Cisco Software-Defined Access

Introducing an entirely new era in networking.

What if you could give time back to IT? Provide network access in minutes for any user or device to any application – without compromise?

Software-Defined Access is the industry’s first intent-based networking solution for the Enterprise built on the principles of Cisco’s Digital Network Architecture (DNA). SD-Access provides automated end-to-end segmentation to separate user, device and application traffic without redesigning the network. SD-Access automates user access policy so organizations can make sure the right policies are established for any user or device with any application across the network. This is accomplished with a single network fabric across LAN and WLAN which creates a consistent user experience anywhere without compromising on security.

Benefits

- Consistent management of wired and wireless network provisioning and policy
- Automated network segmentation and group-based policy
- Contextual insights for fast issue resolution and capacity planning
- Open and programmable interfaces for integration with third-party solutions

Figure 1. SD-Access Overview
Why SD-Access?

There are many challenges today in managing the network because of manual configuration and fragmented tool offerings.

Manual operations are slow and error-prone and these issues will be exacerbated due to the constantly changing environment with more users, devices and applications. With the growth of users and different devices types coming into the network, it is more complex to configure user credentials and maintain a consistent policy across the network. If your policy is not consistent, there is the added complexity of maintaining separate policies between wired and wireless. As users move around the network, it also becomes difficult to locate users and troubleshoot issues. The bottom line is that the networks of today do not address today’s network needs.

These challenges are deeply rooted within network deployment and operations as noted below:

Network Deployment

- **Setup or deployment of a single network switch** can take several hours due to scheduling requirements and the need to work with different infrastructure groups. In some cases, deploying a batch of switches can take several weeks.
- **Security** is a critical component of managing modern networks. Organizations need to appropriately protect resources and make changes efficiently in response to real-time needs. Tracking VLANs, Access Control Lists (ACLs) and IP addresses to ensure optimal policy and security compliance can be challenging.
- **Disparate networks** are common in many organizations, as different systems are managed by different departments. The main IT network is typically operated separately from building management systems, security systems and other production systems. This leads to duplication of network hardware procurement and inconsistency in management practices.

Network Operations

- **Limited change management:**
 One of the standard operational activities in running a network is to upgrade software and configurations periodically. Whenever such a change is required on a typical network, the sheer logistics mean the task could take over 6 months.
• **Productivity:**
 Every business strives to provide a high-quality communication experience to optimize employee productivity. However, this effort has been difficult and time-consuming with current models. Experience has shown that changes in quality of service can take several months to plan and implement, while lack of implementation causes performance issues in business-critical applications.

• **Slow resolution of issues:**
 The significant size and complexity of networks under the current network management paradigm mean that whenever a failure occurs, pinpointing and resolving the issue can take a great deal of effort and time. There is also a lot of data that is being collected but not properly correlated to understand the various contexts of network and user behaviors.

SD-Access Solution Overview

Cisco SD-Access enables IT transformation by improving operational effectiveness, enhancing the workforce experience and increasing security and compliance. Building this next-generation solution involved some key foundational elements, including:

- Controller-based orchestrator
- Network fabric
- Programmable switches

Controller-based networking: Traditional networking focuses on per-device management, which takes time and creates many complexities. This approach is prone to human errors. SD-Access uses a modern controller architecture to drive business intent into the orchestration and operation of network elements. This includes the day-0 configuration of devices and policies associated with users, devices and endpoints as they connect to the network. The controller provides a network abstraction layer to arbitrate the specifics of various network elements. Additionally, the Cisco DNA-Center controller exposes northbound Representational State Transfer (REST)-based APIs to facilitate third-party or in-house development of meaningful services on the network.

Network fabric: With a controller element in place, it’s sensible to consider building the network in logical blocks called fabrics. The SD-Access Fabric leverages Virtual Network Overlays in order to support mobility, segmentation and programmability at very large scale. The Virtual Network Overlay leverages a Control Plane to maintain the mapping of end-points to their network location up to date as end-points move around the network. Separation of the Control Plane from the Forwarding Plane reduces complexity, improved scale and convergence over traditional networking techniques. The SD-Access Fabric enables several key capabilities, such as the host mobility regardless of volume of moves and size of the network, Layer 2 and Layer 3 Segmentation, Extranet, and Wireless Integration. Other capabilities include intelligent services for application recognition, traffic analytics, traffic prioritization and steering for optimum performance and operational effectiveness.

Modern device software stack: To build a modern infrastructure, Cisco is equipping existing and future switches with advanced capabilities to enable full lifecycle management while being open, standards based and extensible. These key technologies include (1) automated device provisioning, incorporating well-known functions such as zero-touch provisioning, Plug and Play and Preboot Execution Environment; (2) open API interface, using the NETCONF and YANG models; (3) granular visibility, using telemetry capabilities such as NetFlow and the YANG operational model; and (4) seamless software upgrades with live software patching.
Solution Components

The core components that make up the SD-Access solution are:

- Cisco DNA Center
- Cisco Identity Services Engine (ISE)
- Network platforms: See Table 3

Key Features

See Table 1 for a list of the key features of SD-Access 1.0.

