Getting The Right Events from Network Elements

Benoit Claise
May 2006
This Tutorial Is...

• **NOT** about

 Fault Management Return On Investment

 Introduction to Fault Management

 Polling the device to “discover” the fault

 Fault Management Applications details

• **BUT IS** About

 Features, tricks, information, examples, etc. on “How to generate the *right events* from your network elements!”

 Moving from sending all the events to customizing the events, to device level policy based management
Polling vs. Event Notification

- **Message:**
 - Let the network elements monitor themselves
 - Let’s tune the right fault management events from the network elements
Polling vs. Event Notification

<table>
<thead>
<tr>
<th>Load on</th>
<th>Polling</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Network Manager Station, Links,</td>
<td>Network Engineer, Initially, to Configure</td>
</tr>
<tr>
<td>Load</td>
<td>Network Devices</td>
<td>the Event</td>
</tr>
<tr>
<td>Application</td>
<td>Performance Management</td>
<td>Proactive Fault Monitoring,</td>
</tr>
<tr>
<td></td>
<td>(Availability Monitoring,</td>
<td>Operational Monitoring</td>
</tr>
<tr>
<td></td>
<td>Utilization, and Forecasting)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fault Management</td>
<td></td>
</tr>
</tbody>
</table>
Agenda

• SNMP Notification: Traps and Informs
• Syslog Messages
• Embedded Syslog Manager
• RMON Event/Alarm
• EVENT-MIB
• EXPRESSION-MIB
• Specific MIBs and Scenarios
• Embedded Event Manager
SNMP Notification

Everybody Knows About Traps!
SNMP Notifications

- Notifications are the messages being generated from the SNMP agent, regardless of the mechanism to deliver them.

- SNMP notification implemented in SNMPv2:
 - Traps
 - Unacknowledged UDP packet
 - Implemented since SNMPv1
 - Informs
 - Acknowledged UDP packet
 - Implemented since SNMPv2c
Remote Device Goes Down

2

SNMP Agent

SNMP Notification

Agent Generates Notification

linkDown

ifIndex.4 4
ifDescr.4 Serial 1/2
ifType.4 propPointToPointSerial(22)
ifLocReason.4 Keepalive failed

3

SNMP Trap Notification

SNMP Manager

Load MIB

1

OID for linkDown

4

Trap PDU 1.3.6.1.2.1.11.0.2

5

linkDown Notification Delivered to the NMS

• SNMP trap notification contains:
 Varbinds: ifIndex, ifDescr, ifType, ifLocReason
• OID: linkDown notification
How to Enable SNMP Traps Notification?

• On a Cisco router:

 Router (config)# snmp-server enable traps <notification_type>
 Router (config)# snmp-server host <NMS_host> version <v1/v2c/v3 [auth | noauth | priv]> <trap_community> <notification_type> <udp-port>

• On a Cisco switch:

 Switch>(enable) set snmp trap enable <trap_type>
 Switch>(enable) set snmp trap <NMS_host>
Traps-Show Commands

Router#show snmp
...
22689 SNMP packets output
 0 Too big errors (Maximum packet size 1500)
 229 No such name errors
 0 Bad values errors
 0 General errors
 22450 Response PDUs
 172 Trap PDUs
SNMP logging: enabled
Logging to 10.48.71.130.162, 0/10, 86 sent, 0 dropped.
Logging to 144.254.7.167.162, 0/10, 85 sent, 1 dropped.

Router(config)# snmp-server queue-length <length>

Router(config)# snmp-server host ... <udp-port> XXX
linkUp/linkDown Notification

Cisco Redefinition
CISCO-GENERAL-TRAPS

IETF Notification
IF-MIB
(RFC2233/RFC2863)

router(config)# snmp-server trap link ietf
How to Enable SNMP Inform Notification?

Enable Trap and Inform Notifications; Ideally “Notification”!

Router(config)# snmp-server enable traps ...

Router(config)# snmp-server host <host-id> informs
 version [2c | 3 [auth | noauth | priv]]<community-string>...

Router(config)# snmp-server informs [retries retries] [timeout seconds] [pending pending]

By default: 3 retries, 30 sec timeout, 25 informs pending for acknowledgement

- “snmp-server enable informs...” no functionality!
- Switches:

 So far, needed the SNMPv3 architecture
 8.3(1): simplified v2c inform CLI
Informs: Show Commands

Router#show snmp
...
SNMP Manager-role output packets ...
 20 Inform-request PDUs
 0 Timeouts
 0 Drops
...
SNMP Manager-role input packets ...
 20 Response PDUs
 0 Response with errors
...
SNMP informs: enabled
...
...
SNMP informs: enabled
 Informs in flight 0/25 (current/max)
 Logging to 10.48.71.163.162
 2 sent, 0 in-flight, 0 retries, 0 failed, 0 dropped
SNMP Source Trap Notification

Router(config)# snmp-server trap-source ethernet 0
(notification sent even if ethernet 0 is down)

Or even better

Router(config)# snmp-server trap-source loopback 0
SNMP Traps vs. Informs

<table>
<thead>
<tr>
<th></th>
<th>Traps</th>
<th>Informs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>None</td>
<td>Some</td>
</tr>
<tr>
<td>Retries</td>
<td>Not Applicable</td>
<td>0-100 (Default 3)</td>
</tr>
<tr>
<td>Resources</td>
<td>x</td>
<td>X</td>
</tr>
<tr>
<td>Source</td>
<td>Source Interface Configuration</td>
<td>Not Implemented</td>
</tr>
</tbody>
</table>
Individual SNMP Notification Support

Router(config)# snmp-server enable traps envmon ?
fan Enable SNMP environmental monitor fan traps
shutdown Enable SNMP environmental monitor shutdown traps
statuschange Enable SNMP environmental monitor status change traps
supply Enable SNMP environmental monitor supply traps
temperature Enable SNMP environmental monitor temperature traps
voltage Enable SNMP environmental monitor voltage traps

Router(config)# snmp-server enable traps snmp ?
authentication Enable authentication trap
coldstart Enable coldStart trap
linkdown Enable linkDown trap
linkup Enable linkUp trap
warmstart Enable warmStart trap

• Allow to configure only a subset of the notifications in the <notification-type>
• Introduced in 12.1(3)T and 12.2(28)SB
Individual SNMP Notifications Filtering

- The current CLI only select a unique or a group of notifications for all SNMP server(s)
- Can filter individual SNMP notifications for specific SNMP server(s)
Individual SNMP Notifications Filtering

- No CLI, only supported via SNMP configuration
- Required the SNMP-TARGET MIB and SNMP-NOTIFICATION MIBs, both part of RFC 2573 (superseded by RFC 3413), “SNMP Applications”

"This MIB module defines MIB objects which provide mechanisms to remotely configure the parameters used by an SNMP entity for the generation of SNMP messages."

