Optical and HFC Platform Update

Mike Jensen
Systems Engineer

September 16, 2015
Agenda

• Optical Platform Overview
• Architectural Drivers
• Prisma II Modules
• SuperQAM XFP
 • XDP Chassis
• EDR – Enhanced Digital Return
• Optical Nodes and Amplifiers
 • OEM Partnership
Access Networks

1550nm Externally Modulated Transmitters and EDFAs Are Generally Used Here (Prisma II)

1310nm Transmitters Are Generally Used Here (Prisma II or Prisma II XD)
Prisma II Chassis Platforms Overview

- **Prisma II**
 - Full height - 6 RU
 - Highest flexibility/performance platform
 - 12 module slots, HD host cards double capacity
 - AC or DC powering
 - Full platform monitoring
 - Broadcast Tx, 1310, MW, LRMW, SuperQAM, XFP, RFoG, EDFAs, Rx, bdr, EDR, Optical SW

- **Prisma II XD**
 - Medium height - 3 RU
 - High density platform
 - 16 module slots
 - Low power consumption, 7.5W per module
 - AC or DC powering
 - Full platform monitoring
 - Broadcast Tx, 1310, MW, SuperQAM, XFP, EDFAs, Rx, EDR, Optical SW

- **Prisma II – 1RU**
 - Low profile - 1 RU
 - Highest density platform
 - 10 XFP module slots
 - AC or DC powering
 - Full platform monitoring
 - Fixed and Tunable SuperQAM
Drivers for Cable Optical Architectures

- **Distance** – are these short links, or is it long haul?
- **Analog Loading** – Full, Partial or All Digital?
- **Fiber** Rich vs. Fiber Poor
- **CAPEX** – what problem are you trying to solve, and what is the least expensive architecture?
Solution Selection ~ Wedge, Iron or Wood?
1310 Forward Tx

- DOCSIS 3.1 ready – supporting 1.2 GHz
- HD form factor allowing up to 26 transmitters in a Prisma II Chassis, or 16 in the Prisma XD
- Dual RF inputs for broadcast video and narrowcast content
- Optical Output Power
 - Standard: 3, 5, 6, 8, 10, 12, 14, and 15 dBm
- Excellent distortion performance:
 - CTB: -69 dBC, CSO: -64 dBC
- Low power consumption – 7.5W per Tx

New Product!
Avail now
SuperQAM Tx (C-band)

- DOCSIS 3.1 ready – supporting 1.2 GHz
- 10 dBm optical output power
- Reach distances of over 100 km with amplification
- ITU 40 and iWDM (16) WL plans supported

- HD form factor allows up to 26 transmitters in a Prisma II Chassis (16 in the Prisma XD)
- Supports both overlay and direct fed architectures – one transmitter!
- Low power consumption – 7.5W per Tx

New Product! Avail now
Long Reach Multiwave (C-band); LRMW

- Forward 1GHz transmitter, optical output powers of 8dBm and 12.5dBm
- Reach distances of over 100 km with amplification
- iWDM wavelength plan, up to 16 wavelengths
- Supports full 78 ch analog loading
- Single-wide Prisma II application module allowing up to 13 per chassis
 - Not an application module for the Prisma II XD
- Longest reach, highest performance 1GHz transmitter
PII 1550nm EM Broadcast TX

Overview

The Prisma II 1550 nm Externally-Modulated Transmitters (EMTs) are plug-in modules for the Prisma II platform. These transmitters are ideally suited to transport broadcast signals over large distances.

Features

- 1 GHz RF passband
- Statue LEDs indicate module condition and simplifies troubleshooting
- Superior Stimulated Brillion Scattering (SBS) suppression
- RF predistortion for maximum CNR while maintaining excellent CTB and CSO performance
- User selectable Automatic Gain Control (AGC)
- Nonvolatile storage of preset settings
- -20 dB test point
- Optical Output Power: 10 dBm
- Performance: 78 NTSC + 200 QAM: CNR: 51.5, CSO -65, CTB -65

Transmitter Options

- Long Reach Tx: Pre-tuned for 60km
- Extended Reach Tx: Pre-tuned for 80km
- High Performance Supertrunk Long Haul Tx
- Available in ITU or Non ITU (ITU available only on select models)
PII 1550nm EDFA – standard versions

Overview

The Prisma II Optical Amplifiers offer a broad range of output powers in stand-alone modules. Operating over a wide range of input powers from a Prisma II 1550 nm Transmitter or another 1550 nm Optical Amplifier upstream, the amplifier modules provide reliable, high-performance transmission of voice, video, and data signals for all optical networking needs.

