Cisco IOS DMVPN Overview

February 2008

Cisco.com/go/dmvpn
Cisco IOS Software Secure Connectivity Overview

Industry-Leading VPN Solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>Critical Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard IPsec</td>
<td>▪ Full standards compliance for interoperability with other vendors</td>
</tr>
<tr>
<td>Advanced site-to-site VPN</td>
<td>▪ Hub-and-spoke VPN:</td>
</tr>
<tr>
<td></td>
<td>- Enhanced Easy VPN: Dynamic Virtual Tunnel Interfaces, Reverse Route Injection, dynamic policy push, and high scalability</td>
</tr>
<tr>
<td></td>
<td>- Routed IPsec + GRE or DMVPN with dynamic routing</td>
</tr>
<tr>
<td></td>
<td>▪ Spoke-to-spoke VPN: Dynamic Multipoint VPN (DMVPN) – On-demand VPNs (partial mesh)</td>
</tr>
<tr>
<td></td>
<td>▪ Any-to-any VPN: Group Encrypted Transport (GET) VPN – No point-to-point tunnels</td>
</tr>
<tr>
<td>Advanced remote-access VPN</td>
<td>▪ Easy VPN (IPsec): Cisco® Dynamic Policy Push and free VPN clients for Windows, Linux, Solaris, and Mac platforms</td>
</tr>
<tr>
<td></td>
<td>▪ SSL VPN: No client preinstallation required; provides endpoint security through Cisco Secure Desktop</td>
</tr>
</tbody>
</table>
Cisco IOS VPN Primary Differentiators

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>First to market</td>
<td>Cisco® is the first to support innovative VPN solutions such as Easy VPN, DMVPN, and GETVPN on an integrated services access router.</td>
</tr>
<tr>
<td>Platform support</td>
<td>Cisco has comprehensive VPN platform offerings, including support for VSA, VAM2+, VPN-SPA, and integrated services routers.</td>
</tr>
<tr>
<td>Integration</td>
<td>Cisco VPN solutions have advanced network integration capabilities, such as QoS, IP Multicast, voice, and video.</td>
</tr>
<tr>
<td>Feature performance</td>
<td>Cisco VPN solutions offer rich integration of VPN with several routing protocols such as OSPF, EIGRP, BGP, and RIPv2 without degrading performance to enable scalable services.</td>
</tr>
<tr>
<td>Enhanced management</td>
<td>Cisco has a comprehensive management suite for provisioning and maintenance of VPN networks.</td>
</tr>
</tbody>
</table>
Dynamic Multipoint VPN

- Provides full meshed connectivity with simple configuration of hub and spoke
- Supports dynamically addressed spokes
- Facilitates zero-touch configuration for addition of new spokes
- Features automatic IPsec triggering for building an IPsec tunnel
What Is Dynamic Multipoint VPN?

- DMVPN is a Cisco IOS® Software solution for building IPsec + GRE VPNs in an easy, dynamic, and scalable manner.

- DMVPN relies on two proven technologies:

 Next Hop Resolution Protocol (NHRP): Creates a distributed (NHRP) mapping database of all the spoke tunnels to real (public interface) addresses

 Multipoint GRE Tunnel Interface: Single GRE interface to support multiple GRE and IPsec tunnels; simplifies size and complexity of configuration
Enterprise Network Designs
Point of Sale

- Typical examples include Bank ATM or retail credit and debit card networks
- Requirement is to terminate a very large number (up to 20,000+) of low-bandwidth spokes
- Routing protocol scalability very important
- Server-load-balancing (SLB) designs for super hub
- No spoke-to-spoke functions required immediately, but under consideration for future
Enterprise Network Designs
Small Office or Home Office

- Single-layer small DMVPN network
- Used to provide work access from home or offsite locations
- Enterprise Class Teleworker (ECT) designs
- NAT support needed on most of the spokes
- Thousands of spokes
- Typical requirement is to support voice and data to and from the head-office (hub) location with occasional spoke-to-spoke voice
DMVPN hub-and-spoke design

