Table of Contents

Preface ..1

CVD Navigator ...2
 Use Cases .. 2
 Scope ... 2
 Proficiency .. 2

Introduction ...3
 Technology Use Cases ... 3
 Use Case: Manage the Safe Use of Web-Based and Social Networking Applications for Internal Users and Guests ... 3
 Design Overview ... 4

Deployment Details ..10
 Configuring Cisco CWS Policies for Internal Users ... 10
 Configuring Policy Exceptions for Apple Wireless Devices .. 14
 Configuring Cisco ASA for Cisco Cloud Web Security ... 18
 Configuring Cisco CWS Policies for Guest Users ... 29

Appendix A: Product List ...35

Appendix B: Changes ..36

Appendix C: Configuration Files ..37
 IE-ASA5545X .. 37

Appendix D: Provisioning Email Example ..39
Cisco Validated Designs (CVDs) provide the foundation for systems design based on common use cases or current engineering system priorities. They incorporate a broad set of technologies, features, and applications to address customer needs. Cisco engineers have comprehensively tested and documented each CVD in order to ensure faster, more reliable, and fully predictable deployment.

CVDs include two guide types that provide tested and validated design and deployment details:

- **Technology design guides** provide deployment details, information about validated products and software, and best practices for specific types of technology.

- **Solution design guides** integrate or reference existing CVDs, but also include product features and functionality across Cisco products and may include information about third-party integration.

Both CVD types provide a tested starting point for Cisco partners or customers to begin designing and deploying systems using their own setup and configuration.

How to Read Commands

Many CVD guides tell you how to use a command-line interface (CLI) to configure network devices. This section describes the conventions used to specify commands that you must enter.

Commands to enter at a CLI appear as follows:

```
configure terminal
```

Commands that specify a value for a variable appear as follows:

```
ntp server 10.10.48.17
```

Commands with variables that you must define appear as follows:

```
class-map [highest class name]
```

Commands at a CLI or script prompt appear as follows:

```
Router# enable
```

Long commands that line wrap are underlined. Enter them as one command:

```
police rate 10000 pps burst 10000 packets conform-action set-discard-class-transmit 48 exceed-action transmit
```

Noteworthy parts of system output or device configuration files appear highlighted, as follows:

```
interface Vlan64
ip address 10.5.204.5 255.255.255.0
```

Comments and Questions

If you would like to comment on a guide or ask questions, please use the feedback form.

For the most recent CVD guides, see the following site:

http://www.cisco.com/go/cvd/wan
The CVD Navigator helps you determine the applicability of this guide by summarizing its key elements: the use cases, the scope or breadth of the technology covered, the proficiency or experience recommended, and CVDs related to this guide. This section is a quick reference only. For more details, see the Introduction.

Use Cases

This guide addresses the following technology use cases:

- **Manage the Safe Use of Web-Based and Social Networking Applications for Internal Users and Guests**—All web traffic from the primary-site and remote-site networks accesses the Internet through a centralized Cisco Adaptive Security Appliance (ASA) firewall. Cisco Cloud Web Security (CWS) complements the deep packet inspection and stateful filtering capabilities of the firewall by providing additional web security though a cloud-based service.

For more information, see the “Use Cases” section in this guide.

Scope

This guide covers the following areas of technology and products:

- Cisco ASA 5500-X Series Adaptive Security Appliances provide Internet edge firewall security and intrusion prevention.
- Cisco Cloud Web Security provides granular control over all web content that is accessed.

For more information, see the “Design Overview” section in this guide.

Proficiency

This guide is for people with the following technical proficiencies—or equivalent experience:

- **CCNA Routing and Switching**—1 to 3 years installing, configuring, and maintaining routed and switched networks
- **CCNA Security**—1 to 3 years installing, monitoring, and troubleshooting network devices to maintain integrity, confidentiality, and availability of data and devices

To view the related CVD guides, click the titles or visit the following site:
http://www.cisco.com/go/cvd/wan
Introduction

Web access is a requirement for the day-to-day functions of most organizations, but a challenge exists to maintain appropriate web access for everyone in the organization, while minimizing unacceptable or risky use. A solution is needed to control policy-based web access in order to ensure employees work effectively and ensure that personal web activity does not waste bandwidth, affect productivity, or expose the organization to undue risk.

Another risk associated with Internet access for the organization is the pervasive threat that exists from accessing sites and content. As the monetary gain for malicious activities on the Internet has grown and developed, the methods used to affect these malicious and or illegal activities has grown and become more sophisticated. Botnets, one of the greatest threats that exists in the Internet today, are malicious Internet servers (mostly web) being used to host content that then attacks innocent user’s browsers as they view the content. These types of attacks have been used very successfully by bot herders (originators of the attack) in order to gather millions of infected members that are subject to the whims of the people who now control their machines. Other threats include the still popular and very broad threats of viruses and Trojans, in which a user receives a file in some manner and is tricked into running it, and the file then executes malicious code. The third variant uses directed attacks over the network. Examples of these attacks are the Internet worms that gathered so much attention in the early to mid-2000s. These types of risks are depicted in the figure below.