Work with the SNMPv3 architecture

- Caveats:
 - Not persistent across reload/reboot
 - Difficult SNMP configuration: really requires a CLI to be a usable feature
Notification Deduplications
Notion of Time

SNMPv2-Notification-PDU

| PDU type | Request-id | ErrorStatus =0 | ErrorIndex =0 | Variable-bindings: sysUpTime

• The notifications have no notion of UTC time
 NTP is of NO USE between network elements and notification receiver for SNMP notifications
 Big drawback of SNMP notifications

• No solution for network-wide alarm deduplications or analysis
 Only track: the fault management applications look at the time the notifications are received

• Similar problem with SNMPv1: trap also sends the sysUpTime
How to Find Out About Notifications?

• TAC Web document

 http://www.cisco.com/warp/customer/477/SNMP/SNMPTrap\nsInImages.html

• What device supports which MIB?

 http://www.cisco.com/go/mibs

Router(config)# snmp-server enable traps ?
 atm Enable SNMP atm traps
 bgp Enable BGP state change traps
 config Enable SNMP config traps
 ...

© 2006 Cisco Systems, Inc. All rights reserved.
NOTIFICATION-LOG-MIB

- RFC-3014 “NOTIFICATION-LOG MIB”
- Notification buffer: allow a management station to retrieve notifications that have been missed
- Notifications visualization without a receiver; useful for troubleshooting!
- No persistence across reload

```
Router(config)#snmp mib notification-log ?
  default       create/configure default log globalageout modify the global ageout
globalsize     modify the global size
```
Router#show snmp mib notification-log all

Notification ID cisco.0.1
sysUpTime when logged 4057361, Accessed by 1 log(s), contains 8 varbinds

Notification ID snmpTraps.4
sysUpTime when logged 4098180, Accessed by 1 log(s), contains 6 varbinds

The MIB returns the MIB values, not the CLI
SYSLOG Messages

What Happens if the Notification Doesn’t Exist? Or if There Is No SNMP Notification Receiver?
Syslog Message Sent:
*Apr 10 08:21:32 CET
%CI-3-PARTFANFAIL : Single fan failure
Syslog Message

- Syslog produces (mostly) structured logs of information; allowing software subsystems to report and save important error messages either locally or to a remote logging server
- Very basic reporting mechanism: no variable bindings, plain English text
- Text messages sent to a Syslog daemon, on UDP port 514
- Very basic “standard”, informational RFC 3164
- RFC 3195: reliable delivery for Syslog
- Complementary to other events (SNMP notifications)
Syslog Message Format

- Message Header:
 - `<`, Timestamp, Tag string, `>`
 - `<facility(X)>.<level(Y)>`

- Message Body (Next Slide)
 - WHAT Messages Are Logged?
 - emergency 0, alert 1, critical 2, error 3, warning 4, notification 5, information 6, debug 7

- WHERE Is the Message Logged in the Syslog Server?
 - local0…local7, cron, user, etc.

- `<facility.level> is not retained in the Syslog message file`
- Additional timestamp is added by logging host
- Header example
 - Message Header: local7.emergency

- `<facility.level> is not retained in the Syslog message file`
How to Enable Syslog Message on Cisco IOS?

• On a Cisco router:

 logging on
 logging <server_ip_address>
 logging facility local6
 service sequence-numbers
 service timestamps log [datetime | uptime]
 service timestamps log datetime [msec]
 [localtime] [show-timezone] [year]

Optional: Default Is in UTC with No Milliseconds and No Time Zone

Note: UTC, Universal Time, since 1970
Syslog Message “Body” Format in the Cisco IOS

- NTP is needed!
- Header:level can be different than Body:severity
Syslog: Show Commands on Cisco IOS (Cont.)

Router# show logging
Syslog logging: enabled (0 messages dropped, 13 messages rate-limited, 0 flushes, 0 overruns)
 Console logging: level debugging, 34 messages logged
 Monitor logging: level debugging, 0 messages logged
 Buffer logging: level debugging, 47 messages logged
 Logging Exception size (8192 bytes)
 Trap logging: level debugging, 51 message lines logged
 Logging to 10.48.71.225, 51 message lines logged

Log Buffer (8192 bytes):
 *Apr 10 08:21:32 CET: %SYS-5-RESTART: System restarted --
 *Apr 10 08:21:32 CET: %SNMP-5-COLDSTART: SNMP agent on host popo is undergoing a cold start
 *Apr 10 08:21:32 CET: %LINK-5-CHANGED: Interface FastEthernet5/1, changed state to administratively down
How to Enable Syslog Message on Catalyst OS?

On a Cisco Catalyst Switch:

Switch(enable)> set logging session enable
Switch(enable)> set logging server <Server_ip_address>
Switch(enable)> set logging server facility local7
Switch(enable)> set logging server severity 3
Switch(enable)> set logging console enable
Switch(enable)> set logging timestamp enable

Local Time Configured on the Switch (Optional)
Router(config)# logging source-interface loopback 0
Syslog Message Filtering: Example 1

- How to get the error messages which have severity level equal or lower than error?

Router(config)# logging 10.10.10.10
Router(config)# logging facility local6
Router(config)# logging trap errors
Router(config)# logging console debugging

- On the Syslog server (UNIX), the corresponding line in Syslog.conf file is:

 local6.errors /var/log/mylog
Syslog Message Filtering: Example 2

• How to **only** log the error messages related to spanning tree?

 Switch> (enable) set logging session enable
 Switch> (enable) set logging server 10.10.10.10
 Switch> (enable) set logging server severity 0
 Switch> (enable) set logging level spantree 0
 Switch> (enable) set logging server facility local5
 Switch> (enable) set logging console enable

• On the Syslog server (UNIX), the corresponding line in Syslog.conf file is:

 local5.emerg /var/log/spantree
Convert a Syslog Message to a SNMP Notification?

- Why?
 - Not all error messages are supported via notifications
 - Syslog daemon not running in the NMS
 - Events correlation need

- Send a trap/inform from the CISCO-SYSLOG-MIB when a new Syslog message is generated

- How to convert to a trap?

  ```
  Router (config)# snmp-server enable traps syslog
  ```

- How to convert to an inform?

  ```
  Router (config)# snmp-server enable traps all
  ```

  ```
  Will export everything, including syslog!!
  ```

  ```
  Router (config)# snmp-server host <x.x.x.x> informs version 2c public syslog
  ```
Syslog Writing to Flash

- System error and debug messages saved on the router’s CompactFlash disks (also known as ATA Flash disks)
- Persistent across reboot
- Introduced in 12.0(26)S

Router(config)# logging buffered
Router(config)# logging persistent url
disk1:/syslog size 134217728 filesize 16384

Router# copy slot0:/syslog
ftp://myuser/mypass@192.21.1.129/syslog
Syslog Issue
Consistent Message Format

- Syslog isn’t consistently used across different Cisco platforms and Cisco IOS versions

 Example: environmental monitor initiated shutdown event

 Cisco IOS 11.2 -> ENVM-1-SHUTDOWN
 Cisco IOS 12.0 -> ENVM-0-SHUT
How to Find Out About Syslog Messages?

