

Introduction to Network Security

Agenda

Cisco.com

- Security Year in Review
 - Slammer, et. al.
- Security Policy Setting a Good Foundation
- Extended Perimeter Security
 Define the Perimeter, Firewalls, ACLs
- Identity Services
 - Passwords, Tokens, PKI, Biometrics
- Secure Connectivity
 - Work Happens Everywhere, Virtual Private Networks
- Intrusion Protection
 Network, Host
- Security Management
 Wrapping it All Together

Agenda

Cisco.com

- Security Year in Review Slammer, et. al.
- Security Policy Setting a Good Foundation
- Extended Perimeter Security
 Define the Perimeter, Firewalls, ACLs
- Identity Services

Passwords, Tokens, PKI, Biometrics

Secure Connectivity

Work Happens Everywhere, Virtual Private Networks

Intrusion Protection
 Network, Host

Security Management Wrapping it All Together

Security Year in Review

- Are incidents decreasing?
- SQL slammer
- Other security headlines

Are Incidents Decreasing?

Cisco.com

Type of Crime	2001	2002
Theft of Proprietary Information	\$151.2	\$170.8
Financial Fraud	\$92.9	\$115.7
Insider Net Abuse	\$45.3	\$49.9
Sabotage	\$5.2	\$15.1
Unauthorized Access by Insiders	\$6.1	\$4.5
Laptop Theft	\$8.8	\$11.7
Denial of Service	\$4.3	\$18.4
System Penetration by Outsiders	\$19.0	\$13.0
Total	\$378M	\$456M

Compare This to the Cost of Implementing a Comprehensive Security Solution!

Source: FBI 2002 Report on Computer Crime

Number of Incidents Always on the Rise

Cisco.com **CERT**—Number of Incidents Reported (*) http://www.cert.org/stats/cert_stats.html#incidents

(*) An Incident May Involve One Site or Hundreds (or Even Thousands) of Sites; Also, Some Incidents May Involve Ongoing Activity for Long Periods of Time

Two of the Most Serious Intruder Activities Reported to the CERT/CC in 2002

Cisco.com

• Exploitation of vulnerabilities in Microsoft SQL Server

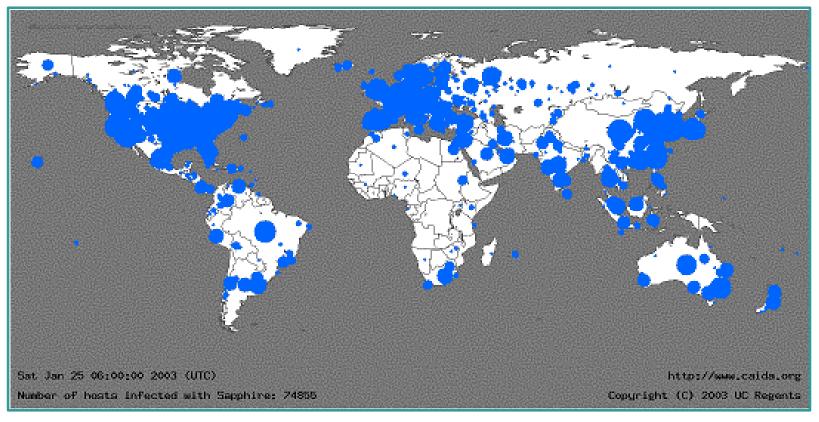
Intruders compromised systems through the automated exploitation of null or weak default SA passwords in Microsoft SQL Server and Microsoft Data Engine; the CERT/CC published advice on protecting systems that run Microsoft SQL Server in <u>CA-2002-04</u> (February 25, 2002)

In July 2002, intruders continued to compromise systems and obtain sensitive information by exploiting several serious vulnerabilities in the Microsoft SQL Server; the CERT/CC published additional advice in <u>CA-2002-</u> 22 (July 29, 2002)

• Apache/mod_ssl Worm

Intruders used a piece of self-propagating malicious code (referred to here as Apache/mod_ssl) to exploit a vulnerability in OpenSSL, an open-source implementation of the Secure Sockets Layer (SSL) protocol

The CERT/CC initially published <u>CA-2002-23</u> (July 30, 2002), describing four vulnerabilities in OpenSSL that could be used to create denial of service; when these and other vulnerabilities finally manifested themselves in the form of the Apache/mod_ssl Worm, the CERT/CC published advice in <u>CA-2002-27</u> (September 14, 2002)


The SQL Slammer Worm: What Happened?

- Released at 5:30 GMT, January 25, 2003
- Saturation point reached within
 2 hours of start of infection
- 250,000–300,000 hosts infected
- Internet connectivity affected worldwide

The SQL Slammer Worm: 30 Minutes after "Release"

Cisco.com

- Infections doubled every 8.5 seconds
- Spread 100x faster than Code Red
- At peak, scanned 55 million hosts per second

Network Effects of the SQL Slammer Worm

- Several service providers noted significant bandwidth consumption at peering points
- Average packet loss at the height of infections was 20%
- Country of South Korea lost almost all Internet service for period of time
- Financial ATMs were affected
- SQL Slammer overwhelmed some airline ticketing systems

Agenda

Cisco.com

- Security Year in Review
 - Slammer, et. al.
- Security Policy Setting a Good Foundation
- Extended Perimeter Security

Define the Perimeter, Firewalls, ACLs

Identity Services

Passwords, Tokens, PKI, Biometrics

Secure Connectivity

Work Happens Everywhere, Virtual Private Networks

Intrusion Protection
 Network, Host

Security Management Wrapping it All Together

Security Policy

- Setting a good foundation
- What is a security policy
- Why create a security policy
- What should it contain

Start with a Security Policy

Cisco.com

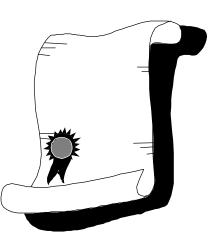
 Security policy defines and sets a good foundation by:

Definition—Define data and assets to be covered by the security policy

Identity—How do you identify the hosts and applications affected by this policy?

