Packet Capture op AireOS WLC configureren

Inhoud

Inleiding Vereisten Gebruikte componenten Beperkingen Configureren Packet logging in WLC inschakelen Verifiëren Packet logging uitvoer naar een .pcap-bestand converteren Problemen oplossen

Inleiding

Dit document beschrijft hoe u een pakkettransport kunt uitvoeren op een AireOS draadloze LANcontroller (WLC). Deze methode toont de pakketten die op cpu-niveau van de WLC in hex-indeling worden verzonden en/of ontvangen, die vervolgens met Wireshark worden vertaald in een .pcapbestand.

Het is behulpzaam in gevallen waar de communicatie tussen een WLC en een RADIUS-server (Dial-In User Service), een access point (AP) of andere controllers snel moet worden geverifieerd met een pakketvastlegging op WLC-niveau, maar een poortspan is moeilijk uit te voeren.

Vereisten

Cisco raadt kennis van de volgende onderwerpen aan:

- Opdracht line Interface (CLI) toegang tot de WLC, bij voorkeur SSH omdat de uitvoer sneller is dan console.
- PC met draadloos WAN geïnstalleerd

Gebruikte componenten

De informatie in dit document is gebaseerd op de volgende software- en hardware-versies:

- WLC v8.3
- Wireshark v2 of hoger

Opmerking: Deze optie is beschikbaar sinds AireOS versie 4.

Beperkingen

De pakketvastlegging beperkt zich alleen tot bidirectionele besturingsplane (CP) voor datacommunicatie (DP)-pakketten in WLC. De pakketten die niet worden verzonden van het WLC

Data-vliegtuig naar/van het bedieningspaneel (d.w.z. vreemd voor anker getunneld verkeer, DP-CP-druppels etc.) worden niet opgenomen.

Voorbeelden van soorten verkeer naar/van de WLC die bij de CP worden verwerkt zijn:

- Telnet
- SSH
- HTTP
- HTTPS
- SNMP
- NTP
- RADIUS
- TACACS+
- Mobiliteitsberichten
- CAPWAP-controle
- NMSP
- TFTP/FTP/SFTP
- Syslog
- APP

Het verkeer naar/van de cliënt wordt verwerkt in het datacentrum (DP), behalve voor: 802.11beheer, 802.1X/EAPOL-, ARP-, DHCP- en webverificatie.

Configureren

De informatie in dit document is gebaseerd op de apparaten in een specifieke laboratoriumomgeving. Alle apparaten die in dit document worden beschreven, hadden een opgeschoonde (standaard)configuratie. Als uw netwerk levend is, zorg er dan voor dat u de mogelijke impact van om het even welke opdracht begrijpt.

Packet logging in WLC inschakelen

Stap 1. Meld u aan bij de CLI van de WLC.

Vanwege de hoeveelheid en snelheid van de logbestanden die deze functie weergeven, wordt geadviseerd om met SSH en niet met console in te loggen op de WLC.

Stap 2. Pas een toegangscontrolelijst (ACL) toe om te beperken welk verkeer wordt opgenomen.

In het gegeven voorbeeld toont de opname het verkeer naar/van de beheerinterface van de WLC (IP-adres 172.16.0.34) en de RADIUS-server (172.16.56.153).

> debug packet logging acl ip 1 permit 172.16.0.34 172.16.56.153
> debug packet logging acl ip 2 permit 172.16.56.153 172.16.0.34

Tip: Om al het verkeer naar/van de WLC op te nemen wordt het aanbevolen om ACL toe te passen dat het SSH-verkeer naar/van de host die de SSH-sessie gestart heeft, weggooit. Dit zijn de opdrachten die u kunt gebruiken om ACL te bouwen:

>1debug van pakketvastlegging doel ip 1 ontkent <WLC-IP> <host-IP> TCP 22>debug van pakketvastlegging knop ip 2 ontkent <host-IP> <WLC-IP> TCP 22>pakketvastlegging controleren met behulp van ip 3-licentie

Stap 3. Configureer de bestandsindeling die leesbaar is via Wireshark.

