Catalyst 2960 および 2960-S スイッチ ソフトウェア コンフィギュレーション ガイド Cisco IOS Release 15.0(2)SE 以降
インターフェイス特性の設定
インターフェイス特性の設定
発行日;2013/10/02 | 英語版ドキュメント(2013/05/30 版) | ドキュメントご利用ガイド | ダウンロード ; この章pdf , ドキュメント全体pdf (PDF - 10MB) | フィードバック

目次

インターフェイス特性の設定

インターフェイス タイプの概要

ポートベースの VLAN

スイッチ ポート

アクセス ポート

トランク ポート

スイッチ仮想インターフェイス

EtherChannel ポート グループ

デュアルパーパス アップリンク ポート

Power over Ethernet(PoE)ポート

サポート対象のプロトコルおよび標準

受電装置の検出および初期電力割り当て

電力管理モード

電力モニタリングおよび電力ポリシング

PoE アップリンクおよび PoE パススルーの機能

Universal Power Over Ethernet

インターフェイスの接続

スイッチの USB ポートの使用

USB ミニタイプ B コンソール ポート

コンソール ポート変更ログ

コンソール メディア タイプの設定

USB 無活動タイムアウトの設定

USB タイプ A ポート

インターフェイス コンフィギュレーション モードの使用方法

インターフェイスの設定手順

インターフェイス範囲の設定

インターフェイス レンジ マクロの設定および使用方法

イーサネット管理ポートの使用(Catalyst 2960-S のみ)

イーサネット管理ポートの概要

サポートされるイーサネット管理ポートの機能

イーサネット管理ポートの設定

TFTP およびイーサネット管理ポート

イーサネット インターフェイスの設定

イーサネット インターフェイスのデフォルト設定

デュアルパーパス アップリンク ポートのタイプの設定

インターフェイス速度およびデュプレックス モードの設定

速度とデュプレックス モードの設定時の注意事項

インターフェイス速度およびデュプレックス パラメータの設定

IEEE 802.3x フロー制御の設定

インターフェイスでの Auto-MDIX の設定

PoE ポートの電力管理モードの設定

PoE ポートに接続された装置のパワー バジェット

電力ポリシングの設定

Catalyst PoE およびコンパクト スイッチの PoE パススルー ポートの設定

インターフェイスに関する記述の追加

レイヤ 3 SVI の設定

システム MTU の設定

インターフェイスのモニタリングおよびメンテナンス

インターフェイス ステータスのモニタ

インターフェイスおよびカウンタのクリアとリセット

インターフェイスのシャットダウンおよび再起動

インターフェイス特性の設定

この章では、Catalyst 2960 および 2960-S、2960-C インターフェイス タイプを定義し、その設定方法について説明します。特に明記しない限り、 スイッチ という用語は、スタンドアロン スイッチおよびスイッチ スタックを指します。

「インターフェイス タイプの概要」

「スイッチの USB ポートの使用」

「インターフェイス コンフィギュレーション モードの使用方法」

「イーサネット管理ポートの使用(Catalyst 2960-S のみ)」

「イーサネット インターフェイスの設定」

「レイヤ 3 SVI の設定」

「システム MTU の設定」

「インターフェイスのモニタリングおよびメンテナンス」


) この章で使用するコマンドの構文および使用方法の詳細については、Cisco.com でこのリリースに対応するスイッチ コマンド リファレンスおよび『Cisco IOS Interface Command Reference, Release12.4』を参照してください。


インターフェイス タイプの概要

ここでは、サポートされるインターフェイスの各タイプについて説明し、それらのインターフェイスの設定に関する詳細情報が記載された章についても示します。


) スイッチの前面にあるスタック ポートはイーサネット ポートではなく、また、設定できません。


「ポートベースの VLAN」

「スイッチ ポート」

「スイッチ仮想インターフェイス」

「EtherChannel ポート グループ」

「デュアルパーパス アップリンク ポート」

「Power over Ethernet(PoE)ポート」

「インターフェイスの接続」

ポートベースの VLAN


) スタック構成をサポートしているのは、LAN Base イメージを実行している Catalyst 2960-S スイッチだけです。


VLAN は、ユーザの物理的な位置に関係なく、機能、チーム、またはアプリケーションなどで論理的に分割された、スイッチによるネットワークです。 VLAN の詳細については、「VLAN の設定」を参照してください。ポートで受信したパケットが転送されるのは、その受信ポートと同じ VLAN に属するポートに限られます。異なる VLAN 上のネットワーク デバイスは、VLAN 間でトラフィックをルーティングするレイヤ 3 デバイスがなければ、互いに通信できません。

VLAN に分割することにより、VLAN 内でトラフィック用の堅固なファイアウォールを実現します。また、各 VLAN には固有の MAC アドレス テーブルがあります。VLAN が認識されるのは、ローカル ポートが VLAN に対応するように設定されたとき、VLAN トランキング プロトコル(VTP)がトランク上のネイバーからその存在を学習したとき、またはユーザが VLAN を作成したときです。

VLAN を設定するには、 vlan vlan-id グローバル コンフィギュレーション コマンドを使用して、VLAN コンフィギュレーション モードを開始します。標準範囲 VLAN(VLAN ID 1 ~ 1005)の VLAN 設定は、VLAN データベースに保存されます。VTP がバージョン 1 または 2 の場合に拡張範囲 VLAN(VLAN ID 1006 ~ 4094)を設定するには、最初に VTP モードをトランスペアレントに設定する必要があります。トランスペアレント モードで作成された拡張範囲 VLAN は、VLAN データベースには追加されませんが、スイッチの実行コンフィギュレーションに保存されます。VTP バージョン 3 では、クライアントまたはサーバ モードで拡張範囲 VLAN を作成できます。これらの VLAN は VLAN データベースに格納されます。

スタック全体のポートを使用して VLAN を形成できます。スタックのすべてのスイッチに VLAN データベースがダウンロードされ、スタックのすべてのスイッチが同一の VLAN データベースを構築します。スタックのすべてのスイッチで実行コンフィギュレーションおよび保存済みコンフィギュレーションが同一です。


) スタック構成をサポートしているのは、LAN Base イメージを実行している Catalyst 2960-S スイッチだけです。


switchport インターフェイス コンフィギュレーション コマンドを使用すると、VLAN にポートが追加されます。

インターフェイスを特定します。

トランク ポートには、トランク特性を設定し、必要に応じて所属できる VLAN を定義します。

アクセス ポートには、所属する VLAN を設定して定義します。

スイッチ ポート

スイッチ ポートは、物理ポートに対応付けられたレイヤ 2 専用インターフェイスです。スイッチ ポートは 1 つまたは複数の VLAN に所属します。スイッチ ポートは、物理インターフェイスおよび対応するレイヤ 2 プロトコルの管理に使用されます。

スイッチ ポートは、アクセス ポートまたはトランク ポートにも使用できます。ポートは、アクセス ポートまたはトランク ポートに設定できます。また、ポート単位で Dynamic Trunking Protocol(DTP)を稼働させ、リンクのもう一端のポートとネゴシエートすることで、スイッチ ポート モードも設定できます。

スイッチ ポートの設定には、 switchport インターフェイス コンフィギュレーション コマンドを使用します。

アクセス ポート特性およびトランク ポート特性の設定についての詳細については、「VLAN の設定」 を参照してください。

アクセス ポート

アクセス ポートは(音声 VLAN ポートとして設定されている場合を除き)1 つの VLAN だけに所属し、その VLAN のトラフィックだけを伝送します。トラフィックは、VLAN タグが付いていないネイティブ形式で送受信されます。アクセス ポートに着信したトラフィックは、ポートに割り当てられている VLAN に所属すると見なされます。

アクセス ポートが 802.1Q タグ付きパケットを受信した場合、そのパケットはドロップされ、送信元アドレスは学習されません。

サポートされるアクセス ポートは次のとおりです。

スタティック アクセス ポート。このポートは、手動で VLAN に割り当てます(IEEE 802.1x で使用する場合は RADIUS サーバを使用します)。詳細については、「VLAN 割り当てを使用した 802.1x 認証」を参照してください。

ダイナミック アクセス ポートの VLAN メンバーシップは、着信パケットを通じて学習されます。デフォルトでは、ダイナミック アクセス ポートはどの VLAN にも属しません。ポートの VLAN メンバーシップが検出された場合のみ、ポート間でのトラフィックの転送がイネーブルになります。スイッチ上のダイナミック アクセス ポートは、VLAN メンバーシップ ポリシー サーバ(VMPS)によって VLAN に割り当てられます。VMPS には、Catalyst 6500 シリーズ スイッチを使用できます。Catalyst 2960、2960-S、または 2960-C スイッチは、VMPS サーバとして使用できません。

また、Cisco IP Phone と接続するアクセス ポートを、1 つの VLAN は音声トラフィック用に、もう 1 つの VLAN は Cisco IP Phone に接続しているデバイスからのデータ トラフィック用に使用するように設定できます。音声 VLAN ポートの詳細については、「音声 VLAN の設定」 を参照してください。

トランク ポート

トランク ポートは複数の VLAN のトラフィックを伝送し、デフォルトで VLAN データベース内のすべての VLAN のメンバとなります。

スイッチは、802.1Q トランク ポートだけをサポートします。802.1Q トランク ポートは、タグ付きとタグなしの両方のトラフィックを同時にサポートします。トランク ポートにはデフォルトのポート VLAN ID(PVID)が割り当てられ、すべてのタグなしトラフィックはポートのデフォルト PVID 上を流れます。NULL VLAN ID を備えたすべてのタグなしおよびタグ付きトラフィックは、ポートのデフォルト PVID に所属します。発信ポートのデフォルト PVID と等しい VLAN ID を持つパケットは、タグなしで送信されます。残りのトラフィックはすべて、VLAN タグ付きで送信されます。

デフォルトでは、トランク ポートは、VTP に認識されているすべての VLAN のメンバですが、トランク ポートごとに VLAN の許可リストを設定して、VLAN メンバーシップを制限できます。許可される VLAN のリストは、関連付けられたトランク ポートにのみ影響します。デフォルトでは、使用可能なすべての VLAN(VLAN ID 1 ~ 4094)が許可リストに含まれます。トランク ポートは、VTP が VLAN を認識し、VLAN がイネーブルである場合に限り、VLAN のメンバになることができます。VTP が新しい、イネーブル VLAN を認識し、その VLAN が許可リストに登録されている場合、トランク ポートは自動的にその VLAN のメンバになります。トラフィックは、その VLAN のトランク ポート間で転送されます。VTP が、VLAN のトランク ポートの許可リストに登録されていない、イネーブル VLAN を認識した場合、ポートはその VLAN のメンバにはならず、その VLAN のトラフィックはそのポート間で転送されません。

トランク ポートの詳細については、「VLAN の設定」 を参照してください。

スイッチ仮想インターフェイス

スイッチ仮想インターフェイス(SVI)は、スイッチ ポートの VLAN を、システムのルーティング機能またはブリッジング機能に対する 1 つのインターフェイスとして表します。1 つの VLAN に関連付けることができる SVI は 1 つだけです。VLAN に対して SVI を設定するのは、VLAN 間でルーティングするため、またはスイッチに IP ホスト接続を提供するためだけです。

デフォルトでは、SVI はデフォルト VLAN(VLAN 1)用に作成され、リモート スイッチの管理を可能にします。追加の SVI は明示的に設定する必要があります。


) インターフェイス VLAN 1 は削除できません。


SVI はシステムに IP ホスト接続だけを提供します。Cisco IOS Release 12.2(55)SE 以降では、SVI でルーティングをイネーブルにし、スタティック ルートを設定できます。


) スタティック ルーティングが SVI でサポートされるのは、スイッチで LAN Base イメージが実行されている場合だけです。


SVI は、VLAN インターフェイスに対して vlan インターフェイス コンフィギュレーション コマンドを実行したときに初めて作成されます。VLAN は、カプセル化トランク ポート上のデータ フレームに関連付けられた VLAN タグ、あるいはアクセス ポート用に設定された VLAN ID に対応します。トラフィックをルーティングするそれぞれの VLAN に対して VLAN インターフェイスを設定し、IP アドレスを割り当ててください。詳細については、「手動でのスイッチ情報の割り当て」を参照してください。


) 作成した SVI をアクティブにするには、物理ポートに関連付ける必要があります。


EtherChannel ポート グループ

EtherChannel ポート グループは、複数のスイッチ ポートを 1 つのスイッチ ポートとして扱います。EtherChannel ポート グループは、スイッチ間、またはスイッチおよびサーバ間で広帯域接続を行う単一論理ポートとして動作します。EtherChannel は、チャネルのリンク全体でトラフィックの負荷を分散させます。EtherChannel 内のリンクで障害が発生すると、それまでその障害リンクで伝送されていたトラフィックが EtherChannel 内の残りのリンクに切り替えられます。複数のトランク ポートを 1 つの論理トランク ポートに、または複数のアクセス ポートを 1 つの論理アクセス ポートにグループ化できます。 ほとんどのプロトコルは単一のまたは集約スイッチ ポートで動作し、ポート グループ内の物理ポートを認識しません。DTP、Cisco Discovery Protocol(CDP)、およびポート集約プロトコル(PAgP)は、物理ポート上でしか動作しません。

EtherChannel を設定するとき、ポートチャネル論理インターフェイスを作成し、EtherChannel にインターフェイスを割り当てます。channel-group インターフェイス コンフィギュレーション コマンドを使用して、ダイナミックにポート チャネル論理インターフェイスを作成します。このコマンドは物理および論理ポートをバインドします。

詳細については、「EtherChannel およびリンクステート トラッキングの設定」 を参照してください。

デュアルパーパス アップリンク ポート


) Catalyst 2960-S スイッチにはデュアルパーパス アップリンク ポートがありません。


一部の 2960 スイッチでは、デュアルパーパス アップリンク ポートがサポートされています。各アップリンク ポートはデュアル フロント エンド(RJ-45 コネクタおよび Small Form-Factor Pluggable(SFP)モジュール コネクタ)を持つ 1 つのインターフェイスと見なされます。デュアル フロント エンドは冗長インターフェイスではありません。スイッチはペアのうちの 1 つのコネクタのみをアクティブにします。

