运行Catalyst 9000交换机上的DHCP监听并排除 故障

目录
<u>简介</u>
先决条件
使用的组件
<u>背景信息</u>
DHCP 监听
DHCP监听操作
拓扑
<u>故障排除</u>
<u>软件故障排除</u>
<u>排除Punt/Path流量(CPU)故障</u>
<u>硬件故障排除</u>
<u>CPU路径数据包捕获</u>
有用跟踪
系统日志和说明
DHCP监听警告
<u>SDA边界DHCP监听</u>
相关信息

简介

本文档介绍如何操作Catalyst 9000系列交换机上的DHCP监听并对其进行故障排除

先决条件

要求

Cisco 建议您了解以下主题:

- Catalyst 9000系列交换机架构
- Cisco IOS® XE软件架构

使用的组件

本文档中的信息基于以下软件和硬件版本:

- C9200
- C9300
- C9400
- C9500
- C9600

思科IOS® XE 16.12.X

本文档中的信息都是基于特定实验室环境中的设备编写的。本文档中使用的所有设备最初均采用原 始(默认)配置。如果您的网络处于活动状态,请确保您了解所有命令的潜在影响。

💊 注意:有关在其他思科平台上启用这些功能的命令,请参阅相应的配置指南。

背景信息

DHCP 监听

动态主机配置协议(DHCP)监听是一项安全功能,用于检查DHCP流量以阻止任何恶意DHCP数据包 。它充当网络上不受信任的用户端口和DHCP服务器端口之间的防火墙,以防止网络中的恶意 DHCP服务器,因为这可能导致拒绝服务。

DHCP监听操作

DHCP监听使用可信和不可信接口的概念。通过DHCP流量的路径,交换机验证接口上收到的 DHCP数据包,并在受信任接口上跟踪预期的DHCP服务器数据包(OFFER和ACK)。换句话说 ,不受信任的接口会阻止DHCP服务器数据包。

DHCP数据包在不受信任的接口上被阻止。

- 从网络或防火墙外部收到来自 DHCP 服务器的数据包,如 DHCPOFFER、DHCPACK、 DHCPNAK 或 DHCPLEASEQUERY 数据包。这可防止非法DHCP服务器在不可信端口上攻 击网络。
- 不可信接口上收到的数据包与源MAC地址和DHCP客户端硬件地址不匹配。这可防止欺诈客户 端欺骗DHCP数据包,从而在DHCP服务器上造成拒绝服务攻击。
- DHCPRELEASE或DHCPDECLINE广播消息在DHCP监听绑定数据库中具有MAC地址,但绑 定数据库中的接口信息与接收消息的接口不匹配。这可以防止对客户端的拒绝服务攻击。
- 由DHCP中继代理转发的DHCP数据包,包括非0.0.0.0的中继代理IP地址,或中继代理将包含 选项82信息的数据包转发到不受信任的端口。这样可以防止网络上的中继代理信息欺骗。

配置DHCP监听的交换机建立DHCP监听表或DHCP绑定数据库。此表用于跟踪从合法DHCP服务器 分配的IP地址。 绑定数据库也用于其他IOS安全功能,如动态ARP检测和IP源保护。

Ŷ 注意:要允许DHCP监听正常工作,请确保您信任所有上行链路端口以到达DHCP服务器,并 取消信任最终用户端口。

配置

全局配置

<#root>

 Enable DHCP snooping globally on the switch switch(config)#

ip dhcp snooping

 Designate ports that forward traffic toward the DHCP server as trusted switch(config-if)#

ip dhcp snooping trust

(Additional verification)

- List uplink ports according to the topology, ensure all the uplink ports toward the DHCP server a

trusted

- List the port where the Legitimate DHCP Server is connected (include any Secondary DHCP Server)

- Ensure that no other port is configured as trusted

```
    Configure DHCP rate limiting on each untrusted port (Optional) switch(config-if)#
    ip dhcp snooping limit rate 10 << ---- 10 packets per second (pps)</li>
    Enable DHCP snooping in specific VLAN switch(config)#
```

```
ip dhcp snooping vlan 10
```

<< ---- Allow the switch to snoop the traffic for that specific VLAN

5. Enable the insertion and removal of option-82 information DHCP packets switch(config)#

ip dhcp snooping information option

<-- Enable insertion of option 82

switch(config)#

no ip dhcp snooping information option

<-- Disable insertion of option 82

Example

Legitimate DHCP Server Interface and Secondary DHCP Server, if available

Server Interface

interface FortyGigabitEthernet1/0/5
switchport mode access
switchport mode access vlan 11

ip dhcp snooping trust

end

Uplink interface

interface FortyGigabitEthernet1/0/10
switchport mode trunk

ip dhcp snooping trust

end

User Interface

<< ---- All interfaces are UNTRUSTED by default

interface FortyGigabitEthernet1/0/2
switchport access vlan 10
switchport mode access

ip dhcp snooping limit rate 10

<< ---- Optional

end

◆ 注意:要允许option-82数据包,必须启用ip dhcp snooping information option allowuntrusted。

验证

确认是否在所需的VLAN上启用了DHCP监听,并确保已列出受信任和不受信任的接口。如果配置了 速率,请确保也列出了该速率。

<#root>

switch#show ip dhcp snooping

Switch DHCP snooping is

enabled

Switch DHCP gleaning is disabled DHCP snooping is configured on following VLANs:

10-11

DHCP

2

snooping is operational on following VLANs

<---- Configured and operational on Vlan 10 & 11

```
DHCP snooping is configured on the following L3 Interfaces:
Insertion of option 82 is disabled
<<---- Option 82 can not be added to DHCP packet
  circuit-id default format: vlan-mod-port
  remote-id: 00a3.d144.1a80 (MAC)
Option 82 on untrusted port is not allowed
Verification of hwaddr field is enabled
Verification of giaddr field is enabled
DHCP snooping trust/rate is configured on the following Interfaces:
Interface
 Trusted
    Allow option Rate limit (pps)
-----
                          _____
                                     _____
                                                   _____
FortyGigabitEthernet1/0/2
no
                      10
        no
<<--- Trust is NOT set on this interface
Custom circuit-ids:
FortyGigabitEthernet1/0/10
yes
       yes
                     unlimited
<<--- Trust is set on this interface
Custom circuit-ids:
用户通过DHCP接收IP后,会在此输出中列出。
  • DHCP监听在IP地址租用到期或交换机从主机收到DHCPRELEASE消息时删除数据库中的条
     目。
  • 确保为最终用户MAC地址列出的信息正确。
<#root>
```

c9500#show ip dhcp snooping binding

下表列出了可用于监控DHCP监听信息的各种命令。

命令	目的
show ip dhcp snooping binding show ip dhcp snooping binding [IP-address] [MAC-address] [interface ethernet slot/port] [vlan- id]	仅显示DHCP监听绑定数据库(也称为绑定表)中动态配置的 绑定。 — 绑定条目IP地址 — 绑定条目Mac地址 — 绑定条目输入接口 — 绑定条目VLAN
show ip dhcp snooping database	显示DHCP监听绑定数据库状态和统计信息。
show ip dhcp snooping statistics	以摘要或详细信息形式显示DHCP监听统计信息。
show ip source binding	显示动态和静态配置的绑定。
	DHCP数据包通过客户端VLAN SVI发送到客户端VLAN中配置 的中继代理。如果输入队列显示丢弃或达到最大限制,则可能 是来自客户端的DHCP数据包被丢弃,无法到达配置的中继代 理。 ➢ 注意:确保输入队列中看不到丢弃。
show interface vlan xyz show buffer input-interface Vlan xyz dump	switch#show int vlan 670 5秒的负载:13%/0%;1分钟:10%;5分钟:10% 时间来源为NTP,18:39:52.476 UTC 2020年9月10日星期四 Vlan670处于启用状态,线路协议处于启用状态,自动状态已 启用 硬件为以太网SVI,地址为00fd.227a.5920(bia 00fd.227a.5920) 说明:ion_media_client Internet address is 10.27.49.254/23 MTU 1500字节,BW 1000000 Kbit/sec,DLY 10 usec,

reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set
不支持Keepalive
ARP突型:ARPA,ARP超的04:00:00 上次输入03:01:29,输出00:00:02,输出永不挂起
Last clearing of "show interface" counters never
输入队列:375/375/4020251/0(大小/最大/去弁/刷新);总输 出丢弃:0 < — 输入队列/4020251中的375个数据包已丢弃