• ‘Cisco IOS Software System Error Messages’ per Cisco IOS release
 For Cisco IOS version 12.2:

• ‘System message’ per Cisco switch, Cisco 6000 switch:

• Error Message Decoder
 http://www.cisco.com/cgi-bin/Support/Errordecoder/home.pl

• Output Interpreter
 https://www.cisco.com/cgi-bin/Support/OutputInterpreter/home.pl
XML Interface to Syslog Messages

• Enable Syslog messages to be sent in an Extensible Markup Language (XML) format
• Logs in a standardized XML format can be more readily used in external customized monitoring tools
• Tags are hard-coded
• Available in 12.2(15)T
• Configuration:

```
Router(config)#logging console xml
Router(config)#logging monitor xml 6
Router(config)#logging host 128.107.165.215 xml
Router(config)#logging host 171.69.1.129
Router(config)#logging buffered xml 10000
```
XML Interface to Syslog Messages
Events Comparison

000013: *Oct 11 14:52:10.039: %SYS-5-CONFIG_I:
Configured from console by vty0 (172.19.208.14)

<i>xml-log-msg</i>
 <facility>SYS</facility>
 <severity>5</severity>
 <msg-id>CONFIG_I</msg-id>
 <seq>000013</seq>
 <time>*Oct 11 14:52:10.039</time>
 <args>
 <arg id="0">console</arg>
 <arg id="1">vty0 (172.19.208.14)</arg>
 </args>
</xml-log-msg>
Syslog Messages vs. SNMP Notifications

<table>
<thead>
<tr>
<th></th>
<th>Syslog</th>
<th>Notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMS</td>
<td>Syslog Daemon</td>
<td>Trap Receiver</td>
</tr>
<tr>
<td>Protocol/Port</td>
<td>UDP 514</td>
<td>UDP 162</td>
</tr>
<tr>
<td>Filtering</td>
<td>Yes</td>
<td>Limited</td>
</tr>
<tr>
<td>Format</td>
<td>Easy-to-Read Format, No MIB Needed</td>
<td>More Rigid Format, Parse Able</td>
</tr>
<tr>
<td>Reliability</td>
<td>None (RFC 3195 Reliable Syslog) (Syslog Writing to Flash)</td>
<td>None with Traps Some with Informs (NOTIFICATION-LOG MIB)</td>
</tr>
</tbody>
</table>
Embedded SYSLOG Manager

Some More Flexibility for the SYSLOG Messages
Embedded Syslog Manager (ESM)

- Post-process Syslog messages with selected ESM filters (proactive rules-based analysis)
- User definable scripting (TCL)
- New message queue in parallel with classic Syslog
- Available in images with TCL 8.3.4, in 12.3(2)T, 12.2(25)S
Embedded Syslog Manager (ESM) Configuration Example

Router(config)# logging filter <URL> [<position>]
[<args <argstring>]]

- “URL”, the location of the TCL script (Cisco IOS, Flash, Web, TFTP server)
- “Position”, ordering of filters when multiple exist
- “Args”, arguments to the TCL script

Router(config)# logging console filtered
Router(config)# logging host <x.x.x.x> filtered [stream_id]

- The stream_ID is added by the script, for event routing
Embedded Syslog Manager (ESM)
Example 1

- **Severity escalation**: messages that Cisco deemed low priority may be very important to some customers

- Example: escalate syslog messages that contain the word ‘CONFIG_I’ to severity level of 4 (they are by default level 5)

```
Router(config)# logging filter slot0:escalate.tcl args CONFIG_I 4
```
Embedded Syslog Manager (ESM) Example 1

Embedded Syslog Manager, Severity Escalation Module
===
Usage: Set CLI Args to "mnemonic new_severity"
Namespace: global
Check for null message

if { [string length ::orig_msg] == 0} {
 return ""
}

if { [info exists ::cli_args] } {
 set args [split ::cli_args]
 if { [string compare -nocase [lindex $args 0] :::mnemonic] == 0 } {
 set ::severity [lindex $args 1]
 set sev_index [string first [lindex $args 0] :::orig_msg]
 if { $sev_index >= 2 } {
 incr sev_index -2
 return [string replace ::orig_msg $sev_index $sev_index \
 [lindex $args 1]]
 }
 }
 return ::orig_msg
Embedded Syslog Manager (ESM) Example 2

- **Message correlation**: to help reduce the volume of messages when certain well-known network events occur, ESM can correlate local events, and summarize them.

- **Example**: link-flapping messages can be counted over a period of time, and a single Syslog message sent.

 00:22:11: %LINK-3-UPDOWN: serial1 flapping
 (4 changes to up/4 changes to down between 00:21:09 and 00:22:11)
Embedded Syslog Manager (ESM)
Other Examples

- **Message routing**: categorize messages using criteria other than facility or severity

 Example: send all spanning tree messages to a separate syslog server (setting a specific stream ID in the TCL script)

- **SMTP-based email alerts**: capability for notifications using TCP to external servers, such as TCP-based Syslog collectors or Simple Mail Transfer Protocol (SMTP) servers

 Example: “configuration changes” sent to administrators via an email message

- **Your example**…the possibilities are endless!
RMON Event and Alarm

Sometimes the Exact Notification Doesn’t Exist!
But the SNMP Objects to Trigger the Notification Do Exist!
RMON Event and Alarm

1. Load RMON-MIB

2. Sent an Alarm when CPU load > 80%

3. ALARM: “cpu too busy”

High CPU!!
RMON Event and Alarm

• Allows proactive monitoring:
 The device polls itself

• RMON-MIB used to configure SNMP notification:
 Traps and informs
 Integer32, Counter32, Gauge, or Timeticks may be sampled.
 Even the Counter64 (HC-RMON-MIB, RFC 3434)

• Included in all Cisco IOS software images
 Since Cisco IOS 11.1
 CLI or SNMP configuration

• Included in all the switches images
 Only SNMP configuration
How to Enable RMON Event and Alarm via CLI?

- Configure RMON to generate a trap if CPU utilization reaches 80%, and rearm the trap if utilization drops below 40%, sampling interval is 20 seconds

```bash
Router(config)#rmon alarm 1
cpmCPUTotalEntry.3.0 20 absolute
rising-threshold 80 falling-threshold 40
owner me

Router(config)#rmon event 1 log Trap
public description "cpu busy" owner me

Router(config)#rmon event 2 log
description "cpu not too busy"
```
RMON Reaction Condition

Thresholds

Rising
80%

Falling
40%

Threshold Violation

No Alert

Threshold Violation

Alert!!

Threshold Violation

Alert!!

Alert!!

T: Internal Sampled Interval (20 sec)
How to Enable RMON Event and Alarm via SNMP?

