

Next Generation Transport Solutions

Moustafa Kattan Consulting Systems Engineer

Agenda

DWDM Introduction

ONS 15454 Solutions

IPoDWDM Architectures

Future Trends

What is WDM?

Defined

- Wave Division Multiplexing
- Optical (light) signals of different wavelengths travel on the same fiber.
- Each wavelength represents an independent optical channel.

Fiber optic cable

SDH and WDM Comparison

SDH Multiplexes Multiple Services Into a single signal; Has a Limitation of How Much Data Can Be Multiplexed on One Fiber or Wire

WDM Multiplexes Multiple Services Into Different Wavelengths on a Fiber More Wavelengths = More Bandwidth

When Do We Use DWDM ?

Converged NGN Transport

- Packet layer convergence to IP/MPLS has delivered CapEx & OpEx savings in core networks
- WDM layer convergence has enabled CapEx & OpEx savings in multi-service metro networks
- Significant additional CapEx/OpEx saving can be delivered by converging the IP and optical layers!

Any Transport of DWDM

 Many (multiservice) ITU clients: MSA modules: ITU—SFP, GBIC, XENPAK, XFP
 Next-gen 10G: PLIM ODB, DPSK,
 ITU Clients Switches, Routers, Storage

Transponder

40G

- Enabling scalable cost-effective converged WDM architectures (Ethernet, SONET, I storage over WDM) with fixed and pluggable optics
- Third optics—alien wavelength support

50GHz, tunability,

 Transponder support for current architectures **DWDM Core**

Agenda

DWDM Introduction

ONS 15454 Solutions

IPoDWDM Architectures

Future Trends

Cisco Optical Product Portfolio

Key Platform Benefits

- IPoverDWDM DWDM as the converge layer for IP and other services (bit rate and protocol independent)
- Mesh/Multi-Ring Cope with network expansion and avoid 3R regen cost
- ROADM Traffic patterns flexibility
- **XPonder** Layer2 and Layer1 converged to optimize Ethernet over DWDM
- CTP Optimize the network against required flexibility, avoiding network overengineering
- MSPP-on-a-Blade 10G ADM functionalities in a single blade with Ethernet support
- End-to-End Provisioning Implemented in "Local Craft" and EMS and extended to Routers / Switches
- Alarm Correlation Simplified management & troubleshooting at Node and Network level

Consolidating TDM and Packet

- MSPP-on-a-blade installed in DWDM shelf
- Method for migrating from SDH to Ethernet
- Similar density and flexibility to XPonder plus SDH
 - 16-User Definable SFP-based Client Ports
 - Supports STM-1/4/16/GE Client Signals
 - 1-XFP-based Trunk Supporting E-FEC/FEC and OTN G.709
 - 2-SR XFP-based interconnect ports supporting redundancy connection with protection board and Pass-through Traffic
 - GFP-F Mapping
- Enables providers to cap investment in stand alone MSPP shelves, focus investment on MSTP

MSPP-On-A-Blade: Unit Details

2x STM-64 InterLink Ports for Protection

- Supported XFP Types
 - STM-64 I1 (ONS-XC-10G-S1=)

16x Client STM-1 / STM-4 / STM-16 / GE Ports

- Supported SFP Types
 - 1000Base-SX (ONS-SE-G2F-SX=)
 - 1000Base-LX (ONS-SE-G2F-LX=)
 - 1000Base-ZX (ONS-SI-GE-ZX=)
 - STM-16 I1/ STM-4 I1 / STM-1 I1 / GE-LX Multi-rate SFP (ONS-SE-Z1=)
 - STM-1 LH2 SFP (ONS-SI-155-L2=)
 - STM-1 SH1 / STM-4 SH1 Multi-rate SFP (ONS-SI-622-I1=)
 - STM-16 I1 SFP (ONS-SI-2G-S1=)
 - STM-16 SH1 SFP (ONS-SI-2G-I1=)
 - STM-16 LH2 SFP (ONS-SI-2G-L2=)

2x STM-64 Ports

- STM-64, G.709, FEC/E-FEC SW Provisionable
- Supported XFP Types
 - 10G DWDM (ONS-XC-10G-xx.x=)
 - OC-192 SR1 (ONS-XC-10G-S1=)

Industry First Ethernet Aggregation Integrated into DWDM

- Introducing Ethernet XPonder
- Single card for Ethernet ADM function, muxponder, transponder
- Innovations:

