Voz : H.323

Definindo a voz analógica

19 Setembro 2015 - Tradução por Computador
Outras Versões: Versão em PDFpdf | Inglês (22 Agosto 2015) | Feedback


Índice


Introdução

Este documento discute como os sinais de voz analógicos são medidos, as unidades usadas, e os pontos de referência usados quando você mede.

A qualidade de um sistema de transmissão é definida pela diferença entre a Voz falada em uma extremidade e a Voz reproduzida no extremo oposto. Qualquer um que usa o telefone experimenta bom e as conexões inválidas, e podem provavelmente descrever a qualidade de uma conexão particular em uma maneira subjetiva. Mas como pode você definir a boa e qualidade ruim em uma maneira objetiva?

Na transmissão, a primeira etapa para responder a esta pergunta é decidir em cima destas perguntas:

  • Que deve ser medida?

  • Que são as unidades de medida?

  • Que é o ponto de referência para as medidas?

Este documento responde a estas perguntas.

Pré-requisitos

Requisitos

Não existem requisitos específicos para este documento.

Componentes Utilizados

Este documento não se restringe a versões de software e hardware específicas.

Convenções

Consulte as Convenções de Dicas Técnicas da Cisco para obter mais informações sobre convenções de documentos.

Características da voz analógica

O analógico é definido como um sinal que tenha amplitude ou a frequência continuamente e lisamente de variação. O discurso humano, e tudo mais que você se ouve, se está no formulário análogo, e os sistemas telefônico adiantados eram análogos também. Os sinais analógicos são descritos frequentemente como ondas senoidal lisas, mas exprimem e outros sinais são mais complexos do que aquele, desde que contêm muitas frequências. A figura na seção da medida da voz analógica mostra a distribuição típica de energia nos sinais de voz.

A linha central vertical é energias relativas e a linha central horizontal é frequência. A figura na seção da medida da voz analógica mostra que as frequências de voz que contribuem ao discurso podem estender de baixo de 100 hertz acima a 6000. Contudo, a maioria da energia necessária para o discurso inteligível é contida em uma faixa das frequências entre 200 e 4000.

A fim eliminar os sinais indesejáveis (ruído) que podem perturbar conversações ou causar erros nos sinais de controle, os circuitos que levam os sinais de telefone são projetados passar somente determinadas frequências. As faixas de frequência que são passadas seriam na passa-faixa. Zero a 4000 hertz são a passa-faixa de um canal do canal-um VF da Voz do sistema telefônico. (Esta faixa é chamada às vezes um canal da mensagem.) A largura de banda é a diferença entre o limite superior e o limite mais baixo da passa-faixa. Consequentemente, a largura de banda do canal VF é 4000 hertz. Contudo, a transmissão de discurso não exige o canal inteiro VF. A passa-faixa da Voz é restringida a 300 a 3300 hertz. Daqui, todo o sinal continuou os circuitos de telefone que estão dentro da escala de 300 a 3300 hertz são chamados um sinal da em-faixa. Todo o sinal que não estiver dentro das faixas de 300 a 3300 hertz, mas está dentro do canal VF, é chamado um sinal fora da banda. Todos os sinais de discurso são sinais da em-faixa. Algumas transmissões da sinalização são em-faixa e algumas são fora da banda.

Medida da voz analógica

Toda a forma de onda pode ser caracterizada em termos das frequências e da potência. As quantidades de uso geral para descrever vários aspectos do desempenho de transmissão são frequência e potência. Muitas padronizações de desempenho são indicadas em termos da potência em uma frequência particular. A unidade usada para medir a frequência é o hertz, abreviado como o hertz ou considerado com o símbolo f. Hertz iguala um (0.00000000125) ciclos ou uma oscilação por segundo e mede as ondas ou as frequências de elétrico mudam cada segundo.

