SAFE Overview Guide
Threats, Capabilities, and the Security Reference Architecture
January 2018
Contents

3 The Need for SAFE

4 What is SAFE?
 The SAFE Security Reference Model 5
 The SAFE Method 5

6 How to Use SAFE
 The three phases of SAFE 8
 SAFE’s toolkit and collateral simplify the discussion 10

11 Attack Surface

12 Securing the Attack Surface

13 Business Flows
 Functional Controls 14

15 Capabilities
 The Business Flow Capability Diagram 19

20 Places in the Network

27 Secure Domains

34 SAFE Capabilities

41 The SAFE Architecture

48 Summary

49 Appendix
The Need for SAFE

Today, attacks like phishing, ransomware, and advanced persistent threats are common. No single product can successfully secure your business from these risks. An architectural approach that addresses the full range—from people, to devices, to applications—is needed. Your data flows from offices to the data center to the cloud. And you must understand where your data is to protect it.

Cisco’s John Chambers famously said, “There are two types of companies: ones that have been breached and those that do not realize it...” When attackers violate your network, having a threat defense that helps you react and minimize the impact of the attack is critical.

Complexity is one of the main challenges facing security professionals. Technology constantly fragments into new uses, and organizations utilize dozens of products that do not interoperate seamlessly. This multiplies attack surfaces, which in turn complicates defenses. Fraudsters exploit this weakness to develop advanced threats for more lucrative schemes.

The industry desperately needs a resource that simplifies the problem. The solution must be comprehensive, credible, and about more than just products; it needs to focus on the threats to your business.

SAFE meets this need.
What is SAFE?

SAFE is a security model and method used to secure business. It focuses on threats—and best practices for defending against them. SAFE illustrates today’s business challenges in a language that changes the way we think about security. It uses simple concepts to focus on the complexities of today, so that we’re prepared for the challenges of tomorrow.

SAFE provides the Key to simplify cybersecurity into Secure Places in the Network (PINs) for infrastructure and Secure Domains for operational guidance.
The SAFE Security Reference Model

Using a security reference model, the challenges of securing today’s business functions are simplified into a building block approach. The model incorporates today’s security best practices, architectural discussions, and laboratory-tested designs from the brightest security minds across Cisco, its customers, and partners. SAFE’s Cisco Validated Designs address critical security topics. They have been deployed, tested, and they document “how to do it.”

SAFE includes:

- Business use cases illustrating the surface that fraudsters can attack
- Security capabilities mapped to common threats within business use cases
- Reference architectures that logically arrange the security capabilities into blueprints
- Designs using the reference architectures for common deployment scenarios and solutions

The SAFE Method

The SAFE method customizes the model for individual companies. Using the SAFE toolkit and collateral, companies can analyze the threats and risks to their own business. Contact your Cisco account team to use the method in a guided SAFE workshop. The workshop can be refreshingly helpful because it brings departments of the company together that might not normally interact. Executives come together with stakeholders from business and compliance as well as security and Infrastructure technologists to map out concerns related to how security affects the business. The workshop results in a tailored security architecture for your business.
How to Use SAFE

SAFE is not a single answer.

The model is a reference for common threats, risks, and policies across the business of a company. This does not mean that all companies are the same. Obviously, the concerns of retailers are not the same as the needs of healthcare organizations. However, when viewing the challenges of security in its entirety, patterns begin to emerge. Regardless of the industry, certain business methods are likely to be employed and, consequently, exploited. Foundational capabilities and functional controls are necessary to defend the attack surface. For example, access to the network, utilization of business applications, and communications using email are common across all companies. Connections to the Internet for web browsing and to access services coming from the cloud present additional business security concerns. SAFE provides guidance to common business functions that require security capabilities, culminating in a reference for end-to-end security.

The SAFE method customizes the best practices of the reference model to individual companies. It ensures that business goals are measurably secured according to each company’s security policy and risk appetite, using the following steps:

- Identify business goals
- Break down the network into manageable pieces
- Establish a criteria for the success of the business
- Categorize risks, threats, and policies
- Build the security solution

Table 1 The SAFE Model Icons

<table>
<thead>
<tr>
<th>Phase/Example Icon</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td>Organizational Model</td>
<td>The Key to SAFE provides the Key to simplify cybersecurity into Secure Places in the Network (PINs) for infrastructure and Secure Domains for operational guidance.</td>
</tr>
<tr>
<td>Business Flow</td>
<td>Use Case</td>
<td>Business flows use colored lines to depict use cases and show where data flows through a network.</td>
</tr>
<tr>
<td>Threat</td>
<td>Unauthorized Packets. This threat is blocked by firewalls.</td>
<td>The top security threats of an organization are catalogued.</td>
</tr>
<tr>
<td>Capability</td>
<td>Firewall</td>
<td>Capabilities are used to describe security functions.</td>
</tr>
<tr>
<td>Architecture</td>
<td>Logical Router. This logical router has firewall capability.</td>
<td>Architectures are used to logically arrange the security capabilities.</td>
</tr>
<tr>
<td>Design</td>
<td>4451-x with Firewall</td>
<td>Designs are used to provide specific products and services.</td>
</tr>
</tbody>
</table>
The three phases of the SAFE method are:

1. **Capability phase**
 Business flows, or use cases, are defined in this phase. Using them as a basis, security capabilities are applied to address threats, risks, and policy.

