

Data Center of the Future for the Connected Governent

Dexter I. Tan Manager, Systems Engineering Cisco Philippines

Connected Government Overview

Government Agency Challenges

- Improve operational efficiencies with proactive strategic planning, policy development, resource allocation, and administrative and financial planning
- Increase reach and responsiveness of citizen services
- Reduce operational costs
- Enhance quality and flow of information across chain of command
- Establish resilient network infrastructure that supports interagency collaboration

Agency Drivers for Change

Intra-agency/Interagency Collaboration

 Enable interoperable communications to support citizen services, agency collaboration, and joint operations

Infrastructure Sharing

• Foster sharing of physical resources and equipment (e.g., incident command vehicles, aircraft, etc.) across agencies to reduce costs

Information Sharing

• Improve operational efficiency by providing equal interagency access to critical information

Shared Services

Consolidate common government services to enhance operational efficiency

What Is a Connected Government?

- All branches of government support the controlled flow of information
- Services reach citizens when they need them, where they need them, and in the way they need them
- Services reach more citizens with less cost
- Government is engaged with citizens

Overview of Cisco Connected Government

 Reference network and application architectures with a corresponding roadmap

Uses government and private-sector best practices to enable improved information sharing across organizational boundaries

 Roadmap transitions governments through a multiphase approach, synchronized with process change

Yields realistic near-term benefits while making progress toward long-term objectives

Connected Government Assessment Tool

Compares department mission with IT capability

CONNECTED GOVERNMENT

CISCO

Cisco's Approach for Connected Government

Connected government is based on three key tenets of an intelligent information network

Connected Government

Integrating network with applications and network components

Providing resilience to maintain continuity and performance Adapting to changing needs of government programs

Cisco Connected Government Roadmap

- Sections illustrate common application of roadmap, but there are exceptions
 - For some agencies, sharing across groups within one agency is as complex as sharing between agencies
 - For these agencies, all six phases can be applied within the same agency before branching out between agencies

Work from inside out

2

intra-agency Focus

Enhances agency's ability to serve citizens wherever they are and whenever they need assistance

Phases 1 to 3

Interagency Focus

Enables connectivity, communication, and collaboration between agencies

Increases service effectiveness and public safety

Phases 3 to 6

SONA Roadmap for Achieving a Connected Government

	Intra-Agency Phases	
1	"Siloed" Operation	
2	Intra-Agency Collaboration	Each phase
3	Intra-Agency Integrated Remote Resources	moves closer to information-
	sharing goal and	
4	Interagency Collaboration	term operational value
5	Interagency Infrastructure Sharing	
6	Interagency Information Sharing/Shared Services	

Next Generation Datacenter for Government

Enabling a Virtualized, Consolidated, and Automated Data Center

Evolution of the Data Center

Automation

Dynamic Provisioning and Autonomic Information Lifecycle Management to Enable Business Agility

Business Policies On Demand Service-Oriented

* *

Network

Storage

Cisco Application Networking Services Comprehensive and Best-of-Breed Approach

Application Delivery Services: Any Application, Any Protocol—Anywhere

© 2007 Cisco Systems, Inc. All rights reserved.

Data Center Network Strategy and Evolution

Consolidation

÷.

1111

→爻

Operational Manageability

Investment Protection

Immediate Power Savings

- Service Velocity
- Opex Alignment
- Capital Asset Utilization Improvement

Integration

Single Unified Network Fabric

- Integrated Provisioning Capabilities
- Data Center Class
 Platforms
- Integrated
 Services

Automation

Net-Centric Server Evolution

- Virtual Machine
 Integration
- Inline Data Protection
- Separation of Policy and Forwarding

Getting the Journey Started

The Cisco Data Center Network

Primary Data Center

Improved TCO, Operations, Responsiveness

<u>Storage</u>

- 10+PB of storage, growing at ~50% per year
- TCO reduced from \$0.21/MB to \$0.01/MB over 6 years
- Managed storage per FTE increased from 25 TB to 600 TB
- Overall utilization increased from 20% to 68%
- \$71 Million in cost avoidance over last 4 years