Figure 1 - Business reasons for deploying Cisco Cloud Web Security

Technology Use Cases

Cisco Cloud Web Security (CWS) addresses the need for a corporate web security policy by offering a combination of web usage controls with category and reputation-based control, malware filtering, and data protection.

Browsing websites can be risky, and many websites inadvertently end up distributing compromised or malicious content as a result of inattention to update requirements or lax security configurations. The websites that serve the compromised and malicious content are constantly changing as human-operated and worm-infested computers scan the Internet in search of additional web servers that they can infect in order to continue propagating. This dynamic environment introduces significant challenges to maintain up-to-date Internet threat profiles.

Use Case: Manage the Safe Use of Web-Based and Social Networking Applications for Internal Users and Guests

All web traffic from the primary-site and remote-site networks accesses the Internet through a centralized Cisco Adaptive Security Appliance (ASA) firewall. Cisco CWS complements the deep packet inspection and stateful filtering capabilities of the firewall by providing additional web security though a cloud-based service.
This design guide enables the following security capabilities:

- **Transparent redirection of user web traffic**—Through seamless integration with the Cisco ASA firewall, web traffic is transparently redirected to the Cisco CWS service. No additional hardware or software is required, and no configuration changes are required on user devices.

- **Web filtering**—Cisco CWS supports filters based on predefined content categories, and it also supports more detailed custom filters that can specify application, domain, content type or file type. The filtering rules can be configured to block or warn based on the specific web-usage policies of an organization.

- **Malware protection**—Cisco CWS analyzes every web request in order to determine if content is malicious. CWS is powered by the Cisco Security Intelligence Operations (SIO) whose primary role is to help organizations secure business applications and processes through identification, prevention, and remediation of threats.

- **Differentiated policies**—The Cisco CWS web portal applies policies on a per-group basis. Group membership is determined by the group authentication key of the forwarding firewall, source IP address of the web request, or the Microsoft Active Directory user and domain information of the requestor.

Design Overview

The Cisco Validated Design (CVD) Internet edge design provides the basic framework for the enhancements and additions that are discussed in this guide. A prerequisite for using this design guide is that you must have already followed the guidance in the Firewall and IPS Technology Design Guide.

Through the use of multiple techniques, Cisco CWS provides granular control over all web content that is accessed. These techniques include real-time dynamic web content classification, a URL-filtering database, and file-type and content filters. The policies enforced by Cisco CWS provide strong web security and control for an organization. Cisco CWS policies apply to all users regardless of their location and device type.

Internal users at both the primary site and at remote sites access the Internet by using the primary site’s Internet-edge Cisco Adaptive Security Appliance (ASA), which provides stateful firewall and intrusion prevention capabilities. It is simple and straightforward to add Cisco CWS to a Cisco ASA appliance that is already configured and operational. This integration uses the Cloud Web Security Cloud Connector for Cisco ASA and requires no additional hardware.

Cloud Connectors are software components embedded in, hosted on, or integrated with platforms in order to enable or enhance a cloud service. The native integration of the CWS Cloud Connector for Cisco ASA provides users with transparent access to a cloud service and is classified as an embedded cloud connector application.
Mobile remote users connect to their organization’s network by using devices that generally fall into two categories: laptops and mobile devices such as smartphones and tablets. Because the devices operate and are used differently, the capabilities currently available for each group differ. Laptops and other devices that support the Cisco AnyConnect Secure Mobility Client with Cisco CWS are not required to send web traffic to the primary site. This solution is covered in detail in the Cloud Web Security Using Cisco AnyConnect Technology Design Guide. If you have an existing CWS deployment for remote-access users, the procedures are similar.

Cisco CWS using Cisco ASA also protects mobile users who are using a non-CWS-enabled Cisco AnyConnect Secure Mobility Client that connects through remote-access VPN, as detailed in both the Remote Access VPN Technology Design Guide and the Remote Mobile Access Technology Design Guide.

Cisco CWS is a cloud-based method of implementing web security that is similar in function to the Cisco Web Security Appliance (WSA), which uses an on-premise appliance for web security. This guide is focused on the deployment of Cisco CWS on Cisco ASA. For more information about using Cisco WSA, see the Web Security Using Cisco WSA Technology Design Guide.
Some key differences between Cisco CWS and Cisco WSA include the items listed in the following table.

