
cnSGW-C Rolling Software Update

• Feature Summary and Revision History, on page 1
• Introduction, on page 1
• Updating cnSGW-C, on page 2

Feature Summary and Revision History

Summary Data
Table 1: Summary Data

cnSGW-CApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Not ApplicableFeature Default Setting

Not ApplicableRelated Documentation

Revision History
Table 2: Revision History

ReleaseRevision Details

2021.02.0First introduced.

Introduction
The cnSGW-C has a three-tier architecture consisting of Protocol, Service, and Session. Each tier includes a
set of microservices (pods) for a specific functionality. Within these tiers, there exists a Kubernetes Cluster
comprising of Kubernetes (K8s) master, and worker nodes (including Operation and Management (OAM)
nodes).

cnSGW-C Rolling Software Update
1

For high availability and fault tolerance, a minimum of two K8s worker nodes are configured for each tier.
You can have multiple replicas for each worker node. Kubernetes orchestrates the pods using the StatefulSets
controller. The pods require a minimum of two replicas for fault tolerance.

The following figure depicts cnSGW-C K8s cluster with 12 nodes.

• Three master nodes

• Three OAM worker nodes

• Two Protocol worker nodes

• Two Service worker nodes

• Two Session (data store) worker nodes

Figure 1: cnSGW-C Kubernetes Cluster

The cnSGW-C Kubernetes cluster comprises of the following nodes:

• The OAM worker nodes host the Ops Center pods for configuration management and metrics pods for
statistics and Key Performance Indicators (KPIs).

• The Protocol worker nodes host the cnSGW-C protocol-related pods for service-based interfaces (N11,
N7, N10, N40) and UDP-based protocol interfaces (N4, S5/S8).

• The Service worker nodes host the cnSGW-C application-related pods that perform session management
processing.

• The Session worker nodes host the database-related pods that store subscriber session data.

Updating cnSGW-C
The rolling software update is a process of updating or migrating the build from an older to a newer version
or updating the patch for the prescribed deployment set of application pods.

Rolling update takes place with zero downtime by incrementally updating the pod instances with the new
ones.

cnSGW-C Rolling Software Update
2

cnSGW-C Rolling Software Update
Updating cnSGW-C

The applications must be available when new versions are expected to be deployed with the new build versions
or patches.

Note

Update Scope

The rolling update feature is supported from an older to the newer versions within the same major release.

• Assumptions:When updating, it is assumed that the following has not been changed between the versions:

• Features supported in the old and the new versions.

• Configuration addition, deletion, or modification of the existing CLI behavior.

• Interface change within the peer or across the pods.

• Recommendations:

• Configuration changes are not recommended during the update process.

• All configuration changes should be done after the update process is complete.

• Failure Handling: The system should be downgraded manually to an older healthy build following the
downgrade process for:

• Failure during the process such as crash, and pods deployment failures.

• Failure after the successful update such as new events or procedures.

Rolling Software Update Using the SMI Cluster Manager
The cnSGW-C software update or in-service update procedure utilizes the K8s rolling strategy to update the
pod images. In this strategy, the pods of a StatefulSet are updated sequentially to ensure that the ongoing
process remains unaffected. Initially, a rolling update on a StatefulSet causes a single pod instance to terminate.
A pod with an updated image replaces the terminated pod. This process continues until all the replicas of the
StatefulSet are updated. The terminating pods exit gracefully after competing all the ongoing processes. Other
in-service pods continue to receive and process the traffic to provide a seamless software update. You can
control the software update process through the Ops Center CLI.

Each pod needs a minimum of two pods for high availability. In a worst-case scenario, the processing capacity
of the pod may briefly reduce to 50% while the software update is in-progress.

Note

The following figure illustrates a cnSGW-C rolling update for cnSGW-C REST endpoint pods (two replicas)
on Protocol worker nodes along with cnSGW-C Service pods (three replicas) on Service worker nodes.

cnSGW-C Rolling Software Update
3

cnSGW-C Rolling Software Update
Rolling Software Update Using the SMI Cluster Manager

Figure 2: cnSGW-C Rolling Update

Prerequisites
The prerequisites for upgrading cnSGW-C are:

• All the nodes that include all the pods in the node that are up and running.

• A patch version of the cnSGW-C software.

Major versions do not support rolling update.Note

Trigger rolling update only when the CPU usage of the nodes is less than 50%.Important

cnSGW-C Rolling Software Update
4

cnSGW-C Rolling Software Update
Prerequisites

• Intra-site HA support.

cnSGW-C Health Check

Perform a health check to ensure that all the services are running and the nodes are in the ready state.