> debug packet logging format text2pcap
Stap 4. Schakel de optie pakketvastlegging in.

Dit voorbeeld toont hoe te om 100 ontvangen/verzonden pakketten op te nemen (het steunt 1 - 65535 pakketten):

> debug packet logging enable all 100
Stap 5. Meld u aan bij de uitvoer naar een tekstbestand.

Opmerking: Standaard logt alleen 25 ontvangen pakketten in terwijl de opdracht **pakketvastlegging debug** biedt.

Opmerking: In plaats van **alles** kunt u **rx** of **tx** gebruiken om alleen ontvangen of verzonden verkeer op te nemen.

Zie deze link voor meer informatie over het configureren van pakketvastlegging:

Cisco-configuratiegids voor draadloze controllers, release 8.3, met behulp van de Debug-faciliteit

Verifiëren

Gebruik dit gedeelte om te bevestigen dat de configuratie correct werkt.

Gebruik de gegeven opdracht om de huidige configuratie van pakketvastlegging te verifiëren.

```
[6]: disabled
```

```
Ethernet ACL:
  [1]: disabled
  [2]: disabled
  [3]: disabled
  [4]: disabled
  [5]: disabled
  [6]: disabled
IP ACL:
  [1]: permit s=172.16.0.34 d=172.16.56.153 any
  [2]: permit s=172.16.56.153 d=172.16.0.34 any
  [3]: disabled
  [4]: disabled
  [5]: disabled
  [6]: disabled
EoIP-Ethernet ACL:
  [1]: disabled
  [2]: disabled
  [3]: disabled
  [4]: disabled
  [5]: disabled
  [6]: disabled
EOIP-IP ACL:
  [1]: disabled
  [2]: disabled
  [3]: disabled
  [4]: disabled
  [5]: disabled
  [6]: disabled
LWAPP-Dot11 ACL:
  [1]: disabled
  [2]: disabled
  [3]: disabled
  [4]: disabled
  [5]: disabled
  [6]: disabled
LWAPP-IP ACL:
  [1]: disabled
  [2]: disabled
  [3]: disabled
  [4]: disabled
  [5]: disabled
```

Reproduceren het gewenste gedrag om het verkeer te genereren.

Een soortgelijke uitvoer wordt weergegeven:

[6]: disabled

```
rx len=108, encap=unknown, port=2
0000 E0 89 9D 43 EF 40 C8 5B 76 1D AB 51 81 00 09 61 `..Co@H[v.+Q...a
0010 08 00 45 00 00 5A 69 81 00 00 80 01 78 A7 AC 10 ..E..Zi.....x',.
0020 00 38 AC 10 00 22 03 03 55 B3 00 00 00 00 45 00 .8,.."..U3....E.
0030 00 3E 0B 71 00 00 FE 11 58 C3 AC 10 00 22 AC 10 .>.q..~.XC,..",.
0040 00 38 15 B3 13 88 00 2A 8E DF A8 a1 00 0E 00 0E .8.3...*._(!....
0050 01 00 00 00 02 2 F1 FC 8B E0 18 24 07 00 C4 00 ....."q].`.$..D.
0060 F4 00 50 1C BF B5 F9 DF EF 59 F7 15 t.P.?5y_oYw.
rx len=58, encap=ip, port=2
0000 E0 89 9D 43 EF 40 C8 5B 76 1D AB 51 81 00 09 61 `..Co@H[v.+Q...a
0010 08 00 45 00 00 22 F6 3A 00 16 AF 52 FE F5 1F 0C .8,..."v:../R~u..
0030 40 29 50 10 01 01 52 8A 00 00 @)P...R...
rx len=58, encap=ip, port=2
```