Table 1 - Cisco Web Security solution comparison

<table>
<thead>
<tr>
<th></th>
<th>Cisco CWS</th>
<th>Cisco WSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web/URL filtering</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Supported protocols</td>
<td>HTTP and HTTPS</td>
<td>HTTP and HTTPS, FTP</td>
</tr>
<tr>
<td>Outbreak Intelligence (zero-day malware)</td>
<td>Yes (multiple scanners for malware)</td>
<td>Yes (URL/IP reputation filtering, Multiple scanners for malware)</td>
</tr>
<tr>
<td>Remote user security</td>
<td>Direct to cloud using Cisco AnyConnect</td>
<td>VPN backhaul</td>
</tr>
<tr>
<td>Remote user security (mobile devices)</td>
<td>VPN backhaul</td>
<td>VPN backhaul</td>
</tr>
<tr>
<td>Deployment</td>
<td>Redirect to cloud service</td>
<td>On-premises redirect</td>
</tr>
<tr>
<td>Policy and reporting</td>
<td>Web portal (cloud)</td>
<td>On premises</td>
</tr>
</tbody>
</table>

Many organizations provide guest access by using wireless LAN and enforce an acceptable use policy and provide additional security for guest users by using Cisco CWS. This guide includes a section on how to deploy CWS for wireless guest users without requiring any configuration changes to Cisco ASA.

The Cisco ASA firewall family sits between the organization’s internal network and the Internet and is a fundamental infrastructural component that minimizes the impact of network intrusions while maintaining worker productivity and data security. The design uses Cisco ASA to implement a service policy that matches specified traffic and redirects the traffic to the Cisco CWS cloud for inspection by using a cloud connector. This method is considered a transparent proxy, and no configuration changes are required to web browsers on user devices.
The easiest way to apply the service policy is to modify the existing global service policy to add Cisco CWS inspection. The global policy applies to traffic received on any interface, so the same service policy applies to the following:

- Internal users at the primary site or at remote sites
- Wireless guest users connected to a demilitarized zone (DMZ) network
- Remote-access VPN users using a non-CWS-enabled Cisco AnyConnect client connecting with either the integrated firewall and VPN model or standalone VPN model
The various traffic flows for each of these user types are shown in the following figures.

Figure 4 - Cisco Cloud Web Security with internal and guest users

Figure 5 - Cisco Cloud Web Security for mobile devices using remote-access VPN

 Certain source and destination pairs should be exempted from the service policy, such as remote-access VPN users accessing internal networks or internal users accessing DMZ networks. The creation of these exemptions is shown in the "Deployment Details" chapter of this guide.
The Cisco CWS cloud is accessed through a network of proxy servers, which have a broad geographic distribution in order to support a globally diverse set of customers. Cisco ASA is configured with a primary and secondary proxy server in order to provide high availability. Specific details for which proxy servers to use are provided by Cisco and based on the location and size of the deployment.

Cisco CWS is administered by using the CWS ScanCenter web portal. This includes creating filters and rules for policies, creating groups, activating keys, and viewing reports. All required CWS administration tasks are covered in this guide.
The first part of this chapter describes how to configure the components in order to enable Cisco CWS service for internal users who access the Internet through the Internet-edge Cisco ASA, including users at the primary site and remote sites. Additionally, if internal users are using remote-access VPN from mobile devices, they are also protected with Cisco CWS. The second part of this chapter describes how to configure CWS for guest users, who may require a different policy than internal users.

Configuring Cisco CWS Policies for Internal Users

1. Enable Cisco CWS security configuration

Procedure 1
Enable Cisco CWS security configuration

This guide assumes you have purchased a Cisco CWS license and created an administrative CWS account that allows a user to log in and manage the account.

Step 1: Access the Cisco CWS ScanCenter Portal at the following location, and then log in with administrator rights:

https://scancenter.scansafe.com

Step 2: Navigate to Admin > Management > Groups.

Tech Tip

Policy can differ based on group assignment. The simplest method for assigning group membership is to generate a unique key for a group and use that key during deployment to group members. If more granular policies are required, other methods for group assignment include IP address range or mapping to an Active Directory group.
Step 3: Click Add Custom Group.

Step 4: In the Add New Custom Group pane, enter the group name (Example: CWS IE-ASA5545X), and then click Save.

A group-specific authentication license key is generated for use in the Cisco ASA VPN configuration.

Step 5: Navigate to Admin > Authentication > Group Keys.

Step 6: For the group created in Step 4, click Create Key. ScanCenter generates a key that it sends to an email address of your choosing.

Step 7: Store a copy of this key by copying and pasting it into a secure file, because the key cannot be rebuilt and can only be replaced with a new key. After it is displayed the first time (on generation) and sent in email, you can no longer view it in ScanCenter. After this key is generated, the page options change to Deactivate or Revoke.

Step 8: Navigate to Web Filtering > Management > Filters.

Tech Tip

The filtering policy in this guide is an example only. The actual policy implemented should align with the organization’s security policy and business requirements.

Step 9: Click Create Filter.

Step 10: Assign a name to the filter (Example: Filter Blocked Sites), select the categories blocked by your organization’s policy (Examples: Pornography and Hate Speech), and then click Save. Access to these categories is completely restricted.

Step 11: Click Create Filter.
Step 12: Assign a name to the filter (Example: Filter Warned Sites), select the categories that are considered inappropriate by your organization's policy (Example: Gambling), and then click Save. Access to these categories is permitted, but only after accepting a warning message.

Step 13: Navigate to Web Filtering > Management > Policy.

Step 14: Select the Rule name Default, change the rule action to Allow, and then click Save.

Step 15: Click Create Rule.

