Procedura per gestire un MongoDB danneggiato nel set di repliche Mongo CPS

Sommario

Introduzione Prerequisiti Requisiti Componenti usati Premesse Problema Procedura per il ripristino del membro del database danneggiato

Introduzione

In questo documento viene descritta la procedura per gestire un database MongoData danneggiato nei set di repliche di Cisco Policy Suite (CPS).

Prerequisiti

Requisiti

Cisco raccomanda la conoscenza dei seguenti argomenti:

- Linux
- CPS
- MongoDB

Nota: Cisco consiglia di disporre del privilegio di accesso root alla CLI di CPS.

Componenti usati

Le informazioni fornite in questo documento si basano sulle seguenti versioni software e hardware:

- CPS 20.2
- MongoDB v3.6.17
- UCS-B

Le informazioni discusse in questo documento fanno riferimento a dispositivi usati in uno specifico ambiente di emulazione. Su tutti i dispositivi menzionati nel documento la configurazione è stata ripristinata ai valori predefiniti. Se la rete è operativa, valutare attentamente eventuali conseguenze derivanti dall'uso dei comandi.

Premesse

MongoDB è un programma per database orientato ai documenti (DB, Document-Oriented Database) multipiattaforma disponibile all'origine. Classificato come programma di database NoSQL. MongoDB è ampiamente utilizzato in CPS per gestire i suoi diversi tipi di DB, ad esempio SESSION, Subscriber Profile Repository (SPR), Balance e così via.

Problema

MongoDB viene danneggiato quando si esegue una deframmentazione errata del database mentre aido_client è ancora attivo all'interno di sessionmgr.

Questo fa sì che MongoDB conservi i dati in memoria ma non sia in grado di scriverli localmente sui percorsi del database.

Ciò può causare la perdita di dati se il membro primario (istanza mongo) viene riavviato nel set di repliche interessato o se la VM sessionmgr viene riavviata.

Per comprendere come un membro del database sembra essere danneggiato, è possibile accedere a uno dei membri che presentano problemi ed eseguire i controlli forniti.

Passaggio 1. Quando si esegue il comando **show dbs**, non viene restituito alcun output di DB list. Quando tuttavia si controlla il conteggio all'interno del DB noto, viene restituito il conteggio.

```
[root@lab-1-pcrfclient01 ~]# mongo --host sessionmgr05:27737
MongoDB shell version v3.6.17
connect to: mongodb://sessionmgr05:27737/?gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("a8f9b0eb-6e78-4bcd-bd63-60a9a9d813d0") }
MongoDB server version: 3.6.17
Server has startup warnings:
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten]
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten] ** WARNING: Access control is not
enabled for the database.
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten] ** Read and write access to
data and configuration is unrestricted.
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten] **
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten]
2022-03-09T00:53:26.949-0300 I REPL [replexec-0]
2022-03-09T00:53:26.949-0300 I REPL
                                      [replexec-0] ** WARNING: This replica set uses arbiters,
but readConcern:majority is enabled
2022-03-09T00:53:26.949-0300 I REPL
                                       [replexec-0] **
                                                              for this node. This is not a
recommended configuration. Please see
2022-03-09T00:53:26.949-0300 I REPL [replexec-0] **
2022-03-09T00:53:26.949-0300 I REPL
                                      [replexec-0]
set01e:PRIMARY>
set01e:PRIMARY> show dbs ## "no dbs reported"
set01e:PRIMARY> use session_cache ## "Switched to a known DB"
switched to db session_cache
set01e:PRIMARY> db.session.count()
223037 ## "DB has the content inside, hence the total record count is shown"
set01e:PRIMARY> use session_cache_2
switched to db session_cache_2
set01e:PRIMARY> db.session.count()
223643
set01e:PRIMARY> use session_cache_3
switched to db session_cache_3
set01e:PRIMARY> db.session.count()
222939
set01e:PRIMARY> use session_cache_4
```

switched to db session_cache_4
set0le:PRIMARY> db.session.count()
223692
set0le:PRIMARY>
set0le:PRIMARY> exit
bye

Passaggio 2. Quando si esegue **diagnostics.sh** —**get_shard**, i dati vengono visualizzati in condivisione applicazioni. Questo viene archiviato in memoria e non nel DBPATH della macchina virtuale (VM) di Sessionmgr.