0000 E0 89 9D 43 EF 40 C8 5B 76 1D AB 51 81 00 09 61 `..Co@H[v.+Q...a 0010 08 00 45 00 00 28 69 83 40 00 80 06 38 D2 AC 10 ..E..(i.@...8R,. 0020 00 38 AC 10 00 22 F6 3A 00 16 AF 52 FE F5 1F 0C .8,.."v:../R~u.. 0030 41 59 50 10 01 00 51 5B 00 00 AYP...Q[.. rx len=58, encap=ip, port=2 0000 E0 89 9D 43 EF 40 C8 5B 76 1D AB 51 81 00 09 61 `..Co@H[v.+Q...a 0010 08 00 45 00 00 28 69 84 40 00 80 06 38 D1 AC 10 ..E..(i.@...8Q,. 0020 00 38 AC 10 00 22 F6 3A 00 16 AF 52 FE F5 1F 0C .8,.."v:../R~u.. 0030 43 19 50 10 01 05 4F 96 00 00 C.P...O...

Verwijder ACL's uit pakketvastlegging

Om de filters die door ACL's worden toegepast uit te schakelen, gebruikt u deze opdrachten:

> debug packet logging acl ip 1 disable >debug packet logging acl ip 2 disable Packet-loggen uitschakelen

Om de pakketvastlegging uit te schakelen zonder de ACL's te verwijderen gebruikt u deze opdracht:

> debug packet logging disable

Packet logging uitvoer naar een .pcap-bestand converteren

Stap 1. Zodra de uitvoer is voltooid, verzamelt u het document en slaat u het op in een tekstbestand.

Zorg ervoor dat u een schoon logbestand verzamelt, anders kan Wireshark gecorrumpeerde pakketten tonen.

Stap 2. Open Wireshark en navigeer naar Bestand>Importeren uit Hex Dump...

Stap 3. Klik op Bladeren.

Wireshark · Imp	?	×
Import From File: Offsets: Hexadecimal Decimal Octal		Browse

Stap 4. Selecteer het tekstbestand waarin u de pakketvastlegging-uitvoer hebt opgeslagen.

🚄 Wireshark · Import Text Fil	e	
🔶 🔿 🕆 🏚 👌 Thi	s PC > Documents > v ひ Sea	arch Documents
Organize • New folder		1 · •
Quick access Desktop	Name	Date modified
Documents 🖈		
	debug packet logging text2pcap example	15/12/2016 10:0
File na	me: debug packet logging text2pcap example	Open

Stap 5. Klik op Importeren.

	Destination port:			
() SCTP	Tag:	-		
() SCTP (Data)	PPI:			
		-10-		
Maximum frame length	1:			

Wireshark toont het bestand als .pcap.

