DC Design for Small and Mid-Size Data Center

Višnja Milovanović, CSE
Data Center and Virtualization
South East Europe
Data Center Designs for Midmarket and SMBs: 100 – 300 ports

We will focus on:

• The recommended N5K/N2K design scenarios for SMB customer (from 100 to 300 ports)
• L2 and L3 capabilities (vPC, first-hop redundancy in N5K)
• Servers connectivity: CNAs/FCoE, and classical (NIC+HBA) scenarios
• SAN (iSCSI, FCoE and FC) and NAS deployment scenarios
• DC Services insertion (ACE appliance, WAAS, ASA, VSG, IPS, NAM ...etc)
• Server Access layer security for virtual machines
DC Designs
100 – 300 ports

- Rack Mount Servers
 Self contained Virtualized Data Center
- Leverage Campus Core (Small Modular) as Collapsed Core & Backbone
- Differentiation – FCoE, FEX, EvPC, Adapter-FEX, Unified Port, N1KV, vPATH, VXLAN, FabricPath
- Dependent on ASR WAN router for DCI and other transport services
DC Designs
Virtualized Data Center Switch

- 2 x Nexus 5548 + Nexus 2200 access switches
 - 2 x Nexus 5548
 - 2 x L3 Module
 - L3 License & Storage License
 - 2 x Nexus 2232
 - 4 x Nexus 2248TP-E

© 2010 Cisco and/or its affiliates. All rights reserved. Cisco Confidential
DC Design Details

vPC & FEX Options

- **Core Design Criteria**
 Server NIC teaming requirements
 (Single NIC, ALB/TLB, 802.3ad, …)

- **Design Options**
 Straight Through FEX
 Dual Homed FEX
 EvPC (new capability supported with 5.1(3)N1)

- **Considerations**
 FCoE (isolation of SAN ‘A’ & SAN ‘B’)

- **Design Strengths**
 EvPC enables all server NIC redundancy options simultaneously
Straight Through

- Redundancy model – Dual Switch with redundant fabric
- Provides isolation for Storage topologies (SAN ‘A’ and ‘B’)

Dual Homed

- Redundancy model – Single switch with dual ‘supervisor’ for fabric, data control & management planes
- No SAN ‘A’ and ‘B’ isolation
DC Designs
Nexus 5500 Topologies up to NX-OS 5.0(3)N2

- A vPC orphan port is an non-vPC interface on a switch where other ports in the same VLAN are configured as vPC interfaces
- With the NX-OS release 5.0(3)N2 the orphan ports on the vPC secondary peer will also be shut down triggering NIC teaming recovery for all teaming configurations
- Configuration is applied to the physical port

N5K-2(config)# int eth 100/1/1
N5K-2(config-if)# vpc orphan-ports suspend
In an Enhanced vPC (EvPC) configuration, any and all server NIC teaming configurations will be supported on any port.

- Requires NX-OS 5.1(3)N1 (shipping Q4 CY11)
- No ‘orphan ports’ in the design
- All components fully redundant in a MCEC environment
- Supported with **Nexus 5500 only**
- **Not** required to support a mixed NIC teaming environment, use case is restricted to a mix of all three server NIC configurations (single NIC, ALB/TLB and 802.3ad)
DC Designs
Nexus 5500 Topologies starting with NX-OS 5.1(3)N1

- In an Enhanced vPC (EvPC) SAN ‘A/B’ isolation is configured by associating each FEX with either SAN ‘A’ or SAN ‘B’ Nexus 5500
- FCoE & FIP traffic is forwarded only over the links connected to the specific parent switch
- Ethernet is hashed over ‘all’ FEX fabric links

```
N5K-A(config)# fex 100
N5K-A(config-fex)# fcoe
N5K-A(config)# fex 101
N5K-B(config)# fex 101
N5K-B(config-fex)# fcoe
N5K-B(config)# fex 100
```
Data Center Designs for Midmarket and SMBs: 100 – 300 ports

This update to this section will focus on:

- The recommended N5K/N2K design scenarios for SMB customer (from 100 to 300 ports)
- L2 and L3 capabilities (vPC, first-hop redundancy in N5K)
- Servers connectivity: CNAs/FCoE, and classical (NIC+HBA) scenarios
- SAN (iSCSI, FCoE and FC) and NAS deployment scenarios
- DC Services insertion (ACE appliance, WAAS, ASA, VSG, IPS, NAM ...etc)
- Server Access layer security for virtual machines
DC Design Details
Layer 3 Considerations

- Core Design Considerations
 Support for a maximum of 8 x FEX connected to a Nexus 5500 with an L3 daughter-card

- Key Support Considerations
 vPC configuration for L3 interfaces needs to be consistent between peers
 ISSU is not currently supported with Layer 3 enabled

- Key Design Strengths
 Cisco NX-OS routing capabilities (EIGRP, OSPF, RIPv2, MBGP, HSRP, VRRP)
 VRF Support
DC Designs
Nexus 5500 Layer 3 Topologies – 8 FEX

Standard vPC
- 8 FEX attached to ‘each’ Nexus 5548
- 16 total FEX in the fabric
- Maximum of 768 x 1G ports

Enhanced vPC
- 8 FEX are attached to ‘both’ Nexus 5548
- 8 total FEX in the fabric
- Maximum of 384 x 1G ports

NOTE: In a dual homed (EvPC) FEX configuration the FEX is counted against the maximum supported FEX count on ‘both’ parent switches.
DC Design Details
Layer 3 Design Considerations

- HSRP tuning not required with vPC dual active default gateway
- Remember to configure L3 peering between vPC peers
- Passive all SVI other than this L3 peering and the routed uplink interfaces
- EIGRP stub requires some tuning to compatible with vPC L3 design

 Need to provide failover to a secondary stub (vPC peer) – Leverage floating static default to point to loopback on peer switch
- Layer 3 + FEX + vPC designs are limited to 1K multicast groups
DC Design Details
Layer 3 Considerations

- QoS policy ‘must’ use a set cos value to ensure that queueing is correctly performed for traffic passing to and from the L3 daughter-card

- Leverage vPC enhancements
 “peer-gateway” – 5.0(2)N1
 “arp table sync” – 5.1(3)N1
 “auto-recovery” – 5.0(2)N1

- Leverage vPC+ if PIM-SSM support is required (FabricPath license)

Layer 3 Design Guide:
Data Center Designs for Midmarket and SMBs: 100 – 300 ports

This update to this section will focus on:

• The recommended N5K/N2K design scenarios for SMB customer (from 100 to 300 ports)

• L2 and L3 capabilities (vPC, first-hop redundancy in N5K)

• Servers connectivity: CNAs/FCoE, and classical (NIC+HBA) scenarios

• SAN (iSCSI, FCoE and FC) and NAS deployment scenarios

• DC Services insertion (ACE appliance, WAAS, ASA, VSG, IPS, NAM …etc)

• Server Access layer security for virtual machines
DC Design Details
Rack and Server Considerations

• Core Design Considerations
 • Power Allocated Per Rack
 • Server NIC Density
 • Migration from 1G to 10G
• Cisco Nexus and NX-OS Infrastructure Strengths:
 • FEX provides migration to 10G and cost effective 1G (cable reduction)
 • B22 or pass-thru options support 3rd party Blade chassis
 • FCoE, Adapter-FEX
• Issues to be aware of
 • 10GBaseT FEX (2232TM) does ‘not’ support FCoE
DC Design Details
Optimize the port density per rack

Three racks configured as a redundancy pair - FEX ‘A’ & ‘B’ racked in common center rack

Two racks configured as a redundancy pair - FEX ‘A’ & ‘B’ split between 2 racks

Example Rack/Server layouts

<table>
<thead>
<tr>
<th>FEX Model</th>
<th>Servers/Rack</th>
<th>Ports/Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>2224TP</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>2248TP-E</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>2232TM</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FEX Model</th>
<th>Servers/Rack</th>
<th>Ports/Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>2224TP</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2248TP-E</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>2232TM</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
10GBaseT Key Benefits:

- 10 Gigabit bandwidth requirements for 1 Gig NIC consolidation at the server access and virtual environments
- Ease of 1GBASE-T to 10GBASE-T migration
- Flexible, scalable cabling with standard RJ-45 connector, at distances up to 100m
- Reuse of existing structured cabling
- Economics of 1Gigabit Ethernet versus 10 Gigabit Ethernet
- Prepare for Server LOM
- Investment protection with 1/10G capabilities

Source: Crehan Research (Q4CY10)
DC Design Details
Migration from 1G to 10G servers

GE to 10GE
premium/port 92%

Deep-Buffer GE
11% premium/port

GE to 10GE
premium/port 73%

Nexus 2248TP
List Price: $9,000
List Price w/ FET: $11,000

Nexus 2248TP-E
List Price: $10,000
List Price w/ FET: $12,000

Nexus 2232TM
List Price: $11,500
List Price w/ FET: $15,500

- Nexus 2000 provides an option for a per ‘line card’ migration of 1G and 10G
- Nexus 2232TM and 2232PP provide a per ‘port’ migration path for 1G to 10G
DC Design Details
10GBaseT – Power and EMI Considerations

- Undesired coupling of signal between adjacent cables
- Main electrical parameter limiting the performance of 10G
- Cannot be cancelled
- Re-Training is the major barrier to use of 10GBaseT for block level storage (FCoE)
- Can be prevented or mitigated by:
 - Space (Cat6a solution)
 - Shield (Cat6/Cat6a/Cat7 shielded solutions)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Cable</th>
<th>Distance</th>
<th>Power (each side)</th>
<th>Transceiver Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2232PP</td>
<td>SFP+ CU Copper</td>
<td>Twinax</td>
<td>1-10m</td>
<td>~0.1 - 1W</td>
</tr>
<tr>
<td>2232TM</td>
<td>10GBASE-T – 65nm</td>
<td>Cat6/6a/7 Cat6/6a/7</td>
<td>100m 30m</td>
<td>~6W ~4-5W</td>
</tr>
</tbody>
</table>
DC Design Details
Blade Server Considerations

- Blade Chassis
 - Migration to 2 x 10G NIC/CNAs per blade
 - Typical Sizing: SMB for HP is up to 4 x c7000 enclosures (64 blade servers)
 - 2 to 4 x 10G uplinks per chassis

- Cisco Strengths:
 - FEX + Pass Thru enables a Nexus capable host
 - FCoE capabilities & Adapter-FEX
 - B22-HP and Nexus 4000 (IBM)
DC Design Details – Blade Chassis
Nexus B22 Series Fabric Extender

- B22 extends FEX connectivity into the HP blade chassis
- Cisco Nexus 5000 Switch is a single management point for all the blade chassis I/O modules
- 66% decrease in blade management points*
- Blade & rack networking consistency
- Interoperable with Nexus 2000 Fabric Extenders in the same Nexus parent switch
- End-to-end FCoE support
- Support for 1G & 10G, LOM and Mez
- Dell supports Pass-Thru as an alternative option to directly attaching Blade Servers to FEX ports
DC Design Details

Mixed 1/10G, FC/FCoE, Rack and Blade

- Consolidation for all servers both rack and blade onto the same virtual switch

- Support for 1G, migration to 10G, FC and migration to FCoE

1G server racks are supported by 1G FEX (2248TP, 2224TP) or future proofed with 1/10G FEX (2232PP or 2232TM)

10G server racks are supported by the addition of a new 10G FEX (2232PP or 2232TM)

Support for direct connection of HBA to Unified Ports on Nexus 5500UP

Support for NPV attached blade switches during FC to FCoE migration

1G, 10G and FCoE connectivity for HP Blade Chassis
DC Design Details
Virtualized Interfaces – Adapter-FEX

- Adapter-FEX presents standard PCIe virtual NICs (vNICs) to servers
- Adapter-FEX virtual NICs are configured and managed via Nexus 5500
- Forwarding, Queuing, and Policy enforcement for vNIC traffic by Nexus 5500
- Adapter-FEX connected to Nexus 2000 Fabric Extender - Cascaded FEX-Link deployment
- Forwarding, Queuing, and Policy enforcement for vNIC traffic still done by Nexus 5500
Nexus 5500 Adapter-FEX
P81E Virtual Interface Card & BCM57712 CNA