デフォルトでは、スイッチは最初にリンクするインターフェイス タイプを動的に選択します。ただし、 media-type インターフェイス コンフィギュレーション コマンドを使用して、手動で RJ-45 コネクタまたは SFP モジュール コネクタを選択できます。デュアルパーパス アップリンクのデュプレックス設定および速度設定については、「インターフェイス速度およびデュプレックス パラメータの設定」を参照してください。

アップリンク ポートには、2 つの LED が付いています。1 つは RJ-45 ポートのステータスを示すもので、もう 1 つは SFP モジュール ポートのステータスを示すものです。ポート LED は、いずれかのコネクタがアクティブのときに点灯します。LED の詳細については、ハードウェア インストレーション ガイドを参照してください。

Power over Ethernet(PoE)ポート


) PoE がサポートされているのは、スイッチで LAN Base イメージが実行されている場合だけです。イーサネット経由の電源供給プラス(PoE+)がサポートされているのは、Catalyst 2960-S スイッチだけです。


PoE スイッチ ポートは、次のような接続された装置に電力を自動的に供給します(スイッチが回路に電力が供給されていないことをスイッチが検知した場合)。

シスコの先行標準装置(Cisco IP Phone および Cisco Aironet アクセス ポートなど)

IEEE 802.3af に準拠した受電デバイス

IEEE 802.3at に準拠した受電デバイス(Catalyst 2960-S スイッチの PoE+ のみ)

受電デバイスが PoE スイッチ ポートと AC 電源にだけ接続している場合は、冗長電力を受電できます。スイッチは受電デバイスの検出後、この装置の電力要件を決定し、装置への電力供給を許可または拒否します。また、スイッチは消費電力をモニタリングおよびポリシングすることで、装置の電力の消費をリアルタイムに検知できます。

ここでは、次の PoE 情報について説明します。

「サポート対象のプロトコルおよび標準」

「受電装置の検出および初期電力割り当て」

「電力管理モード」

「電力モニタリングおよび電力ポリシング」

サポート対象のプロトコルおよび標準

スイッチは PoE のサポートで次のプロトコルと規格を使用します。

電力の消費について CDP を使用:受電デバイスは、スイッチに消費している電力量を通知します。スイッチはこの電力消費に関するメッセージに応答しません。スイッチは、PoE ポートに電力を供給するか、このポートへの電力を取り除くだけです。

シスコのインテリジェントな電力管理:受電デバイスおよびスイッチは、電力ネゴシエーション CDP メッセージによって消費電力レベルを合意するためのネゴシエーションを行います。このネゴシエーションにより、7 W より多くを消費する高電力のシスコ受電デバイスは、最も高い電力モードで動作できるようになります。受電デバイスは、最初に低電力モードでブートして 7 W 未満の電力を消費し、ネゴシエーションを行って高電力モードで動作するための十分な電力を取得します。受電装置が高電力モードに切り替わるのは、スイッチから確認を受信した場合に限られます。

高電力装置は、電力ネゴシエーション CDP をサポートしないスイッチで低電力モードによって動作できます。

シスコのインテリジェントな電力管理の機能には、電力消費に関して CDP との下位互換性があるため、スイッチは、受信する CDP メッセージに従って応答します。CDP はサードパーティの受電デバイスをサポートしません。このため、スイッチは、IEEE 分類を使用して装置の消費電力を判断します。

IEEE 802.3a:この規格の主な機能は、受電装置の検出、電力の管理、切断の検出です。オプションとして受電装置の電力分類があります。詳細については、この規格を参照してください。

IEEE 802.3at:この PoE+ 標準は、802.1af のすべての機能をサポートし、各 PoE ポートで利用できる最大電力を 15.4 W から 30 W に増加します。UPoE 機能は、CDP や LLDP などのレイヤ 2 電力ネゴシエーション プロトコルを使用して、シグナル ペアおよび RJ-45 イーサネット ケーブルのスペア ペアの両方に、最大 60 W の電力(2 x 30 W)を供給します。4 線式 Power-via-MDI TLV での 30 W 以上の LLDP および CDP 要求により、スペア ペアに電力を供給できます。

UPoE の詳細については、「Universal Power Over Ethernet」を参照してください。


) IEEE 802.3at は Catalyst 2960-S または 2960-C スイッチでのみサポートされています。


受電装置の検出および初期電力割り当て

スイッチは、PoE 対応ポートがシャットダウンの状態でなく、PoE はイネーブルになっていて(デフォルト)、接続した装置は AC アダプタから電力供給されていない場合、シスコの先行標準受電デバイスまたは IEEE 準拠の受電デバイスを検出します。

装置の検出後、スイッチは、次のように装置のタイプに応じて電力要件を判断します。

シスコ先行標準の受電装置は、スイッチから検出された時点では所要電力を提供しないので、PoE+ をサポートしていないスイッチは電力バジェットの初期割り当てとして 15.4 W を割り当て、PoE+ スイッチは 30 W を割り当てます(PoE+)。

初期電力割り当ては、受電デバイスが要求する最大電力量です。スイッチは、受電デバイスを検出および電力供給する場合、この電力を最初に割り当てます。スイッチが受電デバイスから CDP メッセージを受信し、受電デバイスが CDP 電力ネゴシエーション メッセージを通じてスイッチと電力レベルをネゴシエートしたときに、初期電力割り当てが調整される場合があります。

スイッチは検出した IEEE 装置を消費電力クラス内で分類します。スイッチは、電力バジェットに使用可能な電力量に基づいて、ポートに通電できるかどうかを決定します。 表 13-1 に、各種レベルの一覧を示します。

 

表 13-1 IEEE 電力分類

クラス
スイッチから要求される最大電力レベル

0(クラス ステータスは不明)

15.4 W

1

4 W

2

7 W

3

15.4 W

4

30 W(PoE+ デバイスのみ)

スイッチは電力要求をモニタリングおよび追跡して必要な場合にだけ電力供給を許可します。スイッチは自身の電力バジェット(PoE のスイッチで使用可能な電力量)を追跡します。電力の供給許可または拒否がポートで行われると、スイッチはパワーアカウンティング計算を実行し、電力バジェットを最新に保ちます。

電力がポートに適用されると、スイッチは CDP を使用して、接続されたシスコの受電デバイスの 実際の 電力消費要件を確認し、必要に応じて電力バジェットを調整します。これは、サードパーティの PoE 装置には適用されません。スイッチは要件を処理して電力の供給を許可または拒否します。要求が許可されると、スイッチは電力バジェットを更新します。要求が拒否された場合は、スイッチはポートの電力がオフに切り替わっていることを確認し、syslog メッセージを生成して LED を更新します。受電デバイスはより多くの電力について、スイッチとのネゴシエーションを行うこともできます。

不足電圧、過電圧、オシレータ障害、または短絡状態による障害をスイッチが検出した場合、ポートへの電源をオフにし、syslog メッセージを生成し、電力バジェットと LED を更新します。

Catalyst 2960-S スイッチ スタックでは、スイッチがスタックのメンバであるかどうかにかかわらず、PoE 機能は同じ動作をします。電力バジェットはスイッチごとであり、スタックの他のスイッチとは無関係です。新しいスタック マスターの選択は、PoE の動作に影響を与えません。スタック マスターは、スタック内のすべてのポートの PoE ステータスを常時トラッキングし、出力表示に示します。

電力管理モード

サポートされる PoE モードは、次のとおりです。

auto :接続されている装置で電力が必要であるかどうか、スイッチが自動的に検出します。ポートに接続されている受電デバイスをスイッチが検出し、スイッチに十分な電力がある場合、スイッチは電力を供給して電力バジェットを更新し、先着順でポートの電力をオンに切り替えて LED を更新します。LED の詳細については、ハードウェア インストレーション ガイドを参照してください。

すべての受電デバイス用としてスイッチに十分な電力がある場合は、すべての受電デバイスが起動します。スイッチに接続された受電デバイスすべてに対し十分な電力が利用できる場合、すべての装置に電力を供給します。使用可能な PoE がない場合、または他の装置が電力供給を待機している間に装置の接続が切断されて再接続した場合、どの装置へ電力を供給または拒否されるかが判断できなくなります。

許可された電力がシステムの電力バジェットを超えている場合、スイッチは電力を拒否し、ポートへの電力がオフになっていることを確認したうえで syslog メッセージを生成し、LED を更新します。電力供給が拒否された後、スイッチは定期的に電力バジェットを再確認し、継続して電力要求の許可を試みます。

スイッチにより電力を供給されている装置が、さらに壁面コンセントに接続している場合、スイッチは装置に電力を供給し続ける場合があります。このとき、装置がスイッチから受電しているか、AC 電源から受電しているかにかかわらず、スイッチは引き続き装置へ電力を供給していることを報告し続ける場合があります。

受電デバイスが取り外された場合、スイッチは切断を自動的に検出し、ポートから電力を取り除きます。非受電装置を接続しても、その装置に障害は発生しません。

ポートで許可される最大ワット数を指定できます。受電デバイスの IEEE クラス最大ワット数が設定されている最大値より大きい場合、スイッチはそのポートに電力を供給しません。スイッチが受電デバイスに電力供給したが、受電デバイスが設定の最大値より多くの電力を CDP メッセージによって後で要求した場合、スイッチはポートの電力を取り除きます。その受電デバイスに割り当てられていた電力は、グローバル電力バジェットに送られます。ワット数を指定しない場合、スイッチは最大値の電力を供給します。任意の PoE ポートで auto 設定を使用してください。auto モードがデフォルト設定です。

static :スイッチは、受電デバイスが接続されていなくてもポートに電力をあらかじめ割り当て、そのポートで電力が使用できるようにします。スイッチは、設定された最大ワット数をポートに割り当てます。その値は、IEEE クラスまたは受電デバイスからの CDP メッセージによって調節されることはありません。これは、電力があらかじめ割り当てられていることから、最大ワット数以下の電力を使用するすべての受電デバイスが固定ポートに接続されている場合に電力が保証されるためです。ポートはもう先着順方式ではなくなります。

ただし、受電装置の IEEE クラスが最大ワット数を超えると、スイッチは装置に電力を供給しません。受電デバイスが最大ワット数を超えた量を要求していることを CDP メッセージを通じてスイッチが認識すると、その受電デバイスがシャットダウンされます。

ワット数を指定しない場合、スイッチは最大数をあらかじめ割り当てます。スイッチは、受電デバイスを検出した場合に限り、ポートに電力を供給します。優先順位が高いインターフェイスには、 static 設定を使用してください。

never :スイッチは受電装置の検出をディセーブルにして、電力が供給されていない装置が接続されても、PoE ポートに電力を供給しません。このモードは、PoE 対応ポートに電力を適用することがなく、そのポートをデータ専用とする場合にだけ使用してください。

PoE ポートの設定の詳細については、「PoE ポートの電力管理モードの設定」を参照してください。

電力モニタリングおよび電力ポリシング

リアルタイムの消費電力のポリシングをイネーブルにした場合、受電デバイスが最大割り当て( カットオフ電力値 )を超えて電力を消費すると、スイッチはアクションを開始します。

PoE がイネーブルの場合、スイッチは受電デバイスのリアルタイムの消費電力を検出します。接続されている受電デバイスのリアルタイム消費電力をスイッチがモニタリングすることを 電力モニタリング または 電力検知 と呼びます。スイッチは 電力ポリシング 機能を使用して、使用電力にポリシングも行います。

電力モニタリングは、シスコのインテリジェントな電力管理および CDP ベースの消費電力に対して下位互換性があります。電力モニタリングはこれらの機能とともに動作して、PoE ポートが受電デバイスに電力を供給できるようにします。PoE 機能の詳細については、「受電装置の検出および初期電力割り当て」を参照してください。

スイッチは次のようにして、接続されている装置のリアルタイム消費電力を検知します。

1. スイッチは、個々のポートでリアルタイム消費電力をモニタリングします。

2. スイッチは、ピーク時の消費電力を含め、消費電力を記録します。スイッチは、SNMP MIB、CISCO-POWER-ETHERNET-EXT-MIB を使用してこの情報を報告します。

3. 電力ポリシングがイネーブルの場合、スイッチはリアルタイムの消費電力を装置に割り当てられた最大電力と比較して、消費電力をポリシングします。 カットオフ電力 とも呼ばれる、PoE ポートでの最大消費電力の詳細については、 「PoE ポートでの最大電力割り当て(カットオフ電力)」 を参照してください。

装置がポートで最大電力割り当てを超える電力を使用すると、スイッチは、スイッチ コンフィギュレーションに基づいて、ポートへの電力をオフにするか、受電装置に電力を供給しながら syslog メッセージを生成して LED(ポート LED はオレンジ色で点滅)を更新することができます。デフォルトでは、すべての PoE ポートで消費電力のポリシングはディセーブルになっています。

PoE の errdisable ステートからのエラー回復がイネーブルの場合、指定の時間の経過後、スイッチは PoE ポートを errdisable ステートから自動的に回復させます。

エラー回復がディセーブルの場合、 shutdown および no shutdown インターフェイス コンフィギュレーション コマンドを使用して、手動で PoE ポートをイネーブルにできます。

4. ポリシングがディセーブルの場合、受電デバイスが PoE ポートに割り当てられた最大電力より多くの量を消費し、スイッチに悪影響を与える可能性がある場合でも、アクションは実行されません。

PoE ポートでの最大電力割り当て(カットオフ電力)

電力ポリシングがイネーブルの場合、スイッチは次の順序でいずれかの値を PoE ポートでのカットオフ電力とします。

1. スイッチがポートに対して予定しているユーザ定義電力レベルを設定している場合は、 power inline consumption default wattage グローバル コンフィギュレーション コマンドまたはインターフェイス コンフィギュレーション コマンドを使用して手動で行う。