import_20161215103351_a12316.pcapng

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

🚛 🗏 🗿 📙 🖾 🕱 🗳 🤉 👄 🗢 🕾 🖗 💆 🐷 📰 Q Q Q 🖽

No.	Time	Source	Destination	Protocol	Length	Frame length on the wire	Info
+	1 0.000000	172.16.0.34	172.16.56.153	RADIUS	310	310	Access-Request(1) (id=10, 1=264)
-	2 0.000001	172.16.56.153	172.16.0.34	RADIUS	169	169	Access-Challenge(11) (id=10, 1=123)
	3 0,000002	172.16.0.34	172.16.56.153	RADIUS	385	385	Access-Request(1) (id=11, 1=339)
	4 0.000003	172.16.56.153	172.16.0.34	RADIUS	169	169	Access-Challenge(11) (id=11, l=123)
	5 0.000004	172.16.0.34	172.16.56.153	RADIUS	584	584	Access-Request(1) (id=12, 1=458)
	6 0.000005	172.16.56.153	172.16.0.34	RADIUS	1181	1181	Access-Challenge(11) (id=12, 1=1135)
	7 0.00006	172.16.0.34	172.16.56.153	RADIUS	383	383	Access-Request(1) (id=13, l=337)
	8 0.00007	172.16.56.153	172.16.0.34	RADIUS	355	355	Access-Challenge(11) (id=13, 1=308)
	9 0.00008	172.16.0.34	172.16.56.153	RADIUS	973	973	Access-Request(1) (id=14, 1=927)
	10 0.000009	172.16.56.153	172.16.0.34	RADIUS	228	228	Access-Challenge(11) (id=14, 1=182)
	11 0.000010	172.16.0.34	172.16.56.153	RADIUS	383	383	Access-Request(1) (id=15, 1=337)
	12 0.000011	172.16.56.153	172.16.0.34	RADIUS	206	206	Access Challenge(11) (id=15, l=160)
	13 0.000012	172.16.0.34	172.16.56.153	RADIUS	420	420	Access-Request(1) (id=16, 1=374)
	14 0.000013	172.16.56.153	172.16.0.34	RADIUS	238	238	Access-Challenge(11) (id=16, l=192)
	15 0.000014	172.16.0.34	172.16.56.153	RADIUS	484	484	Access-Request(1) (id=17, 1=438)
	16 0.000015	172.16.56.153	172.16.0.34	RADIUS	254	254	Access-Challenge(11) (id=17, 1=208)
	17 0.000016	172.16.0.34	172.16.56.153	RADIUS	420	420	Access-Request(1) (id=18, 1=374)
	18 0.000017	172.16.56.153	172.16.0.34	RADIUS	206	286	Access-Challenge(11) (id=18, 1=160)
	19 0.000018	172.16.0.34	172.16.56.153	RADIUS	383	383	Access-Request(1) (id=19, 1=337)
L	20 0.000019	172.16.56.153	172.16.0.34	RADIUS	307	307	Access-Accept(2) (id=19, 1=261)
	21 0.000020	172.16.0.34	172.16.56.153	RADIUS	375	375	Accounting-Request(4) (id=154, 1=329)
	22 0.000021	172.16.56.153	172.16.0.34	RADIUS	66	66	Accounting-Response(5) (id=154, 1=20)

Frame 1: 310 bytes on wire (2480 bits), 310 bytes captured (2480 bits)

S Ethernet II, Src: CiscoInc_43:ef:40 (e0:89:9d:43:ef:40), Dst: CiscoInc_3f:80:f1 (78:da:6e:3f:80:f1)

802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 2401

Internet Protocol Version 4, Src: 172.16.8.34, Dst: 172.16.56.153

User Datagram Protocol, Src Port: 32774, Dst Port: 1812

RADIUS Protocol

6999	78	da	6e	3f	80	f1	eØ	89	9d	43	ef	40	81	99	89	61	x.n?C.@a
0010	68	60	45	00	01	24	fd	02	88	00	48	11	eb	ea	ac	10	E\$@
0820	00	22	ac	10	38	99	80	86	07	14	01	10	5a	b8	01	0a	."8Z
0030	01	08	da	53	0e	b1	50	0a	84	b9	16	Sa	b3	3b	79	53	
0040	aa	67	01	07	75	73	65	72	34	59	03	69	83	06	99	69	.guser 4Y
8858	66	01	1f	13	30	38	2d	37	34	2d	30	32	2d	37	37	2d	08-7 4-02-77-
0060	31	33	2d	34	35	1e	1d	30	30	2d	66	65	2d	63	38	2d	13-450 0-fe-c8-
0070	32	65	2d	33	62	2d	65	30	3a	63	61	70	74	75	72	65	2e-3b-e0 :capture
0000	31	78	05	06	66	66	66	02	1a	31	69	66	99	69	01	2b	1x+
0090	61	75	64	69	74	2d	73	65	73	73	69	6f	6e	2d	69	64	audit-se ssion-id
0699	3d	61	63	31	30	30	30	32	32	30	30	30	30	30	30	33	=ac10002 20000003
6699	31	35	38	35	32	62	64	62	35	2c	20	35	38	35	32	62	15852bdb 5, 5852b

Opmerking: Let erop dat de tijdstempels niet accuraat zijn en dat de delta tijd tussen de frames niet nauwkeurig is.

Problemen oplossen

Er is momenteel geen specifieke troubleshooting-informatie beschikbaar voor deze configuratie.

Gerelateerde informatie

- AP Packet Dump
- Basisfactoren van 802.11 draadloos snuffelen
- Technische ondersteuning en documentatie Cisco Systems