable iX support in Unified CM, you must first configure support in the SIP profile and then apply that SIP profile to the SIP trunk.

Configuring iX support in a SIP profile

2. Do one of the following:
 a. To add a new SIP profile, click **Add New**.
 b. To modify an existing SIP profile, enter the search criteria and click **Find**. Click the name of the SIP profile that you want to update.

 The SIP Profile Configuration window displays.

3. Check the check box for **Allow iX Application Media**

4. Make any additional configuration changes.

5. Click **Save**

Applying the SIP profile to a SIP trunk

1. Choose **Device > Trunk**.

 The Find and List Trunks window displays.

2. Do one of the following:
 a. To add a new trunk, click **Add New**.
 b. To modify a trunk, enter the search criteria and click **Find**. Click the name of the trunk that you want to update.

 The Trunk Configuration window displays.

3. From the SIP Profile drop-down list, choose the appropriate SIP profile.

4. Click **Save**.

5. To update an existing trunk, click **Apply Config** to apply the new settings.

5.6 Filtering iX in Cisco VCS

To configure the Cisco VCS to filter out the iX application line for a neighbor zone that does not support the protocol, the zone must be configured with a custom zone profile that has the SIP UDP/iX filter mode advanced configuration option set to **On**.

To update advanced zone profile option settings:

1. Create a new neighbor zone or select an existing zone (**Configuration > Zones > Zones**).

2. In the Advanced parameters section, for **Zone profile**, choose **Custom** if it is not already selected. The zone profile advanced configuration options display.

3. From the **SIP UDP/iX filter mode** drop-down list, choose **On**.

4. Click **Save**.
5.7 iX troubleshooting

Table 4: Call handling summary for calls that contain an iX header

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified CM 8.x or earlier</td>
<td>Calls fail</td>
</tr>
<tr>
<td>Unified CM 9.x earlier than 9.1(2)</td>
<td>Calls handled normally but no ActiveControl</td>
</tr>
<tr>
<td>Unified CM 9.1(2)</td>
<td>Calls handled normally plus ActiveControl</td>
</tr>
<tr>
<td>Endpoint – no support for iX and no SDP implementation</td>
<td>Endpoint may reboot or calls may fail</td>
</tr>
</tbody>
</table>
6 Overview of load balancing calls

This chapter explains how to increase the scalability and resilience of the Meeting Servers within a Cisco Unified Communications Manager deployment.

Call Bridge grouping is used to load balance calls across clustered Call Bridges. The Cisco Unified Communications Manager’s primary role is to move calls between Call Bridge groups as instructed by the Cisco Meeting Servers. Each trunk to a local Call Bridge must be configured to use a SIP Trunk Security Profile that has the “Accept Replaces Header” check box selected. For more information see the Security Guide for Cisco Unified Communications Manager.

Balancing incoming calls over local Call Bridges is achieved by configuring a route group per location on the Cisco Unified Communications Manager, the route group contains links to the local conference resources in that location. The route group should be set up with circular distribution to load balance calls across the Meeting Servers. See Section 6.1.

Balancing outgoing calls over local Call Bridges is achieved by enabling load balancing of outbound SIP calls from spaces, and setting up outbound dial plan rules for load balancing outbound SIP calls. See Section 6.2.

For background information and examples of load balancing calls across Meeting Servers, see the white paper.

Note: Load balancing of incoming calls involves outbound calls from Call Bridges to Cisco Unified Communications Manager. For these outbound calls to work, outbound dial plan rules must be configured, see Section 3.1.

6.1 Configuring Call Bridges for load balancing incoming calls

There are three aspects to setting up the load balancing of calls across a Meeting Server cluster:

- creating the Call Bridge Groups,
- enabling load balancing,
- and optionally, fine-tuning the load balancing on each Call Bridge. In most deployments this will not be necessary.

In addition, load balancing incoming calls involves outbound calls from Call Bridges to Cisco Unified Communications Manager or Cisco Expressway. For these outbound calls to work, outbound dial plan rules must be configured, see Load balancing outbound SIP calls.

Note: If load balancing incoming calls involves outbound calls from Call Bridges to Cisco VCS, instead of Cisco Expressway, then a traversal license is required on the VCS. There is no
requirement for a Rich Media Session license on Cisco Expressway for any load balanced Meeting Server deployments.

Note: If you are not using load balancing with Call Bridge Groups, then calls will not be rejected, but the quality of all calls will be reduced when the load limit is reached. If this happens often, we recommend that you buy additional hardware.

