Cisco SYSTEMS

Cisco Mobile Wireless Fault
Mediator 2.0 - Java APl Guide

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

Text Part Number: OL-1279-01

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT
NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE
PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR
APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION
PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO
LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A
digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the
equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used
in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is
likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency
energy. If it is not installed in accordance with Cisco’s installation instructions, it may cause interference with radio and television reception. This
equipment has been tested and found to comply with the limits for a Class B digital device in accordance with the specifications in part 15 of the FCC rules.
These specifications are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee
that interference will not occur in a particular installation.

Modifying the equipment without Cisco’s written authorization may result in the equipment no longer complying with FCC requirements for Class A or
Class B digital devices. In that event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any
interference to radio or television communications at your own expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment
or one of its peripheral devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more
of the following measures:

« Turn the television or radio antenna until the interference stops.
* Move the equipment to one side or the other of the television or radio.
* Move the equipment farther away from the television or radio.

* Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio
are on circuits controlled by different circuit breakers or fuses.)

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of
UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

Mobile Wireless Fault Mediator (MWFM) architecture is based on RiverSoft NMOS(tm) and RiverSoft Fault Manager technologies adapted to
Cisco's Mobile Wireless environment.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED
“AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL
DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR
INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AccessPath, AtmDirector, Browse with Me, CCIP, CCSI, CD-PAC, CiscoLink, the Cisco Powered Network logo, Cisco Systems Networking Academy,
the Cisco Systems Networking Academy logo, Fast Step, Follow Me Browsing, FormShare, FrameShare, GigaStack, IGX, Internet Quotient, IP/VC, iQ
Breakthrough, iQ Expertise, iQ FastTrack, the iQ Logo, iQ Net Readiness Scorecard, MGX, the Networkers logo, Packet, RateMUX, ScriptBuilder,
ScriptShare, SlideCast, SMARTnet, TransPath, Unity, Voice LAN, Wavelength Router, and WebViewer are trademarks of Cisco Systems, Inc.; Changing
the Way We Work, Live, Play, and Learn, Discover All That’s Possible, and Empowering the Internet Generation, are service marks of Cisco Systems,
Inc.; and Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCNA, CCNP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco 10S, the Cisco
10S logo, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Enterprise/Solver, EtherChannel, EtherSwitch, FastHub, FastSwitch, IOS, IP/TV,
LightStream, MICA, Network Registrar, PIX, Post-Routing, Pre-Routing, Registrar, StrataView Plus, Stratm, SwitchProbe, TeleRouter, and VCO are
registered trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other countries.

All other trademarks mentioned in this document or Web site are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (0106R)

Cisco Mobile Wireless Fault Mediator 2.0 - Java API Guide
Copyright © 2001, Cisco Systems, Inc.
All rights reserved.

RiverSoft

A g

| P

cuapTer 1 Introduction 11
What is contained in this guide? 11
Who is this guide for? 1-2
Where should | start to read this book? 1-2
Why use an Application Programming Interface? 1-2
Styles used in this guide 1-3
Note on command line examples 1-3
What typographic conventions and symbols mean 1-3

Summary 1-3

CHAPTER 2 MWFM TIBCO/Rendezvous 2-1
How TIB/Rendezvous is utilized within MWFM 2-1
The Rendezvous process 2-1
How to create a new rvd session 2-2
Initializing a rvd session via the NMOS Java APl 2-2
How to create a new rva session ~ 2-2
Initializing a rva session via the NMOS Java APl 2-3

Summary 2-3

CHAPTER 3 Examples 31

The NMOS Java API test application ~ 3-1

Starting a Rendezvous rvd session ~ 3-1
Obtaining all class records stored in riv_class ~ 3-4

Querying riv_model 3-6
Inserting an entry into riv_model 3-10
Modifying an entry in riv_model 3-11
Deleting an entry from riv_model 3-12
Adding and removing a listener for updates from riv_class 3-13

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .“

Il Contents

The NMOS Java API CRivClientHelper test applications 3-15
Initializing the application, the Rendezvous session and the CRivClientHelper object ~ 3-15
Obtaining all event records from riv_f_amos 3-16
Obtaining event records from riv_f_amos that match a list of criteria 3-17
Clearing an event from riv_f_amos 3-18
Obtaining all users from riv_auth ~ 3-18
Inserting a new user into riv_auth ~ 3-20
Inserting a new user profile into riv_auth ~ 3-21
Modifying an existing profile held in riv_auth ~ 3-23
Determining if a user has permission to clear an event 3-24
Closing the session 3-24

Summary 3-24

CHAPTER 4 The NMOS Java API Classes 4-1

Chapter organization ~ 4-1
Class Java—The name of the class. 4-1
Hierarchy 4-1
Description 4-1
See Also 41
Field/Constructor/Method Summary 4-2
Field/Constructor/Method Detail ~ 4-2
Index 4-2
Summary of classes 4-3
Class/Interface reference pages 4-6
Class ASCII_CharStream 4-8
Hierarchy 4-8
Description 4-8
See Also 4-8
Field summary 4-8
Constructor summary 4-9
Method summary 4-9

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
“. oL-1279-01 |

Class CRivASN1Address 4-10

Hierarchy 4-10
Description 4-10

Field summary 4-11
Constructor summary 4-11
Method summary 411
Field detail 412
Constructor detail 4-12
Method detail ~ 4-14

Class CRivAtom 4-16

Hierarchy 4-16
Description 4-17

See Also 417
Constructor summary 4-17
Method summary 4-18
Constructor detail ~ 4-19
Method detail 4-21
Class CRivClient 4-26
Hierarchy 4-26
Description ~ 4-27

See Also 4-27

Field summary 4-27
Constructor summary — 4-27
Method summary 4-28
Field detail 4-29
Constructor detail 4-29
Method detail 4-29

Class CRivClientHelper ~ 4-37

Hierarchy 4-37
Description ~ 4-37

See Also 4-37
Constructor summary 4-38
Method summary 4-38
Constructor detail 4-39
Method detail ~ 4-40

Contents W

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Il Contents

Class CRivClientInterface 4-55
Hierarchy 4-55
Description 4-55
Inner class summary 4-55
Constructor summary ~ 4-55
Method summary 4-56
Inner class detail ~ 4-56
Constructor detail ~ 4-57
Method detail ~ 4-58

Inner Class CRivClientInterface.RCIRecordListener 4-61
Hierarchy 4-61
Description 4-61
Enclosing Class ~ 4-61
Constructor summary 4-61
Method summary 4-62
Constructor detail ~ 4-62
Method detail ~ 4-62

Inner Class CRivClientinterface.RCITimerCallback 4-63
Hierarchy 4-63
Description 4-63
Enclosing Class 4-64
Constructor summary 4-64
Method summary 4-64
Constructor detail ~ 4-64
Method detail ~ 4-65

Class CRivDbEntity ~ 4-65
Hierarchy 4-65
Description 4-65
Constructor summary 4-65
Method summary 4-66
Constructor detail ~ 4-66
Method detail ~ 4-66

Class CRivDummyCallback 4-67
Hierarchy 4-67
Description 4-68
Constructor summary 4-68
Method summary 4-68
Constructor detail ~ 4-68
Method detail ~ 4-69

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
“. oL-1279-01 |

Contents W

Class CRivEvalClause 4-69
Hierarchy 4-69
Description 4-70
Constructor summary 4-70
Method summary 4-70
Constructor detail 4-71
Method detail 4-71

Class CRivException 4-72
Hierarchy 4-72
Description 4-72
All Implemented Interfaces 4-72
See Also 4-72
Field summary 4-73
Constructor summary 4-74
Method summary 4-74
Field detail ~ 4-74
Constructor detail ~ 4-80
Method detail ~ 4-81

Inner Class CRivException.RivErrRec 4-82
Hierarchy 4-82
Description 4-82
Enclosing Class 4-82
Constructor summary ~ 4-83
Method summary 4-83
Constructor detail 4-83
Method detail ~ 4-84

Class CRivExpr 4-84
Hierarchy 4-84
Description 4-85
See Also 4-85
Field summary 4-85
Constructor summary 4-86
Method summary 4-86
Field detail ~ 4-86
Constructor detail ~ 4-87
Method detail ~ 4-89

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .“

Il Contents

Class CRivFilter 4-90
Hierarchy 4-90
Description 4-90
See Also 4-90

Constructor summary ~ 4-91

Method summary 4-91
Constructor detail ~ 4-92
Method detail ~ 4-93

Class CRivFilterParser 4-96
Hierarchy 4-96
Description 4-96
See Also 4-9%

Constructor summary ~ 4-97

Method summary 4-97

Constructor detail ~ 4-97

Method detail ~ 4-98
Class CRivHashVector ~ 4-100

Hierarchy 4-100

All Implemented Interfaces

See Also 4-100

4-100

Constructor summary 4-100

Method summary ~ 4-101
Constructor detail ~ 4-102
Method detail ~ 4-102

Class CRivMonitorFilterParser
Description 4-107
See Also 4-107

4-107

Constructor summary 4-108

Method summary 4-108
Constructor detail 4-108
Method detail 4-108

Class CRivQueryAtom 4-109
Description 4-109
See Also 4-109

Constructor summary 4-109

Constructor detail 4-111
Method detail 4-112

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

Class CRivRecord 4-114
Description 4-114

See Also 4-115
Constructor summary ~ 4-115
Method summary 4-115
Constructor detail ~ 4-116
Method detail ~ 4-117

Class CRivROMPer 4-122

Hierarchy 4-122
Description 4-123

See Also 4123

Field summary 4-123
Constructor summary 4-124
Method summary 4-124
Field detail ~ 4-125
Constructor detail ~ 4-127
Method detail ~ 4-127

Class CRivRvDataHandler 4-135

Description 4-135

See Also 4-135

Field summary 4-135
Constructor summary 4-136
Method summary 4-136
Field detail ~ 4-136
Constructor detail ~ 4-137
Method detail ~ 4-137

Class CRivTransport ~ 4-141

Description 4-141

Field summary 4-141
Constructor summary ~ 4-142
Method summary 4-142
Field detail ~ 4-143
Constructor detail ~ 4-145
Method detail ~ 4-145