Trust—Under what conditions is communication allowed between networked hosts?

Enforceability—How will the policies implementation be verified?

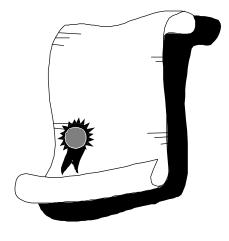

Risk Assessment—What is the impact of a policy violation? How are violations detected?

Incident Response—What actions are required upon a violation of a security policy?

What Is a Security Policy?

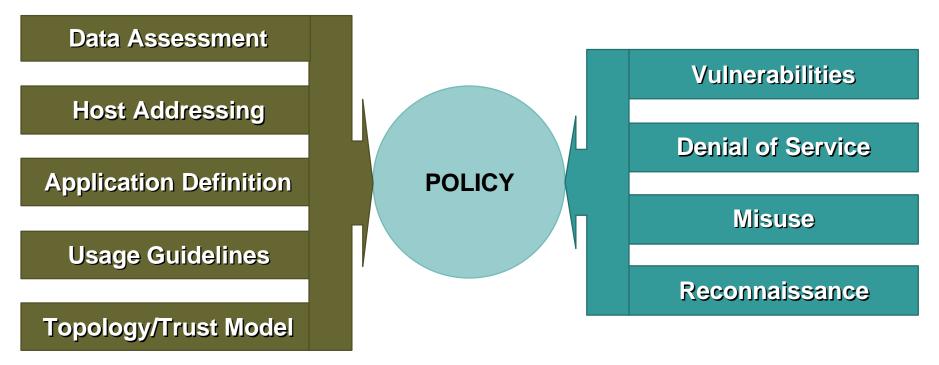
Cisco.com

"A security policy is a formal statement of the rules by which people who are given access to an organization's technology and information assets must abide."


RFC 2196, Site Security Handbook

Why Create a Security Policy?

- To create a baseline of your current security posture
- To set the framework for security implementation
- To define allowed and not allowed behaviors
- To help determine necessary tools and procedures
- To communicate consensus and define roles
- To define how to handle security incidents


What Should the Security Policy Contain?

- Statement of authority and scope
- Acceptable use policy
- Identification and authentication policy
- Internet use policy
- Campus access policy
- Remote access policy
- Incident handling procedure

Security Policy Elements

Cisco.com

- On the left are the network design factors upon which security policy is based
- On the right are basic Internet threat vectors toward which security policies are written to mitigate

Enforcement

dilinini Cisco.com

Secure

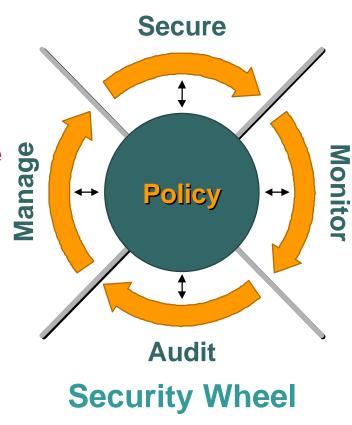
Identity and authentication

Filtering and stateful inspection

Encryption and VPNs

• Monitor

Intrusion detection and response Content-based detection and response Employee monitoring


Audit

Security posture assessment

- Vulnerability scanning
- Patch verification/application auditing

Manage

Secure device management Event/data analysis and reporting Network security intelligence

Cisco.com

 Some elements of network security are absolute, others must be weighed relative to the potential risk

When you connect to the Internet, the Internet connects back to you

 Sound operational procedures and management are easier to implement than technical solutions

You can't secure a bad idea

 The cost of secure solutions must be factored into the overall Return on Investment (ROI)
 Security must be included in planning and design Effective security requires managerial commitment

- Trust is the inherent ability for hosts to communicate within a network design
- Trust and risk are opposites; security is based on enforcing and limiting trust
- Within subnets, trust is based on Layer 2 forwarding mechanisms
- Between subnets, trust is based on Layer 3+ mechanisms

Incident Response

Cisco.com

- Attacks are intentional, there are no accidental or stray IP packets
- Four levels of incident response:

Network misuse

Reconnaissance

Attack

Compromise

• Without incident response plans, only passive defenses have value

Agenda

Cisco.com

• Security Year in Review

Slammer, et. al.

