Introduction

This document provides configuration and troubleshooting information on the Border Gateway Protocol (BGP) Maximum-Prefix feature.

The BGP Maximum-Prefix feature allows you to control how many prefixes can be received from a neighbor. By default, this feature allows a router to bring down a peer when the number of received prefixes from that peer exceeds the configured Maximum-Prefix limit. This feature is commonly used for external BGP peers, but can be applied to internal BGP peers also.

The Maximum-Prefix feature is useful when, at a change of outbound policy at the remote peering site, a router starts to receive more routes than the router memory can take. If this same router is peering with BGP and also performs critical routing functions within a network, this overhead could turn out bad. A BGP problem could disrupt internal network connectivity. With the `neighbor maximum-prefix` command, it is possible to protect a router against this situation.

When you plan to use this feature, consider these key points:

- Know how many routes the remote BGP peering router normally sends.
- Set a threshold a little higher than the number of BGP prefixes expected to be received during normal operations.
- Know the action to take in case the remote BGP peer sends more prefixes than those expected. Available actions could either be to bring down the session and to keep the BGP neighbor relationship down until you use the `clear ip bgp x.x.x.x` command or, alternatively, to only log a warning message.

Note: An enhancement to this feature is introduced in Cisco IOS® Software Release 12.0(22)S and 12.2(15)T. The enhancement allows the user to automatically reestablish a peering session that has been brought down because the configured Maximum-Prefix limit is exceeded. No intervention from the network operator is required when this feature is enabled. For further information, refer to BGP Restart Session After Maximum-Prefix Limit.

Prerequisites

Cisco recommends readers of this document have basic understanding of this information:

- BGP Implementation section of Cisco IOS IP Configuration Guide, Release 12.2
- BGP Configuration section of Configuring BGP

Components Used

The information in this document is based on these software and hardware versions:

Cisco 2500 Series Routers on Cisco IOS® Software Releases 12.2(27)

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Access Cisco Feature Navigator (registered customers only) in order to determine which Cisco IOS Software versions you can use with this feature.

Conventions

Refer to Cisco Technical Tips Conventions for more information on document conventions.

Configure

In this section, you are presented with the information to configure the features described in this document.

Note: To find additional information on the commands used in this document, use the Command Lookup Tool (registered customers only).

The command syntax used in order to configure the BGP Maximum-Prefix feature is:

```
neighbor {ip-address | peer-group-name} maximum-prefix
        maximum [threshold] [restart restart-interval] [warning-only]
```

Where:
maximum—Represents the maximum number of prefixes allowed from the neighbor.

threshold—An optional integer value that specifies at what percentage **maximum-value** is configured. The router starts to generate a warning message. The range is from 1 to 100 percent, and the default is 75 percent.

For example, if the **maximum-value** configured is 20 and the threshold 60, the router generates warning messages when the number of BGP learned routes from the neighbor exceeds 60 percent of 20 (12) routes.

restart-interval—An optional Time interval (in minutes) that a peering session is reestablished. The range is from 1 to 65535 minutes.

warning-only—(optional) Allows the router to generate a log message when the Maximum-Prefix limit is exceeded, instead of terminating the peering session.

In order to better illustrate the usage, consider this example:

```
neighbor 10.1.1.1 maximum-prefix 3000
!!--- Drops the peering to 10.1.1.1 when
!!--- more than 3000 prefixes are received.
```

```
neighbor 10.1.1.1 maximum-prefix 3000 warning-only
!!--- Logs a warning message when the peer sends
!!--- more than 3000 prefixes.
```

```
neighbor 10.1.1.1 maximum-prefix 3000 50
!!--- Logs a warning message at 1500 and drops the
!!--- peering when over 3000 prefixes are sent.
```

```
neighbor 10.1.1.1 maximum-prefix 3000 50 warning-only
!!--- Initially warns at 1500 and re-warns
!!--- (different message) at 3000 prefixes received.
!!--- However, the BGP Peer is not disconnected.
```

Note: To find additional information on the commands used in this document, use the IOS Command Lookup tool (registered customers only).

