

Evolution of Data Networks of BTC

Andrey Rassiysky

Director Network Architecture & Engineering

BTC Group

vivat

Why we discuss the networks evolution? Drivers for data network evolution

- Scalability capacity growth driven by Internet services
- Reliability requirement driven from service standards based on TDM technology
- QoS requirement driven from service standards based on ATM technology
- Flexibility build a network upon a technology that opens opportunities for deployment of new services
- Security requirement driven from service standards based on ATM and FR technologies

Data Networks evolution

Data Networks Architecture

Network Evolution MAN pilot

Ethernet over fiber

Ethernet over DWDM

- Challenges for pilot MAN networks
 - marketing demand for data LAN-to-LAN services
 - technical solutions options
 - Ethernet over DWDM
 - Ethernet over SDH
 - Ethernet over fiber

 Implemented network layers – Ethernet over fiber

- Network footprint about 20 sites in Sofia
- Implemented topology ring
- Protection mechanism RSTP
- Services 802.1q VLAN
- QoS no QoS. Bandwidth planning

Network Evolution MAN Intercity

vivatel

Ethernet over SDH

Ethernet over ATM

Ethernet over fiber/DWDM

- Challenges for intercity MAN
 - marketing demand for Pseudo
 Wire services national wide
 - technical solutions options
 - Ethernet over SDH
 - Ethernet over ATM
 - Ethernet over fiber/DWDM

- Implemented network layers Ethernet over SDH
- Network footprint 7 cities
- Implemented topology star
- Protection mechanism SDH protection
- Services 802-1q VLAN
- QoS no QoS. Bandwidth planning

Network Evolution MAN Intercity

Ethernet over SDH Ethernet over ATM

Ethernet over fiber/DWDM

- Challenges for intercity MAN wide deployment
 - marketing demand for Pseudo
 Wire services national wide
 - technical solutions options
 - Ethernet over ATM
 - Ethernet over SDH
 - Ethernet over fiber/DWDM

Implemented network layers – Ethernet over fiber/DWDM Network footprint – 37 cities

VIVATE

- Implemented topology ring, partial mesh
- Protection mechanism MPLS fast convergence
- Services 802-1q VLAN
- QoS –QoS for voice, business data and best effort traffic.

 Services challenges – capability for multi-play services

	Services	technology challenge
Data	Internet access	Best effort, high capacity
Voice	VoIP applications	QoS for ensuring low delay, low jitter
Video	IPTV and VoD	Multicast, QoS ensuring low packet loss

- Core network challenges driven from tight requirements of Next Generation Network
- QoS
 - Convergence and resilience – MPLS FRR
- MPLS-TE
 - efficient utilization of bandwidth
 - Per service TE

NG-SDH

IP/MPLS over DWDM

- Technology challenges for
 Core network
 - NG-SDH
 - IPoDWDM

- Implemented network layers IP/MPLS over DWDM
- Network footprint 28 cities
- Implemented topology full mesh in core, partial mesh in edge
- Protection mechanism MPLS FRR and fast convergence
- Services all MPLS VPN services (L3 VPN, L2 VPN, multicast VPN, VPLS)
- QoS –QoS for voice, business data and best effort traffic.

- Services challenges
 - Transport for Next Generation
 Voice platform
 - Transport services for Video applications
 - Transport services for BTC Mobile (Vivatel) 3G network (CsC)
 - Services L2 and L3 VPN services
 - Transport services for high capacity Internet services (wholesale)
 - Transport for broadband services

- High requirements for
- High Reliability
- QoS for realtime
- QoS for low packet loss
- Fast Convergence
- multicast efficiency

- Scalability
- Cost effective future upgrades
- Reduction of TCO per Gbps

Integrated DWDM

IP/MPLS over DWDM

VIVATE

- Technology challenges for Core network
 - Integrated DWDM
 - IPoDWDM
- Implemented network layers – IP/MPLS over DWDM. Integration of transmission network in MPLS core routers

- Implemented topology full mesh in core, partial mesh in edge
- Protection mechanism MPLS FRR and fast convergence
- Services –MPLS VPN services (L3 VPN, L2 VPN)
- QoS –QoS for voice, business data and best effort traffic.

 Services challenges – capability for multi-play services

	Services	technology challenge
Data	Internet access	Best effort, high capacity
Voice	VoIP applications	QoS for ensuring low delay, low jitter
Video	IPTV and VoD	Multicast, QoS ensuring low packet loss

Same challenges – Different approaches to solve

Centralized vs Distributed broadband aggregation

- Drivers for centralized broadband aggregation:
 - ATM network aggregation
 - Small and strongly distributed subscriber base

None of the above is valid today

- Centralized edge architecture is promoted mainly by BRAS and edge router vendors
- Distributed edge architecture is promoted mainly by suppliers of Carrier Ethernet equipment

IVATE

Centralized

Distributed

Single edge vs Multi edge broadband aggregation

- Single edge architecture consolidates all services in a single node
 - Single control point for all services
- Multi edge architecture uses separate nodes for separate service
 - Multiple control points

Multi edge provides specialized solution for more specific services – business services.

/ivate

Centralized Single Edge broadband aggregation

Source: Heavy Reading

- Similar to legacy (ATM) edge architecture
- Enforce QoS for all services
- Capable for multiple service Internet, residential voice, video, data and convergent enterprise services

Distributed Single Edge broadband aggregation

Source: Heavy Reading

- Distributed control points between IP edge router and Gigabit Ethernet aggregation switch
- Evolution from traditional service architecture intelligent and scalable managed services
- QoS is enforced in distributed manner and managed by policy management system
- Optimized for new services as IPTV

Source: Heavy Reading

- Centralized Multi Edge broadband aggregation
- similar to centralized single edge
- better support for business services dedicated boxes for different services
- overcome vendor limitations by deploying optimized equipment

Distributed Multi Edge broadband aggregation

Source: Heavy Reading

- similar to centralized multi edge
- better support for business services dedicated boxes for different services
- overcome vendor limitations by deploying optimized equipment
- more hybrid variants are possible

- FTTx regulation uncertainty
- FTTx technology PON or Active Ethernet?
- WiMAX and HSPA/LTE convergence or coexistence?
- CPE Distributed or Integrated?
- CPE Managed or Unmanaged?

Q & A