Contents W

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Il Contents

Class CRivVarBind 4-150
Description 4-150
See Also 4-150
Constructor summary 4-151
Method summary 4-151
Constructor detail ~ 4-151
Method detail ~ 4-153

Class CRivVarBindList ~ 4-154
Hierarchy 4-154
Description 4-155
See Also 4-155
Constructor summary ~ 4-155
Constructor detail ~ 4-158
Method detail ~ 4-159

Interface IRivAlgebraic 4-175
Description 4-175
Hierarchy 4-175
Field summary 4-175
Field detail 4-175

Interface IRivConstants ~ 4-176
All known implementing classes 4-176
Description 4-176
Hierarchy 4-176
Seealso 4-176
Field summary 4-177
Field detail ~ 4-180
Interface IRivDataType 4-200
All known implementing classes 4-200
Description 4-200
Hierarchy 4-200
See Also 4-200
Field summary 4-201
Field detail ~ 4-201

Interface IRivNodeType 4-203
Description 4-203
Hierarchy 4-203
Field summary 4-203
Field detail ~ 4-203

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
n. oL-1279-01 |

Interface IRivOper 4-204

All Known Implementing Classes
Description 4-204

Hierarchy 4-204

Field summary 4-205

Field detail ~ 4-205

Interface IRivRecordListener 4-209

Description 4-209
Hierarchy 4-209
Method summary 4-209
Method detail ~ 4-209

Interface IRivSubjects 4-210

Description 4-210
Hierarchy 4-210
Field summary 4-210
Field detail ~ 4-211

Interface IRivTimerCallback 4-217

Description 4-217
Hierarchy 4-217
Method summary 4-217
Method detail ~ 4-217

Class ParseException 4-218

Description 4-218

See Also 4-218

Field summary 4-219
Constructor summary — 4-219
Field detail ~ 4-219
Constructor detail ~ 4-220
Method detail ~ 4-222

Class RivFilter 4-222

Description 4-223

See Also 4-223

Field summary 4-223
Constructor summary — 4-223
Method summary 4-223
Constructor Detail ~ 4-225

Contents W

4-204

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Il Contents

Interface RivFilterConstants 4-225
Description ~ 4-225
All Known Implementing Classes: 4-225
Field summary 4-226

Class RivFilterTokenManager — 4-227
Description 4-227
See Also 4-227
Field summary 4-228
Constructor summary 4-228
Method summary 4-228

Class RivMonitorFilter ~ 4-228
Description 4-229
See Also 4-229
Field summary 4-229
Constructor summary 4-229
Method summary 4-230
Constructor detail ~ 4-231

Interface RivMonitorFilterConstants ~ 4-232
Description 4-232
Hierarchy 4-232
All Known Implementing Classes ~ 4-232
See Also 4-232

Class RivMonitorFilterTokenManager — 4-234
Hierarchy 4-234
Description 4-234
See Also 4-234
Field summary 4-235
Constructor summary ~ 4-235
Method summary 4-235

Class Token 4-235
Description 4-236
See Also 4-236
Field summary 4-236
Constructor summary 4-236
Method summary 4-236
Field detail ~ 4-237
Constructor detail ~ 4-238
Method detail ~ 4-239

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

Class TokenMgrError 4-239

Description 4-240
See Also 4-240

Constructor summary 4-240

Method summary 4-240
Method detail ~ 4-240

Class/Interface index 4-241

Class ASCII_CharStream 4-242
Class CRivVASN1Address 4-243
Class CRivAtom 4-243

Class CRivClient 4-244

Class CRivClientHelper — 4-244
Class CRivClientinterface 4-245
Class CRivClientinterface.RCIRecordlistener — 4-245
Class CRivClientinterface.RCITimerCallback — 4-246
Class CRivDbEntity — 4-246

Class CRivDummyCallBack 4-246
Class CRivEvalClause — 4-246

Class CRivException — 4-241

Class CRivException.RivErrRec — 4-247
Class CRivExpr 4-248

Class CRivFilter —4-248

Class CRivFilterParser — 4-248

Class CRivHashVector — 4-249

Class CRivMonitorFilterParser — 4-249
Class CRivQueryAtom 4-249

Class CRivRecord 4-250

Class CRivROMPer 4-250

Class CRivRvDataHandler — 4-251
Class CRivIransport 4-251

Class CRivVarBind 4-252

Class CRivVarBindList 4-252
Interface IRivAlgebraic 4-253
Interface /RivConstants — 4-254
Interface /RivDatalype 4-255
Interface IRivNodeType 4-255
Interface IRivOper 4-256

Interface IRivRecordlistener — 4-256
Interface IRivSubjects 4-256
Interface /RiviimerCallback 4-257

[oL-1279-01

Contents W

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Il Contents

CHAPTER D

Class ParseException 4-257

Class RivFilter 4-251

Interface RivFilterConstants — 4-258

Class RivFilterTokenManager — 4-259

Class RivMonitorFilter — 4-259

Interface RivMonitorFilterConstants — 4-260
Class RivMonitorFilterTokenManager — 4-261
Class Token 4-261

Class TokenMgrError ~ 4-261

Summary 4-261

Differences hetween Version 2 and
NMOS Java APl's 51

MWEFM NMOS Java APl replacements ~ 5-1

The orv_web.kernel package 5-2

V2 — orv_web.kernel.OrvASN1Address 5-2

V2—orv_web kernel.OrvAtom 5-3
V2—orv_web.kernel.OrvCryptograph 5-5
V2—orv_web.kernel.OrvEvRec 5-5

V2—orv_web.kernel.OrvModellnstance 5-7

V2—orv_web.kernel.OrvPollDef 5-8
V2—orv_web.kernel.OrvWarBind 5-9

The orv_web.network package 5-10
V2—orv_web.network.OrvClient 5-10
V2—orv_web.network.OrvClientinterface
V2—orv_web. network.OrvDataCallback
V2—orv_web. network.OrvProfile 5-15
V2—orv_web. network.OrvTransport 517
V2—orv_web. network.OrvUser ~ 5-18

The orv_web.network.event package 5-19

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

A g

B | &l a |
i | CHAA’TE/“I';‘

»z‘l \

Introduction

This chapter provides an outline of the contents of the Cisco Mobile Wireless Fault

Mediator 2.0 - Java API Guide documentation. An overview of each chapter is provided along with
additional information on Cisco typographic conventions. Finally, we will discuss why you would use
an API as well as the functionality of the NMOS Java API.

What is contained in this guide?

This guide contains a detailed description of the NMOS Java Application Programming Interface (API).
The following table provides a brief summary of the contents of each chapter.

Table 1-1 Chapter Contents

Chapter Description

Introduction Illustrates the styles and conventions used in this
document.

MWFM TIBCO/Rendezvous Introduces the concepts behind Rendezvous and
describes how it is utilized in the MWFM NMOS
Java APL

Examples Provides examples of some NMOS Java API
programming.

The NMOS Java API Classes Provides an overview of the NMOS Java API

followed by a detailed list of all the published
classes, interfaces, fields, constructors, and methods.
Diagrams of class hierarchies are included.

Differences between Version 2 and NMOS Details the differences in packages and classes
Java API’s between the version 2 Java API and the NMOS Java
API. Classes which are superseded, or have become
obsolete are highlighted.

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter1 Introduction |

I What is contained in this guide?

Who is this guide for?

This guide is written for developers and technical services personnel who intend to write applications in
Java that integrate with, or extend, the MWFM NMOS.

Readers should already be familiar with the Java programming language and Unix, as well as the
material in the following documents:

e Cisco Mobile Wireless Fault Mediator 2.0 - Fault Engineering Reference Guide
e Cisco Mobile Wireless Fault Mediator 2.0 - Topology and Platform Modeling Reference Guide

Where should | start to read this book?

Chapter 2 describes the installation process and requirements and can be read independently for that
purpose. Chapter 3 is a recommended starting point for new users of the MWFM NMOS Java API. Users
that are familiar with MWFM and Java can refer to chapter 4 for details of classes.

Why use an Application Programming Interface?

An Application Programming Interface (API) is composed of the calls, subroutines, or software
interrupts that enable programmers to build, customize, or link software applications. Its function is to
enable a, usually, higher-level program to make use of, usually, lower-level services and functions of
another software program. This particular API is used to interface to the core applications in MWFM
and consists of a library of Java classes, fields, constructors, and methods that can be used for this
purpose.

What are the capabilities of the NMOS Java API?

The NMOS Java API enables the user to interface into existing processes, but also to query any databases
that have been set up. Note that in order to query a database, the process that you are trying to access
(e.g. riv_model, riv_class), must be running.

For example, the NMOS Java API could be used in the following instances:
e To query riv_model to get the class name of a device that has generated an event.
e To select all entries in a certain table.
e To show all events with a severity equal to critical.
¢ To insert new entries into a table. For instance, if you wanted to add new classes to riv_class.
¢ To modify entries in databases, such as clearing events.
e To delete entries from databases. For instance, entities could be deleted from riv_model.
e To add listeners to listen for updates.

MWEFM uses TIB®/Rendezvous™ for inter-process communications. This layer can be invisible to users
of this API who only need to provide a domain name.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter1 Introduction

Summary W

Styles used in this guide

Throughout the Cisco Mobile Wireless Fault Mediator 2.0 - Java API Guide we use certain specialized
styles to highlight significant items. In the following sections, we describe how to interpret the meaning
of those styles.

Note on command line examples

Command line examples in this guide use the ‘C’ shell environment.

What typographic conventions and symbols mean

Table 1-2 Typographic conventions and symbols

Typeface or symbol |Meaning Example

Emphasis Signals the public
class/interface/field/constructor |CRivASNI1Address () .

/method being documented.

Code This typeface signals the names |$ cd $SRIV_HOME
of commands, files and
processes; On-screen computer
output.

File Name/Path Denotes file and path names. $RIV_HOME
Used throughout the installation
chapter.

Summary

This chapter outlined the contents of the Cisco Mobile Wireless Fault Mediator 2.0 - Java API Guide.
The next chapter will discuss areas of Rendezvous that are relevant to the MWFM NMOS API.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter1 Introduction |

W Summary

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

A

;j L
CHAPTER .

MWFM TIBCO/Rendezvous

This chapter will detail the aspects of Rendezvous that are important to users of the
Cisco Mobile Wireless Fault Mediator 2.0 - Java API Guide. In particular, we will highlight the
differences between rvd and rva that apply to Java and detail how you create a Rendezvous session.