Network Diagram

This document uses this network setup:

![Network Diagram](image)

Configurations

This document uses these configurations:

- **Maximum-Prefix Configured for Warning-Only Message When Threshold Exceeds Threshold Set**
- **Maximum-Prefix Configured to Bring Down Neighbor Relationship When Threshold Exceeds Threshold Set**

Maximum-Prefix Configured for Warning-Only Message When Threshold Exceeds Threshold Set

In the Maximum-Prefix warning-only configuration, Router_B is configured to log only a warning message when the number of prefixes received from Router_A exceeds the threshold set. Configuration of both routers is as shown in this table. Notice the presence of the **warning-only** keyword configured with the **neighbor** command.

<table>
<thead>
<tr>
<th>Router_A</th>
<th>Router_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname Router_A</td>
<td></td>
</tr>
<tr>
<td>interface Loopback0</td>
<td></td>
</tr>
<tr>
<td>ip address 10.0.0.1 255.255.255.255</td>
<td></td>
</tr>
<tr>
<td>interface Serial0</td>
<td></td>
</tr>
<tr>
<td>ip address 192.168.1.1 255.255.255.252</td>
<td></td>
</tr>
<tr>
<td>interface Serial1</td>
<td></td>
</tr>
<tr>
<td>ip unnumbered Loopback0</td>
<td></td>
</tr>
<tr>
<td>router bgp 200</td>
<td></td>
</tr>
<tr>
<td>no synchronization</td>
<td></td>
</tr>
<tr>
<td>bgp router-id 10.0.0.1</td>
<td></td>
</tr>
<tr>
<td>bgp log-neighbor-changes</td>
<td></td>
</tr>
<tr>
<td>neighbor 192.168.1.2 local-as 100</td>
<td></td>
</tr>
<tr>
<td>neighbor 10.0.0.2 remote-as 300</td>
<td></td>
</tr>
<tr>
<td>hostname Router_B</td>
<td></td>
</tr>
<tr>
<td>interface Loopback0</td>
<td></td>
</tr>
<tr>
<td>ip address 10.0.0.2 255.255.255.252</td>
<td></td>
</tr>
<tr>
<td>interface Ethernet0</td>
<td></td>
</tr>
<tr>
<td>ip address 10.0.1.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>interface Serial0</td>
<td></td>
</tr>
<tr>
<td>ip unnumbered Loopback0</td>
<td></td>
</tr>
<tr>
<td>router bgp 300</td>
<td></td>
</tr>
<tr>
<td>no synchronization</td>
<td></td>
</tr>
<tr>
<td>bgp router-id 10.0.0.2</td>
<td></td>
</tr>
<tr>
<td>bgp log-neighbor-changes</td>
<td></td>
</tr>
<tr>
<td>neighbor 10.0.0.1 remote-as 200</td>
<td></td>
</tr>
<tr>
<td>neighbor 10.0.0.1 ebgp-multihop 2</td>
<td></td>
</tr>
<tr>
<td>neighbor 10.0.0.1 update-source Loopback0</td>
<td></td>
</tr>
<tr>
<td>neighbor 10.0.0.1 version 4</td>
<td></td>
</tr>
</tbody>
</table>
The show and debug command outputs in the Verify and Troubleshoot section of this document report what really happens on Router_B whenever the number of prefixes received from Router_A exceeds the threshold set.

Maximum-Prefix Configured to Bring Down Neighbor Relationship When Threshold Exceeds Threshold Set

In the Maximum-Prefix configured to bring down the neighbor relationship configuration, Router_B is configured to generate warning messages when the number of prefixes received from Router_A exceeds the threshold set. Router_B is also configured to bring down the BGP neighbor when the maximum prefix limit is exceeded. Configuration of both routers is as shown in the table. Notice the absence of the warning-only keyword set with the neighbor command.