Small Branch Capabilities and Business Flows

- **Secure applications for PCI:** Clerk processing credit card transaction
- **Secure web access for employees:** Employee researching product information
- **Secure communications for collaboration:** Subject matter expert consultation
- **Secure remote access for third party:** Connected device with remote vendor support
- **Secure web access for guests:** Guest accessing the internet for comparative shopping

Figure 1 In the capability phase, business flows are analyzed to determine the required security capabilities.
Architecture phase
A logical security architecture is defined using the security capabilities that were identified in the business flows.

Figure 2. In the architecture phase, security capabilities are arranged into a logical architecture. Note that the business flows can still be identified.
3 Design phase

Using the security architecture, a specific design is created to implement the required security capabilities, complete with a product list, configuration, services, and cost.

Figure 3 In this phase, the design is created to implement the logical architecture. Although the emphasis is on the specifics of the solution, the original business flows are still present.
SAFE’s toolkit and collateral simplify the discussion

SAFE bridges the gap between business and technical audiences by providing a communal security-centric language for business concerns and technical solutions. Using innovative icons, each business line can visualize the security required, including accounting for the gaps.

SAFE tools include:
- Capability icons to represent business flows and the appropriate security controls
- Architecture guides to reference appropriate layers of security and their justifications
- Design guides that provide solutions with step-by-step instructions on how to configure the infrastructure based on Cisco’s validated laboratory testing

Figure 4 SAFE Guidance Hierarchy
Attack Surface

The attack surface of a company is anyone or anything that can be targeted. Any human, using any device, on any network, accessing any application can be attacked.

<table>
<thead>
<tr>
<th>HUMAN</th>
<th>Know who is on your network</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE</td>
<td>Know that devices are not infected</td>
</tr>
<tr>
<td>NETWORK</td>
<td>Networks can be compromised</td>
</tr>
<tr>
<td>APPLICATIONS</td>
<td>Services can be exploited</td>
</tr>
</tbody>
</table>

Figure 5 The attack surface that needs to be secured.
Securing the Attack Surface

The attack surface needs to be secured by appropriate capabilities. Each target may be part of a larger overall attack. By identifying a company’s business flows which represent the company’s attack surface, proper security capabilities can be applied.

Figure 6 Security capabilities are applied logically to mitigate the threats along the attack surface.
Business Flows

Three categories of users have a role on your network:

Internal: Internal flows are activities that employees perform on the company network.

Third Party: Third-party flows are guests, vendors, service providers, or partners who access the company network.

Customers: Customer flows can be a variety of services, such as website portals and customer information.

Policy, risks, and threats affect each of them, requiring security capabilities for protection.

SAFE’s color-coded business flows illustrate the security needed for each role. These flows depict the attack surface, ensuring that controls are easily accounted for. For example, when an employee goes online to do research, or a customer makes a purchase on your e-commerce site, these activities provide fraudsters something to attack.

By documenting and planning the security of all business flows within your company, maintaining security is simplified.

Figure 7 SAFE color codes business use cases as business flows.
Functional Controls

Functional controls are common security considerations that are derived from the technical aspects of the business flows.

<table>
<thead>
<tr>
<th>Secure Applications</th>
<th>Applications require sufficient security controls for protection.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure East/West Traffic</td>
<td>Data that securely moves between internal or external resources.</td>
</tr>
<tr>
<td>Secure Access</td>
<td>Employees, third parties, customers, and devices securely accessing the network.</td>
</tr>
<tr>
<td>Secure Remote Access</td>
<td>Secure remote access for employees and third-party partners that are external to the company network.</td>
</tr>
<tr>
<td>Secure Communications</td>
<td>Email, voice, and video communications connect to potential threats outside of company control and must be secured.</td>
</tr>
<tr>
<td>Secure Web Access</td>
<td>Web access controls enforce usage policy and help prevent network infection.</td>
</tr>
</tbody>
</table>

Figure 8 Business flows reveal functional controls to be secured.
Capabilities

SAFE’s capability icons simplify the security discussion by putting the focus on the function necessary to perform a specific feature before identifying a product.

