

F5 Synthesis Information Session

April, 2014

Agenda

- Welcome and Introduction to Customer Technology Challenges
- Software Defined Application Services
- Reference Architectures for Today's Customer Challenges
- Total Cost of Ownership and New Business Models
- Multi-network Environment and Partner Ecosystem
- Making it Happen with Global Services
- Q & A

Technology Shifts Are Creating Opportunity

Impact on Data Center Architecture: Applications

MICRO-ARCHITECTURES

Each service is isolated and requires its own:

- Load balancing
- Authentication / authorization
- Security
- Layer 7 Services
- May be API-based, expanding services required

API DOMINANCE

Proxies are used in emerging API-centric architectures for:

- API versioning
- Client-based steering
- API Load balancing
- Metering & billing
- API key management

More applications need services

Impact on Data Center Architecture: Network

SOLUTION SPRAWL

Increasing threats and client platforms result in need for:

- Mobile device management
- Mobile access management
- Mobile security
- DDoS
- Application layer threats
- Malware

OPERATIONAL INCONSISTENCY

Introduction of off-premise cloud solutions without architectural parity results in:

- Inconsistent enforcement of business and operational policies
- Unpredictable application performance and security
- Increased OpEx as new management paradigms
 are introduced

"Leave No Application Behind"

Average number of applications deployed within an enterprise

The selected few

The 4th Phase of the Evolution

Software Defined Application Services Elements

High-Performance Services Fabric

Intelligent Services Orchestration

Simplified Business Models

Software Defined Application Services Elements

High-Performance Services Fabric

Network

Elastic, multi-tenant platform		
All-active		
Application-aware		

On-Demand Scaling	All-Active Clustering	Multi-Tenancy	
	ScaleN		

[Physical • Overlay • SDN]

Elastic, multi-tenant platform					
All-active					
Application-aware					
^p erformance eader					
	20 Tbps	320 M	9.2 B	80*	32
	Throughput	Connections per second	Concurrent connections	Multi-tenant instances per device	Device service clusters
Old when combining			IPhysical	Overlay • SDN1	

*40K when combining admin instances with vCMP

Service Provider and Enterprise

Device, Network and Applications

Performance and Scale

Extensible and programmable

Automation and Orchestration

F5 Software Defined Application Services (SDAS)

A rich set of services that address the delivery challenges faced by businesses today.

Eliminate single points of failure

Application fault isolation

Context-aware

Elastic scale

Extensible and programmable

Public, private and hybrid cloud

Global Server LBLoad
BalancingGlobal Server LBCGNATLoad
BalancingGlobal Load Balancing Authoritative DNSDNS Caching
& ResolvingDisaster RecoveryDNS Caching
& ResolvingDisaster RecoveryCloud Bursting
ContinuityBusiness
Continuity

Any device, any user, anywhere

Performancerelated protocol support

Context-aware

Cloud or data center

Compression Traffic Management Caching Acceleration Optimization Web Performance Optimization SPDY Gateway

Traffic Shaping and QoS Application Optimization

Single Sign-on

Identity federation

Context-aware

Endpoint inspection and protection against fraud

Extensible and Programmable

Any device, anywhere

SAML Federation Cloud Federation

Access Control Anti-Malware Single Sign-On SSL VPN

Endpoint Inspection Active Sync Proxy Secure Web Gateway

Web Access Management

Secures device, network and application

Protects critical infrastructure fromdisruptive attacks

Application-aware

Extends protection into the cloud

Extensible and programmable

Anti-Fraud Programmability DNS Security WAF SSL Inspection SSL intelligence Anti-Phishing DDSSEC ADF SSL VPN

Software Defined Application Services Elements

Intelligent Services Orchestration

Intelligent Services Orchestration

Completing the SDN Stack

Software-Defined Data Center

Application Services Modules

Cloud

BIG-IQ Device

BIG-IQ Security Vcle Management ecycle Management etwork Configuration

BIG-IQ Cloud

- Management fabric orchestration
- Public cloud connectors
- Application elasticity
- ADC self service management

BIG-IQ Security

- Policy based application security management
- Policy and rule monitoring
- Multi-tenant and multiuser editing and workflows

Software Defined Application Services Elements

Simplified Business Models

Good | Better | Best

Delivering Greater Customer Value

GBB Capabi	lities			
Modules/Services	Good	Better	Best	
BIG-IP Local Traffic Manager	\checkmark	\checkmark	\checkmark	
BIG-IP Global Traffic Manager		\checkmark	\checkmark	
Application Acceleration Manager		\checkmark	\checkmark	
BIG-IP Application Protection		\checkmark	\checkmark	
SDN Service		\checkmark	\checkmark	
Advanced Routing		\checkmark	\checkmark	
BIG-IP Access Policy Manager			\checkmark	
BIG-IP Application Security Manager			\checkmark	Bo

Benefits

Flexibility	Make it easier to adopt advanced F5 functionality		
Simplicity	Consolidate into fewer common configurations		
Best Value	Save when purchasing bundles		

Reference Architectures

For Today's Customer Challenges

*

Reference Architectures *Device, Network, Applications*

Bill of Materials

- White Paper (Business)
- Solution diagram(s)
- Architecture diagram(s)
- Product map diagram(s)

- Customer Presentation
- Solution Animation/Video
- White paper (Technical)
- Placemat leave-behind