/image/gif/paws/8628/analogvoice2.gif

Como é comum na maioria de sistemas elétricos, a potência é medida nas unidades de watts, W. abreviado. Desde que a potência encontrada nos sistemas de transmissão é relativamente pequena (comparado à potência de uma lâmpada elétrica), a potência é expressada geralmente nos miliwatts, abreviados mW.

1 mW =  1  W = 0.001W = 10–3W
       ————
       1000

Na transmissão, o interesse comum está em relações da potência um pouco do que na potência absoluta. Além, a transmissão é estada relacionada com extremamente um amplo intervalo de valores da potência absoluta. Por estas razões, uma expressão matemática conveniente da potência relativa, o decibel (DB), é de uso geral. A fim descrever a potência relativa em termos dos decibéis, você deve definir o ponto de referência de que você mede. Baseado no parâmetro de transmissão que é medido, você pode usar formulários diferentes da medição de decibéis. Cada formulário da medida tem um ponto de referência especificamente definido. Quando você usa as unidades apropriadas de potência relativas às referências específicas, você pode medir a potência absoluta, potência relativa, e ganhos e perdas da potência.

Miliwatt e Hertz

Desde que a potência nos circuitos de telefone é pequena, o miliwatt é usado como a unidade básica de medição de energia, apenas como o pé é usado como a medida básica de comprimento. A maioria de medidas da potência absoluta na transmissão são feitas nos miliwatts ou nas unidades que são relacionadas diretamente aos miliwatts.

As frequências que são usadas em testar geralmente a queda dentro da faixa de frequência de voz. Os toms de teste puros de uso geral (da onda senoidal) são 404 hertz, 1004 hertz, e 2804 hertz. (O offset 4-Hz não é indicado sempre. Contudo, as frequências reais do teste devem ser deslocadas por 4 hertz a fim compensar os efeitos que algumas facilidades do portador têm em toms de teste.) Uma medida de 1004 hertz está perto das frequências da banda de voz que levam muita da potência da Voz, 404 hertz está perto do low-end do espectro, e 2804 hertz estão na escala dos componentes de frequência mais elevada do espectro da Voz que são importantes para a inteligibilidade de discurso.

Além do que toms de teste puros, o “ruído branco” dentro dos intervalos de frequência específicos é com certeza testes usados. Os toms de teste do ruído branco são os formatos de onda complexos que têm sua potência distribuída uniformemente sobre o intervalo de frequência do interesse. O “ruído branco” é um sinal que contenham todas as frequências audio nas quantidades igual, mas que não manifesta nenhum passo ou tom reconhecível

Esta figura ilustra, em uma maneira muito geral e simplificada, como uma transmissão do tom de teste se estabelece e como os toms de teste são gerados e medidos (demarc A ao demarc B).

/image/gif/paws/8628/figure2analogvoicemeasurement.gif

O equipamento estabelece-se para testar o circuito entre o demarc em A e o demarc no B. Você está indo medir a perda de hz 1004 inerente no circuito entre A e B.

Os clip de Bridging em ambos os demarcs são removidos a fim isolar o segmento do circuito sob o teste.

Em A, um oscilador é anexado para transmitir e receber as ligações (igualmente chamadas ligações do dica e anel). Em B, um grupo de medição da transmissão (TIMS) é anexado para transmitir e receber ligações.

O oscilador em A é ajustado para gerar um tom de teste puro com uma potência de 1 mW em 1004 hertz. No demarc B, o TIMS é ajustado para ler a potência na escala de 1 mW. A leitura de força em B é 0.5 mW. Consequentemente, a potência perdida entre A e B é:

1 mW – 0.5 mW = 0.5 mW

Mais maneira útil expressar a perda está em termos da perda relativa, ou da relação entre a potência para fora (b) e a potência em (a):

Relative loss = Power out (B)
                —————————————— 
                Power in (A)


  Relative loss = 0.5 x 10-3
                 ——————————————
                  1 X 10-3


 Relative loss = 0.5


Half the power that the 1004 Hz test-tone introduced at A is lost by the time 
  it reaches B. 