For example, Cisco sells Adaptive Security Appliances, Firepower appliances, Meraki routers with firewalls, Cat6k with firewalls, and Cisco ISR with firewalls. For simplicity, any of these are identified by their capability (firewall). Subsequent SAFE steps will specify model and feature requirements.

Security capabilities are used to mitigate threats on the attack surface of a business flow. The appropriate capability icons are applied along the business flow based on the policy, risk, and threats of its attack surface.

For example, the “Employee researching product information” business flow is analyzed from source to destination.
Based on where they are applied on the business flows, security capabilities can be grouped into three types: Foundational, Access, and Business.

Foundational Capabilities

Foundational Capabilities work together to protect applications and traffic. They use segmentation, visibility, and analysis in a comprehensive architectural approach. All business flows require foundational security capabilities.

![Foundational Capability Group: Secure Applications and Secure East West Traffic](image)

<table>
<thead>
<tr>
<th>Security Capability</th>
<th>Threat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall:</td>
<td>Unauthorized access and malformed packets between and within the branch.</td>
</tr>
<tr>
<td>Intrusion Prevention:</td>
<td>Attacks using worms, viruses, or other techniques.</td>
</tr>
<tr>
<td>Flow Analytics:</td>
<td>Traffic, telemetry, and data exfiltration from successful attacks.</td>
</tr>
<tr>
<td>Threat Intelligence:</td>
<td>Zero-day malware and attacks.</td>
</tr>
<tr>
<td>Anti-Malware:</td>
<td>Malware distribution across networks or between servers and devices.</td>
</tr>
<tr>
<td>TrustSec:</td>
<td>Unauthorized access and malicious traffic between branch layers.</td>
</tr>
</tbody>
</table>
Access Capabilities
Access capabilities secure users, devices, and servers as they access or provide network services.

Table 3 Access Capabilities

<table>
<thead>
<tr>
<th>Security Capability</th>
<th>Threat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client-/Server-based Security:</td>
<td>Malware compromising systems.</td>
</tr>
<tr>
<td>Security software for devices with the following capabilities:</td>
<td></td>
</tr>
<tr>
<td>Anti-Malware</td>
<td>Malware compromising systems.</td>
</tr>
<tr>
<td>Anti-Virus</td>
<td>Viruses compromising systems.</td>
</tr>
<tr>
<td>Cloud Security</td>
<td>Redirection of user to malicious website.</td>
</tr>
<tr>
<td>Personal Firewall</td>
<td>Unauthorized access and malformed packets connecting to client.</td>
</tr>
<tr>
<td>Identity:</td>
<td>Attackers accessing restricted information resources.</td>
</tr>
<tr>
<td>Identity-based access.</td>
<td>Compromised devices connecting to infrastructure.</td>
</tr>
<tr>
<td>Posture Assessment:</td>
<td></td>
</tr>
<tr>
<td>Client endpoint compliance verification and authorization.</td>
<td></td>
</tr>
</tbody>
</table>
Business Capabilities

Business capabilities are used to secure risks introduced by business practices that are not handled by the foundational and access groups. Email, web access, and remote access directly connect to potential malicious entities (like the web, phishing, and compromised partners) which are outside the control of a company and require additional security capabilities.

Figure 12 Business Capability Group: Secure Communications, Secure Web Access, Secure Remote Access

Table 4 Business Capabilities

<table>
<thead>
<tr>
<th>Security Capability</th>
<th>Threat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Security:</td>
<td>Attacks from malware, viruses, and redirection to malicious URLs.</td>
</tr>
<tr>
<td></td>
<td>Web, DNS, and IP-layer security and control for the branch.</td>
</tr>
<tr>
<td>Email Security:</td>
<td>Infiltration and exfiltration via email.</td>
</tr>
<tr>
<td></td>
<td>Messaging integrity and protections.</td>
</tr>
<tr>
<td>Application Visibility and Control (AVC):</td>
<td>Attack tools hiding in permitted applications.</td>
</tr>
<tr>
<td></td>
<td>Deep packet inspection (DPI) of application flows.</td>
</tr>
<tr>
<td>Web Application Firewalling:</td>
<td>Attacks against poorly-developed applications.</td>
</tr>
<tr>
<td></td>
<td>Advanced application inspection and monitoring.</td>
</tr>
<tr>
<td>DDoS Protection:</td>
<td>Massively scaled attacks that overwhelm services.</td>
</tr>
<tr>
<td></td>
<td>Protection against scaled attack forms.</td>
</tr>
<tr>
<td>Virtual Private Network (VPN):</td>
<td>Exposed services and data theft of remote workers and third parties.</td>
</tr>
<tr>
<td></td>
<td>Encrypted communication tunnels.</td>
</tr>
</tbody>
</table>
The Business Flow Capability Diagram

Combining capabilities with business flows creates a security capability map to the business. This map is used as the basis for the next phase in SAFE: The Security Architecture.