Security Policy

Setting a Good Foundation

- Extended Perimeter Security Define the Perimeter, Firewalls, ACLs
- Identity Services

Passwords, Tokens, PKI, Biometrics

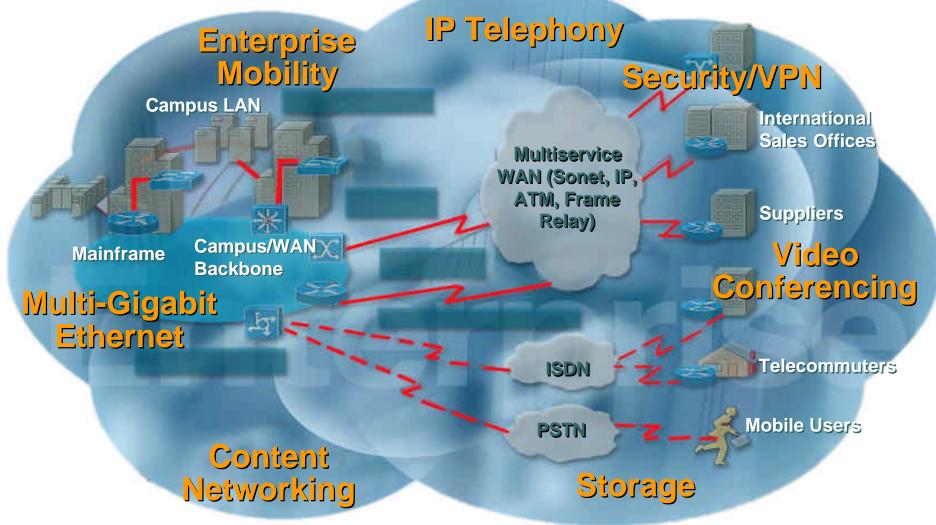
Secure Connectivity

Work Happens Everywhere, Virtual Private Networks

Intrusion Protection
 Network, Host

Security Management Wrapping it All Together

Extended Perimeter Security


Cisco.com

• Can you define the perimeter? Dissimilar policy boundaries

- Access control
- Firewalls—first line of defense

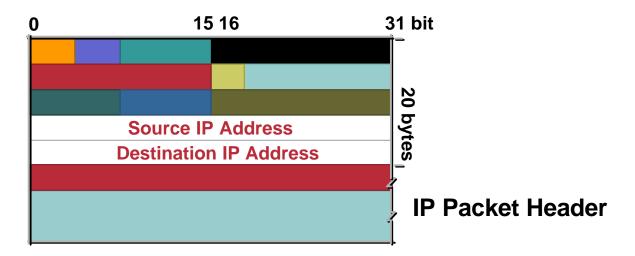
Can You Define the Perimeter?

Cisco.com

8020_05_2003_c2

Filtering Network Traffic

Cisco.com


Examining the flow of data across a network

- Types of flows:
 - **Packets**
 - Connections
 - State

Access Control Lists (ACLs)

Cisco.com

• Simple ACLs look at information in IP packet headers

- Many filters are based on the packets Source and Destination IP address
- Extended ACLs look further into the packet or at the TCP or UDP port number in use for the TCP/IP connection between hosts

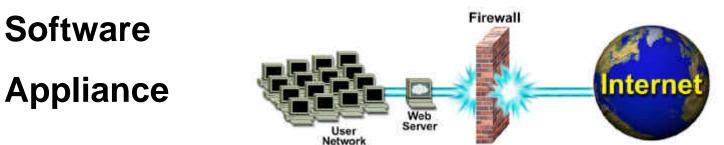
The Evolution of ACLs...

Cisco.com

Dynamic ACLs

Lock-and-key filtering (Dynamic ACLs) allows an authenticated user to pass traffic that would normally be blocked at the router

Reflexive ACLs


Creates a temporary ACL to allows specified IP packets to be filtered based on TCP or UDP session information; the ACL "expires" shortly after the session ends (no sequence #)

Firewalls

Four types of firewalls

Proxies (application-layer firewalls)

- Stateful
- Hybrid
- Personal
- Implementation methods

Proxy Firewalls

- Proxy firewalls permit no traffic to pass directly between networks
- Provide "intermediary" style connections between the client on one network and the server on the other
- Also provide significant logging and auditing capabilities
- For HTTP (application specific) proxies all web browsers must be configured to point at proxy server
- Example Microsoft ISA Server

Stateful Firewalls

Cisco.com

- Access Control Lists plus...
- Maintaining state

Stateful firewalls inspect and maintain a record (a state table) of the state of each connection that passes through the firewall

To adequately maintain the state of a connection the firewall needs to inspect every packet

But short cuts can be made once a packet is identified as being part of an established connection

Different vendors record slightly different information about the state of a connection

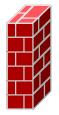
Hybrid Firewalls

Cisco.com

• Hybrid firewalls combine features of other firewall approaches such as...

Access Control Lists

Application specific proxies


State tables

Plus features of other devices...

Web (HTTP) cache

Specialized servers SSH, SOCKS, NTP

May include VPN, IDS

Personal Firewalls

Cisco.com

Personal firewalls

Protecting remote users/home users

Watching inbound/outbound traffic

Creating basic rules

• Example—ZoneAlarm

Agenda

- Security Year in Review
 - Slammer, et. al.
- Security Policy Setting a Good Foundation
- Extended Perimeter Security

Define the Perimeter, Firewalls, ACLs

Identity Services

Passwords, Tokens, PKI, Biometrics

Secure Connectivity

Work Happens Everywhere, Virtual Private Networks

Intrusion Protection
 Network, Host

Security Management Wrapping it All Together

SEC-1000 8020_05_2003_c2

Identity Services

- User identity
- Passwords
- Tokens
- PKI
- Biometrics

Cisco.com

• Mechanisms for proving who you are

Both people and devices can be authenticated

• Three authentication attributes:

Something you know

Something you have

Something you are

• Common approaches to Identity:

Passwords

- Tokens
- Certificates

Validating Identity

Cisco.com

 Identity within the network is based overwhelmingly on IP Layer 3 and 4 information carried within the IP packets themselves

Application-level user authentication exists, but is most commonly applied on endpoints

- Therefore, identity validation is often based on two mechanisms:
 - **Rule matching**

Matching existing session state

 Address and/or session spoofing is a major identity concern

Passwords

Cisco.com

 Correlates an authorized user with network resources

Username	e and Password Required	×			
Enter username for CCO at www.com					
User Name:	student				
Password:	123@456				
	OK Cancel				

Passwords

- Passwords have long been, and will continue to be a problem
- **People** will do what is easiest
- Create and enforce good password procedures
 - **Non-dictionary passwords**
 - Changed often (90–120 days)
- Passwords are like underwear—they should be changed often and neither hung from your monitor or hidden under your keyboard

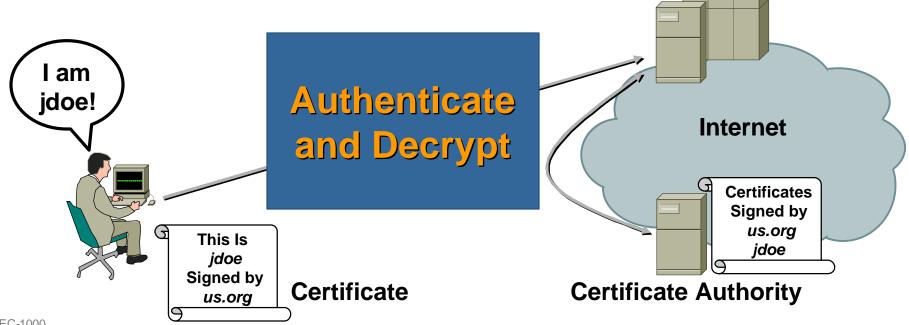
Tokens

Cisco.com

 Strong (2-factor) Authentication based on "something you know" and "something you have"

SEC-1000 8020_05_2003_c2

Public Key Infrastructure (PKI)


Cisco.com

Relies on a two-key system

J Doe signs a document with his private key

Person who receives that document uses JDoe's public key to:

SEC-1000 8020_05_2003_c2

Biometrics

Cisco.com

 Authentication based on physiological or behavioral characteristics

Features can be based on:

Face

Fingerprint

Eye

Hand geometry

Handwriting

Voice

 Becoming more accepted and widely used Already used in government, military, retail, law enforcement, health and social services, etc.

Agenda

Cisco.com

- Security Year in Review
 - Slammer, et. al.
- Security Policy Setting a Good Foundation
- Extended Perimeter Security

Define the Perimeter, Firewalls, ACLs

Identity Services

Passwords, Tokens, PKI, Biometrics

Secure Connectivity

Work Happens Everywhere, Virtual Private Networks

- Intrusion Protection
 Network, Host
- Security Management
 Wrapping It All Together

SEC-1000 8020_05_2003_c2

Secure Connectivity

Work happens everywhere!

Virtual Private Networks

Work Happens Everywhere

Increasing Need for Transparent Corporate Connectivity

On the road (hotels, airports, convention centers) 280 million business trips a year Productivity decline away from office >60–65%

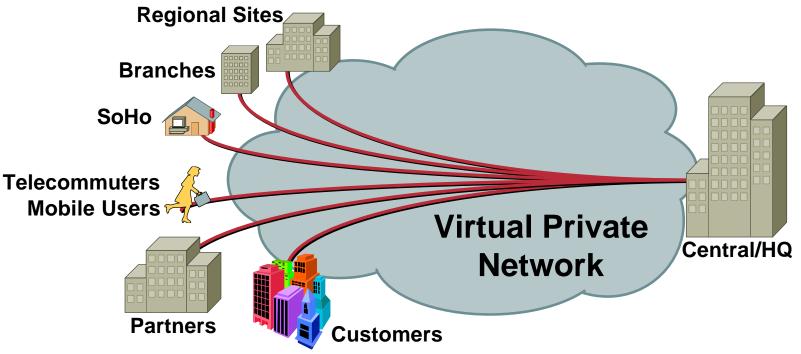
At home (teleworking)

137 million telecommuters by 2003

40% of U.S. telecommuters from large or mid-size firms

At work (branch offices, business partners)
 E-business requires agile networks

Branch offices should go where the talent is


Source: On the Road (TIA Travel Poll, 11/99); At Home (Gartner 2001, Cahners Instat 5/01); At Work (Wharton Center for Applied Research)

SEC-1000 8020_05_2003_c2

What Are VPNs?