故障排除

软件故障排除

检验交换机收到什么。这些数据包在CPU控制平面处理,因此请确保您看到所有数据包的注入和传 送方向,并确认信息是否正确。

⚠ 注意:请谨慎使用debug命令。请注意,许多debug命令会影响实时网络,因此建议仅在重现问题时在实验环境中使用。

Conditional Debug(条件调试)功能允许您根据您定义的一组条件选择性地启用特定功能的调试和 日志。这对于仅包含特定主机或流量的调试信息非常有用。

条件是指功能或身份,其中身份可以是接口、IP地址或MAC地址等。

如何为数据包和事件调试启用条件调试,以排除DHCP监听故障。

命令	目的
debug condition mac <mac-address> 示例: switch#debug condition mac bc16.6509.3314</mac-address>	为指定的MAC地址配置条件调试。
debug condition vlan <vlan ld=""> 示例: switch#debug condition vlan 10</vlan>	为指定的VLAN配置条件调试。
debug condition interface <interface> 示例:</interface>	为指定的接口配置条件调试。

要调试DHCP监听,请使用表中显示的命令。

命令	目的
debug dhcp [detail oper 冗余]	detail DHCP packet content oper DHCP内部OPER 冗余DHCP客户端冗余支持
debug ip dhcp server packet detail	详细解码消息接收和传输
debug ip dhcp server events	报告地址分配、租赁到期等。
debug ip dhcp snooping agent	Debug dhcp snooping database read and write
debug ip dhcp snooping event	每个组件之间的调试事件
debug ip dhcp snooping packet	在DHCP监听模块中调试DHCP数据包

这是debug ip dhcp snooping命令的部分输出示例。

<#root>

Apr 14 16:16:46.835: DHCP_SNOOPING: process new DHCP packet,

message type: DHCPDISCOVER, input interface: Fo1/0/2

, MAC da: ffff.ffff, MAC

sa: 00a3.d144.2046,

IP da: 255.255.255.255, IP sa: 0.0.0.0, DHCP ciaddr: 0.0.0.0, DHCP yiaddr: 0.0.0.0, DHCP siaddr: 0.0.0 Apr 14 16:16:46.835: DHCP_SNOOPING: bridge packet get invalid mat entry: FFFF.FFFF.FFFF, packet is floo

Apr 14 16:16:48.837: DHCP_SNOOPING:

received new DHCP packet from input interface (FortyGigabitEthernet1/0/10)

Apr 14 16:16:48.837: DHCP_SNOOPING:

process new DHCP packet, message type: DHCPOFFER, input interface: Fo1/0/10,

MAC da: ffff.ffff.ffff, MAC

sa: 701f.539a.fe46,

IP da: 255.255.255.255, IP sa: 10.0.0.1, DHCP ciaddr: 0.0.0.0, DHCP yiaddr: 10.0.0.5, DHCP siaddr: 0.0 Apr 14 16:16:48.837: platform lookup dest vlan for input_if: FortyGigabitEthernet1/0/10, is NOT tunnel, Apr 14 16:16:48.837: DHCP_SNOOPING: direct forward dhcp replyto output port: FortyGigabitEthernet1/0/2. Apr 14 16:16:48.838: DHCP_SNOOPING: received new DHCP packet from input interface (FortyGigabitEthernet Apr 14 16:16:48.838: Performing rate limit check

Apr 14 16:16:48.838: DHCP_SNOOPING: process new DHCP packet,

message type: DHCPREQUEST, input interface: Fo1/0/2,

MAC da: ffff.ffff.ffff, MAC

sa: 00a3.d144.2046,

IP da: 255.255.255.255, IP sa: 0.0.0.0, DHCP ciaddr: 0.0.0.0, DHCP yiaddr: 0.0.0.0, DHCP siaddr: 0.0.0 Apr 14 16:16:48.838: DHCP_SNOOPING: bridge packet get invalid mat entry: FFFF.FFFF, packet is floo Apr 14 16:16:48.839: DHCP_SNOOPING: received new DHCP packet from input interface (FortyGigabitEthernet

Apr 14 16:16:48.840: DHCP_SNOOPING: process new DHCP packet,

message type: DHCPACK, input interface: Fo1/0/10,

MAC da: ffff.ffff, MAC

sa: 701f.539a.fe46,

IP da: 255.255.255.255, IP

sa: 10.0.0.1,

DHCP ciaddr: 0.0.0.0, DHCP yiaddr: 10.0.0.5, DHCP siaddr: 0.0.0.0, DHCP giaddr: 0.0.0.0, DHCP chaddr: Apr 14 16:16:48.840: DHCP_SNOOPING: add binding on port FortyGigabitEthernet1/0/2 ckt_id 0 FortyGigabit Apr 14 16:16:48.840: DHCP_SNOOPING: added entry to table (index 331)

Apr 14 16:16:48.840:

DHCP_SNOOPING: dump binding entry: Mac=00:A3:D1:44:20:46 Ip=10.0.0.5

Lease=86400 Type=dhcp-snooping

Vlan=10 If=FortyGigabitEthernet1/0/2

Apr 14 16:16:48.840: No entry found for mac(00a3.d144.2046) vlan(10) FortyGigabitEthernet1/0/2 Apr 14 16:16:48.840: host tracking not found for update add dynamic (10.0.0.5, 0.0.0.0, 00a3.d144.2046) Apr 14 16:16:48.840: platform lookup dest vlan for input_if: FortyGigabitEthernet1/0/10, is NOT tunnel, Apr 14 16:16:48.840: DHCP_SNOOPING: direct forward dhcp replyto output port: FortyGigabitEthernet1/0/2.