Features

- Input Wavelength Range: 1530 nm to 1560 nm
- Low Noise Figure: approx 5 dB
- Single amplifier modules with various output power and number of output port options
- Ultra-high output power potential
- Nonvolatile storage of pre-set operating parameters simplifies installation
- Master / Slave Redundancy
Overview

The Prisma II Configurable Erbium Doped Fiber system consists of one high-power 9 by +17 dBm pre-amplifier module and one post-amplifier module. The post-amplifier module is available with various number of output port and power output options. For flexibility in network expansion, add-on post-amplifier modules can be added to the configurable system. Up to nine (9) additional post-amplifier modules can be used with the configurable system for outstanding network expansion capabilities. Post-amplifier modules require the high optical input provided by the pre-amplifier modules of the configurable system.

Features

- Configurable amplifier system with one pre-amplifier and added amplifier modules
- Various number of output port options for both pre-amplifier and modules
- Ultra-high output power potential
- Nonvolatile storage of pre-set operating parameters simplifies installation procedures
- Master / Slave Redundancy
PII HD 300 MHz Return Path Receiver

Features

- DOCSIS 3.1 ready
- 5 to 300 MHz pass band
- Two versions:
 - Standard input: +2 to -18 dBm
 - Low input: -10 to -25 dBm
- Operational with both 1310 or 1550 wavelengths
- Status LEDs indicate module condition and simplifies troubleshooting
- RF output, Typ. 58 dBmV (composite)
- Noise equivalent power (0-50 C):
 - Standard input: < 2.5 pA/sqr root Hz
 - Low input: < 1.2 pA/sqr root Hz
- Two (2) receivers per module
SuperQAM XFP

- **Concept**
 - SuperQAM transmitter redesigned into an XFP form factor

- **Highlights**
 - Up to 153 digital QAMs per transmitter (all digital….)
 - 50% less power consumption, less than 3.5 W per module
 - Future migration path to NG-CMTS with pluggable optics – part of the CCAP initiative
 - 10x XFP module in new 1RU chassis
Prisma II XDP Chassis

- 10 XFP Ports per RU
- Fully Redundant AC and DC Power Options
- Ethernet port for SNMP monitoring
- One NC RF input per XFP
- Shared BC port (not shown)
- 12 dBmV for each (Bc and Nc)
- Field replaceable fans (x3)
- USB and Ethernet ports for SNMP monitoring
- ICIM/LCI Support (future release)

- Newest chassis in the Cisco Prisma portfolio
- Industry leading power and density
- DOCSIS 3.1 Ready (1.2 GHz)
Optics Migration into NG-CMTS

Today
Single Transmitter in High Density format

Tomorrow
Dual XFP Transmitter in High Density format

Day After Tomorrow
XFP Transmitter Plugging directly into CMTS

- **Today**
 - Prisma analog optics
 - 16 1310/1550 TX in 3 RU

- **Tomorrow**
 - Prisma with NG XFP pluggable optics
 - 32 NG QAM TX in 3 RU

- **Day After Tomorrow**
 - Pluggable optics redistributed in NG-CMTS
 - Saves space, power, eliminates coax combining

© 2013-2014 Cisco and/or its affiliates. All rights reserved.
Cisco EDR HD Reverse Rx Single 2:1

- Receiver mode configuration is set by entering mode ID numbers in the Prisma II Web User Interface System.
- Single 2:1 mode supports one optical Rx input producing two independent RF streams.

Diagram:
- RF1a and RF1b are inputs to the EDR Node or P2 TX, which forwards two streams to PRX85, producing RF1a and RF1b.
Cisco EDR HD Reverse Rx

- **Prisma II HD Reverse Rx**
 - Improved density with Prisma II HD form factor and LC-PC connectors
 - Prisma II XD chassis
 - Prisma II chassis using host module

- **Single HD Rx module**
 - Six configurable receive modes
 - Simplified inventory management
 - Supports reverse splits of 40, 42, 55, 65 and up to 85 MHz

- **Small form factor OPM**
 - Standard range (21 dB link)
 - Extended range (28 dB link)
Prisma II 2:1 EDR Tx

- Prisma II Host Module with integrated 2:1 (or 1:1) EDR Tx
- Supports a hub-based BDR/EDR architecture for Regional MSOs in US and international markets
- Supported in P2 std chassis and XD
- 18x CWDM and 45x DWDM available
Cisco and Vector Partnership

- **OEM Partnership in 2015**
 - Vector 25 years in the industry in Europe
 - Adapted to the European Market