2. ポートで許可されている電力を制限するユーザ定義電力レベルを設定している場合は、 power inline auto max max-wattage または power inline static max max-wattage インターフェイス コンフィギュレーション コマンドを使用して手動で行う。

3. スイッチにおいて受電装置の電力消費が設定されている場合は、CDP 電力ネゴシエーションまたは IEEE 分類と LLDP 電力ネゴシエーションを使用して自動的に行われる。

power inline consumption default wattage または power inline [ auto | static max ] max-wattage コマンドを入力することにより、カットオフ電力値を手動で設定するには、前述のリストの 1 番めまたは 2 番めの方法を使用します。カットオフ電力量の値を手動で設定しない場合、スイッチは、CDP 電力ネゴシエーションを使用して自動的に値を決定します。スイッチがこれらのいずれの方式を使用しても値を決定できない場合、15.4 W というデフォルト値を使用します。

PoE+ 搭載のスイッチでは、手動でカットオフ電力値を設定していない場合、スイッチが CDP 電力ネゴシエーションまたは装置の IEEE 分類および LLDP 電力ネゴシエーションを使用して自動的に値を決定します。CDP または LLDP がイネーブルでない場合は、デフォルト値の 30 W が適用されます。ただし、CDP または LLDP がない場合は、15400 ~ 30000 mW の値が CDP 要求または LLDP 要求だけに基づいて割り当てられるため、装置で 15.4 W を超える電力の消費がスイッチから許可されません。受電デバイスが CDP または LLDP のネゴシエーションなしに 15.4 W を超える電力を消費する場合、装置は最大電流( Imax )の制限に違反し、最大値を超える電流が供給されるという Icut 障害が発生する可能性があります。再び電源を入れるまで、ポートは障害状態のままになります。ポートで継続的に 15.4 W を超える電力が給電される場合、このサイクルが繰り返されます。


) PoE+ ポートに接続されている受電デバイスが再起動し、電力 TLV で CDP パケットまたは LLDP パケットが送信される場合、スイッチは最初のパケットの電力ネゴシエーション プロトコルをロックし、その他のプロトコルからの電力要求に応答しません。たとえば、スイッチが CDP にロックされている場合、LLDP 要求を送信する装置に電力を供給しません。スイッチが CDP にロックされた後で CDP がディセーブルになった場合、スイッチは LLDP 電源要求に応答せず、アクセサリの電源がオンにならなくなります。この場合、受電デバイスを再起動する必要があります。


電力消費値

ポートの初期電力割り当ておよび最大電力割り当てを設定することができます。ただし、これらの値は、スイッチが PoE ポートの電力をオンまたはオフにするときを指定するために設定する値です。最大電力割り当ては、受電デバイスの実際の電力と同じではありません。スイッチによって電力ポリシングに使用される実際のカットオフ電力値は、設定済みの電力値と同等ではありません。

電力ポリシングがイネーブルの場合、スイッチは、 スイッチ ポートで 、受電装置の消費電力を超える消費電力ポリシングを行います。最大電力割り当てを手動で設定する場合、スイッチ ポートと受電デバイス間のケーブルでの電力損失を考慮する必要があります。カットオフ電力とは、受電デバイスの定格消費電力とケーブル上での最悪時の電力損失を合計したものです。

受電デバイスによる PoE ポートでの実際の消費電力量は、カットオフ電力値に較正係数の 500 mW(0.5 W)を加えたものになります。実際のカットオフ値は近似値で、設定値ごとに設定値のパーセンテージという割合で異なります。たとえば、設定済みのカットオフ電力が 12 W の場合、実際のカットオフ値は 11.4 W で、設定値より 0.05% 小さくなっています。

スイッチの PoE がイネーブルの場合、電力ポリシングをイネーブルにすることを推奨します。たとえば、ポリシングがディセーブルで、 power inline auto max 6300 インターフェイス コンフィギュレーション コマンドを使用してカットオフ値を設定すると、PoE ポートに設定される最大電力割り当ては 6.3 W(6300 mW)です。装置が 6.3 W までの電力を必要とする場合、スイッチはポートに接続されている装置に電力を供給します。CDP によるパワー ネゴシエーション実施後の値または IEEE 分類値が設定済みカットオフ値を超えると、スイッチは接続されている装置に電力を供給しなくなります。スイッチは PoE ポートで電力をオンにしてから、装置のリアルタイム消費電力のポリシングを行わないため、この装置は最大割り当て量を超えて電力を消費できることになり、スイッチと他の PoE ポートに接続されている装置に悪影響が生じる場合があります。

スイッチは内部電源装置 Cisco Redundant Power System 2300(RPS 2300)をサポートしており、受電デバイスが使用可能な総電力量は電源装置の設定によって異なります。

電源装置を取り外して低電力の新しい電源装置に交換すると、スイッチは受電デバイスに対して十分な電力を供給できなくなり、auto モードでポート番号の降順に従って PoE ポートへの電力供給を拒否します。これでもまだ十分な電力がない場合、スイッチは、static モードでポート番号の降順に従って PoE ポートへの電力供給を拒否します。

新しい電源装置の電力が前の電源装置より大きく、スイッチが大電力を使用できる場合、スイッチは static モードでポート番号の昇順に従って PoE ポートへの電力供給を許可します。これでもまだ使用可能な電力がある場合、スイッチは、ポート番号の昇順に従って auto モードで PoE ポートへの電力供給を許可します。

設定については、「電力ポリシングの設定」を参照してください。

PoE アップリンクおよび PoE パススルーの機能

Catalyst 2960-C コンパクト スイッチは、PoE または PoE+ 対応スイッチ(たとえば Catalyst 3750-X または 3560-X スイッチ)から 2 個のアップリンク ギガ ビット イーサネット ポートの電力を受け取ることができます。予備電源入力を使用する場合、スイッチは AC 電源から電力を受け取ることもできます。アップリンク ポートと予備電源の両方が接続されている場合、予備電源入力が優先されます。

Catalyst 2960CPD-8PT スイッチは 2 種類のいずれかの方法で、8 つのダウンリンク ポートを介してエンド デバイスに電力を供給できます。

スイッチは、予備電源入力から電力を受け取ると、他の PoE スイッチのように機能し、合計電力バジェットに応じて 8 個のダウンリンク ポートに接続されているエンド デバイスに電力を供給できます。エンド デバイスには、IP Phone、ビデオ カメラやアクセス ポイントなどがあります。

スイッチが 1 つまたは両方のアップリンク ポートを介して電力を受け取ると、PoE パススルーを提供し、PoE または PoE+ アップリンクから余剰電力を取得し、ダウンリンク ポートを介してエンド デバイスに渡すことができます。利用可能な電力は、アップリンク ポートから供給される電力や、1 つまたは両方のアップリンク ポートが接続されているかどうか、およびソースが PoE または PoE+ であるかどうかによって異なります。

ダウンリンク ポートは PoE 対応であり、各ポートは、接続された受電装置にポート当たり最大 15.4 W を提供できます。スイッチがアップリンク ポートから電力が供給される場合、電力バジェット(ダウンリンク ポートの利用可能な電力)は、表に示す電源オプションによって異なります。スイッチが補助コネクタを通じて電力を受け取る場合、電力バジェットは他の PoE スイッチと同様です。

 

表 13-2 Catalyst 2960CPD-8PT 電力バジェット

電源オプション
アップリンク スイッチから送られる電力
使用可能な PoE 給電力

1 個の PoE アップリンク ポート

15.4 W

0

2 個の PoE アップリンク ポート

30.8 W

7 W

PoE+ アップリンク ポート x 1

30 W

7 W

1 PoE および 1 PoE+ アップリンク

45.4 W

15.4 W

PoE+ アップリンク ポート x 2

60 W

22.4 W

予備電源入力

--

22.4 W

 

これらのポートの設定の詳細については、「Catalyst PoE およびコンパクト スイッチの PoE パススルー ポートの設定」を参照してください。

Universal Power Over Ethernet


) Universal Power over Ethernet がサポートされているのは、Catalyst 2960-C スイッチのみです。


Universal Power over Ethernet(UPOE)は、IEEE 802.at PoE 標準を拡張するシスコ独自のテクノロジーで、標準のイーサネット ケーブル配線インフラストラクチャ(クラス D 以上)により最大 60 W の電力を供給する機能を提供します。3K-X UPoE 機能は、シグナル ペア(導線 1、2、3、6)付きの RJ-45 ケーブルのスペア ペア(導線 4、5、7、8)を使用して、最大 60 W の電力を供給します。スペア ペアの電力は、スイッチ ポートとエンドデバイスが Universal PoE(UPoE)対応であることを CDP または LLDP を使用して相互に識別し、エンドデバイスがスペア ペアの電力のイネーブル化を要求した時にイネーブルになります。スペア ペアに給電されると、エンドデバイスは、CDP または LLDP を使用して、スイッチから最大 60 W の電力をネゴシエートできます。

シグナル/スペア ペアの電力のイネーブル化

エンドデバイスがシグナル ペアおよびスペア ペアの両方で PoE 対応であるが、UPoE に必要な CDP または LLDP の拡張をサポートしない場合、4 ペアの強制モード設定により自動的にスイッチ ポートからシグナル ペアおよびスペア ペアの両方の電力がイネーブルになります。

ペアの電力をイネーブルにするには、次の手順を実行します。

 

コマンド
目的

ステップ 1

interface terminal

グローバル コンフィギュレーション モードに変更します。

ステップ 2

interface { fastethernet | gigabitethernet } slot/port

設定するインターフェイスを選択します。

ステップ 3

[no] power inline four-pair forced

スイッチ ポートから自動的にシグナル ペアおよびスペア ペアの両方の電力をイネーブルにします。

ステップ 4

end

コンフィギュレーション モードを終了します。

ステップ 5

show platform software interface { fastethernet | gigabitethernet } slot/port status

EEE ステータスを表示します。

次に、スイッチ ポート ギガビット イーサネット 2/1 から自動的に信号ペアおよびスペア ペアの両方の電力をイネーブルにする例を示します。

Switch# configure terminal
Enter configuration commands, one per line.End with CNTL/Z.
Switch(config)# interface gigabitethernet 2/1
Switch(config-if)# power inline four-pair forced
Switch(config-if)# end

) エンドデバイスがスペア ペアのインライン パワー給電に未対応の場合、またはエンドデバイスが UPoE に CDP または LLDP 拡張をサポートしている場合は、このコマンドを入力しないでください。


インターフェイス上の受電デバイスに対する消費電力量の設定

スイッチがインターフェイス上で受電デバイスを検出すると、デバイスにデフォルトの電力を供給します。スイッチが受電デバイスから CDP パケットを受信すると、電力はデバイスに必要なワット数まで自動的にネゴシエーションされます。通常、この自動ネゴシエーションは十分機能し、追加設定は不要であり、推奨されません。ただし、特定のインターフェイスがスイッチから追加機能を提供するために、受電デバイスの電力消費量を指定できます。これは、CDP がディセーブル、または使用できない場合に便利です。

単一の受電デバイスの電力消費量を変更するには、次の手順を実行します。

 

コマンド
目的

ステップ 1

interface { fastethernet | gigabitethernet } slot/port

設定するインターフェイスを選択します。

ステップ 2

[no] power inline consumption milli-watts

特定のインターフェイスに接続された受電デバイスの PoE 電力消費量(ミリワット単位)を設定します。電力消費量の許容範囲は、4000 ~ 60000 です。

電力消費量の自動調整を再びイネーブルにするには、no キーワードを使用します。

ステップ 3

end

コンフィギュレーション モードを終了します。

ステップ 4

show power inline consumption { fastethernet | gigabitethernet } slot/port

インターフェイスの PoE 電力消費量を表示します。

所定の時間に、CDP および LLDP 間の電力ネゴシエーション プロトコルのうち 1 つだけが使用できます。次に、電力ネゴシエーション プロトコルをイネーブルまたはディセーブルにする例を示します。

Switch(config)# [no] lldp run
Switch(config)# [no] cdp run

) 電源デバイス(PD)と電源装置(PSE)は、電力をネゴシエートするために同じ電力ネゴシエーション プロトコルを実行する必要があります。


インターフェイスの接続

単一 VLAN 内のデバイスは、スイッチを通じて直接通信できます。異なる VLAN に属すポート間では、ルーティングデバイスを介さなければデータを交換できません。

図 13-1の構成では、VLAN 20 のホスト A が VLAN 30 のホスト B にデータを送信する場合、データはホスト A からスイッチを経由してルータへ送られた後、再びスイッチに戻ってからホスト B へ送られる必要があります。

図 13-1 レイヤ 2 スイッチによる VLAN の接続

 

標準のレイヤ 2 スイッチを使用すると、異なる VLAN のポートは、ルータを通じて情報を交換する必要があります。ルーティングがイネーブルに設定されたスイッチを使用することにより、IP アドレスを割り当てた SVI で VLAN 20 および VLAN 30 の両方を設定すると、外部ルータを使用せずに、スイッチを介してパケットをホスト A からホスト B に直接送信できます(図 13-1を参照)。

スイッチの USB ポートの使用


) USB ポートをサポートするのは、Catalyst 2960-S および 2960-C スイッチだけです。


Catalyst 2960-S および Catalyst 2960-C ギガビット イーサネット スイッチの前面パネルには次の 2 個の USB ポートがあります。

「USB ミニタイプ B コンソール ポート」

「USB タイプ A ポート」

Catalyst ファスト イーサネット スイッチ(Catalyst 2960CPD-8PT-L および 2960CPD-8TT-L スイッチ)には、USB ミニタイプ B コンソール ポートのみがあります。

USB ミニタイプ B コンソール ポート

スイッチには、USB ミニタイプ B コンソール接続と RJ-45 コンソール ポートの 2 個のコンソール ポートが用意されています。コンソール 出力 は両方のポートに接続されたデバイスに表示されますが、コンソール 入力 は一度に 1 つのポートしかアクティブになりません。USB コネクタは RJ-45 コネクタよりも優先されます。


) Windows PC には、USB ポートのドライバが必要です。ドライバ インストレーションの手順については、ハードウェア インストレーション ガイドを参照してください。


付属の USB タイプ A ツー USB ミニタイプ B ケーブルを使用して、PC またはその他のデバイスをスイッチに接続します。接続されたデバイスには、ターミナル エミュレーション アプリケーションが必要です。スイッチが、ホスト機能をサポートする電源投入デバイス(PC など)への有効な USB 接続を検出すると、RJ-45 コンソールからの入力はただちにディセーブルになり、USB コンソールからの入力がイネーブルになります。USB 接続が削除されると、RJ-45 コンソールからの入力はただちに再度イネーブルになります。スイッチの LED は、どのコンソール接続が使用中であるかを示します。

コンソール ポート変更ログ

ソフトウェア起動時に、ログに USB または RJ-45 コンソールのいずれがアクティブであるかが示されます。すべてのスイッチは常にまず RJ-45 メディア タイプを表示します。2960-S スタック内の各スイッチはこのログを発行します。

サンプル出力では、スイッチ 1 には接続された USB コンソール ケーブルがあります。ブートローダが USB コンソールに変わらなかったため、スイッチ 1 からの最初のログは、RJ-45 コンソールを示しています。少したってから、コンソールが変更され、USB コンソール ログが表示されます。スイッチ 2 およびスイッチ 3 には接続された RJ-45 コンソール ケーブルがあります。

switch-stack-1
*Mar 1 00:01:00.171: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.
*Mar 1 00:01:00.431: %USB_CONSOLE-6-MEDIA_USB: Console media-type is USB.
 
switch-stack-2
*Mar 1 00:01:09.835: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.
switch-stack-3)
*Mar 1 00:01:10.523: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.
 