6.1.1 Creating Call Bridge Groups

1. For each Meeting Server cluster, decide how to group the Call Bridges, for instance by data center or by country or region.
2. Create a Call Bridge Group using a POST to the `/callBridgeGroups` with a name for the Call Bridge Group.
3. Assign a Call Bridge to a group by setting the `callBridgeGroup` parameter for that Call Bridge under `/callBridges`. Set the `callBridgeGroup` parameter of an individual Call Bridge to the GUID of the target `callBridgeGroup` you are assigning it to.
4. Repeat for all other Call Bridge Groups.

6.1.2 Specifying the load limit on a cluster and enabling load balancing

1. On each Call Bridge, issue a PUT to the `/system/configuration/cluster` node with the value for `loadLimit`. This sets a load limit for the maximum load on the server, see the table below for load limits:

<table>
<thead>
<tr>
<th>System</th>
<th>Load Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting Server 2000</td>
<td>500000 (for version 2.4; see note below)</td>
</tr>
<tr>
<td></td>
<td>500000 (for versions 2.4 and 2.5; see note below)</td>
</tr>
<tr>
<td></td>
<td>700000 (for versions 2.6; see note below)</td>
</tr>
<tr>
<td>Meeting Server 1000</td>
<td>96000</td>
</tr>
<tr>
<td>X3</td>
<td>250000</td>
</tr>
<tr>
<td>X2</td>
<td>125000</td>
</tr>
<tr>
<td>X1</td>
<td>25000</td>
</tr>
<tr>
<td>VM</td>
<td>1250 per vCPU</td>
</tr>
</tbody>
</table>

Setting a load limit on any Call Bridge means it will reject calls based on the current load. By default, the rejection of calls from new participants occurs at 80% of the load limit to allow for the distribution of calls. This value can be fine tuned, see below.
Note: Although for version 2.4, a single Cisco Meeting Server 2000 supports an increased number of HD calls (700 from 500), a Cisco Meeting Server 2000 with Call Bridge Groups enabled only supports 500 HD calls. The loadLimit for a Cisco Meeting Server 2000 is set at 500,000 due to the total number of video calls supported remaining at 1,000. The Meeting Server does not offer a way to limit the minimum resolution of calls, so it will always be possible to have a mix of HD and lower resolution calls. There is no mechanism to make use of the increased scale in HD or full HD in a load balanced configuration.

Note: Although for version 2.4 and 2.5, a single Cisco Meeting Server 2000 supports an increased number of HD calls (700 from 500), a Cisco Meeting Server 2000 with Call Bridge Groups enabled only supports 500 HD calls. The loadLimit for a Cisco Meeting Server 2000 is set at 500,000 due to the total number of video calls supported remaining at 1,000. The Meeting Server does not offer a way to limit the minimum resolution of calls, so it will always be possible to have a mix of HD and lower resolution calls. There is no mechanism to make use of the increased scale in HD or full HD in a load balanced configuration.

Note: From version 2.6, the call capacity for Cisco Meeting Server 2000 with Call Bridge Groups enabled, has increased to 700 HD calls, and the loadlimit has increased from 500000 to 700000. The load calculation for the different call resolutions has been updated to match the new 700000 limit. Load limits for other Meeting Server platforms stay as they were previously; these changes only apply to the Cisco Meeting Server 2000.

2. Enable load balancing.
 a. For Cisco Unified Communications Manager deployments:
 PUT to the /callBridgeGroups/<call bridge group> with loadBalancingEnabled=true

Tip: If you have only one Call Bridge, and you want to reject calls rather than reducing quality, then create a Call Bridge Group with a single Call Bridge and enable load balancing.

6.1.3 Fine-tuning the load balancing

It is possible to fine tune the load balancing parameters, but take care as it could impact the availability of the solution. Changing the default values may lead to overloading of servers and a degradation of video quality. This could occur due to either conferences becoming fragmented over multiple Call Bridges, or conferences using too many resources on a single Call Bridge.

Load balancing calls on a Call Bridge is controlled by 3 parameters:

- loadLimit – a numeric value for the maximum load on the Call Bridge, as set above.
- newConferenceLoadLimitBasisPoints – a numeric value for the basis points (1 in 10,000) of the load limit at which incoming calls to non-active conferences will be disfavored, ranges from 0 to 10000, defaults to 5000 (50% load). Value is scaled relative to LoadLimit.
- **existingConferenceLoadLimitBasisPoints** – a numeric value for the basis points of the load limit at which incoming calls to this Call Bridge will be rejected, ranges from 0 to 10000, defaults to 8000 (80% load). Value is scaled relative to **LoadLimit**.