- vNICs are presented to the host like standard PCIe devices
- In A-FEX mode: supports up to 16 Eth vNIC and 2 FC vHBA
- Adapter Failover feature: in failure scenarios, the vNIC is mapped to the other port transparently to the OS
- In VM-FEX mode: supports up to 96 Virtual Interfaces (vNICs + vHBAs)
- No need of trunking all VLANs to the server interface (improving security and scalability)

- 3rd Party adapter supporting VN-TAG
- vNICs are presented to the host like standard PCIe devices
- In A-FEX mode supports up to 8 Virtual Interfaces total
 - Max of 8 vEth
 - Max of 2 vHba
- No adapter failover
DC Designs
UCS Option

- 5500 providing support for disjoint L2 domains and/or L3
- 2 x Nexus 5548 Data Center Core Virtualized Switch
- Fabric Differentiation – FCoE, FEX, Adapter-FEX, VM-FEX, Unified Port, N1KV, vPATH, VXLAN, FabricPath, UCSM
- iSCSI Boot supported Q1CY12 targeted at SMB customer base migrating to NFS/CIFS
- Dependent on ASR WAN router for DCI and other transport services (WCCP, LISP, MPLS, OTV)
Data Center Designs for Midmarket and SMBs: 100 – 300 ports

This update to this section will focus on:

• The recommended N5K/N2K design scenarios for SMB customer (from 100 to 300 ports)

• L2 and L3 capabilities (vPC, first-hop redundancy in N5K)

• Servers connectivity: CNAs/FCoE, and classical (NIC+HBA) scenarios

• SAN (iSCSI, FCoE and FC) and NAS deployment scenarios

• DC Services insertion (ACE appliance, WAAS, ASA, VSG, IPS, NAM ...etc)

• Server Access layer security for (virtual machines and bare-metal servers)
DC Design Details
Storage Considerations

- Core Design Considerations
 - Storage I/O capacity required per server
 - Storage protocol(s) required
 - Boot from FC/FCoE/iSCSI

- Cisco Nexus and NX-OS
 Infrastructure Strengths:
 QoS capabilities to support iSCSI, NFS, NAS
 Nexus 5500 supports FC and FCoE fabric services

- Issues to be aware of
 - 10GBaseT FEX (2232TM) does ‘not’ support FCoE
DC Design Details
FC & FCoE Considerations

- Unified Ports supported on Nexus 5548UP and 5596UP
- Nexus 5500 supports FC and FCoE fabric services
- Co-existence with layer 3 and layer 2 IP forwarding (vPC, STP or FabricPath)
- FCoE Supported on Nexus 5000/5500 and 2232PP and B22 FEX ports
- Issues to be aware of
 - 10GBaseT FEX (2232TM) does ‘not’ support FCoE
 - IVR is not supported on Nexus 5500
DC Design Details
FCoE/FC Storage Considerations

- EvPC supports FCoE with dual homed FEX as of NX-OS 5.1(3)N1
- Boot from SAN with over an 802.3ad port channel using LACP is supported with NX-OS 5.1(3)N1
 - The ‘vfc’ is bound directly to physical port that is a member of the vPC port channel
 - Prior to 5.1(3)N1 the ‘vfc’ was bound to the port channel which could result in a race condition on boot from SAN
- The FCoE VLAN must not be configured as a native VLAN
- Ports with CNA must be configured as trunk ports and STP edge ports
DC Design Details

iSCSI Storage Considerations

- Core iSCSI Design Considerations

 Reserved fabric capacity is fundamental design consideration

 FC and FCoE networks tend towards very low levels of over-subscription (4:1 to 12:1 are common)

 QoS configuration for iSCSI needs to be considered in context of the oversubscription, topology and capabilities of attached devices
iSCSI and DCB