USB ケーブルが取り外されるか、PC が USB 接続を非アクティブ化すると、ハードウェアは自動的に RJ-45 コンソール インターフェイスに変わります。

switch-stack-1
Mar 1 00:20:48.635: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.
 

コンソール タイプが常に RJ-45 であるように設定でき、さらに USB コネクタの無活動タイムアウトを設定できます。

コンソール メディア タイプの設定

RJ-45 コンソール メディア タイプを選択するには、特権 EXEC モードで次の手順を実行します。RJ-45 コンソールを設定すると、USB コンソール オペレーションはディセーブルになり、入力は常に RJ-45 コンソールのままです。

この設定はスタックのすべてのスイッチに適用されます。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

line console 0

コンソールを設定します。ライン コンフィギュレーション モードを開始します。

ステップ 3

media-type rj45

コンソール メディア タイプが常に RJ-45 であるように設定します。このコマンドを入力せず、両方のタイプが接続された場合は、デフォルトは USB です。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

show running-configuration

設定値を確認します。

ステップ 6

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

次に、USB コンソール メディア タイプをディセーブルにし、RJ-45 コンソール メディア タイプをイネーブルにする例を示します。

Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# media-type rj45
 

この設定は、スタック内のすべてのアクティブな USB コンソール メディア タイプを終了します。ログにはこの終了の発生が示されます。次に、スイッチ 1 のコンソールが RJ-45 に戻る例を示します。

*Mar 1 00:25:36.860: %USB_CONSOLE-6-CONFIG_DISABLE: Console media-type USB disabled by system configuration, media-type reverted to RJ45.
 

この時点では、スタックの USB コンソールは入力を持てません。ログのエントリは、コンソールケーブルが接続されたときを示します。USB コンソールケーブルが switch 2 に接続されると、入力は提供されません。

*Mar 1 00:34:27.498: %USB_CONSOLE-6-CONFIG_DISALLOW: Console media-type USB is disallowed by system configuration, media-type remains RJ45.(switch-stk-2)
 

次に、前の設定を逆にして、ただちにすべての接続された USB コンソールをアクティブにする例を示します。

Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# no media-type rj45

USB 無活動タイムアウトの設定

無活動タイムアウトを設定している場合、USB コンソール ポートがアクティブ化されているものの、指定された時間内にポートで入力アクティビティがないときに、RJ-45 コンソール ポートが再度アクティブになります。タイムアウトのために USB コンソール ポートは非アクティブ化された場合、USB ポートを切断し、再接続すると、動作を回復できます。


) 設定された無活動タイムアウトはスタックのすべてのスイッチに適用されます。しかし、あるスイッチのタイムアウトはスタック内の別のスイッチにタイムアウトを発生させません


無活動タイムアウトを設定する には、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

line console 0

コンソール ポートを設定します。コンソール ライン コンフィギュレーション モードを開始します。

ステップ 3

usb-inactivity-timeout timeout-minutes

コンソール ポートの無活動タイムアウトを指定します。指定できる範囲は 1 ~240 分です。デフォルトでは、タイムアウトが設定されていません。

ステップ 4

show running-configuration

設定値を確認します。

ステップ 5

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

次に、無活動タイムアウトを 30 分に設定する例を示します。

Switch# configure terminal
Switch#(config)# line console 0
Switch#(config-line)# usb-inactivity-timeout 30
 

設定をディセーブルにするには、次のコマンドを使用します。

Switch#(config)# line console 0
Switch#(config-line)# no usb-inactivity-timeout
 

設定された分数の間に USB コンソール ポートで(入力)アクティビティがなかった場合、無活動タイムアウト設定が RJ-45 ポートに適用され、ログにこの発生が示されます。

*Mar 1 00:47:25.625: %USB_CONSOLE-6-INACTIVITY_DISABLE: Console media-type USB disabled due to inactivity, media-type reverted to RJ45.
 

この時点で、USB コンソール ポートを再度アクティブ化する唯一の方法は、ケーブルを取り外し、再接続することです。

スイッチの USB ケーブルが取り外され再接続された場合、ログは次のような表示になります。

*Mar 1 00:48:28.640: %USB_CONSOLE-6-MEDIA_USB: Console media-type is USB.

USB タイプ A ポート

USB タイプ A ポートは、外部 USB フラッシュ デバイス(サム ドライブまたは USB キーとも呼ばれる)へのアクセスを提供します。スイッチは、Cisco 64 MB、256 MB、512 MB および 1 GB フラッシュ ドライブをサポートします。標準 Cisco IOS コマンドライン インターフェイス(CLI)コマンドを使用して、フラッシュ デバイスの読み取り、書き込み、および、コピー元やコピー先として使用できます。スイッチを USB フラッシュ ドライブから起動するようにも設定できます。

USB フラッシュ デバイスから起動できるように するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

boot system flash usbflash0: image

USB フラッシュ デバイスから起動するようにスイッチを設定します。 image は、ブート可能イメージの名前です。

ステップ 3

show running-configuration

設定値を確認します。

ステップ 4

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

USB デバイスに関する情報を取得するには、 show usb { controllers | device | driver | port | tree } 特権 EXEC コマンドを使用します。

次に、Catalyst 2960-S フラッシュ デバイスから起動するようにスイッチを設定する例を示します。イメージは、Catalyst 2960-S LAN Base イメージです。

Switch# configure terminal
Switch#(config)# boot system flash usbflash0: c2960s-lanbase-mz
 

フラッシュからのブーティングをディセーブルにするには、このコマンドの no 形式を入力します。

次に、 show usb device コマンドの出力例を示します。

Switch# show usb device
Host Controller: 1
Address: 0x1
Device Configured: YES
Device Supported: YES
Description: STEC USB 1GB
Manufacturer: STEC
Version: 1.0
Serial Number: STI 3D508232204731
Device Handle: 0x1010000
USB Version Compliance: 2.0
Class Code: 0x0
Subclass Code: 0x0
Protocol: 0x0
Vendor ID: 0x136b
Product ID: 0x918
Max.Packet Size of Endpoint Zero: 64
Number of Configurations: 1
Speed: High
Selected Configuration: 1
Selected Interface: 0
 
Configuration:
Number: 1
Number of Interfaces: 1
Description: Storage
Attributes: None
Max Power: 200 mA
 
Interface:
Number: 0
Description: Bulk
Class Code: 8
Subclass: 6
Protocol: 80
Number of Endpoints: 2
 
Endpoint:
Number: 1
Transfer Type: BULK
Transfer Direction: Device to Host
Max Packet: 512
Interval: 0
 
Endpoint:
Number: 2
Transfer Type: BULK
Transfer Direction: Host to Device
Max Packet: 512
Interval: 0
 

次に、 show usb port コマンドの出力例を示します。

Switch# show usb port
Port Number: 0
Status: Enabled
Connection State: Connected
Speed: High
Power State: ON

インターフェイス コンフィギュレーション モードの使用方法

スイッチは、次のインターフェイス タイプをサポートします。

物理ポート:スイッチ ポート

VLAN:スイッチ仮想インターフェイス

ポート チャネル:EtherChannel インターフェイス

インターフェイス範囲も設定できます(「インターフェイス範囲の設定」を参照)。

LAN Lite イメージを実行中の Catalyst 2960 または 2960-C スイッチまたは Catalyst 2960-S スイッチの物理インターフェイス(ポート)を設定するには、インターフェイス タイプ、モジュール番号、スイッチのポート番号を指定し、インターフェイス コンフィギュレーション モードを開始します。LAN Base イメージ(スタック構成をサポート)が実行中の Catalyst 2960-S スイッチのポートを設定するには、インターフェイスのタイプ、スタック メンバ番号、モジュール番号、および、スイッチ ポート番号を指定し、インターフェイス コンフィギュレーション モード を開始します。

タイプ :スイッチでのサポートに応じたポート タイプ。予想されるタイプには、 10/100 Mb/s イーサネットにはファスト イーサネット(fastethernet または fa)、10/100/1000 Mb/s イーサネット ポートにはギガビット イーサネット(gigabitethernet または gi)、10,000 Mb/s には 10 ギガビット イーサネット(tengigabitethernet または te)、Small Form-Factor Pluggable(SFP)モジュールにはギガビット イーサネット インターフェイスです。

スタック メンバ番号 :スタック内のスイッチを特定する番号。スイッチ番号の範囲は 1 ~ 4 で、スイッチの最初の初期化の際に割り当てられます。スイッチ スタックに組み込まれる前のデフォルトのスイッチ番号は 1 です。スイッチにスタック メンバ番号が割り当てられている場合、別の番号が割り当てられるまでその番号が維持されます。

スタック モードでのスイッチ ポート LED を使用して、スイッチ内のスタック メンバー番号を識別できます。

モジュール番号 スイッチのモジュールまたはスロット番号(常に 0)。

ポート番号:スイッチ上のインターフェイス番号。ポート番号は、gigabitethernet1/0/1 のように、常に 1 で始まります。スイッチに向かって左のポートから順に番号付けされています。10/100/1000 ポートと SFP モジュール ポートのあるスイッチの場合、SFP モジュール ポートの番号は 10/100/1000 ポートの後に連続して付けられます。

スイッチを確認することで物理インターフェイスを識別できます。 show 特権 EXEC コマンドを使用して、スイッチ上の特定のインターフェイスまたはすべてのインターフェイスに関する情報を表示することもできます。以降、この章では、主に物理インターフェイスの設定手順について説明します。

次の例では、LAN Base イメージが実行中の Catalyst 2960-S スイッチのインターフェイスを指定します。

スタンドアロン スイッチの 10/100/1000 ポート 4 を設定するには、次のコマンドを入力します。

Switch(config)# interface gigabit
tethernet1/0/4
 

スタック メンバ 3 の 10/100 ポート 4 を設定するには、次のコマンドを入力します。

Switch(config)# interface gigabitethernet3/0/4
 

次の例では、LAN Lite イメージを実行中の Catalyst 2960 または 2960-C スイッチまたは Catalyst 2960-S スイッチのインターフェイスを指定します。

10/100/1000 ポート 4 を設定するには、次のコマンドを入力します。

Switch(config)# interface gigabitethernet0/4

) 本マニュアルの設定例や出力は、特にスタック メンバ番号の存在に関して、ご利用のスイッチ固有のものとは異なります。


インターフェイスの設定手順

次の一般的な手順は、すべてのインターフェイス設定プロセスに当てはまります。


ステップ 1 特権 EXEC プロンプトに configure terminal コマンドを入力します。

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#
 

ステップ 2 interface グローバル コンフィギュレーション コマンドを入力します。

インターフェイスのタイプ、スイッチ番号、およびインターフェイス番号を特定します。次の例では、スイッチ 1 上のギガビット イーサネット ポート 1 が選択されています。

ギガビット イーサネット ポート 1 でのインターフェイス タイプおよびインターフェイス番号の識別方法の例は、次のとおりです。

Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)#
 

) インターフェイス タイプとインターフェイス番号の間に入れるスペースはオプションです。


ステップ 3 interface コマンドの後ろに、インターフェイスに必要なインターフェイス コンフィギュレーション コマンドを続けて入力します。入力するコマンドによって、そのインターフェイスで稼働するプロトコルとアプリケーションが定義されます。別のインターフェイス コマンドまたは end を入力して特権 EXEC モードに戻ると、コマンドが収集されてインターフェイスに適用されます。

また、 interface range または interface range macro グローバル コンフィギュレーション コマンドを使用すると、一定範囲のインターフェイスを設定することもできます。ある範囲内で設定したインターフェイスは、同じタイプである必要があります。また、同じ機能オプションを指定して設定しなければなりません。

ステップ 4 インターフェイスを設定してから、「インターフェイスのモニタリングおよびメンテナンス」 に示した show 特権 EXEC コマンドで、そのステータスを確認してください。


 

show interfaces 特権 EXEC コマンドを使用して、スイッチ上のまたはスイッチ用に設定されたすべてのインターフェイスのリストを表示します。デバイスがサポートする各インターフェイスまたは指定したインターフェイスのレポートが出力されます。

インターフェイス範囲の設定

interface range グローバル コンフィギュレーション コマンドを使用して、同じコンフィギュレーション パラメータを持つ複数のインターフェイスを設定できます。インターフェイス レンジ コンフィギュレーション モードを開始すると、このモードを終了するまで、入力されたすべてのコマンド パラメータはその範囲内のすべてのインターフェイスに対するものと見なされます。

