Cisco IOS XEルータでのマルチSA仮想トンネル インターフェイスの設定

内容

概要 前提条件 要件 <u>使用するコンポーネント</u> 背景説明 クリプトマップと比較したVTIの利点 設定 <u>ネットワーク図</u> ルーティングの考慮事項 設定例 クリプトマップベースのIKEv1トンネルのマルチSA sVTIへの移行 クリプトマップベースのIKEv2トンネルのマルチSA sVTIへの移行 マルチSA VTIへのVRF対応クリプトマップの移行 確認 トラブルシュート よく寄せられる質問(FAQ)

概要

このドキュメントでは、Cisco IOS[®] XEソフトウェアを使用するCiscoルータでマルチセキュリテ ィアソシエーション(Multi-SA)仮想トンネルインターフェイス(VTI)を設定する方法について説明 します。移行プロセスについても説明します。マルチSA VTIは、クリプトマップベース(ポリシ ーベース)のVPN設定に代わるものです。暗号マップベースおよびその他のポリシーベースの実 装と下位互換性があります。この機能は、Cisco IOS XEリリース16.12以降でサポートされてい ます。

前提条件

要件

Cisco IOS XEルータのIPsec VPN設定に関する知識があることが推奨されます。

使用するコンポーネント

このドキュメントの情報は、Cisco IOS XEリリース16.12.01aを搭載したサービス統合型ルータ (ISR)4351に基づくものです。

このドキュメントの情報は、特定のラボ環境にあるデバイスに基づいて作成されました。このド キュメントで使用するすべてのデバイスは、初期(デフォルト)設定の状態から起動しています 。本稼働中のネットワークでは、各コマンドによって起こる可能性がある影響を十分確認してく ださい。

背景説明

クリプトマップと比較したVTIの利点

暗号マップは、物理インターフェイスの出力機能です。異なるピアへのトンネルが同じクリプト マップで設定されている。クリプトマップのアクセスコントロールリスト(ACL)エントリは、特 定のVPNピアに送信されるトラフィックを照合するために使用されます。このタイプの設定は、 ポリシーベースVPNとも呼ばれます。

VTIの場合、各VPNトンネルは個別の論理トンネルインターフェイスで表されます。ルーティン グテーブルは、トラフィックが送信されるVPNピアを決定します。このタイプの設定は、ルート ベースVPNとも呼ばれます。

Cisco IOS XEリリース16.12より前のリリースでは、VTI設定はクリプトマップ設定と互換性がありませんでした。相互運用するには、トンネルの両端を同じタイプのVPNで設定する必要がありました。

Cisco IOS XEリリース16.12では、新しい設定オプションが追加されました。このオプションを 使用すると、トンネルインターフェイスはプロトコルレベルでポリシーベースのVPNとして機能 しますが、トンネルインターフェイスのすべてのプロパティを持つことができます。

シスコは、Cisco IOS XEリリース17.6のCisco IPsecスタティック暗号マップおよびダイナミック 暗号マップ機能の<u>サポート終了日</u>を発表しました。

暗号マップに対するVTIの利点は次のとおりです。

- ・トンネルのアップ/ダウンステータスを簡単に判別できます。
- トラブルシューティングが簡単です。
- Quality of Service(QoS)、ゾーンベースファイアウォール(ZBF)、ネットワークアドレス変換 (NAT)、Netflowなどの機能をトンネル単位で適用できます。
- すべてのタイプのVPNトンネルに対する設定が合理化されています。

設定

ネットワーク図

ルーティングの考慮事項

管理者は、リモートネットワークのルーティングがトンネルインターフェイスを指していること

を確認する必要があります。「reverse-route IPsecプロファイルの下のオプションを使用すると、 クリプトACLで指定されたネットワークのスタティックルートを自動的に作成できます。このよ うなルートは手動で追加することもできます。以前に、より詳細なルートが設定されている場合 、そのルートがトンネルインターフェイスではなく物理インターフェイスを指している場合は、 これらを削除する必要があります。