要调试DHCP监听事件,请执行以下步骤:

⚠ 注意:请谨慎使用debug命令。请注意,许多debug命令会对实时网络产生影响,因此建议仅 在重现问题的实验环境中使用。

总结步骤

1. enable

- 2. debug platform condition mac {mac-address }
- 3. debug platform condition start
- 4. show platform condition OR show debug
- 5. debug platform condition stop
- 6. show platform software trace message ios R0 reverse | 包括DHCP
- 7. clear platform condition all

详细步骤

	命令或操作	目的
第1步	enable 示例: switch#enable	启用特权执行模式。 • 根据提示输入密码。
步骤 2	debug platform condition mac {mac-address} 示例: switch#debug platform condition mac 0001.6509.3314	为指定的MAC地址配置条件调试 。
步骤 3	debug platform condition start 示例: switch#debug platform condition start	启动条件调试(如果其中一个条 件匹配,则启动放射性跟踪)。
步骤 4	show platform condition OR show debug 示例: switch#show platform condition switch#show debug	显示当前条件集。
步骤 5	debug platform condition stop 示例: switch#debug platform condition stop	停止条件调试(这可以停止放射 性跟踪)。

	命令或操作	目的
步骤 6	show platform software trace message ios R0 reverse 包括DHCP 示例: switch#show platform software trace message ios R0 reverse 包括DHCP	显示从最新跟踪文件合并的HP日 志。
步骤 7	clear platform condition all 示例: switch# clear platform condition all	清除所有条件。

这是d的部分输出示例Ebug平台 dhcp-snoop all命令。

<#root>

debug platform dhcp-snoop all

DHCP Server UDP port

(67)

DHCP Client UDP port

(68)

RELEASE

Apr 14 16:44:18.629: pak->vlan_id = 10 Apr 14 16:44:18.629: dhcp packet src_ip(10.0.0.6) dest_ip(10.0.0.1) src_udp(68) dest_udp(67) src_mac(00 Apr 14 16:44:18.629: ngwc_dhcpsn_process_pak(305): Packet handedover to SISF on vlan 10 Apr 14 16:44:18.629: dhcp pkt processing routine is called for pak with SMAC = 00a3.d144.2046{mac} and

DISCOVER

Apr 14 16:44:24.637: dhcp packet src_ip(0.0.0.0) dest_ip(255.255.255.255) src_udp(68) dest_udp(67) src_ Apr 14 16:44:24.637: ngwc_dhcpsn_process_pak(305): Packet handedover to SISF on vlan 10 Apr 14 16:44:24.637: dhcp pkt processing routine is called for pak with SMAC = 00a3.d144.2046{mac} and Apr 14 16:44:24.637: sending dhcp packet out after processing with SMAC = 00a3.d144.2046{mac} and SRC_A Apr 14 16:44:24.638: pak->vlan_id = 10 Apr 14 16:44:24.638: dhcp packet src_ip(10.0.0.1) dest_ip(255.255.255.255) src_udp(67) dest_udp(68) src_ Apr 14 16:44:24.638: ngwc_dhcpsn_process_pak(305): Packet handedover to SISF on vlan 10 Apr 14 16:44:24.638: dhcp pkt processing routine is called for pak with SMAC = 701f.539a.fe46{mac} and

REQUEST

Apr 14 16:44:24.638: ngwc_dhcpsn_process_pak(284): Packet handedover to SISF on vlan 10 c9500#dhcp pkt processing routine is called for pak with SMAC = 0a3.d144.2046{mac} and SRC_ADDR = 0.0.0

ACK

Apr 14 16:44:24.640: dhcp paket src_ip(10.10.10.1) dest_ip(255.255.255.255) src_udp(67) dest_udp(68) s Apr 14 16:44:24.640: ngwc_dhcpsn_process_pak(284): Packet handedover to SISF on vlan 10dhcp pkt process

下表列出了可用于调试平台中的DHCP监听的各种命令。

⚠ 注意:请谨慎使用debug命令。请注意,许多debug命令会影响实际网络,因此建议仅在重现 问题时在实验环境中使用。

命令	目的				
switch#debug platform dhcp-snoop [all 数据包 pd-shim]	所有NGWC DHCP监听 数据包NGWC DHCP监听数据包调试信息 pd-shim NGWC DHCP监听IOS填充程序调试 信息				
switch#debug platform software infrastructure punt dhcp-snoop	在FP上接收并传送到控制平面的数据包)				
switch#debug platform software infrastructure inject	从控制平面注入FP的数据包				

排除Punt/Path流量(CPU)故障

从FED的角度验证每个CPU队列中接收了什么流量(DHCP监听是控制平面处理的流量类型)。

- 当流量进入交换机时,会以PUNT方向发送到CPU,并发送到dhcp snoop队列。
- 一旦流量被交换机处理,流量将通过INJECT方向离开。 DHCP OFFER和ACK数据包归入 L2控制/传统队列。

<#root>

c9500#show platform software fed switch active punt cause summary

Statistics for all causes

	RCVd	Droppe	d						
RP<->QFP keepalive	8533	0							
dhcp snoop	71	0	<<	If dr	op c	counter	increases,	there	can be
Layer2 control protocols snoop packets	45662 100	0 0							
- F - C 	<pre>Ause into</pre>	<pre>Ause into Revu Revu Revu Revu Revu Revu Revu Revu</pre>	<pre>Ause Into Not Dropper AP<->QFP keepalive 8533 0 hcp snoop 71 0 -ayer2 control protocols 45662 0 snoop packets 100 0</pre>	<pre>Ause into neve propped</pre>	<pre>Ause into revu bropped</pre>	<pre>Ause into keve bropped</pre>	Ause into RCVu Dropped {P<->QFP keepalive 8533 0 ihcp snoop 71 0 << If drop counter	<pre>Ause into revu propped</pre>	<pre>Ause into new proped P<->QFP keepalive 8533 0 hcp snoop 71 0 << If drop counter increases, there _ayer2 control protocols 45662 0 snoop packets 100 0</pre>

c9500#show platform software fed sw active inject cause summary

Statistics for all causes

Cause Cause Info	Rcvd	Dropped

1 L2 control/legacy

	128354	0	<<	dropped	counter	must	NOT	increase	
2	QFP destination 1	ookup	18		0				
5	QFP <->RP keepali	ve	85	85	0				
12	ARP request or re	sponse	68		0				
25	Layer2 frame to B	D	81		0				

您可以使用此命令确认传送到CPU的流量,并验证DHCP监听是否丢弃流量。

<#root>

c9500#

show platform software fed switch active punt cpuq rates

Punt Rate CPU Q Statistics

Packets per second averaged over 10 seconds, 1 min and 5 mins

Q no	Queue Name	Rx 10s	 ======== Rx 1min	======= Rx 5min	===== Drop 10s	D 1	rop min	==== 	Drop 5min
0 CPU_Q	DOT1X_AUTH	0	 0	0	0		0		0
1 CPU_Q 2 CPU_Q	L2_CONTROL FORUS_TRAFFIC	0	0	0	0		0		0
3 CPU_Q	_ICMP_GEN	0	0	0	0		0		0
4 CPU_Q	_ROUTING_CONTROL	0	0	0	0		0		0
5 CPU_Q	_FORUS_ADDR_RESOLUTION	0	0	0	0		0		0