DCBX Overview - 802.1Qaz

- Negotiates Ethernet capability’s: PFC, ETS, CoS values between DCB capable peer devices
- Simplifies Management: allows for configuration and distribution of parameters from one node to another
- Responsible for Logical Link Up/Down signaling of Ethernet and Fibre Channel
- DCBX is LLDP with new TLV fields
- The original pre-standard CIN (Cisco, Intel, Nuova) DCBX utilized additional TLV’s
- DCBX negotiation failures result in:
 - per-priority-pause not enabled on CoS values
 - vfc not coming up – when DCBX is being used in FCoE environment

```
dc11-5020-3# sh lldp dcbx interface eth 1/40
Local DCBXP Control information:
Operation version: 00  Max version: 00  Seq no: 7Ack no: 0
Type/ Subtype  Version  En/Will/Adv Config
006/000  000  Y/N/Y  00
```

iSCSI and DCB
PFC (802.1Qbb) & ETS 802.1Qaz

- Nexus 5000/5500 and F1/F2 line cards support DCB (PFC, ETS and DCBX)
- Which mechanisms are beneficial for iSCSI
- Core requirement is ensuring capacity (ETS)

Offered Traffic

<table>
<thead>
<tr>
<th>t1</th>
<th>t2</th>
<th>t3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G/s</td>
<td>3G/s</td>
<td>2G/s</td>
</tr>
</tbody>
</table>

10 GE Link Realized Traffic Utilization

<table>
<thead>
<tr>
<th>t1</th>
<th>t2</th>
<th>t3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G/s</td>
<td>HPC Traffic 3G/s</td>
<td>2G/s</td>
</tr>
<tr>
<td>3G/s</td>
<td>Storage Traffic 3G/s</td>
<td>3G/s</td>
</tr>
<tr>
<td>3G/s</td>
<td>LAN Traffic 4G/s</td>
<td>5G/s</td>
</tr>
</tbody>
</table>
DC Design Details

NAS/NFS Storage Considerations

- Speed mismatch between 10G NAS and 1G server requires QoS tuning
- **Nexus 2248TP-E** utilizes a 32MB shared buffer to handle larger traffic bursts
- Hadoop, NAS, AVID are examples of bursty applications
- You can control the queue limit for a specified Fabric Extender for egress direction (from the network to the host)
- You can use a lower queue limit value on the Fabric Extender to prevent one blocked receiver from affecting traffic that is sent to other non-congested receivers (“head-of-line blocking”)

Tune 2248TP to support a larger burst (NAS, …)
Tune 2248TP-E to support a extremely large burst (Hadoop, AVID, …)
DC Design
SAN Storage Extension – MDS 9221i

- 1/2/4/8 FC interfaces
- Up to 4095 BBCredits on a FC port
- Integrated FCIP
- Traffic Engineering with VSANs

SAN Services:
- Encryption (FCIP)
- Compression (FCIP)
- I/O Acceleration (FC and FCIP)
- Remote Site Data Migration (DMM)
SAN Extension
Buffer Credits – Distance & Link Speed

MDS 9148 Fibre Channel Ports

<table>
<thead>
<tr>
<th>Speed (Gbps)</th>
<th>Distance (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
</tr>
<tr>
<td>8</td>
<td>31</td>
</tr>
</tbody>
</table>

Nexus 5000/5500 Fibre Channel Ports

<table>
<thead>
<tr>
<th>Speed (Gbps)</th>
<th>Distance (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>
SAN Extension
Unified Fabric Links

• Converged Fabric, sharing a common 10G wire (or non vPC port channel) for FCOE and IP traffic is supported in a square topology (FCoE links can be up to 3 km on Nexus 5500)

• vPC not currently certified for the ‘DCI’ links
Data Center Designs for Midmarket and SMBs: 100 – 300 ports

This update to this section will focus on:

• The recommended N5K/N2K design scenarios for SMB customer (from 100 to 300 ports)
• L2 and L3 capabilities (vPC, first-hop redundancy in N5K)
• Servers connectivity: CNAs/FCoE, and classical (NIC+HBA) scenarios
• SAN (iSCSI, FCoE and FC) and NAS deployment scenarios
• DC Services insertion (ACE appliance, WAAS, ASA, IPS, NAM ...etc)
• Server Access layer security for (virtual machines and bare-metal servers)
Services Design Guidance
Smart Business Architecture (SBA)