To change the default threshold values for a Call Bridge:

1. Issue a PUT to the `/system/configuration/cluster` node with the value for `newConferenceLoadLimitBasisPoints` and the value for `existingConferenceLoadLimitBasisPoints`.

Note: distribution calls are always accepted, and will consume additional resources. If modifying the load balancing parameters, ensure that any necessary overhead for these calls has been included in the calculations.

6.1.4 How load balancing uses the settings

Within each Call Bridge Group there is a particular preference order in which Call Bridges will be chosen for each space. Any call for a space landing anywhere in the Call Bridge Group will be preferentially redirected to Call Bridges based on this order. The redirection is based on two thresholds: the existing conference threshold and the new conference threshold.

The thresholds are defined as:

- **existing conference threshold** = `existingConferenceLoadLimitBasisPoints/10000 × loadLimit`
- **new conference threshold** = `newConferenceLoadLimitBasisPoints/10000 × loadLimit`

When a call lands on a Call Bridge the load limit is checked, if the load limit is above the existing conference threshold, then the call is rejected. Note calls can also be rejected for other reasons. Rejected calls should be redirected by the call control device.

If the load limit is below the existing conference threshold, then the call will be answered and any IVRs traversed. Once the conference is known then the Call Bridge preference order within the group can be determined. This order is used to decide between Call Bridges in cases where there are multiple Call Bridges that could be chosen.

If any Call Bridges within the group are already running the conference, then the load limits of these Call Bridges are checked. If any of these are below the existing conference threshold, then one of these will be used.

If no Call Bridge has yet been chosen, then one of the Call Bridges with a load limit less than the existing conference threshold is chosen.

6.2 Load balancing outbound SIP calls

From version 2.2, Call Bridge Groups supports the load balancing of outbound SIP calls, in addition to inbound SIP calls which was introduced in version 2.1.
To use this feature, do the following:

- enable load balancing of outbound SIP calls from spaces.
- set up outbound dial plan rules for load balancing outbound SIP calls.
- supply the Call Bridge Group or a specific Call Bridge for the outbound SIP calls, using the API object /calls/<call_id>/participants.

Once load balancing is enabled, outbound SIP calls follow the logic:

- Find the highest priority outbound dial plan rule that matches the domain,
 - if this applies to a local Call Bridge, then balance the call within the local Call Bridge Group.
 - if this only applies to remote Call Bridges, then load balance the call within the Call Bridge Group to which the Call Bridge is a member.

For examples on load balancing SIP calls across Call Bridge Groups, see the white paper: Load Balancing Calls Across Cisco Meeting Servers.

Note: Load balancing of calls from/to Lync clients, is not currently supported by Call Bridge Groups.

6.2.1 How to enable load balancing of outbound SIP calls

To configure the Call Bridges in a specific Call Bridge Group to attempt to load balance outgoing SIP calls from spaces, perform a PUT on the API object /callBridgeGroups/<call_bridge_group_id> with the loadBalanceOutgoingCalls parameter set to true. Use POST if setting up a new Call Bridge Group.

For load balancing of outbound calls, each Call Bridge in the group must have the same dial plan rules.

6.2.2 How to set up an outbound dial plan rule for load balancing outbound SIP calls

This can be achieved in 3 ways:

1. Setting the scope parameter to global in all of the outbound dial plan rules. This ensures that all Call Bridges are able to use all of the outbound dial plan rules to reach a matching domain.

2. Creating identical outbound dial plan rules for each Call Bridge in the Call Bridge Group. Set the scope parameter set to callBridge. Use the callBridge parameter to set the ID of the Call Bridge.

3. Creating outbound dial plan rules for the specific Call Bridge Group. Set the scope parameter to callBridgeGroup, and set the callBridgeGroup parameter to the ID of the Call Bridge Group.
Before using load balancing of outbound calls, review the existing dial plan rules for each Call Bridge in the Call Bridge group. If the scope of existing rules needs to be altered, perform a PUT on the API object `/outboundDialPlanRules/<outbound dial plan rule id>` supplying the scope request parameter as defined above. Use POST on the API object `/outboundDialPlanRules` if setting up a new outbound dial plan rule.