- **TTM on Products and Technologies**
 - VECTOR Engineering and Cisco Technology
 - Nodes and Amplifiers Docsis 3.1 /1.2 GHz

- **Agility to Market**
 - Locally based in Europe

- **Orderable soon in CCW**

- **Information about Vector:** www.vector.net
Node Portfolio

Cisco Compact

Vector Bootstrap

Vector Hargon
BOOSTRAL 7910
Segmentable optical node 2x4, 2 active outputs, 1.2 GHz / 200 MHz

1.2 GHz technology
An extended bandwidth available in downstream up to 1.2 GHz; DOCSIS 3.1 standard compliant

200 MHz technology
A possibility of extending bandwidth in upstream up to 200 MHz; DOCSIS 3.1 standard compliant

GaN Technology
The output parameters for analog and digital carriers improved for lower power consumption

Electronic control
A quick and uninterrupted device configuration; the large stocks of the plug-in modules not needed anymore

VMC (VECTOR Mobile Configuration)
Convenient and user-friendly configuration through mobile devices

LED Indicator
Easy configuration by using buttons and LED Indicator

NMS transponder (DOCSIS/EuroDOCSIS)
Reduced operating costs thanks to the remote monitoring and configuration

VIG (VECTOR INGRESS GUARD) system compliant
Verification and elimination of the source of ingress in the network

Integration of optical passives
A possibility of installing CWDM/DWDM/WDM filters inside the housing

GREEN mode – Intelligent Power Consumption
A significant reduction of power use thanks to optimization of its consumption

© 2013-2014 Cisco and/or its affiliates. All rights reserved.
www.vector.net
Downstream Configuration:
Interstage gain control (AT1, AT2): 0 ÷ 20, step 0.5 dB
Interstage slope control (EQ1, EQ2): 0÷20, step 0.5 dB
Output (Bridge ports) slope control (EQ3, EQ4): 0 ÷ 20, step 1.0 dB

Upstream Configuration:
Input gain control (AT3, AT4, AT5, AT6): 0+20, step 0.5 dB
Ingress switches: 0, -6, -∞ dB
BOOSTRAL 7910
Parameters

<table>
<thead>
<tr>
<th>Forward Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Optical input power range</td>
</tr>
<tr>
<td>Optical AGC range</td>
</tr>
<tr>
<td>Flatness</td>
</tr>
<tr>
<td>Equivalent Input Noise Current</td>
</tr>
<tr>
<td>Output level</td>
</tr>
<tr>
<td>CTB ≤ - 60 dBC</td>
</tr>
<tr>
<td>CSO ≤ - 60 dBC</td>
</tr>
<tr>
<td>Digital Output level</td>
</tr>
<tr>
<td>CNIK = 41.5 dB</td>
</tr>
<tr>
<td>Gain limited output level</td>
</tr>
<tr>
<td>Number of outputs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Flatness</td>
</tr>
<tr>
<td>Optical output power</td>
</tr>
<tr>
<td>Min RF input level to get 10% OMI</td>
</tr>
<tr>
<td>NPR / Dynamic range</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return loss</td>
</tr>
<tr>
<td>AC voltage range</td>
</tr>
<tr>
<td>Max. current for RF / AC IN ports</td>
</tr>
<tr>
<td>Power consumption</td>
</tr>
<tr>
<td>Operation temperature range</td>
</tr>
<tr>
<td>Optical connectors</td>
</tr>
<tr>
<td>RF connectors</td>
</tr>
<tr>
<td>Protection class</td>
</tr>
<tr>
<td>Dimensions (W x L x H)</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>

1. In range 85 - 600 MHz, ± 0.75 dB in range 600-1000 MHz, ± 1.0 dB in range 1000 - 1218 MHz.
2. Typical value; the worst case 5 dB / kHz
3. According to EN 200853-3, 5 dB slope between 85 and 902 MHz, 42 channels CENELEC, typ. value
4. Full digital load 258 - 1218 MHz, 120 channels CAM 258, 12 dB slope
5. 4/40 channel, 0.25% OMI, ≈ 7 dBm optical input level, 1310 nm
6. Undesired split with splitter / tap out
7. Up to 10 MHz, ±0.75 dB up to 204 MHz
8. For CWDM lasers, up to 19 wavelengths are available
9. With AT5/AT4/AT6/AT7+CD Video regarding to US configuration
10. Measured with 12 dB link (15 km filter + loss), 50 MHz BW noise level. E/H2 > 2A / Hz
11. In 5 - 65 MHz, 18 dB for < 40 MHz, 18 dB - 1.5 dB / oct for > 40 MHz, but > 11 dB
12. 50 VAC Configuration: 2x FWD Rx. 4x 3 dBm CWDM lasers, EDCM

Unless otherwise specified, the whole specifications are tested with 85R5 diplexer filters installed, at room temperature 25°C and present typical values.

