Troubleshooting Catalyst® Switches (Part 2)

Session 2808
Agenda

- QoS: What, Why, Where?
- QoS Features
- Platform Specifics
- Configuration
- Troubleshooting

Evolving Campus Network

Existing Network

- PCs
- Mission Critical
- Mission-Critical Servers
- E-mail Servers

New Additions

- Voice
- Video Surveillance
- NetShow

Protect Mission-Critical Traffic!
Not All Traffic Is Created Equal

<table>
<thead>
<tr>
<th></th>
<th>Voice</th>
<th>Video</th>
<th>Data (Best-Effort)</th>
<th>Mission-Critical Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>Low to Moderate</td>
<td>Moderate to High</td>
<td>Moderate to High</td>
<td>Low to Moderate</td>
</tr>
<tr>
<td>Random Drop Sensitivity</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Moderate to High</td>
</tr>
<tr>
<td>Delay Sensitivity</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Moderate to High</td>
</tr>
<tr>
<td>Jitter Sensitivity</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low to Moderate</td>
</tr>
</tbody>
</table>

QoS in Campus Networks?

“Why Not Just Increase the Link Speed? Throw More Bandwidth at the Problem!”
Maybe You Can, Maybe You Can’t

- Output buffers have tendency to be operating at 100% in the campus
- QoS in the campus is primarily about buffer management
- Buffer management is required to control delay or drops
- TCP will eventually retransmit dropped packets
- Do you care about delay or drops?

Buffers

- Buffers can congest in LANs
- QoS required when there is congestion in buffers
- Buffer management can help reduce loss
- Buffering reduces loss but delay sensitive application could be negatively impacted
Where Does Congestion Exist? That’s Where QoS Applies!

- QoS required where there is congestion in links and buffers
- Points of substantial speed mismatch and points of aggregation
- Transmit buffers have the tendency to fill (TCP windowing)
- Buffering reduce loss, introduce delay

Where Are QoS Features Applied?

- Campus A
- Campus B
- WAN

QoS Ingress:
- Admission Control
- Classification
- Congestion Avoidance
- Congestion Management

QoS Core:
- Congestion Avoidance
- Congestion Management

QoS WAN Edge:
- Admission Control
- Congestion Avoidance
- Congestion Management
- Policing/Shaping
- Link Efficiency
QoS Operational Model

Admission Control
- Allow or Dis-allow Frames/Packets Based on Application Type or Policy (Security, Time of Day, Etc.) E.g., Application Recognition

Input Classification
- Assigning a Label Based on Examining Fields in the L2 (802.1p, ISL) or L3 Header (IP Precedence, DSCP Codepoint from Diffserv)

Input Q Scheduling
- Assigning the Frame/Packet to an Input Queue and/or Drop Threshold Based on the Label Assigned

Policing
- Ensuring Traffic Rate Is Within Specified Contract if Policing Is Turned on. Excess Is Dropped or Marked Down to a Lower Priority
- Assign a New Label to the Frame/Packet if Necessary, Based on Configuration (Policy, Security, Congestion, Etc.) or Policing Action

Reclassification
- Assigning the Frame/Packet to an Output Queue and/or Drop Threshold Based on Original or New Label Assigned

Output Q Scheduling

Heterogeneous Technologies...

Campus
- 802.1p
- ISL COS
- MPLS COS
- ATM UNI
- FUNI
- COS
- QOS

WAN/SP/Telco
- Desktop: E, FE, TR, ATM
- Backbone: E, FE, GE, ATM, Optical
- LL, FR, ISDN, MPLS, ATM, SDH
- IP TOS
- RSVP
- Intserv

...Homogeneous Networking
Agenda

- QoS: What, Why, Where?
- QoS Features
- Platform Specifics
- Configuration
- Troubleshooting

Classify at Layer 3 and Layer 2

Layer 3

IPV4

Standard IPV4: Three MSB Called IP Precedence (DiffServ May Use Six D.S. Bits Plus Two for Flow Control)