Step 16: Assign a name to the rule (Example: Block Blocked Sites), and then select Active.

Step 17: In the Rule Action list, choose Block.

Step 18: In the Define Group pane, click Add group.

Step 19: On the dialog box, in the Search box, enter the name of the group created in Step 4, and then click Go.

Step 20: Click Select, and then click Confirm Selection.

Step 21: In the Define Filters pane, click the down arrow labeled Choose a filter from the list, select the filter created in Step 10 (Example: Filter Blocked Sites), and then click Add.
Step 22: Click Create rule. The policy rule has now been created.

Next, create a new rule.

Step 23: Click Create Rule.

Step 24: Assign a name to the rule (Example: Warn_Warned_Sites), and then select Active.

Step 25: In the Rule Action list, choose Warn.

Step 26: In the Define Group pane, click Add group.

Step 27: On the dialog box, in the search box, enter the name of the group created in Step 4, and then click Go.

Step 28: Click Select, and then click Confirm Selection.
Step 29: In the Define Filters pane, click the down arrow labeled Choose a filter from the list, select the filter created in Step 12 (Example: Filter Warned Sites), and then click Add. Click Create rule. The policy rule has now been created. Because all rules are evaluated on a first-hit rule, the following is the correct order for the rules in this example:

1. Block Blocked Sites (which blocks access to restricted categories)
2. Warn Warned Sites (which allows access to sites but with a warning)
3. Default (which permits all other sites)

Configuring Policy Exceptions for Apple Wireless Devices

1. Create exceptions to bypass Captive Network Assistant

Procedure 1 Create exceptions to bypass Captive Network Assistant

When an Apple iDevice (such as an iPad, iPod, or iPhone) or an Apple Mac OS X machine connects to a wireless network, it sends an HTTP request to one of a variety of destinations to help determine if a captive portal is blocking access to the Internet.

If the success page is returned, the device assumes it has network connectivity and no action is taken.

If the success page is not returned, an Apple feature called the Captive Network Assistant (CNA) assumes there is a captive portal present. CNA then launches a browser to prompt the user with the login page from the captive portal. The CNA browser is limited in function and is used only to authenticate with a captive portal.
Table 2 - Known sites used to trigger Apple Captive Network Assistant

<table>
<thead>
<tr>
<th>Website</th>
<th>CWS category</th>
</tr>
</thead>
<tbody>
<tr>
<td>.apple.com</td>
<td>Computers and Internet</td>
</tr>
<tr>
<td>.apple.com.edgekey.net</td>
<td>Computers and Internet</td>
</tr>
<tr>
<td>.akamaiedge.net</td>
<td>currently unclassified</td>
</tr>
<tr>
<td>.akamaitechnologies.com</td>
<td>SaaS and B2B</td>
</tr>
<tr>
<td>www.airport.us</td>
<td>Computers and Internet</td>
</tr>
<tr>
<td>www.appleiphonecell.com</td>
<td>Mobile Phones</td>
</tr>
<tr>
<td>www.ibook.info</td>
<td>Science and Technology</td>
</tr>
<tr>
<td>www.itools.info</td>
<td>Computers and Internet</td>
</tr>
<tr>
<td>www.thinkdifferent.us</td>
<td>Business and Industry</td>
</tr>
</tbody>
</table>

If you have implemented a CWS block or Warn policy that blocks access to the known sites listed in the previous table, then the CNA may be invoked.

Step 1: Access the Cisco CWS ScanCenter Portal at the following location, and then log in with administrator rights:

https://scancenter.scansafe.com

Step 2: Navigate to Web Filtering > Management > Filters.

Step 3: Click Create Filter.

Step 4: Assign a name to the filter (Example: Filter Domain Whitelist), and then in the Inbound Filters pane, click Domains.

Step 5: In the domain pane, enter the full list of websites listed in Table 2, and then click Save all Settings.

Tech Tip

If a website begins with a “.”, it will match anything that ends with that suffix. The entry “.apple.com” will match “www.apple.com” and “store.apple.com”.
When you save the list, the ScanCenter portal automatically alphabetizes it.

Step 6: Navigate to Web Filtering > Management > Policy.

Step 7: Click Create Rule.

Step 8: Assign a name to the rule (Example: Permit_Domain_Whitelist), and then select Active.

Step 9: In the Rule Action list, choose Allow.

Step 10: In the Define Filters pane, click the down arrow labeled Choose a filter from the list, select the filter created in Step 3 (Example: Filter Domain Whitelist), and then click Add.
Step 11: Click Create rule. The policy rule has now been created.

Because all rules are evaluated on a first-hit rule, the Permit Domain Whitelist rule must be listed first.

Step 12: Click the Up arrow next to the Permit_Domain_Whitelist rule until it is listed first.

Step 13: Click Apply Changes.
Configuring Cisco ASA for Cisco Cloud Web Security

1. Configure Cisco CWS servers
2. Configure Cisco ASA firewall objects
3. Configure Cisco ASA service policy
4. Test Cisco Cloud Web Security

Procedure 1 Configure Cisco CWS servers

Cisco ASA is configured with a primary and backup server. You will receive a provisioning email after purchasing your Cisco CWS license. This email includes the primary and backup server address that you use for configuring Cisco ASA. An example email is included in “Appendix D” in this guide.

