cisco

Spec Sheet

Cisco Compute Hyperconverged 9508 Chassis

A printed version of this document is only a copy and not necessarily the latest version. Refer to the following link for the latest released version:

https://www.cisco.com/c/en/us/products/hyperconvergedinfrastructure/compute-hyperconverged/datasheet-

listing.html

PUBLICATION HISTORY DR.

CISCO SYSTEMS 170 WEST TASMAN DR. SAN JOSE, CA, 95134 www.cisco.com

REV A.01 MAY 31, 2024

OVERVIEW	. 3
Intelligent Fabric Modules	.7
Fabric Interconnect Module	. 11
X-Fabric Modules	
BASE CHASSIS STANDARD CAPABILITIES and FEATURES	14
CONFIGURING the CHASSIS	16
STEP 1 VERIFY BASE CHASSIS SKU	. 17
STEP 2 SELECT CISCO COMPUTE HYPERCONVERGED NODES	. 18
STEP 3 SELECT INTELLIGENT FABRIC MODULES	. 19
STEP 4 SELECT FABRIC INTERCONNECTS MODULES	20
STEP 5 SELECT X-FABRIC MODULES (Optional)	21
STEP 6 SELECT CISCO HCIX-440P PCIE NODE, RISER CARDS AND GPUS (Optional)	
STEP 7 CHOOSE TRANSCEIVERS AND CABLES (OPTIONAL)	
STEP 8 CHOOSE POWER SUPPLIES	
STEP 9 SELECT INPUT POWER CORD(s)	
SUPPLEMENTAL MATERIAL	31
9508 Chassis Server Connectivity	31
9508 Chassis Direct Server Connectivity	34
ACCESSORIES/SPARE PARTS	38
TECHNICAL SPECIFICATIONS	39
Physical Dimensions and Specifications	
Power Supply Specifications	
Compliance Specifications	
System Requirements	

OVERVIEW

The Cisco Compute Hyperconverged X-Series Modular System begins with the Cisco Compute Hyperconverged 9508 chassis, engineered to be adaptable and future ready. It is a standard, open system designed to deploy and automate faster in concert with your hybrid cloud environment.

With a midplane-free design, I/O connectivity for the Cisco Compute Hyperconverged 9508 chassis is accomplished with front-loading, vertically oriented compute nodes intersecting with horizontally oriented I/O connectivity modules in the rear of the chassis. A Unified Ethernet fabric is supplied with the Cisco 9108 Intelligent Fabric Modules. Cisco X-Fabric Technology interconnects enable connectivity between the compute and resource nodes using PCIe Gen4 and will supply other industry-standard protocols as standards emerge. Interconnections can be easily updated with new modules.

The 7 rack-unit (7RU) Cisco Compute Hyperconverged 9508 chassis has 8 flexible slots that can house a combination of Cisco Compute Hyperconvrged nodes and a pool of current and future I/O resources that may include GPU accelerators, disk storage, and nonvolatile memory.

At the top rear of the chassis are two intelligent fabric modules that connect the chassis to upstream Cisco 6400 Series and 6536 Fabric Interconnects. At the bottom are slots housing XFM modules that can flexibly connect the compute modules with I/O devices and ready for future modules. This Cisco X-Fabric technology uses 'X' to denote a variable that can evolve with new technology developments.

Six 2800 W power supply units (PSUs) provide 54 VDC power to the chassis with N, N+1, N+2, and N+N redundancy. The higher voltage allows efficient power delivery with less copper and reduced power loss. Efficient, 100 mm, dual counter-rotating fans deliver industry-leading airflow and power efficiency. Optimized thermal algorithms enable different cooling modes to best support your environment. Cooling is modular so that future enhancements can potentially handle open- or closed-loop liquid cooling to support even higher-power processors.

In addition to the Cisco Compute Hyperconverged X-Series Modular System there is the Cisco Compute Hyperconverged X-Series Direct. Cisco Compute Hyperconverged X-Series Direct transforms the Cisco Compute Hyperconverged X-Series Modular System into a self-contained system with pair of internal Cisco Fabric Interconnects 9108 100G that integrate each of up to eight server nodes with Cisco unified fabric connectivity, upstream IP and Fibre Channel connectivity, all managed through Cisco Intersight.

The main benefits of the Cisco Compute Hyperconverged X-Series Modular System and the Cisco Compute Hyperconverged X-Series Direct are as follows:

■ Cloud-operated infrastructure

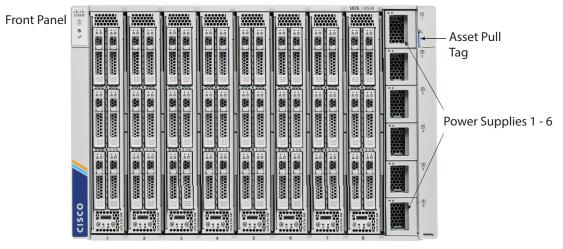
Management is moved from the on-premise network to the cloud so that you can respond at the speed and scale of your business and manage all of your infrastructure. You can shape Cisco Compute Hyperconverged X-Series Modular System resources to workload requirements with the Cisco Intersight cloud- operations platform.

■ An adaptable system designed for modern applications

Because requirements change often, you need a system that does not lock you into one set of resources when you find that you need another. For hybrid applications, and a range of traditional data center applications, with the Cisco Compute Hyperconverged X-Series Modular System, you can consolidate onto a single platform that combines the density and efficiency of blade servers with the expandability of rack servers. The result is better performance, automation, and efficiency.

■ A system engineered for the future

The Cisco Compute Hyperconverged X-Series Modular System is emerging technology that reduces risk with a modular system designed to support future generations of processors, storage, nonvolatile memory, accelerators, and interconnects.


Support a broader range of workloads

A single server type supporting a broader range of workloads means fewer different products to support, reduced training costs, and increased flexibility.

Figure 1 and **Figure 2** show the front view and **Figure 3** & **Figure 4** & **Figure 5** shows the rear views of a populated Cisco Compute Hyperconverged 9508 chassis.

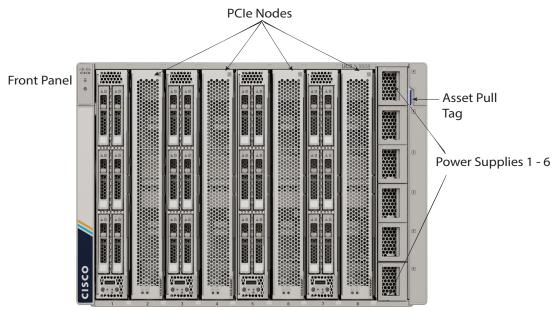

Note: *Figure 1* shows eight slots populated with Cisco Compute Hyperconverged nodes and *Figure 2* shows four slots populated with PCIe nodes. *Figure 3* & *Figure 4* shows X-Fabric Modules populated horizontally behind the chassis with Different IFMs. *Figure 5* shows the rear view of a populated Cisco Compute Hyperconverged 9508 X-Series Direct chassis.

