Trusted Internet Connections (TIC) 3.0

Design Guide

April, 2021
Contents

Overview

Design Guide

<table>
<thead>
<tr>
<th>Branch</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Cloud Access (DCA)</td>
<td>5</td>
</tr>
<tr>
<td>Direct Internet Access (DIA)</td>
<td>20</td>
</tr>
<tr>
<td>Enabling TIC Security Capabilities</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remote User</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTD Remote Access VPN</td>
</tr>
<tr>
<td>Duo Multi-Factor Authentication</td>
</tr>
<tr>
<td>Cisco AnyConnect Client Profile</td>
</tr>
<tr>
<td>Cisco Endpoint Security Analytics (CESA)</td>
</tr>
<tr>
<td>Cisco Cloudlock</td>
</tr>
</tbody>
</table>
Overview

Cisco’s security approach for TIC 3.0 is not only designed to fulfill the requirements of distributed PEPs in the agency network but is also designed to fit with the relationships between TIC and other federal initiatives such as Continuous Diagnostics and Mitigations (CDM) and the National Institute of Standards and Technology (NIST) Zero trust Architecture. Zero Trust is a security model that shifts the access conversation from traditional perimeter-based security and instead focuses on secure access to applications based on user identity, the trustworthiness of their device and the security policies you set, as opposed to the network from where access originates. Zero Trust models assume that an attacker is present on the network and that an enterprise-owned network infrastructure is no different. Zero Trust Architecture (ZTA) focuses on three elements in the network, regardless of their location, securing the workforce, securing the workplace, and securing the workloads.

The guiding principles of ZTA resonate with the Universal capabilities outlined by TIC. For example:

- Developing, documenting, and maintaining a current inventory of all systems, networks, and components so that only authorized devices are given access.
- Least privilege for each entity on the network.
- Verifying the identity of users. Devices, or other entities through rigorous means such as MFA before granting access.
- Constantly monitoring the network for vulnerabilities and staying up to date with the latest and greatest Threat Intelligence.

Figure 1.
TIC 3.0 architecture
TIC 3.0 offers agencies the freedom to implement a more flexible TIC model. It is common for agencies to utilize cloud services and accommodate remote workers’ need access to all agency resources. These changes also impact the attack surface of the Federal Government. Instead of a singular location for policy enforcement, TIC 3.0 allows for distributing enforcement to different locations along the path if the deployed protections maintain a commensurate level of protection based on the agency’s risk tolerance. This document is an extension to the TIC 3.0 Architecture Guide and will detail deployment steps for securing remote users and branch offices as per the guidance shown in that document.

Design Guide

Software Version used in this guide

<table>
<thead>
<tr>
<th>Location</th>
<th>Product</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Center</td>
<td>vManage</td>
<td>20.3.1</td>
</tr>
<tr>
<td>Data Center</td>
<td>vSmart</td>
<td>20.3.1</td>
</tr>
<tr>
<td>Data Center</td>
<td>vBond</td>
<td>20.3.1</td>
</tr>
<tr>
<td>Data Center</td>
<td>Firepower Management Center (FMC)</td>
<td>6.6</td>
</tr>
<tr>
<td>Data Center</td>
<td>Splunk Enterprise</td>
<td>8.1.0</td>
</tr>
<tr>
<td>Data Center</td>
<td>CESA</td>
<td>3.7.1</td>
</tr>
<tr>
<td>Data Center</td>
<td>Cisco NVM Flow collector</td>
<td>3.7.1</td>
</tr>
<tr>
<td>Data Center</td>
<td>Cisco AnyConnect profile editor(s)</td>
<td>4.8</td>
</tr>
<tr>
<td>Branch</td>
<td>ISR4461</td>
<td>IOS-XE 17.2</td>
</tr>
<tr>
<td>Branch</td>
<td>FTD 1010</td>
<td>6.6</td>
</tr>
<tr>
<td>Cloud</td>
<td>Duo</td>
<td></td>
</tr>
<tr>
<td>Cloud</td>
<td>AMP & ThreatGrid</td>
<td></td>
</tr>
<tr>
<td>Endpoint</td>
<td>AnyConnect Secure Mobility Client</td>
<td>4.9</td>
</tr>
</tbody>
</table>
Branch
In this deployment a private SD-WAN environment consisting of vManage, vBond, vSmart and a single ISR-4461 were used following the procedure in the Cisco SD-WAN End-to-End Deployment Guide.

Direct Cloud Access (DCA)

This guide offers two options for Branch security. The first option is to enable DCA with the native firewall of a Cisco IOS XE SD-WAN device sitting at the edge of the branch. The firewall capabilities in the Cisco IOS XE SD-WAN can apply enforcement up to and including layer 7 (applications) and is managed using the same vManage dashboard that was used to create the SD-WAN overlay. For more details on this deployment see Cisco SD-WAN: Enabling Direct Internet Access.

Pre-requisites
- The SD-WAN controllers are set up and deployed (vManage, vBond, vSmart)
- A router has been configured using device templates in order to establish a functional and secure overlay fabric to pass data traffic across the organizations distributed sites. An SD-WAN Deployment guide can be found here.
- Upload a Security Virtual Image to vManage. For an installation guide see Security Virtual Image.
Application Routing

Application routing in the Cisco SD-WAN platform can be achieved using a couple of different methods. For simplicity, and since this guide mainly focuses on security, applications will be configured to always take the direct path. The alternate method is to configure Application-Aware routes which choose the optimum path based on the Service Level Agreement (SLA) of each route. For more information see Cisco SD-WAN: Application-Aware Routing Deployment Guide.

Procedure 1. Verify the SD-WAN vSmart controller is in vManage mode.

Step 1. In vManage, navigate to Configuration > Devices and select Controllers. If controller is in vManage mode, continue to the next procedure, otherwise continue to follow the steps.

Step 2. If the vSmart is in CLI mode, a device template must be configured and attached to vSmart. Highlight vSmart and click on Change Mode > vManage mode.

Step 3. Click Template.

Changing to vManage mode requires attaching a template to a device.
Step 4. Click Create Template > CLI Template.

Step 5. In the Device Model dropdown, choose vSmart. Add a meaningful name to the Template Name and Description. In the Load Running config from reachable device dropdown, choose the vSmart device. This loads the current CLI configuration from the device.

Step 6. Click Add.

Step 7. On the newly created vSmart device template, click the ellipses and choose Attach Devices.
Step 8. Choose the vSmart device and click Attach.

Step 9. Click on the vSmart device on the left-hand panel, double check the configuration and click Configure Devices.

Step 10. Once complete, navigate back to Configuration > Devices and select Controllers. The device will now be in vManage mode.

<table>
<thead>
<tr>
<th>Controller Type</th>
<th>Hostname</th>
<th>System IP</th>
<th>Site ID</th>
<th>Mode</th>
<th>Assigned Template</th>
<th>Device Status</th>
<th>Certificate Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>vManage</td>
<td>vmanage</td>
<td>1.1.1.1</td>
<td>255</td>
<td>CLI</td>
<td>–</td>
<td>In Sync</td>
<td>Installed</td>
</tr>
<tr>
<td>vSmart</td>
<td>vsmart</td>
<td>1.1.1.3</td>
<td>255</td>
<td>vManage</td>
<td>vSmart_template</td>
<td>In Sync</td>
<td>Installed</td>
</tr>
<tr>
<td>vBond</td>
<td>vbond</td>
<td>1.1.1.2</td>
<td>255</td>
<td>CLI</td>
<td>–</td>
<td>In Sync</td>
<td>Installed</td>
</tr>
</tbody>
</table>

Procedure 2. Configuring the Routing policy

Step 1. In vManage, navigate to Configuration > Policies.

Step 2. Under Centralized Policy, click + Add Policy.
Step 3. The first task is to create an application list that your agency would like to break from the tunnel. This example will show Office365 and WebEx. In the Application tab, click + New Application List.

Step 4. Give a meaningful name to the policy and with the Application radio button selected, search and click Microsoft Office 365 and WebEx. Click Add.

Step 5. In the Site tab, click + New Site List.