<table>
<thead>
<tr>
<th>Primary web services proxy address</th>
<th>proxyXXXX.scansafe.net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web services proxy port</td>
<td>8080</td>
</tr>
<tr>
<td>Secondary web services proxy address</td>
<td>proxyXXXX.scansafe.net</td>
</tr>
<tr>
<td>Web services proxy port</td>
<td>8080</td>
</tr>
</tbody>
</table>

Tech Tip

Domain Name Service (DNS) is required to resolve the Fully Qualified Domain Name (FQDN) of a Cisco CWS web services proxy server.

Step 1: From a client on the internal network, navigate to the Internet-edge firewall’s inside IP address, and then launch Cisco ASA Security Device Manager. (Example: https://10.4.24.30)

Step 2: If the firewall is not configured to use DNS resolution, navigate to Configuration > Device Management > DNS > DNS Client, and then configure it as follows:

- Primary DNS Server—**10.4.48.10**
- Domain Name—**cisco.local**
Step 3: In the DNS Lookup pane, scroll to view the **Interface** list, click in the **DNS Enabled** column for the interface that is used to reach the DNS server (Example: inside), choose **True**, and then click **Apply**.

![Configuration > Device Management > DNS > DNS Client](image)

<table>
<thead>
<tr>
<th>Interface</th>
<th>DNS Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>dhcp</td>
<td>False</td>
</tr>
<tr>
<td>dns-management</td>
<td>False</td>
</tr>
<tr>
<td>direct</td>
<td>False</td>
</tr>
<tr>
<td>dns-web</td>
<td>False</td>
</tr>
<tr>
<td>dhcp-vol</td>
<td>False</td>
</tr>
<tr>
<td>inside</td>
<td>True</td>
</tr>
<tr>
<td>outside-36</td>
<td>False</td>
</tr>
<tr>
<td>outside-27</td>
<td>False</td>
</tr>
</tbody>
</table>

DNS Guard

The function enforces one DNS response per query. If DNS inspection is configured, this option is ignored on that interface.

- [] **Enable DNS Guard on all interfaces**
Step 4: In Configuration > Device Management > Cloud Web Security, configure the following values from Table 3, and then click Apply.

- Primary Server IP Address/Domain Name—[FQDN of primary web services proxy from provisioning email]
- Backup Server IP Address/Domain Name—[FQDN of secondary web services proxy from provisioning email]
- License Key—[Group key from Step 6 of Procedure 1, “Enable Cisco CWS security configuration”]
Step 5: In Monitoring > Properties > Cloud Web Security, verify the Cisco CWS server status. Your primary server should show a status of REACHABLE.

<table>
<thead>
<tr>
<th>Cloud Web Security Status and Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Status:</td>
</tr>
<tr>
<td>Server</td>
</tr>
<tr>
<td>Primary</td>
</tr>
<tr>
<td>Backup</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Server Connection Statistics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Connection</td>
</tr>
<tr>
<td>Current HTTP sessions</td>
</tr>
<tr>
<td>Current HTTPS sessions</td>
</tr>
<tr>
<td>Total HTTP Sessions</td>
</tr>
<tr>
<td>Total HTTPS Sessions</td>
</tr>
<tr>
<td>Total Fail HTTP sessions</td>
</tr>
<tr>
<td>Total Fail HTTPS sessions</td>
</tr>
<tr>
<td>Total Bytes In</td>
</tr>
<tr>
<td>Total Bytes Out</td>
</tr>
<tr>
<td>HTTP session Connect Latency in ms(min/max/avg)</td>
</tr>
<tr>
<td>HTTPS session Connect Latency in ms(min/max/avg)</td>
</tr>
</tbody>
</table>

Procedure 2 Configure Cisco ASA firewall objects

In this procedure, you create the network objects listed in the following table.

Table 4 - Firewall network objects

<table>
<thead>
<tr>
<th>Network object name</th>
<th>IP address</th>
<th>Netmask</th>
</tr>
</thead>
<tbody>
<tr>
<td>internal-network</td>
<td>10.4.0.0/15</td>
<td>255.254.0.0</td>
</tr>
<tr>
<td>dmz-networks</td>
<td>192.168.16.0/21</td>
<td>255.255.248.0</td>
</tr>
</tbody>
</table>

Step 1: Navigate to Configuration > Firewall > Objects > Network Objects/Groups.

Step 2: Click Add > Network Object.

Step 3: On the Add Network Object dialog box, in the Name box, enter the Network object name from Table 4. (Example: internal-network)

Step 4: In the Type list, choose Network.

Step 5: In the IP Address box, enter the IP address of the object from Table 4. (Example: 10.4.0.0)
Step 6: In the Netmask box, enter the netmask of the object from Table 4, and then click OK. (Example: 255.254.0.0)

Step 7: Repeat Step 2 through Step 6 for all objects listed in Table 4. If the object already exists, then skip to the next object listed in the table.