Send a trap when the number of bytes going into interface with ifIndex 12, during the last two minutes is above 140000000

```sh
snmpset -c private <router> eventStatus.123 integer 2
snmpset -c private <router> eventDescription.123 string "above 140000000"
snmpset -c private <router> eventType.123 integer 4
snmpset -c private <router> eventCommunity.123 string "public"
snmpset -c private <router> eventOwner.123 string "event_owner"
snmpset -c private <router> eventStatus.123 integer 1
snmpset -c private <router> alarmStatus.321 integer 4
snmpset -c private <router> alarmStatus.321 integer 2
snmpset -c private <router> alarmInterval.321 integer 120
snmpset -c private <router> alarmVariable.321 integer ifInOctets.12
Snmpset -c private <router> alarmSampleType.321 integer 1
snmpset -c private <router> alarmRisingThreshold.321 integer 140000000
snmpset -c private <router> alarmRisingEventIndex.321 integer 123
snmpset -c private <router> alarmOwner.321 string "alarm_owner"
snmpset -c private <router> alarmStatus.321 integer 1
```
Which MIB Variables to Monitor?

- dot3StatsCarrierSenseErrors
- ciscoEnvMonTemperatureState
- cpmCPUTotal5min
- ifOutDiscards
- ciscoEnvMonFanState
- bufferNoMem
- locIfResets
- locIfCollisions
- ifOperStatus
- ciscoMemoryPoolFree
- locIfInputQueueDrops
- locIfCarTrans
- locIfCRC
- locIfOutputQueueDrops
- bufferFail

See the APPENDIX

http://safari.oreilly.com/
Fault Management
Which MIB Variables to Monitor?

Interface

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>locIfResets</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.17</td>
<td>15 Min</td>
<td></td>
</tr>
<tr>
<td>The Current Operational State of the Interface; the Testing (3) State Indicates That No Operational Packets Can Be Passed</td>
<td>.1.3.6.1.2.1.2.2.1.8</td>
<td>5 Min</td>
<td>!= 1</td>
</tr>
<tr>
<td>Number of Times the Interface Internally Reset</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.12</td>
<td>15 Min</td>
<td></td>
</tr>
<tr>
<td>Number of Output Collisions Detected on This Interface</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.21</td>
<td>15 Min</td>
<td></td>
</tr>
<tr>
<td>Number of Input Packets Which Had Cyclic Redundancy Checksum Errors</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.12</td>
<td>15 Min</td>
<td></td>
</tr>
</tbody>
</table>
ifIndex and RMON Persistence

• ifIndex persistence

 Router

  ```
  router(conf) snmp-server ifindex persist
  router(conf-if) snmp-server ifindex persist
  ```

 Switch: ifIndex persistence by default

• RMON persistence

 Router: event/alarm saved in the startup configuration

 Switch: no event/alarm persistence
EVENT-MIB

Sometimes the Exact Notification Doesn’t Exist! But the SNMP Objects to Trigger the Notification Do Exist!
Event-MIB

- The EVENT MIB provides a superset of the capabilities of the RMON alarm and event
- The EVENT MIB calls “triggers”
 The RMON MIB calls “alarms,”
 but the concepts are the same
- More flexible test types with the EVENT-MIB
 - Existence test: absent, present, changed
 - Boolean test: \neq, $=$, $<$, \leq, $>$, \geq
- Event MIB proposed by Cisco to IETF DISMON Working Group, accepted standard track RFC-2981
Event-MIB Advantages vs. RMON Event and Alarm

• EVENT MIB can monitor
 Any MIB object (existence)
 Any integer/counter (boolean, threshold)

• RMON MIB can only monitor
 Integer/counter (threshold)

• EVENT-MIB allows wildcarding

• EVENT-MIB sends an SNMP notification in response to a trigger (like RMON) but add the concept of setting a MIB object (integers)

• EVENT-MIB can specify which variables to add to the notification
Cisco IOS Support

- Event MIB Support in Cisco IOS release 12.1(3)T and 12.0(12)S
- RFC 2981-compliant support is in Cisco IOS release 12.2(4)T
- Only configuration support via SNMP so far: no CLI
 - Scriptable Interface for adding command line support in 12.3(7)T
 - However “show management event” exists
 - However “debug management event mib” exists
EVENT-MIB: Example 1
Wildcarding

• Wildcarding is a powerful functionality which allows you to monitor multiple instances of an object

• Can specify a single OID for monitoring, or use wildcarding to specify a group of OIDs

• Example:

 Monitor ifInOctets for all interfaces; the EVENT-MIB is configured to monitor the delta values of ifInOctets for all interfaces once per minute; if any of the samples exceed the delta rising or falling triggers, a trap notification will be sent
EVENT-MIB: Example 2
Add Variable to Notification

Look at the Status of ALL the Interface: ifOperStatus.*

Customized New linkUP/Down Notification Sent with Extra VARBINDS (sysLocation, sysName…)
EVENT-MIB: Example 3
SNMP Set

1. The Trigger

 mteTriggerValueID =>
 ccmHistoryRunningLastChanged

2. The Event

 mteTriggerBooleanComparison <> 0
 => change in the config

3. The SNMPSet

 SNMP Set, using CONFIG-COPY-MIB
 to copy the config to TFTP server
Show Command Example

Router#show management event
Mgmt Triggers:
 (1): Owner: tom
 (3): trigger3, Comment: , Sample: Abs, Freq: 60
 Test: Existence
 ObjectOwner: , Object:
 OID: ccmHistory.1.0, Enabled 1, Row Status 1
 Existence Entry: , Changed
 StartUp: Present, Absent
 ObjOwn: , Obj: , EveOwn: tom, Eve: event4

Mgmt Events:
 (1): Owner: tom
 (4): Name: event4, Comment: , Action: Set, Enabled: 1 Status: 1
 Set:
 OID: ccCopyTable.1.14.123, SetValue: 1, Wildcard: 2
 TAG: , ContextName:

Object Table:

Failures: Event = 0, Trigger = 0

EVENT-MIB Example 3: SNMPSet
How to Enable EVENT-MIB?

Define the Trigger

mteTriggerTable
INDEX: mteOwner, IMPLIED
mteTriggerName
mteTriggerObjects
mteTrigger*Event

Define Which Variable(s) to Add to the Notification

mteObjectsTable
INDEX: mteOwner,
mteObjectsName,
mteObjectsIndex

Define the Notification

mteEventNotificationTable
INDEX: mteOwner, IMPLIED
mteEventName

Define the Event

mteEventTable
INDEX: mteOwner, IMPLIED
mteEventName
mteEventAction

AND/OR

Define the SNMP Set

mteEventSetTable
INDEX: mteOwner, IMPLIED
mteEventName
How to Enable the EVENT-MIB?