No spoke-spoke allowed, not even through the hub (using ACLs)

Typically less than 1000 spokes

Hub choice depends on amount of traffic each spoke transmits and receives
Enterprise Network Designs
DMVPN Backup for Layer 2 MPLS WAN

- Single-layer DMVPN design (mostly)
- Hub-and-spoke and spoke-to-spoke networks
- Different size networks (number of spokes), but also supporting many DMVPN networks on the same set of hub routers
Service Provider Network Designs

Internet Service Provider

- Single-layer DMVPN design (mostly)
- VRF-aware DMVPN on the hubs to segregate customer traffic
- MPLS (2547oDMVPN); connecting provider edge devices over an IP network (current support only for hub and spoke)
- Hub-and-spoke and spoke-to-spoke networks
- Different size networks (number of spokes), but also supporting many DMVPN networks on the same set of hub routers
DMVPN Overview
DMVPN: Major Features

- Offers configuration reduction and no-touch deployment
- Supports IP Unicast, IP Multicast, and dynamic routing protocols
- Supports remote peers with dynamically assigned addresses
- Supports spoke routers behind dynamic NAT and hub routers behind static NAT
- Dynamic spoke-to-spoke tunnels for scaling partial- or full-mesh VPNs
- Usable with or without IPsec encryption
Configuration Reduction
Before DMVPN: p-pGRE + IPsec

- Single GRE interface for each spoke
- All tunnels need to be predefined
 - Uses static tunnel destination
 - Requires static addresses for spokes
 - Supports dynamic routing protocols
- Large hub configuration
 - 1 interface/spoke ➔ 250 spokes = 250 interfaces
 - 7 lines/spoke ➔ 250 spokes = 1750 lines
 - 4 IP addresses/spoke ➔ 250 spokes = 1000 addresses
- Addition of spokes requires changes on the hub
- Spoke-to-spoke traffic through the hub
Configuration Reduction

With DMVPN: mGRE + IPsec

- One mGRE interface supports ALL spokes
 Multiple mGRE interfaces allowed: each is in a separate DMVPN

- Dynamic Tunnel Destination simplifies support for
dynamically addressed spokes
 NHRP registration and dynamic routing protocols

- Smaller hub configuration
 One interface for all spokes e.g. 250 spokes -> 1 interface
 Configuration including NHRP e.g. 250 spokes -> 15 lines
 All spokes in the same subnet e.g. 250 spokes -> 250 addresses

- No need to touch the hub for new spokes

- Spoke to spoke traffic via the hub or direct
Dynamic Routing Protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Network Type</th>
<th>Route Control</th>
<th>Converge</th>
<th>CPU</th>
<th>Scaling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIGRP</td>
<td>Hub-spoke</td>
<td>Good</td>
<td>Faster</td>
<td>High</td>
<td>Lower</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spoke-spoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSPF</td>
<td>Hub-spoke</td>
<td>Fair</td>
<td>Faster</td>
<td>High</td>
<td>Lower</td>
<td>Single area</td>
</tr>
<tr>
<td></td>
<td>Spoke-spoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP</td>
<td>Hub-spoke</td>
<td>Good</td>
<td>Slower</td>
<td>Medium</td>
<td>Medium*</td>
<td>Static neighbor</td>
</tr>
<tr>
<td></td>
<td>Spoke-spoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIPv2</td>
<td>Hub-spoke**</td>
<td>Poor</td>
<td>Slower</td>
<td>Low</td>
<td>High</td>
<td>Passive mode needs IP SLA</td>
</tr>
<tr>
<td>ODR</td>
<td>Hub-spoke**</td>
<td>None</td>
<td>Slower</td>
<td>Low</td>
<td>High</td>
<td>Default route only</td>
</tr>
</tbody>
</table>