Table 1. SD-Access 1.0 Key Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Fabric infrastructure** | • Virtual network overlays with virtual extensible LAN (VXLAN)
• Default Anycast Layer 3 gateway (L3VNI)
• Multicast support with Head-End Replication
• Automated underlay and custom underlay options
• Load balancing using Equal-Cost Multipath Routing (ECMP) in underlay
• External connectivity handoff using Virtual Routing and Forwarding Lite (VRF-Lite), Multiprotocol Label Switching (MPLS), Dynamic Multipoint VPN (DMVPN), and Border Gateway Protocol Ethernet VPN (BGP-EVPN) (Manual)
• Subtended Node connectivity with Single VLAN uplinks to Fabric Edge (with Day-0 PnP automation)
• Resiliency – Support for multiple Fabric Border Nodes |
| **Fabric control plane** | • Demand-based overlays with LISP-based control plane
• Control plane co-located with fabric border or standalone
• Resiliency – Support for multiple LISP control plane nodes |
| **Segmentation and access control policy** | • Network segmentation with Virtual Networks (VNs)
• Identity segmentation with groups
• Group assignment driven by multiple authentication methods:
 ◦ Static: Port to group mapping
 ◦ Dynamic
 ◦ MAC address based
 ◦ Passive identity (Active Directory)
 ◦ 802.1X based (open, closed)
 ◦ WebAuth
• Default permit for all intra-VN communications between Groups
• Option to define custom deny between groups within a VN
• Default deny for all inter-VN communications between Groups
• Option to define custom permit between groups at firewall
• Identity (group) federation via pxGrid
• Add/remove/modify Virtual Networks and Group-based Policies, independent of network devices or location of user |
| **SD-Access wireless** | • Enterprise wireless support
• VXLAN support at access point
• Distributed data plane for higher wireless performance
• Seamless roaming within the fabric domain |
| **Fabric security** | • Control plane protection against Distributed Denial of Service (DDoS) attacks
• Routing locator (RLOC) authentication with control plane
• RLOC source address spoofing prevention |
| **Management** | • Single pane of management with Cisco DNA Center
• Automatic fabric discovery
• Consistent segmentation and policy for wired and wireless users and devices
• Consistent provisioning for wired and wireless infrastructure
• Role-Based Access Control (RBAC)
• Authenticated access based on certificate authentication and local authentication
• Northbound APIs – open Cisco IOS® XE device APIs and DNAC REST APIs |
Feature Description

<table>
<thead>
<tr>
<th>Technology partners</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>● IPAM – Infoblox</td>
<td></td>
</tr>
<tr>
<td>● Integrated threat defense – Cisco Stealthwatch®</td>
<td></td>
</tr>
<tr>
<td>● Firewalls – Cisco ASA, Cisco Firepower® Threat Defense</td>
<td></td>
</tr>
<tr>
<td>● Policy orchestrators – Tufin, Algosec</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. SD-Access 1.0 Hardware and Software Compatibility Matrix

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric edge</td>
<td>Cisco Catalyst® 9300 Series Switches</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 9400 Series Switches (Sup1)</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3850 and 3650 Series Switches</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500E Series Switches (Sup8E, Sup9E)</td>
<td>IOS XE 3.10.0E</td>
</tr>
<tr>
<td>Fabric border and control plane</td>
<td>Cisco Catalyst 9500 Series Switches</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3850 Series Fiber Module</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 6807-XL Switch (Sup6T, Sup2T)</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 6500 Series Switches</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 6880-X Switch</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 6840-X Switch</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco Nexus® 7700 Switch (Sup 2E, M3 line cards only)</td>
<td>NOS 8.2(1)</td>
</tr>
<tr>
<td></td>
<td>Cisco 4000 Series Integrated Services Routers</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco ASR 1000 Series Aggregation Services Routers</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td></td>
<td>Cisco Cloud Services Router (CSR) 1000V (control plane only)</td>
<td>IOS XE 16.6.1</td>
</tr>
<tr>
<td>Subtended node</td>
<td>Cisco Catalyst 3560-CX Series</td>
<td>IOS 15.2(6)E</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst Digital Building Series</td>
<td>IOS 15.2(6)E</td>
</tr>
<tr>
<td>SD-Access wireless</td>
<td>802.11 Wave 2 access points: Cisco Airone® 1800, 2800 and 3800 Series</td>
<td>AireOS 8.5.103.0</td>
</tr>
<tr>
<td></td>
<td>802.11 Wave 1 access points: Cisco Airone® 1700, 2700 and 3700 Series</td>
<td>AireOS 8.5.103.0</td>
</tr>
<tr>
<td></td>
<td>Cisco 3504, 5520 and 8540 Series Wireless Controllers</td>
<td>AireOS 8.5.103.0</td>
</tr>
</tbody>
</table>

Note:
- Wave 1 access points won’t support the following functions when deployed for SD-Access: IPv6, Application Visibility and Control (AVC), NetFlow.
- A device cannot act as fabric edge and fabric border at the same time.
- A device can act as fabric border and fabric control plane at the same time.