Este exemplo repete o teste com o uso de menos potência do tom de teste. O oscilador no demarc A é ajustado para gerar um tom 1004 hertz em uma potência de 0.1 mW. No demarc B, a medida de potência é 0.05 mW. Então, a perda de potência absoluta é:

0.1 mW – 0.05 mW = 0.05 mW 

A perda relativa, ou a relação entre a potência para fora (b) e a potência em (a), são:

 Relative Loss =  Power out(B)
                 —————————————— 
                  Power in (A)

     
  Relative Loss = 0.05 x 10-3
                  —————————————  
                   1 x 10-3


 Relative Loss = 0.5 

A perda relativa, ou a relação da potência entre B e A, são a mesma se você usa um sinal de teste de 1 mW ou de 0.1 mw.

O decibel

Matematicamente, o decibel é uma medida logarítmica. O logarítmo, ou o log, de um número particular são a potência matemática para que um número base deve ser aumentado a fim conduzir ao número particular. O número base que você se usa quando você tratar o decibel é 10. por exemplo, o que é o logarítmo (log) de 100? Uma outra maneira de fazer esta pergunta é 'a que potência você aumenta o 10 para obter 100?'. A resposta é 2 porque 10 x 10 = 100.

Similarmente,

log (100)= 2  
     log (1000)= 3
       log (10,000)= 4  

etc.

Você pode igualmente usar logarítmos para expressar quantidades em fração. Por exemplo, que é o logarítmo de 0.001? Uma outra maneira de fazer esta pergunta é 'a que potência você aumenta 1/10 (0.1) para obter 0.001?'. A resposta é 3. Por convenção, o log de um número fracionário é expressado como o negativo.

log (0.001) = -3

Os logarítmos dos números que não são potências integrais do 10 podem ser calculados quando você os olha acima em uma tabela ou quando você usa uma calculadora de mão.

O decibel usa logarítmos para expressar relações da potência. Por definição, o decibel, ou o DB, são (base 10) a relação logarítmica de dois potências, P1 e P2 dados por:

dB = 10 log P2             
            ——
            P1

O P2 e o P1 são medidas de potência expressadas nas unidades consistentes. O número de decibéis é positivo se o P2 é maior esse P1. O número é negativo se o P1 é maior que P2 (veja a tabela). É importante que as duas potências estejam expressadas nas mesmas unidades, tais como o miliwatt (mW) ou o watt (W). Se não, isto conduz aos erros no cálculo.

Razão de potência valor DB
2 3*
4 6*
8 9*
10 10
100 20
1000 30
100000 50
1000000000 90

* Valor aproximado DB.

A relação da potência entre a potência medida em B e a potência medida em A era um meio. Expressado nos decibéis:

(Loss, A to B) = 10 log (0.5) 
(Loss, A to B) = –3 dB 

Com o uso dos decibéis, você pode expressar a perda ou o ganho de um circuito ou de uma parte do equipamento sem ter que explicitamente indicar os valores reais da potência de entrada e saída. No exemplo, a perda entre A e B são sempre DB 3, apesar da quantidade de energia absoluta que é transmitida.

Medição de decibéis relativo a um miliwatt

A potência absoluta é expressada nos miliwatts e a potência relativa é expressada nos decibéis. Quando você estabelece um relacionamento entre o decibel e o miliwatt, você pode eliminar o miliwatt como uma unidade operacional de medida e de negócio exclusivamente com o decibel e as unidades de medida relacionadas. A unidade de medida que é usada para expressar a potência absoluta em termos dos decibéis é dBm.

dBm = 10 log (Power, measured in mW)             
             —————————————————————————
                      1 mW 

Desde que um miliwatt é a referência padrão da potência nas comunicações, é lógico que 0 dBm (a referência da potência absoluta quando as unidades de decibéis são usadas) são iguais a 1 mW da potência. Matematicamente:

0 dBm = 10 log Power out
               ——————————
               Power in 
    
0 dBm = 10 log (1/1)
0 dBm = 10 x 0 = 0 

Porque a potência é uma forma de onda da corrente alternada e a impedância pode variar em função da frequência, é necessário indicar que frequência os 0 padrões do dBm são baseados. A frequência padrão é 1004 hertz.