To perform health check, use the following configuration:

• Log in to the master node and use the following configuration:

kubectl get pods -n smi
kubectl get nodes
kubectl get pod --all-namespaces -o wide
kubectl get pods -n cnsgw-wsp -o wide
kubectl get pods -n cee-wsp -o wide
kubectl get pods -n smi-vips -o wide
helm list
kubectl get pods -A | wc -l

Make sure that all the services are running and nodes are in the ready state before you proceed.Important

Backing Up the Deployment File

To create a backup configuration, logs, and deployment files, use the following configuration:

1. Log in to the SMI Cluster Manager Node as an Ubuntu user.

2. Create a new directory for deployment.

Example:

test@smicnsgw-cm01:~$ mkdir -p "temp_$(date +'%m%d%Y_T%H%M')" && cd "$_"

3. Back up the working files into the newly created deployment directory.

4. Untar the cnsgw deployment file.

Example:

test@smi1cnsgw01-cm01:~/temp_08072019_T1651$ tar -xzvf cnsgw.2020.01.0-1.SPA.tgz
./
./cnsgw_REL_KEY-CCO_RELEASE.cer
./cisco_x509_verify_release.py
./cnsgw.2020.01.0-1.tar
./cnsgw.2020.01.0-1.tar.signature.SPA
./cnsgw.2020.01.0-1.tar.SPA.README

5. Verify the downloaded image.

Example:

test@smi1cnsgw01-cm01:~/temp_08072019_T1651$ cat cnsgw.2020.01.0-1.tar.SPA.README

Follow the procedure mentioned in the SPA.README file to verify the build before proceeding to the next
step.

Important

cnSGW-C Rolling Software Update
5

cnSGW-C Rolling Software Update
cnSGW-C Health Check

Backing Up the Ops Center Configuration

To back up the Ops Center configurations, use the following configuration:

1. Log in to the SMI Cluster Manager node as an Ubuntu user.

2. Back up the SMI Ops Center configuration to the /home/ubuntu/smiops.backup file, using the following
configuration:

ssh -p <port_number> admin@$(kubectl get svc -n smi | grep
'.*netconf.*<port_number>' | awk '{ print $4 }') "show run | nomore"
> smiops.backup_$(date +'%m%d%Y_T%H%M')

3. Back up the CEEOps Center configuration to the /home/ubuntu/ceeops.backup file, using the following
configuration:

ssh admin@<cee-vip> "show run | nomore" > ceeops.backup_$(date
+'%m%d%Y_T%H%M')

4. Back up the cnSGW-C Ops Center configuration to the /home/ubuntu/cnSGWops.backup file, using
the following configuration:

ssh admin@<cnSGW-vip> "show run | nomore" > cnSGWops.backup_$(date
+'%m%d%Y_T%H%M')

Back Up CEE and cnSGW-C Ops Center Configuration

To back up the CEE and Ops Center configuration from the master node, use the following configuration:

1. Log in to the master node as an Ubuntu user.

2. Create a directory to backup the configuration files, using the following configuration:

mkdir backups_$(date +'%m%d%Y_T%H%M') && cd "$_"

3. Back up the cnSGW-C Ops Center configuration and verify the line count of the backup files, using the
following configuration:

ssh -p <port_number> admin@$(kubectl get svc -n $(kubectl get namespaces
| grep -oP 'cnSGW-(\d+|\w+)') | grep <port_number> | awk '{ print $3
}') "show run | nomore" > cnSGWops.backup_$(date +'%m%d%Y_T%H%M') &&
wc -l cnSGWops.backup_$(date +'%m%d%Y_T%H%M')

Example:

ubuntu@pocnSGW-mas01:~/backups_09182019_T2141$ ssh -p 2024 admin@$(kubectl get svc -n
$(kubectl get namespaces | grep -oP 'cnSGW-(\d+|\w+)') | grep <port_number> | awk '{
print $3 }') "show run | nomore" > cnSGWops.backup_$(date +'%m%d%Y_T%H%M') && wc -l
cnSGWops.backup_$(date +'%m%d%Y_T%H%M')
admin@<ipv4address>'s password: cnSGW-OPS-PASSWORD
334 cnSGWops.backup

4. Back up the CEEOps Center configuration and verify the line count of the backup files, using the following
configuration:

ssh -p <port_number> admin@$(kubectl get svc -n $(kubectl get namespaces
| grep -oP 'cee-(\d+|\w+)') | grep <port_number> | awk '{ print $3
}') "show run | nomore" > ceeops.backup_$(date +'%m%d%Y_T%H%M') && wc
-l ceeops.backup_$(date +'%m%d%Y_T%H%M')