6 (6 CPU_Q_ICMP_REDIRECT			0	0	0	0	0	0	
7 (7 CPU_Q_INTER_FED_TRAFFIC			0	0	0	0	0	0	
8 (3 CPU_Q_L2LVX_CONTROL_PKT			0	0	0	0	0	0	
9 (9 CPU_Q_EWLC_CONTROL				0	0	0	0	0	0
10	CPU_Q_EWI	_C_DATA			0	0	0	0	0	0
11	CPU_Q_L2I	_VX_DATA_	_PKT		0	0	0	0	0	0
12	CPU_Q_BRO	DADCAST			0	0	0	0	0	0
13	CPU_Q_LE/	ARNING_CA	CHE_OVF	L	0	0	0	0	0	0
14	CPU_Q_SW_	_FORWARD1	ING		0	0	0	0	0	0
15	CPU_Q_TO	POLOGY_CO	ONTROL		2	2	2	0	0	0
16	CPU_Q_PR	DTO_SNOOF	PING		0	0	0	0	0	0
17	CPU_Q_DHO	CP_SNOOPI	NG							
0	0	0	0	0						
	0	<<	drop cou	unter must	NOT	increase				
			-							
18	CPU_Q_TR/	ANSIT_TRA	FFIC		0	0	0	0	0	0
18 19	CPU_Q_TR/ CPU_Q_RPI	ANSIT_TRA F_FAILED	AFFIC		0 0	0 0	0 0	0 0	0 0	0 0
18 19 20	CPU_Q_TRA CPU_Q_RPI CPU_Q_MCA	ANSIT_TRA F_FAILED AST_END_S	AFFIC	SERVICE	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
18 19 20 21	CPU_Q_TR/ CPU_Q_RPI CPU_Q_MC/ CPU_Q_LO0	ANSIT_TRA F_FAILED AST_END_S GGING	AFFIC	SERVICE	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
18 19 20 21 22	CPU_Q_TR/ CPU_Q_RPI CPU_Q_MC/ CPU_Q_LO0 CPU_Q_PUI	ANSIT_TRA F_FAILED AST_END_S GGING NT_WEBAUT	AFFIC STATION_S	SERVICE	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0
18 19 20 21 22 23	CPU_Q_TR/ CPU_Q_RPI CPU_Q_MC/ CPU_Q_LOO CPU_Q_PUI CPU_Q_HIO	ANSIT_TRA FAILED AST_END_S GGING NT_WEBAUT GH_RATE_A	AFFIC STATION_S TH APP	SERVICE	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0
18 19 20 21 22 23 24	CPU_Q_TR/ CPU_Q_RPI CPU_Q_MC/ CPU_Q_LO0 CPU_Q_PUI CPU_Q_PUI CPU_Q_HI0 CPU_Q_EX0	ANSIT_TRA F_FAILED AST_END_S GGING NT_WEBAUT GH_RATE_A CEPTION	AFFIC STATION_S TH APP	SERVICE	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0
18 19 20 21 22 23 24 25	CPU_Q_TR/ CPU_Q_RPI CPU_Q_MC/ CPU_Q_LO(CPU_Q_PUI CPU_Q_HI(CPU_Q_EX(CPU_Q_SY)	ANSIT_TRA F_FAILED AST_END_S GGING NT_WEBAUT GH_RATE_A CEPTION STEM_CRIT	AFFIC STATION_S TH APP TICAL	SERVICE	0 0 0 0 0 0 8	0 0 0 0 0 0 0 8	0 0 0 0 0 0 0 8	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
18 19 20 21 22 23 24 25 26	CPU_Q_TR/ CPU_Q_RPI CPU_Q_MC/ CPU_Q_LO0 CPU_Q_PUI CPU_Q_HI0 CPU_Q_HI0 CPU_Q_EX0 CPU_Q_SYS CPU_Q_NFI	ANSIT_TRA F_FAILED AST_END_S GGING NT_WEBAUT GH_RATE_A CEPTION STEM_CRIT SAMPLED	AFFIC STATION_S TH APP TICAL D_DATA	SERVICE	0 0 0 0 0 0 8 0	0 0 0 0 0 0 0 8 0	0 0 0 0 0 0 0 8 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
18 19 20 21 22 23 24 25 26 27	CPU_Q_TR/ CPU_Q_RPI CPU_Q_LOO CPU_Q_LOO CPU_Q_PUI CPU_Q_HIO CPU_Q_EXO CPU_Q_SYS CPU_Q_NFI CPU_Q_LOO	ANSIT_TRA F_FAILED AST_END_S GGING NT_WEBAUT GH_RATE_A CEPTION STEM_CRIT SAMPLEE V_LATENCY	AFFIC STATION_S TH APP TICAL D_DATA	SERVICE	0 0 0 0 0 0 8 0 0	0 0 0 0 0 0 0 8 0 0	0 0 0 0 0 0 0 8 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
18 19 20 21 23 24 25 26 27 28	CPU_Q_TR/ CPU_Q_RPI CPU_Q_LOO CPU_Q_LOO CPU_Q_PUI CPU_Q_HIO CPU_Q_EXO CPU_Q_SYS CPU_Q_NFI CPU_Q_LOO CPU_Q_EG	ANSIT_TRA F_FAILED AST_END_S GGING NT_WEBAUT GH_RATE_A CEPTION STEM_CRIT STEM_CRIT STEM_CRIT A_SAMPLED V_LATENCY	AFFIC STATION_S TH APP TICAL D_DATA	SERVICE	0 0 0 0 0 0 8 0 0 0	0 0 0 0 0 0 0 0 8 0 0 0	0 0 0 0 0 0 0 8 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
18 19 20 21 22 23 24 25 26 27 28 29	CPU_Q_TR/ CPU_Q_RPI CPU_Q_LO0 CPU_Q_LO0 CPU_Q_PUI CPU_Q_HI0 CPU_Q_EX0 CPU_Q_SYS CPU_Q_SYS CPU_Q_LO0 CPU_Q_LO0 CPU_Q_EGI CPU_Q_FSS	ANSIT_TRA F_FAILED AST_END_S GGING NT_WEBAUT GH_RATE_A CEPTION STEM_CRIT SAMPLED V_LATENCY R_EXCEPTI S	AFFIC STATION_S TH APP TICAL D_DATA	SERVICE	0 0 0 0 0 0 8 0 0 0 0 0	0 0 0 0 0 0 0 8 0 0 0 0 0	0 0 0 0 0 0 0 0 8 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0
18 19 20 21 22 23 24 25 26 27 28 29 30	CPU_Q_TR/ CPU_Q_RPI CPU_Q_LO0 CPU_Q_LO0 CPU_Q_PUI CPU_Q_HI0 CPU_Q_EX0 CPU_Q_SYS CPU_Q_NFI CPU_Q_LO0 CPU_Q_EGI CPU_Q_EGS CPU_Q_MC/	ANSIT_TRA F_FAILED AST_END_S GGING NT_WEBAUT GH_RATE_A CEPTION STEM_CRIT SAMPLED V_LATENCY R_EXCEPTI S AST_DATA	AFFIC STATION_S TH APP TICAL D_DATA CON	SERVICE	0 0 0 0 0 0 8 0 0 0 0 0 0	0 0 0 0 0 0 0 8 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 19 20 21 22 23 24 25 26 27 28 29 30 31	CPU_Q_TR/ CPU_Q_RPI CPU_Q_LOC CPU_Q_LOC CPU_Q_PUI CPU_Q_HIC CPU_Q_EXC CPU_Q_SYS CPU_Q_NFI CPU_Q_LOV CPU_Q_LOV CPU_Q_EGI CPU_Q_FSS CPU_Q_MC/ CPU_Q_GOI	ANSIT_TRA F_FAILED AST_END_S GGING NT_WEBAUT GH_RATE_A CEPTION STEM_CRIT SAMPLED V_LATENCY R_EXCEPTI S AST_DATA _D_PKT	AFFIC STATION_S TH APP TICAL D_DATA	SERVICE	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

硬件故障排除

转发引擎驱动程序(FED)