設定例

クリプトマップベースのIKEv1トンネルのマルチSA sVTIへの移行

両方のルータには、Internet Key Exchange Version 1(IKEv1)クリプトマップベースのソリューションが事前設定されています。

ルータ A

crypto isakmp policy 10

```
encryption aes
hash sha256
authentication pre-share
group 14
1
crypto isakmp key cisco123 address 192.0.2.2
!
crypto ipsec transform-set TSET esp-aes 256 esp-sha256-hmac
1
crypto map CMAP 10 ipsec-isakmp
set peer 192.0.2.2
set transform-set TSET
match address CACL
!
ip access-list extended CACL
permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255
permit ip 172.16.1.0 0.0.0.255 172.16.2.0 0.0.0.255
interface GigabitEthernet0/0/0
ip address 192.0.2.1 255.255.255.0
crypto map CMAP
ルータ B
crypto isakmp policy 10
encryption aes
hash sha256
authentication pre-share
group 14
1
crypto isakmp key cisco123 address 192.0.2.1
1
crypto ipsec transform-set TSET esp-aes 256 esp-sha256-hmac
1
crypto map CMAP 10 ipsec-isakmp
set peer 192.0.2.1
set transform-set TSET
match address CACL
1
ip access-list extended CACL
permit ip 192.168.2.0 0.0.0.255 192.168.1.0 0.0.0.255
permit ip 172.16.2.0 0.0.0.255 172.16.1.0 0.0.0.255
```

interface GigabitEthernet0/0/0 ip address 192.0.2.2 255.255.255.0 crypto map CMAP

1

ルータAをマルチSA VTI設定に移行するには、次の手順を実行します。ルータBは古い設定のまま にすることも、同様に再設定することもできます。

- インターフェイスからクリプトマップを削除します。 interface GigabitEthernet0/0/0 no crypto map
- 2. IPsecプロファイルを作成します。リバースルートは、リモートネットワークのスタティッ クルートが自動的にルーティングテーブルに追加されるようにオプションで設定されます。 crypto ipsec profile PROF set transform-set TSET reverse-route
- トンネルインターフェイスを設定します。暗号化ACLは、IPsecポリシーとしてトンネル設定に適用されます。トンネルインターフェイスに設定されているIPアドレスは関係ありませんが、何らかの値を設定する必要があります。このIPアドレスは、 ip unnumbered コマンドにより、WLC CLI で明確に示されます。

interface Tunnel0
ip unnumbered GigabitEthernet0/0/0
tunnel source GigabitEthernet0/0/0
tunnel mode ipsec ipv4
tunnel destination 192.0.2.2
tunnel protection ipsec policy ipv4 CACL
tunnel protection ipsec profile PROF

4. その後、クリプトマップエントリを完全に削除できます。

```
no crypto map CMAP 10
```

最終的なルータAの設定

```
crypto isakmp policy 10
encryption aes
hash sha256
authentication pre-share
group 14
1
crypto isakmp key cisco123 address 192.0.2.2
crypto ipsec transform-set TSET esp-aes 256 esp-sha256-hmac
1
crypto ipsec profile PROF
set transform-set TSET
reverse-route
1
ip access-list extended CACL
permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255
permit ip 172.16.1.0 0.0.0.255 172.16.2.0 0.0.0.255
1
interface GigabitEthernet0/0/0
ip address 192.0.2.1 255.255.255.0
1
interface Tunnel0
ip unnumbered GigabitEthernet0/0/0
tunnel source GigabitEthernet0/0/0
tunnel mode ipsec ipv4
tunnel destination 192.0.2.2
tunnel protection ipsec policy ipv4 CACL
tunnel protection ipsec profile PROF
```

```
クリプトマップベースのIKEv2トンネルのマルチSA sVTIへの移行
```