Step 8: After adding all of the objects listed in Table 4, in the Network Objects/Groups pane, click Apply.

Procedure 3 Configure Cisco ASA service policy

The existing global service policy is modified to enable Cisco CWS. The global service policy applies to all interfaces on the firewall, so this procedure enables CWS on all interfaces.

Step 2: Skip the Add Service Policy Rule Wizard – Service Policy dialog box by clicking Next.
Step 3: On the Add Service Policy Rule Wizard – Traffic Classification Criteria dialog box, in the Create a new traffic class box, enter `cws-http-class`, for Traffic Match Criteria, select Source and Destination IP Address, and then click Next.

![Add Service Policy Rule Wizard](image)

Next, create the single global policy for Cisco CWS in order to match traffic on all interfaces. Because this policy may be used by internal users and remote-access VPN users, certain source and destination traffic pairs are exempted from the CWS policy by using Do not match as the action, as shown in the following table. The final policy rule matches all other source and destination pairs.

Table 5 - Example policy for Cisco Cloud Web Security

<table>
<thead>
<tr>
<th>Action</th>
<th>Source object</th>
<th>Destination object</th>
<th>Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not match</td>
<td>any4</td>
<td>internal-network</td>
<td>ip</td>
<td>Do not match any to internal networks</td>
</tr>
<tr>
<td>Do not match</td>
<td>any4</td>
<td>dmz-networks</td>
<td>ip</td>
<td>Do not match any to DMZ networks</td>
</tr>
<tr>
<td>Match</td>
<td>any4</td>
<td>any4</td>
<td>tcp/http</td>
<td>Match HTTP to any other networks</td>
</tr>
</tbody>
</table>

The Add Service Policy Rule Wizard allows only a simple policy containing a single match entry, so the following steps are used to configure only the first entry in Table 5. You configure the remaining entries in Table 5 after you complete the first pass of the wizard.

Step 4: On the Add Service Policy Rule Wizard – Traffic Match – Source and Destination Address dialog box, for Action, select the action listed in the first row of Table 5. (Example: Do not match)

Step 5: In the Source box, enter the source object listed in the first row of Table 5. (Example: any4)

Step 6: In the Destination box, enter the destination object listed in the first row of Table 5. (Example: internal-network)
Step 7: In the **Service** box, enter the service listed in the first row of Table 5. (Example: ip), and then click **Next**.

![Add Service Policy Rule Wizard - Traffic Match - Source and Destination Address](image)

Step 8: On the Add Service Policy Rule Wizard – Rule Actions dialog box, click the **Protocol Inspection** tab, select **Cloud Web Security**, and then click **Configure**.

Step 9: On the Select Cloud Web Security Inspect Map dialog box, click **Add**.

Step 10: On the Add Cloud Web Security Inspect Map dialog box, enter a name (Example: CWS-HTTP-80). On the Parameters tab, in the **Default User** box, enter a username that will be used by default (Example: cvd-default).

Step 11: Select **HTTP**, and then click **OK**.

Step 12: On the Select Cloud Web Security Inspect Map dialog box, select the inspect map you created in Step 10, for Cloud Web Security Traffic Action, select **Fail Open**, and then click **OK**.

Tech Tip

A *fail open* or *fail closed* condition, in a security context, refers to the default behavior when a service is unavailable. If *fail open* is configured and the Cisco CWS service is unavailable, the firewall allows user web traffic to pass without restriction. Conversely, if *fail closed* is configured and the Cisco CWS service is unavailable, the firewall blocks user web traffic.

Because the Add Service Policy Rule Wizard allowed only a simple policy containing a single match entry, use the following steps in order to configure the remaining entries from Table 5, which are replicated in Table 6.

Table 6 - Example policy for Cisco Cloud Web Security (remaining entries from Table 5)

<table>
<thead>
<tr>
<th>Action</th>
<th>Source object</th>
<th>Destination object</th>
<th>Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not match</td>
<td>any4</td>
<td>dmz-networks</td>
<td>ip</td>
<td>Do not match any to DMZ networks</td>
</tr>
<tr>
<td>Match</td>
<td>any4</td>
<td>any4</td>
<td>tcp/http</td>
<td>Match HTTP to any other networks</td>
</tr>
</tbody>
</table>

Step 14: In Configuration > Firewall > Service Policy Rules, select the highest numbered rule for the Cisco CWS policy (Example: cws-http-class). Right-click to Copy, and then right-click to Paste After.

Step 16: On the Paste Service Policy Rule Wizard – Traffic Classification Criteria dialog box, select **Add rule to existing traffic class**, and then from list of classes, choose the class created in Step 3 (Example: cws-http-class). Click **Next**.

![Paste Service Policy Rule Wizard - Traffic Classification Criteria](image)

Step 17: On the Paste Service Policy Rule Wizard – Traffic Match – Source and Destination Address dialog box, for **Action**, select the action listed in Table 6. (Example: Do not match)

Step 18: In the **Source** box, enter the source object listed in Table 6. (Example: any4)

Step 19: In the **Destination** box, enter the destination object listed in Table 6. (Example: dmz-networks)
Step 20: In the **Service** box, enter the service listed in Table 6 (Example: ip), and then click **Next**.