FED是对ASIC进行编程的驱动程序。FED命令用于验证硬件和软件状态是否匹配。

获取DI_Handle值

• DI句柄引用特定端口的目标索引。

<#root>

c9500#show platform software fed switch active security-fed dhcp-snoop vlan vlan-id 10

Platform Security DHCP Snooping Vlan Information

Value of Snooping DI handle

is::

Port	Trust Mode
 FortyGigabitEthernet1/0/1	0

```
trust <<---- Ensure TRUSTED ports are listed
```

检查ifm映射以确定端口的Asic和核心。

• IFM是映射到特定端口/核心/asic的内部接口索引。

<#root>

c9500#show platform software fed switch active ifm mappings

Interface IF_ID Inst Asic Core Port SubPort Mac Cntx LPN GPN Type Active FortyGigabitEthernet1/0/10

0xa

1

3 1 1 0 4 4 2 2 NIF Y

使用DI_Handle获取硬件索引。

<#root>

c9500#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7F7FAC23E438

Handle:0x7f7fac23e438 Res-Type:ASIC_RSC_DI Res-Switch-Num:255 Asic-Num:255 Feature-ID:AL_FID_DHCPSNOOPI priv_ri/priv_si Handle: (nil)Hardware Indices/Handles:

index0:0x5f03

mtu_index/l3u_ri_index0:0x0 index1:0x5f03 mtu_index/l3u_ri_index1:0x0 index2:0x5f03 mtu_index/l3u_ri_i
<SNIP>

<-- Index is 0x5f03

将索引值0x5f03从十六进制转换为十进制。

0x5f03 = 24323

使用此十进制索引值以及此命令中的ASIC和核心值查看为端口设置了哪些标志。

```
<#root>
c9500#show platform hardware fed switch 1 fwd-asic regi read register-name SifDestinationIndexTable-2432
asic
1
core
1
For asic 1 core 1
Module 0 - SifDestinationIndexTable[0][
24323
٦
<-- the decimal hardware index matches 0x5f03 = 24323
copySegment0 :
0x1 <<---- If you find this as 0x0, means that the traffic is not forwarded out of this port. (refer to
CSCvi39202) copySegment1 : 0x1
dpuSegment0 : 0x0
dpuSegment1 : 0x0
          : 0x0
ecUnicast
etherChannel0 : 0x0
etherChannel1 : 0x0
hashPtr1
         : 0x0
stripSegment : 0x0
确保为特定VLAN启用了DHCP监听。
<#root>
c9500#show platform software fed switch 1 vlan 10
VLAN Fed Information
                     LE Handle STP Handle L3 IF Handle SVI IF
Vlan Id IF Id
_____
10
    0x000000000420011
0x00007f7fac235fa8
0x00007f7fac236798 0x0000000000000 0x00000000000000 15
```

show platform hardware fed switch active fwd-asic abstraction print-resource-handle

0x00007f7fac235fa8 1 <<---- Last number might be 1 or 0, 1 means detailed, 0 means brief output

Detailed Resource Information (ASIC_INSTANCE# 0)

LEAD_VLAN_IGMP_MLD_SNOOPING_ENABLED_IPV4 value 1 Pass <<---- Verify the highlighted values, if any are

LEAD_VLAN_IGMP_MLD_SNOOPING_ENABLED_IPV6 value 0 Pass

LEAD_VLAN_ARP_OR_ND_SNOOPING_ENABLED_IPV4 value 1 Pass

LEAD_VLAN_ARP_OR_ND_SNOOPING_ENABLED_IPV6 value 1 Pass LEAD_VLAN_BLOCK_L2_LEARN value 0 Pass LEAD_VLAN_CONTENT_MATCHING_ENABLED value 0 Pass LEAD_VLAN_DEST_MOD_INDEX_TVLAN_LE value 0 Pass

LEAD_VLAN_DHCP_SNOOPING_ENABLED_IPV4 value 1 Pass

LEAD_VLAN_DHCP_SNOOPING_ENABLED_IPV6 value 1 Pass LEAD_VLAN_ENABLE_SECURE_VLAN_LEARNING_IPV4 value 0 Pass LEAD_VLAN_ENABLE_SECURE_VLAN_LEARNING_IPV6 value 0 Pass LEAD_VLAN_EPOCH value 0 Pass LEAD_VLAN_L2_PROCESSING_STP_TCN value 0 Pass LEAD_VLAN_L2FORWARD_IPV4_MULTICAST_PKT value 0 Pass LEAD_VLAN_L2FORWARD_IPV6_MULTICAST_PKT value 0 Pass LEAD_VLAN_L3_IF_LE_INDEX_PRIO value 0 Pass LEAD_VLAN_L3IF_LE_INDEX value 0 Pass LEAD_VLAN_LOOKUP_VLAN value 15 Pass LEAD_VLAN_MCAST_LOOKUP_VLAN value 15 Pass LEAD_VLAN_RIET_OFFSET value 4095 Pass LEAD_VLAN_SNOOPING_FLOODING_ENABLED_IGMP_OR_MLD_IPV4 value 1 Pass LEAD_VLAN_SNOOPING_FLOODING_ENABLED_IGMP_OR_MLD_IPV6 value 1 Pass LEAD_VLAN_SNOOPING_PROCESSING_STP_TCN_IGMP_OR_MLD_IPV4 value 0 Pass LEAD_VLAN_SNOOPING_PROCESSING_STP_TCN_IGMP_OR_MLD_IPV6 value 0 Pass LEAD_VLAN_VLAN_CLIENT_LABEL value 0 Pass LEAD_VLAN_VLAN_CONFIG value 0 Pass LEAD_VLAN_VLAN_FLOOD_ENABLED value 0 Pass LEAD_VLAN_VLAN_ID_VALID value 1 Pass LEAD_VLAN_VLAN_LOAD_BALANCE_GROUP value 15 Pass LEAD_VLAN_VLAN_ROLE value 2 Pass LEAD_VLAN_VLAN_FLOOD_MODE_BITS value 3 Pass LEAD_VLAN_LVX_VLAN value 0 Pass LEAD_VLAN_EGRESS_DEJAVU_CANON value 0 Pass LEAD_VLAN_EGRESS_INGRESS_VLAN_MODE value 0 Pass LEAD_VLAN_EGRESS_LOOKUP_VLAN value 0 Pass LEAD_VLAN_EGRESS_LVX_VLAN value 0 Pass LEAD_VLAN_EGRESS_SGACL_DISABLED value 3 Pass LEAD_VLAN_EGRESS_VLAN_CLIENT_LABEL value 0 Pass LEAD_VLAN_EGRESS_VLAN_ID_VALID value 1 Pass

LEAD_VLAN_EGRESS_VLAN_LOAD_BALANCE_GROUP value 15 Pass LEAD_VLAN_EGRESS_INTRA_POD_BCAST value 0 Pass

LEAD_VLAN_EGRESS_DHCP_SNOOPING_ENABLED_IPV4 value 1 Pass

LEAD_VLAN_EGRESS_DHCP_SNOOPING_ENABLED_IPV6 value 1 Pass LEAD_VLAN_EGRESS_VXLAN_FLOOD_MODE value 0 Pass LEAD_VLAN_MAX value 0 Pass <SNIP>