両方のルータには、Internet Key Exchange Version 2(IKEv2)クリプトマップベースのソリューションが事前に設定されています。

ルータ A

crypto ipsec transform-set TSET esp-aes 256 esp-sha256-hmac crypto ikev2 profile PROF match identity remote address 192.0.2.2 255.255.255.255 authentication remote pre-share key cisco123 authentication local pre-share key cisco123 1 crypto map CMAP 10 ipsec-isakmp set peer 192.0.2.2 set transform-set TSET set ikev2-profile PROF match address CACL ! ip access-list extended CACL permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255 permit ip 172.16.1.0 0.0.0.255 172.16.2.0 0.0.0.255 interface GigabitEthernet0/0/0 ip address 192.0.2.1 255.255.255.0 crypto map CMAP ルータ B crypto ipsec transform-set TSET esp-aes 256 esp-sha256-hmac 1 crypto ikev2 profile PROF match identity remote address 192.0.2.1 255.255.255.255 authentication remote pre-share key cisco123 authentication local pre-share key cisco123

!
crypto map CMAP 10 ipsec-isakmp
set peer 192.0.2.1
set transform-set TSET
set ikev2-profile PROF
match address CACL
!
ip access-list extended CACL
permit ip 192.168.2.0 0.0.0.255 192.168.1.0 0.0.0.255
permit ip 172.16.2.0 0.0.0.255 172.16.1.0 0.0.0.255
!
interface GigabitEthernet0/0/0
ip address 192.0.2.2 255.255.0
crypto map CMAP

ルータAをマルチSA VTI設定に移行するには、次の手順を実行します。ルータBは古い設定のまま にすることも、同様に再設定することもできます。

- インターフェイスからクリプトマップを削除します。 interface GigabitEthernet0/0/0 no crypto map
- IPsecプロファイルを作成します。「reverse-route コマンドは、リモートネットワークのスタ ティックルートが自動的にルーティングテーブルに追加されるようにオプションで設定され ます。

crypto ipsec profile PROF set transform-set TSET set ikev2-profile PROF
reverse-route

3. トンネル インターフェイスを設定します。暗号化ACLは、IPsecポリシーとしてトンネル設 定に適用されます。トンネルインターフェイスに設定されているIPアドレスは関係ありませ んが、何らかの値を設定する必要があります。このIPアドレスは、 ip unnumbered コマンドに より、WLC CLI で明確に示されます。

```
interface Tunnel0
ip unnumbered GigabitEthernet0/0/0
tunnel source GigabitEthernet0/0/0
tunnel mode ipsec ipv4
tunnel destination 192.0.2.2
tunnel protection ipsec policy ipv4 CACL
tunnel protection ipsec profile PROF
```

4. クリプトマップを完全に削除します。

```
no crypto map CMAP 10
```

最終的なルータAの設定

```
crypto ipsec transform-set TSET esp-aes 256 esp-sha256-hmac
1
crypto ikev2 profile PROF
match identity remote address 192.0.2.2 255.255.255.255
authentication remote pre-share key cisco123
authentication local pre-share key cisco123
1
crypto ipsec profile PROF
set transform-set TSET
set ikev2-profile PROF
reverse-route
1
ip access-list extended CACL
permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255
permit ip 172.16.1.0 0.0.0.255 172.16.2.0 0.0.0.255
1
interface GigabitEthernet0/0/0
ip address 192.0.2.1 255.255.255.0
1
interface Tunnel0
ip unnumbered GigabitEthernet0/0/0
tunnel source GigabitEthernet0/0/0
tunnel mode ipsec ipv4
tunnel destination 192.0.2.2
tunnel protection ipsec policy ipv4 CACL
tunnel protection ipsec profile PROF
```