<table>
<thead>
<tr>
<th>Version</th>
<th>Length</th>
<th>ToS</th>
<th>Len</th>
<th>ID</th>
<th>Offset</th>
<th>TTL</th>
<th>Proto</th>
<th>FCS</th>
<th>IP-SA</th>
<th>IP-DA</th>
<th>Data</th>
</tr>
</thead>
</table>

Layer 2

ISL

Three Bits Used for CoS (Class of Service)

<table>
<thead>
<tr>
<th>ISL Header</th>
<th>Encapsulated Frame 1...24.5 KBytes</th>
<th>FCS 4 Bytes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Layer 2</th>
<th>802.1Q/p</th>
</tr>
</thead>
</table>

Three Bits Used for CoS (User Priority)

<table>
<thead>
<tr>
<th>PREAM.</th>
<th>SFD</th>
<th>DA</th>
<th>SA</th>
<th>TAG 4 Bytes</th>
<th>PT</th>
<th>DATA</th>
<th>FCS</th>
</tr>
</thead>
</table>
RED for Congestion Avoidance

- Uncontrolled Congestion
- Managed Congestion
- Maximize goodput
- Fairness to small users
- Reduces Global Synchronization
- Minimize delay

Offered Load Over Time

Weighted RED

- WRED addresses:
 In the event packets need to be dropped, what class of packets should be dropped

Packets Classified as Blue Start Dropping at a 50% Queue Depth. Drop Rate Is Increased as Queue Depth Is Increased

Packets Classified as Gold Are Dropped at 90% Queue Depth
WRED Congestion Avoidance—Two Drop Thresholds

Number of Packets Discarded

Adjustable “Slope”

Queue Length

Standard Minimum Threshold 1

Premium Minimum Threshold 2

Standard Maximum

Premium Maximum

Output Scheduling—WRR

Weighted Round Robin Used to Schedule Between Queues
Dual Queues—Dual Thresholds

Weighted Round Robin
Used To Schedule between Queues

Weighted Random Early Discard (WRED) Used within Queue for Congestion Avoidance

CoS Assignment

- On trusted ports, ingress port assigns CoS only to untagged packets
- On untrusted ports, the ingress port assigns a default CoS to all packets, tagged or not
- CoS assigned by an ingress port is independent of the VLAN
Trusted vs. Untrusted

- Cisco’s QoS model assumes that the CoS carried in a packet can be both “trusted” and “untrusted”
- Ports are “untrusted” by default
- Servers may be reliable enough to correctly tag the packets
- End stations generally are not trusted to tag a packet’s priority correctly

Agenda

- QoS: What, Why, Where?
- QoS Features
- Platform Specifics
- Configuration
- Troubleshooting
QoS in Catalyst Switches

- Deals with the (re-) classification, policing and input/output scheduling
- Hardware determines features
- Classification, policing and reclassification depends on Layer 3 capabilities of the hardware

QoS in Catalyst Switches

- Scheduling capabilities depends on hardware:
 - Catalyst 4000: 2Q1T (2 queues, 1 threshold, tx)
 - Catalyst 5000: 1Q4T (1 queue, 4 thresholds, tx)
 - Catalyst 6000: 1Q4T (1 queue, 4 thresholds, rx)
 - 1P1Q4T (1 strict priority, 1 queue, 4 thresholds, rx)
 - 2Q2T (2 queues, 2 thresholds, tx)
 - 1P2Q2T (1 strict priority, 2 queues, 2 thresholds, tx)
QoS in Catalyst 4000/2948G

- Input classification based on incoming CoS label (802.1q)—ONLY if frames are tagged with a VLANid
- If no CoS, packet gets assigned a CoS value which is “switch-wide”
- All ports are considered “trusted”
QoS in Catalyst 4000/2948G

- The output ports have a 2Q1T capability
- CoS values mapped to two output queues
- Queues are serviced in a round-robin fashion

QoS in Catalyst 5xxx

- L2 CoS can be set on packets without CoS (if SAINT5)
 - If packets contain CoS, packet is trusted
- In-Comeing Encapsulation:
 - Can be 802.1Q, 802.1p, ISL, or None