下表列出了可用于跟踪实际网络上DHCP数据包路径的各种常见Punject show/debug命令。

常用提示/注入show和debug命令

debug plat soft fed swit acti inject add-filter cause 255 sub_cause 0 src_mac 0 0 dst_mac 0 0 src_ipv4 192.168.12.1 dst_ipv4 0.0.0.0 if_id 0xf |set platform software trace fed [switch<num|active|standby>] inject verbose — >使用显示的过滤 |器命令将跟踪范围限定到此特定主机 set platform software trace fed [switch<num|active|standby>] inject debug boot — > for reload set platform software trace fed [switch<num|active|standby>] punt noise show platform software fed [switch<num|active|standby>] inject cause summary show platform software fed [switch<num|active|standby>] punt cause summary show platform software fed [switch<num|active|standby>] inject cpuq 0 show platform software fed [switch<num|active|standby>] punt cpug 17(dhcp queue) show platform software fed [switch<num|active|standby>] active inject packet-capture det show platform software infrastructure inject show platform software infrastructure punt show platform software infrastructure Ismpi driver debug platform software infra punt dhcp debug platform software infra inject

这些命令对于检查是否收到特定客户端的任何DHCP数据包非常有用。

• 此功能允许您捕获与CPU通过IOS-DHCP软件处理的给定客户端MAC地址关联的所有DHCP监 听通信。

- IPv4和IPv6流量均支持此功能。
- 此功能将自动启用。

重要信息:这些命令可从Cisco IOS XE Gibraltar 16.12.X获得。

switch#show platform dhcpsnooping client stats {mac-address}

switch#show platform dhcpv6snooping ipv6 client stats {mac-address}

<#root>

C9300#

show platform dhcpsnooping client stats 0000.1AC2.C148

DHCPSN: DHCP snoopir	ng server				
DHCPD: DHCP protoco	ol daemen				
L2FWD: Transmit Pag	cket to driver in	L2 format			
FWD: Transmit Pag	cket to driver				
Packet Trace for cli	ient MAC 0000.1AC2	.C148:			
Timestamp	Destination MAC	Destination Ip	VLAN	Message	Handler:Action
06-27-2019 20:48:28	FFFF.FFF.FFF	255.255.255.255	88	DHCPDISCOVER	PUNT:RECEIVED
06-27-2019 20:48:28	FFFF.FFFF.FFF	255.255.255.255	88	DHCPDISCOVER	PUNT:TO_DHCPSN
06-27-2019 20:48:28	FFFF.FFFF.FFF	255.255.255.255	88	DHCPDISCOVER	BRIDGE:RECEIVED
06-27-2019 20:48:28	FFFF.FFFF.FFF	255.255.255.255	88	DHCPDISCOVER	BRIDGE:TO_DHCPD
06-27-2019 20:48:28	FFFF.FFFF.FFF	255.255.255.255	88	DHCPDISCOVER	BRIDGE:TO_INJECT
06-27-2019 20:48:28	FFFF.FFFF.FFF	255.255.255.255	88	DHCPDISCOVER	L2INJECT:TO_FWD
06-27-2019 20:48:28	0000.0000.0000	192.168.1.1	0	DHCPDISCOVER	INJECT:RECEIVED
06-27-2019 20:48:28	0000.0000.0000	192.168.1.1	0	DHCPDISCOVER	INJECT:TO_L2FWD
06-27-2019 20:48:30	0000.0000.0000	10.1.1.3	0	DHCPOFFER	INJECT:RECEIVED
06-27-2019 20:48:30	0000.1AC2.C148	10.1.1.3	0	DHCPOFFER	INTERCEPT:RECEIVED
06-27-2019 20:48:30	0000.1AC2.C148	10.1.1.3	88	DHCPOFFER	INTERCEPT:TO_DHCPSN
06-27-2019 20:48:30	0000.1AC2.C148	10.1.1.3	88	DHCPOFFER	INJECT: CONSUMED
06-27-2019 20:48:30	FFFF.FFFF.FFF	255.255.255.255	88	DHCPREQUEST	PUNT:RECEIVED
06-27-2019 20:48:30	FFFF.FFFF.FFF	255.255.255.255	88	DHCPREQUEST	PUNT:TO_DHCPSN
06-27-2019 20:48:30	FFFF.FFFF.FFF	255.255.255.255	88	DHCPREQUEST	BRIDGE:RECEIVED
06-27-2019 20:48:30	FFFF.FFFF.FFF	255.255.255.255	88	DHCPREQUEST	BRIDGE:TO_DHCPD
06-27-2019 20:48:30	FFFF.FFFF.FFF	255.255.255.255	88	DHCPREQUEST	BRIDGE:TO_INJECT
06-27-2019 20:48:30	FFFF.FFFF.FFF	255.255.255.255	88	DHCPREQUEST	L2INJECT:TO_FWD
06-27-2019 20:48:30	0000.0000.0000	192.168.1.1	0	DHCPREQUEST	INJECT:RECEIVED
06-27-2019 20:48:30	0000.0000.0000	192.168.1.1	0	DHCPREQUEST	INJECT:TO_L2FWD
06-27-2019 20:48:30	0000.0000.0000	10.1.1.3	0	DHCPACK	INJECT:RECEIVED
06-27-2019 20:48:30	0000.1AC2.C148	10.1.1.3	0	DHCPACK	INTERCEPT:RECEIVED
06-27-2019 20:48:30	0000.1AC2.C148	10.1.1.3	88	DHCPACK	INTERCEPT: TO DHCPSN

使用这些命令清除跟踪。

switch#clear platform dhcpsnooping pkt-trace ipv4

switch#clear platform dhcpsnooping pkt-trace ipv6

CPU路径数据包捕获

确认DHCP监听数据包是否到达并正确离开控制平面。

💊 注意:有关如何使用转发引擎驱动程序CPU捕获工具的其他参考,请参阅进一步阅读部分。

<#root>

```
debug platform software fed
```

[switch<num|active|standby>]

punt/inject

packet-capture start

debug platform software fed

[switch<num|active|standby>]

punt/inject

packet-capture stop

```
show platform software fed
```

[switch<num|active|standby>]

punt/inject

packet-capture brief

PUNT

DISCOVER

```
----- Punt Packet Number: 16, Timestamp: 2021/04/14 19:10:09.924 -----
interface :
physical: FortyGigabitEthernet1/0/2
[if-id: 0x0000000a], pal: FortyGigabitEthernet1/0/2 [if-id: 0x0000000a]
metadata : cause: 79
[dhcp snoop],
sub-cause: 11, q-no: 17, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.ffff.ffff,
src mac: 00a3.d144.2046
```

ether hdr : ethertype: 0x0800 (IPv4)

```
ipv4 hdr : packet len: 347, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
67
, src port:
68
OFFER
----- Punt Packet Number: 23, Timestamp: 2021/04/14 19:10:11.926 -----
interface :
physical: FortyGigabitEthernet1/0/10
[if-id: 0x00000012], pal: FortyGigabitEthernet1/0/10 [if-id: 0x00000012]
metadata : cause: 79
 [dhcp snoop]
, sub-cause: 11, q-no: 17, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.fff.fff,
src mac: 701f.539a.fe46
ether hdr : vlan: 10, ethertype: 0x8100
ipv4 hdr : dest ip: 255.255.255.255,
src ip: 10.0.0.1
ipv4 hdr : packet len: 330, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
68
, src port:
67
REQUEST
----- Punt Packet Number: 24, Timestamp: 2021/04/14 19:10:11.927 -----
interface :
physical: FortyGigabitEthernet1/0/2
[if-id: 0x0000000a], pal: FortyGigabitEthernet1/0/2 [if-id: 0x0000000a]
metadata : cause: 79
[dhcp snoop]
, sub-cause: 11, q-no: 17, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.ffff.ffff,
```