Step 6. This is where we define which sites this policy will apply to. Add a meaningful name to the site list and add all site id’s that this DCA policy will apply to. This example used only a single branch so only a single site was added. When all sites have been added, click Add.

Step 7. In the VPN tab, click + New VPN List.

Step 8. Give a meaningful name to the VPN list and all VPNs that this rule applies to. Click Add.
Step 9. Click **Next** until you get to the **Configure Traffic Rules** tab.

Step 10. In the **Traffic Data** tab, click **+ Add Policy > Create New**.

Step 11. Add a **Name** and **Description**.

Step 12. By default, all traffic is dropped. To change this, click the **pencil icon** and click **Accept**. Click **Save Match and Actions**. In this example, default routes were learned through BGP and therefore accepting all traffic in this policy will send traffic to these default routes. An alternate approach to BGP would be to configure the default routes in this policy and to re-order the application routes accordingly.
Step 13. Click + Sequence Type.

Step 15. Click + Sequence Rule.

Step 16. In the Match tab, click Application/Application Family List and choose the application list previously created.
Step 17. For this example, a static route was used to directly connect to the cloud. For more routing options, such as using a TLOC, see Cisco SD-WAN Design Guide. In the Actions tab, click Next Hop and provide the next hop route for direct cloud connectivity. Click Save Match and Actions.

Step 18. Click Save Data Policy.
Step 19. Click Next.
Step 20. Provide a Policy Name and Policy Description.
Step 21. In the Traffic Data tab, click + New Site List and VPN List and add the previously created Site List and VPN List.

Step 22. Click Save Policy.
Step 23. This action should take you to the Configuration > Policies screen. Click the ellipses in the newly defined policy and click Activate.
Step 24. A popup will appear. Click **Activate**.

SD-WAN Security policies

The purpose of this guide is to show the user the security options available in the device(s), not necessarily the recommended deployment policies as this will be highly dependent on the environment. Each procedure shown here will provide an example configuration that maps to a TIC security requirement. It is the responsibility of the user to decide how these policies are implemented in their network.

Figure 3.

Secure access to trusted applications with required capabilities

In the TIC 3.0 Architecture Guide a reduced set of security capabilities were outlined for DCA traffic. As all untrusted web traffic is being backhauled to the Traditional TIC, and only trusted traffic is split from the tunnel, a smaller subset of security capabilities are necessary. Nevertheless, the SD-WAN security stack does have more features that won’t be configured here such as **Break and Inspect** and **URL filtering**. Later in this guide, additional security measures will be implemented in the Branch using a Cisco Secure Firewall device. For a full Direct Internet Access guide using Cisco SD-WAN and a Secure Internet Gateway, see [Cisco SD-WAN Secure Direct Internet Access](https://www.cisco.com).
Step 1. In vManage, navigate to Configuration > Security.

Step 2. Click + Add Security Policy.

Step 3. vManage provides multiple pre-set policy combinations, depending on the level of security you require at the branch. In this guide we will choose Custom. Not all features in Custom will be needed for the recommended deployment, however, links will be provided for more information on each to allow customization options in your agency.
Firewall

The Firewall policy configuration can be used to meet the requirements for **IP Blacklisting, Content Filtering, Domain Category Filtering** and **Network Segmentation**. For a full SD-WAN firewall policy guide see [Enterprise Firewall with Application Awareness](#).

Step 1. Click + Add Firewall Policy > Create New.

Step 2. Add a Name and Description.

Step 3. Change Default Action to Pass.

Step 4. **Network Segmentation.** At the top of the page, click **Apply Zone-Pairs**. This feature allows you to define firewall policies for incoming and outgoing traffic between a self-zone of an edge router and another zone. When a self-zone is configured with another zone, the traffic in this zone pair is filtered as per the applied firewall policy.

Step 5. In the **Source Zone** field, choose the zone that is the source of the data packets.

Step 6. In the **Destination Zone** field, choose the zone that is the destination of the data packets.

Step 7. Optional: Click the + icon to create a zone pair.

Step 8. Click Save.
Step 9. Click + Add Rule.

Step 10. Choose if this policy will Pass, Drop or Inspect the traffic in the Action drop down menu.

Step 11. **IP Denylisting.** In the Source Data Prefix column, add the IP range that this rule applies. In the Destination Data Prefix column, add the IP range that this rule applies. Blocking traffic from a source network is used to stop devices from sending traffic through the firewall. Applying Denylists at the Destination network ensures hosts don’t reach devices or servers at a specified IP address.

Step 12. **Content Filtering, Domain Category Filter.** In the Application List to Drop column, add the Applications that should be dropped when this rule is triggered. To add a new application list, click + Application List to Drop and then click + New Application List. The chosen applications can be individual, such as Facebook, or based on category, such as gaming.

Step 13. Click Save.

Step 14. Click Save Firewall Policy.

Step 15. At the bottom of the page, click Next.

Intrusion Prevention
The Intrusion Prevention policy configuration can be used to meet the requirements for Intrusion Prevention and Malicious Content Filtering. For a full SD-WAN Intrusion Prevention policy guide see Intrusion Prevention System.

Note: Please upload compatible Security App Hosting Image File to the software repository in order to support IPS functions. You can upload the image file in vManage from Maintenance > Software Repository > Virtual Images.

Step 1. Click + Add Intrusion Prevention Policy > Create New.
Step 2. Click + Target VPNs. Add VPNs that this policy applies to and Save.

Step 3. Add a Policy Name.

Step 4. When choosing a Signature Set there are three options:

- **Connectivity** – Enables signatures with a CVSS score of 10 and CVE published within last 2 years.
- **Balanced** – Enables signatures with a CVSS score >= 9 and CVE published within last 2 years. Includes rule categories Malware CNC, Exploit Kits, SQL Injection and Denylist.
- **Security** – Enables signatures with a CVSS score >= 8 and CVE published within last 3 years. Included rules categories Malware CNC, Exploit Kits, SQL Injection, Denylist and App Detect Rules.
Step 5. In the **Inspection Mode** dropdown choose either **Detection** (alert only) or **Protection** (alert and block) depending on agency needs.

![Inspection Mode]

Step 6. Click **Save Intrusion Prevention Policy**.
Step 7. Click **Next**.

URL Filtering

The URL filtering policy configuration can be used to meet the requirement for **Domain Category and Reputation Filtering**. In this example deployment, all web traffic, with the exception of Office365 and WebEx, are backhauled to a Traditional TIC where URL filtering policies will be applied and centrally managed. To apply URL Filtering policies at the branch, see **URL Filtering**.

Advanced Malware Protection (AMP)

The AMP policy can be used to meet the requirements for **Anti-Malware, Content Disarm, Detonation Chamber, Content Filtering and Malicious Content Filtering**. AMP is composed of three processes:

- **File Reputation** - The process of using a 256-bit Secure Hash Algorithm (SHA256) signature to compare the file against the AMP cloud server and access its threat intelligence information. The response can be Clean, Unknown, or Malicious. If the response is Unknown, and if File Analysis is configured, the file is automatically submitted for further analysis.

- **File Analysis** - The process of submitting an Unknown file to the Threat Grid (TG) cloud for detonation in a sandbox environment. During detonation, the sandbox captures artifacts and observes behaviors of the file, then gives the file an overall score. Based on the observations and score, Threat Grid may change the threat response to Clean or Malicious. Threat Grid’s findings are reported back to the AMP cloud, so that all AMP customers will be protected against newly discovered malware.

- **Retrospective** - By maintaining information about files even after they are downloaded, we can report on files that were determined to be malicious after they were downloaded. The disposition of the files could change based on the new threat intelligence gained by the AMP cloud. This re-classification will generate automatic retrospective notifications.

For details on adding AMP and TG to an SD-WAN security policy see **Advanced Malware Protection**.

DNS Security

The DNS Security policy can be used to meet the requirements for **DNS Sinkholing, DNNSEC and NCPS E3A DNS Protections**. Configuring the DNS policy configures the router to act as a DNS forwarder on the network edge, transparently intercepts DNS traffic, and forwards the DNS queries to a specified location. For a full SD-WAN DNS Security policy guide see **Cisco Umbrella Integration**.