6.2.3 How to supply the Call Bridge Group or specific Call Bridge to use for outbound SIP calls to participants

To make a call from a specific Call Bridge Group, perform a POST on the API object `/calls/<call id>/participants` with the parameter `callBridgeGroup` and the ID of the Call Bridge group to use.

To make a call from a specific Call Bridge, perform a POST on the API object `/calls/<call id>/participants` with the parameter `callBridge` and the ID of the Call Bridge to use.

6.2.4 Handling load balancing of active empty conferences

The load balancing algorithm preferentially places new calls onto a Call Bridge where the conference is already active. An empty conference can be started on a Call Bridge by performing a POST on the API object `/calls`. By default these empty conferences are treated as active. This means that the first call to the empty conference is preferentially load balanced to this Call Bridge. You can prevent the load balancing preferentially using the empty conferences, by setting the parameter `activeWhenEmpty` to `false` when performing the POST on the API object `/calls`.

6.3 Example deployments of load balancing incoming calls using Cisco Unified Communications Manager

The white paper on Load balancing discusses three deployment examples to load balance calls using Cisco Unified Communications Manager as the call control device.

- Example 1 has the Meeting Servers trunked to their local Cisco Unified Communications Manager. The Cisco Unified Communications Managers connect to a Cisco Unified Communications Manager Session Management Edition (SME) as leaf nodes. The SME routes calls between the nodes.
- Example 2 has centralized Meeting Servers trunked to an SME and a global Cisco Unified Communications Manager deployment.
- Example 3 has the Meeting Servers trunked to their local Cisco Unified Communications Manager. The Cisco Unified Communications Managers are simply trunked together, there is no SME to centrally route the calls.
For any deployment, there are three options for how calls from different devices are mapped to specific resources:

- Multiple partitions with Calling Search Spaces used to select the correct partition.
- Single partition with Local Route Groups. Selection of routes is done via multiple device pools.
- Dial string manipulation within a single partition per cluster.

Each of these options can be used with any of the deployments.

The last option is easy to do for numeric dial plans, but for URI dialing, LUA scripts will be required. The other two options work equally well for numeric and URI dialing.

For further details on these examples of load balancing incoming calls across Meeting Servers, and examples of load balancing outbound calls, see the [white paper](#).
Appendix A Adhoc escalation with multiple clusters.

In cases where adhoc resources are shared between multiple Cisco Unified Communications Manager clusters then additional considerations apply. The most common case where this occurs is when using a centralised deployment along with Cisco Unified Communications Manager Session Management Edition (SME).

For example in the figure above, the orange lines correspond to the https Meeting Server nodes, and the blue lines are the SIP trunks in use.

The two additional considerations are:

1. Use of unique Conference Bridge Prefixes
2. Ensuring calls hit the correct Call Bridge.

A.1 Use of unique Conference Bridge Prefixes

Since each Cisco Unified Communications Manager cluster acts independently, then two clusters could both try to use the same conference ID for a conference at the same time. This can be solved by assigning each conference bridge a unique conference bridge ID when setting it up in Cisco Unified Communications Manager (see step 1e in Section 4.2).

For example
A.2 Ensuring calls hit the right Call Bridge

When using multiple Meeting Server nodes it is recommended to use either a dial plan or Call Bridge Groups to ensure that all calls for a single conference land on the same Call Bridge.

The use of unique prefixes for the calls means that calls can be directed to the correct resource, and by careful choice of prefix, the number of rules can be minimised. For example:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Meeting Server node</th>
</tr>
</thead>
<tbody>
<tr>
<td>88810</td>
<td>CMS_1</td>
</tr>
<tr>
<td>88820</td>
<td>CMS_2</td>
</tr>
<tr>
<td>88830</td>
<td>CMS_3</td>
</tr>
<tr>
<td>88840</td>
<td>CMS_4</td>
</tr>
</tbody>
</table>

When using Call Bridge Groups, an alternative is to use an LUA script on the SME to strip a Cisco Unified Communications Manager header. If this header is not stripped, then the attempt to load balance the call will fail.

```lua
M = {}
trace.enable()
trace.format("***Remove_Call_Info_header_with_conference_tag***")
function M.inbound_INVITE(msg)
    trace.format("***Remove_Call_Info_header_with_conference_tag_Inside_INVITE***")
    msg:removeHeaderValue("Call-Info", "<urn:x-cisco-remotecc:conference>")
```
end
return M
Cisco Legal Information

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOSS PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

© 2019 Cisco Systems, Inc. All rights reserved.
Cisco Trademark

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)