ipv4 hdr : dest ip: 255.255.255.255, src ip: 0.0.0.0

```
src mac: 00a3.d144.2046
```

ether hdr : ethertype: 0x0800 (IPv4) ipv4 hdr : dest ip: 255.255.255.255, src ip: 0.0.0.0 ipv4 hdr : packet len: 365, ttl: 255, protocol: 17 (UDP) udp hdr : dest port: 67 , src port: 68 ACK ----- Punt Packet Number: 25, Timestamp: 2021/04/14 19:10:11.929 ----interface : physical: FortyGigabitEthernet1/0/10 [if-id: 0x00000012], pal: FortyGigabitEthernet1/0/10 [if-id: 0x00000012] metadata : cause: 79 [dhcp snoop] , sub-cause: 11, q-no: 17, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: ffff.ffff.ffff, src mac: 701f.539a.fe46 ether hdr : vlan: 10, ethertype: 0x8100 ipv4 hdr : dest ip: 255.255.255.255, src ip: 10.0.0.1 ipv4 hdr : packet len: 330, ttl: 255, protocol: 17 (UDP) udp hdr : dest port: 68 , src port: 67 ### INJECT ### DISCOVER ----- Inject Packet Number: 33, Timestamp: 2021/04/14 19:53:01.273 ----interface : pal:

FortyGigabitEthernet1/0/2

[if-id: 0x000000a]

```
metadata : cause: 25 [Layer2 frame to BD], sub-cause: 1, q-no: 0, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.fff.fff,
src mac: 00a3.d144.2046
ether hdr : ethertype: 0x0800 (IPv4)
ipv4 hdr : dest ip: 255.255.255.255, src ip: 0.0.0.0
ipv4 hdr : packet len: 347, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
67
, src port:
68
OFFER
----- Inject Packet Number: 51, Timestamp: 2021/04/14 19:53:03.275 -----
interface : pal:
FortyGigabitEthernet1/0/2
[if-id: 0x0000000a]
metadata : cause: 1 [L2 control/legacy], sub-cause: 0, q-no: 0, linktype: MCP_LINK_TYPE_LAYER2 [10]
ether hdr : dest mac: ffff.ffff.ffff,
src mac: 701f.539a.fe46
ether hdr : ethertype: 0x0800 (IPv4)
ipv4 hdr : dest ip: 255.255.255.255,
src ip: 10.0.0.1
ipv4 hdr : packet len: 330, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
68,
src port:
67
REQUEST
----- Inject Packet Number: 52, Timestamp: 2021/04/14 19:53:03.276 -----
interface : pal:
FortyGigabitEthernet1/0/2
[if-id: 0x000000a]
metadata : cause: 25 [Layer2 frame to BD], sub-cause: 1, q-no: 0, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.fff.fff,
src mac: 00a3.d144.2046
```

```
ether hdr : ethertype: 0x0800 (IPv4)
ipv4 hdr : dest ip: 255.255.255.255, src ip: 0.0.0.0
ipv4 hdr : packet len: 365, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
67
, src port:
68
ACK
----- Inject Packet Number: 53, Timestamp: 2021/04/14 19:53:03.278 -----
interface : pal:
FortyGigabitEthernet1/0/2
 [if-id: 0x000000a]
metadata : cause: 1 [L2 control/legacy], sub-cause: 0, q-no: 0, linktype: MCP_LINK_TYPE_LAYER2 [10]
ether hdr : dest mac: ffff.fff.fff,
src mac: 701f.539a.fe46
ether hdr : ethertype: 0x0800 (IPv4)
ipv4 hdr : dest ip: 255.255.255.255,
src ip: 10.0.0.1
ipv4 hdr : packet len: 330, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
68
, src port:
67
```

有用跟踪

这些是显示每个进程或组件事件的二进制跟踪。在本示例中,跟踪显示有关dhcpsn组件的信息。

可以手动旋转轨迹,这意味着可以在开始进行故障排除之前创建新文件,使其包含更干净的信息。

<#root>

9500#

request platform software trace rotate all

```
9500#
```

set platform software trace fed [switch

] dhcpsn verbose

c9500#show logging proc fed internal | inc dhcp

<<---- DI_Handle must match with the output which retrieves the DI handle

2021/04/14 19:24:19.159536 {fed_F0-0}{1}: [dhcpsn] [17035]: (info):

VLAN event on vlan 10, enabled 1

2021/04/14 19:24:19.159975 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): Program trust ports for this vlan 2021/04/14 19:24:19.159978 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug):

GPN (10) if_id (0x00000000000012) <<---- if_id must match with the TRUSTED port

```
2021/04/14 19:24:19.160029 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): trusted_if_q size=1 for vlan=10
2021/04/14 19:24:19.160041 {fed_F0-0}{1}: [dhcpsn] [17035]: (ERR): update ri has failed vlanid[10]
2021/04/14 19:24:19.160042 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): vlan mode changed to enable
2021/04/14 19:24:27.507358 {fed_F0-0}{1}: [dhcpsn] [23451]: (debug): get di for vlan_id 10
2021/04/14 19:24:27.507365 {fed_F0-0}{1}: [dhcpsn] [23451]: (debug): Allocated rep_ri for vlan_id 10
2021/04/14 19:24:27.507366 {fed_F0-0}{1}: [inject] [23451]: (verbose): Changing di_handle from 0x7f7fac
```

0x7f7fac23e438

by dhcp snooping 2021/04/14 19:24:27.507394 {fed_F0-0}{1}: [inject] [23451]: (debug): TX: getting REP RI from dhcpsn fai 2021/04/14 19:24:29.511774 {fed_F0-0}{1}: [dhcpsn] [23451]: (debug): get di for vlan_id 10 2021/04/14 19:24:29.511780 {fed_F0-0}{1}: [dhcpsn] [23451]: (debug): Allocated rep_ri for vlan_id 10 2021/04/14 19:24:29.511780 {fed_F0-0}{1}: [inject] [23451]: (verbose): Changing di_handle from 0x7f7fac

0x7f7fac23e438

by dhcp snooping 2021/04/14 19:24:29.511802 {fed_F0-0}{1}: [inject] [23451]: (debug): TX: getting REP RI from dhcpsn fai

c9500#set platform software trace fed [switch

] asic_app verbose

```
c9500#show logging proc fed internal | inc dhcp
```

2021/04/14 20:13:56.742637 {fed_F0-0}{1}: [dhcpsn] [17035]: (info):

VLAN event on vlan 10

, enabled 0
2021/04/14 20:13:56.742783 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): vlan mode changed to disable
2021/04/14 20:14:13.948214 {fed_F0-0}{1}: [dhcpsn] [17035]: (info): VLAN event on vlan 10, enabled 1
2021/04/14 20:14:13.948686 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug):

Program trust ports for this vlan

2021/04/14 20:14:13.948688 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug):

GPN (10) if_id (0x00000000000012) <<---- if_id must match with the TRUSTED port

2021/04/14 20:14:13.948740 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): trusted_if_q size=1 for vlan=10 2021/04/14 20:14:13.948753 {fed_F0-0}{1}: [dhcpsn] [17035]: (ERR): update ri has failed vlanid[10] 2021/04/14 20:14:13.948754 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): vlan mode changed to enable