How TIB/Rendezvous is utilized within MWFM

MWEFM utilizes Rendezvous for inter-process communications. Encapsulated data is transferred across
a network as self-describing messages, allowing for an efficient means of application-to-application
broadcasting. The NMOS Java API also utilizes Rendezvous to query particular databases for relevant
information. However, it should be noted that the classes in the NMOS Java API encapsulate the
functionality provided by the Rendezvous classes, making this layer transparent to the user.

The Rendezvous process

The Rendezvous process that applies to Java is:

e rvd—The TIB/Rendezvous daemon. This is a background process through which all
communications to, or from, a host machine must pass.

e rva—The TIB/Rendezvous agent. This is a background process which supports communication to,
and from, Java applets.

When a Java application tries to initialize a new Rendezvous session, the session will try and connect to
an rvd process that is already running. If such a process does not exist, one is automatically created.

Java applets cannot directly connect to a rvd process, but must connect to a rva process instead. The rva
process, in turn, connects to a rvd process. For security reasons, remote Java applets cannot
automatically start up a rva process if one is not already running, and must connect to an already
established agent process.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter2 MWFM TIBCO/Rendezvous |

I How TIB/Rendezvous is utilized within MWFM

How to create a new rvd session

A rvd session will try to connect to a rvd process with identical parameters, providing such a process has
already been set up and is running. If no such process is available, the rvd session will start one on its
local host computer and then connect to it.

A rvd session cannot automatically start processes on remote computers. If the parameters of a rvd
session specify a remote daemon, then the daemon must already be running before the session attempts
to connect.

Java programs are able to start rvd sessions on the local host computer. If a rvd session had to be started
on a remote computer, this could be done by typing the following on the command line:

rvd

Initializing a rvd session via the NMOS Java API

The NMOS Java API provides the following CRivClient methods to initialize rvd sessions:

e public int rclnitSession () — Initializes a rvd session for an independent Java application. It
supplies null as the default for all three rvd parameters (service, network, and daemon) and
will listen for application connections on TCP port 45001.

e public int rclnitSession (String service, String network, String daemon) -
If a rvd process with these parameters already exists, the Java application connects to it automatically.
Service specifies the service group to communicate with, network specifies the network to use
for this session and daemon instructs the rvd session about how, and where, to find the Rendezvous
daemon to establish communication with.

Please refer to CRivClient documentation for additional information.

How to create a new rva session

Java programs can never start rva sessions automatically as they must connect to an existing rva process.

The Rendezvous agent can be started using the rva command. The rva command line accepts rvd
command parameters, and uses them to start rvd, when appropriate.To start a rva process, you can type
the following on a command line, having previously killed off any existing rvd sessions:

rva -flavor 116

When rva starts, it attempts to connect to an rvd process with identical parameters. If an appropriate rvd
process is not already running, rva starts it automatically. If rvd terminates, rva restarts it automatically.
However, rva can start rvd only on the same computer as it cannot automatically start a remote rvd.

Numerous Java applets can connect to one rva process, and each applet can create several RvSession
connections to rva. A rva process instance connects to rvd only once, with a single session, regardless
of the number of Java sessions that connect to it.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter2 MWFM TIBCO/Rendezvous

Summary W

Initializing a rva session via the NMOS Java API

The NMOS Java API provides the following CRivClient methods to initialize rva sessions:

e public int rcInitSession(String hostname)— Attempts to connect to a rva session for Java applets.
TCP port 7600 is used as the default port. The argument hostname specifies the Rendezvous agent
(rva) to connect to that is running on the computer with this hostname.

e public int rcInitSession(String hostname, int port)— Attempts to connect to a rva session for Java
applets. The Rendezvous agent (rva) will connect to the TCP port specified in the arguments.

Please refer to the CRivClient documentation for additional information.

Summary

This chapter has provided a brief overview of how Rendezvous is utilized within MWFM. We have also
detailed how new Rendezvous sessions are created and the differences between rvd and rva that apply to
Java. The next chapter will work through some examples of the NMOS Java API functionality as well
as the test application that is provided.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter2 MWFM TIBCO/Rendezvous |

W Summary

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

. _ CHA TE“JE‘

Examples

This chapter will work through some NMOS Java API programming examples. The following examples
will enable you to: start a Rendezvous rvd session, obtain class records stored in riv_class, query
riv_model, insert and modify entries into riv_model, delete an entry from riv_model, and add and remove
a listener for updates from riv_class. The CRivClientHelper test applications have also been provided,
which enable you to, amongst other things, retrieve records from riv_auth, and add new users into
riv_auth.

The NMOS Java API test application

The NMOS Java API includes a Test Application called TestApp.java. The examples from this chapter,
as well as the screen shots, are taken from this test application.

Starting a Rendezvous rvd session

This extract provides an example of how to open a new Rendezvous session to query a MWFM domain.

Connect to a new Rendezvous rvd session using the rclnitSession () method. If you want to connect to
a rvd session that was already running, use the rclnitSession (String service, String network,
String daemon) method.

If successful, the message “The Rendezvous session opened successfully” will appear in the application
window, and enables the items on the data menu.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter3 Examples |

B The NMOS Java API test application

Once you have successfully opened a Rendezvous session, you will see the following:

1 public void initialiseClient ()

2 A

3 ! Make the CRivClient object, with the specified domain name and
latency.

m_Client = new CRivClient (CRivClient.RIV_DEFAULT_ LATENCY,
m_DomainName) ;

4 ! Now try and initalise a rvd session. Check the return value to
see if it opened successfully.

int opened = m Client.rcInitSession() ;

5 ! 5. Make the CRivClientinterface object—this is used as a
convient way to interface with the client.

m_ClientInterface = new CRivClientInterface (m_Client) ;

6 if (opened == CRivException.RIV_OK)

7

8 m_ProgressTextArea.setText (*The Rendezvous session opened” +
“successfully. ”);

9 ! 9-14. Report if successful.
{

10 else

11 {

12 m_ProgressTextArea.setText (*Could not open Rendezvous” +
“session. ”);

13 }

14 }

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter3 Examples

The NMOS Java APl test application

% RiverSoft Test Apphcation _ (O] x|
Session Class Model Timer I

The Rendezvous session opened successiully

DOMAIN NAME :

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter 3

Examples |

B The NMOS Java API test application

Obtaining all class records stored in riv_class

This extract provides an example of how to show all the entries in a riv_class database. The results are

displayed in the application window. The query is done via the CRivClientInterface object.

1 public void showAllClasses ()

2 |

3 if (m_Client != null)

4 {

5 ! Create an instance of the inner class RivClassListener (see

below) so the results from the query can be displayed.
RivClassListener classListener = new RivClassListener() ;
6 ! Make a query on the Cisco class Query subject which is:
“IRivSubjects.RIV_CLASS QUERY SUBJ”
String grySubject = IRivSubjects.RIV_CLASS QUERY SUBJ;
7 ! Construct the OQL query Striing to obtain all the classes
currently held in riv class for this domian.
String gryString = “select * from class.activeClasses;”;

8 ! 8-18. Spend the query to the Client. There is no need to create
CRivDataHandlers, or data processing threads—this is all
handed by the CRivClient interface object.

int rc = m_ClientInterface.rciTimedSendToClient (grySubject,
gryString, m Client.getRCTimeOut (), classListener);

9 if (rc == CRivException.RIV_OK)

10 {

11 m_ProgressTextArea.setText (“Awaiting results from” +

“‘riv_class...”);

12 }

13 else

14 {

15 m_ProgressTextArea.setText (“Failed to send query to” +

“riv class.”);

16 }

17 }

18 |}

19 ! 19-20. An inner class to listen for CRivRecords arriving for

queries from riv class.
class RivClassListener implements IRivRecordListener
20 {

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

| Chapter3

Examples

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

The NMOS Java API test application

21-29. Method will be called when a list of CRivRecords is process
from the transport layer.

public void rrlRivRecordsReceived (CRivRecord[] rivRecs)

m_ProgressTextArea.setText ("Received " + rivRecs.length +
“records from riv_class :\n”);

if (rivRecs != null)
{
int 1i;

for (i = 0; i < rivRecs.length; i++)

CRivRecord classRec = rivRecs[i];

CRivAtom className =
classRec.getRRValueOf ("ClassName") ;

m_ProgressTextArea.append("Class " + className +
\\:\nll) ;

m_ProgressTextArea.append (classRec.toString()) ;

m_ProgressTextArea.append ("\n----------- \n") ;

37-41. Method will be called when the time limit has expired for
records to be received through the Transport Layer from Rendezvous.

public void rrlTimeOutReceived ()

m_ProgressTextArea.setText (“Timed out on response from” +
“riv_class.”) ;

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter3 Examples |
B The NMOS Java API test application
The format of the received records will look like this:
E’#; RiverSoft Test Application [[O] x]
Session Class Model Timer
Received 6 records from riv_class : =
Class Core :
d
ClassMame= '‘Core”,
SuperClass= 5
Dictionary= [rivCore, rivCoreAttributes, rfict 213]; 58
Instantiate= Entity01D like "*"
Extensions= {
I3
Wisuallcon= 5
MenuRules= 0
Menu= 0;
ActionType= 0
I
Clags Fouter:
]
ClassMame= ‘Router’,
SuperClass= '‘Core",
Dictionary= [rivRouterData, rivCiscoRouterData,
Instantiate= Entity0ID="1.3.61.41.32.563.3" 0]
4 | :E:I | }|
DOMAIN MAME :
Querying riv_model
This extract provides an example of how to show all the entries in a riv_model database.
The results are displayed in the application window. This method does not use the
CRivClientInterface object, but uses the CRivClient directly.
1 public void showAllModelData ()
2 {
3 if (m_Client != null)
i {
5 ! Create an instance of the inner class RivModellListener (see
below) so the results from the query can be displayed.\
RivModelListener modellListener = new RivModelListener() ;
Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter3 Examples

The NMOS Java APl test application

6 ! 6-10. Make a CRivRvDataHandler to handle queries to riv_model
if necessary

if (m ModelQryHandler == null)

7 (

8 m_ModelQryHandler = new CRivRvDataHandler
(modelListener) ;

9 }

10 modelListener.setRvDataHandler (m ModelQryHandler) ;

11 ! 11. Make a query on the Cisco Model Query subject which is:

“IRivSubjects.RIV_MODEL QUERY SUBJ”.