Example:

cnSGW-C Rolling Software Update
6

cnSGW-C Rolling Software Update
Backing Up the Ops Center Configuration

ubuntu@pocnSGW-mas01:~/backups_09182019_T2141$ ssh -p <port_number> admin@$(kubectl get
svc -n $(kubectl get namespaces | grep -oP 'cee-(\d+|\w+)') | grep <port_number> | awk
'{ print $3 }') "show run | nomore" > ceeops.backup_$(date +'%m%d%Y_T%H%M') && wc -l
ceeops.backup_$(date +'%m%d%Y_T%H%M')
admin@<ipv4address>'s password: CEE-OPS-PASSWORD
233 ceeops.backup

5. Move the SMI Ops Center backup file (from the SMI Cluster Manager) to the backup directory, using
the following configuration:

scp $(grep cm01 /etc/hosts | awk '{ print $1
}'):/home/ubuntu/smiops.backup_$(date +'%m%d%Y_T%H%M') .

Example:

ubuntu@pocnSGW-mas01:~/backups_09182019_T2141$ scp $(grep cm01 /etc/hosts | awk '{ print
$1 }'):/home/ubuntu/smiops.backup_$(date +'%m%d%Y_T%H%M') .
ubuntu@<ipv4address>'s password: SMI-CM-PASSWORD
smiops.backup 100% 9346 22.3MB/s

00:00

6. Verify the line count of the backup files.

Example:

ubuntu@pocnSGW-mas01:~/backups_09182019_T2141$ wc -l *
233 ceeops.backup
334 cnSGWops.backup
361 smiops.backup
928 total

Staging a New cnSGW-C Image

To stage a new cnSGW-C image before initiating the update, use the following configuration:

1. Download and verify the new cnSGW-C image.

2. Log in to the SMI Cluster Manager node as an Ubuntu user.

3. Copy the image to the uploads directory.

sudo mv <cnSGW_new_image.tar> /data/software/uploads

The SMI uses the new image present in the uploads directory to update.Note

4. Verify whether the image is picked up by the SMI for processing from the uploads directory.

sleep 30; ls /data/software/uploads

Example:

ubuntu@pocnSGW-cm01:~/temp_08072019_T1651$ sleep 30; ls /data/software/uploads
ubuntu@pocnSGW-cm01:~/temp_08072019_T1651$

5. Verify whether the images were successfully picked up and processed.

Example:

auser@unknown:$ sudo du -sh /data/software/packages/*
1.6G /data/software/packages/cee.2019.07
5.3G /data/software/packages/cnSGW.2019.08-04
16K /data/software/packages/sample

cnSGW-C Rolling Software Update
7

cnSGW-C Rolling Software Update
Staging a New cnSGW-C Image

The SMI must unpack the images into the packages directory successfully to complete the staging.Note

Triggering the Rolling Software Upgrade
cnSGW-C utilizes the SMI Cluster Manager to perform a rolling software update.

To update cnSGW-C using SMI Cluster Manager, use the following configurations:

Before you begin, ensure that cnSGW-C is up and running with the current version of the software.Important

1. Log in to the SMI Cluster Manager Ops Center.

2. Download the latest tarall from the URL.

software-packages download url

NOTES:

• software-packages download url—Specifies the software packages to be downloaded through
HTTP/HTTPS.

Example:
SMI Cluster Manager# software-packages download <url>

3. Verify whether the tarall is loaded.

software-packages list

NOTES:

• software-packages list —Specifies the list of available software packages.

Example:
SMI Cluster Manager# software-packages list
[cnSGW-2019-08-21]
[sample]

4. Update the product repository URL with the latest version of the product chart.

If the repository URL contains multiple versions, the Ops Center automatically selects the latest version.Note

configure
cluster cluster_name

ops-centers app_name cnSGW_instance_name

repository url

exit
exit

Example:

cnSGW-C Rolling Software Update
8

cnSGW-C Rolling Software Update
Triggering the Rolling Software Upgrade

SMI Cluster Manager# config
SMI Cluster Manager(config)# clusters test2
SMI Cluster Manager(config-clusters-test2)# ops-centers cnSGW data
SMI Cluster Manager(config-ops-centers-cnSGW/data)# repository <url>
SMI Cluster Manager(config-ops-centers-cnSGW/data)# exit
SMI Cluster Manager(config-clusters-test2)# exit

5. To update to the latest version of the product chart, run the cluster sync command using the following
command:

clusters cluster_name actions sync run

Example:
SMI Cluster Manager# clusters test2 actions sync run

NOTES:

• cluster —Specifies the K8s cluster.