TLS/SSL Decryption
The TLS/SSL Decryption policy can be used to meet the requirements for **Break and Inspect** and **Certificate Denylisting**. Decrypting and re-encrypting traffic is a resource intensive capability and has been deemed out of scope for this particular use case. According to Microsoft "Most enterprise networks enforce network security for Internet traffic using technologies like proxies, SSL inspection, packet inspection, and data loss prevention systems. These technologies provide important risk mitigation for generic Internet requests but can dramatically reduce performance, scalability, and the quality of end user experience when applied to Microsoft 365 endpoints". In the DCA use case, we only break trusted applications off from the tunnel, and therefore mitigate the need to do TLS decryption on this traffic. Extra protections can be added in the cloud such as a CASB for visibility into the application itself, and TLS decryption can be reserved for unknown or untrusted web traffic. If your agency has a requirement to do SSL decryption at the branch, a full SD-WAN TLS/SSL Decryption guide can be found at [SSL/TLS Proxy](#).

Adding the policy to the network

Step 1. In the **Policy Summary** tab, add a **Security Policy Name** and **Description**. Click **Save Policy**.

Step 2. In vManage, navigate to **Configuration > Templates**.

Step 3. Click the **ellipses** on the device template that this policy applies to and click **Edit**.

Step 4. In the **Additional Templates** section, click on the **Security Policy** dropdown list and choose the newly created policy.

Step 5. Click **Update** and push the policy to the device(s).

Cisco TrustSec

Cisco TrustSec is an end-to-end network infrastructure that provides a scalable architecture for the enforcement of role-based access control, identity-aware networking, and data confidentiality to secure the network and its resources. Cisco TrustSec uses Security Group Tags (SGT) to represent user and device groups. The switches, routers, and firewalls inspect these tags and enforce SGT-based traffic policies.

Cisco TrustSec is defined in three phases: classification, propagation, and enforcement. After traffic is classified, the SGT is propagated from where Classification took place, to where enforcement action is invoked. This process is called propagation. One of the SGT propagation methods that Cisco TrustSec offers is inline tagging.

With inline tagging, a special Ethernet frame is used to propagate these SGTs between network hops where the policies can be enforced based on the SGT policy. Cisco IOS XE SD-WAN devices support propagation of SGT.

For full details on how to configure SGT enforcement across the WAN network see [Cisco TrustSec Integration](#).
Additional DCA Security Controls

The above configuration primarily focused on configuring the security policies located on networking infrastructure. In figure 3, where security capabilities were mapped to Cisco products, additional security products were shown in order to provide end to end protection in the agency’s architecture. These security controls, namely AMP for endpoints and Cloudlock, will be discussed in the Remote User section.

Direct Internet Access (DIA)

![Diagram of Direct Internet Access (DIA)](image)

Figure 4.
Cisco SD-WAN Direct Internet Access with Cisco NGFW

The second option involves using a Cisco FTD device in combination with an SD-WAN router. The advantage of this deployment is the use of FMC to manage firewall policies across the full organization, regardless of location. The same rules that were created for the datacenter, can be extended to the branches, using the same management platform.

Pre-requisites

- The SD-WAN controllers are set up and deployed (vManage, vBond, vSmart)
- An FMC has been deployed to manage the firewall
- The FTD device has gone through its initial configuration and has a functioning route to the FMC. The quick-start guide for the FTD 1010 can be found [here](#)
- Necessary licenses have been obtained for the device (more details can be found in the ‘Install FTD device’ section below)
- A router has been configured using device templates in order to establish a functional and secure overlay fabric to pass data traffic across the organizations distributed sites. An SD-WAN deployment guide can be found [here](#).
Install FTD device

The Cisco Firepower 1010 security appliance is an NGFW desktop product in the Cisco Secure Firewall family of devices. Hardware installation guidance can be found [here](#). The Cisco Firepower 1010, which the rest of this guidance will refer to as the FTD (Firepower Threat Defense) device, is the lowest performing in the Secure Firewall family. For detailed performance specs, such as throughput when all features are enabled, see the [datasheet](#). If more performance is needed, there are larger appliances in the range.

Procedure 1. Add device to FMC

Step 1. Access the command line interface of the FMC. The easiest method is through the console port.

Step 2. Identify the FMC that will manage this FTD using the command

```
configure manager add {hostname | IPv4_address | IPv6 address | DONTRESOLVE} reg_key [nat_id]
```

```
> configure manager add 10.30.1.3 ticdeploymentguide123
```

Step 3. In FMC, navigate to **Devices > Device Management**.

Step 4. In the **Add** drop-down list, choose **Device**.

Step 5. Enter the following parameters.

- **Host** – IP address or hostname of the FTD device.
- **Display Name** – the name FMC will use for display purposes.
- **Registration Key** – the key that was specified in step 2 above.
● **Group** – assign to device group if required.

● **Access Control Policy** – choose an initial policy. Unless you already have a customized policy, you know you need to use, choose Create new policy, and choose Block All traffic. This will be modified later to suit the use case.

● **Smart Licensing** – enable the features you need to deploy. This guide will use features that require all three licensing options.
 ◦ **Threat** – enables intrusion prevention capabilities
 ◦ **URL** – enables category-based URL filtering
 ◦ **Malware** – enables AMP malware inspection

● **Transfer packets** – allows the device to transfer packets to the FMC. When events like IPS are triggered, this option allows the device to send packet data to FMC for inspection.
Procedure 2. Upgrade the FTD device

This guide is using Firepower Threat Defense software version 6.6.0. If your device is lower than that it is recommended to upgrade before continuing on to the next steps.

Step 1. Download the latest software upgrade image from software.cisco.com.

Step 2. In FMC navigate to **System Settings > Updates**.

Step 3. Click **Upload Update**.

Step 4. Click **Choose File** and upload the file that was downloaded in step 1. Click **Upload**.
Step 5. In the updates page (System Settings > Updates), click Push or Stage update on the upgrade package that was uploaded in the previous step. Note: By pushing the update to the device, the amount of downtime is being reduced. As the package is being transferred to the device, the device remains operational. In a new build, this isn’t as critical, but it is a good practice to follow when updating Firepower devices.

Step 6. Choose the FTD device(s) you wish to update and click Push.

Step 7. After the update has been successfully pushed, return back to the updates page and click install on the upgrade package that was pushed in the previous step.

Step 8. Choose the FTD device(s) you wish to update and click Install.

Procedure 3. Create Transparent route

Step 1. In FMC, navigate to Devices > Device Management. Check the FTD device is in transparent mode.

Step 2. Click the pencil icon to edit the device.
Step 3. While on the **Interfaces** tab, click **Add Interfaces > Bridge Group Interface.**

Step 4. On the **Interfaces** tab choose the two interfaces on the interface that will act as the bump in the wire from the router. When running in transparent mode, the firewall needs to know which ports are paired together. Assign a unique **Bridge group ID.**

Step 5. On the **IPv4** tab, assign an IP address to the BridgeGroup.
Step 6. Click OK.

Enabling TIC Security Capabilities

The purpose of this guide is to show the user the configuration options available on the firewall, not necessarily the recommended deployment policies as this will be highly dependent on the environment. Each procedure shown here will provide an example configuration that maps to a TIC security requirement. It is the responsibility of the user to decide how these policies are implemented in their network.

Creating SSL Policies

The SSL policy configuration can be used to meet the requirements for Break & Inspect and Certificate Denylisting. For a full SSL policy guide see SSL Policies.

If the system detects a TLS/SSL handshake over a TCP connection, it determines whether it can decrypt the detected traffic. If it cannot, it applies a configured action:

- Block the encrypted traffic
- Block the encrypted traffic and reset the TCP connection
- Not decrypt the encrypted traffic

If the system can decrypt the traffic, it blocks the traffic without further inspection, evaluates undecrypted traffic with access control, or decrypts it using one of the following methods:

- Decrypt with a known private key. When an external host initiates a TLS/SSL handshake with a server on your network, the system matches the exchanged server certificate with a server certificate previously uploaded to the system. It then uses the uploaded private key to decrypt the traffic.
- Decrypt by resigning the server certificate. When a host on your network initiates a TLS/SSL handshake with an external server, the system resigns the exchanged server certificate with a previously uploaded certificate authority (CA) certificate. It then uses the uploaded private key to decrypt the traffic.