[root@lab-1-pcrfclient01 ~]# diagnostics.sh --get_shard CPS Diagnostics GR Multi-Node Environment

Shard Id Count	Mongo DB	State	Backup DB	Removed	Session
43	sessionmgr01:27717/session_cache	online	false	false	223873
1	<pre>sessionmgr01:27717/session_cache_2</pre>	online	false	false	222918
2	<pre>sessionmgr01:27717/session_cache_3</pre>	online	false	false	223720
3	sessionmgr01:27717/session_cache_4	online	false	false	223393
8	sessionmgr05:27737/session_cache	online	false	false	223188
9	<pre>sessionmgr05:27737/session_cache_2</pre>	online	false	false	223554
10	<pre>sessionmgr05:27737/session_cache_3</pre>	online	false	false	222920
11	<pre>sessionmgr05:27737/session_cache_4</pre>	online	false	false	223562
12	sessionmgr07:27747/session_cache	online	false	false	222663
13	<pre>sessionmgr07:27747/session_cache_2</pre>	online	false	false	222599
14	<pre>sessionmgr07:27747/session_cache_3</pre>	online	false	false	222475
15	<pre>sessionmgr07:27747/session_cache_4</pre>	online	false	false	223446
16	sessionmgr09:27757/session_cache	online	false	false	223246
17	<pre>sessionmgr09:27757/session_cache_2</pre>	online	false	false	223669
18	<pre>sessionmgr09:27757/session_cache_3</pre>	online	false	false	223711
19	<pre>sessionmgr09:27757/session_cache_4</pre>	online	false	false	223311
35	sessionmgr13:27717/session_cache	online	true	false	0
36	sessionmgr13:27717/session_cache_2	online	true	false	0
37	sessionmgr13:27717/session_cache_3	online	true	false	0
38	sessionmgr13:27717/session_cache_4	online	true	false	0

Rebalance Status: Rebalanced

Passaggio 3. Questo output mostra che nel percorso del database non è presente alcun contenuto in cui si suppone che vengano archiviati i dati effettivi.

[SESSION-SET3] SETNAME=set0le OPLOG_SIZE=5120 ARBITER=lab-1-arb-sessmgr15:27737 ARBITER_DATA_PATH=/var/data/sessions.1/set0le PRIMARY-MEMBERS MEMBER1=lab-1-sessionmgr05:27737 MEMBER2=lab-1-sessionmgr06:27737 SECONDARY-MEMBERS MEMBER3=lab-2-sessionmgr05:27737 MEMBER4=lab-2-sessionmgr06:27737 DATA_PATH=/var/data/sessions.1/set0le **## "DB DATA Path of set0le replicaset"** [SESSION-SET3-END] Collegare Secure Shell (SSH) al dispositivo sessionmgr associato e selezionare il percorso DB_PATH indicato nella configurazione mongo. Il contenuto di DB_PATH è vuoto.

[root@lab-1-sessionmgr05 ~]# cd /var/data/sessions.1/set01e
[root@lab-1-sessionmgr05 ~]# ls -lrt
total 0
[root@lab-1-sessionmgr05 ~]#

Con questi controlli, si può arrivare alla conclusione che MongoDB è danneggiato.

Procedura per il ripristino del membro del database danneggiato

Passaggio 1. SSH sui membri primari del set di repliche con problemi.

Passaggio 2. Arrestare aido_client (assicurarsi di arrestare il client aido su tutti i membri del set di repliche che appartiene a set01e).