Step 1: Any MIB Object Type

- Each trigger is configured to watch a single object or a group of objects specified by a wildcard.
- The object-type can be any one of the types:
 - INTEGER_TYPE
 - OCTET_PRIM_TYPE
 - NULL_TYPE
 - OBJECT_ID_TYPE
 - SEQUENCE_TYPE
 - INTEGER_32_TYPE
 - IP_ADDR_PRIM_TYPE
 - COUNTER_TYPE
 - GAUGE_TYPE
 - TIME_TICKS_TYPE
 - OPAQUE_PRIM_TYPE
 - COUNTER_32_TYPE
 - GAUGE_32_TYPE
 - UNSIGNED32_TYPE
 - COUNTER_64_TYPE
- However, the type of sampling dictates the types of objects that can be monitored.
How to Enable the EVENT-MIB?

Step 2: Possibility: Sampling Type

- The Event MIB process checks the state of this watched object at predefined intervals
- The type of sampling that can be done on an object is of two types:
 - Absolute
 - Delta
- Configurable observation interval
How to Enable the EVENT-MIB?

Step 3: Test Type and Parameters

• The test that can be done on the watched object is one or a combination of the following:

 Existence
 Absent, Present, Changed

 Boolean
 Unequal, Equal, Less, LessOrEqual, Greater, GreaterOrEqual

 Threshold
 Rising, Falling, Rising or Falling
How to Enable the EVENT-MIB?

Step 4: Actions

• This could be one or both of the following:

 Notifications (Traps/Informs), with the possibility to add extra Object IDs to the notification

 SNMP set
EVENT-MIB Feature
MIB Persistence

• Allows the MIB to be persistent across reloads, i.e., MIB information retains the same set object values each time a networking device reboots

```
Router(config)# snmp mib persist [event]
```

• Write to NVRAM by using the “write mib-data“
• Any modified MIB data must be written to NVRAM memory using the “write mib-data”

```
Router# write mib-data
```

• Added in 12.2(4)T3
Event MIB Summary

- **If** we want a trigger:
 - Threshold based,
 - On the local device (not remote),
 - Without wildcard,
 - With no extra objects in notification,
 - With no SNMP Set

- **Then** it is easier to use the RMON Event/Alarm
- **Else** the EVENT-MIB is your friend 😊
Event MIB vs. RMON Event and Alarm

Existence
- mteTriggerExistenceTable
 - Condition: present, absent, change
 - Type: any type

Boolean
- mteTriggerBooleanTable
 - Condition:
 - >
 - <=
 - >=
 - Type: Integer-like

Threshold
- mteTriggerThresholdTable
 - Condition:
 - rising, falling
 - rising or falling
 - Type: Integer-like
Sometimes the Desired SNMP Object Doesn’t Exist But Can Be Derived from Multiple Other Objects
EXPRESS MIB

• Allows you to create new SNMP objects based upon existing MIB variables and formulas
• Interesting when combined with the EVENT-MIB
• EXPRESSION MIB proposed by Cisco to IETF DISMON Working Group, accepted standard track RFC-2982
 Cisco implementation based on IETF draft, again in the DISMON Working Group, and numbered in Cisco’s namespace
• Only configuration support via SNMP so far: no CLI
 Scriptable interface for adding command line support in 12.3(7)T
 However “show management expression” exists
 However “debug management expression mib” exists
EVENT-MIB and EXPRESSION-MIB
Example 1: Notification

- An access router would like to send a trap only for the high-speed interface
- Router A sends a trap when Serial0 has:
 BW>100Kbits & OperStatus=DOWN
- Steps:
 Create an expression that will return “1” when the condition is TRUE and “0” when FALSE
 Exp1 = (ifSpeed > 100000) && (ifOperStatus == 2)
 If Exp1 == “1” generates an event; this will be checked every minute
EVENT-MIB and EXPRESSION-MIB

Example 1: Notification

```bash
snmpset -v 2c -c private RouterA expNameStatus.101.49.101.120.112 integer 6
snmpset -v 2c -c private RouterA expNameStatus.101.49.101.120.112 integer 5
snmpset -v 2c -c private RouterA expExpressionIndex .101.49.101.120.112 gauge 1
snmpset -v 2c -c private RouterA expExpressionComment.1 octetstring "e1 expression"

snmpset -v 2c -c private RouterA expExpression.1 octetstring '$1 < 100000 && $2 == 2'

snmpset -v 2c -c private RouterA expObjectID.1.1 objectidentifier ifSpeed.16
snmpset -v 2c -c private RouterA expObjectID.1.2 objectidentifier ifOperStatus.16

snmpset -v 2c -c private RouterA expObjectSampleType.1.1 integer 1
snmpset -v 2c -c private RouterA expObjectSampleType.1.2 integer 1
snmpset -v 2c -c private RouterA expObjectStatus.1.1 integer 1
snmpset -v 2c -c private RouterA expObjectStatus.1.2 integer 1
snmpset -v 2c -c private RouterA expNameStatus.101.49.101.120.112 integer 1
```
EVENT-MIB and EXPRESSION-MIB
Example 1: Notification

#N Characters for the mteOwner
mteOwner = tom

#mteTriggername = trigger1

mteTriggerEntry Index=3 116.111.109 116.114.105.103.101.114.49 = Y
mteEventEntry Index= 3 116.111.109 101.118.101.110.116.49 = Z

snmpset -v 2c -c private RouterA mteTriggerEntryStatus.Y integer 6
snmpset -v 2c -c private RouterA mteTriggerEntryStatus.Y integer 5
snmpset -v 2c -c private RouterA mteTriggerValueID.Y objectidentifier
 1.3.6.1.4.1.9.10.22.1.4.1.1.2.1.0.0.0
snmpset -v 2c -c private RouterA mteTriggerValueIDWildcard.Y integer 2
snmpset -v 2c -c private RouterA mteTriggerTest.Y o "40"
snmpset -v 2c -c private RouterA mteTriggerFrequency.Y gauge 60
snmpset -v 2c -c private RouterA mteTriggerSampleType.Y integer 1
snmpset -v 2c -c private RouterA mteTriggerEnabled.Y integer 1
snmpset -v 2c -c private RouterA mteEventEntryStatus.Z integer 6
snmpset -v 2c -c private RouterA mteEventEntryStatus.Z integer 5
snmpset -v 2c -c private RouterA mteEventActions.Z o "80"

Existance(0)
Boolean(1)
Threshold(2)

Absolute (1)