Note: Set up decrypt rules only if your managed device handles encrypted traffic. Decryption rules require processing overhead that can impact performance.

Creating DNS Policies

The DNS policy configuration can be used to meet the requirements for DNS Sinkholing and NCPS E3A DNS Protections. For a full DNS policy guide see DNS Policies.

DNS-based Security Intelligence allows you to block traffic based on the domain name requested by a client, using a Security Intelligence Block list. Cisco provides domain name intelligence you can use to filter your traffic; you can also configure custom lists and feeds of domain names tailored to your deployment.

Traffic on a DNS policy Block list is immediately blocked and therefore is not subject to any further inspection—not for intrusions, exploits, malware, and so on, but also not for network discovery. You can use a Security Intelligence Do Not Block list to override a Block list and force access control rule evaluation, and, recommended in passive deployments, you can use a “monitor-only” setting for Security Intelligence filtering. This allows the system to analyze connections that would have been blocked by a Block list, but also logs the match to the Block list and generates an end-of-connection Security Intelligence event.
Creating File Policies

The File policy configuration can be used to meet the requirements for **Anti-Malware, Content Disarm, Detonation Chamber, Content Filtering** and **Malicious Content Filtering**. For a full File policy guide see File Policies and Malware Protection.

To detect and block malware, use file policies. You can also use file policies to detect and control traffic by file type. Connections to public or private clouds are required in order to protect your network from malware.

AMP Clouds

The AMP cloud is a Cisco-hosted server that uses big data analytics and continuous analysis to provide intelligence that the system uses to detect and block malware on your network.

The AMP cloud provides dispositions for possible malware detected in network traffic by managed devices, as well as data updates for local malware analysis and file pre-classification.

If your organization has deployed AMP for Endpoints and configured Firepower to import its data, the system imports this data from the AMP cloud, including scan records, malware detections, quarantines, and indications of compromise (IOC).

Cisco offers the following options for obtaining data from the Cisco cloud about known malware threats:

- **AMP public cloud** - Your Firepower Management Center communicates directly with the public Cisco cloud.

- **AMP private cloud** - An AMP private cloud is deployed on your network and acts as a compressed, on-premises AMP cloud, as well as an anonymized proxy to connect to the public AMP cloud. For details, see Cisco AMP Private Cloud. **NOTE:** If you integrate with AMP for Endpoints, the AMP private cloud has some limitations. See AMP for Endpoints and AMP Private Cloud.

Dynamic Analysis Cloud

- **Cisco Threat Grid cloud** - Public cloud that processes eligible files that you send for dynamic analysis and provides threat scores and dynamic analysis reports.

- **On-premises Cisco Threat Grid appliance** - If your organization’s security policy does not allow the Firepower System to send files outside of your network, you can deploy an on-premises appliance. This appliance does not contact the public Cisco Threat Grid cloud. For more information, see Dynamic Analysis On-Premises Appliance (Cisco Threat Grid).

Creating the Intrusion Policies

The Intrusion policy configuration can be used to meet the requirements for **Active Content Mitigation, Malicious Content Filtering**, and **Intrusion Protection Systems (IPS)**. For a full Intrusion prevention policy guide see Intrusion Policies.

Intrusion policies are defined sets of intrusion detection and prevention configurations that inspect traffic for security violations and, in inline deployments, can block or alter malicious traffic. Intrusion policies are invoked by your access control policy and are the system’s last line of defense before traffic is allowed to its destination.
Create the Access Policy

The access policy configuration is where all of the above functionality comes together for enforcement. In addition to above access policies can be used to meet the requirements for Content Filtering, DNS-over-HTTPS Filtering, RFC Compliance Enforcement, Domain Category and Reputation Filtering, Access Control, IP Denylisting, Network Segmentation, Microsegmentation, NCPS E3A DNS Protections, Adaptive Access Control and Protections for Data in Transit. For more details on Access Control Policies see Access Control.

Step 1. In FMC, navigate to Policies > Access Control. Click New Policy.

Step 2. File in the required fields:

- Give a meaningful Name.
- Select a Base Policy. For this example, None is chosen, however, if rules have already been created for another location, and they need to be modified slightly for a new location, it is recommended you choose that policy and build from that.
- Choose a Default Action. This lab will Block all traffic by default and allow only what is needed.
- Add the relevant device(s) that this policy applies.

Step 3. Click Add Rule.

Step 4. The level of security applied at this point is up to the user. In this lab example, we will build a base rule that allows most traffic from inside to outside and block all traffic from outside to inside. In the Zones tab, choose the inside interface as Source and WAN interface as Destination.
Step 5. In the Inspection tab, choose the Balanced Security and Connectivity from the Intrusion Policy dropdown menu. This enables a predefined set of Intrusion rules to keep users safe from known threats. For more information on each of the base options see Intrusion Base Policy.

Step 6. In the Logging tab, choose Log at Beginning of Connection.

Step 7. Click Add.

Step 8. For every new rule created, make sure to Insert rule above the base rule created in the previous step. The firewall will enforce traffic on the first matched rule and therefore there must be no conflicting rules.

Step 9. Network Segmentation. In the Zones tab, FMC will list all of the Available Zones in the network. These zones are the names assigned to interfaces on the devices. To segment the network bases on zones, add relevant zones to the source and destination and choose Allow or Block in the Action tab, depending on what you are trying to achieve.

Step 10. IP Denylisting. In the Networks tab, network objects can be defined to group IP address’ for use in access rules. Blocking traffic from a source network is used to stop devices from sending traffic through the firewall. Applying Denylists at the Destination network ensures hosts don’t reach devices or servers at a specified IP address.

Step 11. Access Control. Although Access Control is a broad topic, we will focus on identity-based access control. In the Users tab, policies can be created for a specific group of users, rather than network objects. FMC gets User information from Microsoft Active Directory. For more information see Identity Services Engine Passive Identity Connector (ISE-PIC).
Step 12. **Content Filtering.** In the Applications tab, application detectors can be selected based on category or alternatively, individual applications can be chosen. Requirements will differ between agencies. One agency may choose to block all content related to Facebook. This can be achieved by blocking all traffic assigned to the Facebook application category. Another branch may want to allow Facebook, but to block Facebook Games. This can be achieved by selecting the individual application detector for Facebook Games, while leaving the others alone such as Facebook Comment or Messenger. In the Inspection tab, a File Policy can be selected to limit file content through the firewall. The File Policy does not have to include malware, it could be a rule that blocks all files of a particular type, such as .exe.

![Application Filters](image1)

Step 13. **DNS-over-HTTPS Filtering.** In the Applications tab, there is an application detector for DNS over HTTPS. Add this to the list of blocked applications to ensure DNS traffic is not encrypted.

![Available Applications](image2)
Step 14. **Active Content Mitigation.** In the **Applications** tab, there is an application detector for **Java**. Add this to the list of blocked applications to block any Java activity from passing the firewall. Alternatively, monitor the traffic and respond to any unusual activity.

![Available Applications](Image)

All apps matching the filter

- Java
- Java RMI
- Java Update

Step 15. **Domain Category and Reputation Filtering.** In the **URLs** tab, domains can be blocked based on category and/or by reputation. For example, your agency may block all **Adult** traffic with **Any** reputation, however, may only block **Shopping** with **Questionable** or **Untrusted** reputation.

![Categories and URLs](Image)

Step 16. **Intrusion Protection System.** In the **Inspection** tab, choose the Intrusion Policy rules that apply to the organization. For details on setting custom Intrusion rules, see the section above on Intrusion Policies.

Step 17. When all access policies have been added and ordered appropriately, make sure to **Save** and **Deploy**.
Remote User
This guide will take you through a sample configuration, specific to the devices used in this lab. More information on alternate deployments may be found here;

- Remote Access VPNs for Firepower Threat Defense
- Remote Access VPNs for ASA
- Secure Remote Worker Design Guide for AWS
- Secure Remote Worker Design Guide for Azure

FTD Remote Access VPN

Pre-requisites

- FMC is deployed and is managing the FTD device
- A RADIUS server group object exists for primary authentication. For purposes of this design guide, ISE will be used as the identity store
- Download the latest AnyConnect image files from Cisco Software Download Center
- All devices are appropriately licensed. For more information, see VPN Licensing
- Interfaces should be already configured on targeted devices so that they can be used as a security zone or interface group to enable VPN access.