See the Appendix for all of these SAFE use cases with their capabilities.
Places in the Network

SAFE simplifies network security by providing solution guidance using the Places in the Network (PINs).

- Branch
- Campus
- WAN
- Data Center
- Edge
- Cloud

PINs are locations that are commonly found in networks (see Figure 14) and conceptually represent the infrastructure deployed in these locations. They are blueprints for the fundamentals that comprise today’s organizations: authentication, routing, switching, wireless, firewall, intrusion detection, and so on. Specific industry guidance for healthcare, retail, financial, and other verticals is covered in the Secure Domains.

Figure 14 Places in the Network
Secure Branch

Branches are typically less secure than their campus and data center counterparts. Economics often dictate that it is cost prohibitive to duplicate all the security controls typically found at locations when scaling to hundreds of branches. However, this makes branch locations prime targets and more susceptible to a breach. In response, it is important to include vital security capabilities while ensuring cost-effective designs in the branch.

Figure 15 shows the progression of security capabilities used to help defend against the attacks common in a branch.

![Secure Branch Attack Surface and Security Capabilities](image-url)

Top Threats Mitigated in the Branch
- Endpoint malware (POS malware)
- Wireless infrastructure exploits (rogue AP, Man in the Middle)
- Unauthorized/malicious client activity
- Exploitation of trust

For a deeper discussion on defending attacks within the Secure Branch, see www.cisco.com/go/SAFE.
Secure Campus

Campuses contain large user populations with a variety of device types and traditionally few internal security controls. Due to the large number of security zones (subnets and VLANs), secure segmentation is difficult. Because of the lack of security control, visibility, and guest/partner access, campuses are prime targets for attack.

Figure 16 shows the progression of security capabilities that are used to help defend against the attacks common in a campus.

Top Threats Mitigated in the Campus
- Phishing
- Web-based exploits
- Unauthorized network access
- Malware propagation
- BYOD—Larger attack surface/increased risk of data loss
- Botnet infestation

For a deeper discussion on defending attacks within the Secure Campus, see www.cisco.com/go/SAFE.
Secure Data Center

Data centers contain the majority of information assets and intellectual property. These are the primary goals of all targeted attacks and thus require the highest level of effort to secure. Data centers contain hundreds to thousands of physical and virtual servers that are segmented by application type, data classification zone, and other methods. Creating and managing proper security rules to control access to (north/south) and between (east/west) resources can be exceptionally difficult.

Figure 17 shows the progression of security capabilities that are used to help defend against the attacks common in a data center.

Top Threats Mitigated in the Data Center

- Data extraction (data loss)
- Malware propagation
- Unauthorized network access (application compromise)
- Botnet infestation (scrumping) data loss, privilege escalation, reconnaissance

For a deeper discussion on defending attacks within the Secure Data Center, see www.cisco.com/go/SAFE.
Secure Edge

The edge is the highest-risk PIN because it is the primary ingress point for public traffic from the Internet and the primary egress point for corporate traffic to the Internet. Simultaneously, it is the most critical business resource in today’s Internet-based economy.

Figure 18 shows the progression of security capabilities that are used to help defend against the attacks common at the network edge.

Figure 18 Secure Internet Edge Attack Surface and Security Capabilities
Secure Cloud

The majority of cloud security risk stems from loss of control, lack of trust, shared access, and shadow IT. Service Level Agreements (SLAs) are the primary tool for businesses to dictate control of security capabilities selected in cloud-powered services. Independent certification and risk assessment audits should be used to improve trust.

Figure 19 shows the progression of security capabilities used to help defend against the attacks common in the cloud.

Figure 19 Secure Cloud Attack Surface and Security Capabilities
Secure WAN

The WAN connects all company locations together to provide a single point of control and access to all resources. Managing security and quality of service (QoS) policies to control communication can be exceptionally difficult and complex.

Figure 20 shows the progression of security capabilities used to help defend against the attacks common in a WAN.

Top Threats Mitigated in the WAN

• Malware propagation
• Unauthorized network access
• WAN sniffing and MitM attacks

For a deeper discussion on defending attacks within the Secure WAN, see www.cisco.com/go/SAFE.
Secure Domains

The Secure Domains represent the operational side of the Key. Operational security is divided by function and the people in the organization that are responsible for them. Each domain has a class of security capabilities and operational aspects that must be considered. (See Figure 21.)
Management

Management of devices and systems using centralized services is critical for consistent policy deployment, workflow change management, and the ability to keep systems patched. Management coordinates policies, objects, and alerting.

Figure 22 shows the progression of security capabilities used for the operations of Management.

![Figure 22: Management Domain Capabilities](image)
Security Intelligence

Security Intelligence provides global detection and aggregation of emerging malware and threats. It enables an infrastructure to enforce policy dynamically, as reputations are augmented by the context of new threats, providing accurate and timely security protection.