Cisco.com

 A network built on a less expensive shared infrastructure with the same policies and performance as a private network

Secure Connectivity

Cisco.com

Defines "peers"

Two devices in a network that need to connect Tunnel makes peers seem virtually next to each other Ignores network complexity in between

Technologies

PPTP—Point-to-Point Tunneling Protocol

L2TP—Layer 2 Tunneling Protocol

IPSec

Secure shell

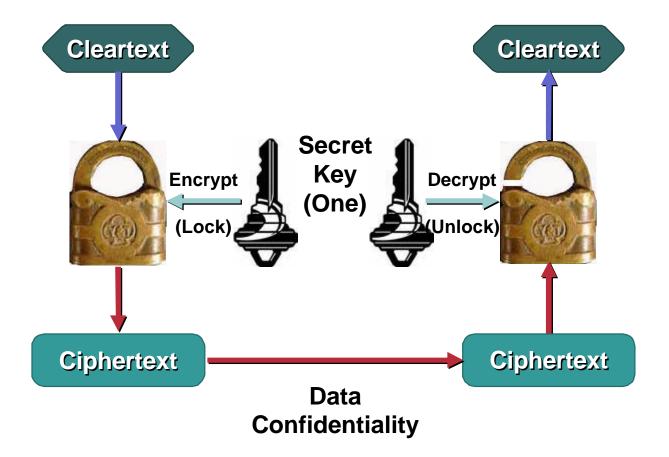
SSL

Encryption

Cisco.com

Symmetric Cryptography

Uses a shared secret key to encrypt and decrypt transmitted data

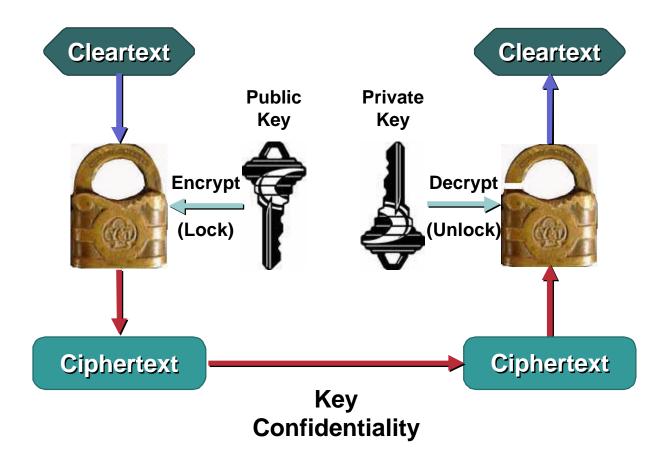

Data flow is bidirectional

Provides data confidentiality only

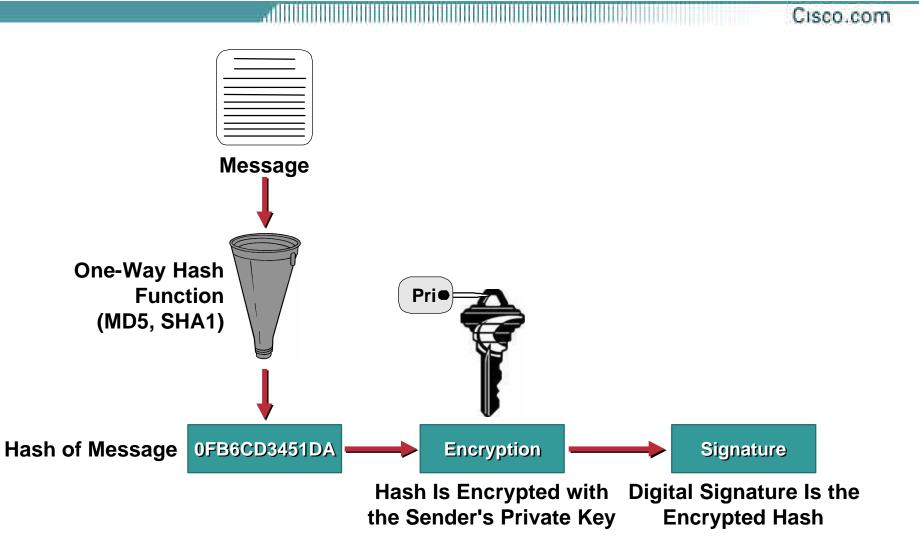
Does not provide data integrity or non-repudiation

• Examples: DES, 3DES, AES

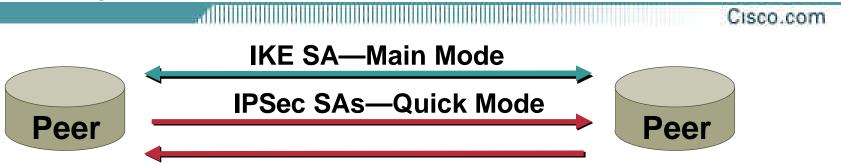
Symmetric Cryptography


Encryption

Asymmetric cryptography


Also known as Public Key Cryptography

- Utilizes two keys: private and public keys
- Two keys are mathematically related but different values
- Computationally intensive
- Provides data confidentiality
 Can provide for data integrity as well as non-repudiation
- Examples: RSA Signatures


Asymmetric Cryptography

Digital Signatures

Security Association

 A Security Association (SA) is an agreement between two peers on a common security policy, including:

If and how data will be encrypted

How entities will authenticate

Shared session keys

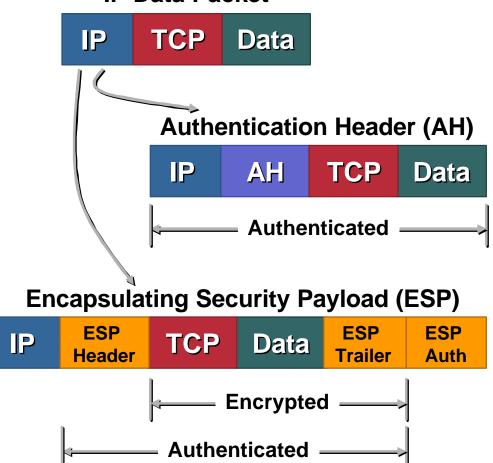
How long the association will last (lifetime)

Types of security associations

Uni-directional (IPSec SAS)

Bi-directional (IKE SAS)

SEC-1000 8020_05_2003_c2

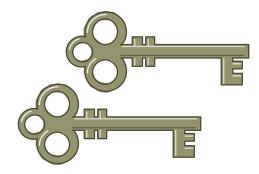

What Is IPSec?