For a comprehensive guide to configure Remote Access VPN on Cisco Secure Firewall devices see Remote Access VPNs for Firepower Threat Defense.

Add Identity Certificate to FTD Device

The example configuration installed a certificate using Self-Signed Enrollment. For other alternatives, such as using a Trusted Certificate Authority (CA) see Firepower Threat Defense Certificate-Based Authentication.

Step 1. In FMC, navigate to Object > Object Management > PKI > Cert Enrollment.
Step 2. Click Add Cert Enrollment.
Step 3. Add a meaningful **Name** and optional **Description**. In the **CA Information** tab choose **Self Signed Certificate** in the **Enrollment Type** dropdown menu.

Add Cert Enrollment

<table>
<thead>
<tr>
<th>Name</th>
<th>RA_FTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
</tbody>
</table>

CA Information | Certificate Parameters | Key | Revocation

Enrollment Type:

| Self Signed Certificate |

⚠️ **Common Name (CN) is mandatory for self-signed certificate that is used in Remote Access VPN.** To configure CN, please navigate to ‘Certificate Parameters’ tab.

Step 4. In the **Certificate Parameters** tab, specify the certificate contents. **NOTE:** **Common Name (CN) is mandatory for self-signed certificates in remote access VPN.**

Step 5. Optional: Open the **Key** tab and specify the Key information. For more information click the hyperlink at start of this section.

Step 6. Optional: Click the Revocation tab and specify the revocation options. For more information click the hyperlink at start of this section.

Step 7. Click **Save**.

Step 8. In FMC, navigate to **Devices > Certificates**.
Step 9. Click Add.

Step 10. Choose the Firepower device that shall be used for remote access in the Device dropdown. Choose the associated certificate in the Cert Enrollment dropdown.

Step 11. Click Add.

Using the Remote Access VPN Policy Wizard in FMC

Step 1. In FMC, navigate to Devices > VPN > Remote Access.
Step 2. To create a new policy, click Add.

Step 3. Give a meaningful name to the configuration and select the device(s) that will be used for remote access. Click next.

Step 4. Choose the Authentication Method. This setup uses AAA only as it will also be protected by Duo MFA in later steps. If running a deployment where MFA does not exist (not recommended), using certificates is another way for protecting the system from exposed user credentials.

Step 5. Choose the Authentication Server. This guide uses the Duo Authentication Proxy as the authentication server. See the next section on Duo for configuration options.
Step 6. Assign the IP address pool for VPN users. Click the pencil icon beside IPv4 address pools. Add all of the address pools that will be assigned to a VPN user on the network. If the address pool has not already been created, click + and specify the range of addresses that will be assigned to VPN users. Make sure to give a meaningful name to this address pool. Repeat for IPv6 if desired.

Step 7. Assign a Group Policy. At this stage, we will create a new default policy that will be modified in later steps of this document. Click + beside the dropdown menu. Assign a meaningful name and click Save.

Step 8. Click next at bottom of the screen.

Step 9. Upload the latest AnyConnect image both each OS that will connect to the network using the + button. The VPN gateway can automatically download the latest AnyConnect package to the client device when the VPN connection is initiated.
Step 10. Tell the policy wizard which interface on the FTD is the outside interface, or in other words, the interface users will use to connect over VPN.

Step 11. Add the device certificate created in a previous step.

Step 12. Review the configuration before clicking Finish. Note: the subsequent configuration steps will be detailed in the next part of this document, however, FMC does detail the additional configuration requirements before the remote VPN will work.

Create Access Policy

Step 1. Navigate to Policies > Access Control > Access Control.
Step 2. Edit the policy attached to the FTD assigned for remote access VPN by clicking the pencil icon.

Step 3. At this stage the policies you assign will be dependent on the security controls that are to be put in place. For specific functionality that can be applied to the firewall, navigate to the DIA section of the Branch use case. Since this is a zero-trust deployment model, and we want to follow the principle of least privilege, we will deny all users by default and then add allow policies on top of that. Click + Add Rule to create a rule specific to VPN users.

Step 4. Give a meaningful name to the policy. Change the Action to Block.

Step 5. For subsequent rules, in the Networks tab, add the VPN address pool for VPN users into the source network column. This means that the policy will match to any traffic originating from an IP address of a VPN user.

Step 6. In the Logging tab, click Log at Beginning of Connection to ensure any attempted connections are logged.

Step 7. Click Save.
NAT Exemption

SSL will be enabled on port 443. IPsec-IKEv2 uses port 500 and Client Services will be enabled on port 443 for AnyConnect image download. NAT-Traversal will be enabled by default and will use port 4500. Please ensure that these ports are not used in NAT Policy or other services before deploying the configuration.

For testing purposes, the FTD was connected directly to a public IP address so a NAT exemption policy was not needed. For more information visit Configure NAT Exemption.

DNS Policy

To resolve hostname specified in AAA Servers or CA Servers, configure DNS using FlexConfig Policy on the targeted devices. For testing purposes, all servers were addressed using their IP addresses within a private lab environment. If your network makes use of domain names, visit Configure DNS.

Split Tunnel

By default, all traffic is sent down the VPN tunnel. This is one of the deployments that is recommended by CISA for TIC protections, so if that is the desired outcome this becomes an optional step.

Static Split Tunnel

In this example we will create a rule that only sends internal traffic back to the data center. Static split tunneling is not recommended, but since it’s a quick configuration option we will show its deployment.

Step 1. In FMC, navigate to Object > Object Management > Network.

Step 2. Create a network object using the Add network > Add object dropdown button for each network range that belongs to the internal network. The example below uses the network range 10.10.0.0/24.

Step 3. If you have created more than one network object, create a network group using the Add network > Add group dropdown button and add all of the network objects from the previous step.

Step 4. Now that network objects have been created, navigate to Object > Object Management > Access List > Standard.

Step 5. Click Add Standard Access List.

Step 6. Give a meaningful name to the entry and click Add to add the network group/object from the previous step.

Step 7. After adding all the network elements, click Save.

Step 9. Click the pencil icon to edit the remote access vpn configuration that this split tunnel will apply to.

Step 10. Click the pencil icon to edit the remote access vpn connection profile that is used for this configuration.

Step 11. Click on Edit Group Policy.

Step 13. Under IPv4 Split Tunneling choose Tunnel networks specified below. This is because we will only send internal traffic through the tunnel. In the dynamic split tunnel configuration, we will do the opposite, and choose networks not to send down the tunnel.
Step 14. Click Split Tunnel Network List Type > Standard Access List checkbox and select the access list created in a previous step using the Standard Access List dropdown.

Step 15. Under DNS Request Split Tunneling, choose Always send DNS requests over tunnel unless you have another means of logging all DNS requests from roaming users (such as using Umbrella DNS as your DNS resolver).

Step 16. Click Save to save the group policy and then click Save again to save the VPN policy.

Step 17. Deploy all changes that were made so that policies can take effect.

Dynamic Split Tunnel

Dynamic split tunneling is more suitable to TIC since we want to break out trusted internet connections from the tunnel and typically not based on IP but on domain names. Dynamic split tunneling in FTD is done using FlexConfigs. Dynamic split tunnel configuration is based on creating a custom AnyConnect attribute of the type dynamic-split-exclude-domains, then adding that attribute to the group policies used in your RA VPN connection profiles. For more information, and for configuration options that deviate from this example, see Advanced AnyConnect VPN Deployments for Firepower Threat Defense with FMC.