マルチSA VTIへのVRF対応クリプトマップの移行

この例では、VRF対応のクリプトマップ設定を移行する方法を示します。

トポロジ


```
ip vrf fvrf
ip vrf ivrf
1
crypto keyring KEY vrf fvrf
pre-shared-key address 192.0.2.2 key cisco123
1
crypto isakmp policy 10
encryption aes
hash sha256
authentication pre-share
group 14
1
crypto isakmp profile PROF
vrf ivrf
keyring KEY
match identity address 192.0.2.2 255.255.255.255 fvrf
1
crypto ipsec transform-set TSET esp-aes 256 esp-sha256-hmac
1
crypto map CMAP 10 ipsec-isakmp
set peer 192.0.2.2
set transform-set TSET
set isakmp-profile PROF
match address CACL
interface GigabitEthernet0/0/0
ip vrf forwarding fvrf
ip address 192.0.2.1 255.255.255.0
crypto map CMAP
!
interface GigabitEthernet0/0/1
ip vrf forwarding ivrf
ip address 192.168.1.1 255.255.255.0
1
ip route vrf ivrf 172.16.2.0 255.255.255.0 GigabitEthernet0/0/0 192.0.2.2
ip route vrf ivrf 192.168.2.0 255.255.255.0 GigabitEthernet0/0/0 192.0.2.2
1
ip access-list extended CACL
permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255
permit ip 172.16.1.0 0.0.0.255 172.16.2.0 0.0.0.255
```

マルチSA VTIへの移行に必要な手順は次のとおりです。

```
! vrf configuration under isakmp profile is only for crypto map based configuration
1
crypto isakmp profile PROF
no vrf ivrf
I.
interface GigabitEthernet0/0/0
no crypto map
1
no crypto map CMAP 10
1
no ip route vrf ivrf 172.16.2.0 255.255.255.0 GigabitEthernet0/0/0 192.0.2.2
no ip route vrf ivrf 192.168.2.0 255.255.255.0 GigabitEthernet0/0/0 192.0.2.2
crypto ipsec profile PROF
set transform-set TSET
set isakmp-profile PROF
reverse-route
1
interface tunnel0
```

tunnel source GigabitEthernet0/0/0 tunnel mode ipsec ipv4 tunnel destination 192.0.2.2 tunnel vrf fvrf tunnel protection ipsec policy ipv4 CACL tunnel protection ipsec profile PROF 最終的なVRF対応の設定 ip vrf fvrf ip vrf ivrf 1 crypto keyring KEY vrf fvrf pre-shared-key address 192.0.2.2 key cisco123 crypto isakmp policy 10 encryption aes hash sha256 authentication pre-share group 14 1 crypto isakmp profile PROF keyring KEY match identity address 192.0.2.2 255.255.255.255 fvrf 1 crypto ipsec transform-set TSET esp-aes 256 esp-sha256-hmac 1 interface GigabitEthernet0/0/0 ip vrf forwarding fvrf ip address 192.0.2.1 255.255.255.0 1 interface GigabitEthernet0/0/1 ip vrf forwarding ivrf ip address 192.168.1.1 255.255.255.0 1 ip access-list extended CACL permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255 permit ip 172.16.1.0 0.0.0.255 172.16.2.0 0.0.0.255 1 crypto ipsec profile PROF set transform-set TSET set isakmp-profile PROF reverse-route interface tunnel0 ip vrf forwarding ivrf ip unnumbered GigabitEthernet0/0/0 tunnel source GigabitEthernet0/0/0 tunnel mode ipsec ipv4 tunnel destination 192.0.2.2 tunnel vrf fvrf tunnel protection ipsec policy ipv4 CACL tunnel protection ipsec profile PROF

ip vrf forwarding ivrf

ip unnumbered GigabitEthernet0/0/0

確認

ここでは、設定が正常に機能しているかどうかを確認します。

Cisco CLI Analyzer(登録ユーザ専用)では、次の機能がサポートされています show コマンドを発

行します。Cisco CLIアナライザを使用して、 show コマンド出力.