- Updated twice a year (last one was August 2011)
- Tested in SBA labs as a complete architecture
- Overview, configuration files and deployment guides

DC Design Details
ACE 4710 – Dual homed vs. One armed mode

- Bridge contexts use IEEE 802.3d (“slow” STP)
- ACE 4710 won't allow configuring the same vlan on two trunks
Pros
• Layer 2 adjacency with the real servers is not required
• Allows direct server traffic to bypass ACE when load-balancing is not required

Cons
• Client source IP address is masked by ACE due to Source NAT (no PBR on 5500-L3)
• Requires HTTP header insert as workaround to preserve client source IP address
DC Design Details

ACE 4710 – Bridged or Routed Mode

Routed is more common
Bridged if IP address can’t be changed easily

Pros
• Simple topology
• Easy configuration

Cons
• ACE does not support any dynamic routing protocols (static only)
• All server traffic must pass through ACE, whether or not load-balancing is required
DC Designs with WAAS
Nexus 5500 with inline cluster

- Inline cluster works independent of the WAN router and/or Nexus switching
- Mostly used on Small and Mid-size DCs
- SP owned WAN router (unable to get WCCP or PBR services from carrier)
- Two inline cards supported on WAE-7371, WAE-7341, and WAE-674 (up to 4 router connections per inline cluster)
- WAE-7371, WAE-7341, WAE-674, and WAVE-574 with one inline card support 2 router connections
- Supports asymmetric traffic

DC Designs with WAAS
Nexus 5500 Leveraging ASR WCCP

- WCCP
 Needs configuration on edge routers (ASR)
 Up to 32 WAE/WAVE
 Supports asymmetric traffic
 N5K has its WAAS and router ports running in Layer 2 with routing deployed through SVIs (peering to ASR via SVI peering over L2)
 Layer 2 is necessary to make the routers and WAE/WAVE discover their WCCP services
DC Designs with Firewalls
Nexus 5500 Leveraging ASA

• Support for 802.3ad port channels
• Compatible with Nexus vPC
• New Feature in ASA 8.4(1)/ASDM 6.4(1)
• EtherChannel support (ASA 5510 and higher) up to 48 x 802.3ad EtherChannels of eight active interfaces each.

Data Center Designs for Midmarket and SMBs: 100 – 300 ports

This update to this section will focus on:

• The recommended N5K/N2K design scenarios for SMB customer (from 100 to 300 ports)
• L2 and L3 capabilities (vPC, first-hop redundancy in N5K)
• Servers connectivity: CNAs/FCoE, and classical (NIC+HBA) scenarios
• SAN (iSCSI, FCoE and FC) and NAS deployment scenarios
• DC Services insertion (ACE appliance, WAAS, ASA, IPS, NAM ...etc)
• Server Access layer security for virtual machines
DC Design Details
Virtual Machine Security

- Provisioning and Security Policy for virtual machines tightly coupled with the Nexus 1000v
 Nexus 1000v provides for NX-OS port features at the connection of the Virtual Machine
 vPath provides a port level redirection capability to service appliances (VSG, vASA, vWAAS)
 VXLAN defines secure closed user groups amongst virtual machines
Cisco Nexus 1000V
Consistent Architecture across Hypervisors

Consistent architecture, feature-set, network services & Nexus 1010 ensures operational transparency across multiple hypervisors.
Cisco Nexus 1000V

What is vPATH?

- Intelligence build into Virtual Ethernet Module (VEM) of Cisco Nexus 1000V virtual switch (version 1.4 and above);

- vPATH has the following main functions:
 - Intelligent Traffic interception for Virtual Service Nodes (VSN): vWAAS & VSG;
 - Offload the processing of Pass-through traffic (from vWAAS, for instance);
 - ARP based health check;
 - Maintain Flow entry table.