Reference Architectures

To the uninitiated, a DOoS attack can be a scary, stressful ordeal. But don't panic. Follow these steps to maximize success in B. fighting an attack. rify that there is an attack Contact your team leads Rain and communications of an outside. Colline the operations and applications: A such as their rescordqueations, upontese mare leads to verify what press are being. vesching instant, and harmoni arrow attocked and to offerally content the Legitimate static. Male now averyone agrees or Users Well areas are officient. The F5 DDoS Protection **Reference Architecture** age your applications Manu Yugo doolaone to solai also high -0 Network DNS SSL Application value gops alive. When you've under an and other from building in product. We dealer was DDoS DDoS DDoS DDoS F5 offers guidance to security and network architects in designing. interest DCeS attack and you have limited addresses of tranked remote users realizios, focus on protecting memory that receive access, and reartain the lat. deploying, and managing architecture to protect against derestators. Populate the lat throughout the network cco \mathbf{c} and with service providers as reached. increasingly sophisticated, application-layer DDoS attacks. lassify the attack valuate source addres: 122 What type of altern is in Mulareeter? Sens tigation options. P and low? Your service provider will tell you If the afterix is solely volumetric and may 0 strengty tunes tailary represidation steps. For advanced attack vectors your service provider cariff miligate, determine the riarchest of annuma. Book artial lists of rofessiona Centralized Management Block larger attacks with protocation. Services ind Suppor itigate application layer ÷Ř. everage your security 0 identify the malkinus traffic and whether its generated by a known attack tool. Specific application layer attacks can be religited, on a case-by-case lase's with district The sequences instant? Was count to countermolectures, which may be provided Ecrebording an appromatic layer 7 DDoS tay your meaning solutions. Root. Fucus on your application-level statemets: login walk, human statection. or Paul Decasor Endersident 3 fanage oublic relations If printings atom this sampley constraining resources. Me rate and connection limit. **F** is a last reson-it can furt avery both good and bath to be to be and the tobe and the to be and thet If the official becomes public, prepare a absorbent and notify internal staff. It mitsetry policies allow L for forthight and situation or triackingle an opplication aitril you're heng attackell i'r rd, ola technical chollenges and achies stoff to cleaned all imputities to that PR internation E-Commerce Financial Subscriber Services White Paper Take the next step You've mitigated lodey's attack. Now focus on building the right DDoS protection architecture for your trusness. Solution Documents... **6**. 15.com

© F5 Networks, Inc

10 STEPS

to Mitigate a DDoS

Attack in Real Time

DDoS Protection Reference Architecture

DDoS Protection Reference Architecture

DDoS Protection Reference Architecture

TIER 2 KEY FEATURES

- The second tier is for application-aware, CPU-intensive defense mechanisms
- SSL termination
- Web application firewall
- Mitigate asymmetric and SSL-based DDoS attacks

Recommended Practices Configuration Guide

2.3.2.4 Enforce Real Browsers

Besides authentication and tps-based detection (section **Error! Reference source not found.**), there are additional ways that F5 devices can separate real web browsers from probable bots.

The easiest way, with ASM, is to create a DoS protection profile and turn on the "Source IP-Based Client Side Integrity Defense" option. This will inject a JavaScript redirect into the client stream and verify each connection the first time that source IP address is seen.

TPS-based Anomaly				
Operation Mode	Blocking			
Prevention Policy	 Source IP-Based Client Side Integrity Defense URL-Based Client Side Integrity Defense Source IP-Based Rate Limiting URL-Based Rate Limiting URL-Based Rate Limiting Note: Blocked requests will be rejected at the TCP Layer by this prevention policy. 			

Figure 1. Insert a Javascript Redirect to verify a real browser

2.3.2.5 Throttle GET Request Floods via Script

The F5 DevCentral community has developed several powerful iRules that automatically throttle GET requests. Customers are continually refining these to keep up with current attack techniques.

Here is one of the iRules that is simple enough to be represented in this document. The live version can be found at this DevCentral page: **HTTP-Request-Throttle**

```
when RULE_INIT {
    # Life timer of the subtable object. Defines how long this object exist in the subtable
    set static::maxRate 10
    # This defines how long is the sliding window to count the requests.
    # This example allows 10 requests in 3 seconds
    set static::windowSecs 3
    set static::timeout 30
}
when HTTP_REQUEST {
    if { [HTTP::method] eq "GET" } {
        set getCount [table key -count -subtable [IP::client_addr]]
```

```
if { $getCount < $static::maxRate } {</pre>
```

```
incr getCount 1
```

table set -subtable [IP::client_addr] \$getCount "ignore" \$static::timeout \$static::windowSecs

```
} else {
```

HTTP::respond 501 content "Request blockedExceeded requests/sec limit."

```
return
}
```

Another iRule, which is in fact descended from the above, is an advanced version that also includes a way to manage the banned IPs address from within the iRule itself:

URI-Request Limiter iRule – Drops excessive HTTP requests to specific URIs or from an IP

32 Page Detailed Guide...

Cisco Partnership

Completing the SDN Stack

© F5 Networks, Inc

Partner Integration with Synthesis

Cisco ACI Design Philosophy

Why Cisco/ACI matters for Customers

- Cisco and F5 share a common vision for simplifying networking end to end by taking an application-centric approach to solving key pain points in customer's next generation data centers while meeting their critical data center requirements today.
- Working with Cisco on Application Centric Infrastructure, F5 has a unique opportunity to deliver on vision of shaping infrastructure to the needs of the applications.
- Cisco ACI integrates F5 Big-IP appliances (physical and virtual) to deliver application-centric, ADC-enabled network automation in existing and next generation data centers

Benefits

Drive Business Value

 Improve application availability, reliability, recoverability, performance, security, and velocity

Increase IT Capabilities

- Common platform physical | virtual | cloud
- Moving from managing devices to services

Reduce Costs

- Lower TCO
- Consolidate user, network, and application services

Future Proof

- Programmability and orchestration
- Open APIs, open standards
- Application awareness

devcentral.f5.com facebook.com/f5networksinc linkedin.com/companies/f5-networks twitter.com/f5networks youtube.com/f5networksinc synthesis.f5.com