• cluster_name —Specifies the name of the cluster.

• ops-centers app_name instance_name —Specifies the product Ops Center and instance. app_name is
the application name. instance_name is the name of the instance.

• repository url—Specifies the local registry URL for downloading the charts.

• actions —Specifies the actions performed on the cluster.

• sync run —Triggers the cluster synchronization.

• The cluster synchronization updates the cnSGW-C Ops Center, which in turn updates the application
pods (through helm sync command) one at a time automatically.

• When you trigger rolling upgrade on a specific pod, the cnSGW-C avoids routing new calls to that pod.

• The cnSGW-C honors in-progress call by waiting for 30 seconds before restarting the pod where rolling
upgrade is initiated. Also, the cnSGW-C establishes all the in-progress calls completely within 30 seconds
during the upgrade period (maximum call-setup time is 10 seconds).

Important

Monitoring the Update Procedure
To monitor the status update through SMI Cluster Manager Ops Center, use the following configurations:

config
clusters cluster_name actions sync run debug true
clusters cluster_name actions sync logs
monitor sync-logs cluster_name

clusters cluster_name actions sync status
exit

Example:

SMI Cluster Manager# clusters test1 actions sync run
SMI Cluster Manager# clusters test1 actions sync run debug true
SMI Cluster Manager# clusters test1 actions sync logs

cnSGW-C Rolling Software Update
9

cnSGW-C Rolling Software Update
Monitoring the Update Procedure

SMI Cluster Manager# monitor sync-logs test1
SMI Cluster Manager# clusters test1 actions sync status

NOTES:

• clusters cluster_name—Specifies the information about the nodes to be deployed. cluster_name is the
name of the cluster.

• actions—Specifies the actions performed on the cluster.

• sync run—Triggers the cluster synchronization.

• sync logs—Shows the current cluster synchronization logs.

• sync status —Shows the current status of the cluster synchronization.

• debug true—Enters the debug mode.

• monitor sync logs—Monitors the cluster synchronization process.

You can view the pod details after the upgrade through the CEE Ops Center. For more information on pod
details, see Viewing the Pod Details, on page 10 section.

Important

Viewing the Pod Details
To view the details of the current pods through CEE Ops Center, use the following command in the CEE Ops
Center CLI:

cluster pods instance_name pod_name detail

NOTES:

• cluster pods—Specifies the current pods in the cluster.

• instance_name—Specifies the name of the instance.

• pod_name—Specifies the name of the pod.

• detail—Displays the details of the specified pod.

The following example displays the details of the pod named alertmanager-0 in the cnSGW-data instance.

Example:

cee# cluster pods cnSGW-data alertmanager-0 detail
details apiVersion: "v1"
kind: "Pod"
metadata:
annotations:
alermanager.io/scrape: "true"
cni.projectcalico.org/podIP: "<ipv4address/subnet>"
config-hash: "5532425ef5fd02add051cb759730047390b1bce51da862d13597dbb38dfbde86"

creationTimestamp: "2020-02-26T06:09:13Z"
generateName: "alertmanager-"
labels:
component: "alertmanager"
controller-revision-hash: "alertmanager-67cdb95f8b"
statefulset.kubernetes.io/pod-name: "alertmanager-0"

name: "alertmanager-0"

cnSGW-C Rolling Software Update
10

cnSGW-C Rolling Software Update
Viewing the Pod Details

namespace: "cnSGW"
ownerReferences:
- apiVersion: "apps/v1"
kind: "StatefulSet"
blockOwnerDeletion: true
controller: true
name: "alertmanager"
uid: "82a11da4-585e-11ea-bc06-0050569ca70e"

resourceVersion: "1654031"
selfLink: "/api/v1/namespaces/cnSGW/pods/alertmanager-0"
uid: "82aee5d0-585e-11ea-bc06-0050569ca70e"

spec:
containers:
- args:
- "/alertmanager/alertmanager"
- "--config.file=/etc/alertmanager/alertmanager.yml"
- "--storage.path=/alertmanager/data"
- "--cluster.advertise-address=$(POD_IP):6783"
env:
- name: "POD_IP"
valueFrom:
fieldRef:
apiVersion: "v1"
fieldPath: "status.podIP"

image: "<path_to_docker_image>"
imagePullPolicy: "IfNotPresent"
name: "alertmanager"
ports:
- containerPort: 9093
name: "web"
protocol: "TCP"

resources: {}
terminationMessagePath: "/dev/termination-log"
terminationMessagePolicy: "File"
volumeMounts:
- mountPath: "/etc/alertmanager/"
name: "alertmanager-config"