11/05/2015 Specifications are subject to change without notice.
BOOSTRAL 7910

Front view
HARGON 351
Line extender amplifier

1.2 GHz technology
An extended bandwidth in downstream up to 1.2 GHz; DOCSIS 3.1 standard compliant

200 MHz technology
A possibility of extending bandwidth in upstream up to 200 MHz; DOCSIS 3.1 standard compliant

JXP configuration
A simple and cost-effective configuration of devices with the plug-in modules

VIG (VECTOR INGRESS GUARD) system compliant
Verification and elimination of the source of ingress in the network

FULL SUPPORT FOR D 3.1 (1.2 GHz / 204 MHz)
LOW POWER CONSUMPTION
COMPACT HOUSING
TWO RF OUTPUTS
HARGON 351

Diagram

Downstream Configuration:
- Forward gain control (AT1, AT2): 0 ÷ 20 step 1 dB
- Forward slope control (EQ1, EQ2): 0 ÷ 20 step 1 dB
- AUX: 0 – 20 step 1 dB
- CS: 3.5; 6.5; 9.5 dB

Upstream Configuration:
- Forward gain control (AT3, AT4, AT5): 0 ÷ 20 step 1 dB
- Forward slope control (EQ3, EQ4): 65 / 85 / 200 MHz
HARGON 351

Parameters

RF Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Channel</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>85...258...1218 MHz</td>
</tr>
<tr>
<td>Gain @ 1.2 GHz</td>
<td>40 ± 1 dB</td>
</tr>
<tr>
<td>Noise figure</td>
<td>< 4.5 dB</td>
</tr>
<tr>
<td>Flatness</td>
<td>= 0.75 dB</td>
</tr>
<tr>
<td>Output level</td>
<td>114 dBµV / 114 dBµV</td>
</tr>
<tr>
<td>Input testpoint</td>
<td>-20 ± 1.0 dB</td>
</tr>
<tr>
<td>Output testpoints</td>
<td>-20 ± 0.5 dB</td>
</tr>
<tr>
<td>Reverse Channel</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>5...65...204 MHz</td>
</tr>
<tr>
<td>Gain</td>
<td>26 dB ± 1 dB</td>
</tr>
<tr>
<td>Noise figure</td>
<td>< 6.5 dB</td>
</tr>
<tr>
<td>Flatness</td>
<td>= 0.75 dB</td>
</tr>
<tr>
<td>NPR / Dynamic range</td>
<td>50 dB / 23 dB</td>
</tr>
</tbody>
</table>

Others

- **Voltage range:** remote powering 30 - 65 V AC
- **Max. current for RF ports / AC IN:** 8A / 8A
- **Return loss:** > 18 dB
- **Power consumption:** < 13.5 W
- **Operation temperature range:** -40...80 °C
- **Connectors:** 3 x PG11
- **Protection class:** IP 67
- **Dimensions (W x L x H):** 218 x 204 x 87 mm
- **Weight:** 1.5 kg

1. Typical values up to 1 GHz, 6,5 dB up to 1,2 GHz.
2. Valid after starting frequency 10% above IF roll off and up to 1218 MHz.
3. Typical value, According to EN50083-3, 9 dB Interstage slope, 42 channels CENELEC.
4. Full digital load 255 - 1218 MHz, 120 channels QAM 256, 12 dB slope.
5. Typical value up to 204 MHz.
6. For 5...60 MHz with DF 05-85 T.
7. NPR @ -9 dBµV / Hz, measured 5...204 MHz with 60 MHz loading.
8. Is 5...65 MHz; 18 dB for t = 40 MHz, 18 dB -1.5 dB / oct for t > 40 MHz, but not worse than 11 dB.

Unless otherwise specified, the whole specifications are tested with 65/65 diplex filters installed, at room temperature 25°C and present typical values.

11/09/2015 Specifications are subject to change without notice.
HARGON 351
Key HFC Takeaways

- Cisco has the best Access strategy in the industry, with an unmatched end-to-end portfolio vision

- Pluggable Optics will reduce power and rack space, and ultimately provide a path to directly plugging into the cBR platform

- Partnerships to bring Future Proof Network Evolution
Thank you.