Figure 1 Cisco Compute Hyperconverged 9508 Chassis Front View (populated)

Device Slots 1 - 8

Figure 2 Cisco Compute Hyperconverged 9508 Chassis Front View with PCIe Nodes (populated)

Device Slots 1 - 8

Figure 3 Cisco Compute Hyperconverged 9508 Chassis Rear View with HCIX-I9108-100G (top) and 2 Fabric Module Slots (bottom)

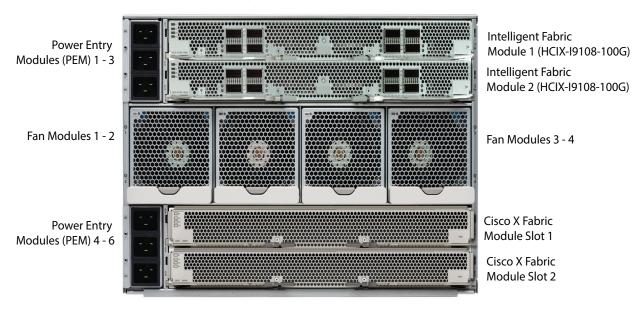
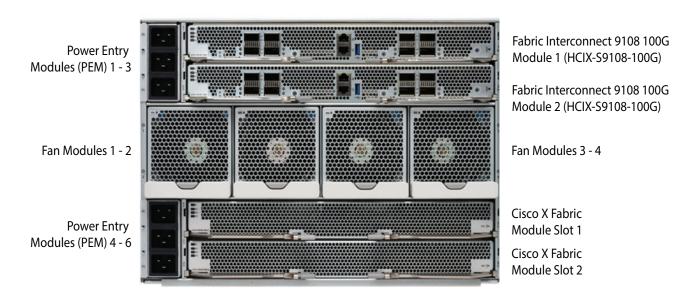



Figure 5 Cisco Compute Hyperconverged 9508 X-Series Direct Rear View with HCIX-S9108-100G (top) and 2 Fabric Module Slots (bottom)

Intelligent Fabric Modules

Network connectivity is provided by a pair of Cisco Compute Hyperconverged 9108 Intelligent Fabric Modules (IFMs). Similar to the fabric extenders used in the Cisco UCS 5108 Blade Server Chassis, these modules carry all network traffic to a pair of Cisco 6400 series or Cisco 6536 Fabric Interconnects (FIs). Having a single point of network connectivity and control in a system provides deterministic latency. This, in turn, frees you to place workloads without regard to whether the Cisco Compute Hyperconverged nodes are in the same chassis. Each IFM features the following:

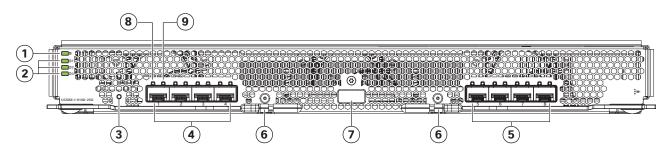
Cisco Compute Hyperconverged 9108-25G IFM:

- Server ports: Up to 50 Gbps of unified fabric connectivity per node with two IFMs.
- Uplink ports: 8x 25-Gbps SFP28 ports.

Cisco Compute Hyperconverged 9108-100G IFM:

- Server ports: Up to 200 Gbps of unified fabric connectivity per node with two IFMs.
- Uplink ports: 8x 100-Gbps QSFP8 ports.

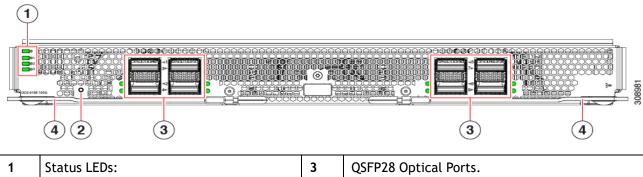
The unified fabric carries management, application data traffic using Ethernet and/or Fibre Channel over FCoE protocols to the fabric interconnects. There, management traffic connects to the Cisco Intersight cloud operations platform; FCoE traffic is passed to native Fibre Channel interfaces through universal ports on the fabric interconnects, and production Ethernet traffic is passed upstream to the data center network.


Up to two Intelligent Fabric Modules (IFMs) plug into the back of the Cisco Compute Hyperconverged 9508 chassis.

The IFMs serve as line cards in the chassis and multiplex data from the Cisco Compute Hyperconverged nodes to the Fabric Interconnect (FI). They also monitor and manage chassis components such as fan units, power supplies, environmental data, LED status panel, and other chassis resources. The Cisco Compute Hyperconverged node's Keyboard-Video-Mouse (KVM) data, Serial over LAN (SoL) data, and Intelligent Platform Management Interface (IPMI) data also travel to the IFMs for monitoring and management purposes. In order to provide redundancy and failover, the IFMs are always used in pairs.

There are 8 x SFP28 or 8 X QSFP28 connectors on an IFM to interface with a Fabric Interconnect (FI). The IFM provides up to 8x 25 Gbit/s links for the Cisco Compute Hyperconverged 9108-25G IFM and 8X 100 Gbit/s links for the Cisco Compute Hyperconverged 9108-100G IFM. The links provide the end-to-end interface from a Cisco Compute Hyperconverged node in the Cisco Compute Hyperconverged 9508 chassis to the connections on a Fabric Interconnect (FI). When a Cisco Compute Hyperconverged node is inserted into the chassis, the Cisco Compute Hyperconverged node's upper mezzanine card (mLOM) plugs directly into the two IFMs using two orthogonal connectors (ODs). The Cisco Compute Hyperconverged 9508 chassis accommodates either two Cisco Compute Hyperconverged 9108-25G IFMs, two Cisco Compute Hyperconverged 9108-25G IFMs, two Cisco Compute Hyperconverged 9108-100G IFM or Cisco Fabric Interconnect 9108 100G.

Figure 6 shows the IFM front view characteristics.


Figure 6 Cisco Compute Hyperconverged 9108-25G IFM (front view)

1IFM status LED6Ejector handle		Ejector handle	
2Fan #1 - #3 status LEDs7HDMI port (for factory use only)		HDMI port (for factory use only)	
3Reset button8Link/port status LED (one per port)		Link/port status LED (one per port)	
4SFP28 ports 1 - 49Port activity LED (one per port)		Port activity LED (one per port)	
5	SFP28 ports 5 - 8	-	-

Figure 7 shows the IFM front view characteristics.

Figure 7 Cisco Compute Hyperconverged 9108-100G IFM (front view)

1	 Status LEDs: IFM Status (top LED) Fan Status LEDs 1 through 3, with Fan 1 as LED 2, Fan 2 as LED 3, and Fan 3 as LED 4. 	3	QSFP28 Optical Ports. Ports are arranged in two groups of four physical ports. Ports are stacked in vertical pairs, with two ports in each vertical port stack.
2	IFM Reset Button	4	IFM Ejector Handles, left and right

Figure 8 shows the IFM top view characteristics.

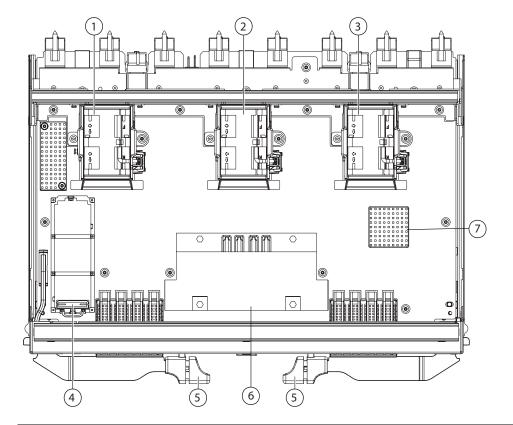
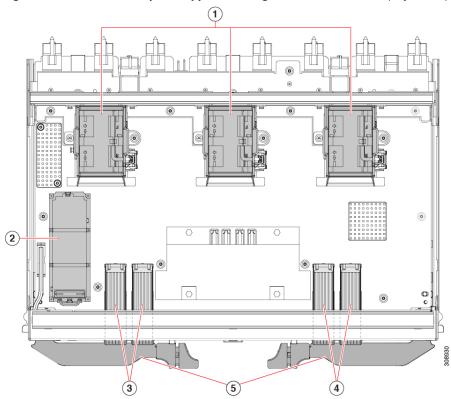



Figure 8 Cisco Compute Hyperconverged 9108-25G IFM (top view)

1	Fan #1	4	Mini storage connector (future)
2	Fan #2	5	Ejector Handles
3	Fan #3	6	Cisco switch ASIC
7	CPU	-	
	(Intel Denverton, 4-core, 2.1 GHz, 15W)		

Figure 9 shows the IFM top view characteristics.