Step 1. In FMC, navigate to Object > Object Management > FlexConfig > FlexConfig Object.
Step 2. Click Add FlexConfig Object.
Step 3. Give a meaningful name to the configuration and insert an object body similar to below (this example shows how to split traffic destined to webex.com and office.com). Keep deployment and type as default (Once and Append respectively). Note: the description is optional, but if included, it is not a separate command but part of the anyconnect-custom-attr command. For the domain names, separate them with a comma but do not include spaces.
webvpn

anyconnect-custom-attr dynamic-split-exclude-domains description traffic for these domains will not be sent to the VPN headend

anyconnect-custom-data dynamic-split-exclude-domains excludeddomains webex.com,office.com

Step 4. Click Save.

Step 5. Since we are using a custom group policy in our VPN configuration, we are going to reference that policy within this FlexConfig. On the FlexConfig Objects, click Add FlexConfig Object. Give a meaningful name to the configuration and insert an object body similar to below (this example references a group policy called RA-VPN-GrpPolicy). Keep deployment and type as default (Once and Append respectively).

group-policy RA-VPN-GrpPolicy attributes

anyconnect-custom dynamic-split-exclude-domains value excludeddomains
Step 6. Click Save.

Step 7. Create the FlexConfig object that will deploy the above policies. In FMC, navigate to Devices > FlexConfig.

Step 8. Click New Policy.

Step 9. Add a meaningful name to the policy and add the FTD device that will be used for remote access. Click Save.
Step 10. Select the FlexConfig objects previously created from the User Defined column.

Step 11. Use drag and drop to ensure that the objects are in the correct order. Note: The object that creates the custom attribute object must come before the objects that assign that attribute to the group policies. Otherwise, if you try to add a custom attribute that does not yet exist, you will get an error.

Step 12. Click Save.

Step 13. Deploy the changes.

Step 14. To test, connect to the VPN via AnyConnect. In the AnyConnect Statistics Window, navigate to Connection Information > Dynamic Tunnel Exclusion and a list of all excluded domains will be shown in the window.
Duo Multi-Factor Authentication

This guide will walk through a single example setup to add second factor authentication to remote access VPN users. For more details, such as how to deploy to a Cisco ASA device (which isn’t covered in this guide), see the Duo documentation.

Pre-requisites

- A Duo Admin account
- Duo Authentication Proxy (install steps below) has a route to Duo Cloud, FTD and ISE (or Active Directory depending on your install)

Add Application to Duo Account

Step 1. In the Duo Admin dashboard, navigate to Applications.

Step 2. Click Protect an Application.
Step 3. Search for Cisco RADIUS VPN and click Protect.

![Protect an Application](image)

Protect an Application

<table>
<thead>
<tr>
<th>Application</th>
<th>Protection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco RADIUS VPN</td>
<td>2FA</td>
</tr>
</tbody>
</table>

Step 4. Take note of the Integration Key, Secret Key, and API hostname.

Configure Duo User Groups

This setup assumes that users who require access to VPN already have their account details registered to Duo already. For more information on adding users to Duo see Enroll Users. Included in that redirect link is more information on importing an existing identity store, such as Active Directory.

Step 1. In Duo, navigate to Groups.

Step 2. Click Add Group.

Step 3. Add a meaningful name to the group and an optional description before clicking Save.

Step 4. Using the + Add User to Group button, add all of the users who require access to the VPN. Click Save Changes when all users have been added.

![Users](image)
Step 5. Navigate to Applications and click on Cisco RADIUS VPN.

Step 6. Scroll down to permitted groups and click the checkbox to Only allow authentication from users in certain groups. Add the VPN user group that was created in the previous step. This results in only allowing users who have been added to VPN group, instead of all users who may be registered to this Duo account for alternate reasons. Click Save.

Configure Duo Authentication Proxy

Step 1. On a windows server (must have a route to the Duo API hostname and must be reachable from the remote access FTD), install and configure the Duo Application Proxy. All instruction can be found in the Duo documentation.

The configuration used in this example can be seen below.

```plaintext
[duo_only_client]

[radius_client]
host=$ISE_IP
secret=$ISE_SECRET

[radius_server_auto]
ikey=$DUO_iKEY
skey=$DUO_sKEY
api_host=$DUO_HOST
radius_ip_1=$DUO_RADIUS_IP1
radius_secret_1=$DUO_SECRET1
radius_ip_2=$DUO_RADIUS_IP2
radius_secret_2=$DUO_SECRET2
failmode=safe
client=radius_client
port=1812
```
Add Duo Authentication Proxy to VPN Configuration

Step 1. In FMC, navigate to Objects > Object Management > RADIUS Server Group.

Step 2. Click Add RADIUS Server Group.

Step 3. Add a meaningful **name** and add the **IP address** that the Duo Authentication Proxy can be reached. Click **Save**.
Step 4. In FMC, navigate to Devices > VPN > Remote Access.

Step 5. Click the pencil icon to configure the appropriate remote access VPN configuration.

Step 6. Click the pencil icon to configure the appropriate remote access connection profile.

Step 7. In the AAA tab, click the Authentication Server dropdown and choose the Duo Authentication Proxy RADIUS object. Click Save.
Step 8. **Deploy** the changes.

Test the setup

Step 1. Using AnyConnect, type the FQDN/IP Address of the remote access firewall and press Connect.
Step 2. Enter your username and password.

Step 3. If the credentials were accepted, a Duo prompt should have been received on the registered device. Accept the connection.

Cisco AnyConnect Client Profile

The AnyConnect package includes modules for a variety of features, such as the AMP enabler, that you can optionally use to provide additional services to RA VPN connections. Each module includes a profile that you can edit to make the module work according to your requirements. To enable these modules and profiles on FTD, you need to use FlexConfig.
Create AnyConnect XML Templates

Step 1. Download and install the stand-alone AnyConnect Profile Editor (Windows only). You must also install Java JRE 6 (or higher) before installing the profile editor. Obtain the AnyConnect profile editor from software.cisco.com in the AnyConnect Secure Mobility Client category.

Step 2. Use the profile editors to create the profiles you need. For details on each of the AnyConnect options:

- **VPN Profile** – Enables the configuration of settings such as always on VPN or managing certificates.
- **Network Visibility Module (NVM)** – Use this configuration to get visibility into the device that the AnyConnect module resides on. This will be discussed further in the CESA section below.
- **AMP Enabler** – Used as a median for deploying AMP for endpoints.
- **Umbrella Roaming Security** – Provides DNS security when no VPN is active.

Step 3. Each configuration step creates a unique XML file. In a text editor of your choice and using the VPN profile XML as the master file, combine all modules into a single file. To do this, copy the full XML configuration from each configure module and place them within the `<AnyConnectProfile>` tag.

Step 4. Save the file.

Add Template to VPN Configuration

Step 1. In FMC, navigate to Devices > VPN > Remote Access.

Step 2. Click the pencil icon to edit the remote access VPN configuration that this profile will apply to.

Step 3. Click the pencil icon to edit the remote access VPN connection profile(s) that this configuration uses.

Step 4. Located directly under the Group Policy dropdown, click Edit Group Policy.

Step 5. In the AnyConnect > Profiles tab, click the add (+) button to add a new Client Profile.
Step 6. Browse for the newly created AnyConnect profile and click **Save**.

Step 7. Continue to **Save** until completion. **Deploy** the configuration.

Step 8. To test, connect to the VPN using AnyConnect.

Step 9. On the device connected via VPN, navigate to **About AnyConnect**.

Step 10. All modules installed on the device will be listed.

Cisco AnyConnect Secure Mobility Client

Version 4.9.0.1005

Copyright © 2004 - 2020 Cisco Systems, Inc. All Rights Reserved.

Cisco, the Cisco Logo, Cisco AnyConnect, AnyConnect and the AnyConnect logo are registered trademarks or trademarks of Cisco and/or its affiliates in the United States and certain other countries.

Installed Modules:
- VPN, System Scan, Roaming Security, Network Visibility, Customer Experience Feedback

Cisco Endpoint Security Analytics (CESA)

Pre-requisites

- Splunk Account
- For this specific deployment, Splunk Enterprise installed on a 64-bit Linux system.
- Cisco AnyConnect Apex license
- Cisco AnyConnect Profile Editor
Add Apps to Splunk

Step 1. In Splunk, navigate to Apps > Find More Apps.