Passaggio 3. Connettersi alla shell mongo di set01e ed eseguire la procedura seguente.

```
# mongo --port 27737
    # show dbs
                                       # Ensure this returns empty output.
    # use admin
    # db.repairDatabase()
    # use config
    # db.repairDatabase()
    # exit
[root@lab-1-sessionmgr05 set01e]# mongo --port 27737
MongoDB shell version v3.6.17
connect to: mongodb://127.0.0.1:27737/?gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("ff9df861-0b42-4e8a-99c1-3583670e1926") }
MongoDB server version: 3.6.17
Server has startup warnings:
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten]
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten] ** WARNING: Access control is not
enabled for the database.
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten] **
                                                                 Read and write access to
data and configuration is unrestricted.
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten] **
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten]
2022-03-09T00:53:26.949-0300 I REPL [replexec-0]
2022-03-09T00:53:26.949-0300 I REPL
                                       [replexec-0] ** WARNING: This replica set uses arbiters,
but readConcern:majority is enabled
                                    [replexec-0] **
2022-03-09T00:53:26.949-0300 I REPL
                                                          for this node. This is not a
recommended configuration. Please see
2022-03-09T00:53:26.949-0300 I REPL [replexec-0] **
2022-03-09T00:53:26.949-0300 I REPL
                                     [replexec-0]
set01e:PRIMARY> use admin
switched to db admin
set01e:PRIMARY> db.repairDatabase()
{
"ok" : 1,
"operationTime" : Timestamp(1647319246, 352),
"$clusterTime" : {
"clusterTime" : Timestamp(1647319246, 352),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
"keyId" : NumberLong(0)
}
}
```

```
}
set01e:PRIMARY>
set01e:PRIMARY> use config
switched to db config
set01e:PRIMARY> db.repairDatabase()
"ok" : 1,
"operationTime" : Timestamp(1647319301, 218),
"$clusterTime" : {
"clusterTime" : Timestamp(1647319301, 218),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
"keyId" : NumberLong(0)
}
}
}
set01e:PRIMARY> show dbs
admin 0.031GB
config 0.031GB
set01e:PRIMARY> exit
```

Passaggio 4. Connettersi nuovamente allo stesso istante di replica ed eseguire questi comandi su tutti session_cache_dbs. Di seguito è riportato un esempio di database session_cache.

```
# mongo --port 27737
    # use session_cache
                                        # Use this to check that session counts are still intact
    # db.session.count()
    # db.stats(1024*1024*1024) # Use this to verify that the storage size is proper
    # db.repairDatabase()
    # exit
[root@lab-1-sessionmgr05 set01e]# mongo --port 27737
MongoDB shell version v3.6.17
connect to: mongodb://127.0.0.1:27737/?gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("73794d11-0785-4520-ba82-19f0d2bba338") }
MongoDB server version: 3.6.17
Server has startup warnings:
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten]
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten] ** WARNING: Access control is not
enabled for the database.
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten] **
                                                                  Read and write access to
data and configuration is unrestricted.
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten] **
2022-03-09T00:53:26.910-0300 I CONTROL [initandlisten]
2022-03-09T00:53:26.949-0300 I REPL
                                      [replexec-0]
2022-03-09T00:53:26.949-0300 I REPL
                                        [replexec-0] ** WARNING: This replica set uses arbiters,
but readConcern:majority is enabled
2022-03-09T00:53:26.949-0300 I REPL
                                        [replexec-0] **
                                                                for this node. This is not a
recommended configuration. Please see
2022-03-09T00:53:26.949-0300 I REPL
                                       [replexec-0] **
2022-03-09T00:53:26.949-0300 I REPL
                                        [replexec-0]
set01e:PRIMARY>
set01e:PRIMARY>
set01e:PRIMARY>
set01e:PRIMARY> show dbs
admin 0.031GB
config 0.031GB
set01e:PRIMARY> use session_cache
switched to db session_cache
set01e:PRIMARY>
set01e:PRIMARY> db.stats(1024*1024*1024)
{
"db" : "session_cache",
```

```
"collections" : 3,
"views" : 0,
"objects" : 212467,
"avgObjSize" : 8175.252062673262,
"dataSize" : 1.6176805645227432,
"storageSize" : 2.471107453107834,
"numExtents" : 22,
"indexes" : 3,
"indexSize" : 0.30870679020881653,
"fileSize" : 0,
"nsSizeMB" : 16,
"extentFreeList" : {
"num" : 0,
"totalSize" : 0
},
"dataFileVersion" : {
"major" : 4,
"minor" : 22
},
"fsUsedSize" : 38.36811065673828,
"fsTotalSize" : 47.044921875,
"ok" : 1,
"operationTime" : Timestamp(1647321405, 102),
"$clusterTime" : {
"clusterTime" : Timestamp(1647321405, 103),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
"keyId" : NumberLong(0)
}
}
set01e:PRIMARY> db.repairDatabase()
{
"ok" : 1,
"operationTime" : Timestamp(1647321444, 84),
"$clusterTime" : {
"clusterTime" : Timestamp(1647321444, 84),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
"keyId" : NumberLong(0)
}
ł
set01e:PRIMARY> show dbs
admin
        0.031GB
config
              0.031GB
session_cache 2.499GB
```

Nota: Ripetere il passaggio 4 per gli altri database session_cache.