同じパラメータでインターフェイス範囲を設定するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

interface range { port-range | macro macro_name }

設定するインターフェイス範囲(VLAN または物理ポート)を指定し、インターフェイス コンフィギュレーション モードを開始します。

interface range コマンドを使用すると、最大 5 つのポート範囲または定義済みマクロを 1 つ設定できます。

macro 変数については、「インターフェイス レンジ マクロの設定および使用方法」を参照してください。

カンマで区切った port-range では、各エントリに対応するインターフェイス タイプを入力し、カンマの前後にスペースを含めます。

ハイフンで区切った port-range では、インターフェイス タイプの再入力は不要ですが、ハイフンの前後にスペースを入力する必要があります。

ステップ 3

この時点で、通常のコンフィギュレーション コマンドを使用して、範囲内のすべてのインターフェイスにコンフィギュレーション パラメータを適用します。各コマンドは、入力されたとおりに実行されます。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

show interfaces [ interface-id ]

指定した範囲内のインターフェイスの設定を確認します。

ステップ 6

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

interface range グローバル コンフィギュレーション コマンドを使用するときは、次の注意事項に留意してください。

スイッチでのポート タイプに応じた port-range の有効なエントリは次のとおりです。

vlan vlan-ID 、VLAN ID は 1 ~ 4094。


) コマンドライン インターフェイスには複数の VLAN を設定するオプションが表示されますが、Catalyst 2960 スイッチおよび 2960-S スイッチで、これらのオプションはサポートされていません。


gigabitethernet stack member/module/{ first port } - { last port }、module は常に 0

fastethernet module/{first port } - { last port }、モジュールは常に 0。

gigabitethernet module/{ first port } - { last port }、モジュールは常に 0。

port-channel port-channel-number - port-channel-number port-channel-number は 1 ~ 6。


) ポート チャネルを指定して interface range コマンドを使用する場合は、先頭および最後のチャネル番号をアクティブなポート チャネルにする必要があります。


interfacerange コマンドを使用するときは、先頭のインターフェイス番号とハイフンの間にスペースが必要です。

たとえば、interface range gigabitethernet 1/0/1 - 4 は有効な範囲ですが、interface range gigabit ethernet1/0/1-4 は無効な範囲です。

たとえば、interface range gigabitethernet 0/1 - 4 は有効な範囲ですが、interface range gigabit ethernet0/1-4 は無効な範囲です。

interface range コマンドが機能するのは、 interface vlan コマンドで設定された VLAN インターフェイスに限られます。 show running-config 特権 EXEC コマンドを使用すると、設定されている VLAN インターフェイスが表示されます。 show running-config コマンドで表示されない VLAN インターフェイスに interface range コマンドを使用することはできません。

ある範囲内のすべてのインターフェイスは、同じタイプ(すべてがファスト イーサネット ポート、すべてがギガビット イーサネット ポート、すべてが EtherChannel ポート、またはすべてが VLAN)でなければなりません。ただし、1 つのコマンド内で複数のレンジを組み合わせることができます。

次の例では、 interface range グローバル コンフィギュレーション コマンドを使用して、ポート 1 ~ 2 の速度を 100 Mb/s に設定する方法を示します。

Switch# configure terminal
Switch(config)# interface range gigabitethernet1/0/1 - 2
Switch(config-if-range)# speed 100
 

この例では、カンマを使用して別のインターフェイス タイプ ストリングを追加し、スイッチ 1 上のファスト イーサネット ポート 1 ~ 3 とスイッチ 2 上のギガビット イーサネット ポート 1 および 2 をイネーブルにし、フロー制御ポーズ フレームを受信できるようにします。

Switch# configure terminal
Switch(config)# interface range gigabitethernet1/0/1 - 3, gigabitethernet1/0/1 - 2
Switch(config-if-range)# flowcontrol receive on
 

インターフェイス レンジ モードで複数のコンフィギュレーション コマンドを入力した場合、各コマンドは入力した時点で実行されます。インターフェイス レンジ モードを終了した後で、コマンドがバッチ処理されるわけではありません。コマンドの実行中にインターフェイス レンジ コンフィギュレーション モードを終了すると、一部のコマンドが範囲内のすべてのインターフェイスに対して実行されない場合もあります。コマンド プロンプトが再表示されるのを待ってから、インターフェイス範囲コンフィギュレーション モードを終了してください。

インターフェイス レンジ マクロの設定および使用方法

インターフェイス レンジ マクロを作成すると、設定するインターフェイスの範囲を自動的に選択できます。interface range macro グローバル コンフィギュレーション コマンドで macro キーワードを使用するには、まず define interface-range グローバル コンフィギュレーション コマンドでマクロを定義する必要があります。

インターフェイス レンジ マクロを設定するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

define interface-range macro_name interface-range

インターフェイス レンジ マクロを定義して NVRAM(不揮発性 RAM)に保存します。

macro_name は、最大 32 文字の文字列です。

マクロには、カンマで区切ったインターフェイスを 5 つまで指定できます。

それぞれの interface-range は、同じポート タイプで構成されていなければなりません。

ステップ 3

interface range macro macro_name

macro_name の名前でインターフェイス レンジ マクロに保存された値を使用することによって、設定するインターフェイスの範囲を選択します。

ここで、通常のコンフィギュレーション コマンドを使用して、定義したマクロ内のすべてのインターフェイスに設定を適用できます。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

show running-config | include define

定義済みのインターフェイス レンジ マクロの設定を表示します。

ステップ 6

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

マクロを削除するには、 no define interface-range macro_name グローバル コンフィギュレーション コマンドを使用します。

define interface-range グローバル コンフィギュレーション コマンドを使用するときは、次の注意事項に留意してください。

スイッチでのポート タイプに応じた interface-range の有効なエントリは次のとおりです。

vlan vlan-ID 、VLAN ID は 1 ~ 4094。


) コマンドライン インターフェイスには複数の VLAN を設定するオプションが表示されますが、Catalyst 2960 スイッチで、これらのオプションはサポートされていません。


fastethernet stack member/module/{first port } - { last port }、module は常に 0

gigabitethernet stack member/module/{ first port } - { last port }、module は常に 0

fastethernet module/{first port } - { last port }、モジュールは常に 0。

gigabitethernet module/{ first port } - { last port }、モジュールは常に 0。

port-channel port-channel-number - port-channel-number port-channel-number は 1 ~ 6。


) ポート チャネルを指定して interface range コマンドを使用する場合は、先頭および最後のチャネル番号をアクティブなポート チャネルにする必要があります。


interface-range を入力するときは、最初のインターフェイス番号とハイフンの間にスペースを入れます。

たとえば、 gigabitethernet 1/0/1 - 4 は有効な範囲ですが、 gigabit ethernet1/0/1-4 は無効な範囲です。

VLAN インターフェイスは、 interface vlan コマンドで設定しておく必要があります。 show running-config 特権 EXEC コマンドを使用すると、設定されている VLAN インターフェイスが表示されます。 show running-config コマンドで表示されない VLAN インターフェイスを interface-range として使用することはできません。

ある範囲内のすべてのインターフェイスは、同じタイプ(すべてがファスト イーサネット ポート、すべてがギガビット イーサネット ポート、すべてが EtherChannel ポート、またはすべてが VLAN)でなければなりません。ただし、1 つのマクロ内で複数のインターフェイス タイプを組み合わせることができます。

次に、 enet_list という名前のインターフェイス範囲マクロを定義して、ポート 1 および 2 を含め、マクロ設定を確認する例を示します。

Switch# configure terminal
Switch(config)# define interface-range enet_list gigabitethernet1/0/1 - 2
Switch(config)# end
Switch# show running-config | include define
Switch# define interface-range enet_list gigabitethernet1/0/1 - 2
 

次に、複数のタイプのインターフェイスを含むマクロ macro1 を作成する例を示します。

Switch# configure terminal
Switch(config)# define interface-range macro1 gigabitethernet1/0/1 - 2, gigabitethernet1/0/1 - 2
Switch(config)# end
 

次に、インターフェイス レンジ マクロ enet_list に対するインターフェイス レンジ コンフィギュレーション モードを開始する例を示します。

Switch# configure terminal
Switch(config)# interface range macro enet_list
Switch(config-if-range)#
 

次に、インターフェイス レンジ マクロ enet_list を削除し、処理を確認する例を示します。

Switch# configure terminal
Switch(config)# no define interface-range enet_list
Switch(config)# end
Switch# show run | include define
Switch#

イーサネット管理ポートの使用(Catalyst 2960-S のみ)


) Catalyst 2960 スイッチでは、イーサネット管理ポートはサポートされません。


「イーサネット管理ポートの概要」

「サポートされるイーサネット管理ポートの機能」

「イーサネット管理ポートの設定」

「TFTP およびイーサネット管理ポート」

イーサネット管理ポートの概要

イーサネット管理ポートは、PC を接続するレイヤ 3 ホスト ポートで、 Fa0 または fastethernet0 ポート とも呼ばれます。ネットワークの管理に、スイッチ コンソール ポートの代わりとしてイーサネット管理ポートを使用できます。スイッチ スタックを管理するときに、PC を Catalyst 2960-S スタック メンバ上のイーサネット管理ポートに接続します

PC をイーサネット管理ポートに接続するときに、IP アドレスを割り当てる必要があります。

Catalyst 2960-S スタンドアロン スイッチの場合、図 13-2 に示されるようにイーサネット管理ポートを PC に接続します。

図 13-2 スイッチの PC への接続

 

Catalyst 2960-S スタックでは、スタック メンバ上のすべてのイーサネット管理ポートが、PC が接続されるハブに接続されます。図 13-3 に示されるように、アクティブ リンクはスタック マスター(スイッチ 2)のイーサネット管理ポートからハブを経由して PC までです。スタック マスターに障害が発生し、新しいスタック マスターが選択された場合は、アクティブ リンクは、新しいスタック マスターのイーサネット管理ポートから PC までになります。

図 13-3 PC とスイッチ スタックの接続

 

デフォルトでは、イーサネット管理ポートはイネーブルです。

サポートされるイーサネット管理ポートの機能

イーサネット管理ポートは次の機能をサポートします。

Express Setup(スイッチ スタックでのみ)

Network Assistant

パスワード付きの Telnet

TFTP

セキュア シェル(SSH)

Dynamic Host Configuration Protocol(DHCP)ベースの自動設定

SNMP(ENTITY-MIB および IF-MIB のみ)

IP ping

インターフェイス機能

速度:10 Mb/秒、100 Mb/秒、および自動ネゴシエーション

デュプレックス モード:全二重、半二重、自動ネゴシエーション

ループバック検出

Cisco Discovery Protocol(CDP)

DHCP リレー エージェント

IPv4 および IPv6 アクセス コントロール リスト(ACL)


注意 イーサネット管理ポートの機能をイネーブルにする前に機能がサポートされていることを確認してください。イーサネット管理ポートのサポートされていない機能を設定しようとすると、機能は正しく動作せず、スイッチに障害が発生するおそれがあります。

イーサネット管理ポートの設定

CLI でイーサネット管理ポートを指定するには、 fastethernet0 を入力します。

ポートをディセーブルにするには、 shutdown インターフェイス コンフィギュレーション コマンドを使用します。ポートをイネーブルにするには、 no shutdown インターフェイス コンフィギュレーション コマンドを使用します。

PC へのリンク ステータスを調べるには、イーサネット管理ポートの LED をモニタします。リンクがアクティブな場合、LED はグリーン(オン)であり、リンクが停止中の場合は、LED はオフです。POST エラーがある場合は、LED はオレンジです。

リンク ステータスを表示するには、 show interfaces fastethernet 0 特権 EXEC コマンドを使用します。

TFTP およびイーサネット管理ポート

TFTP を使用してブートローダにコンフィギュレーション ファイルをダウンロードまたはアップロードするには、 表 13-3 のコマンドを使用します。

 

表 13-3 ブートローダ コマンド

コマンド
説明

arp [ ip_address ]

このコマンドが ip_address パラメータなしで入力された場合は、現在キャッシュされている ARP1 テーブルを表示します。

このコマンドが ip_address パラメータ付きで入力された場合は、MAC アドレスと特定の IP アドレスを関連付けられるように ARP をイネーブルにします。

mgmt_clr

イーサネット管理ポートの統計情報をクリアします。

mgmt_init

イーサネット管理ポートを開始します。

mgmt_show

イーサネット管理ポートの統計情報を表示します。

ping host_ip_address

ICMP ECHO_REQUEST パケットを指定したネットワーク ホストに送信します。

boot tftp :/file-url ...