Figure 9	Cisco Compute Hyperconverged 9108-100G IFM (top view)
	···· ···· ···· ···· ···· ·

1	Fans (3) which are numbered 1 through 3 starting with the left fan	4	QSFP28 Optical Ports 5-8 Ports are arranged in two groups of four physical ports. Ports are stacked in vertical pairs, with two ports in each vertical port stack.
2	One M.2 mini storage module slot	5	IFM ejector handles, left and right
3	QSFP28 Optical Ports 1-4 Ports are arranged in two groups of four physical ports. Ports are stacked in vertical pairs, with two ports in each vertical port stack.	-	-

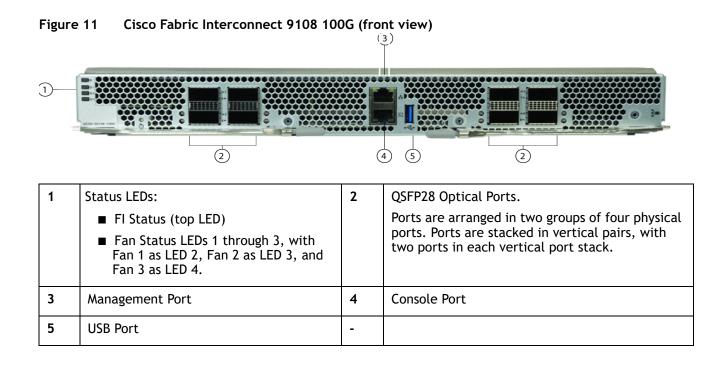
Fabric Interconnect Module

The Cisco Fabric Interconnect 9108 100G (*Figure 10*) is an integrated 1/10/25/40/100 Gigabit Ethernet, FCoE, and Fibre Channel switch offering up to 1.6 Tbps throughput and up to 8 ports. The switch has 6 40/100-Gbps Ethernet ports and 2 unified ports that can support 40/100-Gbps Ethernet ports or 8 Fiber Channel ports after break-out at 8/16/32-Gbps FC speeds. The 8 FC ports after breakout can either operate as an FC uplink port or as an FC storage port. The switch supports 2 1-Gbps speed after breakout and all 8 ports can breakout for 10/25-Gbps Ethernet connectivity. All Ethernet ports are capable of supporting FCoE. Beyond the 8 external facing 100G ports, the Fabric Interconnect 9108 100G also provides eight 100G or thirty-two 25G backplane ethernet ports connectivity towards the X-series compute nodes depending on 100G or 25G VIC. The rear-view image shows the ortho-direct connectors that will connect to the VIC on the X-series compute node.

The Cisco Fabric Interconnect 9108 100G also has one network management port, one console port for setting the initial configuration, and one USB port for saving or loading configuration.

Figure 10 shows the 8-port FI.

Figure 10 Cisco Fabric Interconnect 9108 100G.


Front View

Rear View

The Cisco Fabric Interconnect 9108 100G front detailed view shown in Figure 11.

X-Fabric Modules

Configuring your Nodes in the Cisco Compute Hyperconverged 9508 chassis with both mLOM and mezzanine-form-factor virtual interface cards delivers up to 200 Gbps of network bandwidth to the node and prepares it for connectivity to Cisco PCIe node and future devices with Cisco X-Fabric technology. The PCIe I/O devices are configured on demand and connects to the Cisco Compute Hyperconverged nodes through Cisco X-Fabric modules in the Cisco Compute Hyperconverged 9508 Chassis.

Following combinations can be used to connect the node to the Cisco PCIe node via Cisco HCIX 9416 X-Fabric.

- Cisco VIC 14425 mLOM card and mezzanine-form-factor virtual interface card or the Cisco PCIe Mezz card for X-Fabric.
- Cisco VIC 15230 mLOM card and mezzanine-form-factor virtual interface card or the Cisco PCIe Mezz card for X-Fabric.

Fabric Modules slots provide an alternative path to bridging/switching within the chassis and interconnect Compute Hyperconverged node CPUs, storage devices, and communication devices so that all these components interoperate directly without any need to translate PCIe to Ethernet. The result is a significant reduction in cost, power, and latency.

With the Cisco HCIX 9416 X-Fabric there are x16 high speed links (PCIe Gen 4 is supported) connected from each X-Fabric Module slot to each Compute Hyperconverged node.

The X-Fabric Module slots are located at the rear of the Cisco Compute Hyperconverged 9508 chassis. When a Compute Hyperconverged node is inserted into the chassis, the Compute Hyperconverged node's mezzanine card plugs directly into the two Fabric Module slots (with no midplane).

Figure 12 Front view of Cisco HCIX 9416 X-Fabric.

Front View

BASE CHASSIS STANDARD CAPABILITIES and FEATURES

Table 1 lists the capabilities and features of the base Cisco Compute Hyperconverged 9508 chassis. Details about how to configure the chassis for a particular feature or capability are provided in CONFIGURING the CHASSIS, page 16.

Capability/Feature	Description
7 RU Chassis	The Cisco Compute Hyperconverged 9508 chassis has 8x front-facing flexible slots. These can house a combination of Cisco Compute Hyperconverged nodes and a pool of future I/O resources that may include GPU accelerators, disk storage, and nonvolatile memory.
Compute	■ General
Hyperconverged Node Support	 Support for 2-CPU single slot and 4-CPU dual slot Cisco Compute Hyperconverged nodes
	Cisco Compute Hyperconverged nodes:
	 Supports CPUs and future GPUs with 300W+ TDP, and 900W+ per node TDP
	 Support for highest end DDR/persistent memory configurations
	 Support for a minimum of 2 Mezzanine slots for premium VIC, GPU, and FPGA expansion
Intelligent Fabric Module	2x Cisco Compute Hyperconverged 9108 Intelligent Fabric Modules (IFMs) at the top of the chassis that connect the chassis to upstream Cisco 6400 series or 6536 Fabric Interconnects. Each IFM features the following:
	Up to 100 Gbps of unified fabric connectivity per node.
	 8x 25-Gbps SFP28 or 8X 100-Gbps QSFP28 uplink ports. The unified fabric carries management traffic to the Cisco Intersight cloud- operations platform, Fibre Channel over Ethernet (FCoE) traffic, and production Ethernet traffic to the fabric interconnects.
Fabric Interconnect Module	2x Cisco Fabric Interconnect 9108 100G Modules (FIs) at the top of the chassis that connect the chassis to upstream Top-of-Rack (ToR) switches. Each FI features the following:
	Up to 100 Gbps of unified fabric connectivity per compute node.
	Integrated 1/10/25/40/100 Gigabit Ethernet, FCoE, and Fibre Channel switch offering up to 1.6 Tbps throughput and up to 8 ports. The switch has 6 40/100-Gbps Ethernet ports and 2 unified ports that can support 40/100-Gbps Ethernet ports or 8 Fiber Channel ports after break-out at 8/16/32-Gbps FC speeds.
Cisco X-Fabric technology	At the bottom rear of the Cisco Compute Hyperconverged 9508 chassis are slots ready to house X-Fabric modules that can flexibly connect the compute modules with I/O devices. The "X" in Cisco X-Fabric technology denotes a variable that can evolve with new technology developments.