When Condition Is met>send Notification
EVENT-MIB and EXPRESSION-MIB
Example 1: Notification

```bash
snmpset -v 2c -c private RouterA mteTriggerBooleanValue.X i 1
snmpset -v 2c -c private RouterA mteTriggerBooleanComparison.X i 2
snmpset -v 2c -c private RouterA mteTriggerBooleanObjectsOwner.X o "tom"
snmpset -v 2c -c private RouterA mteTriggerBooleanObjects.X o "objects1"
snmpset -v 2c -c private RouterA mteTriggerBooleanEventOwner.X o "tom"
snmpset -v 2c -c private RouterA mteTriggerBooleanEvent.X o "event1"

Creating the ObjectTable
```bash
snmpset -v 2c -c private RouterA mteObjectEntryStatus.Z.1 i 6
snmpset -v 2c -c private RouterA mteObjectEntryStatus.Z.1 i 5
snmpset -v 2c -c private RouterA mteObjectsID.Z o ifAdmin.13
snmpset -v 2c -c private RouterA mteObjectEntryStatus.Z.1 i 1
```

Attaching the object to the event:
```bash
snmpset -v 2c -c private RouterA mteEventNotificationObjectsOwner.Z o "tom"
snmpset -v 2c -c private RouterA mteEventNotificationObjects.Z o "objects1"
```

Activating the Trigger and the Event

Unequal(1)
Equal(2)
Less(3)…
EVENT-MIB and EXPRESSION-MIB

Example 2: Simple Capacity Planning

• If my link utilization is above 50% for an hour, it’s time to upgrade the link

• Steps:

  Create an expression

  \[
  \text{utilization} = \frac{(\text{ifInOctets} + \text{ifOutOctets}) \times 800}{\text{hour} \times \text{ifSpeed}}
  \]

  If utilization is above 50% of the bandwidth after one hour, generates an event
EVENT-MIB and EXPRESSION-MIB

Example 3: Table Entry Count

- Sometimes there is no counter for the number of table entries in the MIB definition
- Create an expression1 that will match all entries
- Create an expression2 that will sum expression1
- Other examples:
  - Number of Ethernet interfaces up
  - Number of entries in the CAM table
  - Number of static route in the routing table
ARP Table Entry Count
Show Command Example

Router# show management expression
   Expression: e1exp is active
   Expression to be evaluated is $1==3 where:
   $1 = ipNetToMediaEntry.4
   Object Condition is not set
   Sample Type is absolute
   ObjectID is wildcarded

   Expression: e2exp is active
   Expression to be evaluated is sum($1) where:
   $1 = ciscoExperiment.22.1.4.1.1.4.1.0.0
   Object Condition is not set
   Sample Type is absolute
   ObjectID is wildcarded

• This example specifies an expression e2exp that sums up all the static ARP entries
Expression MIB Feature
MIB Persistence

• Allows the MIB to be persistent across reloads, i.e., MIB information retains the same set object values each time a networking device reboots

  Router(config)# snmp mib persist [expression]

• Any modified MIB data must be written to NVRAM memory using the “write mib-data”

  Router# write mib-data

• Added in 12.2(4)T3
EVENT-MIB and EXPRESSION-MIB

Summary

• Very flexible and useful MIBs
• Not that easy to set up
• You should work from existing examples
Specific MIBS and Scenarios

Specific Interfaces, MPLS/VPN SYSLOG and SNMP Notification, IP SLA and SNMP, Enhanced Object Tracking
Disabling the Logging of Some Interfaces

- Limit the amount of output that is logged from the group-async interface and ISDN D channels
  
  Router(config)# interface Group-Async 1
  Router(config-if)# no logging event link-status
  Router(config-if)# no snmp trap link-status

- Depending on the layering...
  
  Router(config)# snmp ifmib trap throttle
  Router(config-if)# no logging event subif-link-status

- Depending on the encapsulation...
  
  Router(config-if)# no logging event dlci-status-change
VRF Aware Notifications

Notifications sent to a receiver in a VRF

Router(config)#snmp-server host <receiver-ip-addr> vrf yellow public
VRF Aware Syslog

- Syslog messages sent to a server in a VRF
- New in 12.2(24)S

Router(config)#logging host vrf <yellow> <syslog-ip-address>
Monitoring Service IP SLA  
(Previously Service Assurance Agent)

- Active/synthetic probing from the router
- THE feature to actively monitor services
- Wide measurement capabilities (UDP, TCP, ICMP, delay, jitter…)
- Accessible using CLI and SNMP
- Proactive notification via SNMP notification
Monitoring Service
IP SLA

Management Application

Configure
Collect Data
SNMP Trap
Reconfigure

Source

Measure

IP Host

Trigger Other Operations Based on Thresholds/Timeouts

Target

Measure

Measure Performance

IP SLA, Previously Service Assurance Agent
ip sla 11
  udp-jitter 198.198.198.1 3000 codec g711alaw

ip sla reaction-configuration 11 react connectionLoss threshold-type immediate action-type trapOnly
ip sla reaction-configuration 11 react jitterDSAvg threshold-value 10 5 threshold-type immediate action-type trapOnly
ip sla reaction-configuration 11 react jitterSDAvg threshold-value 10 5 threshold-type immediate action-type trapOnly
ip sla reaction-configuration 11 react mos threshold-value 390 220 threshold-type immediate action-type trapOnly

ip sla schedule 11 start-time now
Enhanced Objects Tracking for IP SLA

• The Enhanced Object Tracking feature separates the tracking mechanism from the protocol and creates a separate standalone tracking process that can be used by any other process.

• Subset of the Enhanced Object Tracking Cisco IOS feature:
  Track the output from the IP SLA objects and use the provided information to trigger an action.

• Aspects of an IP SLA operations which can be tracked: state and reachability.

• Introduced in 12.3(4)T and 12.2(25)S.
Example: HSRP and IPSLA Tracking

Server
ISP 1
ISP 2
Router 1
Router 2
Internet

IP SLA

HSRP: 10.10.10.10

10.10.7.1

10.10.10.1
Example: HSRP and IP SLA Tracking

Router1(config)#
  ip sla 18
  icmp-echo <server>
  ip sla schedule 18 start-time now life forever
  track 100 rtr 18 state
  interface FastEthernet0/0
    ip address 10.10.10.1 255.255.255.224
    standby 1 ip 10.10.10.10
    standby 1 priority 105
    standby 1 preempt
    standby 1 track 100 decrement 10

Without Enhanced Object Tracking:
  “Standby 1 track serial 0”
With Enhance Object Tracking:
  The Object 100 Is Tracked
Example 2: Injecting Routes and IP SLA

Don’t Advertise the Route Anymore

Internet

User1

ISP 1

Customer Router 1

BGP

ISP 2

Customer Router 2

Customer Network

Server

Traffic “Black Holed”

IP SLA

BGP

BGP

Don’t Advertise the Route Anymore
Example 2: Injecting Routes Into Routing Tables

Router1(config)#
   ip sla 1
       icmp-echo <server>
   ip sla schedule 18 start-time now life forever

track 123 rtr 1 reachability

ip route <server_network> 255.255.255.0 Null0 track 123
   (more specific routes will be used to forward packets)

router bgp 65505
    redistribute static

The static route, advertised by BGP, will only exist if the reachability to the server is OK!
Embedded Event Manager

The Newest in Cisco IOS
Embedded Event Manager (EEM)

• In-box monitoring of different components of the system via a set of software agents (event detectors)

• Event detectors (ED) notify EEM when an event of interest occurs; based on this, an action can be taken

• Advantages:
  - Local programmable actions, triggered by specific events

• Version 1.0 introduced in 12.0(26)S, 12.3(4)T
• Version 2.0 introduced in 12.2(25)S
• Version 2.1 introduced in 12.3(14)T
• Version 2.2 introduced in 12.4(2)T
Embedded Event Manager (EEM) 1.0
The Framework

(*) Initially Developed for High Availability
Embedded Event Manager (EEM) Overview

• Event detectors
  EEM 1.0 SNMP and Syslog event detectors

• Current actions
  Log a prioritized message to Syslog
  Reload the entire system (*)
  Switch-over to Standby Route Processor in a ‘dual RP’ configuration (*)

(*) EEM 1.0 originally developed to support Cisco IOS high availability, even if applicable to more general situation
Embedded Event Manager 1.0
Example 1: Syslog ED

- Applets are groupings of an ‘event specification’ and a policy action that is taken when the specified event occurs.