* Scaling can be increased by using a BGP Route Reflector model; i.e., terminating BGP session at the hub location on a number of BGP route reflectors—hub is a route reflector client

** Can be used for spoke-to-spoke
Dynamic Addressing

- Spokes have a dynamic permanent GRE/IPsec tunnel to the hub, but not to other spokes. They register as clients of the NHRP server.
- When a spoke needs to send a packet to a destination (private) subnet behind another spoke, it queries the NHRP server for the real (outside) address of the destination spoke.
- Now the originating spoke can initiate a dynamic GRE/IPsec tunnel to the target spoke (because it knows the peer address).
- The spoke-to-spoke tunnel is built over the mGRE interface.
Dynamic Tunnels: Example

Dynamic Spoke-to-Spoke Tunnels

- Spoke B: 192.168.2.0/24
- 192.168.1.0/24
- Physical: 172.17.0.1
- Tunnel0: 10.0.0.1
- Tunnel0: Dynamic
- Tunnel0: 10.0.0.12

Static Spoke-to-Hub Tunnels

- Spoke A: 192.168.1.0/24
- Hub: 192.168.0.0/24
- Physical: 172.17.0.1
- Tunnel0: 10.0.0.1
- Tunnel0: Dynamic
- Tunnel0: 10.0.0.11

LANs Can Have Private Addressing

- Unknown IP Addresses
- Static Known IP Address

© 2007 Cisco Systems, Inc. All rights reserved.
DMVPN Uses: With or Without IPsec

- DMVPN builds out a dynamic tunnel overlay network.
- DMVPN can run without encryption.
- IPsec is triggered through “tunnel protection”.
 - NHRP triggers IPsec before installing new mappings.
 - IPsec notifies NHRP when encryption is ready.
 - NHRP installs mappings, and sends registration if needed.
 - NHRP and IPsec notify each other when a mapping or service assurance is cleared.
DMVPN Details
DMVPN Components: NHRP

- **NHRP registration**
 Spoke dynamically registers its mapping with NHS
 Supports spokes with dynamic NBMA addresses or NAT

- **NHRP resolutions and redirects**
 Supports building dynamic spoke-to-spoke tunnels
 Control and IP Multicast traffic still through hub
 Unicast data traffic direct; reduced load on hub routers
NHRP Registration Example
Dynamically Addressed Spokes

Spoke A
- Physical: 172.17.0.1
- Tunnel0: 10.0.0.1

Spoke B
- Physical: (dynamic)
- Tunnel0: 10.0.0.11
- Tunnel0: 10.0.0.12

Hub
- Physical: 172.17.0.1
- Tunnel0: 10.0.0.1

Routing Table
- 192.168.0.0/24 ➔ Conn.
- 192.168.1.0/24 ➔ 10.0.0.11
- 192.168.2.0/24 ➔ 10.0.0.12

NHRP Mapping
- 10.0.0.1 ➔ 172.17.0.1
- 192.168.0.0/24 ➔ 10.0.0.1
- 192.168.1.0/24 ➔ Conn.
- 192.168.2.0/24 ➔ 10.0.0.1

= Dynamic Permanent IPsec Tunnels

© 2007 Cisco Systems, Inc. All rights reserved.
NHRP Resolutions and Redirects

192.168.0.1/24

192.168.2.0/24

192.168.1.0/24

192.168.0.0/16

10.0.0.11 \rightarrow 172.16.1.1
10.0.0.12 \rightarrow 172.16.2.1
192.168.0.0/24 \rightarrow Conn.
192.168.1.0/24 \rightarrow 10.0.0.11
192.168.2.0/24 \rightarrow 10.0.0.12

10.0.0.1 \rightarrow 172.17.0.1
10.0.0.1 \rightarrow 172.17.0.1
10.0.0.11 \rightarrow 172.16.1.1
10.0.0.12 \rightarrow 172.16.2.1
192.168.2.0/24 \rightarrow Conn.
192.168.0.0/16 \rightarrow 10.0.0.1
10.0.0.1 \rightarrow 172.17.0.1
10.0.0.11 \rightarrow 172.16.1.1