![Service Policy Rule Wizard - Traffic Match - Source and Destination Address](image)

Step 21: On the Paste Service Policy Rule Wizard - Rule Actions dialog box, click **Finish**.

Step 22: Repeat Step 14 through Step 21 for all of the entries in Table 6.

Step 23: Verify that your service policy rules match the following figure, and then click **Apply**.

![Service Policy Rule Match](image)

Procedure 4 Test Cisco Cloud Web Security

Step 1: From a client machine on the internal network, open a web browser to the following website:

http://whoami.scansafe.net
This website returns diagnostic information from the Cisco CWS service.

If the service is not active, the following information is returned.
Configuring Cisco CWS Policies for Guest Users

1. Enable Cisco CWS security configuration
2. Test Cisco Cloud Web Security

This is an optional process that is only required if you want to apply a different Cisco CWS policy for guest users. Otherwise, the same policy created for internal users is applied.

Reader Tip

This process assumes that wireless LAN guest access has already been configured following the guidance in the Campus Wireless LAN Technology Design Guide. Only the procedures required to enable Cisco CWS for an existing guest user deployment are included.

Procedure 1

Enable Cisco CWS security configuration

Step 1: Access the Cisco CWS ScanCenter Portal at the following location, and then log in with administrator rights:

https://scancenter.scansafe.com

Step 2: Navigate to Admin > Management > Groups.

Step 3: Click Add Custom Group.

Step 4: On the Add New Custom Group pane, enter the group name (Example: CWS Wireless Guest), and then click Save.

Step 5: On the Admin > Management > Groups page, click the link for the group created in Step 4.
Step 6: In the IP Expressions pane, add the IP subnet range that corresponds to the wireless guest DMZ configuration in the Campus Wireless LAN Technology Design Guide, click Save, and then click Done.

Step 7: Navigate to Web Filtering > Management > Filters.

Tech Tip

The filtering policy in this guide is an example only. The actual policy implemented should align with the organization’s security policy and business requirements. This example uses a whitelist policy and uses filters that initially select all categories for blocking or warning. Only specifically selected categories are exempt.

If you make the whitelist too limited, web browsing to many common websites may be restricted.

If your policy uses both a block list and a warn list as suggested in this example, all permitted categories must be contained in both lists.

Step 8: Click Create Filter.

Step 9: Assign a name to the filter (Example: Filter Warned Sites - Guest), click Select All, clear the categories that are considered appropriate by your organization’s policy that do not require a warning (Example: News, Shopping, Entertainment and Social Networking), and then click Save. Access to all other categories is permitted, but only after accepting a warning message.

Step 10: Click Create Filter.
Step 11: Assign a name to the filter (Example: Filter Blocked Sites - Guest), click Select All, clear all of the categories that were selected in Step 9. Then clear additional categories that require a warning according to your organization’s policy (Examples: Tobacco), and then click Save. Access to all other categories is completely restricted.

Step 12: Navigate to Web Filtering > Management > Policy.

Step 13: Click Create Rule.

Step 14: Assign a name to the rule (Example: BlockBlockedSitesGuest), and then select Active.

Step 15: In the Rule Action list, choose Block.

Step 16: In the Define Group pane, click Add group.

Step 17: On the dialog box, in the Search box, enter the name of the group created in Step 4, and then click Go.

Step 18: Click Select, and then click Confirm Selection.

Step 19: In the Define Filters pane, click the down arrow labeled Choose a filter from the list, select the filter created in Step 8 (Example: Filter Blocked Sites - Guest), and then click Add.
Step 20: Click Create rule. The policy rule has now been created.

Next, create a new rule.

Step 21: Click Create Rule.

Step 22: Assign a name to the rule (Example: Warn_Warned_Sites_Guest), and then select Active.

Step 23: In the Rule Action list, choose Warn.

Step 24: In the Define Group pane, click Add group.

Step 25: On the dialog box, in the search box, enter the name of the group created in Step 4, and then click Go.

Step 26: Click Select, and then click Confirm Selection.

Step 27: In the Define Filters pane, click the down arrow labeled Choose a filter from the list, select the filter created in Step 9 (Example: Filter Warned Sites - Guest), and then click Add.
Step 28: Click Create rule. The policy rule has now been created.

Because the guest user traffic and internal user traffic is all redirected from the same Cisco ASA, the same group key is used. In order to properly match the guest traffic by the source IP address, the guest rules must be evaluated before the internal user rules.

Step 29: Click the Up arrow next to the Block_Blocked_Sites_Guest rule until it is listed second (after the Permit Domain Whitelist).

Step 30: Click the Up arrow next to the Warn_Warned_Sites_Guest rule until it is listed third, and then click Apply Changes.

Procedure 2 Test Cisco Cloud Web Security

Step 1: From a client machine on the guest network, open a web browser to the following website: http://whoami.scansafe.net
This website returns diagnostic information from the Cisco CWS service.