Passaggio 5. Verificare che il comando **show dbs** ora elenchi tutti i database quando si connette nuovamente la stessa istanza mongo.

mongo --port 27737
set0le:PRIMARY> show dbs
admin 0.031GB
config 0.031GB
session_cache 2.499GB
session_cache_2 2.499GB
session_cache_3 2.499GB
session_cache_4 2.499GB

Passaggio 6. Verificare che il percorso del database ora contenga tutti i dati localmente all'interno di sessionmgr. È possibile controllare il percorso dei dati del set di repliche. In questo caso, è /var/data/session.1/set01e.

[root@lab-1-sessionmgr05 set01~]# cd /var/data/sessions.1/set01e [root@lab-1-sessionmgr05 set01e]# ls admin session_cache session_cache_2.1 session_cache_2.7 session_cache_3.1 session_cache_3.7 session_cache_4.1 session_cache_4.7 session_cache.8 admin.0 session_cache.0 session_cache_2.2 session_cache_2.8 session_cache_3.2 session_cache_3.8 session_cache_4.2 session_cache_4.8 session_cache.ns admin.ns session_cache.1 session_cache_2.3 session_cache_2.ns session_cache_3.3 session_cache_3.ns session_cache_4.3 session_cache_4.ns _tmp config session_cache.2 session_cache_2.4 session_cache.3 session_cache_3.4 session_cache.4 session_cache_4.4 session_cache.5 config.0 session_cache_2 session_cache_2.5 session_cache_3 session_cache_3.5 session_cache_4 session_cache_4.5 session_cache.6 config.ns session_cache_2.0 session_cache_2.6 session_cache_3.0 session_cache_3.6 session_cache_4.0 session_cache_4.6 session_cache.7

Passaggio 7. SSH sullo stesso membro secondario del sito ed esecuzione della sincronizzazione locale del percorso dati con il membro primario.

ssh to lab-1-sessionmgr06 (Secondary member)
Ensure to stop aido_client
monit stop aido_client
Ensure to stop mongo processes
/etc/init.d/sessionmgr-27737 stop # Wait for 10 seconds and start the service

back on

Verificare che il percorso dati /var/data/sessions.1/set01e sia vuoto e, in caso contrario, rimuoverlo utilizzando rm -rf /var/data/sessions.1/set01e/*, quindi avviare il processo mongo.

/etc/init.d/sessionmgr-27737 start

```
[root@lab-1-sessionmgr06 ~]# monit stop aido_client
[root@lab-1-sessionmgr06 ~]# monit status aido_client
Monit 5.26.0 uptime: 52d 20h 59m
Process 'aido client'
status Not monitored
monitoring status Not monitored
monitoring mode active
on reboot start
data collected Wed, 23 Mar 2022 08:08:46
[root@lab-1-sessionmgr06 ~]#
[root@lab-1-sessionmgr06 ~]# /etc/init.d/sessionmgr-27737 stop
stop sessionmgr-27737 (via systemctl): [ OK ]
[root@lab-1-sessionmgr06 ~]# rm -rf /var/data/sessions.1/set01e/*
[root@lab-1-sessionmgr06 ~]# cd /var/data/sessions.1/set01e/
[root@lab-1-sessionmgr06 set01e]# ls
[root@lab-1-sessionmgr06 set01e]#
[root@lab-1-sessionmgr06 set0le]# /etc/init.d/sessionmgr-27737 start
```

Starting sessionmgr-27737 (via systemctl): [OK] Passaggio 8. Verificare che i dati siano ora copiati localmente in /var/data/sessions.1/set01e.