SD-Access Use Cases

Building on the foundation of industry-leading capabilities, SD-Access can now deliver key business-driven use cases that truly realize the promise of a digital enterprise while reducing total cost of ownership (Table 3).

<table>
<thead>
<tr>
<th>Use case</th>
<th>Details</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security and segmentation</td>
<td>Onboard users with 802.1X, Active Directory, and static authentication</td>
<td>Reduced time to provision network segmentation and user groups</td>
</tr>
<tr>
<td></td>
<td>Group users with Cisco TrustSec (security group tags)</td>
<td>Foundation to enforce network security policies</td>
</tr>
<tr>
<td></td>
<td>Automate VRF configuration (lines of business, departments, etc.)</td>
<td>Ability to detect and intercept threats at line rate (not samples) from the center to the last mile, including all devices on the network edge</td>
</tr>
<tr>
<td></td>
<td>Traffic analysis using AVC and NetFlow is further enhanced using Encrypted Traffic Analytics (ETA)</td>
<td></td>
</tr>
<tr>
<td>User mobility</td>
<td>Single point of definition for wired and wireless users</td>
<td>Management of wired and wireless networks and users from a single interface (Cisco DNA Center)</td>
</tr>
<tr>
<td></td>
<td>Seamless roaming between wired and wireless</td>
<td>Ability to offload wireless data path to network switches (reduce load on controller)</td>
</tr>
<tr>
<td></td>
<td>Distributed data plane for wireless access</td>
<td>Scalable fabric-enabled wireless with seamless roaming across campus</td>
</tr>
<tr>
<td></td>
<td>Simplified guest provisioning for wired and wireless</td>
<td></td>
</tr>
<tr>
<td>Use case</td>
<td>Details</td>
<td>Benefits</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Guest access | • Define specific groups for guest users
• Create policy for guest users’ resource access (such as Internet access) | • Simplified policy provisioning
• Time savings when provisioning policies |
| IoT integration | • Segment and group IoT devices
• Define policies for IoT group access and management
• Device profiling with flexible authentication options | • Simplify deployment of IoT devices
• Reduce network attack surface with device segmentation |
| Monitoring and troubleshooting | • Multiple data points on network behavior (syslog, stats, etc.)
• Contextual data available per user and device | • Significantly reduce troubleshooting time
• Use rich context and analytics for decision making |
| Cloud/data center integration | • Identity federation allows exchange of identity between campus and data center policy controllers | • Administrator can define user-to-application access policy from a single interface
• End-to-end policy management for the enterprise
• Identity-based policy enforcement for optimized ACL utilization
• Flexibility when enforcing policy at campus or data center |
| Branch integration | • Create a single fabric across multiple regional branch locations
• Use Cisco routers as fabric border nodes | • Simplified provisioning and management of branch locations
• Enterprise-wide policy provisioning and enforcement |

Giving IT time back with SD-Access

SD-Access gives IT time back by dramatically reducing the time it takes to manage and secure your network and improving the overall end-user experience.

![Network Provisioning](67%)
![Threat Defense](48%)
![Monitoring and Troubleshooting](80%)
![End User Experience](94%)

- Reduction in network provisioning costs
- Reduction in cost impact of a security breach
- Reduction in costs to resolve issues
- Reduction in costs to optimize policies

Ordering Information

Please refer to the [SD-Access ordering guide](#) for detailed information.

Cisco Capital

Financing to Help You Achieve Your Objectives

Cisco Capital® can help you acquire the technology you need to achieve your objectives and stay competitive. We can help you reduce CapEx. Accelerate your growth. Optimize your investment dollars and ROI. Cisco Capital financing gives you flexibility in acquiring hardware, software, services and complementary third-party equipment. And there’s just one predictable payment. Cisco Capital is available in more than 100 countries. [Learn more](#).
Services

Accelerate your journey to a digital-ready network with Cisco Software-Defined Access services

Cisco Services provides expert guidance to help you achieve a streamlined operational model across wired and wireless environments at a lower cost. With proven experience, best practices, and innovative tools, Cisco Services works with you to easily manage, scale, and secure your SD-Access solution. By choosing from a comprehensive lifecycle of services – including advisory, implementation, optimization, and technical services – you can move to a secure and automated unified network with ease and confidence. Learn more.

- Develop an SD-Access architectural strategy and roadmap that aligns to business needs
- Migrate with high performance, security, and reliability
- Achieve operational excellence with optimization
- Maintain reliability and accelerate the ROI of your SD-Access solution
- Reduce disruption with proactive monitoring and management
- Equip your IT staff with knowledge and training

How to Get Started with SD-Access

- Review the business and technical decision maker presentations
- Read the SD-Access Technical Solution white paper
- Ask your sales representative for a product demo