<table>
<thead>
<tr>
<th>Router_A</th>
<th>Router_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname Router_A</td>
<td>hostname Router_B</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 10.0.0.1 255.255.255.252</td>
<td>ip address 10.0.0.2 255.255.255.252</td>
</tr>
<tr>
<td>interface Ethemet0</td>
<td>interface Ethemet0</td>
</tr>
<tr>
<td>ip address 10.0.1.1 255.255.255.0</td>
<td>ip address 10.0.1.1 255.255.255.0</td>
</tr>
<tr>
<td>interface Serial0</td>
<td>interface Serial0</td>
</tr>
<tr>
<td>ip address 192.168.1.1 255.255.255.252</td>
<td>ip address 192.168.1.1 255.255.255.252</td>
</tr>
<tr>
<td>interface Serial1</td>
<td>interface Serial1</td>
</tr>
<tr>
<td>ip address 192.168.1.2 255.255.255.252</td>
<td>ip address 192.168.1.2 255.255.255.252</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>router bgp 200</td>
<td>router bgp 300</td>
</tr>
<tr>
<td>no synchronization</td>
<td>no synchronization</td>
</tr>
<tr>
<td>bgp router-id 10.0.0.1</td>
<td>bgp router-id 10.0.0.2</td>
</tr>
<tr>
<td>neighbor 192.168.1.2 local-as 100</td>
<td>neighbor 10.0.0.1 remote-as 100</td>
</tr>
<tr>
<td>neighbor 10.0.0.2 remote-as 300</td>
<td>neighbor 10.0.0.2 remote-as 100</td>
</tr>
<tr>
<td>neighbor 10.0.0.2 ebgp-multihop 2</td>
<td>neighbor 10.0.0.1 ebgp-multihop 2</td>
</tr>
<tr>
<td>neighbor 10.0.0.2 update-source Loopback0</td>
<td>neighbor 10.0.0.1 update-source Loopback0</td>
</tr>
<tr>
<td>neighbor 10.0.0.2 version 4</td>
<td>neighbor 10.0.0.1 version 4</td>
</tr>
<tr>
<td>!</td>
<td>neighbor 10.0.0.1 maximum-prefix 10 80</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
</tbody>
</table>

The show and debug command outputs in the Verify and Troubleshoot section report what really happens on Router_B whenever the number of prefixes it receives from Router_A exceeds the threshold set.

Verify and Troubleshoot

This section provides information you can use to confirm your configuration is working properly.

Certain show commands are supported by the Output Interpreter Tool (registered customers only), which allows you to view an analysis of show command output.

The command syntax and defaults of the feature used in this document are available at the BGP Command page.

Note: Refer to Important Information on Debug Commands before you use debug commands.

- show ip bgp neighbor — Displays the BGP neighbor status.
- show ip bgp summary — Displays the status of all BGP connections.
- debug ip bgp updates in — Displays information related to BGP updates.

Maximum-Prefix Warning-Only

Pay attention to these numbers:

- Maximum prefixes agreed: 10
- Warning threshold: 80 percent (eight)

As long as the number of received prefixes does not get higher than the threshold set, eight, no messages are logged. As soon as the number of BGP routes learned from neighbor 10.0.0.1 exceeds the threshold limit of eight, Router_B logs this message. This situation is simulated when nine prefixes are sent:

```%
BGPF-4-MAXPPFX: No. of prefix received from 10.0.0.1 (afi 0) reaches 9, max 10
%
```

If the situation gets worse, and exceeds the Maximum-Prefix number set of 10, then the router logs this message. This situation is simulated when 12 prefixes are sent:
When you activate `debug ip bgp updates in`, you are able to get a closer look at what happens. However, do not use this command in a live environment with several thousands of prefixes. The situation depicted is that Router_B already has an established peering. Six prefixes have been advertised to Router_B by Router_A. Now three additional prefixes are advertised by the peer Router_A.

Router_B# debug ip bgp updates in

*Mar 12 07:31:18.944: BGP(0): 10.0.0.1 rcvd UPDATE w/ attr: nexthop 10.0.0.1, origin i, metric 0, path 200
*Mar 12 07:31:18.948: BGP(0): 10.0.0.1 rcvd 10.0.1.0/24...duplicate ignored
*Mar 12 07:31:18.952: BGP(0): 10.0.0.1 rcvd 10.0.2.0/24...duplicate ignored
*Mar 12 07:31:18.960: BGP(0): 10.0.0.1 rcvd 10.0.3.0/24...duplicate ignored
*Mar 12 07:32:20.224: BGP(0): 10.0.0.1 rcvd 10.0.4.0/24...duplicate ignored
*Mar 12 07:32:20.232: BGP(0): 10.0.0.1 rcvd 10.0.5.0/24...duplicate ignored
*Mar 12 07:34:19.768: BGP(0): 10.0.0.1 rcvd 10.0.7.0/24
*Mar 12 07:34:19.772: BGP(0): 10.0.0.1 rcvd 10.0.8.0/24
*Mar 12 07:34:19.780: BGP(0): 10.0.0.1 rcvd 10.0.9.0/24