Cisco.com

IP Data Packet

 IPSec: An IETF standard* framework for the establishment and management of data privacy between network entities

IPSec is an evolving standard



*RFC 2401-2412

SEC-1000 8020_05_2003_c2

Key Management

- IKE = Internet Key Exchange protocols
- Public key cryptosystems enable secure exchange of private crypto keys across open networks
- Re-keying at appropriate intervals

An IPSec VPN Is...

Cisco.com

 IPSec provides the framework that lets you negotiate exactly which options to use

IPSec provides flexibility to address different networking requirements

• A VPN which uses IPSec to insure data authenticity and confidentiality

AH provides authenticity

ESP provides authenticity and confidentiality

 The IPSec framework is open and can accommodate new encryption and authentication techniques

Agenda

Cisco.com

- Security Year in Review
 - Slammer, et. al.
- Security Policy Setting a Good Foundation
- Extended Perimeter Security
 Define the Perimeter, Firewalls, ACLs
- Identity Services
 - Passwords, Tokens, PKI, Biometrics
- Secure Connectivity
 - Work Happens Everywhere, Virtual Private Networks
- Intrusion Protection
 Network, Host

Security Management Wrapping It All Together

SEC-1000 8020_05_2003_c2

Intrusion Protection

- Monitoring the network and hosts
- Network scanning
- Packet sniffing
- Intrusion detection primer

Monitoring

Network Scanning

Cisco.com

"Active" tool

Identifies devices on the network Useful in network auditing

"Fingerprinting"

How a scanner figures out what OS and version is installed

• Examples: Nmap, Nessus

🗛 🗛 Back Endl?O 🗛 Artrojan 🏲 1243 SubSeven 40412 Th	00000		appy 99 U P 808	ts open? 8787 Aim Spy 8897 Hac WinHole 30029 A0 SubSeven 40412 Th
---	-------	--	-----------------	---

YOU

Secure:

Packet Sniffing

Cisco.com

Diagnostic tools

Used capture packets

Used to examine packet data (filters)

Can reconstruct sessions and streams

Sniffers can be "promiscuous"

Passive, listening

Examples: Sniffer, Ethereal

SEC-1000 8020_05_2003_c2

Intrusion Detection

Cisco.com

 Create a system of distributed "promiscuous" Sniffer-like devices

Watching activity on a network and specific hosts

Different approaches

Protocol anomaly/signature detection

Host-based/network-based

 Different IDS technologies can be combined to create a better solution

Terminology

- False positives: System mistakenly reports certain benign activity as malicious
- False negatives: System does not detect and report actual malicious activity

Intrusion Detection Approaches

Cisco.com

Misuse/Signature vs. Anomaly Detection

Network vs. Host-Based

Anomaly vs. Signature Detection

Cisco.com

- Anomaly detection: Define normal, authorized activity, and consider everything else to be potentially malicious
- Misuse/signature detection: Explicitly define what activity should be considered malicious

Most commercial IDS products are signature-based

Cisco.com

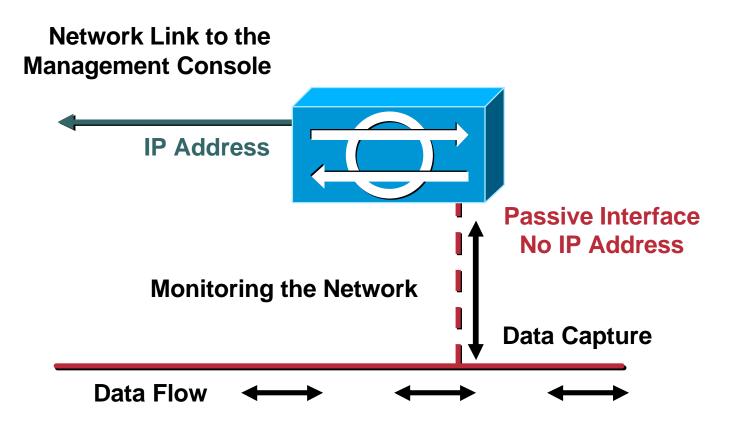
 Host-based "agent" software monitors activity on the computer on which it is installed

Cisco HIDS (Okena)—System activity

TripWire—File system activity

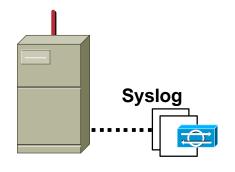
 Network-based appliance collects and analyzes activity on a connected network

Integrated IDS


Network-based IDS functionality as deployed in routers, firewalls, and other network devices

Some General Pros and Cons

	Pros	Cons
Host- Based	 Can verify success or failure of attack Generally not impacted by bandwidth or encryption Understands host context and may be able to stop attack 	 Impacts host resources Operating system dependent Scalability—requires one agent per host
	Protects all hosts on	Switched environments pose
Network- Based	 monitored network No host impact Can detect network probes and denial of service attacks 	 challenges Monitoring multi-gig is currently challenging Generally can't proactively stop attacks


Should View as Complementary!