NHRP Mapping
CEF FIB Table
CEF Adjacency

Physical: 172.17.0.1
Tunnel0: 10.0.0.1

Physical: (dynamic)
Tunnel0: 10.0.0.11

Physical: (dynamic)
Tunnel0: 10.0.0.12

10.0.0.1 \rightarrow 172.16.2.1
192.168.2.0/24 \rightarrow Conn.
192.168.2.0/24 \rightarrow 10.0.0.11
192.168.2.0/24 \rightarrow 10.0.0.12

192.168.1.0/24

10.0.0.1 \rightarrow 172.16.0.1
192.168.2.0/24 \rightarrow 172.16.2.1
192.168.1.0/24 \rightarrow Conn.
192.168.0.0/16 \rightarrow 10.0.0.1

10.0.0.1 \rightarrow 172.16.0.1
10.0.0.1 \rightarrow 172.16.2.1

Spoke A
Spoke B
Hub

Data Packet
NHRP Redirect
NHRP Resolution
DMVPN Components
Multipoint GRE Tunnels

- Single tunnel interface (multipoint)
 Non-Broadcast Multi-Access (NBMA) network
 Smaller hub configuration
 Multicast and broadcast support

- Dynamic tunnel destination
 Next Hop Resolution Protocol (NHRP)
 VPN IP-to-NBMA IP address mapping
 Short-cut forwarding
 Direct support for dynamic addresses and NAT
DMVPN
Design Overview
Network Designs

- **Hub-and-spoke**
 Spoke-to-spoke traffic through hub; requires about the same number of tunnels as spokes
 - Hub bandwidth and CPU limit VPN
 - Server Load Balancing: Many “identical” hubs increase CPU power; spoke-to-spoke design under consideration

- **Spoke-to-spoke: Dynamic spoke-to-spoke tunnels**
 Control traffic: Hub-and-spoke; hub to hub
 - Hub-and-spoke single-layer
 - Hierarchical hub-and-spoke layers
 Unicasting data traffic: Dynamic mesh
 - Spoke routers support spoke-to-hub and spoke-to-spoke tunnels
 Number of tunnels falls between the number of spokes n and n^2 where n is the number of spokes (full-mesh)
Network Designs

- Hub-and-Spoke
- Hub-and-Spoke with Server Load Balancing
- Spoke-to-Spoke
- Hierarchical Spoke-to-Spoke

Legend:
- Spoke-to-Hub Tunnels
- Spoke-to-Spoke Path
DMVPN
Hub-and-Spoke Designs
DMVPN Dual Hub

Two overlaid DMVPN networks

Single Tunnel on Hub, Two on Spokes

Spoke A
- Physical: 172.17.0.5
- Tunnel0: 10.0.1.1
- Tunnel1: 10.0.1.11

Spoke B
- Physical: (dynamic)
- Tunnel0: 10.0.0.12
- Tunnel1: 10.0.1.12

Hubs
- Physical: 172.17.0.5
 Tunnel0: 10.0.1.1
- Physical: 172.17.0.1
 Tunnel0: 10.0.0.1
 Tunnel1: 10.0.1.12

PC
- 192.168.1.0 /24

Web
- 192.168.2.0 /24

192.168.0.0/24
Large Scale Deployment
Server Load Balancing Features

- Scales to very large DMVPN hub-and-spoke network
 - Supports thousands of spokes
 - Spoke-to-spoke through the hub is allowed
 - Direct spoke-to-spoke tunnels are being explored
 - Keep all features of DMVPN hub-and-spoke networks

- Automates load management
 - Tunnels load balanced over available hubs
 - mGRE tunnels only or both IPsec + mGRE tunnels
 - N + 1 Hub redundancy

- Allows incremental performance by adding hubs
 - Tunnel creation rate, throughput, and maximum number of tunnels
Large Scale Deployment
Server Load Balancing Benefits

- Very easy to configure and maintain
- The Spoke-to-Spoke links are established on demand whenever there is traffic between the spokes.