Router_B# show ip bgp neighbor 10.0.0.1

BGP neighbor is 10.0.0.1, remote AS 200, external link
BGP version 4, remote router ID 10.0.0.1
BGP state = Established, up for 00:13:22
Last read 00:00:21, keepalive interval is 60 seconds
Neighbor capabilities: Route refresh: advertised and received(old & new)
Address family IPv4 Unicast: advertised and received
IPv4 MPLS Label capability:
Received 930 messages, 0 notifications, 0 in queue
Sent 919 messages, 1 notifications, 0 in queue
Default minimum time between advertisement runs is 30 seconds

For address family: IPv4 Unicast
BGP table version 30, neighbor version 30
Index 1, Offset 0, Mask 0x2
Route refresh request: received 0, sent 0
9 accepted prefixes consume 432 bytes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 10 (warning-only)

Threshold for warning message 80%

Connections established 2; dropped 1
Last reset 00:29:13, due to BGP Notification sent, update malformed
Message received that caused BGP to send a Notification:

> FF00FF00 FF00FF00 FF00FF00 FF00FF00 FF00FF00 003C0200 00001940 01010040 02040201 00C84003 040A0000 01800404 00000000 180A000A 180A000B 180A000C

External BGP neighbor can be up to 2 hops away.
Connection state is ESTAB, I/O status: 1, unread input bytes: 0
Local host: 10.0.0.2, Local port: 15668
Foreign host: 10.0.0.1, Foreign port: 179

Enqueued packets for retransmit: 0, input: 0 mis-ordered: 0 (0 bytes)

Event Timers (current time is 0x3A46EB54):

<table>
<thead>
<tr>
<th>Timer</th>
<th>Starts</th>
<th>Wakeups</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrans</td>
<td>18</td>
<td>0</td>
<td>0x0</td>
</tr>
<tr>
<td>TimeWait</td>
<td>0</td>
<td>0</td>
<td>0x0</td>
</tr>
<tr>
<td>AckHold</td>
<td>22</td>
<td>9</td>
<td>0x0</td>
</tr>
<tr>
<td>SendWnd</td>
<td>0</td>
<td>0</td>
<td>0x0</td>
</tr>
<tr>
<td>KeepAlive</td>
<td>0</td>
<td>0</td>
<td>0x0</td>
</tr>
<tr>
<td>GiveUp</td>
<td>0</td>
<td>0</td>
<td>0x0</td>
</tr>
<tr>
<td>PmtuAger</td>
<td>0</td>
<td>0</td>
<td>0x0</td>
</tr>
<tr>
<td>DeadWait</td>
<td>0</td>
<td>0</td>
<td>0x0</td>
</tr>
</tbody>
</table>

iss: 2047376434 snduna: 2047376784 sndnxt: 2047376784 sndwnd: 16035
irs: 821061364 rvncnt: 821062116 rvcvnd: 16188 delrvcvnd: 196

RTT: 279 ms, RTTO: 500 ms, RTV: 221 ms, KRTT: 0 ms
minRTT: 24 ms, maxRTT: 384 ms, ACK hold: 200 ms
Flags: higher precedence, nagle

Datagrams {max data segment is 536 bytes}:
Suppose that the situation gets worse and that Router_A sends three additional prefixes, which increases the total number up to 12.
Datagrams (max data segment is 536 bytes):
Rcvd: 40 (out of order: 0), with data: 29, total data bytes: 925
Sent: 42 (retransmit: 0, fastretransmit: 0), with data: 23, total data bytes: 463

Router_B# show ip bgp summary
BGP router identifier 10.0.0.2, local AS number 300
BGP table version is 33, main routing table version 33
12 network entries and 12 paths using 1788 bytes of memory
0 BGP path attribute entries using 60 bytes of memory
0 BGP route-map cache entries using 0 bytes of memory
0 BGP filter-list cache entries using 0 bytes of memory
BGP activity 39/101 prefixes, 39/27 paths, scan interval 60 secs