実行可能イメージを TFTP サーバからロードし、起動して、コマンドライン インターフェイスを開始します。

詳細については、このリリースのコマンド リファレンスを参照してください。

copy tftp:/ source-file-url filesystem :/ destination-file-url

Cisco IOS イメージを TFTP サーバから指定した場所にコピーします。

詳細については、このリリースのコマンド リファレンスを参照してください。

1.ARP = Address Resolution Protocol(アドレス解決プロトコル)

イーサネット インターフェイスの設定

「イーサネット インターフェイスのデフォルト設定」

「デュアルパーパス アップリンク ポートのタイプの設定」

「インターフェイス速度およびデュプレックス モードの設定」

「IEEE 802.3x フロー制御の設定」

「インターフェイスでの Auto-MDIX の設定」

「PoE ポートの電力管理モードの設定」

「PoE ポートに接続された装置のパワー バジェット」

「電力ポリシングの設定」

「Catalyst PoE およびコンパクト スイッチの PoE パススルー ポートの設定」

「インターフェイスに関する記述の追加」

イーサネット インターフェイスのデフォルト設定

表 13-4 は、イーサネット インターフェイスのデフォルト設定を示しています。表に示されている VLAN パラメータの詳細については、「VLAN の設定」を参照してください。また、ポートへのトラフィック制御の詳細については、「ポート単位のトラフィック制御の設定」 を参照してください。

 

表 13-4 レイヤ 2 イーサネット インターフェイスのデフォルト設定

機能
デフォルト設定

VLAN 許容範囲

VLAN 1 ~ 4094

デフォルト VLAN(アクセス ポート用)

VLAN 1

ネイティブ VLAN(IEEE 802.1Q トランク用)

VLAN 1

802.1p プライオリティ タグ付きトラフィック

VLAN 0 のタグが付いたパケットをすべてドロップします。

VLAN トランキング

Switchport mode dynamic auto(DTP をサポート)

ポート イネーブル ステート

すべてのポートがイネーブル

ポート記述

未定義

速度

自動ネゴシエーション

デュプレックス モード

自動ネゴシエーション

フロー制御

フロー制御は receive : off に設定されます。送信パケットでは常にオフです。

EtherChannel(PAgP)

すべてのイーサネット ポートでディセーブル。「EtherChannel およびリンクステート トラッキングの設定」を参照してください。「EtherChannel およびリンクステート トラッキングの設定」

ポート ブロッキング(不明マルチキャストおよび不明ユニキャスト トラフィック)

ディセーブル(ブロッキングされない)。 「ポート ブロッキングの設定」を参照してください。

ブロードキャスト、マルチキャスト、およびユニキャスト ストーム制御

ディセーブル 「ストーム制御のデフォルト設定」を参照してください。

保護ポート

ディセーブル 「保護ポートの設定」を参照してください。

ポート セキュリティ

ディセーブル 「ポート セキュリティのデフォルト設定」を参照してください。

PortFast

ディセーブル 「オプションのスパニングツリー機能のデフォルト設定」を参照してください。

Auto-MDIX

イネーブル

(注) 受電デバイスがクロス ケーブルでスイッチに接続されている場合、スイッチは、IEEE 802.3af に完全には準拠していない、Cisco IP Phone やアクセス ポイントなどの準規格の受電をサポートしていない場合があります。これは、スイッチ ポート上で Automatic Medium-Dependent Interface Crossover(Auto-MIDX)がイネーブルかどうかは関係ありません。

Power over Ethernet(PoE)

イネーブル(auto)

キープアライブ メッセージ

SFP モジュールでディセーブル。他のすべてのポートでイネーブル。

デュアルパーパス アップリンク ポートのタイプの設定


) Catalyst 2960 スイッチにだけデュアルパーパス アップリンク ポートがあります。


一部の 2960 スイッチでは、デュアルパーパス アップリンク ポートがサポートされています。デフォルトでは、スイッチは最初にリンクするインターフェイス タイプを動的に選択します。ただし、 media-type インターフェイス コンフィギュレーション コマンドを使用して、手動で RJ-45 コネクタまたは SFP モジュール コネクタを選択できます。詳細については、「デュアルパーパス アップリンク ポート」を参照してください。

速度およびデュプレックスの設定が行えるようにアクティブにするデュアルパーパス アップリンクを選択するには、特権 EXEC モードで次の手順を実行します。この手順は任意です。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

interface interface-id

設定するデュアルパーパス アップリンク ポートを指定し、インターフェイス コンフィギュレーション モードを開始します。

ステップ 3

media-type { auto-select | rj45 | sfp }

インターフェイスとデュアルパーパス アップリンク ポートのタイプを選択します。キーワードの意味は次のとおりです。

auto-select スイッチが動的にタイプを選択します。リンクがアップの状態になると、アクティブなリンクがダウンの状態になるまで、スイッチによりその他のタイプがディセーブル化されます。アクティブなリンクがダウンの状態になると、いずれかのリンクがアップの状態になるまで、スイッチにより両方のタイプがイネーブル化されます。auto-select モードでは、スイッチにより両方のタイプが速度およびデュプレックスの自動ネゴシエーションに設定されます(デフォルト)。インストールされている SFP モジュールのタイプによって、スイッチで自動的に選択が行えない場合もあります。詳細については、この手順の後の説明を参照してください。

rj45 スイッチが SFP モジュール インターフェイスをディセーブル化します。このポートに SFP モジュールを接続する場合、RJ-45 側がダウンしている、または接続していない場合でも、リンクを確立することはできません。このモードでは、デュアルパーパス ポートは 10/100/1000BASE-TX インターフェイスと同様の動作をします。このインターフェイス タイプに対応した速度およびデュプレックスの設定が可能です。

sfp スイッチが RJ-45 インターフェイスをディセーブル化します。この RJ-45 ポートにケーブルを接続している場合、SFP モジュール側がダウンしている、または SFP モジュールが接続していない場合でも、リンクを確立することはできません。インストールされている SFP モジュールのタイプに基づいて、このインターフェイス タイプに対応した速度およびデュプレックスの設定が可能です。

速度およびデュプレックスの詳細については、「速度とデュプレックス モードの設定時の注意事項」を参照してください。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

show interfaces interface-id transceiver properties

設定値を確認します。

ステップ 6

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

デフォルトの設定に戻すには、 media-type auto interface または no media-type インターフェイス コンフィギュレーション コマンドを使用します。

スイッチにより両方のタイプが速度およびデュプレックスの自動ネゴシエーションに設定されます(デフォルト)。 auto-select を設定した場合、 speed および duplex インターフェイス コンフィギュレーション コマンドによる設定は行えません。

スイッチの電源を ON にした場合、または shutdown および no shutdown インターフェイス コンフィギュレーション コマンドでデュアルパーパス アップリンク ポートをイネーブル化した場合、SFP モジュール インターフェイスが選択されます。これ以外の場合、最初にアップの状態になったリンクのタイプに基づいて、アクティブなリンクが選択されます。

このスイッチと 100BASE- x (- x は -BX、-FX、-FE、-LX のいずれか)SFP モジュールを組み合わせると、次のように動作します。

100BASE- x SFP モジュールがモジュール スロットに搭載されていて、RJ-45 側にリンクがない場合、スイッチにより RJ-45 インターフェイスがディセーブル化され、SFP モジュール インターフェイスが選択されます。ケーブルが接続されていない場合や、SFP モジュール側にリンクがない場合でも、このようになります。

100BASE- x SFP モジュールが搭載されていて、RJ-45 側にリンクがある場合、このリンクを使用して動作が続行します。リンクがダウンの状態になると、スイッチにより RJ-45 側がディセーブル化され、SFP モジュール インターフェイスが選択されます。

100BASE- x SFP モジュールを取り外すと、スイッチにより再び自動的にタイプが選択され( auto-select )、再び RJ-45 側がイネーブル化されます。

100BASE-FX-GE SFP モジュールの場合、この機能はありません。

インターフェイス速度およびデュプレックス モードの設定

サポートされるポート タイプに応じて、スイッチのイーサネット インターフェイスは、全二重または半二重モードのいずれかで、10、100、1000、または 10,000 Mb/s で動作します。全二重モードの場合、2 つのステーションが同時にトラフィックを送受信できます。通常、10 Mbps ポートは半二重モードで動作します。これは、各ステーションがトラフィックを受信するか、送信するかのどちらか一方しかできないことを意味します。

スイッチ モデルには、ファスト イーサネット(10/100 Mb/s)ポート、ギガビット イーサネット(10/100/1000 Mb/s)ポート、10 ギガビット モジュール ポート、および SFP モジュールをサポートする Small Form-Factor Pluggable(SFP)モジュール スロットの組み合わせが含まれます。

ここでは、インターフェイス速度とデュプレックス モードの設定手順について説明します。

「速度とデュプレックス モードの設定時の注意事項」

「インターフェイス速度およびデュプレックス パラメータの設定」

速度とデュプレックス モードの設定時の注意事項

インターフェイス速度およびデュプレックス モードを設定するときには、次の注意事項に留意してください。

ファスト イーサネット(10/100 Mbps)ポートは、すべての速度およびデュプレックス オプションをサポートします。

ギガビット イーサネット(10/100/1000 Mbps)ポートは、すべての速度オプションとデュプレックス オプション(自動、半二重、全二重)をサポートします。ただし、1000 Mbps で稼働させているギガビット イーサネット ポートは、半二重モードをサポートしません。

SFP モジュール ポートの場合、次の SFP モジュール タイプによって速度とデュプレックスの CLI(コマンドライン インターフェイス)オプションが変わります。

1000 BASE- x x には、BX、CWDM、LX、SX、ZX が適宜入ります)SFP モジュール ポートは、 speed インターフェイス コンフィギュレーション コマンドで nonegotiate キーワードをサポートします。デュプレックス オプションはサポートされません。

1000BASE-T SFP モジュール ポートは、10/100/1000 Mbps ポートと同一の速度とデュプレックス オプションをサポートします。

100BASE- x x には、BX、CWDM、LX、SX、ZX が適宜入ります)SFP モジュール ポートは、100 Mbps のみサポートします。これらのモジュールは、全二重および半二重オプションをサポートしますが、自動ネゴシエーションをサポートしません。

スイッチでサポートされる SFP モジュールについては、各製品のリリース ノートを参照してください。

回線の両側で自動ネゴシエーションがサポートされる場合は、できるだけデフォルトの auto ネゴシエーションを使用してください。

一方のインターフェイスが自動ネゴシエーションをサポートし、もう一方がサポートしない場合は、両方のインターフェイス上でデュプレックスと速度を設定します。サポートする側で auto 設定を使用しないでください。

STP がイネーブルの場合にポートを再設定すると、スイッチがループの有無を調べるために最大で 30 秒かかる可能性があります。STP の再設定が行われている間、ポート LED はオレンジに点灯します。


注意 インターフェイス速度とデュプレックス モードの設定を変更すると、再設定中にインターフェイスがシャットダウンし、再びイネーブルになる場合があります。

インターフェイス速度およびデュプレックス パラメータの設定

物理インターフェイスの速度およびデュプレックス モードを設定するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

interface interface-id

設定する物理インターフェイスを指定し、インターフェイス コンフィギュレーション モードを開始します。

ステップ 3

speed { 10 | 100 | 1000 | auto [ 10 | 100 | 1000 ] | nonegotiate }

インターフェイスに対する適切な速度パラメータを入力します。

インターフェイスの速度を指定するには、 10 100 、または 1000 を入力します。 1000 キーワードを使用できるのは、10/100/1000 Mbps ポートに対してだけです。

インターフェイスに接続されたデバイスと自動ネゴシエーションが行えるようにするには、 auto を入力します。 auto キーワードと一緒に 10 100 、または 1000 キーワードを使用した場合、ポートは指定の速度でのみ自動ネゴシエートします。

nonegotiate キーワードを使用できるのは、SFP モジュール ポートに対してだけです。SFP モジュール ポートは 1000 Mbps だけで動作しますが、自動ネゴシエーションをサポートしていないデバイスに接続されている場合は、ネゴシエートしないように設定できます。

速度の設定の詳細については、「速度とデュプレックス モードの設定時の注意事項」を参照してください。

ステップ 4

duplex { auto | full | half }

インターフェイスのデュプレックス パラメータを入力します。

半二重モードをイネーブルにします(10 または 100Mbps のみで動作するインターフェイスの場合)。1000 Mbps で動作するインターフェイスには半二重モードを設定できません。

デュプレックスの設定の詳細については、「速度とデュプレックス モードの設定時の注意事項」を参照してください。

ステップ 5

end

特権 EXEC モードに戻ります。

ステップ 6

show interfaces interface-id

インターフェイス速度およびデュプレックス モード設定を表示します。

ステップ 7

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

インターフェイスをデフォルトの速度およびデュプレックス設定(自動ネゴシエーション)に戻すには、 no speed および no duplex インターフェイス コンフィギュレーション コマンドを使用します。すべてのインターフェイス設定をデフォルトに戻すには、 default interface interface-id インターフェイス コンフィギュレーション コマンドを使用します。

次に、10/100Mbps ポートでインターフェイスの速度を 10 Mbps に、デュプレックス モードを半二重に設定する例を示します。

Switch# configure terminal
Switch(config)# interface fasttethernet1/0/3
Switch(config-if)# speed 10
Switch(config-if)# duplex half
 

次に、10/100/1000 Mbps ポートで、インターフェイスの速度を 100 Mbps に設定する例を示します。

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# speed 100

IEEE 802.3x フロー制御の設定

フロー制御により、接続しているイーサネット ポートは、輻輳しているノードがリンク動作をもう一方の端で一時停止できるようにすることによって、輻輳時のトラフィック レートを制御できます。あるポートで輻輳が生じ、それ以上はトラフィックを受信できなくなった場合、ポーズ フレームを送信することによって、その状態が解消されるまで送信を中止するように、そのポートから相手ポートに通知します。ポーズ フレームを受信すると、送信側デバイスはデータ パケットの送信を中止するので、輻輳時のデータ パケット損失が防止されます。


) スイッチのポートは、ポーズ フレームを受信できますが、送信はできません。


flowcontrol インターフェイス コンフィギュレーション コマンドを使用して、インターフェイスのポーズ フレームを受信( receive )する能力を on off 、または desired に設定します。デフォルトの状態は off です。

desired に設定した場合、インターフェイスはフロー制御パケットの送信を必要とする接続デバイス、または必要ではないがフロー制御パケットを送信できる接続デバイスに対して動作できます。

デバイスのフロー制御設定には、次のルールが適用されます。

receive on (または desired ):ポートはポーズ フレームを送信できませんが、ポーズ フレームを送信する必要のある、または送信できる接続デバイスと組み合わせて使用できます。ポーズ フレームの受信は可能です。

receive off :フロー制御はどちらの方向にも動作しません。輻輳が生じても、リンクの相手側に通知はなく、どちら側の装置も休止フレームの送受信を行いません。


) コマンドの設定と、その結果生じるローカルおよびリモート ポートでのフロー制御解決の詳細については、このリリースのコマンド リファレンスに記載された flowcontrol インターフェイス コンフィギュレーション コマンドを参照してください。


インターフェイス上でフロー制御を設定するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

interface interface-id

設定する物理インターフェイスを指定し、インターフェイス コンフィギュレーション モードを開始します。

ステップ 3

flowcontrol { receive } { on | off | desired }

ポートのフロー制御モードを設定します。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

show interfaces interface-id

インターフェイス フロー制御の設定を確認します。

ステップ 6

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

フロー制御をディセーブルにするには、 flowcontrol receive off インターフェイス コンフィギュレーション コマンドを使用します。

次に、ポート上のフロー制御をオンにする例を示します。

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# flowcontrol receive on
Switch(config-if)# end