 The following packets are then able to bypass the Hub and use the Spoke-to-Spoke tunnel

 After a pre-configured period of inactivity on the Spoke-to-Spoke tunnels, the router tears down these tunnels in order to save resources (IPsec SAs)

- In this way, even the low end routers (e.g. Cisco 1800) can participate in large IPsec VPNs with thousands of nodes, as they do not need to have large numbers of simultaneous Spoke-to-Spoke tunnels
Server Load Balancing Deployment Models

Distributed Encryption with Server Load Balancing (SLB)
- Campus Network
- Hubs
 - Cisco 7200 or Cisco Catalyst 6500 Running Cisco IOS SLB
- DMVPN Spokes

Integrated Encryption with Server Load Balancing
- Campus Network
- Hubs
 - Cisco 7200 or 7301 Terminating mGRE, NHRP, and Routing
- DMVPN Spokes

Cisco Catalyst 6500 with IPsec VPN SPA Running IPsec and Cisco IOS SLB
Distributed Encryption with SLB

Loopback: 172.17.0.1
Tunnel0: 10.0.255.254/16

Physical: (dynamic) 172.16.1.1
Tunnel0: 10.0.0.1

192.168.1.1/24
Spoke A

192.168.2.1/24
Spoke B

VIP: 172.17.0.1
(no tunnel)

Load Balancer

10.1.1.0/24
10.1.0.0/24
10.1.2.0/24

Hub

10.1.1.1/24
10.1.0.1/24
10.1.2.1/24

Loopback: 172.17.0.1
Tunnel0: 10.0.255.254/16

Physical: (dynamic) 172.16.2.1
Tunnel0: 10.0.0.2

192.168.2.1/24

Hub

Hub

Hub
Integrated Encryption with SLB

- **SLB Virtual IP**: 172.17.0.1
- **Cisco IOS® SLB**: Load Balances GRE
- **IPsec SPA Provides Encryption Services**: To Provider
- **Physical Interface**:
- **VLAN 100**: 10.1.1.1
- **Interface VLAN 11**: 10.1.0.1
- **Cisco Catalyst® 6500**
- **To Provider**
- **Cisco® 7201 or 7301 Routers**

© 2007 Cisco Systems, Inc. All rights reserved.
Integrated Encryption with SLB

- High-concentration hub aggregates thousands of high-bandwidth DMVPN spokes
 Hub-and-spoke model with one tunnel per spoke
- Cisco® Catalyst® 6500 with Supervisor Engine 2, MSFC, and IPsec VPN SPA acts as front-end for Router farm made up of 1RU Cisco 7201 or 7301s
 IPsec VPN SPA performs encryption
 Cisco IOS Server Load Balancing (SLB) on MSFC load balances mGRE tunnels on Cisco 7200 or 7301 Router farm
 In the event a Cisco 7200 or 7301 Router goes down, SLB redistributes tunnels
- Cisco 7200 or 7301 Router farm processes mGRE, NHRP, and routing protocols
 EIGRP between hub (Cisco 7200 or 7301 Routers) and spokes
 BGP between hubs
DMVPN
Spoke-to-Spoke Designs
Spoke-to-Spoke DMVPN Features

- Single mGRE interface with “tunnel protection …”
 On hubs and spokes
- Data traffic flows directly from spoke to spoke
 Reduced load on hub
 Reduced latency: Single IPsec encryption and decryption
- Routing protocols follow hub-and-spoke
 Hub summarizes spoke routes
 Routes on spokes must have IP next hop of remote spoke
DMVPN Dual Hub Spoke-to-Spoke