Circuit-Like Provisioning

Layer-2 Ethernet aggregation of NxGE into 10GE

Sub-wavelength add/drop and drop and continue

50 ms resiliency

G.709 (WDMPHY): reach & SONET-like monitoring

MEF 9 and 14 Certified

4x10GbE XPonder

Ethernet X-Ponder 9.0 Features

Xponder Release 8.0 Hardware

- Link integrity using Y.1731 Ethernet OAM-AIS message per SVLAN
- 1+1 Protection in either same or differnet shelf in the same MSN
- VLAN Profiling
- IGMP Version 2 with report suppression and automatic router i/f identification
- Multicast VLAN Registration (MVR)
- End to End circuit/SVLAN provisioning for point-to-point, multipoint and protection scenario
- XFP MM that supports also 10GE+G.709 for board interconnection in the same location
- Per SVLAN ingress rate limit
- Pseudo CLI
- Per VLAN MAC address enable-disable

Enhanced Xponder Release 9.0 Hardware (Includes all R8.0 XP Features)

- 32K MAC address*
- Add of double tag and Add+Translation*
- Add SVLAN +Translate CVLAN*
- Per CVLAN to SVLAN ingress COS*

ROADM and Intelligent DWDM Network

- Any-to-Any Wavelength connectivity
- Software Provisioned Wavelenthg Paths
- Protocol Agnostics (SONET, IP, Ethernet and Storage)
- Transport Layer Protection
- Dynamic and Intelligent Transport Foundation

Extend Same Concept to Mesh Architecture

End to End ROADM

Agenda

DWDM Introduction

ONS 15454 Solutions

IPoDWDM Architectures

Future Trends

What Is IPoDWDM?

- IPoDWDM is a new network model which integrates the Transponder within the Router Blade
- This reduces both Cap as well as OP Ex while increasing network scalability, flexibility and time to market
- Integration of the DWDM transponder onto the Router blade allows for a robust, intelligent network

Why IPoDWDM

OTN- G.709 Digital Wrapper

- 10GE LANPHY payload over G.709 payload (over-clocked)
- OAM&P based G.709 Standard (SDH-like)
- FEC enabled transmission
 G.709 Standard modes, and
 Enhanced-FEC >1500 km

ITU standard references:

- G.709
- Overclocking: G.sup43, sub-clause 7.1
- Enhanced FEC: G.975.1 Appendix I.7

IPoDWDM leadership – More than the Sum of its Optical & IP parts

2-Degree ROADM	IPoDWDM Introduction	2- 8 Degree (Mesh) ROADM	CRS-1 40G WDMPHY with 2000 km reach	Cisco IP NGN IPoDWDM Vision
2-Degree Solution ONS 15454 MSTP	IP over DWDM	Mesh ROADM (WXC)	2000 km + CRS-1 0NS 15454 MSTP	Combine Multi- Degree ROADM and IPoDWDM Reach Innovations to Optimize Service Availability, Scalability and Acceleration
2003–2004	2005–2006	Spring 2007	Summer 2008	2008+
Flexible Wavelength Management: Reconfigurable Optical Add/Drop Multiplexer (ROADM)	ITU Lambdas on Core Routers: True integration of IP & DWDM improves Management, OpEx & CapEx	Automation of mesh networks: Breaking the Ring Barrier - Remotely provisioning Wavelengths across entire networks	Extending reach of 40G: Enabling automated mesh transport for 40G signals	Future Innovation Fiber Optimization by expanding the application for IPoWDM

Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Cisco IPoDWDM

CRS-1

XR 12000/12000

Introducing:

- 40G IPoDWDM PLIM w/DPSK modulation
- Doubling reach (to 2000KM) w/o regen

- Introducing:
- 10GE SPA w/NRZ modulation
- IPoDWDM to the Edge, 2000 km w/o regen

7600

- Introducing:
- 10GE XFP
- IPoDWDM to the Aggregation

ONS 15454 MSTP

Introducing:

- Omni-directional and colorless ROADM
- Zero touch provisioning on all nodes

IPoDWDM Enhancements

2000 KM reach: Deployable in virtually any geography; further reductions in power, space, cooling & capex

Zero touch: Speeds provisioning, reduces opex & carbon emission from truck rolls

Proactive Protection: Link recovery tested at <15ms, increasing quality of experience

Virtual Transponder: Deployable by carriers with transport data depts.

Introducing: IPoDWDM for the approaching Zettabyte Era Doubling Reach, Extending beyond Core, Zero Touch

Improved 40G Optical Performance

Parameter	NRZ	ODB	DPSK	PSKt	DQPSK
50 GHz Compatible	Ν	Y	Ν	Y	Y
Worst Case Reach (km)*	500	500	>1000	>1000	~1000
Chromatic Dispersion Robustness (ps/nm) **	+/- 50	+/- 150	+/- 50	+/ 700	+/- 200
PMD Robustness (ps) **	2.5	2-3	2.5	2.5	5
Cost/Complexity	Med	Med	Med+	Med +	Very High
	CRS 40G (1 st Gen)		G (CRS 40G (2 nd Gen)	

- * Distance depends on link specifics. 2x worst case is possible.
- * Additional reach (~2x) possible with Raman amplification
- ** Integrated TDC will increase this