Network IDS Sensor

Host IDS Sensor

Cisco.com

Passive Agent (OS Sensor)

- Syslog monitoring
- Detection
- Wider platform support

Active Agent (Server Sensor)

- Attack interception
- Prevention
- Focused protection

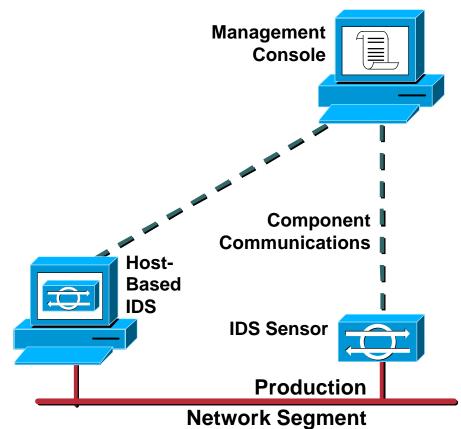
Typical IDS Architecture

Cisco.com

Management console

Real-time event display Event database Sensor configuration

Sensor


Packet signature analysis

Generate alarms

Response/ countermeasures

Host-based

Generate alarms Response/countermeasures

Too Many Choices?

Cisco.com

 Generally, most efficient approach is to implement network-based IDS first

Easier to scale and provides broad coverage

Less organizational coordination required

No host/network impact

- May want to start with host-based IDS if you only need to monitor a couple of servers
- Vast majority of commercial IDS is signature-based
- Keep in mind that IDS is not the "security panacea"

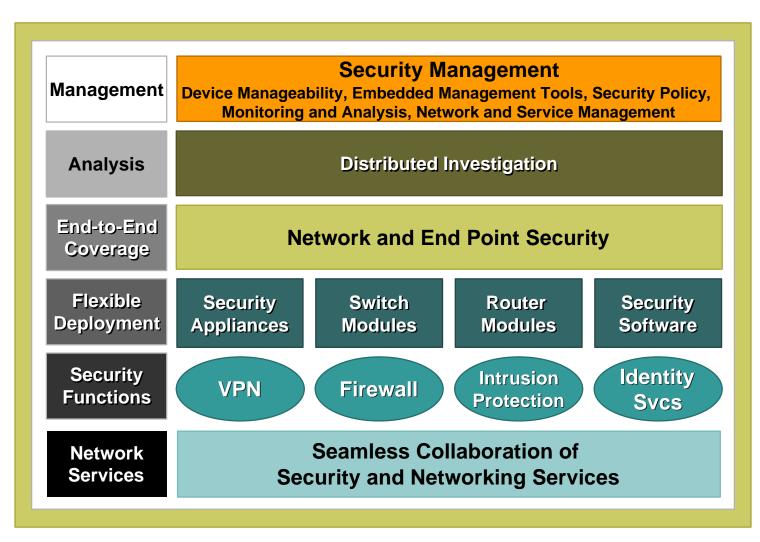
Agenda

- Security Year in Review
 - Slammer, et. al.
- Security Policy Setting a Good Foundation
- Extended Perimeter Security
 Define the Perimeter, Firewalls, ACLs
- Identity Services
 - Passwords, Tokens, PKI, Biometrics
- Secure Connectivity
 - Work Happens Everywhere, Virtual Private Networks
- Intrusion Protection Network, Host
- Security Management Wrapping It All Together

Security Management

- Wrapping it all together
- Security management
 - Scalable and manageable
- Syslog and log analysis

Cisco.com


- In the previous sections we discussed:
 - Security policy
 - **Perimeter security and filtering**
 - **Identity services**
 - **Virtual Private Networks**
 - Intrusion detection and prevention systems

No one system can defend your networks and hosts

With all this technology, how do we survive?

Integrated Network Security

Cisco.com

Security Management

Cisco.com

- How to manage the network securely
- In-band versus out-of-band management

In-band management—management information travels the same network path as the data

Out-of-band management—a second path exists to manage devices; does not necessarily depend on the LAN/WAN

- If you must use in-band, be sure to use
 - Encryption

SSH instead of telnet

 Making sure that policies are in place and that they are working

Syslog

Cisco.com

 A protocol that supports the transport of event notification messages

Originally developed as part of BSD Unix

- Syslog is supported on most internetworking devices
- BSD Syslog—IETF RFC 3164

The RFC documents BSD Syslog observed behavior

 Work continues on reliable and authenticated Syslog

http://www.employees.org/~lonvick/index.shtml

Log Analysis

Cisco.com

 Log analysis is the process of examining Syslog and other log data

Building a baseline of what should be considered normal behavior

This is "post event" analysis because it is not happening in real-time

- Log analysis is looking for
 - Signs of trouble

Evidence that can be used to prosecute

- If you log it, read and use it!
- Resources

http://www.counterpane.com/log-analysis.html

Security = Tools Implementing Policy

Cisco.com

 Now more than ever Identity tools
 Filtering tools
 Connectivity tools
 Monitoring tools
 Management tools

The Threat Forecast

Cisco.com

 New vulnerabilities and exploits are uncovered everyday

Subscribe to bugtraq to watch the fun!