[root@lab-1-sessionmgr06 ~]# cd /var/data/sessions.1/set0le/ [root@lab-1-sessionmgr06 set0le]# ls admin.0 local.1 local.3 local.7 mongod.lock session_cache_2.3 session_cache_2.7 session_cache_3.1 session_cache_3.5 session_cache_3.ns admin.ns local.10 local.4 local.8 session_cache_2.0 session_cache_2.4 session_cache_2.8 session_cache_3.2 session_cache_3.6 storage.bson diagnostic.data local.11 local.5 local.9 session_cache_2.1 session_cache_2.5 session_cache_2.ns session_cache_3.3 session_cache_3.7 _tmp local.0 local.2 local.6 local.ns session_cache_2.2 session_cache_2.6 session_cache_3.0 session_cache_3.4 session_cache_3.8 [root@lab-1-sessionmgr06 set01e]#

Nota: Ripetere i passaggi 7 e 8 per i membri secondari del sito geo. Qui in laboratorio, i membri sono lab-2-sessionmgr05 e lab-2-sessionmgr06.

Passaggio 9. Dopo aver ripristinato tutti i database secondari (sito locale e geografico), riavviare il servizio mongo sul membro primario.

[root@lab-1-sessionmgr05 ~]# /etc/init.d/sessionmgr-27737 stop stop sessionmgr-27737 (via systemctl): [OK]