```
event manager applet fe0trans
 event syslog pattern .*UPDOWN.*FastEthernet0/0.*
 action 1.0 syslog priority emergencies msg "New syslog $_syslog_msg"
```

- Example: causes an emergency-level Syslog message when a log message indicates that the FastEthernet0/0 port changed state to either up or down.
Embedded Event Manager 1.0
Example 2: Notification ED

event manager applet memory-demo

  event snmp oid 1.3.6.1.4.1.9.9.48.1.1.1.6.1 get-type exact entry-op lt entry-val 512000 poll-interval 10

  action 1.0 syslog priority critical msg "Memory exhausted; current available memory is \$_snmp_oid_val bytes"

  action 2.0 force-switchover

• Example: the applet will run when the available memory on the primary RP falls below the specified threshold of 512000 bytes
Embedded Event Manager 1.0
Environment Variables

- These environment variables can be used in ‘msg’ text
- Will be replaced with the relevant text
- Environment variable available for all events
  - \$_event_type: The event type that triggered the event
  - \$_event_pub_time: The time at which the event type was published
- Environment variable available for SNMP events
  - \$_snmp_oid: The SNMP object OID that caused the event to be published
  - \$_snmp_oid_val: The SNMP object ID value when the event was published
- Environment variable available for Syslog events
  - \$_syslog_msg: The syslog message that caused the event to be published
- A lot more environment variables in the version 2.0, 2.1, and 2.2
  → check the documentation
Embedded Event Manager 2.0
The Framework

Syslog Event
Syslog ED

SNMP Notifications
SNMP ED

Process Scheduler Database
Watchdog ED

Interface Descriptor Blocks
Interface Counter ED

Timer Event ED
Counter Event ED

Application Specific Event ED

Event Detectors

Embedded Event Manager 2.0

Syslog
Cisco TCL Scripts
Modify Counter
Application Specific Event
SNMP Notifications

(*) Initially Developed for High Availability

Actions

EEM Policies

Switch Over or Reload (*)
Embedded Event Manager 2.0
Example 3: Watchdog ED

event manager applet IOSWD_SNMPENGINE
  event ioswdsysmon sub1 cpu-proc taskname "SNMP ENGINE" op ge val 20 period 10
  action 2.0 snmp-trap intdata1 20 strdata "SNMP Engine above 20%"
  snmp-server enable traps event-manager

- Watchdog event detector example:
  Monitor the “SNMP engine” process from “show processes cpu”; sent a trap if the CPU is above 20% for 10 seconds
Embedded Event Manager 2.1
The Framework

Event Detectors

Embedded Event Manager 2.1

Actions

- Syslog
- Cisco and User TCL Scripts
- Short Email notification
- CLI command
- Modify Counter
- Application Specific Event
- SNMP Notifications
- Get info
- Switch Over or Reload (*)

Syslog ED
SNMP ED
Watchdog ED
Interface Counter ED
Timer Event ED
Counter Event ED
Application Specific Event ED

CLI ED
OIR ED

Syslog Event
SNMP Notification
Process Scheduler Database
Interface Descriptor Blocks

Syslog
SNMP
Notification

CLI
OIR
Embedded Event Manager 2.1
Example 4: CLI ED

event manager applet cli-match
  event cli pattern "router bgp 1" sync no skip no occurs 1
  action 1.0 syslog priority critical msg "$_cli_msg /
  configured at $_event_pub_time"

Router(config)#router bgp 1
Router(config-router)#
*Nov 22 12:05:59.047: %HA_EM-2-LOG: cli-match: router bgp 1
configured at Nov 22 12:05:59.047

• Command Line Interface (CLI) event detector example:
  When the “router bgp 1” CLI command is entered, a syslog
  message is sent
Embedded Event Manager 2.2
Policy-Based Management Example with EOT

Router(config)# ip sla monitor 18
Router(config-sla-monitor)# type echo protocol ipIcmpEcho
  10.48.71.249
Router(config)# ip sla monitor schedule 18 life forever
  start-time now

Router(config)# track 100 rtr 18 state

Router(config)# track 101 stub-object
Router(config-track)# default-state up

Router(config)# event manager applet ipsla_benoit
Router(config-applet)# event track 100 state any
Router(config-applet)# action action_benoit track set 101
  state down

Router(config-applet)# action action_benoit cli ...
Router(config-applet)# action action_benoit policy ...
Router(config-applet)# action action_benoit syslog ...
Router(config-applet)# action action_benoit snmp-trap ...
Embedded Event Manager 2.2
Policy-Based Management Example with EOT

- **Amongst others**, Enhanced Object Tracking Event Detector

- **Advantages:**
  - IP SLA state/reachability is supported by EOT
  - EOT now supported by EEM
  - EEM has got an implicit IP SLA Event Detector
Embedded Event Manager
Advantages

- More and more event detectors
- Automated local action triggered by events
  TCL: scripting for Cisco written policies
  Control is in the customer’s hands: full customization
- Customized notifications, syslog, and email
  Environment variables, redefined syslog priority level, etc.
- Some examples in the documentation
- Can define your own applications in the router
  Example: start sampled NetFlow when too many flows in the cache
  Example: take an action when the IP SLA metrics are out of policy
  Example: monitor the link bandwidth over the time and send a notification when over a threshold
Embedded Event Manager

• Consider:
  
  EOT used for object tracking
  + EEM for the action/fault management
  + TCL for the customized action/fault management

  = the perfect framework for any policy-based management
Summary
Principles of Fault Management in Cisco Devices

- Quick fault detections is strategic to network management
- Systematic network element polling doesn’t always scale
- Let’s put some more NMS intelligence into the network elements
- Let’s tune the right fault management events from the network elements themselves