String grySubject = IRivSubjects.RIV_MODEL_QUERY SUBJ;

12 ! 12. Construct the OQL query String to obtain all the entities
currently held in riv model for this domain. If we only wanted to
obtain the model records which have a Description field of
“Switch” we could use an OQL query String of: “select * from
master.entityByName” where Description="Switch”.

String gryString = "select * from” +
“master.entityByName;”;

13 | 13-15. Send the query to the Client.
int rc = m_Client.rcTimedSend (grySubject, gryString,
m_Client.getRCTimeOut (), m ModelQryHandler) ;

14 if (rc == CRivException.RIV_OK)

15 {

16 ! 16-24. Kick off data processing in our CRivRvDataHandler.

m_ModelQryHandler.rrdhStartThread() ;

17 m_ProgressTextArea.setText (“Awaiting results from” +
“‘riv_model...”);

18 }

19 else

20 {

21 m_ProgressTextArea.setText (“Failed to send query” +
“to riv_model.”) ;

22 }

23 }

24 }

25 ! 25-27. An inner class to listen for CRivRecords arriving for

queries/updates from riv_model.

class RivModelListener implements IRivRecordListener

26 {

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter3 Examples |
B The NMOS Java API test application
27 private CRivRvDataHandler m RvHandler;
28 ! 28-31. Set the CRivRvDataHandler which will pass the records
onto this listener.
public void setRvDataHandler (CRivRvDataHandler rvCallback)
29 {
30 m_RvHandler = rvCallback;
31 }
32 | 32-46. Method will be called when a list of CRivRecords is
processed from the transport layer
public void rrlRivRecordsReceived (CRivRecord[] rivRecs)
33 {
34 if (rivRecs != null)
35 {
36 if (rivRecs.length == 1)
37 {
38 m_ProgressTextArea.setText (“Received a record from” +
“riv_model :\n”);
39 }
40 else
41 {
42 m_ProgressTextArea.setText (“Received rivRecs.length” +
“records from riv_model:\n”) ;
43 }
44 int i;
45 for (i = 0; i < rivRecs.length; i++)
46 {
47 | 47-55. Display the EntityName field, followed by the whole
CRivRecord.
CRivRecord modelRec = rivRecs[i];
48 CRivAtom entityName = modelRec.getRRValueOf
(“EntityName”) ;
49 m_ProgressTextArea.append (“EntityName” + entityName +
“:\n”) ;
50 m_ProgressTextArea.append (modelRec.toString()) ;
51 m_ProgressTextArea.append ("\n---------------- \am) ¢
52 }
53 }
54 if ((m_ModelQryHandler != null) &&
(m_RvHandler == m ModelQryHandler))
Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter3 Examples

The NMOS Java APl test application

55 {

56 ! 56-59. The query is finished-stop the data Threads.
m_RvHandler.rrdhCancelListener() ;

57 m_RvHandler.rrdhStopThread () ;

58 }

59 |}

The records received will be in the following format:

@ RiverSoft Test Application Hi=] E3
Session Class Model Timer |

Received 214 records from riv_maodel

Ohjectld= 2
EntityMame= 17218253115
Address= [00:EQ:16:82:35:20, 1,
Description= %
EntityType= 2
ClassMame= 'Core’,
EntityQ1D= M58 B 1402 2T 2 2
Status= =
Security= .
RelatedTo= [7z1a41[00110;
Contains= 2
IsActive= ik
CreateTime= 976205607,
ChangeTime= Q76205607
ActionType= 0

t
Ohjectld= s
EntityMame= AT2A8:254[3 2])% =

DOMAIN NAME :

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter 3

Examples |

B The NMOS Java API test application

Inserting an entry into riv_model

This extract provides an example of how to insert an example MODEL record into an EntityByName
table in a master database in riv_model. Please note that in this example, the master database is being
populated from scratch and therefore there will be no entries before these are added.

For more information on the Ent ityByName table, please refer to Chapter 4, “The NMOS Java API
Classes”.

Note Construct the OQL insert String to insert a new entry, with an EntityName of “javatest” into the
master.entityByName table. These entries correspond to those set out in ModelSchema.cg.

10

11

12

13

14

15

StringBuffer

insertBuffer.

! ObjectId -
insertBuffer.
! EntityName
insertBuffer.
! Address

insertBuffer

! Description

insertBuffer.append (“\”SunOS otho5.6 Generic sun4u\”,”);

! EntityType
insertBuffer.
! ClassName
insertBuffer.
| EntityOID
insertBuffer.

! Status

insertBuffer.

| Security

insertBuffer

! RelatedTo

insertBuffer

! Contains

insertBuffer.

! PartOfName

insertBuffer.

insertBuffer =

append (“insert into master.entityByName values

insert as 0, filled out by riv_model.

append (“*0,") ;

append (“\”javatest\”,") ;

‘append(\\ [\II\II,\II\II’\"194‘203.200.11\H,\Il\ll’\ll\ll’\ll\ll] .)

append (“2,") ;

append (\\\n Core\” , ") ;

append (*\”1.3.6.1.4.1.2021.250.3\",");

append (“0,") ;

.append (“\”public\”,”) ;

.append (“ [\”claudius\”],") ;

append (“[1,”) ;

append (“[1,") ;

new StringBuffer();

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

| Chapter3 Examples

The NMOS Java APl test application

16 ! IsActive

insertBuffer.append (“1,”) ;

17 ! CreateTime

insertBuffer.append(“964528083,") ;

18 ! ChangeTime

insertBuffer.append(“964528083,") ;

19 ! ActionType

insertBuffer.append(“0) ;") ;

20 String insertString = insertBuffer.toString() ;

Modifying an entry in riv_model

This extract shows how to modify the example MODEL record in the Ent it yByName table in the master
database in riv_model.

1 public void modifyTestModelRecord ()

2

3 if (m_Client != null)

4 {

5 ! Send the modify on the RiverSoft Model Query subject, which is:

“IRivSubjects.RIV.MODEL QUERY SUBJ”.

String grySubject = IRivSubjects.RIV_MODEL_QUERY SUBJ;

6 ! 6-10. Construct the OQL update String to update the entry with an
EntityName of “javatest” in the master.entityByName table. Set the
classname to be Router.

StringBuffer updateBuffer = new StringBuffer();

7 updateBuffer.append (“update master.entityByName ") ;

8 updateBuffer.append (“set ClassName=\"Router\””) ;

9 updateBuffer.append (* where EntityName=\"javatest\”;”);

10 String updateString = updateBuffer.toString() ;

11 | Create an empty CRivDummyCallback () - the form of the reply from

the insert is not important.

int rc = m_Client.rcSend(grySubject, updateString, new
CRivDummyCallback()) ;

12 ! Display whether the modification was successfully sent to
riv _model.

if (rc == CRivException.RIV_OK)
13 {

14 m_ProgressTextArea.setText (“Sent update to” +
“master.entityByName in riv _model.”) ;

15 }

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter3 Examples

B The NMOS Java API test application

16 else

17 {

18 m_ProgressTextArea.setText (“Failed to update record in”
+ “riv_model.”);

19 }

20 }

21 else

22 {

23 m_ProgressTextArea.setText (“Failed to update record in” +
“riv _model.”) ;

24 }

25 }

Deleting an entry from riv_model

This extract shows how to delete the example MODEL record from the Ent ityByName table in the
master database in riv_model.

For information on the Ent i t yByName table, please refer to Chapter 4, “The NMOS Java API Classes”.

1 public void deleteTestModelRecord ()

2 |

3 if (m_Client != null)

4 {

5 ! Send the modify on the RiverSoft Model Query subject which is:

“IRivSubjects.RIV.MODEL QUERY SUBJ”.

String grySubject = IRivSubjects.RIV_MODEL_QUERY SUBJ;

6 ! 6-9. Construct the OQL delete String to delete the entry with an
EntityName of “javatest” from the master.entityByName table.

StringBuffer deleteBuffer = new StringBuffer();

7 deleteBuffer.append("delete from master.entityByName ") ;

8 deleteBuffer.append (" where EntityName=\"javatest\";");

9 String deleteString = deleteBuffer.toString() ;

10 | Create an empty CRivDummyCallback() - the form of the reply from

the delete is not important.

int rc = m _Client.rcSend(grySubject, deleteString, new

CRivDummyCallback()) ;
11 ! 11-24. Display whether the delete was successfully sent to
riv_model.
if (rc == CRivException.RIV_OK)

12 {

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. 0L-1279-01

| Chapter3 Examples

The NMOS Java APl test application

13 m_ProgressTextArea.setText (“Sent delete to” +
“‘master.entityByName in riv_model.”) ;

14 }

15 else

16 {

17 m_ProgressTextArea.setText (“Failed to delete record

from” + “riv _model.”);

18 }

19 }

20 else

21 {

22 m_ProgressTextArea.setText (“Failed to delete record from” +
“riv_model.”) ;

23 }

24}

Adding and removing a listener for updates from riv_class

This extract shows how to add, or remove, a listener for updates in riv_class. The records are displayed
in the application window. The application will toggle between two states to add or remove the listener.