Figure 23 shows the progression of security capabilities used for the operations of Security Intelligence.
Compliance

Compliance addresses internal and external policies. It shows how multiple controls can be satisfied by a single solution. Examples of external compliance include PCI, HIPAA, and Sarbanes–Oxley (SOX).

Figure 24 shows the progression of security capabilities used for Compliance.
Segmentation

Segmentation establishes boundaries for data and users. Traditional manual segmentation uses a combination of network addressing, VLANs, and firewalls for policy enforcement. Advanced segmentation leverages identity-aware infrastructure to enforce automated and scalable policies.

Figure 25 shows the progression of security capabilities used for Segmentation.
Threat Defense

Threat Defense provides visibility into the most evasive and dangerous cyber threats. Using network traffic telemetry, reputation, and contextual information, it enables assessment of the nature and potential risk of the suspicious activity so you can take corrective action.

Figure 26 shows the progression of security capabilities used for the operations of Threat Defense.
Secure Services

Secure Services provide technologies such as access control, virtual private networks, and encryption. This domain includes protection for insecure services such as applications, collaboration, and wireless.

Figure 27 shows the progression of security capabilities used for Secure Services.
SAFE Capabilities

Capabilities describe the primary functions of a security service. Table 5 provides a definition for the capabilities used in SAFE. The recommended products are mapped to each capability, where and when it is used, and the top threats mitigated.

<table>
<thead>
<tr>
<th>Attack Surface</th>
<th>Capabilities</th>
<th>Threats</th>
<th>Places in the Network</th>
<th>Recommended Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Identity/Authorization: Restriction of user access to services and resources.</td>
<td>Unauthorized Network Access: Attackers accessing restricted information.</td>
<td>Secure Branch Secure Campus Secure Cloud Secure Data Center Secure Edge Secure WAN</td>
<td>Identity Services Engine</td>
</tr>
<tr>
<td></td>
<td>Users: Employees, third parties, customers, and administrators.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clients: Devices such as PCs, laptops, smartphones, tablets.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-Malware</td>
<td>Malware compromising systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-Virus</td>
<td>Viruses compromising systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud Security</td>
<td>Redirection of user to malicious website.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personal Firewall</td>
<td>Unauthorized access and malformed packets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attack Surface</td>
<td>Capabilities</td>
<td>Threats</td>
<td>Places in the Network</td>
<td>Recommended Products</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Voice: Phone.</td>
<td>N/A: Covered in Secure Services domain.</td>
<td>Attackers accessing private information.</td>
<td>Secure Branch Secure Campus</td>
<td>Cisco Unified Communications</td>
</tr>
<tr>
<td>Video: Displays, collaboration.</td>
<td>N/A: Covered in Secure Services domain.</td>
<td>Attackers accessing private information.</td>
<td>Secure Branch Secure Campus</td>
<td>Cisco TelePresence</td>
</tr>
</tbody>
</table>

Network

<table>
<thead>
<tr>
<th>Capabilities</th>
<th>Threats</th>
<th>Places in the Network</th>
<th>Recommended Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall Segmentation: Stateful filtering and protocol inspection.</td>
<td>Unauthorized access and malformed packets.</td>
<td>Secure Branch Secure Campus Secure Cloud Secure External Zones Secure WAN</td>
<td>Adaptive Security Appliance Integrated Services Router Meraki MX</td>
</tr>
<tr>
<td>Intrusion Detection and Prevention: Identification of attacks by signatures and anomaly analysis.</td>
<td>Attacks using worms, viruses, or other techniques.</td>
<td>Secure Campus Secure Data Center Secure Edge Secure External Zones Secure WAN</td>
<td>Cisco Firepower Services on ASA and UCS-E Meraki MX</td>
</tr>
</tbody>
</table>
Table 5 Cisco Security Capabilities and Threats