Você deve igualmente conhecer a resistência ou a impedância (carga) do circuito. A impedância padrão é 600 ohms.

Consequentemente, a referência de 0 dBm é igual a 1 mW da potência imposto em cima de uma impedância de 600 ohms de uma frequência de 1004 hertz.

Os testes são executados geralmente com o uso dos sinais de teste que são menos poderosos do que 1 mW (0 dBm). Se você aplica um tom de teste 1004 hertz – 13 dBm em A, você lê – de 16 dBm no TIMS no B. A perda é ainda – DB 3.

Ponto de nível de transmissão

Em todo o exame do desempenho de um circuito, é necessário descrever a potência em um ponto particular em um circuito com referência à potência atual em outros pontos no circuito. Esta potência pode ser potência de sinal, ruído, ou toms de teste.

A descrição desta potência é similar à descrição da altura de uma montanha (ou da profundidade do oceano). A fim medir a altura de uma montanha, é necessário escolher uma altura da referência de que para medir. A altura de referência padrão é o nível do mar, que é atribuído arbitrariamente uma altura de zero. Quando você mede todas as montanhas do nível do mar, as comparações de sua altura podem ser feitas mesmo que possam ser muitas milhas distante.

Esta figura mostra a transmissão do tom de teste do demarc A ao demarc B.

/image/gif/paws/8628/figure2analogvoicemeasurement.gif

De forma semelhante, a potência, em pontos especificados em um circuito, pode ser descrita em termos da potência em um ponto de referência padrão.

Este ponto, que é análogo ao nível do mar, é chamado o ponto de nível de transmissão zero, ou 0 TLP.

Todo o outro TLP pode ser provido aos 0 TLP algebricamente somando os ganhos e perdas 1004 hertz dos 0 TLP ao ponto de medida.

A potência atual em um ponto particular em um circuito depende da potência na fonte do sinal, de onde a fonte é aplicada, e da perda ou do ganho entre os dois pontos na pergunta.

Com o uso dos 0 conceitos TLP, a potência em um circuito é descrita indicando o que a potência seria se foi medida exatamente nos 0 TLP. A notação padrão é dBm0, que significa a potência provida aos 0 TLP.

Por exemplo, o termo – 13 dBm0s significam que a potência nos 0 TLP é – 13 dBm. Um TIMS que seja medidas corretamente estabelecidas – 13 dBm nos 0 TLP. Um exemplo da – sinal do dBm0 13.

A potência nos 0 TLP é encontrada uma vez, a potência em algum outro ponto no circuito pode facilmente ser determinada. Por exemplo, se o sinal é – 13 dBm quando medido nos 0 TLP, é DB l3 abaixo do valor numérico de todo o TLP no circuito quando medido nesse TLP.

Se o sinal é – 13 dBm nos 0 TLP (lhe faz a – o sinal 13-dBm0), a seguir a potência nos +5 TLP pode ser calculada como mostras desta saída:

(TLP) + (Power at the 0 TLP) = Power at the +5 TLP)
(+5)+(–13 dBm0) = –8 dBm 

Se – o sinal 13-dBm0 é medido corretamente nos +5 TLP, o medidor lê – os 8 dBm.

De forma semelhante, se a – o sinal 13-dBm0 está medido no – 3 TLP, o medidor lê – 16 dBm:

(TLP) + (Power at the 0 TLP) = (Power at the –3 TLP)
(–3)+(–13 dBm0) = –16 dBm

A fim determinar a potência prevista em todo o TLP dado, é suficiente conhecer a potência atual em algum outro TLP no circuito. E, apenas porque a montanha não tem que estar perto do mar a fim determinar sua altura, os 0 TLP não têm que realmente existir no circuito.