DMVPN Dual Hub

Single mGRE Tunnel on All Nodes

Hubs

Spoke A

Spoke B

Spoke C

Physical: 172.17.0.1
Tunnel0: 10.0.0.1

Physical: 172.17.0.5
Tunnel0: 10.0.0.2

Physical: (dynamic)
Tunnel0: 10.0.0.11

Physical: (dynamic)
Tunnel0: 10.0.0.12

192.168.0.0/24

192.168.2.0/24

192.168.1.0/24

Spoke-to-Hub Tunnels
Spoke-to-Spoke Tunnels
DMVPN Dual Hub Spoke-to-Spoke

- One DMVPN network
 Each spoke has single mGRE tunnel.
 - NHRP mappings for two hubs (NHSs)
 Each hub has single mGRE tunnel interface.
 - Member of same DMVPN network
 Hubs and spokes can be members of more then one DMVPN network for more complex network designs.

- Control of routing and forwarding
 Single interface on spoke makes it harder to modify routing metric to prefer one hub over the other.

- Spoke-to-hub and hub-to-spoke paths can be asymmetric
Large Scale DMVPN Features

- Used to increase scale of DMVPN networks
 - Increased number of spokes, with same spoke-to-hub ratio
 - Distribution hubs offload central hub
 - Manage local spoke-to-spoke tunnels
 - Support IP Multicast and routing protocols

- No hub daisy chain
 - Uses routing and Cisco® Express Forwarding switching to forward data and NHRP packets optimally through hubs
 - Reduces complexity and load for routing protocol

- OSPF routing protocol not limited to 2 hubs
 - Network point-to-multipoint mode
 - Still single OSPF area
Large Scale DMVPN Features (Cont.)

- Spokes do not need full routing tables
 - Can summarize routes at the hub
 - Reduced space and load on small spokes
 - Reduced routing protocol load on hub
 - 1000 spokes; 1 route per spoke
 - Hub advertises 1 route to 1000 spokes \(\rightarrow\) 1000 advertisements

- Not available on Cisco® Catalyst® 6500 or Cisco 7600

- Cannot mix older DMVPN implementations with latest
 - Migrate spokes to latest DMVPN implementation
DMVPN Hierarchical Network Phase 3

- Spoke-to-Hub Tunnels
- Spoke-to-Spoke Tunnels
DMVPN Manageability
Cisco Security Manager 3.1

- Supports DMVPN hub-and-spoke and spoke-to-spoke configurations
- Supports DMVPN server-load-balancer model
- Supports high-concentration hub design
- Supports VRF-aware DMVPN
- Supports all the common routing protocols: EIGRP, OSPF, RIPv2, and ODR
- Supports wide variety of Cisco® platforms (Cisco 800 Series, Cisco 7000 Series, etc.)
Debug and Show Commands Introduced in Cisco IOS Software Release 12.4(9)T

- **Show**
  ```
  show dmvpn
  [ peer {{{ nbma | tunnel } ip_address } |
    { network ip_address mask } | { interface tunnel# } |
    { vrf vrf_name } }]
  [ detail ] [ static ]
  ```

- **Debug**
  ```
  debug dmvpn [{ error | event | detail | packet | all }
    { nhrp | crypto | tunnel | socket | all } ]
  debug dmvpn condition [ peer
    {{{ nbma | tunnel } ip_address } | { network ip_address mask } |
    { interface tunnel# } | { vrf vrf_name } }]
  ```

- **Logging**
  ```
  logging dmvpn { <cr> | rate-limit < 0-3600 > }
  ```
Summary

- Industry-leading integration of VPN and networking
 Tunnel-less IPsec, dynamic IPsec tunnels, QoS, and IP Multicast

- Excellent application support
 Voice, video, multicast, and non-IP application support

- Ease of deployment and management
 DMVPN: Large-scale scalable and secure connectivity
 Low-touch, highly scalable deployment options, such as Secure Device Provisioning, Cisco® Configuration Engine, and Cisco Configuration Express
 IP SLA: VPN performance and SLA conformance monitoring

www.cisco.com/go/routersecurity