Table 1Capabilities and Features

Capability/Feature	Description
Next Generation Power	Power supplies
and Thermal Capability	 Six 2800-Watt power supplies providing 54 V power
	 4x 100 mm dual counter-rotating fans
	 N, N+1, N+2, and N+N redundancy
	 300 Watt+ total power dissipation for Cisco Compute Hyperconverged nodes
Density and Form Factor	Industry-leading socket density per RU
	Minimum of 8 compute slots
	32 DIMM socket support on a 2-socket node (beginning with the Ice Lake CPU family) and 64 DIMM socket support on a 4-socket node (beginning with the Sapphire Rapids CPU family)
	 Power, thermal, and form factor support for smart NICs, FPGA accelerators, and GPU cards
Fabric Bandwidth	 Data fabric connectivity to Cisco Compute Hyperconverged nodes of 200 Gbps Ethernet speeds per node
	Provision for future fabric expansion
Chassis Storage Support	■ Local storage
Virtual Card Interface	Cisco VIC ASIC
(VIC) Support	■ 25G throughput
	100G throughput

Table 1 Capabilities and Features (continued)

CONFIGURING the CHASSIS

Follow these steps to configure the Cisco Compute Hyperconverged 9508 chassis:

- STEP 1 VERIFY BASE CHASSIS SKU, page 17
- STEP 2 SELECT CISCO COMPUTE HYPERCONVERGED NODES, page 18
- STEP 3 SELECT INTELLIGENT FABRIC MODULES, page 19
- STEP 4 SELECT FABRIC INTERCONNECTS MODULES, page 20
- STEP 5 SELECT X-FABRIC MODULES (Optional), page 21
- STEP 6 SELECT CISCO HCIX-440P PCIE NODE, RISER CARDS AND GPUS (Optional), page 22
- STEP 7 CHOOSE TRANSCEIVERS AND CABLES (OPTIONAL), page 23
- STEP 8 CHOOSE POWER SUPPLIES, page 28
- STEP 9 SELECT INPUT POWER CORD(s), page 29
- SUPPLEMENTAL MATERIAL, page 31

STEP 1 VERIFY BASE CHASSIS SKU

Top Level ordering product ID (PID) of the Cisco Compute Hyperconverged 9508 Chassis is shown in *Table 2*

Table 2 Top level ordering PID

Product ID (PID)	Description
HCIX-M7-MLB	Cisco Compute Hyperconverged X-Series M7 with Nutanix MLB

Verify the product ID (PID) of the base Cisco Compute Hyperconverged 9508 chassis as shown in *Table 3*.

Table 3 PID of the Base Cisco Compute Hyperconverged 9508 Chassis

Product ID (PID)	Description	Usage
HCIX-9508-U	Cisco Compute Hyperconverged 9508 Chassis Configured	Chassis configured with Node, IFM, PSU etc
HCIX-9508=	Cisco Compute Hyperconverged 9508 Chassis	Chassis configured with Node, IFM, PSU etc

Items included with the chassis:

- Fans
- Chassis accessory kit
- Compute Hyperconverged node blank panels (where needed)
- X-Fabric module blank panels (two)
- Power supply blanks (where needed)
- Chassis Rear AC Power Expansion Module (two)
- AC power supply keying bracket

Items not included with the chassis (but may be ordered separately):

- Cisco Compute Hyperconverged nodes
- IFMs
- Fls
- X-Fabric modules
- PCI Nodes, Risers and GPU
- Transceivers and cables
- Power supplies

STEP 2 SELECT CISCO COMPUTE HYPERCONVERGED NODES

Choose Cisco Compute Hyperconverged nodes

The available single-slot Cisco Compute Hyperconverged node for the chassis is shown in *Table 4*.

Table 4 Available Cisco Compute Hyperconverged Node

Product ID (PID)	Description
HCIX210C-M7SN	210cM7 All NVMe Hyperconverged Node w/o CPU,Memory,Storage
HCIX210C-M7SN-U	210cM7 All NVMe Hyperconverged Node w/o CPU,Memory,Storage

Refer to Cisco Compute Hyperconverged X-Series with Nutanix-HCIX210c M7 All-NVMe Node Spec Sheet for the available GPUs on the PCIe Nodes.

Approved Configurations

(1) Choose from one to eight Cisco Compute Hyperconverged nodes

Caveats

The chassis can accommodate up to eight single-slot or four dual-slot Cisco Compute Hyperconverged nodes or a mix of single- and dual-slot Cisco Compute Hyperconverged nodes. If any PCIe nodes are used in the chassis, then fewer Cisco Compute Hyperconverged nodes can be installed in the chassis.

STEP 3 SELECT INTELLIGENT FABRIC MODULES

The intelligent Fabric Module (IFM) options are:

- Cisco Compute Hyperconverged 9108-25G
- Cisco Compute Hyperconverged 9108-100G

Choose Intelligent Fabric Modules

The available Intelligent Fabric Modules are listed in *Table 5*. Each IFM connects to external Fabric Interconnects using 8x 25G ports or 8x 100G ports

Table 5 Available Intelligent Fabric Modules (IFMs)

Product ID (PID)	Description
HCIX-19108-25G	HCIX 9108-25G IFM for 9508 Chassis
HCIX-I9108-100G	HCIX 9108-100G IFM for 9508 Chassis

Approved Configurations

- (1) Choose two IFMs of same type
- (2) You can not mix IFM and integrated FI in the same chassis

STEP 4 SELECT FABRIC INTERCONNECTS MODULES

The Fabric Interconnect Modules (FI) options are:

■ Cisco Compute Hyperconverged Fabric Interconnect 9108 100G

Choose Fabric Interconnect Modules

The available Fabric Interconnect Modules are listed in *Table 6*. Each FI connects to external Top-of-Rack switch using 8x 100G ports.

Table 6 Available Fabric Interconnect Modules

Product ID (PID)	Description
HCIX-S9108-100G	HCIX 9108-100G IFM Switch Mode for 9508 Chassis
HCIX-S9108-SW	Perpetual SW License for HCI X-Series Direct FI 9108-100G

Approved Configurations

- (1) Choose two FI
- (2) You can not mix IFM and integrated FI in the same chassis

STEP 5 SELECT X-FABRIC MODULES (Optional)

The X- Fabric Module (XFM) options are:

■ Cisco HCIX 9416

Choose X-Fabric Modules

The available X- Fabric Modules are listed in *Table 7*. Each X-Fabric module provides native PCIe Gen4 x16 connectivity to the Compute Hyperconverged node and the Cisco X440p PCIe Node.

Table 7 Available X- Fabric Modules (XFMs)

Product ID (PID)	Description
HCIX-F-9416-D	HCIX 9416 X-Fabric module for 9508 chassis

Approved Configurations

(1) Choose two XFMs

STEP 6 SELECT CISCO HCIX-440P PCIE NODE, RISER CARDS AND GPUS (Optional)

Refer to HCIX-440P PCIe Node Spec Sheet for the available GPUs on the PCIe Nodes.