- vPATH is Multitenant Aware

- Leveraging vPATH can enhance the service performance by moving the processing to hypervisor

- The VSN interested packets are redirected by vPATH by encapsulating the original frame and forwarding to service appliance
vPATH Interception – Packet Flow

Packet Flow

1. Packet destined towards the Server entering the Physical Switch.
2. Physical Switch forwards the packet to VMWare ESX1 (where the destination Server Virtual Machine resides)
3. VEM determines that the packet has to be forwarded to Server VM
4. But the Server VM’s Port Profile has vPATH interception. The incoming L2 frame is encapsulated with vPATH header which says redirect the packet to VSN 1. The interception packet is sent in different VLAN (Nexus 1000v Service VLAN)
5. Since the VSN is located in another ESX host, the encapsulated VPATH packet is switched from ESX 1 to ESX2.
6. VSN 1 receives vPATH encapsulated packet, decapsulates the outer vPATH header, processes the inner frame and sends the “services processed” packet out with vPATH encapsulation (with dest mac as ESX1 Nexus1000v vSwitch vPATH MAC Addr) in Service VLAN.
7. The vPATH Encapsulated return packet switched from ESX2 to ESX1. The vPATH Header is decapsulated by VEM and inner packet is forwarded to the specified destination without further vPATH interception (in the Server VLAN)
8. Server VM receives the packet.
VSG and vASA
Policy Enforcement

1. VSG Security Policy leverages
 - Network Attributes
 - vCenter VM Attributes
 - Custom Attributes
 - Zones

NAT
IPSecVPN (Site-to-Site)
Default Gateway
DHCP
Static Routing
Basic Stateful Protocol

© 2010 Cisco and/or its affiliates. All rights reserved.
Virtual Extensible Local Area Network (VXLAN) Isolation for VM’s

- Ethernet in IP overlay network
 - Entire L2 frame encapsulated in UDP
 - 50 bytes of overhead
- Include 24 bit VXLAN Identifier
 - 16 Million logical networks
- VXLAN can cross Layer 3 (IPv4 currently)

Tunnel between VEMs
- VMs do NOT see VXLAN ID
- IP multicast used for L2 broadcast/multicast, unknown unicast
- Technology submitted to IETF for standardization (Cisco, VMware, Citrix, Red Hat, Broadcom, Arista, and Others)

VXLAN Encapsulation

```
<table>
<thead>
<tr>
<th>Outer MAC DA</th>
<th>Outer MAC SA</th>
<th>Outer 802.1Q</th>
<th>Outer IP DA</th>
<th>Outer IP SA</th>
<th>Outer UDP</th>
<th>VXLAN Header (8 bytes)</th>
<th>Inner MAC DA</th>
<th>Inner MAC SA</th>
<th>Optional Inner 802.1Q</th>
<th>Original Ethernet Payload</th>
<th>CRC</th>
</tr>
</thead>
</table>
```

Flags 8 bits | VXLAN Network Identifier (VIN) 24 bits | Reserved 24 bits | Res. 8 bits
VM-FEX Portfolio
VMware, KVM and Hyper-V (future)
DC Designs

Summary of 100 - 300 ports

<table>
<thead>
<tr>
<th>Feature</th>
<th>Opt A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server form factor</td>
<td>Rack/Blade</td>
</tr>
<tr>
<td>FEX & FET</td>
<td>✓</td>
</tr>
<tr>
<td>Adapter-FEX & VM-FEX</td>
<td>✓</td>
</tr>
<tr>
<td>vPC</td>
<td>✓</td>
</tr>
<tr>
<td>Multi-hop FCoE, iSCSI, NAS</td>
<td>✓</td>
</tr>
<tr>
<td>Unified Ports & FC Targets</td>
<td>✓</td>
</tr>
<tr>
<td>Virtualized Security (vPath, VXLAN)</td>
<td>✓</td>
</tr>
<tr>
<td>Services (ACE, ASA, WAAS)</td>
<td>Compatible</td>
</tr>
<tr>
<td>MPLS, OTV & LISP</td>
<td>ASR1000</td>
</tr>
</tbody>
</table>

- **Design Strengths:** Leverages a single Data Center switch to support ‘all’ storage and compute connectivity
- **Considerations:** May need to consolidate the LAN and Data Center L3 into a Nexus 5596 if budget constraints exist