インターフェイスでの Auto-MDIX の設定

インターフェイス上の Auto-MDIX がイネーブルに設定されている場合、インターフェイスが必要なケーブル接続タイプ(ストレートまたはクロス)を自動的に検出し、接続を適切に設定します。Auto-MDIX 機能を使用せずにスイッチを接続する場合、サーバ、ワークステーション、またはルータなどのデバイスの接続にはストレート ケーブルを使用し、他のスイッチやリピータの接続にはクロス ケーブルを使用する必要があります。Auto-MDIX がイネーブルの場合、他のデバイスとの接続にはどちらのケーブルでも使用でき、ケーブルが正しくない場合はインターフェイスが自動的に修正を行います。ケーブル接続の詳細については、ハードウェア インストレーション ガイドを参照してください。

Auto-MDIX はデフォルトでイネーブルです。Auto-MDIX をイネーブルに設定する場合、Auto-MDIX 機能が正しく動作するようにインターフェイスの速度およびデュプレックスを auto に設定する必要があります。

Auto-MDIX は、すべての 10/100 および 10/100/1000 Mb/s インターフェイスでサポートされます。1000BASE-SX または 1000BASE-LX SFP モジュール インターフェイスではサポートされません。

表 13-5 に、Auto-MDIX の設定およびケーブル接続ごとのリンク ステートを示します。

 

表 13-5 リンク状態と Auto-MDIX の設定

ローカル側の Auto-MDIX
リモート側の Auto-MDIX
ケーブル接続が正しい場合
ケーブル接続が正しくない場合

On

On

リンク アップ

リンク アップ

On

Off

リンク アップ

リンク アップ

Off

On

リンク アップ

リンク アップ

Off

Off

リンク アップ

リンク ダウン

インターフェイス上で Auto-MDIX を設定するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

interface interface-id

設定する物理インターフェイスを指定し、インターフェイス コンフィギュレーション モードを開始します。

ステップ 3

speed auto

接続されたデバイスと速度の自動ネゴシエーションを行うようにインターフェイスを設定します。

ステップ 4

duplex auto

接続されたデバイスとデュプレックス モードの自動ネゴシエーションを行うようにインターフェイスを設定します。

ステップ 5

mdix auto

インターフェイス上で Auto-MDIX をイネーブルにします。

ステップ 6

end

特権 EXEC モードに戻ります。

ステップ 7

show controllers ethernet-controller interface-id phy

インターフェイスで Auto-MDIX の動作ステートを確認します。

ステップ 8

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

Auto-MDIX をディセーブルにするには、 no mdix auto インターフェイス コンフィギュレーション コマンドを使用します。

次の例では、ポートの Auto MDIX をイネーブルにする方法を示します。

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# speed auto
Switch(config-if)# duplex auto
Switch(config-if)# mdix auto
Switch(config-if)# end

PoE ポートの電力管理モードの設定


) PoE コマンドは、スイッチで LAN Base イメージが実行されている場合にだけサポートされます。イーサネット経由の電源供給プラス(PoE+)がサポートされているのは、Catalyst 2960-S スイッチだけです。


ほとんどの場合、デフォルトの設定(自動モード)の動作は適切に行われ、プラグアンドプレイ動作が提供されます。それ以上の設定は必要ありません。しかし、PoE ポートの優先順位を上げたり、PoE ポートをデータ専用にしたり、最大ワット数を指定して高電力受電デバイスをポートで禁止したりする場合は、次の手順を実行します。


) PoE 設定を変更するとき、設定中のポートでは電力が低下します。新しい設定、その他の PoE ポートの状態、電力バジェットの状態により、そのポートの電力は再びアップしない場合があります。たとえば、ポート 1 が自動でオンの状態になっていて、そのポートを固定モードに設定するとします。スイッチはポート 1 から電力を取り除き、受電デバイスを検出してポートに電力を再び供給します。ポート 1 が自動でオンの状態になっていて、最大ワット数を 10 W に設定した場合、スイッチはポートから電力を取り除き、受電デバイスを再び検出します。スイッチは、受電デバイスがクラス 1、クラス 2、またはシスコ専用受電デバイスのいずれかの場合に、ポートに電力を再び供給します。


電力管理モードを PoE 対応ポートで設定するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

interface interface-id

設定する物理ポートを指定し、インターフェイス コンフィギュレーション モードを開始します。

ステップ 3

power inline { auto [ max max-wattage ] | never | static [ max max-wattage ]}

ポートに PoE モードを設定します。キーワードの意味は次のとおりです。

auto :受電装置検出をイネーブルにします。十分な電力がある場合は、装置の検出後に PoE ポートに電力を自動的に割り当てます。これがデフォルト設定です。

(任意) max max-wattage: ポートで許可する 電力を制限します。範囲は PoE ポートで 4000 ~ 15400 ミリワット、PoE+ ポートでは 4000 ~ 30000 ミリワットです。値を指定しない場合は、最大電力が供給されます。

never :装置検出とポートへの電力供給をディセーブルにします。

コマンドでポートを設定しないでください。問題のあるリンクアップが発生し、ポートが errdisable ステートになることがあります。

static :受電装置検出をイネーブルにします。スイッチが受電デバイスを検出する前に、ポートへの電力を事前に割り当てます(確保します)。スイッチは、装置が接続されていなくてもこのポートに電力を予約し、装置の検出時に電力が供給されることを保証します。

スイッチは、自動モードに設定されたポートに電力を割り当てる前に、固定モードに設定されたポートに PoE を割り当てます。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

show power inline [i nterface-id | module switch-number ]

指定したインターフェイスまたは指定したスタック メンバーのスイッチまたはスイッチ スタックの PoE ステータスを表示します。 module キーワードは、LAN Base イメージが実行されている Catalyst 2960-S スイッチだけに適用できます。

ステップ 6

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

show power inline ユーザ EXEC コマンドの出力については、このリリースのコマンド リファレンスを参照してください。PoE 関連の詳細については、「PoE スイッチ ポートのトラブルシューティング」を参照してください。音声 VLAN の設定の詳細については、「音声 VLAN の設定」を参照してください。

PoE ポートに接続された装置のパワー バジェット

シスコの受電デバイスが PoE ポートに接続されている場合、スイッチは Cisco Discovery Protocol(CDP)を使用して 実際に 装置が消費する電力量を決定して、それに応じて電力バジェットを調整します。CDP プロトコルはシスコの受電デバイスで動作し、IEEE サードパーティの受電デバイスには適用されません。この装置の場合、スイッチが電力要求を許可したときに、受電装置の IEEE 分類に応じて電力バジェットを調整します。受電デバイスが Class 0(クラス ステータスは不明)または Class 3 である場合、実際に必要な電力量に関係なく、スイッチはポート用に 15,400 ミリワットの電力を確保します。受電デバイスが実際の電力消費量よりも高いクラスであるか、または電力分類(デフォルトで Class 0)をサポートしない場合、スイッチは IEEE クラス情報を使用してグローバル電力バジェットを追跡するので、少しの装置にしか電力を供給しません。

power inline consumption wattage コンフィギュレーション コマンドを使用することで、IEEE 分類で指定されたデフォルトの電力要件を無効にできます。IEEE 分類で指定された電力と実際に装置が必要とする電力の差は、追加の装置が使用するためグローバル電力バジェットに入れられます。したがって、スイッチの電力バジェットを拡張してもっと効率的に使用できます。

たとえば、スイッチが各 PoE ポートで 15,400 ミリワットの電力を確保した場合、接続できる Class0 の受電デバイスは 24 台だけです。Class0 の装置の電力要件が実際には 5000 ミリワットである場合、消費ワット数を 5000 ミリワットに設定すると、最大 48 台の装置を接続できます。24 ポートまたは 48 ポート スイッチで利用できる PoE 総出力電力は 370,000 ミリワットです。


注意 慎重にスイッチの電力バジェットを計画し、電源装置がオーバーサブスクライブ状態にならないようにしてください。


) 手動で電力バジェットを設定する場合、スイッチと受電デバイスの間のケーブルでの電力消失を考慮する必要があります。


power inline consumption default wattage または no power inline consumption default グローバル コンフィギュレーション コマンドを入力する、あるいは power inline consumption wattage または no power inline consumption インターフェイス コンフィギュレーション コマンドを入力すると、次の注意メッセージが表示されます。

%CAUTION: Interface interface-id: Misconfiguring the 'power inline consumption/allocation' command may cause damage to the switch and void your warranty. Take precaution not to oversubscribe the power supply.
It is recommended to enable power policing if the switch supports it.
Refer to documentation.
 

電力供給が最大 20% のサブスクライブ過剰になると、スイッチは動作しますが、信頼性が低下します。電力供給 20% を超えてサブスクライブされると、短絡保護回路が始動しスイッチはシャットダウンします。

IEEE 電力分類の詳細については、「Power over Ethernet(PoE)ポート」を参照してください。

スイッチの各 PoE ポートに接続された受電デバイスへのパワー バジェット量を設定するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

no cdp run

(任意)CDP をディセーブルにします。

ステップ 3

power inline consumption default wattage

スイッチの各 PoE ポートに接続された受電デバイスの消費電力を設定します。

各デバイスの範囲は、PoE スイッチで 4000 ~ 15400 ミリワット、PoE+ スイッチでは 4000 ~ 30000 ミリワットです。デフォルトは PoE スイッチでは 15400 ミリワット、PoE+ スイッチでは 30000 ミリワットです。

(注) このコマンドを使用する場合、電力ポリシングもイネーブルにすることを推奨します。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

show power inline consumption

消費電力のステータスを表示します。

ステップ 6

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

設定をデフォルトに戻すには、 no power inline consumption default グローバル コンフィギュレーション コマンドを使用します。

特定の PoE ポートに接続された受電デバイスへのパワー バジェット量を設定するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

no cdp run

(任意)CDP をディセーブルにします。

ステップ 3

interface interface-id

設定する物理ポートを指定し、インターフェイス コンフィギュレーション モードを開始します。

ステップ 4

power inline consumption wattage

スイッチの PoE ポートに接続された受電デバイスの消費電力を設定します。

各デバイスの範囲は PoE ポートで 4000 ~ 15400 ミリワット、PoE+ ポートでは 4000 ~ 30000 ミリワットです。デフォルトは、PoE ポートで 15400 ミリワット 、PoE+ ポートで 30000 ミリワットです。

(注) このコマンドを使用する場合、電力ポリシングもイネーブルにすることを推奨します。

ステップ 5

end

特権 EXEC モードに戻ります。

ステップ 6

show power inline consumption

消費電力のステータスを表示します。

ステップ 7

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

デフォルトの設定に戻すには、 no power inline consumption インターフェイス コンフィギュレーション コマンドを使用します。

show power inline consumption 特権 EXEC コマンドの出力の詳細については、このリリースのコマンド リファレンスを参照してください。

電力ポリシングの設定

デフォルトでは、スイッチは接続されている受電デバイスの消費電力をリアルタイムでモニタリングします。消費電力に対するポリシングを行うようにスイッチを設定できます。デフォルトではポリシングはディセーブルです。

スイッチが使用するカットオフ電力値、消費電力値、および接続しているデバイスの実際の消費電力の詳細については、「電力モニタリングおよび電力ポリシング」を参照してください。

PoE ポートに接続されている受電デバイスのリアルタイム消費電力ポリシングをイネーブルにするには、特権 EXEC モードで、次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

interface interface-id

設定する物理ポートを指定し、インターフェイス コンフィギュレーション モードを開始します。

ステップ 3

power inline police [ action {errdisable | log} ]

ポートでリアルタイム消費電力が最大電力割り当てを超えるときに、次のいずれかのアクションを実行するようにスイッチを設定します。

PoE ポートをシャットダウンし、このポートへの電力供給をオフにし、error-dsabled ステートにする: power inline police コマンドを入力します。

グローバル コンフィギュレーション コマンドを使用すると、PoE errdisable ステートから回復するためのタイマーをイネーブルにすることもできます。

ポートに電力を供給しながら syslog メッセージを生成する: power inline police action log コマンドを入力します。

action キーワードを入力しない場合、デフォルトのアクションによってポートがシャットダウンされ、errdisable ステートになります。

ステップ 4

exit

グローバル コンフィギュレーション モードに戻ります。

ステップ 5

errdisable detect cause inline-power

および

errdisable recovery cause inline-power

および

errdisable recovery interval interval

(任意)PoE errdisable ステートからのエラー回復をイネーブルにし、PoE 回復メカニズム変数を設定します。

interval interval では、errdisable ステートから回復する時間を秒単位で指定します。指定できる範囲は 30 ~ 86400 です。

デフォルトでは、回復間隔は 300 秒です。

ステップ 6

exit

特権 EXEC モードに戻ります。

ステップ 7

show power inline police

show errdisable recovery

電力モニタリング ステータスを表示し、エラー回復設定を確認します。

ステップ 8

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

リアルタイム消費電力のポリシングをディセーブルにするには、 no power inline police インターフェイス コンフィギュレーション コマンドを使用します。PoE errdisable の原因についてエラー回復をディセーブルにするには、 no errdisable recovery cause inline-power グローバル コンフィギュレーション コマンドを使用します。

show power inline police 特権 EXEC コマンドの出力の詳細については、このリリースのコマンド リファレンスを参照してください。

Catalyst PoE およびコンパクト スイッチの PoE パススルー ポートの設定

他の PoE スイッチと同様に、Catalyst 2960-C コンパクト スイッチ PoE ポートで 電源管理、バジェット、およびポリシングを設定できます。

show env power inline 特権 EXEC コマンドは、スイッチの電源オプションと電源のバックアップに関する情報を提供します。

Switch# show env power
PoE Power - Available:22.4(w) Backup:0.0(w)
 
Power Source Type Power(w) Mode
-------------- -------------- --------- ---------
A.C.Input Auxilliary 51(w) Available
Gi0/2 Type1 15.4(w) Back-up
 