STEP 7 CHOOSE TRANSCEIVERS AND CABLES (OPTIONAL)

This section shows the supported transceivers and cables for the below IFMs

- Cisco Compute Hyperconverged 9108-25G IFM (*Table 8*)
- Cisco Compute Hyperconverged 9108-100G IFM (*Table 9*)

Additional transceiver and cable compatibility details for Cisco products is available at: https://www.cisco.com/c/en/us/support/interfaces-modules/transceiver-modules/products-device-supp ort-tables-list.html

The supported transceivers are for the Cisco Compute Hyperconverged 9108 25G IFM are listed in *Table 8*

Table 8	Cisco Compute	Hyperconverged 9108	25G Supported Transceivers
---------	----------------------	---------------------	----------------------------

Product ID (PID)	Description		
SFP28 25-Gbps Transc	SFP28 25-Gbps Transceivers		
SFP-25G-SR-S	25GBASE-SR SFP Module		
SFP-25G-CSR-S	25GBASE-CSR SFP Module		
SFP28 25G Copper Cab	les with Integrated Transceivers		
SFP-H25G-CU1M	25GBASE-CU SFP28 Cable 1 Meter		
SFP-H25G-CU2M	25GBASE-CU SFP28 Cable 2 Meter		
SFP-H25G-CU3M	25GBASE-CU SFP28 Cable 3 Meter		
SFP-H25G-CU4M	25GBASE-CU SFP28 Cable 4 Meter		
SFP-H25G-CU5M	25GBASE-CU SFP28 Cable 5 Meter		
SFP-25G-AOC1M	25GBASE Active Optical SFP28 Cable, 1M		
SFP-25G-AOC2M	25GBASE Active Optical SFP28 Cable, 2M		
SFP-25G-AOC3M	25GBASE Active Optical SFP28 Cable, 3M		
SFP-25G-AOC5M	25GBASE Active Optical SFP28 Cable, 5M		
SFP-25G-AOC7M	25GBASE Active Optical SFP28 Cable, 7M		
SFP-25G-AOC10M	25GBASE Active Optical SFP28 Cable, 10M		

The supported transceivers are for the Cisco Compute Hyperconverged 9108 100G IFM are listed in *Table 9*

Product ID (PID)	Description		
QSFP28 100G Transceivers			
QSFP-100G-SR4-S	100GBASE SR4 QSFP Transceiver, MPO, 100m over OM4 MMF		
QSFP-100G-LR4-S	100GBASE LR4 QSFP Transceiver, LC, 10km over SMF		
QSFP-40/100-SRBD	100GBASE/40GBASE SR-BiDi QSFP Transceiver, LC, 100m over OM4 MMF		
QSFP-100G-SM-SR	100GBASE CWDM4 Lite QSFP Transceiver, 2km over SMF, 10-60C		
QSFP-100G-SL4	100GBASE SL4 for up to 30M over OM4 MMF		
QSFP-100G-DR-S	100G QSFP28 Transceiver 100GBASE-DR, 500m SMF, duplex, LC		
QSFP-100G-FR-S	100G QSFP28 Transceiver 100G-FR, 2km SMF, duplex, LC		
QSFP28 100G Cables	with Integrated Transceivers		
QSFP-100G-CU1M	100GBASE-CR4 Passive Copper Cable, 1m		
QSFP-100G-CU2M	100GBASE-CR4 Passive Copper Cable, 2m		
QSFP-100G-CU3M	100GBASE-CR4 Passive Copper Cable, 3m		
QSFP-100G-CU5M	100GBASE-CR4 Passive Copper Cable, 5m		
QSFP-100G-AOC1M	100GBASE QSFP Active Optical Cable, 1m		
QSFP-100G-AOC2M	100GBASE QSFP Active Optical Cable, 2m		
QSFP-100G-AOC3M	100GBASE QSFP Active Optical Cable, 3m		
QSFP-100G-AOC5M	100GBASE QSFP Active Optical Cable, 5m		
QSFP-100G-AOC7M	100GBASE QSFP Active Optical Cable, 7m		
QSFP-100G-AOC10M	100GBASE QSFP Active Optical Cable, 10m		
QSFP-100G-AOC15M	100GBASE QSFP Active Optical Cable, 15m		
QSFP-100G-AOC20M	100GBASE QSFP Active Optical Cable, 20m		
QSFP-100G-AOC25M	100GBASE QSFP Active Optical Cable, 25m		
QSFP-100G-AOC30M	100GBASE QSFP Active Optical Cable, 30m		

Table 9 Cisco Compute Hyperconverged 9108 100G Supported Transceivers

Caveats

■ You should order enough transceivers and cables to accommodate your maximum foreseeable needs.

This section shows the supported transceivers and cables for the below FIs

■ Cisco Compute Hyperconverged 9108 100G FI (*Table 10*)

The supported transceivers are for the Fabric Interconnect 9108 100G is listed in Table 10

Table 10 Fabric Interconnect 9108	100G Supported Transceivers
-----------------------------------	-----------------------------

Product ID (PID)	Description		
QSFP28 100G Transceivers			
QSFP-100G-SR4-S	100GBASE SR4 QSFP Transceiver, MPO, 100m over OM4 MMF		
QSFP-100G-LR4-S	100GBASE LR4 QSFP Transceiver, LC, 10km over SMF		
QSFP-40/100-SRBD	100GBASE/40GBASE SR-BiDi QSFP Transceiver, LC, 100m over OM4 MMF		
QSFP-100G-SM-SR	100GBASE CWDM4 Lite QSFP Transceiver, 2km over SMF, 10-60C		
QSFP-100G-SL4	100GBASE SL4 for up to 30M over OM4 MMF		
QSFP-100G-DR-S	100G QSFP28 Transceiver 100GBASE-DR, 500m SMF, duplex, LC		
QSFP-100G-FR-S	100G QSFP28 Transceiver 100G-FR, 2km SMF, duplex, LC		
QSFP28 100G Cables with Integrated Transceivers			
QSFP-100G-CU1M	100GBASE-CR4 Passive Copper Cable, 1m		
QSFP-100G-CU2M	100GBASE-CR4 Passive Copper Cable, 2m		
QSFP-100G-CU3M	100GBASE-CR4 Passive Copper Cable, 3m		
QSFP-100G-CU5M	100GBASE-CR4 Passive Copper Cable, 5m		
QSFP-100G-AOC1M	100GBASE QSFP Active Optical Cable, 1m		
QSFP-100G-AOC2M	100GBASE QSFP Active Optical Cable, 2m		
QSFP-100G-AOC3M	100GBASE QSFP Active Optical Cable, 3m		
QSFP-100G-AOC5M	100GBASE QSFP Active Optical Cable, 5m		
QSFP-100G-AOC7M	100GBASE QSFP Active Optical Cable, 7m		
QSFP-100G-AOC10M	100GBASE QSFP Active Optical Cable, 10m		
QSFP-100G-AOC15M	100GBASE QSFP Active Optical Cable, 15m		
QSFP-100G-AOC20M	100GBASE QSFP Active Optical Cable, 20m		
QSFP-100G-AOC25M	100GBASE QSFP Active Optical Cable, 25m		
QSFP-100G-AOC30M	100GBASE QSFP Active Optical Cable, 30m		
QSFP28 40G Transceivers			

Table 10 Fabric Interconnect 9108 100G Supported Transceivers (continued)