Step 2. Download the following apps:

- Cisco NVM Add-On for Splunk - https://splunkbase.splunk.com/app/4221/

Install NVM Collector

The Collector Component is responsible for collecting and translating all IPFIX data from the endpoints and forwarding it to the Splunk Add-on. The NVM collector runs on 64-bit Linux. CentOS, Ubuntu and Docker configuration scripts are included. The CentOS install scripts and configuration files can also be used in Fedora and Redhat distributions as well.

In a typical distributed Splunk Enterprise deployment, the collector should be run on either a standalone 64-bit Linux system or a Splunk Forwarder node running on 64-bit Linux. This guide shows the deployment of an ‘all-in-one’ configuration running on 64-bit Linux. For more information on additional installation guides see the CESA installation guide.

Step 1. In the Linux host where Splunk runs, unzip the `acnvmcollector.zip` file which is located in the `/opt/splunk/etc/apps/$APP_DIR/appserver/addon` folder.
Step 2. It is recommended to read the $PLATFORM$_README file in the .zip bundle before moving on to the next step. The README file provides information on the relevant configuration settings that need to be verified and modified (if necessary). For this all-in-one deployment, the default configuration is sufficient.

Step 3. Open a terminal, navigate to the unzipped folder and run sudo ./install.sh.

Step 4. To verify that the collector is running successfully, run systemctl status acnvm.service.

Enable UDP Inputs using Splunk Web

The default collector configuration uses UDP ports 20519, 20520 and 20521 to send data to Splunk. If the configuration changed in the above step, the port numbers listed here will have to change accordingly.

Step 1. In Splunk, navigate to Settings > Data > Data Inputs.

Step 2. Click + Add new in the UDP row.

Step 3. Ensuring UDP is selected, enter 20519 into Port. Click Next.
Step 4. In the Select Source Type dropdown enter `cisco:nvm:flowdata`. Click Review.

Source type

The source type is one of the default fields that the Splunk platform assigns to all incoming data. It tells the Splunk platform what kind of data you’ve got, so that the Splunk platform can format the data intelligently during indexing. And it’s a way to categorize your data, so that you can search it easily.

App context

Application contexts are folders within a Splunk platform instance that contain configurations for a specific use case or domain of data. App contexts improve manageability of input and source type definitions. The Splunk platform loads all app contexts based on precedence rules. Learn More.

Host

Step 5. Click Submit.

Step 6. Repeat steps 2 - 5 with the following mapping

- Port: 20520 | Source Type: `cisco:nvm:sysdata`
- Port: 20521 | Source Type: `cisco:nvm:ifdata`
Add Splunk Collector to AnyConnect Profile

The Cisco AnyConnect Secure Mobility Client software package contains a profile editor for all operating systems. If using a Cisco ASA in your VPN deployment, Cisco Adaptive Security Device Manager (ASDM) activates the profile editor when you load the AnyConnect client image on the ASA. As this deployment is using a Cisco Firepower device, the standalone AnyConnect Profile Editor will be used.

Step 1. In the AnyConnect NVM Profile Editor, enter the **IP Address/FQDN** and the **Port** that the collector is listening on. The default port is **2055** but it will depend on the configuration you did above.

Step 2. By default, the NVM collector will collect data from all networks and send logs every 24 hours. Details on how to change these configurations can be found in the Configure Network Access Manager. Save the profile as an XML when finished.

Step 3. If applicable, add the XML to an existing XML profile containing all of the other AnyConnect config options such as the AMP enabler or VPN always on.

Step 4. In FMC, navigate to Devices > Remote Access.

Step 5. Click the **pencil icon** to edit the remote access VPN configuration that this profile will apply to.
Step 6. Click the pencil icon to edit the remote access VPN connection profile(s) that this configuration uses.

Step 7. Located directly under the Group Policy dropdown, click **Edit Group Policy**.

Step 8. In the **AnyConnect > Profiles** tab, click the **add (+)** button to add a new Client Profile.

Step 9. Browse for the newly created/modified NVM profile and click **Save**.

Step 10. Continue to **Save** until completion. **Deploy** the configuration.

Step 11. To test deployment, disconnect and reconnect a device that uses this VPN headend. Open the AnyConnect Statistics Window and check that the **Profile Name** matches the one assigned in the policy.

Step 12. In Splunk, navigate to the Cisco NVM Dashboard to view AnyConnect data. **NOTE**: It may take time for data to appear, with a delay depending on the configuration policy applied.
Cisco Cloudlock

Pre-requisites

- The organization is using single sign on with an identity as a Service (IDaaS) provider such as Okta or OneLogin
- A Cloudlock account
- Cloudlock must be installed into all platforms that require protection. Quickstart guides can be found for the following platforms:
 - Active Directory Federation Services
 - Cisco Cloudlock App Discovery
 - Box
 - Dropbox
 - Google Suite
 - Office 365
 - Okta
 - OneLogin
 - Salesforce
 - ServiceNow
 - Slack (Enterprise)
 - Slack (Teams)
 - Webex Teams

Data Loss Protection – Create and Configure a Predefined Policy

Pre-defined policies are policies whose regular expressions are pre-written by Cisco Cloudlock engineers, some of which can be edited or customized in policy configuration. Some predefined policies typically used in the US Government industry include:

- Credit Card Number
- US Driver’s License Number
- US Personally Identifiable Information (PII) such as birth date or health condition
- US Passport Number
- US Social Security Number

For a full list of all pre-written policies see pre-defined policies.

This example will show how Credit card numbers can be identified in both files uploaded to Box and within a Webex chat room.

Step 1. In Cloudlock, navigate to Policies.
Step 2. Click Add a Policy. In the dropdown, click Add Predefined Policy.
Step 3. Policies can be narrowed with location or industry filters. For this example, use the **Predefined Policies** dropdown and select **Credit Card Number**.

Add Predefined Policy

- **Narrow by Location**
 - All Locations

- **Narrow by Industry**
 - All Industries

- **Predefined Policies**
 - Select policy
 - credit
 - Credit Card Number

Policy Name

Step 4. Select **Alert** for the Severity. **Note:** The severity level controls how an incident generated by the policy is displayed in the Cloudlock interface. The severity is meant to influence the priority given to incidents by security admins but will not affect the way the policy behaves.

Step 5. Add a meaningful name and description to the policy and click **Configure Policy**.

Step 6. Click **Threshold**. Keep the threshold set to **1**. **Note:** The threshold is the number of content pattern matches in a single document or object that are required to raise an incident.

Content Criteria

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Tolerance</th>
<th>Proximity</th>
</tr>
</thead>
<tbody>
<tr>
<td>The threshold sets the number of content pattern matches in a single document or object required to raise an incident. I.e., Only raise an incident if more than 5 credit card numbers are detected, if threshold is set to 5 matches.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Threshold:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enter a threshold value from 1 to 1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 7. Click Tolerance. Set the tolerance to Moderate. Note: Cisco Cloudlock has several content and contextual criteria that can be adjusted when building DLP policies. This allows for a reduction in false positives when applying policy within an organizations public cloud environment. The ability to tune out these false positives and reduce the incident counts allows a security admin to focus on mitigating real threats and exposures and helps strengthen the confidence the security admin has in the solution. For more information see Predefined Policy Configuration.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Tolerance | | Moderate
Matches probable and exact matches, and returns the most incidents. |
| Proximity | | |
| Proximity | | Moderate
Results in fewer probable matches, and more exact matches, with fewer incidents. |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Criteria</td>
<td></td>
<td>Proximity Expression</td>
</tr>
<tr>
<td>Threshold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximity</td>
<td></td>
<td>Test your Regular Expression:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Text that matches the expression is highlighted below.</td>
</tr>
</tbody>
</table>
Step 9. From the top level, select Context. Select Platform and set the policy to All Platforms. Note: the platform setting defined the platform(s) to which the policy applies. This allows creation of one policy across multiple platforms or break out different policies to be applied to individual platforms.

Step 10. Select File Type and choose All File Types. For a list of supported file types see Filetypes Supported in Content Policies.
Step 11. Select Ownership and choose All Users. Note: Ownership refers to the users, groups or Organizational Units to which the policy applies. In certain cases, you may want to only look for Credit Card Numbers in files that are owned by members of specific groups, such as the finance team. For other organizations, you may want to exempt members of certain groups from the policy through an exception.