Diagram Details

- **FIFO Queue**
- **RX**
- **Input Port**
- **Classify/Rewrite**
- **Forwarding Engine**
- **Rewrite**
- **Queue 1**
- **TX**
- **Out-Going Encapsulation**
 - Can be 802.1Q, ISL, or None
- **Scheduling:**
 - WRED
 - Threshold
 - Select Based on CoS Through Configurable Map (SAINT5)
- **Rewrites TOS Field in IP Header and 802.1p/ISL CoS Field**
 - Port needs to be SAINT4 OR SAINT5 if not MLS switched
- **L2 based classification:**
 - Dest-MAC based
 - L3 based classification
 - IP only
 - Dest-MAC needs to be router (XTAG !=0)
 - Central Rewrite only possible on MLS switched packets
QoS in Catalyst 5xxx Switches

- Classification done in three steps:

 Packet is classified based on ingress port. If packet has CoS value, this value is used. Else we use the port’s CoS value.

 If CoS has been explicitly configured for the packets destination mac address, replace the previously assigned CoS.

3. If packet is IP packet going to/from a router, check if packet matches ACE. If yes, replace CoS with CoS of that ACE.

 Note: if source and destination are not on the same switch, you have to configure the router’s mac-address (qos) and exclude him as MLS-RP.
QoS in Catalyst 5xxx Switches

- Classification can occur based on:
 - Ingress port CoS (saint5 needed)
 - Destination mac-address (any linecard)
 - IP packets matching a specific ACE

- An ACE includes:
 - Source/destination IP address
 - Protocol
 - Source/destination Layer 4 port (UDP/TCP)

There needs to be an entry in the Layer 3 table (full flow) in order to rewrite IP precedence.

In most cases enabler packet will not pass via the same switch, hence need for software initiated shortcuts (via “set QoS router-mac” command).

These packets cannot be centrally rewritten, inline rewrite needed.
QoS in Catalyst 5xxx Switches

- Result of the classification is:
 - Rewrite of CoS (not matching an ACE)
 - Rewrite of BOTH IP Precedence and CoS (ACE match)
- CoS might get lost on egress
 Although it is used for scheduling

QoS in Catalyst 5xxx Switches

- Output scheduling is only supported on the SAINT5 based linecards
- The Catalyst 5xxx has support for QoS output scheduling using 1Q4T ports
- WRED is used to randomly drop packets with four wred thresholds
 Note: MLS flowmask will change to full-flow when enabling QoS
QoS in Catalyst 5xxx Switches

- Saint5 based:
 - 24-port 10/100BaseTX Fast Ethernet RJ-45 (WS-X5234-RJ45)
 - 24-port 100BaseFX Fast Ethernet MT-RJ (WS-X5236-FX-MT)
 - 36-port 10/100BaseTX Fast Ethernet Telco (WS-X5239-RJ21)
 - 24 Port 100 BaseFX SMF MT-RJ Switching Module (WS-X5237-FX-MT) (5.4 release)

- Saint4 based:
 - 24-port 10/100Base TX Fast EtherChannel RJ-45 (WS-X5225R-RJ45)
 - 12-port 100BaseFX MMF Fast EtherChannel (WS-X5201R-FEFX-MMF)
 - 4-port 10/100BaseTX Fast EtherChannel uplink module (WS-U5537-FETX)
 - 4-port 100BaseFX MMF MT-RJ Fast EtherChannel uplink module (WS-U5538-FEFX-MMF)

SAINT4 or SAINT5?

- Port based CoS
 - Requires SAINT5 ingress

- For dest-mac based CoS
 - No specific module for ingress/egress

- For TOS rewrite
 - Requires SAINT5 egress if not MLS switched
QoS in Catalyst 6xxx Switches

- Classification is handled by ACLs
- Each ACL contains various ACEs
- Three types of ACEs:
 - IP ACE
 - IPX ACE
 - MAC ACE
Classification can be done inter- and intra-vlan

Classification can be port based or VLAN based

No restriction on the use of MLS and QoS concurrently

MLS flowmask can often stay destination-IP (except when microflow policing)

Policing uses a token bucket scheme

Out-of-profile packets:
 Dropped
 Mark down the DSCP (via a map)

