

IP NGN Backbone Routers for the Next Decade

Josef Ungerman Consulting SE, CCIE #6167

- Motivations for IP NGN
- Trends is IP/MPLS Core Design
- Router Anatomy Trends
- Latest Product Updates
- Switching Fabric Technologies
- Network Processor Technologies

SP Infrastructure Problem Definition Exponential Growth and Evolving Traffic Mix

IPv6 and IPv4 Address Exhaustion
 More Issues: LTE moving from circuits to packets
 new access technologies – WiFi, FTTX

Animated slide

Challenge of Shifting Environment

Monetization New revenue streams

Profitability

Traffic

Revenue

Optimization Efficient delivery

Network Architecture Trends

IP NGN = reducing networks and layers

IP NGN = reducing networks and layers

IP NGN – optimization trends

Router Bypass Techniques

- O-E-O regeneration avoided as much as possible no need for OTN Switching cross-connects in CEE countries
- Static long lambdas are used no need for dynamic G.MPLS in the static Internet backbone

- Importance of OTN interfaces in routers (IPoDWDM) STM-256 (OTU3) and 100GE (OTU4) Real-Life Example: Warszawa-Poznan, 613km 40G over Siemens 10G WDM

Link Consolidation – 100GE

•up to 64x TGE today (32x deployed)

- dynamic adaptable hash (also 3,5,7,11 links)
- 7-tuple hash for equal load-sharing

100GE

•throughput (100GE is like a bundle 12-14 TGEs)

- no hashing inefficiencies, easy troubleshooting
- contribution HDTV is 1.24Gbps single stream!

100GE

40GE

Node Consolidation Techniques

Cluster (ASR9000)

Key motivation is in the Access edge: **Simpler Access Dual-homing**

• scaling the L2/L3 control plane (not data plane)

eage:

Multi-Chassis (CRS)

Key motivation is in the Core: Simpler Core PoP

- scaling the non-blocking data plane
- back-to-back, 2+1, 8+2, etc.

Optimization: How to move bits cheaper... *...reduce opex, capex, and keep reasonable quality?*

- 1) Reduce the number of networks
 - IP NGN = single multiservice network
- 2) Reduce the number of layers
 - IP NGN = IP/MPLS + DWDM

3) Reduce the number of nodes

Direct Links = huge broadband traffic takes shortest path

4) Reduce the number of links

MPLS Technology = statistical multiplex and hierarchy

5) Innovate – make use of modern technologies

Moore's Law = Lower TCO, Price/Gigabit, Watt/Gigabit

Core Trends – Appeal of Innovations CRS-1 (2005) vs. CRS-3 (2010)

Core Trends – Appeal of Innovations

Routers: 23% Cumulative Average \$/Gbps Drop per year / fewer ASICs Optics: \$/G stays flat (best case) or <u>increases</u> from one technology to the next

Router Anatomy Trends

2004: Cisco CRS-1 – 40G (STM-256) per slot Focus on Quality (scale, modularity, resiliency)

2010: Cisco CRS-3 – 140G per slot Focus on Quality (scale, modularity, resiliency)

2009: Cisco ASR9000 – 8x 10GE per slot

Compact Router/Switch

2011: Cisco ASR9000 – 2x 100GE per slot Compact Router/Switch

2003: Cisco 7600 – 4x 10GE per slot

The Switch/Router

2003: Cisco 7600 – 4x 10GE per slot The Switch/Router

How to make a router cheaper... ...and keep a reasonable quality?

- 1) Compact Anatomy
 - RSP, Route/Switch Processor (instead of RP and FC)
 - Ethernet-oriented Linecard (non-modular, less memory)
- 2) Linecard Architecture
 - Multiple smaller NP's (eg. 4x 10G instead of 1x 40G)
 - One NP is shared for Rx and Tx (not dedicated NP's per Rx and Tx)
 - Multiple smaller Fabric Ports (eg. 2x 20G instead of 1x 40G)

3) Special Core-facing Linecards

- 8/16 queues per port (instead of thousands)
- lower-scale NP (no need for thousands of interfaces)
- licenses for features that not everybody uses (eg. VPN, OTN, scale)

4) Oversubscribed Cards

2:1 ingress overbooking (eg. PON OLT Aggregation)

IP NGN Routers Update

Future

^{2 2010 Cisco and/or imaximum BW¹/ Protected BW with a failed fabric element}

CRS-3 Interface Modules (PLIMs)

1x 100GBE

- Line-rate performance (100Gbps)
- CFP optics (LR4, 10km)

14x 10GBE-WL-XFP

- Line-rate performance (140Gbps)
- Configurable LAN/WAN PHY

20x 10GBE-WL-XFP

- Oversubscribed (140Gbps)
- Configurable LAN/WAN PHY

Each PLIM requires FP140 or other forwarding card

CRS-3 and CRS-1 Forwarding Cards

MSC-40 – High-speed edge @ 40Gbps
 H-QoS (8,000 queues), 800 interfaces, WAN
 FP-40 – IP/MPLS Core & Peering @ 40Gbps

Per-port QoS, IP/MPLS, ACL, Netflow...