<table>
<thead>
<tr>
<th>Attack Surface</th>
<th>Capabilities</th>
<th>Threats</th>
<th>Places in the Network</th>
<th>Recommended Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branches vary from</td>
<td>Wireless Rogue Detection: Detection and containment of malicious wireless devices that are not controlled by the company.</td>
<td>Unauthorized access and disruption of wireless network.</td>
<td>Secure Branch
Secure Campus</td>
<td>Wireless LAN Controller
Mobility Services Engine
Centralized Mobility Services Engine
Centralized Wireless LAN Controller
Cisco Meraki</td>
</tr>
<tr>
<td>wireless controller</td>
<td>Anti-Malware: Identify, block, and analyze malicious files and transmissions.</td>
<td>Malware distribution across networks or between servers and devices.</td>
<td>Secure Branch
Secure Campus
Secure Cloud
Secure Data Center
Secure Edge
Secure WAN</td>
<td></td>
</tr>
<tr>
<td>security services to</td>
<td>Threat Intelligence: Contextual knowledge of emerging hazards.</td>
<td>Zero-day malware and attacks.</td>
<td>Secure Branch
Secure Campus
Secure Cloud
Secure Data Center
Secure Edge
Secure WAN</td>
<td>Cisco Collective Security Intelligence
Cisco Talos Security Intelligence</td>
</tr>
<tr>
<td>a central, cost-</td>
<td>Flow Analytics: Network traffic metadata identifying security incidents.</td>
<td>Traffic, telemetry, and data exfiltration from successful attacks.</td>
<td>Secure Branch
Secure Campus</td>
<td>Integrated Services Router
Adaptive Security Appliance
Wireless LAN Controller
Catalyst Switch</td>
</tr>
<tr>
<td>efficient model.</td>
<td>Analysis: Analysis of network traffic within the campus.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Secure Cloud
Stealthwatch Cloud</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Secure Data Center
Secure Edge
Secure WAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NetFlow Generation Appliance
Stealthwatch FlowSensor
Adaptive Security Appliance</td>
</tr>
<tr>
<td>Attack Surface</td>
<td>Capabilities</td>
<td>Threats</td>
<td>Places in the Network</td>
<td>Recommended Products</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>WAN: Public and untrusted Wide Area Networks that connect to the company, such as the Internet.</td>
<td>VPN Concentrator: Encrypted remote access.</td>
<td>Exposed services and data theft.</td>
<td>Secure Edge</td>
<td>Adaptive Security Appliance Aggregation Services Router</td>
</tr>
<tr>
<td></td>
<td>Virtual Private Network (VPN): Encrypted communication tunnels.</td>
<td>Easily collecting information and identities.</td>
<td>Secure Branch Secure Campus</td>
<td>Adaptive Security Appliance Integrated Services Router Firepower Appliance</td>
</tr>
<tr>
<td></td>
<td>DDoS Protection: Protection against scaled attack forms.</td>
<td>Massively scaled attacks that overwhelm services.</td>
<td>Secure Data Center Secure Cloud External Zones Secure WAN</td>
<td>Adaptive Security Appliance Aggregation Services Router AnyConnect Meraki MX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Employee Connect AnyConnect Meraki MX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Distributed Denial of Service Technology Partner</td>
</tr>
<tr>
<td>Attack Surface</td>
<td>Capabilities</td>
<td>Threats</td>
<td>Places in the Network</td>
<td>Recommended Products</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Cloud</td>
<td>Cloud Security: Security and control for the distributed enterprise.</td>
<td>Attacks from malware, viruses, and malicious URLs.</td>
<td>Secure Branch</td>
<td>Cloud Web Security</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Secure Campus</td>
<td>Meraki MX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Secure Cloud</td>
<td>Firepower URL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Secure Data Center</td>
<td>Web Security Appliance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Secure Edge</td>
<td>AnyConnect Agent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Secure External Zones</td>
<td>Cisco Umbrella</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Secure WAN</td>
<td>Secure Internet Gateway (SIG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cloudlock</td>
</tr>
<tr>
<td></td>
<td>DNS Security</td>
<td>Redistribution of user to malicious website.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud-based Firewall</td>
<td>Unauthorized access and malformed packets connecting to services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software-Defined Perimeter (SDP/SD-WAN):</td>
<td>Easily collecting information and identities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Security: Internet access integrity and protections.</td>
<td>Infiltration and exfiltration via HTTP.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Reputation/Filtering: Tracking against URL-based threats.</td>
<td>Attacks directing to a malicious URL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud Access Security Broker (CASB)</td>
<td>Unauthorized access and Data loss.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications

<table>
<thead>
<tr>
<th>Applications</th>
<th>Web Application Firewalling: Advanced application inspection and monitoring.</th>
<th>Attacks against poorly-developed applications.</th>
<th>Secure Data Center Secure Edge</th>
<th>Web Application Firewall Technology Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Application Visibility Control (AVC): Deep packet inspection (DPI) of application flows.</td>
<td>Attack tools hiding in permitted applications.</td>
<td>Secure Branch Secure Edge</td>
<td>FirePOWER Services Module or Appliance Meraki MX Cisco ASR</td>
</tr>
</tbody>
</table>
Table 5: Cisco Security Capabilities and Threats