Attendere 10 secondi e verificare che lo switch primario sia stato eseguito correttamente.

```
[root@lab-1-sessionmgr06 ~]# mongo --port 27737
MongoDB shell version v3.6.17
connect to: mongodb://127.0.0.1:27737/?gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("ba8e49fa-ad0f-4ac6-8ef8-b4da0a88fe33") }
MongoDB server version: 3.6.17
Server has startup warnings:
2022-03-15T02:54:29.546-0300 I CONTROL [initandlisten]
2022-03-15T02:54:29.546-0300 I CONTROL [initandlisten] ** WARNING: Access control is not enabled
for the database.
2022-03-15T02:54:29.546-0300 I CONTROL [initandlisten] ** Read and write access to data and
configuration is unrestricted.
2022-03-15T02:54:29.546-0300 I CONTROL [initandlisten] **
2022-03-15T02:54:29.546-0300 I CONTROL [initandlisten]
set01e:PRIMARY>
set01e:PRIMARY>
set01e:PRIMARY> show dbs
admin 0.031GB
config 0.031GB
local 5.029GB
session_cache 2.499GB
session_cache_2 2.499GB
session_cache_3 2.499GB
session_cache_4 2.499GB
set01e:PRIMARY> show dbs
admin 0.031GB
config 0.031GB
local 5.029GB
session_cache 2.499GB
session_cache_2 2.499GB
session_cache_3 2.499GB
session_cache_4 2.499GB
```

```
set01e:PRIMARY> rs.status()
{
"set" : "set01e",
"date" : ISODate("2022-03-15T06:13:19.991Z"),
"myState" : 1,
"term" : NumberLong(36),
"syncingTo" : "",
"syncSourceHost" : "",
"syncSourceId" : -1,
"heartbeatIntervalMillis" : NumberLong(2000),
"optimes" : {
"lastCommittedOpTime" : {
"ts" : Timestamp(1647324799, 335),
"t" : NumberLong(36)
},
"readConcernMajorityOpTime" : {
"ts" : Timestamp(1647324799, 335),
"t" : NumberLong(36)
},
"appliedOpTime" : {
"ts" : Timestamp(1647324799, 338),
"t" : NumberLong(36)
},
"durableOpTime" : {
"ts" : Timestamp(0, 0),
"t" : NumberLong(-1)
}
},
"members" : [
{
"_id" : 0,
"name" : "lab-2-sessionmgr06:27737",
"health" : 1,
"state" : 2,
"stateStr" : "SECONDARY",
"uptime" : 486,
"optime" : {
"ts" : Timestamp(1647324799, 94),
"t" : NumberLong(36)
},
"optimeDurable" : {
"ts" : Timestamp(0, 0),
"t" : NumberLong(-1)
},
"optimeDate" : ISODate("2022-03-15T06:13:19Z"),
"optimeDurableDate" : ISODate("1970-01-01T00:00:00Z"),
"lastHeartbeat" : ISODate("2022-03-15T06:13:19.267Z"),
"lastHeartbeatRecv" : ISODate("2022-03-15T06:13:18.270Z"),
"pingMs" : NumberLong(0),
"lastHeartbeatMessage" : "",
"syncingTo" : "lab-1-sessionmgr06:27737",
"syncSourceHost" : "lab-1-sessionmgr06:27737",
"syncSourceId" : 4,
"infoMessage" : "",
"configVersion" : 8
},
{
"_id" : 1,
"name" : "lab-1-sessionmgr05:27737",
"health" : 1,
"state" : 2,
"stateStr" : "SECONDARY",
"uptime" : 885,
"optime" : {
```

```
"ts" : Timestamp(1647324799, 96),
"t" : NumberLong(36)
},
"optimeDurable" : {
"ts" : Timestamp(0, 0),
"t" : NumberLong(-1)
},
"optimeDate" : ISODate("2022-03-15T06:13:19Z"),
"optimeDurableDate" : ISODate("1970-01-01T00:00:00Z"),
"lastHeartbeat" : ISODate("2022-03-15T06:13:19.270Z"),
"lastHeartbeatRecv" : ISODate("2022-03-15T06:13:18.270Z"),
"pingMs" : NumberLong(0),
"lastHeartbeatMessage" : "",
"syncingTo" : "lab-1-sessionmgr06:27737",
"syncSourceHost" : "lab-1-sessionmgr06:27737",
"syncSourceId" : 4,
"infoMessage" : "",
"configVersion" : 8
},
{
"_id" : 2,
"name" : "lab-1-arb-sessmgr15:27737",
"health" : 1,
"state" : 7,
"stateStr" : "ARBITER",
"uptime" : 1130,
"lastHeartbeat" : ISODate("2022-03-15T06:13:19.240Z"),
"lastHeartbeatRecv" : ISODate("2022-03-15T06:13:18.856Z"),
"pingMs" : NumberLong(0),
"lastHeartbeatMessage" : "",
"syncingTo" : "",
"syncSourceHost" : "",
"syncSourceId" : -1,
"infoMessage" : "",
"configVersion" : 8
},
{
"_id" : 3,
"name" : "lab-1-sessionmgr05:27737",
"health" : 0,
"state" : 8,
"stateStr" : "(not reachable/healthy)",
"uptime" : 0,
"optime" : {
"ts" : Timestamp(0, 0),
"t" : NumberLong(-1)
},
"optimeDurable" : {
"ts" : Timestamp(0, 0),
"t" : NumberLong(-1)
},
"optimeDate" : ISODate("1970-01-01T00:00:00Z"),
"optimeDurableDate" : ISODate("1970-01-01T00:00:00Z"),
"lastHeartbeat" : ISODate("2022-03-15T06:13:19.299Z"),
"lastHeartbeatRecv" : ISODate("2022-03-15T06:11:58.086Z"),
"pingMs" : NumberLong(0),
"lastHeartbeatMessage" : "Connection refused",
"syncingTo" : "",
"syncSourceHost" : "",
"syncSourceId" : -1,
"infoMessage" : "",
"configVersion" : -1
},
{
```

```
"_id" : 4,
"name" : "lab-1-sessionmgr06:27737",
"health" : 1,
"state" : 1,
"stateStr" : "PRIMARY",
"uptime" : 1130,
"optime" : {
"ts" : Timestamp(1647324799, 338),
"t" : NumberLong(36)
},
"optimeDate" : ISODate("2022-03-15T06:13:19Z"),
"syncingTo" : "",
"syncSourceHost" : "",
"syncSourceId" : -1,
"infoMessage" : "",
"electionTime" : Timestamp(1647324719, 72),
"electionDate" : ISODate("2022-03-15T06:11:59Z"),
"configVersion" : 8,
"self" : true,
"lastHeartbeatMessage" : ""
}
],
"ok" : 1,
"operationTime" : Timestamp(1647324799, 338),
"$clusterTime" : {
"clusterTime" : Timestamp(1647324799, 338),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
"keyId" : NumberLong(0)
ł
}
}
```

Passaggio 10. Riavviare il servizio mongo su lab-1-sessionmgr05, che era il membro primario in precedenza.

```
[root@lab-1-sessionmgr05 ~]# /etc/init.d/sessionmgr-27737 start
Starting sessionmgr-27737 (via systemctl): [ OK ]
```

Passaggio 11. Avviare aido_client su tutti i membri di replica del set di repliche set01e interrotto nel passaggio 2.