MSC-140 – High-speed edge

- H-QoS (64,000 queues), scale (12,000 vlans)
- FP-140 IP/MPLS Core & Peering
 - Per-port QoS, IP/MPLS, ACL, Netflow...

LSP-140 – MPLS Core P

Per-port QoS, MPLS, IP Multicast, limited IP

IPv6 Transition: CGSE Carrier-Grade Services Engine PLIM

Introducing the new engine for **massive** Cisco CGv6 deployments (XR 3.9.1)

- 20+ million active translations
- 100s of thousands of subscribers
- 1+ million connections per second
- 20Gb/s of throughput
- XML API (eg. port-forwarding)
- Netflow V9 translation logging
- Security

IPv6 Transition solution feature set

- Carrier-Grade NAT44 (3.9.1)
- NAT64 stateless (3.9.3)
- 6rd BR (3.9.3)

Cisco CGSE

- NAT64 stateful (4.1.2)
- DS-Lite, 4rd, dIVI planned

isco Public 28

now: Cisco CRS

2011: XR12K, ASR9K

Cisco ASR9000 Edge and Aggregation

	-3500 systems -500 customers			
	·····	ASR-9006	ASR-9010	
Chassis	# of Slots Height	4 (+2 RSP) ¼ rack	8 (+2 RSP) ½ rack	
2009	Linecard [Gbps] System [Tbps]	120/80 .960	120/80 1.92	
2012	Linecard [Gbps] System [Tbps]	240 1.92	240 3.84	

Future

© 2010 Cisco and/or imaximum BW/ Protected BW with a failed fabric element

ASR 9000 Line Cards

Fixed Ethernet LCs:

- Line Rate: 40xGE, 2x10GE+20xGE, 4x10GE, 8x10GE
- Oversubscribed: 8x10GE (60G), 16x10GE (90G/120G)

Ingress/Egress H-QoS, Netflow, IPoDWDM (G.709, FEC, XFP), Video monitoring, SyncE, E-OAM

L2 Scalability: 1MMACs, 8kBDs, 32kPWs L3 Scalability:1M routes, 4kVRFs, 4kL3intfs

3 LC versions (16x10GE OS "Medium Queue" only):

Line Card		EFPs	Egress Queues	Policers	Buffering	
Low Queue	-L	4k	8/port	8k	50ms	
Medium Queue	-B	16k	64k	128k	50ms	
High Queue	-E	32k	256k	256k	150ms	
+licenses: L3VPN (/LC), G.709 (/LC), vidmon (/chassis)						

SIP-700 + 2x SPA 2-port ChOC12

Modular LCs: SIP-700 + max 4x SPA •QFP based •20Gbps Full Duplex •Ph1: ChOC12

ASR 9000	#10GE LR	#10GE OS
6-slot	32	64
10-slot	64	128

How to make a router cheaper... ...and keep a reasonable quality?

- 1) Compact Anatomy
 - RSP, Route/Switch Processor (instead of RP and F
 - Ethernet-oriented Linecard (non-modular, less
- 2) Linecard Architecture
 - Multiple smaller NP's (eg. 4x 10P)
 - One NP is shared for Rx approximately
 - Multiple smaller Fabric
 20G instead of 1x 40G)
- 3) Special Core-faci
 - 8/16 queu
 mstead of thousands)
 - lower _____ o need for thousands of interfaces)
 - lice ______atures that not everybody uses (eg. VPN, OTN, scale)

x 40G)

acated NP's per Rx and Tx)

- 4) Oversubscribed Cards
 - 2:1 ingress overbooking (eg. PON OLT Aggregation)

Architecture Matters!

Forwarding Architecture 101

SMP Network Processor Example 2010: CRS QFA (Quantum Flow Array)

Bad Network Processor Example (non-Cisco) ACL performance impact

IP Performance Range

No of ACE's on Ingress ACL / Packet Engine

Vendor is Saving on Memory – ACL memory is shared with Route memory

•Effect #1: ACL drastically impacts forwarding performance

•Effect #2: FIB cannot be hierarchical \rightarrow slow BGP convergence

Switching Fabric and Multicast Good vs. Bad IPTV Experience

<u>Good:</u>

Egress Replication

- Cisco CRS, 12000
- Cisco ASR9K, 7600

10Gbps of multicast eats 10Gbps fabric bw!

Bad: Binary Ingress Replication

- dumb switch fabric
- non-Cisco

10Gbps of multicast eats 80Gbps fabric bw! (10G multicast impossible)

Good Fabric Redundancy

CRS-1: 112G \rightarrow 98G \rightarrow 84G CRS-3: 226G \rightarrow 197G \rightarrow 169G

Bad Fabric Redundancy

Cell dip and Speedup

Quality Differences in 40G Solutions 40 ≠ 40

Impact of too many fabric connections "How to do 100GE?"

Summary

- Motivation for IP NGN = traffic growth
- How to make the Network cheaper
- How to make the Router cheaper
- Quality differences

There are Good, Good-enough or Bad Solutions.

Thank you.

#