- mountPath: "/alertmanager/data/"
name: "alertmanager-store"

- mountPath: "/var/run/secrets/kubernetes.io/serviceaccount"
name: "default-token-kbjnx"
readOnly: true

dnsPolicy: "ClusterFirst"
enableServiceLinks: true
hostname: "alertmanager-0"
nodeName: "for-smi-cdl-1b-worker94d84de255"
priority: 0
restartPolicy: "Always"
schedulerName: "default-scheduler"
securityContext:
fsGroup: 0
runAsUser: 0

serviceAccount: "default"
serviceAccountName: "default"
subdomain: "alertmanager-service"
terminationGracePeriodSeconds: 30
tolerations:
- effect: "NoExecute"
key: "node-role.kubernetes.io/oam"
operator: "Equal"
value: "true"

- effect: "NoExecute"
key: "node.kubernetes.io/not-ready"
operator: "Exists"

cnSGW-C Rolling Software Update
11

cnSGW-C Rolling Software Update
Viewing the Pod Details

tolerationSeconds: 300
- effect: "NoExecute"
key: "node.kubernetes.io/unreachable"
operator: "Exists"
tolerationSeconds: 300

volumes:
- configMap:

defaultMode: 420
name: "alertmanager"

name: "alertmanager-config"
- emptyDir: {}
name: "alertmanager-store"

- name: "default-token-kbjnx"
secret:
defaultMode: 420
secretName: "default-token-kbjnx"

status:
conditions:
- lastTransitionTime: "2020-02-26T06:09:02Z"
status: "True"
type: "Initialized"

- lastTransitionTime: "2020-02-26T06:09:06Z"
status: "True"
type: "Ready"

- lastTransitionTime: "2020-02-26T06:09:06Z"
status: "True"
type: "ContainersReady"

- lastTransitionTime: "2020-02-26T06:09:13Z"
status: "True"
type: "PodScheduled"

containerStatuses:
- containerID: "docker://821ed1a272d37e3b4c4c9c1ec69b671a3c3fe6eb4b42108edf44709b9c698ccd"

image: "<path_to_docker_image>"
imageID: "docker-pullable://<path_to_docker_image>"
lastState: {}
name: "alertmanager"
ready: true
restartCount: 0
state:
running:
startedAt: "2020-02-26T06:09:05Z"

hostIP: "<host_ipv4address>"
phase: "Running"
podIP: "<pod_ipv4address>"
qosClass: "BestEffort"
startTime: "2020-02-26T06:09:02Z"

cee#

Rolling Software Update on Non-SMI Cluster
To configure the helm repository, use the following configuration:

• Log in to cnSGW-C Ops Center and use the following configuration:
config
helm default-repository cn
helm repository cn
access-token
smf-deployer.gen:AKCp5ekcX7DcBhuAmMZYfGLaHvH3E4Syr9TQDp1gjzcSjYrqsrGbXSYs5X2XYij3d9n9VfWQe

url <old-build/new-build>
exit

cnSGW-C Rolling Software Update
12

cnSGW-C Rolling Software Update
Rolling Software Update on Non-SMI Cluster

Validating the Update

The health check, current helm charts, and subscriber/peer/session information help in understanding whether
the rolling update process is successful.

To validate the update, use the following steps:

1. All pods that are deployed should be in the running state before and after an update.
kubectl get pods -n cn

2. Helm charts should reflect charts from the appropriate build.

To check the helm charts currently deployed, use the following command in the cnSGW-C Ops Center.
show helm charts
show running-config helm repository

3. Check subscriber, session, or peer information for retention validation, using the following configuration:
show subscriber namespace sgw count all
show peers all

cnSGW-C Rolling Software Update
13

cnSGW-C Rolling Software Update
Rolling Software Update on Non-SMI Cluster

cnSGW-C Rolling Software Update
14

cnSGW-C Rolling Software Update
Rolling Software Update on Non-SMI Cluster

	cnSGW-C Rolling Software Update
	Feature Summary and Revision History
	Summary Data
	Revision History

	Introduction
	Updating cnSGW-C
	Rolling Software Update Using the SMI Cluster Manager
	Prerequisites
	cnSGW-C Health Check
	Backing Up the Deployment File
	Backing Up the Ops Center Configuration
	Back Up CEE and cnSGW-C Ops Center Configuration
	Staging a New cnSGW-C Image

	Triggering the Rolling Software Upgrade
	Monitoring the Update Procedure
	Viewing the Pod Details

	Rolling Software Update on Non-SMI Cluster