Crystal ball

Attacks will continue

Greater complexity

Still see unpatched vulnerabilities taken advantage of

Conclusions

Cisco.com

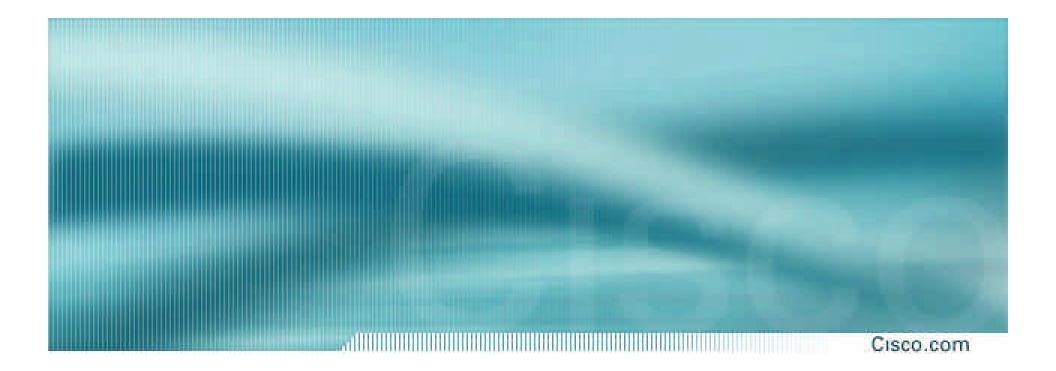
- Things sound dire!!!
- The sky really is not falling!!!
- Take care of those security issues that you have control over
- Security is a process, not a box!

Security Resources at Cisco

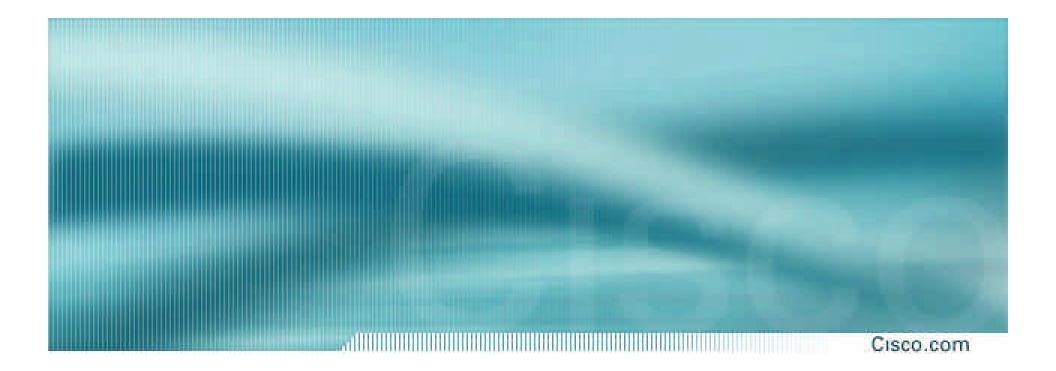
Cisco.com

Cisco Connection Online—

http://www.cisco.com/go/security


Cisco Product Specific Incident Response Team (PSIRT)—

http://www.cisco.com/go/psirt


Security Resources on the Internet

Cisco.com

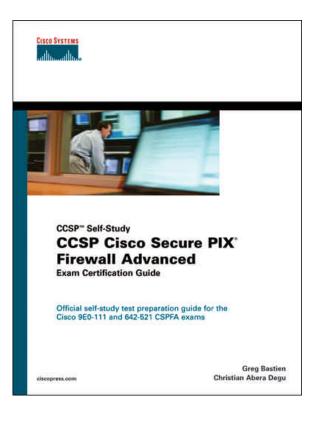
- Cisco Connection Online—<u>http://www.cisco.com</u>
- SecurityFocus.com—<u>http://www.securityfocus.com</u>
- SANS—<u>http://www.sans.org</u>
- CERT—<u>http://www.cert.org</u>
- CIAC—<u>http://www.ciac.org/ciac</u>
- CVE—<u>http://cve.mitre.org</u>
- Computer Security Institute—<u>http://www.gocsi.com</u>
- Center for Internet Security—<u>http://www.cisecurity.org</u>

Thank You

Questions

Recommended Reading

Cisco.com


Designing Network Security, Second Ed.

ISBN: 1587051176 Available in Oct 2003

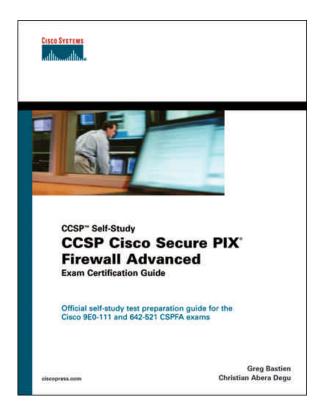
Designing Network Security

ISBN: 1578700434

Managing Cisco Network Security ISBN: 1578701031

Recommended Reading

Cisco.com

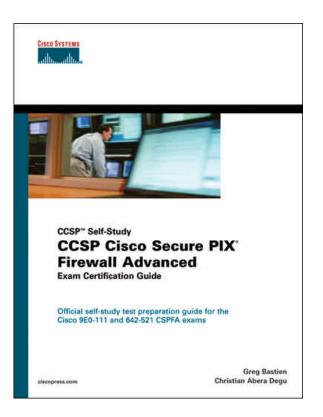

Network Security Principles and Practices

ISBN: 1587050250

Cisco Secure Internet Security Solutions

ISBN: 1587050161

Cisco Secure Intrusion Detection System ISBN: 158705034X



Recommended Reading

Cisco.com

CCSP Cisco Secure PIX Firewall Advanced Exam Certification Guide ISBN: 1587200678

CCSP Cisco Secure VPN Exam Certification Guide ISBN: 1587200708

CISCO SYSTEMS