Two policers are applied to each packet:
 Individual microflow policer (each mls entry can have its own policer, up to 63)
 Aggregate flow policer (up to 1023)
Start with a bucket without tokens
- Tokens can be added at a bursty rate
- Tokens are leaked at a specified constant rate
- If the bucket overflows, packet gets policed

Example:
Rate: 16000 kbps, burst size: X kbits
Means: each leaking interval we will leak 16000 kbps * 0.00025 s = 4000 bits
If X=1 and the input rate is 16 Mbps, the output rate will be 4 Mbps only: this is because between leaking intervals, we attempt to put 16000 kbps * 0.00025 s = 4000 bits into the bucket. Since the bucket is already full after 1000 bits, 3/4 of the traffic will get policed
To make sure the bucket can fill at 16 Mbps, the bucket size needs to be exactly 400 bits, X=4. Right before it will overflow it is drained back to 0
To allow a burst above avg rate, increase burst, x=5 allows an extra 1000 bits coming into the bucket before it overflows, meaning a burst rate of up to 20000 kbps (for one second).
QoS in Catalyst 6xxx Switches

Output scheduling consists of:
- Assigning to queues based on CoS
- Dropping based on thresholds
- Configuring threshold levels
- Assigning weights for WRR

Agenda

- QoS: What, Why, Where?
- QoS Features
- Platform Specifics
- Configuration
- Troubleshooting
Catalyst 4000/2948G/2900/3500-XL Example

- **Configuration on Catalyst 4000:**

  ```
c4k#set qos enable
c4k#set qos defaultqos 0
  
  optional:
c4k#set qos map 2q1t 2 1 cos 4-7
c4k#show qos info config
  
  QoS setting in NVRAM:
  QoS is enabled
  All ports have 2 transmit queues with 1 drop thresholds (2q1t).
  Default CoS = 0
  Queue and threshold mapping:
  Queue threshold CoS
  
<table>
<thead>
<tr>
<th>Queue</th>
<th>Threshold CoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
  ```

QoS in Catalyst 5xxx Switches Access Layer Example

- **Relevant commands:**

  ```
c5k#set qos enable
c5k#clear mls include 2.2.2.254
c5k#set qos router-mac 00-00-0c-11-22-33
c5k#set qos ip 4 tcp any 0 host 1.1.1.1 2001
  
  optional:
c5k#set qos map 1q4t 1 4 cos 6,7
c5k#show qos info config 1q4t tx
  
  QoS setting in NVRAM for 1q4t transmit:
  QoS is enabled
  Queue and Threshold Mapping:
  Queue Threshold CoS
  
<table>
<thead>
<tr>
<th>Queue</th>
<th>Threshold CoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
  
  Tx WRED thresholds
  Queue # Thresholds in percentage (in abs values)
  
<table>
<thead>
<tr>
<th>Queue #</th>
<th>Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10% 20% 40% 100%</td>
</tr>
</tbody>
</table>
  ```
QoS in Catalyst 6xxx Switches

Examples

- Example 1: input scheduling through 1p1q4t ports. VOIP has CoS=5

c6k#set qos enable
c6k#set qos port 1/1 trust trust-cos
c6k#set qos drop-threshold 1p1q4t rx queue 1 20 40 75 100
c6k#set qos map 1p1q4t rx 2 1 cos 5
c6k#set qos map 1p1q4t rx 1 1 cos 0,1
c6k#set qos map 1p1q4t rx 1 2 cos 2,3
c6k#set qos map 1p1q4t rx 1 3 cos 4
c6k#set qos map 1p1q4t rx 1 4 cos 6,7

 Note: there is a default IP/IPX/MAC ACL that matches all traffic and has the
 'dscp 0' keyword. This ACL is used to mark frames with dscp= 0 on all ports.
 There is a default mapping between CoS and DCSP and IP precedence and
 DSCP. On output IP-precedence and/or QoS will get derived from internal
 DSCP.
c6k#set qos acl default-action ip dscp