<table>
<thead>
<tr>
<th>Attack Surface</th>
<th>Capabilities</th>
<th>Threats</th>
<th>Places in the Network</th>
<th>Recommended Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS Encryption Offload</td>
<td>Hardware accelerated encryption of data services.</td>
<td>Theft of unencrypted traffic.</td>
<td>Secure Data Center, Secure Edge</td>
<td>Transport Layer Security Offload Technology Partner</td>
</tr>
<tr>
<td>Storage</td>
<td>Information storage on all media types.</td>
<td></td>
<td>Secure Branch, Secure Campus, Secure Cloud, Secure Data Center, Secure Edge</td>
<td>NAS/SAN (Partner)</td>
</tr>
<tr>
<td>Server-Based Security</td>
<td>Security software to protect hosts.</td>
<td>Viruses or malware compromising systems.</td>
<td>Secure Cloud, Secure Data Center, Secure Edge</td>
<td>Cisco Advanced Malware Protection for Endpoint, AnyConnect, Cisco Umbrella, Anti-Virus</td>
</tr>
<tr>
<td>Anti-Malware</td>
<td>Identify, block, and analyze malicious files and transmissions.</td>
<td>Malware distribution across servers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Virus</td>
<td></td>
<td>Viruses compromising systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud Security</td>
<td></td>
<td>Redirection of user to malicious website.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host-based Firewall</td>
<td></td>
<td>Unauthorized access and malformed packets connecting to server.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Security</td>
<td>Messaging integrity and protections.</td>
<td>Infiltration and exfiltration via email.</td>
<td>Secure Data Center, Secure Edge</td>
<td>Email Security Appliance, Cloud Web Security</td>
</tr>
<tr>
<td>Malware Sandbox</td>
<td>Detonation and analysis of file behavior.</td>
<td>Polymorphic threats.</td>
<td>Secure Branch, Secure Data Center, Secure Edge</td>
<td>Cloud Web Security, Cisco Threatgrid</td>
</tr>
</tbody>
</table>
Table 5 Cisco Security Capabilities and Threats

<table>
<thead>
<tr>
<th>Attack Surface</th>
<th>Capabilities</th>
<th>Threats</th>
<th>Places in the Network</th>
<th>Recommended Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | **Logging/Reporting:** Centralized event information collection. | Unauthorized network access or configuration. | All | Prime Infrastructure Manager
Stealthwatch Management Console
Partner Tools |
| | **Policy/Configuration:** Unified infrastructure management and compliance verification. | Seizure of infrastructure or devices. | | Prime Management Suite |
| | **Time Synchronization:** Device clock calibration. | Misdirection and correlation of attacks | | All systems and devices |
| | **Vulnerability Management:** Continuous scanning and reporting of infrastructure. | Malicious device connected to infrastructure. | | Firepower Management Center
Identity Services Engine
Cisco Meraki |
| | **Analysis/Correlation:** Security event management of real-time information. | Diverse and polymorphic attacks. | | Firepower Management Center
Stealthwatch Prime
SIEM partner |
| | **Anomaly Detection:** Identification of infected hosts scanning for other vulnerable hosts. | Worm traffic that exhibits scanning behavior. | | Firepower Management Center
Stealthwatch Management Console
AMP for Endpoints Console |
| | **Monitoring:** Network traffic inspection. | Traffic, telemetry, and data exfiltration from successful attacks. | | Stealthwatch
Cisco NAM
Cisco NGA
Partner Tools |
The SAFE Architecture

The SAFE security reference architecture logically maps **business flows** to security capabilities from the source to the destination using **Places in the Network (PINs)**. Each PIN has **architectural layers** that define where and why security controls are used.
The Attack Surface and Architecture Layers

The SAFE architecture uses layers that align to the attack surface. Business use cases connect through the network to application services. Each layer has standardized controls relating to its function. Some layers provide access and visibility while others perform enforcement. Not all PINs contain all layers (see further definition in the architecture guide for each Place in the Network).

Figure X Alignment of attack surface to architecture layers
Attack Surface: Human

A Business Use Case is a role performed by a Human connecting to network services.

Business Use Case Layer

Humans use network services to perform business functions. Each business use case defines what services are needed and where the flow of data will go. Some users will perform multiple roles requiring respective security.

Humans can be the weakest link in your security architecture. If their identity is compromised, downstream technical controls can be bypassed. Visibility and segmentation limit the impact of compromised employees, malicious partners, or customers.

Capability

Identity – Assign each user a role-based identity that has a respective set of security capability controls.
Attack Surface: Devices

The Devices layer includes devices that vary from traditional PCs and laptops to smart phones, tablets, and increasingly, things such as building controls, cameras, and robotics. Devices require respective client-based security defined by policy.

Endpoints Layer

Zero day and other advanced attacks can bypass existing security. A secure company uses the network and the devices connecting to it as baselines of behavior. Under attack, new behavior compared to baselines provides alarm. Visibility using the network as a sensor, enables effective containment through intelligent architectural design.
Attack Surface: Network

The SAFE model aligns to the traditional network model of access, distribution, and core. Each layer in the hierarchy benefits by dividing a flat network into scalable blocks. Traffic remains local unless it is destined for other networks, and it is elevated to a higher layer. The network acts as a sensor utilizing flow analytics to capture anomalies and provide visibility to attacks.