Router_B# debug ip bgp updates in
*Mar 12 08:03:27.864: BGP(0): 10.0.0.1 rcvd UPDATE w/ attr: nexthop 10.0.0.1, or
igin i, metric 0, path 200
*Mar 12 08:03:27.868: BGP(0): 10.0.0.1 rcvd 10.0.1.0/24...duplicate ignored
*Mar 12 08:03:27.876: BGP(0): 10.0.0.1 rcvd 10.0.2.0/24...duplicate ignored
*Mar 12 08:03:27.880: BGP(0): 10.0.0.1 rcvd 10.0.3.0/24...duplicate ignored
*Mar 12 08:03:27.884: BGP(0): 10.0.0.1 rcvd 10.0.4.0/24...duplicate ignored
*Mar 12 08:03:27.892: BGP(0): 10.0.0.1 rcvd 10.0.5.0/24...duplicate ignored
*Mar 12 08:03:27.896: BGP(0): 10.0.0.1 rcvd 10.0.6.0/24...duplicate ignored
*Mar 12 08:03:27.900: BGP(0): 10.0.0.1 rcvd 10.0.7.0/24
*Mar 12 08:03:27.908: BGP(0): 10.0.0.1 rcvd 10.0.8.0/24
*Mar 12 08:03:27.912: BGP(0): 10.0.0.1 rcvd 10.0.9.0/24
*Mar 12 08:03:27.916: %BGP-4-MAXPFX: No. of prefix received from 10.0.0.1 (afi 0)
reaches 9, max 10
*Mar 12 08:03:27.924: BGP(0): 10.0.0.1 rcvd 10.0.10.0/24
*Mar 12 08:03:27.932: %BGP-3-MAXPFXEXCEED: No. of prefix received from 10.0.0.1
(afi 0): 11 exceed limit 10
*Mar 12 08:03:27.940: %BGP-5-ADJCHANGE: neighbor 10.0.0.1 Down BGP Notification
sent
*Mar 12 08:03:27.940: %BGP-3-NOTIFICATION: sent to neighbor 10.0.0.1 3/1 (update
malformed) 0 bytes FFFP 0060 0200 0000 1800
0101 0040 0204 0201 00C8 4003 040A 0000 0180 0404 0000 0000 180A 0001 180A 0002
180A 0003 180A 0004 180A 0005 180A 0006 180A 0007 180A 0008 180A 0009 180A 000A
180A 000b 180A 000C
*Mar 12 08:03:28.024: BGP(0): Revise route installing 1 of 1 route for 10.0.7.0/24 ->
10.0.0.1 to main IP table
*Mar 12 08:03:28.032: BGP(0): Revise route installing 1 of 1 route for 10.0.8.0/24
-> 10.0.0.1 to main IP table
*Mar 12 08:03:28.036: BGP(0): Revise route installing 1 of 1 route for 10.0.9.0/24
-> 10.0.0.1 to main IP table
*Mar 12 08:03:28.044: BGP(0): Revise route installing 1 of 1 route for 10.0.10.0/24
-> 10.0.0.1 to main IP table
*Mar 12 08:03:28.148: BGP(0): no valid path for 10.0.1.0/24
*Mar 12 08:03:28.152: BGP(0): no valid path for 10.0.2.0/24
*Mar 12 08:03:28.156: BGP(0): no valid path for 10.0.3.0/24
*Mar 12 08:03:28.156: BGP(0): no valid path for 10.0.4.0/24
*Mar 12 08:03:28.160: BGP(0): no valid path for 10.0.5.0/24
*Mar 12 08:03:28.164: BGP(0): no valid path for 10.0.6.0/24
*Mar 12 08:03:28.168: BGP(0): no valid path for 10.0.7.0/24
*Mar 12 08:03:28.168: BGP(0): no valid path for 10.0.8.0/24
*Mar 12 08:03:28.172: BGP(0): no valid path for 10.0.9.0/24
*Mar 12 08:03:28.176: BGP(0): no valid path for 10.0.10.0/24
*Mar 12 08:03:28.184: BGP(0): nettable_walker 10.0.1.0/24 no best path
*Mar 12 08:03:28.188: BGP(0): nettable_walker 10.0.2.0/24 no best path
*Mar 12 08:03:28.192: BGP(0): nettable_walker 10.0.3.0/24 no best path
*Mar 12 08:03:28.196: BGP(0): nettable_walker 10.0.4.0/24 no best path
*Mar 12 08:03:28.200: BGP(0): nettable_walker 10.0.5.0/24 no best path
*Mar 12 08:03:28.204: BGP(0): nettable_walker 10.0.6.0/24 no best path
*Mar 12 08:03:28.208: BGP(0): nettable_walker 10.0.7.0/24 no best path
*Mar 12 08:03:28.212: BGP(0): nettable_walker 10.0.8.0/24 no best path
*Mar 12 08:03:28.212: BGP(0): nettable_walker 10.0.9.0/24 no best path
*Mar 12 08:03:28.216: BGP(0): nettable_walker 10.0.10.0/24 no best path