 Note: an ACL can always override the per-port classification

- Example 2: output scheduling using 1p2q2t ports. VOIP has CoS=5, Mission
 critical has CoS 4

c6k#set qos enable
c6k#set qos map 1p2q2t tx 3 1 cos 5
c6k#set qos map 1p2q2t tx 1 1 cos 0,1
c6k#set qos map 1p2q2t tx 1 2 cos 2,3
c6k#set qos map 1p2q2t tx 2 1 cos 4
c6k#set qos map 1p2q2t tx 2 2 cos 6,7
c6k#set qos wred 1p2q2t tx queue 1 50 100
c6k#set qos wred 1p2q2t tx queue 2 80 100
c6k#set qos wrq 1p2q2t 30 70
c6k#set qos txq-ratio 1p2q2t 70 15 15
QoS in Catalyst 6xxx Switches

Examples

- Example 3: Classify frames using ACLs. All traffic from vlan 200 to 1.1.1.1 gets CoS 4 (internal default DSCP 32). IP phones are on module 3 and get a DSCP of 40 (Cos=5)

 c6k#set qos enable
c6k#set port qos 2/1-12 vlan-based
c6k#set qos acl ip mission_critical dscp 32 ip any host 1.1.1.1
c6k#commit qos acl mission_critical
c6k#set qos acl map mission_critical 200
c6k#set port qos 3/1-48 port-based
c6k#set port qos 3/1-48 trust untrusted
c6k#set qos acl ip voip dscp 40 ip any any
c6k#commit qos acl voip
c6k#set qos acl map voip 3/1-48

- Example 4: policing of all http traffic in general and to web server 2.2.2.2 in particular

 c6k#set qos policer aggregate Policer_http rate 10000 burst 3 drop
c6k#set qos policer microflow Policer_2.2.2.2 rate 1000 burst 1 drop
c6k#set qos acl ip police_acl trust-dscp microflow Policer_2.2.2.2 tcp any host 2.2.2.2 eq port 80
c6k#set qos acl ip police_acl trust-dscp aggregate Policer_http tcp any any eq port 80
Agenda

- QoS: What, Why, Where?
- QoS Features
- Platform Specifics
- Configuration
- Troubleshooting

QoS Restrictions/Minimum Requirements—Catalyst 4000

- Catalyst 4xxx/2948G do not support input scheduling, policing, Layer 3 TOS rewrite, or destination-based QoS
- Queue thresholds are hard-set to 100% and are not tunable
- Minimum software 5.3
- No CoS on “Native” VLAN
QoS Restrictions/Minimum Requirements—Catalyst 5000

- QoS on Catalyst 5000 requires one of: Sup III with NFFC2, or Sup II G, or Sup III G
- Must run 5.x or higher software
- SAINT5 based linecards required to support output scheduling

QoS Restrictions/Minimum Requirements—Catalyst 6000

- Catalyst 6xxx requires Policy Feature Card (PFC) to implement Layer 3 QoS features via Ternary CAM (TCAM)
- No PFC means no Layer 3 QoS on Catalyst 6xxx; Layer 2 only
QoS In Catalyst 6xxx Switches

Gotchas

- Preservation of CoS/ToS is function of port trust-state
- Software routed packets lose CoS
- 10/100 ports are always untrusted. Use ACL trust-cos/ipprec/dscp keyword in ACL to trust flows arriving on these ports. Note that input scheduling works as expected!
- Size of strict priority queue and high priority queue have to be the same
- No flow-control and QoS together

Classification of Multicast

- IGMP type fields in ACL are V1 definitions, not V2 report
- To avoid out-of-order packet delivery, map marked-down DSCP to same queue as in-profile DSCP. (Affects unicast also)
Show Port QoS

Cat6509> (enable) show port qos 4/1
QoS is disabled for the switch.
Configured settings are not used.
QoS policy source for the switch set to local.

<table>
<thead>
<tr>
<th>Port</th>
<th>Interface Type</th>
<th>Interface Type</th>
<th>Policy Source</th>
<th>Policy Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1</td>
<td>port-based</td>
<td>vlan-based</td>
<td>COPS</td>
<td>local</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>TxPort Type</th>
<th>RxPort Type</th>
<th>Trust Type</th>
<th>Trust Type</th>
<th>Def CoS</th>
<th>Def CoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1</td>
<td>1p2q2t</td>
<td>1p1q4t</td>
<td>untrusted</td>
<td>trust-dscp</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(*)Trust type set to untrusted.