- We investigated a few ways, moving in the direction of device level policy based management
- Then potentially event-based polling...
Appendix
## Fault Management
Which MIB Variables to Monitor?

### Interface

<table>
<thead>
<tr>
<th>Object Desr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>locIfResets</code></td>
<td>Number of Times the Interface Internally Reset</td>
<td>1.3.6.1.4.1.9.2.2.1.1.17</td>
<td>15 Min</td>
</tr>
<tr>
<td><code>ifOperStatus</code></td>
<td>The Current Operational State of the Interface; the Testing(3) State Indicates that No Operational Packets Can Be Passed</td>
<td>1.3.6.1.2.1.2.1.8</td>
<td>5 Min</td>
</tr>
<tr>
<td><code>locIfCarTrans</code></td>
<td>Number of Times Interface Saw the Carrier Signal Transition</td>
<td>1.3.6.1.4.1.9.2.2.1.1.21</td>
<td>15 Min</td>
</tr>
<tr>
<td><code>locIfCollisions</code></td>
<td>Number of Output Collisions Detected on this Interface</td>
<td>1.3.6.1.4.1.9.2.2.1.1.25</td>
<td>15 Min</td>
</tr>
<tr>
<td><code>locIfInCRC</code></td>
<td>Number of Input Packets Which had Cyclic Redundancy Checksum Errors</td>
<td>1.3.6.1.4.1.9.2.2.1.1.12</td>
<td>15 Min</td>
</tr>
</tbody>
</table>
## Fault Management

### Which MIB Variables to Monitor?

#### Interface

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Total Number of Octets Transmitted out of the Interface, Including Framing Characters</td>
<td>.1.3.6.1.2.1.2.2.1.16</td>
<td>30 Min</td>
<td></td>
</tr>
<tr>
<td>The Number of Packets Dropped Because the Input Queue Was Full</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.26</td>
<td>30 Min</td>
<td>&gt; 1% of Incoming Traffic</td>
</tr>
<tr>
<td>The Number of Packets Dropped Because the Output Queue Was Full</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.27</td>
<td>30 Min</td>
<td>&gt; 10% of Outgoing Traffic</td>
</tr>
<tr>
<td>The Number of Inbound Packets Which Were Chosen to Be Discarded even Though No Errors Had Been Detected to Prevent Their Being Deliverable to a Higher-Layer Protocol; One Possible Reason for Discarding Such a Packet Could be to Free up Buffer Space</td>
<td>.1.3.6.1.2.1.2.2.1.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Fault Management

### Which MIB Variables to Monitor?

#### Ethernet

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot3StatsCarrierSenseErrors</code> Number of Times that the Carrier Sense Condition Was Lost or Never Asserted When Attempting to Transmit a Frame</td>
<td><code>.1.3.6.1.2.1.10.7.2.1.11</code></td>
<td>15 Min</td>
<td><code>&gt;= 2</code></td>
</tr>
<tr>
<td><code>dot3StatsDeferredTransmissions</code> A Count of Frames for Which the First Transmission Attempt on a Particular Interface Is Delayed Because the Medium Is Busy</td>
<td><code>.1.3.6.1.2.1.10.7.2.1.7</code></td>
<td>15 Min</td>
<td></td>
</tr>
<tr>
<td><code>dot3StatsExcessiveCollisions</code> Count of Frames for Which Transmission Failed Because of Excessive Collisions</td>
<td><code>.1.3.6.1.2.1.10.7.2.1.9</code></td>
<td>15 Min</td>
<td><code>0.2% of Traffic</code></td>
</tr>
<tr>
<td><code>dot3StatsInternalMacReceiveErrors</code> Count of Frames for Which Reception Fails Because of an Internal MAC Sublayer Receive Error</td>
<td><code>.1.3.6.1.2.1.10.7.2.1.16</code></td>
<td>15 Min</td>
<td><code>1% of Incoming Traffic</code></td>
</tr>
<tr>
<td><code>dot3StatsInternalMacTransmitErrors</code> Count of Frames for Which Transmission Fails Because of an Internal MAC Sublayer Transmit Error</td>
<td><code>.1.3.6.1.2.1.10.7.2.1.10</code></td>
<td>15 Min</td>
<td><code>1% of Outgoing Traffic</code></td>
</tr>
</tbody>
</table>
# Fault Management

**Which MIB Variables to Monitor?**

## Memory

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Buffer Allocation Failures</td>
<td>.1.3.6.1.4.1.9.2.1.46</td>
<td>15 Min</td>
<td></td>
</tr>
<tr>
<td>Number of Buffer Create Failures Due to No Free Memory</td>
<td>.1.3.6.1.4.1.9.2.1.47</td>
<td>15 Min</td>
<td>&gt;= 1</td>
</tr>
<tr>
<td>Number of Bytes from the Memory Pool that Are Currently Unused on the Managed Device</td>
<td>.1.3.6.1.4.1.9.48.1.1.1.6</td>
<td>30 Min</td>
<td></td>
</tr>
<tr>
<td>Largest Number of Contiguous Bytes from the Memory Pool Currently Unused</td>
<td>.1.3.6.1.4.1.9.48.1.1.1.7</td>
<td>30 Min</td>
<td></td>
</tr>
<tr>
<td>Number of Bytes from the Memory Pool that Are Currently in Use</td>
<td>.1.3.6.1.4.1.9.48.1.1.1.5</td>
<td>30 Min</td>
<td></td>
</tr>
<tr>
<td>Number of Bytes from the Memory Pool that Are Currently Unused on the Managed Device</td>
<td>.1.3.6.1.4.1.9.48.1.1.1.6</td>
<td>15 Min</td>
<td></td>
</tr>
</tbody>
</table>
### Environment

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>ciscoEnvMon FanState The Current State of the Fan</td>
<td>.1.3.6.1.4.1.9.9.13.1.4.3</td>
<td>15 Min</td>
<td>&gt;= 1</td>
</tr>
<tr>
<td>ciscoEnvMon SupplyState The Current State of the</td>
<td>.1.3.6.1.4.1.9.9.13.1.5.1.3</td>
<td>15 Min</td>
<td>&gt;= 1</td>
</tr>
<tr>
<td>ciscoEnvMon TemperatureState The Current State of</td>
<td>.1.3.6.1.4.1.9.9.13.1.3.1.6</td>
<td>15 Min</td>
<td>!= 1</td>
</tr>
<tr>
<td>ciscoEnvMon VoltageState The Current State of the</td>
<td>.1.3.6.1.4.1.9.9.13.1.2.1.7</td>
<td>15 Min</td>
<td>!= 1</td>
</tr>
</tbody>
</table>
Fault Management
Which MIB Variables to Monitor?

## Miscellaneous

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>cpmCPUTotal 5min</strong></td>
<td>Overall CPU Busy Percentage in the Last 5 Min Period; this Object Deprecates the avgBusy5 Object from the OLD-CISCO-SYSTEM-MIB</td>
<td>.1.3.6.1.4.1.9.9.109.1.1.1.1.5X</td>
<td>5 Min</td>
</tr>
<tr>
<td><strong>sysUpTime</strong></td>
<td>System Uptime in 1/100ths of Seconds</td>
<td>.1.3.6.1.2.1.1.3</td>
<td>5 Min</td>
</tr>
</tbody>
</table>