Suggested Traces

set platform software trace fed [switch<num|active|standby>] pm_tdl verbose set platform software trace fed [switch<num|active|standby>] pm_vec verbose set platform software trace fed [switch<num|active|standby>] pm_vlan verbose

INJECT

set platform software trace fed [switch<num|active|standby>] dhcpsn verbose
set platform software trace fed [switch<num|active|standby>] asic_app verbose
set platform software trace fed [switch<num|active|standby>] inject verbose

PUNT

```
set platform software trace fed [switch<num|active|standby>] dhcpsn verbose
set platform software trace fed [switch<num|active|standby>] asic_app verbse
set platform software trace fed [switch<num|active|standby>] punt ver
```

系统日志和说明

违反DHCP速率限制。

解释:DHCP监听检测到指定接口上存在DHCP数据包速率限制冲突。

%DHCP_SNOOPING-4-DHCP_SNOOPING_ERRDISABLE_WARNING: DHCP Snooping received 300 DHCP packets on interface %DHCP_SNOOPING-4-DHCP_SNOOPING_RATE_LIMIT_EXCEEDED: The interface Fa0/2 is receiving more than the thre

DHCP服务器在不可信端口上欺骗。

解释:DHCP监听功能发现不可信接口上不允许的特定类型的DHCP消息,这表示某些主机尝试充当DHCP服务器。

%DHCP_SNOOPING-5-DHCP_SNOOPING_UNTRUSTED_PORT: DHCP_SNOOPING drop message on untrusted port, message ty

第2层MAC地址与DHCP请求中的MAC地址不匹配。

说明:DHCP监听功能尝试了MAC地址验证,检查失败。以太网报头中的源MAC地址与DHCP请求 消息的chaddr字段中的地址不匹配。 可能存在试图对DHCP服务器实施拒绝服务攻击的恶意主机。

%DHCP_SNOOPING-5-DHCP_SNOOPING_MATCH_MAC_FAIL: DHCP_SNOOPING drop message because the chaddr doesn't ma

第82项插入问题。

解释:DHCP监听功能发现具有不可信端口上不允许的选项值的DHCP数据包,这表示某些主机尝 试充当DHCP中继或服务器。

%DHCP_SNOOPING-5-DHCP_SNOOPING_NONZERO_GIADDR: DHCP_SNOOPING drop message with non-zero giaddr or optio

错误端口上收到第2层MAC地址。

解释:DHCP监听功能检测到主机试图对网络中的另一台主机进行拒绝服务攻击。

%DHCP_SNOOPING-5-DHCP_SNOOPING_FAKE_INTERFACE: DHCP_SNNOPING drop message with mismatched source interf

在不可信接口上收到的DHCP消息。

解释:DHCP监听功能发现不可信接口上不允许的特定类型的DHCP消息,这表示某些主机尝试充当DHCP服务器。

%DHCP_SNOOPING-5-DHCP_SNOOPING_UNTRUSTED_PORT: DHCP_SNOOPING drop message on untrusted port: GigabitEth

DHCP监听传输失败。无法访问URL。

解释:DHCP监听绑定传输失败。

%DHCP_SNOOPING-4-AGENT_OPERATION_FAILED: DHCP snooping binding transfer failed. Unable to access URL

DHCP监听警告

Cisco Bug ID号	描述
<u>CSCvi39202</u>	在上行链路etherchannel上启用DHCP监听信任时,DHCP失败。
<u>CSCvp49518</u>	DHCP监听数据库在重新加载后不刷新。
CSCvk16813	通过DHCP监听和端口通道或跨堆叠上行链路丢弃的DHCP客户端流量。
CSCvd51480	解除ip dhcp监听和设备跟踪的绑定。
<u>CSCvm55401</u>	DHCP监听可以丢弃dhcp选项82数据包,带ip dhcp snooping information option allow-untrusted。
<u>CSCvx25841</u>	当REP网段发生更改时,DHCP监听信任状态中断。
<u>CSCvs15759</u>	DHCP服务器在DHCP续订过程中发出NAK数据包。
<u>CSCvk34927</u>	DHCP监听表在重新加载时不会从DHCP监听DB文件更新。

SDA边界DHCP监听

DHCP监听统计信息CLI。

一个新的CLI,可用于SDA,以验证DHCP监听统计信息。

✤ 注意:有关思科SD接入交换矩阵边缘DHCP流程/数据包流和解码的其他参考,请参阅"相关信息"部分中的指南。

switch#show platform fabric border dhcp snooping ipv4统计信息

switch#show platform fabric border dhcp snooping ipv6统计信息

<#root>

SDA-9300-BORDER#

show platform fabric border dhcp snooping ipv4 statistics

Source IP	Destination IP	Source Remote Locator	Lisp Instance ID	VLAN	PROCESS
5 10.30.30.1	10.40.40.1	192.168.0.1	8189	88	10
5 10.30.30.1	10.40.40.1	192.168.0.1	8189	88	11
	Source IP 5 10.30.30.1 5 10.30.30.1	Source IP Destination IP 5 10.30.30.1 10.40.40.1 5 10.30.30.1 10.40.40.1	Source IP Destination IP Source Remote Locator 5 10.30.30.1 10.40.40.1 192.168.0.1 5 10.30.30.1 10.40.40.1 192.168.0.1	Source IP Destination IP Source Remote Locator Lisp Instance ID 5 10.30.30.1 10.40.40.1 192.168.0.1 8189 5 10.30.30.1 10.40.40.1 192.168.0.1 8189	Source IP Destination IP Source Remote Locator Lisp Instance ID VLAN 5 10.30.30.1 10.40.40.1 192.168.0.1 8189 88 5 10.30.30.1 10.40.40.1 192.168.0.1 8189 88

SDA-9300-BORDER#

show platform fabric border dhcp snooping ipv6 statistics

Timestamp	Source IP	Destination IP	Source Remote Locator	Lisp Instanc	
08-05-2019 00:41:46 08-05-2019 00:41:47	11:11:11:11:11:11:11:11 11:11:11:11:11:1	22:22:22:22:22:22:22:1 22:22:22:22:22:22:22:1	192.168.0.3 192.168.0.3	8089 8089 8089	

相关信息

IP编址服务配置指南, Cisco IOS XE Amsterdam 17.3.x (Catalyst 9200交换机)

IP编址服务配置指南, Cisco IOS XE Amsterdam 17.3.x (Catalyst 9300交换机)

<u>IP编址服务配置指南,Cisco IOS XE Amsterdam 17.3.x(Catalyst 9400交换机)</u>

IP编址服务配置指南, Cisco IOS XE Amsterdam 17.3.x (Catalyst 9500交换机)

IP编址服务配置指南, Cisco IOS XE Amsterdam 17.3.x (Catalyst 9600交换机)

思科SD访问交换矩阵边缘DHCP流程/数据包流和解码

在Catalyst 9000交换机上配置FED CPU数据包捕获

<u>技术支持和文档 - Cisco Systems</u>

关于此翻译

思科采用人工翻译与机器翻译相结合的方式将此文档翻译成不同语言,希望全球的用户都能通过各 自的语言得到支持性的内容。

请注意:即使是最好的机器翻译,其准确度也不及专业翻译人员的水平。

Cisco Systems, Inc. 对于翻译的准确性不承担任何责任,并建议您总是参考英文原始文档(已提供 链接)。