1 public void addRemoveClassListener ()

2

3 if (m_ClassUpdateListener == null)

4 {

5 ! Add a listener for updates in riv class. The inner class

RivClassListener implements the IRivRecordListener interface to
display the CRivRecords which arrive as updates from riv class.

m_ClassUpdatelListener = new RivClassListener () ;

6 1 6-21. Tell the client to add on a listener for class updates, the
Class notify subject for which is
“IRivSubjects.RIV.CLASS NOTIFY SUBJ”. Use the
CRivClientInterface object again for convenience

int doneOK = m_ClientInterface.rciAddService
(IRivSubjects.RIV_CLASS NOTIFY SUBJ, m_ClassUpdateListener) ;

7 if (doneOK == CRivException.RIV_OK)
8 {

9 m_ProgressTextArea.setText (*Listener added to display” +
“riv_class updates.");

10 }

11 else

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter3 Examples |
B The NMOS Java API test application
12 {
13 CRivException err = new CRivException (doneOK, "Failed to”
+ “enable model updates") ;
14 err.rePrintErrorMessage (true) ;
15 m_ProgressTextArea.setText (“Failed to add listener to” +
“display riv_class updates.”);
16 m_ClassUpdateListener = null;
17 }
18 }
19 else
20 {
21 m_ProgressTextArea.setText (“"Request made to stop displaying” +
“riv_class updates.”);
22 m_ClientInterface.rciRemoveService (m_ClassUpdateListener) ;
23 m_ClassUpdateListener = null;
24 }
215
Once an update has been received, it will appear in the following format:
@Hiverﬁnll Test Application
Session Class Model Timer]
Received 1 records from riv_class ;
Class Router:
ClassMName= ‘Router’,
SuperClass= ‘Core’,
Dictionary= [rivRouterData, rivCiscoRouterData, rivCaore,
Instantiate= Entity0ID ="1.3.6.1.4.1.32.5.6.3.3' OR Entityd
Yisuallcon= ‘DefaultRouter’;
Menu= 0;
ActionType= 1;
Extensions= {
I
MenuRules= [menuname="menuitern1", menu_type=0,
H
[»
DOMAIN NAME :
Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter3 Examples

The NMOS Java API CRivClientHelper test applications

Initializing the application, the Rendezvous session and the CRivClientHelper object

The NMOS Java API CRivClientHelper test applications

The following examples have been written so that they work as stand-alone applications. Therefore, each

of the examples will need to begin with the following lines of code. This is necessary to initialize the

application, the Rendezvous session and the CRivClientHelper object.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

import com.Cisco .riv_web.vertigo.*;

public class ClientHelperTest

{

public static void main(String argsl(])

{

String domain = null;

if (args.length < 1)

{

domain = “JAVAAPI”;

else

domain = args[0];

new ClientHelperTest (domain) ;

public ClientHelperTest (String m DomainName)
{
CRivClient m Client = null;

CRivClientHelper helper = null;

! 27-32. Set up the session.

m_Client = new CRiVClient(CRiVClient.RIV_DEFAULT_LATENCY,
m_DomainName) ;

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java API Guide B

Chapter3 Examples |

B The NMOS Java API CRivClientHelper test applications

28 int opened = m_Client.rcInitSession();

29 if (CRivException.RIV_OK == opened)

30 {

31 System.out.println("Session opened successfully");

32 }

33

34 | Construct a new client helper object ensuring that a correct

username and password are supplied.
CRivClientHelper clientHelper = null;

35

36 String username = “TestUser”;

37 String password = “12345”;

38

39 try

40 {

41 clientHelper = new CRivClientHelper (m_Client, username,

password) ;

42 }

43 catch (CRivException e)

44 {

45 System.out.println ("Exception in creating

CRivClientHelper :");

46 System.out.println(e.getMessage()) ;

47 System.exit (0) ;

48 }
Obtaining all event records from riv_f_amos

1 try

2 {

3 CRivRecord[] eventRecs =

clientHelper.getRCHAllEventRecords () ;
4
5 Display the event records.
System.out.println ("\nNumber of event records is " +
eventRecs.length) ;
Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

m. oL-1279-01 |

| Chapter3 Examples

The NMOS Java API CRivClientHelper test applications W

6

7 int 1 =0

8 for (i = 0; i < eventRecs.length; i++)

9 {

10 System.out.println(eventRecs[i] .toString()) ;

11 }

12 }

13 catch (CRivException re)

14 {

15 System.out.println ("\nException getting event records : " +
re) ;

16 }

Obtaining event records from riv_f_amos that match a list of criteria

In this example, we will obtain all events of type Alert, with a ClassName of Router.

1 try
2 {
3 ! 3-8. Construct the CRivVarBinds for the query.

CRivVarBind vbl = new CRivVarBind (new CRivAtom (“EventType”),
new CRivAtom (IRivConstants.REC.Alert)) ;

4 CRivVarBind vb2 = new CRivVarBind (new
CRivAtom(“*ClassName”), new CRivAtom(“Router”)) ;

5 CRivVarBindList vbList = new CRivVarBindList () ;

6 vbList.rvblAdd (vbl) ;

7 vbList.rvblAdd (vb2) ;

8 CRivRecord[] eventRecs =

clientHelper.getRCHEventRecords (vbList) ;

9
10 ! Display the event records.
System.out.println ("\nNumber of event records is " +
eventRecs.length) ;
11
12 int 1 = 0;
13 for (i = 0; 1 < eventRecs.length; i++)
14 {
15 System.out.println(eventRecs[i] .toString()) ;
16 }

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter3 Examples |

B The NMOS Java API CRivClientHelper test applications

17 }

18 catch (CRivException re)

19 {

20 System.out.println ("\nException getting event records : " +
re) ;

21 }

Clearing an event from riv_f_amos

In this example, we will try to clear an event from riv_f_amos with Eventld = 31.

1 ! 1-2. Create CRivRecord to represent the event we want to delete.
The only field it needs to contain is Eventld.

! To verify that this event has been cleared, repeat the steps in the
“Obtaining all event records from riv f amos” example.

CRivRecord eventToClear = new CRivRecord() ;
2 eventToClear.rrAddvValue (

new CRivAtom(IRivConstants.RIV_AMOS FN _EVID),
new CRivAtom(31)) ;

3
4 try
5 {
6 clientHelper.rchClearEventRecord (eventToClear) ;
7 }
8 catch (CRivException re)
9 {
10 System.out.println ("\nException clearing event record : " +
re) ;
11 }
Obtaining all users from riv_auth
1 try
2 {
3 CRivRecord[] userRecs = clientHelper.getRCHAuthUsers () ;
4
5 ! Display the user records.

System.out.println (“\nNumber of user records is ” +
userRecs.length) ;

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter3 Examples

The NMOS Java API CRivClientHelper test applications W

6
7 int i = 0;
8 for (i =0; i < userRecs.length; i++)
9 {
10 System.out.println(userRecs[i] .toString()) ;
11 }
12 }
13 catch (CRivException re)
14 {
15 System.out .println (“\nException getting users held in” +
“‘riv_auth : ” + re);
16 }
17
18 ! 18-20. Get all the profile records from riv_ auth.
try
19 {
20 CRivRecord[] profileRecs =
clientHelper.getRCHAuthProfiles() ;
21
22 | Display the profile records.
System.out.println (“\nNumber of profile records is ” +
profileRecs.length) ;
23 for (int i = 0; i1 < profileRecs.length; i++)
24 {
25 System.out.println(profileRecs[i] .toString()) ;
26 }
27 }
28 catch (CRivException re)
29 {
30 System.out .println (“\nException getting profiles held in” +
“‘riv_auth : ” + re);
31 }

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter3 Examples |

B The NMOS Java API CRivClientHelper test applications

Inserting a new user into riv_auth

Each user must have a Name, Password, and a Profile.

1 | Create a CRivVarBind for each of the new user’s name, password, and
profile name.

CRivVarBind nameVb = new CRivVarBind (new CRivAtom ("Name"),
new CRivAtom ("Reader")) ;

2 CRivVarBind passVb = new CRivVarBind (new CRivAtom("Password"),
new CRivAtom("123")) ;

3 CRivVarBind profVb = new CRivVarBind (new CRivAtom("Profile"),
new CRivAtom("readonly"));

4
5 ! 5-8. Put the CRivVarBinds into a CRivVarBindList, and use this to
create a new CRivRecord of the new user.
CRivVarBindList insertList = new CRivVarBindList () ;
6 insertList.rvblAdd (nameVb) ;
7 insertList.rvblAdd (passVb) ;
8 insertList.rvblAdd (profVvb) ;
9
10 CRivRecord newUser = new CRivRecord (insertList) ;
11
12 try
13 {
14 ! Insert the new user record into riv_auth.
boolean sentInsert =
clientHelper.rchInsertUserRecord (newUser) ;
15 System.out.println(“Request sent to insert new user : ”);
16 System.out.println (newUser.toString()) ;
17 }
18 catch (CRivException re)
19 {
20 System.out.println (“\nException sending new user request” +
“to riv_auth : ” + re);
21 }

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter3 Examples

The NMOS Java API CRivClientHelper test applications W

Inserting a new user profile into riv_auth

Each Profile must have a Name, Rank, and a Permissions list. The Permissions list records whether the
Profile allows a user to perform various actions in different categories, such as Clear an event, or Create

a User.
22 ! 22-23. Create a CRivVarBind for each of the new Profile’s name,
rank, and permissions-the Profile name and
Rank are straightforward.
CRivVarBind profNameVb = new CRivVarBind (new
CRivAtom (“Profile”), new CRivAtom(“APITest”)) ;
23 CRivVarBind rankVb = new CRivVarBind (new CRivAtom(“Rank”),
new CRivAtom(15)) ;
24
25 ! 25-33. Construct a CRivVarBindList of the user’s permissions.
CRivVarBind usersView = new CRivVarBind (“pView”, 1);
26 CRivVarBind usersChange = new CRivVarBind (“pChange”, 1);
27 CRivVarBind usersCreate = new CRivVarBind (“pCreate”, 0);
28 CRivVarBind usersDel = new CRivVarBind (“pDelete”, 0);
29 CRivVarBindList usersList = new CRivVarBindList (4) ;
30 usersList.rvblAdd (usersView) ;
31 usersList.rvblAdd (usersChange) ;
32 usersList.rvblAdd (usersCreate) ;
33 usersList.rvblAdd (usersDel) ;
34
35 ! 35-36. Put this CRiVarBindList in a CRivAtom, to form the User={}
CRivVarBind.
CRivAtom usersAtm = new CRivAtom(usersList) ;
36 CRivVarBind usersVb = new CRivVarBind (“Users”, usersAtm);
37
38 ! 38-46. Construct a CRiVarBindList of the event permissions.
CRivVarBind evAss = new CRivVarBind (“pAssign”, 1);
39 CRivVarBind evAck = new CRivVarBind (“pAck”, 1);
40 CRivVarBind evDeAck = new CRivVarBind (“pDeAck”, 0);
41 CRivVarBind evClr = new CRivVarBind (“pClear”, O0);
42 CRivVarBindList eventsList = new CRivVarBindList (4) ;
43 eventsList.rvblAdd (evAss) ;
44 eventsList.rvblAdd (evAck) ;
45 eventsList.rvblAdd (evDeAck) ;
46 eventsList.rvblAdd (evClr) ;