Product ID (PID)	Description
QSFP-40G-SR4	40GBASE-SR4 QSFP Transceiver Module with MPO Connector
QSFP-40G-SR4-S	40GBASE-SR4 QSFP Transceiver Module, MPO Conn, Enterprise-Class
QSFP-40G-CSR4	QSFP 4x10GBASE-SR Transceiver Module, MPO, 300M
QSFP-40G-SR-BD	40GBASE-SR-BiDi, duplex MMF (LC)
QSFP28 100G Breakout Cab	les with Integrated Transceivers
QSFP-4SFP25G-CU1M	100GBASE QSFP to 4xSFP25G passive copper splitter cable, 1M
QSFP-4SFP25G-CU2M	100GBASE QSFP to 4xSFP25G passive copper splitter cable, 2M
QSFP-4SFP25G-CU3M	100GBASE QSFP to 4xSFP25G passive copper splitter cable, 3M
QSFP-4SFP25G-CU5M	100GBASE QSFP to 4xSFP25G passive copper splitter cable, 5M
QSFP-4SFP10G-CU3M	QSFP to 4xSFP10G Passive Copper Splitter Cable, 3m
QSFP-4SFP10G-CU5M	QSFP to 4xSFP10G Passive Copper Splitter Cable, 5m
QSFP-4SFP10G-CU10M	QSFP to 4xSFP10G Passive Copper Splitter Cable, 10m
QSFP-4X10G-AOC3M	40GBASE Active Optical QSFP to 4SFP breakout Cable, 3m
QSFP-4X10G-AOC5M	40GBASE Active Optical QSFP to 4SFP breakout Cable, 5m
QSFP-4X10G-AOC7M	40GBASE Active Optical QSFP to 4SFP breakout Cable, 10m
SFP28 25G Cables with Inte	grated Transceivers
SFP-25G-SR-S	25GBASE-SR SFP Module
SFP-10/25G-LR-S	10/25GBASE-LR SFP28 Module
SFP-10/25G-CSR-S	Dual Rate 10/25GBASE-CSR SFP Module
SFP-25G-SL	25GBASE-SR SFP SL Module
SFP-10G-SR	10GBASE-SR SFP Module
SFP-10G-SR-S	10GBASE-SR SFP Module, Enterprise-Class
SFP-10G-LR	10GBASE-LR SFP Module
SFP-10G-LR-S	10GBASE-LR SFP Module, Enterprise-Class
CVR-QSFP28-SFP25G	100G to SFP25G adapter
CVR-QSFP-SFP10G	QSFP 40G to SFP+ 10G adapter
CVR-QSFP-SFP10G + GLC-T	100m
DS-SFP-4X32G-SW	4X 32G Optic SFP+

NOTE:

- The 9108 100G FI supports 1G optics on ports 7 and 8.
- Transceiver modules and cables that are supported on a specific fabric interconnect are not always supported on all VIC adapters, I/O modules, or fabric extenders that are compatible with that fabric interconnect. Detailed compatibility matrices for the transceiver modules are available here: https://www.cisco.com/c/en/us/support/interfaces-modules/transceiver-mod ules/products-devi ce-support-tables-list.html
- SFP-10/25G-LR-S and SFP-10/25G-CSR-S are supported only at 25G speed.
- S-class transceivers do not support FCoE at 10G and 40G speeds.

Caveats

The maximum length of fiber optic runs is limited to 300 meters. This is imposed by our use of 802.3X/802.1Qbb Priority Pauses.

NOTE: For transceiver specifications, see the following link: http://www.cisco.com/c/en/us/td/docs/interfaces_modules/transceiver_modules/ compati bility/matrix/GE_Tx_Matrix.html

- You should order enough transceivers and cables to accommodate your maximum foreseeable needs.
- In order to work with DS-SFP-4x32G-SW you need to have Multimode OM4 fiber, MTP/MPO female to 4x LC 8-fiber type-b breakout cable and 8/16/32G FC SW SFPs for the other end

STEP 8 CHOOSE POWER SUPPLIES

The Cisco Compute Hyperconverged 9508 chassis accommodates up to six power supplies. The six dual feed power supplies provide an overall chassis power capability of greater than 9000 W, and can be configured as N, N+1, N+2, or N+N redundant.

Choose Power Supplies

The available power supplies are listed in *Table 11*.

Table 11 Available Power Supplies

Product ID (PID)	PID Description
HCIX-PSU-2800AC	HCIX 9508 Chassis 2800V AC Dual Voltage PSU Titanium

Approved Configurations

Choose from 2 to 6 power supplies

- If node quantity 1 is selected, then minimum 2 quantity of PSU is required
- If node quantity 2 to 6 is selected, then minimum 4 quantity of PSU is required
- If node quantity 7 or 8 is selected, then minimum 6 quantity of PSU is required

NOTE:

- Two PSUs minimum are required for chassis operation. Four PSUs are recommended and the maximum number of PSUs is six.
- Use the Power Calculator to determine the correct number of power supplies. The Power Calculator can be found at this link:

http://ucspowercalc.cisco.com\

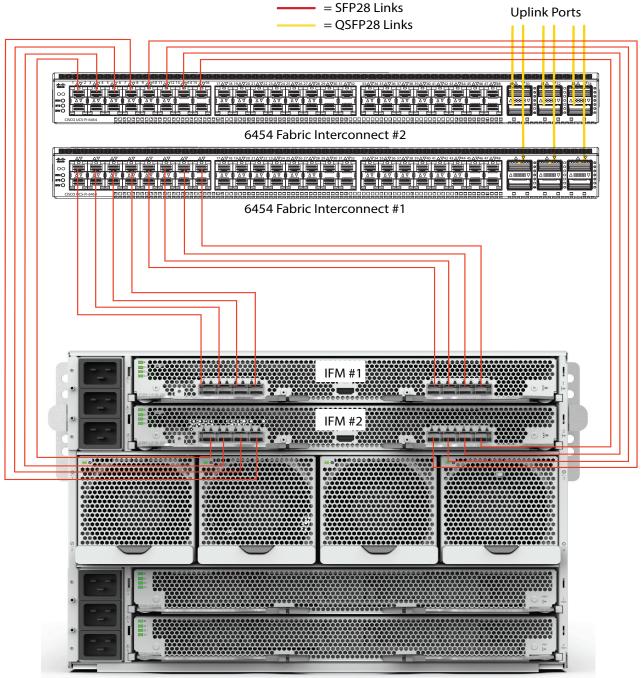
STEP 9 SELECT INPUT POWER CORD(s)

Select the appropriate AC power cords listed in *Table 12*. You may select up to 6 power cords.

Table 12 Available Power Cords

Product ID (PID)	PID Description	Comment
CAB-AC-16A-AUS	16A, 250 VAC	Australia
CAB-9K16A-BRZ	16A, 250 VAC	Brazil
UCSB-CABL-C19-BRZ	C19, 14', 16A, 250V	Brazil
CAB-AC16A-CH	16A, 250 VAC	China
CAB-AC-2500W-EU	16A, 250 VAC	Europe
CAB-AC-2500W-INT	16A, 250 VAC	International
CAB-AC-2500W-ISRL	16A, 250 VAC	Israel
CAB-US620P-C19-US	16A, 250VAC NEMA L6-20P to IEC C19	USA
CAB-AC-C6K-TWLK	20A, 250VAC NEMA L6-20 (Twist Lock) to IEC C19	USA
CAB-ACS-16	16A, 250 VAC	Switzerland
CAB-C19-CBN	16A, 250 VAC	Jumper cord C19/C20
CAB-US515P-C19-US	15A, 125 VAC NEMA 5-15 to IEC-C19	USA
CAB-US520-C19-US	20A, 125 VAC NEMA 5-20 to IEC-C19	USA
CAB-BS1363-C19-UK	13A, 250 VAC BS1363 to IEC C19	UK
CAB-9K16A-KOR	16A, 250 VAC CEE 7/7 to IEC C19	South Korea
CAB-C19-C20-3M-JP	16A, 250 VAC	Japan
CAB-AC-C19-TW	250.0 V, 16.0 A	Taiwan
CAB-IR2073-C19-AR	20A, 250 VAC IRSM 2073 to IEC C19	Argentina
CAB-SABS-C19-IND	16A, 250 VAC SABS 164-1 to IEC C19	India
CAB-C19-C20-IND	14 AWG, 250.0 V, 16.0 A, 9' L	India