<u>Servers</u>

- 14,250 servers, 3,780 applications
- 50% of existing, 75% of all new server environments virtualized
- 2,720 VM's installed
- \$19+ Million in cost avoidance and reductions to date
- Deployment time reduced from 8-12 weeks to 3 days

Virtualisation Crosses the Platform

Key to Responsive, Resilient, Efficient IT

served

VN-Link Brings VM Level Granularity

Problems:

- VMotion may move VMs across physical ports—policy must follow
- Impossible to view or apply policy to locally switched traffic
- Cannot correlate traffic on physical links—from multiple VMs

VN-Link:

Extends network to the VM
Consistent services
Coordinated, coherent management

21

Introducing Cisco Virtual Network Link

Two Complimentary Models to Address Evolving Customer Requirements

Cisco Nexus 1000V Components

Cisco Nexus 1000V Scalability @ FCS

- A single Nexus 1000V
 - 66 modules (2x Supervisors and 64x Ethernet Modules)
- Virtual Ethernet Module:
 - 32 physical NICs
 - 256 virtual NICs
- Limit Per Nexus 1000V
 - 512 Port Profiles
 - 2048 physical ports
 - 8,192 virtual ports (vmknic, vswif, vnic)

Nexus 1000V

Scaling Virtualization Across & Between Data Centres, Public/Private Environments

Network Implications

One network for storage Ethernet, IP, and HPC traffic

Virtualization Server, Switch, Network

Catalyst 6500

Nexus 7000

Move the Decimal Point 1G->10G->40G/100G Multi-terabit switch fabrics

Operational Continuity Modular OS; In Service

Software Upgrade, Integrated Diagnostics

© 2007 Cisco Systems, Inc. All rights reserved

Cisco Data Center Technology Strategy

Next Generation Data Center

Data Center Class OS

System Scalability

Unified Mgmt Architecture

Modular Switching

ToR Switching

Blade Switching

Example: Unifying the Data Center Fabric Many networks, One Infrastructure

Complexity, Cost, Power

Increased Efficiency, Simpler Operations

Cisco Confidentia

Key Benefits of Unified Fabric

Reducing complexity, Foundation for VM Mobility

Reduce overall DC power consumption by up to 8%. Extend the lifecycle of current data center.

Wire hosts once to connect to any network - SAN, LAN, HPC. Faster rollout of new apps and services.

Every host will be able to mount any storage target. Drive storage consolidation and improve utilization.

Rack, Row, and X-Data Center VM portability become possible.

Unified Fabric Savings Healthcare Customer Case Study

	Cisco LAN & WAN	Cisco Unified Fabric
Power Consumption	147 KW	63KW 57% Savings
Power & Cooling Costs	\$909,000	\$390,000 57% Savings
Qty of host Adapters (not including LOMs)	8,000	4,000 50% Savings
Qty of Cables	10,484	5,200 50.4% Savings
Qty of access ports	10,000	4,000 60% Savings

http://www.cisco.com/go/unifiedcomputing

cisco

See our current major technologies that bring integration and innovation to the data center.

Unified Fabric

Data Center Switching

Virtualization

Unified Computing

Unified Computing System

Unified Computing System Key Differentiation

Making the Journey – Pragmatic Adoption

Pragmatic Path to Next-Gen Infrastructure

Incremental, Low Risk Evolution via Best Practices

Design Best Practices for Virtualized DC Data Center Assurance Program 4.0

- End-to-end baseline implementations (System Assurance Guides)
- Optimized for ISV Appl'ns (Deployment Guides)

© 2007 Cisco Systems, Inc. All rights reserved

 Tested and Documented Designs (Cisco Validated Design Guides)

- App Networking, Blade Fabric Switches, Active-Active Configurations
- Oracle[™] EBS[®], Microsoft[™] OCS[®], SAP[™], Tibco[™] Rendezvous[®]
- Service Provider, Video and Mobility overlays

Summary

- The Next Generation Data centre will be virtualised across all infrastructure
- Cisco together with our partners provide:
 - A Pragmatic Solution to today's DC challenges
 - An Architectural Foundation based on best practices and proven designs
 - A Roadmap of Innovations to allow customers to tal advantage of future Cloud models
- The approach allows a proven, incremental, risk adoption path that leverages your existin IT investments

#