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter3 Examples |
B The NMOS Java API CRivClientHelper test applications
47
48 | 48-49. Put this CRivVarBindList in a CRivAtom, to form the Event={}
CRivVarBind.
CRivAtom eventsAtm = new CRivAtom(eventsList) ;
49 CRivVarBind eventsVb = new CRivVarBind (“Events”, eventsAtm) ;
50
51 51-61. Put these two CRivVarBind into new OBJECT type CRivAtoms,
and add these atoms to the Permissions vector.
CRivVarBindList userPermList = new CRivVarBindList () ;
52 userPermList .rvblAdd (usersVb) ;
53 CRivAtom userPermAtm = new CRivAtom(userPermList) ;
54
55 CRivVarBindList eventPermList = new CRivVarBindList () ;
56 eventPermList.rvblAdd (eventsVb) ;
57 CRivAtom eventPermAtm = new CRivAtom(eventPermList) ;
58
59 java.util.Vector permList = new java.util.Vector();
60 permList.addElement (userPermAtm) ;
61 permList.addElement (eventPermAtm) ;
62
63 Create the overall Permissions CRivVarBind for the new Profile
record.
CRivVarBind permsVb = new CRivVarBind(
new CRivAtom (“Permissions”),
new CRivAtom(permList)) ;
64
65 65-68. Add this Permissions CRivVarBind to a list along with the
Profile name and Rank CRivVarBind we created earlier.
CRivVarBindList proflInsertList = new CRivVarBindList () ;
66 profInsertList.rvblAdd (profNameVb) ;
67 profInsertList.rvblAdd (rankVb) ;
68 profInsertList.rvblAdd (permsVb) ;
69
70 Create the new Profile CRivRecord and insert the new Profile into
riv_auth.
CRivRecord newProfile = new CRivRecord (profInsertList) ;
71
72 try
73 {
Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter3 Examples

The NMOS Java API CRivClientHelper test applications W

74 boolean sentProflnsert =
clientHelper.rchInsertProfileRecord (newProfile) ;

75

76 System.out.println(“Request sent to insert new profile : ”);

77 System.out.println(newProfile.toString()) ;

78 }

79 catch (CRivException re)

80 {

81 System.out.println (“Exception sending new profile” +
“request to riv_auth : ” + re);

82 }

Modifying an existing profile held in riv_auth

In this example, we will change the user’s rank to 40.

1 1 1-4. Create a list of the modifications to make the Profile-in this
case it is a list of just one CRiVarBind.

CRivVarBind rankChange = new CRivVarBind (
newCRivAtom (IRivConstants.RIV_AUTH DB RANK) ,
new CRivAtom(40)) ;

2

3 CRivVarBindList modsList = new CRivVarBindList () ;

4 modsList.rvblAdd (rankChange) ;

5

6 ! 6-10. The profile we want to change is the APITest on we created
earlier.

! Create a CRivRecord of this profile to change-only the Profile
field needs to be set.
CRivVarBind profileVb = new CRivVarBind (

new CRivAtom(“Profile”),
new CRivAtom (“APITest”)) ;

7 CRivRecord profileToUpdate = new CRivRecord() ;

8 profileToUpdate.rrAddValue (profileVb) ;

9

10 clientHelper.rchUpdateProfileRecord (profileToUpdate,

modsList) ;

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter3 Examples |

W Summary

Determining if a user has permission to clear an event

Use the getRCHAuthPermission (String category, String action) method, passing inthe Events
category and clearing action Strings from IRivConstants.

1 ! 1-2. Finish up by closing the client session.

boolean eventsClear = clientHelper.getRCHAuthPermission (
IRivConstants.RIV_AUTH DB EVENTS OBJECT,
IRivConstants.RIV_AUTH FIELD EV_CLEAR) ;

3 System.out.println(“Does user ” + username + “ have ” +
“ permission to ” + “ clear events : " + eventsClear) ;

Closing the session

Summary

Each of the CRivClientHelper applications must end with the following code, in order to close the
client session.

1 int closed = m_Client.rcTerminateSession() ;
2 if (closed == CRivException.RIV_OK)
3 {

4 System.out.println(“Session closed successfully”);

6 else

8 System.out.println(“Session could not be closed”);

10
11 }

12}

This chapter has detailed some examples of Java programming that will enable you to: start a
Rendezvous rvd session; obtain class records stored in CLASS; query riv_model; insert, modify, and
delete entries into riv_model; add and remove a listener for updates from riv_class; obtain event records
from riv_f_amos; clear events from riv_f_amos; obtain all the users from riv_auth; modify an existing
profile in riv_auth; determine if a user has permission to clear an event. The next chapter provides a full
reference listing of all the classes and interfaces associated with the Cisco Mobile Wireless Fault
Mediator 2.0 - Java API Guide.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

e .
V CHATE&‘;“

The NMOS Java API Classes

This chapter will detail and describe the Java package, classes, and interfaces published with the
Cisco Mobile Wireless Fault Mediator 2.0 - Java API Guide. Each class and interface is documented in
alphabetical order along with its associated fields, constructors, and methods.

Chapter organization

First, the hierarchy of the classes within the com.riversoft.riv_web.vertigo package is depicted
in the form of a graphic. Then a summary of all the classes and interfaces is provided along with a brief
description of their functionality. Next, we list the reference pages for each class and interface, in
alphabetical order.

Class Java—The name of the class.

Hierarchy

Description

See Also

(com.riversoft.riv_web.vertigo) - The package to which this class belongs.

A graphic representing how this class fits into the package hierarchy.

A full description of this class.

Other classes, or interfaces, that the reader should be aware of when trying to implement areas of this
class’ functionality.

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter4 The NMOS Java API Classes |

M Chapter organization

Field/Constructor/Method Summary

A summary of the fields/constructors/methods of this class, with the relevant reference pages.

Field/Constructor/Method Detail

Full documentation of the fields/constructors/methods. For information on the layout of the
documentation, please see the table below:

Field/Constructor/Method The name of the field, constructor, or method that is being
documented.

Description A description of the field, constructor, or method.

Parameters A description of the input parameters, if there are any.

Returns A description of the return value, if any. Where it is obvious from
the description what the return value would be, no separate listing is
given.

Throws The exception that is thrown when this method encounters an error.

Specified By For a method, in a class which is implemented from an interface, the

name of the interface which specifies that method is stated here.

Index

An index, for easy reference, listing all NMOS Java API classes and interfaces, with associated fields,
constructors and methods.

The com.riversoft.riv_web.vertigo package. In the MWFM NMOS Java API all classes are encompassed
by the one package, com.riversoft.riv_web.vertigo. Figure 4-1 illustrates this.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4

The NMOS Java API Classes

Chapter organization W

Figure 4-1 Hierarchy of the com.riversoft.riv_web.vertigo package

M
i

\
|

Summary of classes

The table below summarizes the functionality of each class within the NMOS Java API. Please note that
some of the classes use the username and password.

Class Description

1. ASCII_CharStream An input stream class used by parsers, where the
stream is assumed to contain only ASCII characters
(without unicode processing).

2. CRivASNIAddress The class CR1vASN1Address contains hierarchical
style addressing such as 1.2.3.4 and is used to hang
both the topology model and class model inside of all
engines that need it (particularly the riv_disco
engine).

3. CRivAtom This class implements the storage of the fundamental
types, such as String, int, and asnl idents, as well
as providing methods for comparisons between them.

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter4 The NMOS Java API Classes |

M Chapter organization

Class Description

4. CRivClient This class manage sessions to Rendezvous, handles
initialization and client handling.

5. CRivClientHelper This class is an extension of
CRivClientInterface and acts as an
intermediary between a CRivClient object and user
defined classes. It provides convenience methods to
allow polling of an active MWFM domain and
abstracts out the Rendezvous methods and objects.

6. CRivClientInterface This class acts as an interface to a given
CRivClient, providing convenience methods to
allow polling to an active domain.

1. CRivClientInterface.RCIRecordListener |This is an inner class implementing the
IRivRecordListener interface which listens for
replies on queries or listener activities from the
CRivClient. This acts as an intermediary between
the client and the ITRivRecordListener specified
by the user.

8. CRivClientInterface.RCITimerCallback |This is an inner class implementing the Rendezvous
RvTimerCallback interface. It abstracts out the
Rendezvous layer, acting as an intermediary between
the client and the user IRivTimerCallback
object.

9. CRivDbEntity This class is a representation of a database entity, with
the general form "database.table.column".

10. CRivDummyCallback This class is used as a dummy handler to process
replies for certain queries.

1. CRivEvalClause This class contains the information dictated in an
eval clause to be found in active language such as
AOQOC classes or STORE configs.

12. CRivException This class contains exceptions which signal an error in
a MWFM application.
13. CRivException.RivErrRec This is the internal wrapper class for the error code,

level and message.

14. CRivExpr This class contains and evaluates expressions that are
used as part of boolean query arithmetic.

15. CRivFilter This class stores, in a tree format, queries such as ((y
<3)AND (x=1))OR (z!=0). Each node can be a
left right subtree plus algebraic operator, or two query
atoms (i.e the y < 3 bit) and algebraic combinations.

16. CRivFilterParser This class defines an ultimate wrapper for the Filter
parser, RivFilter, allowing a text String, in the
appropriate format, to be parsed to a MWFM filter
object, CRivFilter.

17. CRivHashVector This class is an extension of
java.util.Hashtable, which allows values to
be extracted in the order in which they were added.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4 The NMOS Java API Classes

Chapter organization

Class

Description

18.

CRivMonitorFilterParser

This class is an extension of CRivFilterParser
which allows the name fields in filters to include the
style of addressing "Name[.x]+" i.e. a name, followed
by one or more ".x", where x is any number, e.g.
"ifOperStatus.1".

19. CRivQueryAtom This class encodes the basic query on the data store.

20. CRivRecord This class is the fundamental stored item in «/l MWFM
data engines.

21. CRivROMPer This class contains low level encode/decode methods
for ROMP (RiverSoft Object Multicast Protocol)
format packets.

22. CRivRvDataHandler This handler class is used to receive and process data
for a Rendezvous listener.

23. CRivTransport A transport layer object used by every sender / receiver
to process data to network, or network to data.