Table 12 Available Power Cords

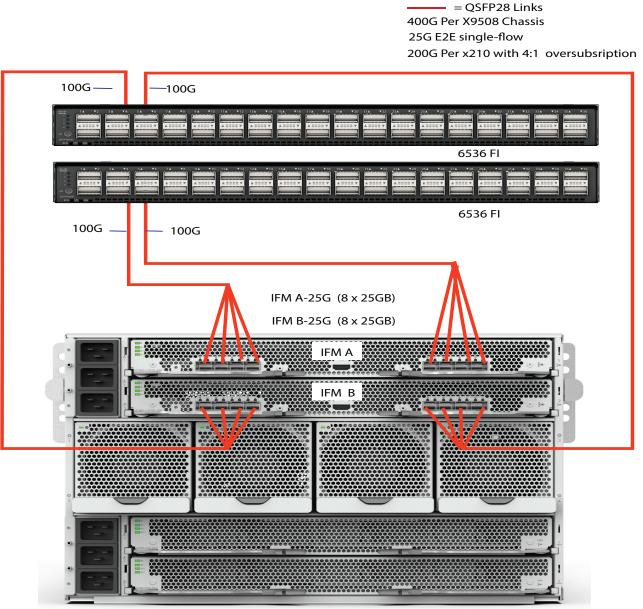

Product ID (PID)	PID Description	Comment
CAB-S132-C19-ISRL	16A, 250 VAC S132 to IEC C19	Israel
CAB-C2316-C19-IT	16A, 250 VAC CEI 23-16 to IEC C19	Italy
R2XX-DMYMPWRCORD	No power cord	

SUPPLEMENTAL MATERIAL

9508 Chassis Server Connectivity

The connectivity from the IFMs to 6400 series Fabric Interconnects is shown in *Figure 13*.

Figure 13 IFM to 6400 Series Fabric Interconnect Connectivity

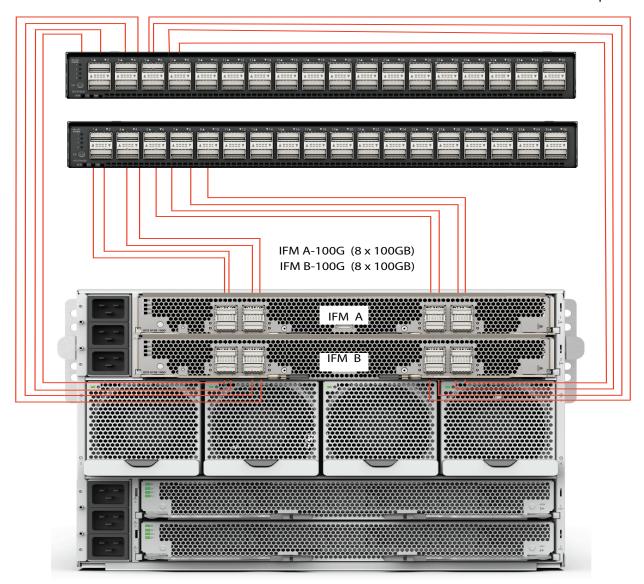

⁹⁵⁰⁸ Chassis

For the Cisco Compute Hyperconverged 9508 chassis, the Fabric Extender modules (up to two) plug into the back of the Cisco Compute Hyperconverged 9508 chassis. The Cisco Compute Hyperconverged 9508 chassis accommodates the following IFMs:

- Cisco IFM 9108-25G (*Figure 14*)
- Cisco IFM 9108-100G (*Figure 15*)

The connectivity from the HCIX-I9108-25G to 6536 series Fabric Interconnects is shown in *Figure 14*.

Figure 14 HCIX-I9108-25G to 6536 Series Fabric Interconnects Connectivity



9508 Chassis

The connectivity from the HCIX-I9108-100G to 6536 series Fabric Interconnects is shown in *Figure 15*.

Figure 15 HCIX-I9108-100G to 6536 Series Fabric Interconnect Connectivity

1600G Per 9508 Chassis 100G E2E single-flow 200G Per x210 with 1:1 oversubsription

9508 Chassis Direct Server Connectivity

The LAN connectivity from the Cisco Fabric Interconnect 9108 100G to the ToR switch is shown in *Figure 16* and *Figure 17*

Figure 16 LAN Connectivity with Cisco Fabric Interconnect 9108 100G and vPC in End-Host mode

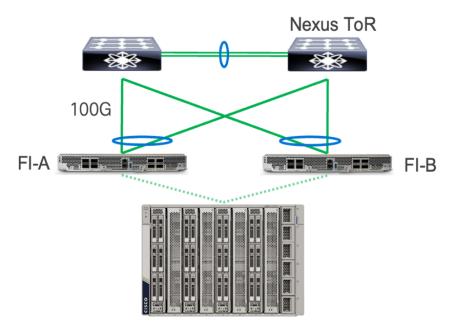
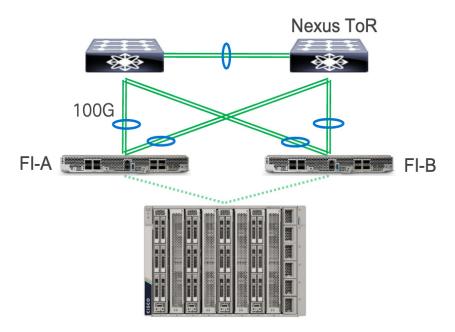



Figure 17 LAN Connectivity with Cisco Fabric Interconnect 9108 100G but without vPC in end-host mode

The SAN connectivity from the Cisco Fabric Interconnect 9108 100G to a Cisco MDS or non-MDS switch is shown in *Figure 18, Figure 19* and *Figure 20*

Figure 18 SAN Connectivity with Cisco Fabric Interconnect 9108 100G and FC end-host or switch mode (Cisco MDS)

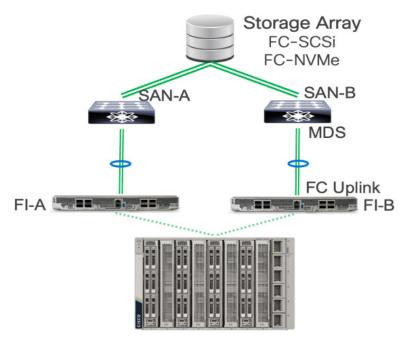
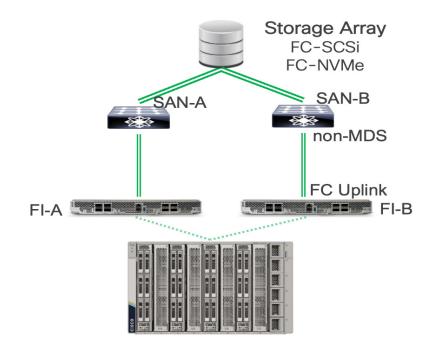
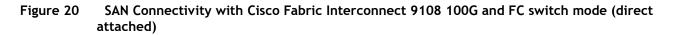
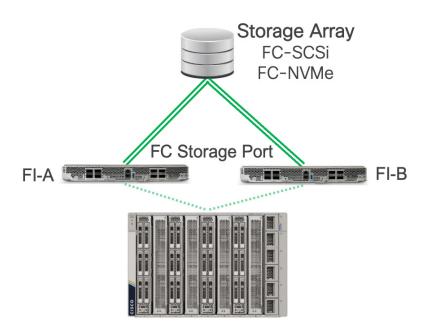