Access Layer
The purpose of the access layer is to securely connect humans and devices to the network. It connects to the distribution layer and is the first line of enforcement to the rest of the network. Its purpose is to identify and segment users, and to assess compliance of devices seeking access. This layer enables enforcement of violations of posture, identity, or anomalous behavior.

Distribution Layer
This layer is an aggregation point for all of the access switches. It controls the boundary between the access and core layers and serves as an integration point for security capabilities such as IPS and network policy enforcement.

Core Layer
The core layer provides high-speed, highly redundant forwarding services, connecting the distribution layer to the services layer. In smaller locations not requiring scale, distribution or access layers connect directly to the core.
Attack Surface: Applications

The purpose of the services layer is to provide and secure services used by business functions.

Services Layer

The services layer typically connects to the core layer and provides foundational capabilities. The security capabilities segment traffic and provide visibility into separated business flows. Through analytics, each Place in the Network has protection from known malware and other malicious intrusions. In the event of zero-day attacks where the threat has not been categorized, flow analytics identifies anomalous behavior, reducing time to detection. Policy is enforced against violations.

Business-based security protects against threats introduced outside the company, such as email correspondence, web surfing, and remote access. Many businesses need to satisfy compliance mandates using rogue wireless detection regardless of whether the company uses wireless itself. If a company uses wireless for business functions, WIPS is needed in addition to foundational IPS.
Primary Security Capability

Foundational Security Services
- Firewall
- IPS
- Threat Intelligence
- Anti-Malware
- Flow Analytics
- TrustSec
- Identity

Business-based Security
- Web Security
- VPN
- Application Visibility Control
- WIPS
- Wireless Rogue Detection

Server-based Security
- Server-Based Security
- Anti-Virus
- Anti-Malware
- Cloud Security
- Host-Based Firewall
Summary

Companies are threatened by increasingly sophisticated attacks. SAFE provides a model and a method for simplifying the complexity associated with defense. By segmenting company business into role-based business flows, appropriate security capabilities are applied. Organizing these capabilities into architectures, SAFE standardizes how the business is secured. Finally, designs complete with materials, configurations, and cost are created based on these security business architectures.

SAFE simplifies the security challenges of today and prepares for the threats of tomorrow.
Appendix

Internal Business Flows

CEO
- Secure communications for email: CEO sending email to shareholder
 - Client-Based Security
 - Posture Assessment
 - Firewall
 - Intrusion Prevention
 - Flow Analytics
 - TrustSec
 - Anti-Malware
 - AVC
 - Email Security
 - Host-Based Security

Clerk
- Secure applications for PCI: Clerk processing credit card transaction
 - Client-Based Security
 - Posture Assessment
 - Firewall
 - Intrusion Prevention
 - Flow Analytics
 - TrustSec
 - Anti-Malware
 - AVC
 - Web Application Firewall
 - Host-Based Security

Employee
- Secure web access for employees: Employee researching product information
 - Client-Based Security
 - Posture Assessment
 - Firewall
 - Intrusion Prevention
 - Flow Analytics
 - TrustSec
 - Anti-Malware
 - AVC
 - Web Security

Expert
- Secure communications for collaboration: Subject matter expert consultation
 - Client-Based Security
 - Posture Assessment
 - Firewall
 - Intrusion Prevention
 - Flow Analytics
 - TrustSec
 - Anti-Malware
 - AVC
 - Web Security

Third-Party Business Flows

Thermostat
- Secure remote access for third party: Connected device with remote vendor support
 - DNS Security
 - Identity
 - Posture Assessment
 - AV
 - TrustSec
 - AVC
 - Identity

Engineer
- Secure remote access for employees: Field engineer updating work order
 - AV
 - TrustSec
 - AVC
 - Distributed Denial of Service Protection
 - Web Application Firewall
 - Host-Based Security

Database
- Secure east-west traffic for compliance: PCI compliance for financial transactions
 - Host-Based Security
 - TrustSec
 - AVC
 - Email Security

Payment Application
- Secure applications for PCI: Clerk processing credit card transaction
 - Client-Based Security
 - Posture Assessment
 - Firewall
 - Intrusion Prevention
 - Flow Analytics
 - TrustSec
 - Anti-Malware
 - AVC
 - Web Application Firewall
 - Host-Based Security
Customer Business Flows

- **Secure web access for guests:** Guest accessing the internet for comparative shopping
- **Secure web access for guests:** Guest accessing the internet to watch hosted video
- **Secure applications for PCI:** Customer making purchase
For more information on SAFE, see www.cisco.com/go/SAFE.