Config:

<table>
<thead>
<tr>
<th>Port</th>
<th>ACL name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No ACL is mapped to port 4/1.

Show Port Capabilities

Cat6509> (enable) show port capabilities 4/1
Model WS-X6416-GE-MT
Port 4/1
Type 1000BaseSX
Speed 1000
Duplex full
Trunk encap type 802.1Q,ISL
Trunk mode on,off,desirable,auto,Nonegotiate
Channel yes
Broadcast suppression percentage(0-100)
Flow control receive-(off,on,desired),send-(off,on,desired)
Security yes
Membership static,dynamic
Fast start yes
QOS scheduling rx-(1p1q4t),tx-(1p2q2t)
CoS rewrite yes
ToS rewrite DSCP
UDLD yes
SPAN source,destination
Show QoS Information

Cat6509> (enable) sh qos info runtime 4/1
Run time setting of QoS:
QoS is enabled
Policy Source of port 4/1: Local
Tx port type of port 4/1 : 1p2q2t
Rx port type of port 4/1 : 1p1q4t
Interface type: port-based
ACL attached:
The qos trust type is set to untrusted.
Default CoS = 0
Queue and Threshold Mapping for 1p2q2t (tx):
Queue Threshold CoS
----- -------- ---------------
 1 1 0 1
 1 2 2 3
 2 1 4 6
 2 2 7
 3 1 5
Queue and Threshold Mapping for 1p1q4t (rx):
All packets are mapped to a single queue.
Rx drop thresholds:
Rx drop thresholds are disabled.
Tx drop thresholds:
Tx drop-thresholds feature is not supported for this port type.

Show QoS ACL Map

Cat6509> (enable) show qos acl map all
ACL name Vlan # Ports
-------- -------- -------------

ACLdeny_http 1,4-7
ACLpermit_isp1 2 1/1

Cat6509> (enable) show qos acl map 1
Vlan ACL name
---- -------------
1 ACLdeny_http

Cat6509> (enable) show qos acl map ACLpermit_isp1
ACL name Vlan # Ports
-------- -------- --------
ACLpermit_isp1 2 1/1
Show QoS ACL Map Runtime All

```
Cat6509> (enable) show qos acl map runtime all
ACL name  Type  Vlans
---------  ----  ------------
 aclHTTP_LIMIT  IP  1
 ACL name
---------------------------
 aclHTTP_LIMIT  IP
 ACL name
---------------------------
 aclMB1  MAC
 ACL name
---------------------------
 aclMB1  MAC  4/1
```

Show QoS Policer Runtime All

```
Cat6509> (enable) show qos policer runtime all
QoS microflow policers:
Microflow name  Avg. rate (kbps)  Burst size (kb)  Exceed action
----------------  -----------------  ------------  ------------
 mpMB1  992  32  drop
 ACL attached
----------------
 aclHTTP_LIMIT
 QoS aggregate policers:
Aggregate name  Avg. rate (kbps)  Burst size (kb)  Exceed action
----------------  -----------------  ------------  ------------
 apMB1  992  32  drop
 ACL attached
----------------
 aclMB1
```
QoS ACL Statistics

Cat6509> (enable) show qos stat l3stats
Packets dropped due to policing: 189003
IP packets with ToS changed: 29843
IP packets with CoS changed: 4532
Non-IP packets with CoS changed: 17254

Cat6509> (enable) show qos acl resource-usage
ACL resource usage:
ACL storage (mask/value): 0.29%/0.7%
ACL to switch interface mapping table: 0.39%
ACL layer 4 port operators: 0.0%

Parting Thoughts

- Plan QoS around application requirements
- Ensure that your hardware supports intended configuration
- Use meaningful names for ACEs, ACLs, and policers
- Check and test thoroughly
Related Sessions

- Session 2806—Campus Switch Architectures
- Session 2802—Performance Metrics for Multilayer Switches
- Session 2810—Campus Modular Switching Product Update

Troubleshooting Catalyst Switches (Part 2)

Session 2808
Please Complete Your Evaluation Form

Session 2808

Cisco Systems

Empowering the Internet Generation℠