Figure 19 SAN Connectivity with Cisco Fabric Interconnect 9108 100G and FC end-host mode (non-Cisco MDS)

The IP-SAN connectivity from the Cisco Fabric Interconnect 9108 100G is shown in, Figure 21 and Figure 22

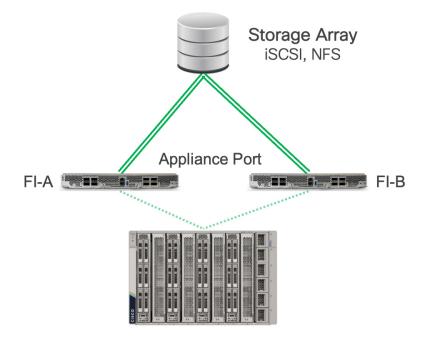
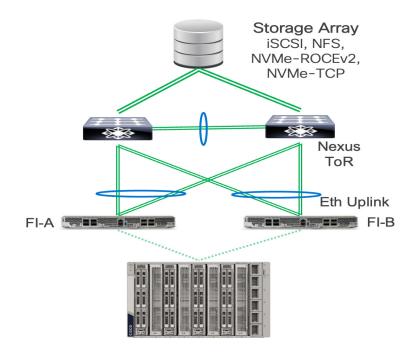



Figure 22 IP-SAN Connectivity with Cisco Fabric Interconnect 9108 100G and Appliance Port through ToRs in vPC Port Channel configuration

ACCESSORIES/SPARE PARTS

This section lists the upgrade and service-related parts for the Cisco Compute Hyperconverged 9508 chassis. Some of these parts are configured with every Compute Hyperconverged node or with every Cisco Compute Hyperconverged 9508 chassis.

Table 13 Spare Parts for Cisco Compute Hyperconverged 9508 chassis

Spare Product ID (PID)	Description
HCIX-C-DEBUGCBL=	HCIX Node Debug Cable

TECHNICAL SPECIFICATIONS

Physical Dimensions and Specifications

The physical specifications for the Cisco Compute Hyperconverged 9508 chassis are listed in Table 14

Table 14	Cisco Compute	Hyperconverged	9508 Chassis	Specifications
----------	----------------------	----------------	--------------	----------------

Parameter	Value		
Height	12.05 in (30.6 cm); 7 RU		
Width	17.55 (44.6 cm); fits standard 19-inch square-hole rack		
Depth	35.8 in (90.932 cm)		
Weight	Empty chassis: 95 lb (43.09 kg)		
	Fully populated chassis: Approximately 400 lb (163.29 kg) depending on models and options selected		
Cisco Compute Hyperconverged Node slots	8 full-width slots.		
Intelligent Fabric Modules (IFMs)	2 x Cisco Compute Hyperconverged 9108 Intelligent Fabric Module with 8x 25G SFP28 ports		
Intelligent Fabric Modules (IFMs)	2 x Cisco 9108 Intelligent Fabric Module with 8x 25G SFP28 ports		
X-Fabric Module slots	2x Cisco X-Fabric module rear blank slots (for future expansion)		
Fan modules	4 x 100mm hot-swappable dual rotor fans		
Power supply bays	6		
	Input voltage	100 to 127 V AC	
		200 to 240V AC	
	Maximum input VA	3200 VA at 230 VAC	
	Maximum output power per power supply	2800 W @200-240 VAC Nominal	
		1400 W @100-127 VAC Nominal	
	Frequency	50 to 60 Hz	
	Output voltage	54 VDC	
	Power connector	IEC320 C20	
Power redundancy	Nonredundant, N+1, N+2 and G	rid (N+N)	
Power entry module (PEM)	2x PEM for AC inputs, PEM1 (PSU1,2,3), PEM2 (PSU4,5,6)		

Parameter	Value
Management	Cisco Intersight Software
	(SaaS, Virtual Appliance and Private Virtual Appliance)
Temperature: operating	50 to 95°F (10 to 35°C) (as altitude increases, maximum temperature decreases by 1°C per 300m)
Temperature: non-operating	-40 to 149°F (-40 to 65°C); maximum altitude is 40,000 ft
Humidity: operating	10% to 90% noncondensing, 28°C max
Humidity: non-operating	5% to 93% noncondensing, 38°C max
Altitude: operating	0 to 10,000 ft (0 to 3000m); maximum ambient temperature decreases by 1°C per 300m
Altitude: non-operating	40,000 ft (12,000m)
Sound pressure level	83 dBA (at normal operating temperature)

Table 14 Cisco Compute Hyperconverged 9508 Chassis Specifications (continued)

For configuration-specific power specifications, use the Cisco Power Calculator at:

https://ucspowercalc.cisco.com

Power Supply Specifications

Detailed specifications for the Cisco Compute Hyperconverged 9508 power supplies are listed in Table 15

Table 15 Cisco Compute Hyperconverged 9508 Power Supply Specifications	Table 15
--	----------

Parameter	Value
AC input voltage	Voltage Range 100-127 VAC, 200-240 VAC nominal (range: 90-140 VAC, 180-264 VAC)
AC input frequency	50 to 60 Hz nominal (range: 47 to 63 Hz
Maximum AC input current	18 A @ 90 VAC
	18 A @ 180 VAC
Maximum input VA	3200 VA at 230 VAC
Maximum output power per power	2800 W @ 200-240 VAC nominal
supply	1400 W @ 100-127 VAC nominal
Maximum inrush current	35 A (sub cycle duration)
Minimum holdup time	10 ms @ 1400 W
	10 ms @ 2800 W
Power supply main output voltage	54 VDC
Efficiency rating	80+ Titanium Certified
Input connector	IEC320 C20
	System input power connectors are located in the chassis PEMs, not on the power supply

Compliance Specifications

The regulatory standards compliance (safety and EMC) specifications for the Cisco Compute Hyperconverged 9508 chassis are listed in *Table 16*.

Table 16	Cisco Compute	Hyperconverged	9508 Chassis	Compliance Specifications

Parameter	Description
Regulatory compliance	Products comply with CE Markings per directives 2004/108/EC and 2006/108/EC
Safety	■ UL 60950-1
	CAN/CSA-C22.2 No. 60950-1
	■ EN 60950-1
	■ IEC 60950-1
	AS/NZS 60950-1
	■ GB4943
EMC: Emissions	■ 47CFR Part 15 (CFR 47) Class A (FCC Class A)
	AS/NZS CISPR22 Class A
	■ CISPR2 2 Class A
	EN55022 Class A
	ICES003 Class A
	VCCI Class A
	■ EN61000-3-2
	EN61000-3-3
	■ KN22 Class A
	■ CNS13438 Class A
EMC: Immunity	■ EN50082-1
	EN61000-6-1
	■ EN55024
	■ CISPR24
	EN300386
	■ KN 61000-4 Series

System Requirements

The system requirements for the Cisco Compute Hyperconverged 9508 chassis are listed in Table 17.

Table 17 Cisco Compute Hyperconverged 9508 Chassis Compliance Specifications

ltem	Requirement
X-Series chassis	Cisco Compute Hyperconverged 9508 Chassis
Fabric interconnect	Cisco HCIX 6536, 6454 and 64108 fabric interconnects
Cisco Intersight	Cisco Intersight Managed Mode or Cisco UCS Manager for management

(1) Only when configured with IFMs

ılıılı cısco

Americas Headquarters Cisco Systems, Inc. San Jose, CA Asia Pacific Headquarters Cisco Systems (USA) Pte. Ltd. Singapore

Europe Headquarters Cisco Systems International BV Amsterdam, The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a