Router_B# show ip bgp summary
BGP router identifier 10.0.0.2, local AS number 300

As you can see from the example shown, the BGP neighbor relationship is maintained even if the neighboring router sends more prefixes than
the policy allows. The result is that only a warning message gets logged by Router_B. No other actions are taken by Router_B.

Maximum-Prefix Configured to Bring Down the Session When Threshold Exceeds Threshold Set

Initial conditions required for this case are to have the BGP neighbor up and running and with six prefixes sent by Router_A to Router_B. As
seen in the example, when Router_A advertises more prefixes (for example, 9), the output of the commands reflects exactly what was already
seen for the case where Router_B is configured to just log a warning message. If you push up the number of prefixes sent and make Router_A
advertise 12, Router_B closes the neighbor relationship with Router_A.
BGP table version is 87, main routing table version 87

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>V</th>
<th>AS</th>
<th>MsgRcvd</th>
<th>MsgSent</th>
<th>TblVer</th>
<th>InQ</th>
<th>OutQ</th>
<th>Up/Down</th>
<th>State/PfxRcd</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1</td>
<td>4</td>
<td>200</td>
<td>965</td>
<td>948</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00:02:24</td>
<td>Idle (PfxCt)</td>
</tr>
</tbody>
</table>

Router_B# show ip bgp neighbors 10.0.0.1
BGP neighbor is 10.0.0.1, remote AS 200, external link
BGP version 4, remote router ID 0.0.0.0
BGP state = Idle
Last read 00:02:43, hold time is 180, keepalive interval is 60 seconds
Received 965 messages, 0 notifications, 0 in queue
Sent 948 messages, 2 notifications, 0 in queue
Default minimum time between advertisement runs is 30 seconds

For address family: IPv4 Unicast
BGP table version 87, neighbor version 0
Index 1, Offset 0, Mask 0x2
Route refresh request: received 0, sent 0, maximum limit 10
Threshold for warning message 80%

Connections established 2; dropped 2
Last reset 00:02:43, due to BGP Notification sent, update malformed
Message received that caused BGP to send a Notification:

Use this command in order to restore the peer ability:

Router_B# clear ip bgp 10.0.0.1

Cisco Support Community - Featured Conversations

Cisco Support Community is a forum for you to ask and answer questions, share suggestions, and collaborate with your peers. Below are just some of the most recent and relevant conversations happening right now.

Want to see more? Join us by clicking here

BGP HELP - tselvan 3 Replies 7 years, 8 months ago
BGP MAXIMUM PREFIX penalty - ighovera 5 Replies 1 month, 1 week ago
How does 'neighbor X.X.X.X... - krueffer_at_dvo.de 2 Replies 5 years, 9 months ago
VRF Maximum Prefix Number or Control - maher_at_pd.jaring.my 4 Replies 6 years, 5 months ago
BGP minimum threshold and SNMP - dannie_at_volvo.se 4 Replies 7 years, 4 months ago
BGP different number of prefixes - mnatura 14 Replies 2 years, 8 months ago
BGP Routes - george1214 11 Replies 4 years, 1 month ago

Start A New Discussion | Subscribe

Related Information
- BGP Restart Session After Maximum-Prefix Limit
- BGP Case Studies
- Troubleshooting BGP
- BGP Support Guides
- Technical Support & Documentation - Cisco Systems

Updated: Jan 15, 2008