Step 12. Exposure will not be modified in this example. Note: The Exposure criteria surfaces an incident based on the sharing / collaboration of the file. Choose the exposure level based on the platform(s) being monitored. If all exposures are left blank, the policy will raise an incident any time it finds a match for the content criteria, regardless of how the file was shared. When specific exposures are checked off, the policy will respect the choices made, and only raise incidents for the files that contain the content AND are shared in this manner.

Step 13. Select Summary to view a summary of the policy configuration. Select Save All Changes.
Data Loss Protection – Testing the Credit Card Number Policy

In this example, Okta is used as an IDaaS provider and Cloudlock has already been integrated into both Box and Webex Teams.

Procedure 4. Testing file policies using Box

Step 1. From the Okta dashboard, open Box.

Step 2. From a workstation, create a Word document and give it any name.

Step 4. Copy one or more of the credit card numbers and paste them to the word document created in a previous step. Save the word file.

My Credit Card Numbers

- 4539626946914466
- 4485135826873796
- 4532715453875736
- 4716470746045436
- 4532621282022559

Step 5. Upload the file to the box folder.

Step 6. In Cloudlock, navigate to Incidents.
Step 7. At the bottom of the page, click on the incident for more information.

Step 8. A match will appear for each credit card number in the word file.

Procedure 5. Testing policies in Webex Teams

Step 1. From the Okta dashboard, open WebEx Teams.

Single Sign-on succeeded.

Step 2. In a web browser, navigate to https://teams.webex.com. If not automatically logged in, do so with your domain account.

Step 3. In Webex Teams, click on the plus symbol to start a new chat and select a contact person.

Step 4. In the chat field, copy one or more of the credit card numbers from https://getcreditcardnumbers.com.

Step 5. In Cloudlock, navigate to Incidents.

Step 6. At the bottom of the page, click on the incident for more information.

Step 7. A match will appear for each credit card number found in the chat, along with details such as what team space the message was sent in.
Shadow IT – Cloudlock Apps Firewall

Cisco Cloudlock Apps Firewall discovers connected 3rd party apps that have been granted access to Google or Microsoft Office 365 via Oauth. Oauth, or open standard for authorization, is a standardized way for internet accounts to link with third-party applications. It is universally adopted by almost all web-based applications and platforms – including consumer as well as enterprise applications such as Google G-Suite, Microsoft Office 365, Salesforce, and many others. As more businesses adopt cloud platforms, the employees authorize apps using their corporate credentials, giving these apps programmatic (API) access to their corporate data, introducing millions of back doors into corporate environments. If you have ever come across the buttons below when viewing a website or logging into a cloud service e.g. Spotify, Facebook, you will have an option to sign in via Oauth.

Procedure 1. Application Visibility

Step 1. In the Okta dashboard, open Cisco Cloudlock.
Step 2. Navigate to Apps.

The apps list is displayed at the bottom of the Apps Panel. Each installed app is listed along with the access scopes it requests, the Cloudlock Risk Score, Community Trust Rating (CTR) i.e. crowdsourced rating based on Cloudlock users of the specified app. Other information including the number of users in the domain who have installed the app, the date when the app was detected and the source of the app (i.e. Google OAuth or Azure AD).

<table>
<thead>
<tr>
<th>App</th>
<th>Classification</th>
<th>Installed by</th>
<th>Access Scopes</th>
<th>Source</th>
<th>Risk</th>
<th>CTR</th>
<th>Detected (UTC)</th>
<th>Latest Install (UTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloudlock f...</td>
<td>Classify</td>
<td>No users</td>
<td>1 scope cate...</td>
<td>Azure AD OAuth</td>
<td>Very low</td>
<td>Trusted by 100%</td>
<td>Nov 6, 2017 1:48:56 PM</td>
<td>Nov 6, 2017 1:48:56 PM</td>
</tr>
<tr>
<td>Cloudlock fo...</td>
<td>Classify</td>
<td>Admin No users</td>
<td>1 scope cate...</td>
<td>Azure AD OAuth</td>
<td>Very low</td>
<td>Trusted by 100%</td>
<td>Nov 6, 2017 1:48:56 PM</td>
<td>Nov 6, 2017 1:48:56 PM</td>
</tr>
<tr>
<td>dem-ttd</td>
<td>Classify</td>
<td>Admin No users</td>
<td>6 scope cate...</td>
<td>Azure AD OAuth</td>
<td>High</td>
<td>Nov 6, 2017 1:48:56 PM</td>
<td>Nov 6, 2017 1:48:56 PM</td>
<td></td>
</tr>
<tr>
<td>Cloudlock fo...</td>
<td>Classify</td>
<td>Admin No users</td>
<td>1 scope cate...</td>
<td>Azure AD OAuth</td>
<td>Very low</td>
<td>Trusted by 100%</td>
<td>Nov 6, 2017 1:48:56 PM</td>
<td>Nov 6, 2017 1:48:56 PM</td>
</tr>
<tr>
<td>CloudLock d...</td>
<td>Classify</td>
<td>Admin No users</td>
<td>7 scope cate...</td>
<td>Azure AD OAuth</td>
<td>Very low</td>
<td>Trusted by 100%</td>
<td>Nov 6, 2017 1:48:56 PM</td>
<td>Nov 6, 2017 1:48:56 PM</td>
</tr>
<tr>
<td>Cisco Cloud...</td>
<td>Classify</td>
<td>Admin No users</td>
<td>2 scope cate...</td>
<td>Azure AD OAuth</td>
<td>Very low</td>
<td>Trusted by 100%</td>
<td>Nov 6, 2017 1:48:57 PM</td>
<td>Nov 6, 2017 1:48:57 PM</td>
</tr>
<tr>
<td>CloudLock U...</td>
<td>Classify</td>
<td>Admin No users</td>
<td>7 scope cate...</td>
<td>Azure AD OAuth</td>
<td>Very low</td>
<td>Trusted by 100%</td>
<td>Nov 6, 2017 1:48:57 PM</td>
<td>Nov 6, 2017 1:48:57 PM</td>
</tr>
<tr>
<td>CompanyMo...</td>
<td>Classify</td>
<td>No users</td>
<td>1 scope cate...</td>
<td>Azure AD OAuth</td>
<td>Low</td>
<td>Jan 21, 2018 9:48:56 PM</td>
<td>Jan 23, 2018 9:48:55 PM</td>
<td></td>
</tr>
<tr>
<td>DocuSign Ed...</td>
<td>Classify</td>
<td>No users</td>
<td>4 scope cate...</td>
<td>Azure AD OAuth</td>
<td>Medium</td>
<td>Dec 8, 2017 1:48:56 PM</td>
<td>Jan 28, 2018 3:18:56 PM</td>
<td></td>
</tr>
</tbody>
</table>
Step 4. Click the name of an app to open the details page for that app to view Details, History, and Access Scopes.

Step 5. In Users tab, you can see the users who have installed the application using their corporate credentials.
Procedure 2. Application Access Scopes

Access Scopes are the permissions apps request to interact with data and other apps on a platform in a given domain. The range of available access scopes depends on the capabilities made available by the underlying platform. The total number of access scopes available in a platform may be very large. When that is the case, the scopes are categorized to make them easier to work with. For example, in the Google platform the category access personal information can include personal information from other apps including calendar, email and full data access.

Step 1. In Cloudlock, navigate to Apps and click on an application that you would like to revoke. DocuSign will be revoked for demonstration purposes.

Step 2. Click on Classify App.

Step 3. Select Banned in the dropdown menu and choose a reason that most fits your requirement. Click Next. NOTE: Classifying an app requires a reason, particularly if the classification is Banned or Under Audit. Banning an app enables you to add it to the default Banned Apps policy. Adding an app to that policy means all future installations of the app will be monitored and disallowed. For more details on classifying applications, see Classifying Apps.
Step 4. App classification can be applied to all users or specific users, groups and organizational units (OUs). For this example, select All Users.

Step 5. Click OK. Note: it takes approximately 5 minutes for the Oauth token of the specified app to be automatically revoked. No Admin or user intervention is required.