Esta figura ilustra um circuito entre dois demarcs. A – o sinal do tom de teste 29-dBm é aplicado no – 16 TLP. Que deve você esperar medir nos +7 TLP?

Mesmo que os 0 TLP não existam no circuito, você pode descrever a potência que você vê nos 0 TLP se existiu:

TLP)+(Power at 0 TLP) = (Power at the –16 TLP)
(–16)+(Power at 0 TLP) = –29 dBm
        (Power at 0 TLP) = –13 dBm  

Usando o relacionamento outra vez, você pode determinar a potência no + 7 TLP:

(TLP)+ (Power at 0 TLP) = (Power at + 7 TLP)
 (+7)+(–13 dBm0) = –6 dBm

O uso das 0 referências TLP permite os objetivos da transmissão e os resultados medidos a ser indicados independentemente de todo o TLP específico, e sem a especificação de quais os níveis do tom de teste são ser ou de onde o tom de teste deve ser aplicada.

Esta figura mostra uma transmissão do tom de teste do demarc A ao demarc B.

/image/gif/paws/8628/figure2analogvoicemeasurement.gif

Unidades de medida de ruído

Além do que a descrição da potência do tom de teste em vários pontos em um circuito, as unidades de medida decibel-relacionadas podem ser usadas para descrever o ruído atual em um circuito.

dBrn

A fim descrever a potência em um circuito, o dBm do termo é usado, significando a “potência provida a 1 mW.” Desde que o ruído contém tipicamente muito menos de 1 mW da potência, é conveniente usar uma potência da referência que seja muito menor de 1 mW. A potência da referência usada na descrição do ruído é – 90 dBm. A notação usada para descrever o ruído em termos do ruído de referência é dBrn. Se você conhece o nível de ruído no dBm, você pode facilmente medir o ruído na dBrn:

dBrn = dBm + 90 dB 

Por exemplo, uma medida de ruído da dBrn 30 indica um nível da potência – 60 dBm (DB 30 acima do – do nível de ruído de referência do dBm 90). Esta tabela mostra o relacionamento entre o dBm0 e a dBrn.

dBm0 valor DB
0 90
-10 80
-20 70
-30 60
-40 50
-50 40
-60 30
-70 20
-80 10
-90 0

DBrnC

O ruído contém as várias formas de onda irregulares que têm um amplo intervalo das frequências e das potências. Embora todo o ruído sobreposto em cima de uma conversação tivesse um efeito de interferência, as experiências mostraram que o efeito de interferência é o grande no médio-alcance da faixa de frequência de voz.

A fim obter uma medida útil do efeito de interferência do ruído, as várias frequências que contribuem ao ruído total são tornadas mais pesadas basearam em seu efeito de interferência relativo. Esta ponderação é realizada através do uso de redes de ponderação, ou dos filtros, dentro de TIMS.

As medidas de ruído com a corrente alternada - rede de ponderação de mensagem são expressadas nas unidades do dBrnC (ruído acima do ruído de referência, da ponderação da C-mensagem).

DBrnCO

Como com potência do tom de teste, a potência de ruído pode ser provida aos 0 TLP.

Por exemplo, se o objetivo do ruído para o circuito é 31 dBrnC0, que é a medida de ruído nos +7 TLP?

TLP) + (Noise at the 0 TLP) = (Noise at TLP)
    (+7) + (31 dBrnC0) = 38 dBrnC

A medida de ruído nos +7 TLP é o dBrnC 38.

Que é a medida de ruído – nos 16 TLP?

(TLP) + (Noise at the 0 TLP) = (Noise at TLP)
      (–16) + (31 dBrnC0) = 15 dBrnC

A medida de ruído no – 16 TLP são o dBrnC 15.

Discussões relacionadas da comunidade de suporte da Cisco

A Comunidade de Suporte da Cisco é um fórum onde você pode perguntar e responder, oferecer sugestões e colaborar com colegas.


Informações Relacionadas


Document ID: 8628