トンネルが正常にネゴシエートされたかどうかを確認するには、トンネルインターフェイスのス テータスを確認できます。最後の2列 – Status と Protocol – ステータスの表示 up トンネルが動作して いる場合:

RouterA#show ip interface brief | include Interface|Tunnel0 Interface IP-Address OK? Method Status Protocol Tunnel0 192.0.2.1 YES TFTP up up 現在の暗号化セッションのステータスの詳細については、 show crypto session エラーが表示される 場合があります。「 Session status (UP-ACTIVE ikeセッションが正しくネゴシエートされたことを示 します。

RouterA#**show crypto session interface tunnel0** Crypto session current status

Interface: Tunnel0 Profile: PROF Session status: **UP-ACTIVE** Peer: 192.0.2.2 port 500 Session ID: 2 IKEv2 SA: local 192.0.2.1/500 remote 192.0.2.2/500 Active IPSEC FLOW: permit ip 172.16.1.0/255.255.255.0 172.16.2.0/255.255.255.0 Active SAs: 2, origin: crypto map IPSEC FLOW: permit ip 192.168.1.0/255.255.255.0 192.168.2.0/255.255.255.0 Active SAs: 2, origin: crypto map **リモートネットワークへのルーティングが正しいトンネルインターフェイスを指していることを** 確認します。

RouterA#show ip route 192.168.2.0
Routing entry for 192.168.2.0/24
Known via "static", distance 1, metric 0 (connected)
Routing Descriptor Blocks:
* directly connected, via Tunnel0
Route metric is 0, traffic share count is 1

RouterA#show ip cef 192.168.2.100 192.168.2.0/24 attached to Tunnel0

トラブルシュート

ここでは、設定のトラブルシューティングに使用できる情報を示します。

IKEプロトコルネゴシエーションをトラブルシューティングするには、次のデバッグを使用します。

注:使用する前に、『<u>debugコマンドの重要な情報</u>』を参照してください debug コマンドを 発行します。

よく寄せられる質問(FAQ)

トンネルは自動的に起動しますか。または、トンネルを起動するためにトラフィックが必要ですか。

暗号マップとは異なり、マルチSA VTIトンネルは、暗号ACLに一致するデータトラフィックがル ータを通過するかどうかにかかわらず、自動的に確立されます。トンネルは、対象トラフィック がない場合でも、常にアップ状態になります。

トラフィックがVTI経由でルーティングされても、トラフィックの送信元または宛先がこのトンネルのIPsecポリシーとして設定されたクリプトACLと一致しない場合はどうなりますか。

このようなシナリオはサポートされていません。暗号化を目的としたトラフィックだけをトンネ ルインターフェイスにルーティングする必要があります。ポリシーベースルーティング(PBR)は 、特定のトラフィックだけをVTIにルーティングするために使用できます。PBRはIPsecポリシー ACLを使用して、VTIにルーティングされるトラフィックを照合できます。

各パケットは設定されたIPsecポリシーに照らしてチェックされ、暗号ACLと一致する必要があり ます。一致しない場合、暗号化されず、トンネル送信元インターフェイスからクリアテキストで 送信されます。

同じ内部VRF(iVRF)とフロントVRF(fVRF)が使用されている場合(iVRF = fVRF)、ルーティングル ープが発生し、パケットが理由を付けてドロップされます Ipv4RoutingErr.このようなドロップの統 計情報は、 show platform hardware qfp active statistics drop コマンドにより、WLC CLI で明確に示され ます。

RouterA#**show platform hardware qfp active statistics drop** Last clearing of QFP drops statistics : never

Global Drop Stats Packets Octets

Ipv4RoutingErr 5 500

iVRFがfVRFと異なり、iVRFでトンネルに入り、IPsecポリシーと一致しないパケットは、fVRFの トンネル送信元インターフェイスからクリアテキストで出力されます。VRF間にルーティングル ープが存在しないため、これらは廃棄されません。

マルチSA VTIでは、VRF、NAT、QoSなどの機能はサポートされていますか。

はい。これらの機能はすべて、通常のVTIトンネルと同じ方法でサポートされます。