If the service is not active, the following information is returned.
Appendix A: Product List

Internet Edge

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall</td>
<td>Cisco ASA 5545-X IPS Edition - security appliance</td>
<td>ASA5545-IPS-K9</td>
<td>ASA 9.0(1)</td>
</tr>
<tr>
<td></td>
<td>Cisco ASA 5515-X IPS Edition - security appliance</td>
<td>ASA5515-IPS-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ASA 5512-X IPS Edition - security appliance</td>
<td>ASA5512-IPS-K9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ASA 5512-X Security Plus license</td>
<td>ASA5512-SEC-PL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Firewall Management</td>
<td>ASDM</td>
<td>7.0(2)</td>
</tr>
</tbody>
</table>

Web Security

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Product Description</th>
<th>Part Numbers</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Web Security</td>
<td>Cisco Cloud Web Security (ScanSafe)</td>
<td>Cisco Cloud Web Security</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Cisco Cloud Web Security (ScanSafe)</td>
<td>Please Contact your Cisco Cloud Web Security Sales Representative for Part Numbers: scansafe-sales-questions@cisco.com</td>
<td>–</td>
</tr>
</tbody>
</table>
Appendix B: Changes

This appendix summarizes the changes to this guide since the previous Cisco CVD series.

- We made changes to improve the readability and technical accuracy of this guide.
- We added a new process to create exceptions to bypass the Captive Network Assistant for Apple wireless devices.
The Cisco ASA commands below represent the configuration added to the Cisco ASA appliance, hostname IE-ASA5545X, as configured in the Firewall and IPS Technology Design Guide. The additional configuration below enables the functionality described in this guide.

dns domain-lookup inside
dns server-group DefaultDNS
 name-server 10.4.48.10
domain-name cisco.local

object network internal-network
 subnet 10.4.0.0 255.254.0.0
description The organization’s internal network range

object network dmz-networks
 subnet 192.168.16.0 255.255.248.0
description The organization’s DMZ network range

access-list global_mpc_1 remark Do not match any to internal network
access-list global_mpc_1 extended deny ip any4 object internal-network
access-list global_mpc_1 remark Do not match any to DMZ networks
access-list global_mpc_1 extended deny ip any4 object dmz-networks
access-list global_mpc_1 remark Match HTTP to any other networks
access-list global_mpc_1 extended permit tcp any4 any4 eq www

scansafe general-options
 server primary ip 72.37.248.27 port 8080
 server backup ip 69.174.58.187 port 8080
 retry-count 5
 license 6B2F23D7704A3947F02CBA6A17BCF2

class-map cws-http-class
 description Class to match HTTP traffic for Cloud Web Security
 match access-list global_mpc_1

policy-map type inspect scansafe CWS-HTTP-80
 description Cloud Web Security TCP-80
 parameters
 default user cvd-default
 http
policy-map global_policy
 class cws-http-class
 inspect scansafe CWS-HTTP-80 fail-open

 service-policy global_policy global
Appendix D: Provisioning Email Example

From: ScanSafe Provisioning [mailto:provisioning@scansafe.net]
Subject: Provisioning Notification: Customer X / PO Ref: XXXXXXXX

On Day-Month-Year we completed the provisioning of the ScanSafe Web Security services for Customer X in accordance with the order details below:

Services: Subscription Seats and Services
Term: Subscription Months
Registered IP Addresses: -None configured yet-
Domains: -None configured yet-

The service is now available and you should make the necessary configuration changes described below to use the service. Please configure your system so that external Web traffic is sent via ScanSafe, using the explicit proxy setting below:

Primary Web Services Proxy Address: proxyXXX.scansafe.net
Web Services Proxy port: 8080
Secondary Web Services Proxy Address: proxyXXX.scansafe.net
Web Services Proxy port: 8080

The exact configuration changes required will vary depending in your specific existing infrastructure.

To log in to the service configuration Web portal and administer the service, please visit https://scancenter.scansafe.com/portal/admin/login.jsp and enter your email and password details below:

Email: contact@CustomerX.com
Password: -Not Shown-
Company ID: XXXXXXXX

As part of our ongoing commitment to quality and service, a member of the ScanSafe Customer Services team will be in touch with you to ensure that the service is functioning according to your expectations.

If you require any assistance or experience any problems with the service, please do not hesitate to contact our support team.

We appreciate your choosing ScanSafe to provide Web security and look forward to a successful working partnership with you.

Customer Services
EMEA +44 (0) 207 034 9400
US + (1) 877 472 2680
support@scansafe.com
This email and any attachments are strictly confidential and intended for the addressee(s) only. If this email has been sent to you in error, please let us know by forwarding it to us at support@scansafe.com.

Neither ScanSafe nor its directors, officers or employees accepts any liability for the accuracy or completeness of this email. Unless expressly stated to the contrary, no contracts may be concluded on behalf of ScanSafe by means of e-mail communication.
Please use the feedback form to send comments and suggestions about this guide.