Available : The PoE received on this link is used for powering this switch and
providing PoE pass-through if applicable.
Back-up : In the absence of 'Available' power mode, the PoE received on this
link is used for powering this switch and providing PoE pass-through
if applicable.
Available*: The PoE received on this link is used for powering this switch but
does not contribute to the PoE pass-through.
Back-up* : In the absence of 'Available' power mode, the PoE received on this
link is used for powering this switch but does not contribute to
the PoE pass-through.
 

show power inline 特権 EXEC コマンドを入力して、使用可能な電力および各接続されたデバイスで必要な電力を表示できます。

次の例では、パススルー電力を供給できる Catalyst 2960CPD-8PT の出力を示します。

Switch# show power inline
Available:22.4(w) Used:15.4(w) Remaining:7.0(w)
 
Interface Admin Oper Power Device Class Max
(Watts)
--------- ------ ---------- ------- ------------------- ----- ----
Fa0/1 auto off 0.0 n/a n/a 15.4
Fa0/2 auto off 0.0 n/a n/a 15.4
Fa0/3 auto off 0.0 n/a n/a 15.4
Fa0/4 auto off 0.0 n/a n/a 15.4
Fa0/5 auto on 15.4 IP Phone 8961 4 15.4
Fa0/6 auto off 0.0 n/a n/a 15.4
Fa0/7 auto off 0.0 n/a n/a 15.4
Fa0/8 auto off 0.0 n/a n/a 15.4
 

電力モニタリング ステータスを表示するには、 show power inline police 特権 EXEC コマンドを入力します。

次の例では、Catalyst 2960CPD-8PT の出力を示します。

Switch# show power inline police
Available:22.4(w) Used:15.4(w) Remaining:7.0(w)
 
Interface Admin Oper Admin Oper Cutoff Oper
State State Police Police Power Power
--------- ------ ---------- ---------- ---------- ------ -----
Fa0/1 auto off none n/a n/a 0.0
Fa0/2 auto off none n/a n/a 0.0
Fa0/3 auto off none n/a n/a 0.0
Fa0/4 auto off none n/a n/a 0.0
Fa0/5 auto on none n/a n/a 9.5
Fa0/6 auto off none n/a n/a 0.0
Fa0/7 auto off none n/a n/a 0.0
Fa0/8 auto off none n/a n/a 0.0
--------- ------ ---------- ---------- ---------- ------ -----
Totals: 9.5
 

Catalyst 2960CPD-8TT および Catalyst 2960CG-8TC ダウンリンク ポートは、エンド デバイスに電力を供給できません。次の例では、C2960CPD-8TT スイッチに対する show power inline コマンドの出力を示します。

Switch# show power inline
Available:0.0(w) Used:0.0(w) Remaining:0.0(w)
 
Interface Admin Oper Power Device Class Max
(Watts)
--------- ------ ---------- ------- ------------------- ----- ----
 

show power inline dynamic-priority コマンドは各ポートの電源プライオリティを示します。

Switch# show power inline dynamic-priority
Dynamic Port Priority
-----------------------
Port OperState Priority
--------- --------- --------
Fa0/1 off High
Fa0/2 off High
Fa0/3 off High
Fa0/4 off High
Fa0/5 off High
Fa0/6 off High
Fa0/7 off High
Fa0/8 off High

インターフェイスに関する記述の追加

インターフェイスの機能に関する記述を追加できます。記述は、特権 EXEC コマンド show configuration show running-config 、および show interfaces の出力に表示されます。

インターフェイスに関する記述を追加するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

interface interface-id

記述を追加するインターフェイスを指定し、インターフェイス コンフィギュレーション モードを開始します。

ステップ 3

description string

インターフェイスに関する説明を追加します(最大 240 文字)。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

show interfaces interface-id description

または

show running-config

設定を確認します。

ステップ 6

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

記述を削除するには、 no description インターフェイス コンフィギュレーション コマンドを使用します。

次に、ポートに記述を追加して、その説明を確認する例を示します。

Switch# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# description Connects to Marketing
Switch(config-if)# end
Switch# show interfaces gigabitethernet1/0/2 description
Interface Status .Protocol Description
Gi1/0/2 admin down down Connects to Marketing

レイヤ 3 SVI の設定


) LAN Base イメージを実行するスイッチだけが、スタティック ルーティングに対するレイヤ 3 SVI をサポートします。


トラフィックをルーティングする VLAN に対応する SVI を設定する必要があります。SVI は、 interface vlan グローバル コンフィギュレーション コマンドのあとに VLAN ID を入力して作成します。SVI を削除するには、 no interface vlan グローバル コンフィギュレーション コマンドを使用します。VLAN 1 は削除できません。


) 作成した SVI をアクティブにするには、物理ポートに関連付ける必要があります。VLAN へのレイヤ 2 ポートの割り当てについては、「VLAN の設定」を参照してください。


レイヤ 3 スイッチは各 SVI に IP アドレスを割り当てることができますが、スイッチがスタティック ルーティングをサポートする SVI は 16 個です。すべてのレイヤ 3 インターフェイスには、トラフィックをルーティングするための IP アドレスが必要です。次の手順は、レイヤ 3 インターフェイスとしてインターフェイスを設定する方法およびインターフェイスに IP アドレスを割り当てる方法を示します。

レイヤ 3 SVI を設定するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

interface vlan vlan-id

レイヤ 3 SVI として設定する VLAN を指定し、インターフェイス コンフィギュレーション モードを開始します。

ステップ 3

ip address ip_address subnet_mask

IP アドレスおよび IP サブネットを設定します。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

show interfaces [ interface-id ]

show ip interface [ interface-id ]

show running-config interface [ interface-id ]

設定を確認します。

ステップ 6

copy running-config startup-config

(任意)コンフィギュレーション ファイルに設定を保存します。

SVI の IP アドレスを削除するには、 no ip address インターフェイス コンフィギュレーション コマンドを使用します。

次の例では、レイヤ 3 SVI を設定して IP アドレスを割り当てる方法を示します。

Switch# configure terminal
Enter configuration commands, one per line.End with CNTL/Z.
Switch(config)# interface vlan 33
Switch(config-if)# ip address 192.20.135.21 255.255.255.0

システム MTU の設定

すべてのインターフェイスで送受信されるフレームのデフォルト最大伝送単位(MTU)サイズは、1500 バイトです。10 または 100 Mbps で動作するすべてのインターフェイスで MTU サイズを増やすには、 system mtu グローバル コンフィギュレーション コマンドを使用します。また、 system mtu jumbo グローバル コンフィギュレーション コマンドを使用すると、すべてのギガビット イーサネット インターフェイス上でジャンボ フレームをサポートするように MTU サイズを増やすことができます。

system mtu コマンドはギガビット イーサネット ポートには影響せず、system mtu jumbo コマンドは 10/100 ポートには影響しません。 system mtu jumbo コマンドを設定していない場合、 system mtu コマンドの設定はすべてのギガビット イーサネット インターフェイスに適用されます。

個々のインターフェイスに MTU サイズを設定することはできません。すべての 10/100 インターフェイスまたはすべてのギガビット イーサネット インターフェイスに対して設定されます。システムまたはジャンボ MTU サイズを変更した場合は、スイッチをリセットしなければ、新しい設定は有効になりません。

スイッチの CPU が受信できるフレーム サイズは、system mtu または system mtu jumbo コマンドで入力した値に関係なく、1998 バイトに制限されています。通常、転送されたフレームは CPU によって受信されませんが、場合によっては、制御トラフィック、SNMP、または Telnet へ送信されたトラフィックなどのパケットが CPU へ送信されることがあります。


) レイヤ 2 ギガビット イーサネット インターフェイスが、10/100 インターフェイスより大きいサイズのフレームを受け取るように設定されている場合、レイヤ 2 ギガビット イーサネット インターフェイスに着信するジャンボ フレームとレイヤ 2 10/100 インターフェイスで発信されるジャンボ フレームはドロップされます。


すべての 10/100 またはギガビット イーサネット インターフェイスで MTU サイズを変更するには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

system mtu bytes

(任意)10 または 100 Mbps で稼働するスイッチ スタックのすべてのインターフェイスに対して MTU サイズを変更します。

指定できる範囲は、1500 ~ 1998 バイトです。デフォルトは 1500 バイトです。

ステップ 3

system mtu jumbo bytes

(任意)スイッチのすべてのギガビット イーサネット インターフェイスに対して MTU サイズを変更します。

(任意)スイッチ スタックのすべてのギガビット イーサネット インターフェイスに対して MTU サイズを変更します。

指定できる範囲は、1500 ~ 9198 バイトです。デフォルトは 1500 バイトです。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

copy running-config startup-config

コンフィギュレーション ファイルに設定を保存します。

ステップ 6

reload

OS(オペレーティング システム)をリロードします。

特定のインターフェイス タイプで許容範囲外の値を入力した場合、その値は受け入れられません。

スイッチのリロード後、show system mtu 特権 EXEC コマンドを入力することによって、設定値を確認できます。

次に、ギガビット イーサネット ポートの最大パケット サイズを 1800 バイトに設定する例を示します。

Switch(config)# system mtu jumbo 1800
Switch(config)# exit
Switch# reload
 

次に、ギガビット イーサネット インターフェイスを範囲外の値に設定しようとした場合に表示される応答の例を示します。

Switch(config)# system mtu jumbo 25000
^
% Invalid input detected at '^' marker.

インターフェイスのモニタリングおよびメンテナンス

ここでは、インターフェイスのモニタおよびメンテナンスについて説明します。

「インターフェイス ステータスのモニタ」

「インターフェイスおよびカウンタのクリアとリセット」

「インターフェイスのシャットダウンおよび再起動」

インターフェイス ステータスのモニタ

特権 EXEC プロンプトにコマンドを入力することによって、ソフトウェアおよびハードウェアのバージョン、コンフィギュレーション、インターフェイスに関する統計情報などのインターフェイス情報を表示できます。 表 13-6 に、このようなインターフェイス モニタ コマンドの一部を示します (特権 EXEC プロンプトに show ? コマンドを入力すると、すべての show コマンドのリストが表示されます)。これらのコマンドの詳細については、Cisco.com で『 Cisco IOS Interface Command Reference, Release 12.4 』を参照してください。

 

表 13-6 インターフェイス用の show コマンド

コマンド
目的

show interfaces [ interface-id ]

(任意)すべてのインターフェイスまたは特定のインターフェイスのステータスおよび設定を表示します。

show interfaces interface-id status [ err-disabled ]

(任意)インターフェイスのステータス、または errdisable ステートにあるインターフェイスの一覧を表示します。

show interfaces [ interface-id ] switchport

(任意)スイッチング ポートの管理上および動作上のステータスを表示します。

show interfaces [ interface-id ] description

(任意)1 つのインターフェイスまたはすべてのインターフェイスに関する記述とインターフェイスのステータスを表示します。

show ip interface [ interface-id ]

(任意)IP ルーティング用に設定されたすべてのインターフェイスまたは特定のインターフェイスについて、使用できるかどうかを表示します。

show interface [ interface-id ] stats

(任意)インターフェイスのスイッチング パスによる入出力パケットを表示します。

show interfaces transceiver properties

(任意)インターフェイスの速度およびデュプレックス設定を表示します。

show interfaces [ interface-id ] [{ transceiver properties | detail }] module number ]

SFP モジュールに関する物理および動作ステータスを表示します。

show running-config interface [ interface-id ]

インターフェイスに対応する RAM 上の実行コンフィギュレーションを表示します。

show version

ハードウェア構成、ソフトウェアのバージョン、コンフィギュレーション ファイルの名前とソース、ブート イメージを表示します。

show controllers ethernet-controller interface-id phy

インターフェイスの Auto-MDIX 動作ステートを表示します。

show power inline [i nterface-id ]

スイッチまたはインターフェイスの PoE ステータスを表示します。

show power inline police

電力ポリシングのデータを表示します。

インターフェイスおよびカウンタのクリアとリセット

表 13-7 に、カウンタのクリアとインターフェイスのリセットに使用できる特権 EXEC モードの clear コマンドを示します。

 

表 13-7 インターフェイス用の clear コマンド

コマンド
目的

clear counters [ interface-id ]

インターフェイスのカウンタをクリアします。

clear interface interface-id

インターフェイスのハードウェア ロジックをリセットします。

clear line [ number | console 0 | vty number ]

非同期シリアル回線に関するハードウェア ロジックをリセットします。

show interfaces 特権 EXEC コマンドによって表示されたインターフェイス カウンタをリセットするには、 clear counters 特権 EXEC コマンドを使用します。オプションの引数が特定のインターフェイス番号から特定のインターフェイス タイプのみをクリアするように指定する場合を除いて、 clear counters コマンドは、インターフェイスから現在のインターフェイス カウンタをすべてクリアします。


clear counters 特権 EXEC コマンドは、簡易ネットワーク管理プロトコル(SNMP)を使用して取得されたカウンタをクリアしません。show interface 特権 EXEC コマンドで表示されるカウンタのみをクリアします。


インターフェイスのシャットダウンおよび再起動

インターフェイスをシャットダウンすると、指定されたインターフェイスのすべての機能がディセーブルになり、使用不可能であることがすべてのモニタ コマンドの出力に表示されます。この情報は、すべてのダイナミック ルーティング プロトコルを通じて、他のネットワーク サーバに伝達されます。ルーティング アップデートには、インターフェイス情報は含まれません。

インターフェイスをシャットダウンするには、特権 EXEC モードで次の手順を実行します。

 

コマンド
目的

ステップ 1

configure terminal

グローバル コンフィギュレーション モードを開始します。

ステップ 2

interface { vlan vlan-id } | {{ fastethernet | gigabitethernet } interface-id } | { port-channel port-channel-number }

設定するインターフェイスを選択します。

ステップ 3

shutdown

インターフェイスをシャットダウンします。

ステップ 4

end

特権 EXEC モードに戻ります。

ステップ 5

show running-config

設定を確認します。