Introducing: ONS 15454 Industry Firsts Omni-directional and Colorless ROADM

Zero Touch Provisioning

- Remotely re-configure wavelengths in any color and any direction on ALL nodes without re-wiring fiber
- Rapidly reconfigurable bandwidth; capitalize on changes in network demand and transitory events

Winner Cisco ONS 15454

Worldwide ROADM Leadership Frost & Sullivan Best Practices Award

IPoDWDM Innovations Virtual Transponder Management

- Pioneering feature: Virtual Transponder Protocol (VTXP)
- Open standards (XML) based interoperating with 3rd party MSTP
- Full FCAPS Management for Router WDM interfaces

- Segmented: No change to existing NMS/OSS, operational models
- Integrated Management

IPoDWDM: Re-setting the Standard for QoE With Proactive Protection: IP Trumps SONET/SDH

- Innovative early detection triggers failover on signal degradation, not loss
- 3x Faster recovery (<15ms) than SONET / SDH standards for near hitless video experience
- Unsurpassed reliability protects mission-critical data from loss

Intelligent Transport Layer G.709 OAMP Functionality

Proactive FRR based on pre-FEC errors

Network Architecture First 40G IPoDWDM Network in the World

IPoDWDM Testing Over Third-Party DWDM Systems

Monufacturer		IPoDWDM Flavor and Test Network Type			
Manufacturer	Equipment Type	10G	40G ODB	40G DPSK+	
Alcatel	1626	Production	Production	Production	
Ciena	CoreDirector		Test		
Ericsson	MHL3000		Test		
Fujitsu	Flashwave		Test		
Huawei			Production		
Lucent	OLS400		Production		
Nortel	CPL	Production	Production	Production	
PadTec		Test			
Siemens	SURPASS hiT7550		Test		
Tellabs	TITAN 7100		Test		

ITU-T G.698.2 (Alien Wavelength)

- Linear unidirectional case shown
- Standard also defines ring and bidirectional cases
- Standard defines properties for Ss and Rs
- Standard defines properties for the "Black Link"

Agenda

DWDM Introduction

ONS 15454 Solutions

IPoDWDM Architectures

Future Trends

2008-2012 Optical Strategy

Future 100GE Transmission

Providers are asking for it today!
 IEEE HSSG—kicked off and studying standards
 ITU—kicked off and are also studying standards

 Requirements are the same as that of 40 Gig Must meet reach of up to 1500 Km Operate over third-Party DWDM Must operate over existing systems built for 10 Gig Etc

 Proper choice of Modulation Schemes will be imperative Must be robust to linear and non linear impairments

Where is 100Gig

- Cisco is working closely with IEEE and ITU
- Cisco is also working in Parallel on a final product, not waiting for entire standard
- IEEE focused on 40Gig E and 100Gig E SR Cisco will do the WDMPHY
- Target FCS 1HCY10

Control Plane Evolution (GMPLS)

Manual Patching

- Manual provisioning of each node
- Manual patching of each node
- High OpEx
- Truck rolls to every node

With ROADMs and WXC

- Manual provisioning via NMS
- Autopatching via intermediate ROADMs and WXC
- Lower OpEx
- More service flexibility
- Truck rolls to end points

Dynamic Service Activation with ROADMs and WXC and Control Plane

- Auto provisioning on demand
- Auto patching via ROADMs and WXC
- Lower OpEx even further
- No truck rolls

As the network grows... ...new challenges appear

- How to provide the core and metro bandwidth to the services in timely manner?
- Is the traffic pattern known and will it be known in the medium term ?
- And will my network be ok after all the changes ?
- Do we have to spend a fortune over-provisioning the transport network day one ?
- Can we properly react to catastrophic failure, not only with fast protection but with network optimization to safe status ?

Current TDM ASON Approach

Q: Set up a GE service from A to Z

A: Sure now, just ask the bandwidth! ASON will do in 1 min.

A:Uhm, oh, we need to light another 10G wavelength

Q: How long does it take?

A: uhm, oh... maybe 2 months ?!

Cisco flexible approach

But it is not so simple... unluckily

Standard GMPLS or ASON may not work!

 Optical impairment can prevent the optical channel to work

Is there enough power budget ? And what about OSNR ? And CD, PMD, FWM ?

Is there any regenerator in the network ?

 GMPLS must be DWDM aware to assure its functionality. Network topology is not enough

Why Colourless Is Important: Zero pre-provisioning cost & Network Rerouting

Key Takeaways

- Predicting Network evolution and traffic requirements will not get easier then now in the future
- ONS 15454 is not just a great platform but provides the Flexibility and the Service Richness needed to cope with the unknowns
- Cisco Optical portfolio is fully integrated and a key element of the Cisco NGN Strategy and Vision
- IPoverDWDM provides more than just the combination of IP and DWDM benefits