24. CRivVarBind This class is used to store paired values, such as
name=value.

25. CRivVarBindList This class provides essentially the same functionality
as java.util.Vector, but can only contain
CRivVarBinds.

26. [RivAlgebraic This interface defines the constants representing the
different boolean algebraic operators.

21. IRivConstants This interface contains a set of constants for attributes
such as the standard field names for event records in
riv_f_amos, model records in riv_model, or user and
profile records in riv_auth.

28. [RivDataType This interface defines the constants representing the
different data types supported by CRivAtom.

29. [RivNodeType This interface defines the constants representing the
different types of nodes in a tree.

30. /RivOper This interface defines the constants representing the
different operations that can be performed on a tree.

31. [RivRecordListener This interface defines the methods that an object must
implement to "listen" for the arrival of records from
the transport layer.

32. [RivSubjects This interface defines the basic subject definitions
used by all engines and clients in MWFEM applications.

33. [RivTimerCallback IRivTimerCallback defines the interface for
handler classes of timer event activities in the client.

34. ParseException This exception is thrown when parse errors are
encountered.

35. RivFilter This class defines the parser for filter objects, allowing

a text String in the appropriate format to be parsed
to a MWFM filter object, CRivFilter.

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter4 The NMOS Java API Classes |

M Chapter organization

Class Description

36. RivFilterConstants This interface defines the tokens and keywords used by
the Filter parser, RivFilter.

37. RivFilterTokenManager This class manages the tokens and keywords used by
the Filter parser, RivFilter.

38. RivMonitorFilter This class defines the parser for filter objects, allowing
a text String in the appropriate format to be parsed
to a MWFM filter object, CRivFilter.

39. RivMonitorFilterConstants This interface defines the tokens and keywords used by
the Filter parser, RivMonitorFilter.

40. RivMonitorFilterTokenManager This class manages the tokens and keywords used by
the Filter parser, RivMonitorFilter.

M. Token This class describes the input token stream.

It is used by parsers, such as RivFilter.
Application-level code should never need to use this
class.

42. TokenMgrError This class is used by parsers, such as RivFilter.

Application-level code should never need to use this
class.

Class/Interface reference pages

A key to the location of reference information for all classes and interfaces is presented in the table

below:

Class Reference Page
1. ASCII_CharStream 8
2. CRivASNIAddress 10
3. CRivAtom 16
4. CRivClient 26
5. CRivClientHelper 37
6. CRivClientInterface 55
1. CRivClientinterface.RCIRecordListener 61
8. CRivClientInterface.RCITimerCallback 63
9. CRivDbEntity 65

10. CRivDummyCallback 67

1. CRivEvalClause 69

12. CRivException 72

13. CRivException.RivErrRec 82

14. CRivExpr 84

15. CRivFilter 90

16. CRivFilterParser 96

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

| Chapter4

The NMOS Java API Classes

Chapter organization W

Class Reference Page
17. CRivHashVector 100
18. CRivMonitorFilterParser 107
19. CRivQueryAtom 109
20. CRivRecord 114
21. CRivROMPer 122
22. CRivRvDataHandler 135
23. CRivIransport 141
24. CRivVarBind 150
25. CRivVarBindList 154
26. [RivAlgebraic 175
2]1. IRivConstants 176
28. [RivDataType 200
29. [RivNodeType 203
30. /RivOper 204
31. [RivRecordListener 209
32. [RivSubjects 210
33. [RivTimerCallback 217
34. ParseException 218
35. RivFilter 222
36. RivFilterConstants 225
37. RivFilterTokenManager 227
38. RivMonitorFilter 228
39. RivMonitorFilterConstants 232
40. RivMonitorFilterTokenManager 234
M. Token 235
42. TokenMgrError 239

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter4 The NMOS Java API Classes |

I Class ASCII_CharStream

Class ASCIl_CharStream

(com.riversoft.riv_web.vertigo)

Hierarchy
Figure 4-2 Hierarchy of class ASCIl_CharStream
java.la‘n'léji-
com.riversoft.riv_web.vertigo.AS
public final class 25CII CharStream
extends java.lang.Object
Description

An input stream class used by parsers, where the stream is assumed to contain only ASCII characters
(without unicode processing).

See Also

RivFilter

Note ASCII_CharStream This class is only used by the parsers—CRivFilterParser and
CRivMonitorFilterParser. Application code should never need to use this class directly. The
summaries are included for reference only and thus no descriptions are included

Field summary

Field
1. public int bufpos

2. public static final boolean staticFlag

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4 The NMOS Java API Classes

Class ASCII_CharStream W

Constructor summary

Constructor

1. public ASCII_CharStream (java.io.InputStream dstream,
int startline, int startcolumn)

2. public ASCII_CharStream (java.io.InputStream dstream,
int startline, int startcolumn, int buffersize)

3. public ASCII_CharStream (java.ilo.Reader dstream, int
startline, int startcolumn)

4. public ASCII_CharStream (java.ilo.Reader dstream, int
startline, int startcolumn, int buffersize)

Method summary

Method

1. public void adjustBeginlLineColumn (int newLine, int
newCol)

2. public final wvoid bhackup (int amount)

3. public final char BeginToken ()

4. public void Done()

5. public final int gerBeginColumn ()

6. public final int gerBeginline ()

1. public final int getColumn ()

8. public final int getEndColumn ()

9. public final int gerEndLine ()

10. public final String Getlmage ()

1. public final int gerline()

12. public final char[] GerSuffix(int len)

13. public final char readChar ()

14. public void Relnit(java.io.InputStream dstream, int

startline, int startcolumn)

15. public void Relnit(java.io.InputStream dstream, int
startline, int startcolumn, int buffersize)

16. public void Relnit(java.io.Reader dstream, int
startline, int startcolumn)

17. public void Relnit(java.io.Reader dstream, int
startline, int startcolumn, int buffersize)

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter4 The NMOS Java API Classes |

I Class CRivASN1Address

Class CRivASN1Address

(com.riversoft.riv_web.vertigo)

Hierarchy
Figure 4-3 Hierarchy of class CRivASN1Address
java.lang.Object]
|
com.riversoft.riv_web.vertigo.
public class CrRivASNIAddress
extends java.lang.Object
Description

The class CRivASN1Address contains hierarchical style addressing, such as 1.2.3.4, and is used to hang
both the topology model and CLASS model inside of all engines that need it (particularly the riv_disco
engine).

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4

The NMOS Java API Classes

Field summary

Class CRivASN1Address

Field

Reference Page

1.

public static int
RIV _MAX ADDR DEPTH

12

Constructor summary

Constructor

Reference Page

1.

public CRivASN1Address ()

12

2

public
CRivASNIAddress (CRivASN1Address
arg)

12

public
CRivASN1Address (CRivASN1Addres
s parent, int child)

13

public CRivASN1Address (int
firstNEntries, CRivASNl1Address
arg)

public CRivASN1Address (int
relative, int[] full, int
depth)

public CRivASN1Address (String
printable)

Method summary

Method

Reference Page

1.

public int getRAAAddressAt (int
position)

14

2. public int getRAADepth() 14

3. public int/[] 15
getRAAFullAddress ()

4. public int 15
getRAARelativeAddress ()

5. public boolean 15
isRAAMatchAddress (CRivASN1Addr
ess arg)

6. public boolean 15

isRAAPartialMatch(CRivASN1Addr
ess arg)

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter 4

The NMOS Java API Classes |

I Class CRivASN1Address

Method Reference Page

7. public CRivASN1Address 16
raaUnion (CRivASN1Address base,
CRivASN1lAddress qual)

8. public String toString() 16
Field detail

1)

Field public static int RIV_MAX ADDR DEPTH

Description The maximum length of a CR1vASN1Address.

Value 255
Constructor detail
1)
Constructor public CRivASN1lAddress()
Description Default constructor.
2)

Constructor public CRivASN1Address(CRivASN1Address arg)
Description Copy constructor.

Parameters arg-the CRivASN1Address to copy.

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

The NMOS Java API Classes

3)

Constructor

Description

Parameters

See Also

4

Constructor

Description

Parameters

Throws

See Also

Class CRivASN1Address

public CRivASN1Address(CRivASN1Address parent, int child)

Construct a CRivASN1Address from another

CRivASN1Address and a child. The new address will have the

child integer tagged onto the end of the supplied
CRivASN1Address parameter. For example, supplying an
address in the form 1.2.3.4 and a child int of 5 would construct
a new address in the form 1.2.3.4.5. Be careful not to confuse
with the parameterized copy constructor.

parent-—the initial value that will have the child integer tagged
onto it.

child-the extra value being added.

CRivASN1Address (int, CRivASNlAddress),
toString

public CRivASN1Address(int firstNEntries, CRivASN1Address
arg)

Create a new CR1vASN1Address by copying the first “n”
entries of the supplied CR1vASN1Address. For example,
supplying an address in the form 1.2.3.4.5 and
firstNEntries of 4 would construct a new address in the
form 1.2.3.4. Be careful not to confuse with the constructor
taking an address and child.

firstNEntries—the number of entries that will be copied
from the supplied CRivASN1Address.

arg-the CRivASN1Address whose first “n” entries will be
copied.

ArrayIndexOutOfBoundsException—if
firstNEntries is greater than the address depth of the
supplied address.

CRivASN1lAddress (int, CRivASNlAddress),
getRAADepth ()

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter4 The NMOS Java API Classes |

I Class CRivASN1Address

5)

Constructor public CRivASN1Address(int relative, int full, int depth)

Description Make a CRivASN1Address, from a relative address stub and
an array of integers, which will make up the new address.

Parameters relative-the relative address stub.

full-the array of ints which will make up the
CRivASN1lAddress.

depth-the depth of the new address.

6)

Constructor public CRivASN1Address(String printable)

Description Construct a new CRivASN1Address by parsing the given
String, which must be in the format u.v.w.x.y.z (which has a
maximum number of values equal to RIV_MAX ADDR DEPTH)
such as “1.2.3.4”.

Parameters printable-the String representation of the new address.

See Also RIV_MAX_ ADDR DEPTH

Method detail

1y

Method public int getRAAAddressAt(int position)

Description Get the relative name at the specified position. For example, in
address 1.2.3.4, getRAAAddressAt (2) returns 3.

Parameter position-the position at which to get the address.

Returns -1 if there is no address at the specified position.

2)

Method public int getRAADepth()
Description Get the address depth.

Returns The address depth.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4

The NMOS Java API Classes

3)

Method

Description

4)

Method

Description

5)

Method

Description

Parameter

Returns

6)

Method

Description

Parameter

Returns

Class CRivASN1Address

public int getRAAFullAddress()

Return the full address as an array of ints.

public int getRAARelativeAddress()
Return the relative address stub of this address, which will be zero,

unless set in one of the constructors which take a relative address
parameter, or combine a parent address and a child.

public boolean isRAAMatchAddress(CRivASN1Address arg)
Compare two CR1vASN1Addresses to see if they represent the
same address. This is done by comparing the String
representations of the addresses.

arg-the address to match with ‘this’ address.

true, if the two CR1vASN1Addresses match, false otherwise.

public boolean isRAAPartialMatch(CRivASN1Address arg)

Compare this CRivASN1Address to see if it matches the first “n”
entries of a supplied address, where “n” is equal to the address depth
of this address.

arg-the address to match with ‘this’ address.
true, if the first n entries of the supplied address match this address.

The method will return false if the address depth of the supplied
address is less than the depth of this address.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

[oL-1279-01

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

7)

Method public CRivASN1Address raaUnion(CRivASN1Address base,
CRivASN1Address qual)

Description Make a CR1vASN1Address by combining two
CRivASNlAdresses.

Parameters base—the base address to combine.

qual-the qualified address to combine.

Returns The address made by combining the two addresses.

8)

Method public String toString()

Description Return a String representation of this CR1vASN1Address in a
String formate.g. 1.0.0.0.0.6.8.0

Overrides toStringinclass java.lang.Object.

Class CRivAtom

(com.riversoft.riv_web.vertigo)

Hierarchy

Example 4-1 Hierarchy of class CRivAtom

java.lan

|
com.riversoft.riv_web.vertigo.(

Note CRivAtom—In order to increase the speed of execution, most of the methods in this class that return
data from within the atom do not check the type of data. Instead, if an incorrect method is used, such
as calling getRAASN1Address() when the data contained is actually an int, the method will throw a
ClassCastException. Thus, if there is any doubt as to the type of data contained within the atom,
always query the type (using getRAType()) before retrieving a value.

public class CrRivAtom
extends java.lang.Object

implements IRivDataType, IRivOper

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4 The NMOS Java API Classes

Description

See Also

Class CRivAtom I

This is the primary container class throughout MWFM applications. It is essentially a wrapper around
any of the fundamental data types defined in IRivDataType such as String, int, or

CRivASN1Adress idents. It can also act as a container for a Vector of other CRivAtom objects, or a list
of CRivVarBinds, held in a CRivVvarBindList. The former of these two list types is often referred to
as a "LIST", while the latter is referred to as an "OBJECT".

This class also provides methods for comparisons between two CRivAtoms using the operators defined
in the interface IRivOper.

CRivASN1lAddress, CRivVarBindList, IRivDataType, IRivOper.

Constructor summary
Constructor Reference Page
1. public CRivAtom() 19
2. public CRivAtom(byte[] value) 19
3. public CRivAtom(CRivASN1Address value) 19
4, public CRivAtom(CRivAtom atomToCopy) 19
5. public CRivAtom(CRivVarBindList wvalue) 20
6. public CRivAtom(float value) 20
1. public CRivAtom(int value) 20
8. public CRivAtom(long value) 20
9. public CRivAtom(String value) 20
10. public CRivAtom(java.util.Vector value) 21
Cisco Mobile Wireless Fault Mediator 2.0 - Java API Guide
[oL-1279-01 .m

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

Method summary

Reference
Method Page
1. public boolean equals(Object obj) 21
2. public CRivASN1Address getRAASN1Address () 21
3. public bytel[] getRAByteArray() 21
4, public java.lang.Class getRADataClass () 22
5. public float getRAFloatValue() 22
6. public int getRAIntValue() 22
1. public long getRALongValue () 22
8. public CRivVarBindList getRAObject () 22
9. public CRivAtom getRASubVal (String name) 23
10. public int getRAType() 23
11. public java.util.Vector getRAVector () 23
12. public boolean isRAAtomInVector (CRivAtom entry) 23
13. public CRivAtom raDeepCopyListAtom() 24
14. public CRivAtom raDeepCopyObjectAtom() 24
15. public boolean raEvalRelop(int operator, CRivAtom 24
atomToCompare)
16. public int raLex(CRivAtom comp) 25
17. public void setRAValue (CRivASN1lAddress value) 25
18. public void setRAValue (CRivVarBindList value) 25
19. public void setRAValue(float value) 25
20. public void setRAValue(int wvalue) 25
21. public void setRAValue(String value) 26
22. public void setRAValue(java.util.Vector value) 26
23. public String toString() 26

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4 The NMOS Java API Classes

Class CRivAtom I

Constructor detail

D)

Constructor public CRivAtom()

Description Default constructor.

2)

Constructor public CRivAtom(byte[] value)

Description Make one based on an array of bytes.
Parameters value-—the initial value for this CRivAtom.
3)

Constructor public CRivAtom(CRivASN1Address value)

Description Make one based on a CRivASN1Address.

Parameters value-the initial value for this CRivAtom.
See Also CRivASN1Address
4)

Constructor public CRivAtom(CRivAtom atomToCopy)

Description Creates a deep copy of the values held in the argument
CRivAtom.

Parameters atomToCopy-the atom to be deep copied.

Throws java.lang.ClassCastException-if the atomToCopy

is of type IRivDataType.RDT_LIST or
IRivDataType.RDT_ OBJECT, and this is not a vector of
CRivAtoms, or CRivVarBinds.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

5)
Constructor

Description

Parameters

6)

Constructor
Description

Parameters

7)

Constructor
Description

Parameters

8)

Constructor
Description

Parameters

9)

Constructor
Description

Parameters

public CRivAtom(CRivVarBindList value)

Make one basedon a CRivVarBindList.The CRivAtomwill
be of type IRivDataType.RDT_OBJECT.

value-the initial value of the CRivAtom.

public CRivAtom(float value)
Make one based on a float.

value-the initial value for this CRivAtom.

public CRivAtom(int value)
Make one based on an int.

value-the initial value for this CRivAtom.

public CRivAtom(long value)
Make one based on a long.

value-the initial value for this CRivAtom.

public CRivAtom(String value)
Make one based on a String.

value-the initial value for this CRivAtom.

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

| Chapter4 The NMOS Java API Classes

Class CRivAtom I

10)

Constructor public CRivAtom(java.util. Vector value)

Description Make one based on a Vector. The CRivAtom will be of type
IRivDataType.RDT LIST.

Parameters value-the initial value for this CRivAtom.

Throws java.lang.ClassCastException-if the Vector is not a
list of CRivAtom objects.

Method detail

D)

Method public boolean equals(Object obj)

Description Compares this CRivAtom to the specified object. Overrides
equals (Object obj) inclass Object. The resultis true if,
and only if, the argument is not null and is a CRivAtom object that
represents the same CRivAtom as this object. Uses the raLex ()
method to test for lexicographical equality.

Parameters obj-the object to compare with.

Overrides equals inclass java.lang.Object.

2)

Method public CRivASN1Address getRAASN1Address()
Description Return the value of this CRivASN1Address atom.

Throws java.lang.ClassCastException—if the CRivAtom is not
of type IRivDataType.RDT ASNI.

See Also CRivASN1Address

3)

Method public byte[] getRAByteArray()
Description Return the value of this atom, which is an array of bytes.

Throws java.lang.ClassCastException—if the CRivAtom is not
of type IRivDataType.RDT BYTE ARRAY.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

4)

Method public java.lang.Class getRADataClass ()

Description Return the runtime class of the value of this CRivAtom.

Throws java.lang.NullPointerException—if the CRivAtom has
null data.

3)

Method public float getRAFloatValue ()

Description Return the value of this f1oat atom.

Throws java.lang.ClassCastException—if the CRivAtom is not
of type IRivDataType.RDT FLOAT.

6)

Method public int getRAlIntValue()
Description Return the value of this int atom.

Throws java.lang.ClassCastException—if the CRivAtom is not
of type IRivDataType.RDT INTEGER.

7)

Method public long getRALongValue()
Description Return the value of this 1ong atom.

Throws java.lang.ClassCastException-if the CRivAtom is not
of type IRivDataType.RDT LONG.

8)

Method public CRivVarBindList getRAObject()

Description Return the value of this Object atom, which is a
CRivVarBindList.

Throws java.lang.ClassCastException-if the CRivAtom is not
of type IRivDataType.RDT OBJECT.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4 The NMOS Java API Classes

Class CRivAtom I

9)

Method public CRivAtom getRASubVal(String name)

Description Convenient method to extract a value from a given name from a
IRivDataType.RDT_OBJECT CRivAtom. Returnsnull if the
CRivAtomisnotoftype IRivDataType.RDT_ OBJECT, orif the
IRivDataType.RDT_OBJECT does not contain the named field.

Parameters name—the name of the CRivVarBind to extract the value from.

10)

Method public int getRAType()

Description Return the data type of this atom. Uses the constants defined in
IRivDataType to specify different atom types.

11)

Method public java.util. Vector getRAVector()

Description Return the value of this Vector atom, which is a
java.util.Vector of CRivAtom objects.

Throws java.lang.ClassCastException—if the CRivAtom is not
of type IRivDataType.RDT LIST.

12)

Method public boolean isRAAtomInVector(CRivAtom entry)

Description Is the supplied atom (entry)in 'this'atom? Where this must be
of type IRivDataType.RDT LIST and entry can be any type.

Parameters entry-the atom to check if it is in this atom's Vector.
Returns true, if the supplied CRivAtomisin this atom, false if the

supplied CRivAtomis notin this atom, orif this atom is not of
type IRivDataType.RDT_ LIST.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

13)

Method public CRivAtom raDeepCopyListAtom()

Description Make a deep copy of a CRivAtom which is of type
IRivDataType.RDT LIST.

Throws java.lang.ClassCastException-if this CRivAtom is not
of type IRivDataType.RDT LIST.

Returns The deep copy of this atom.

14)

Method public CRivAtom raDeepCopyObjectAtom()

Description Make a deep copy of a CRivAtom which is of type
IRivDataType.RDT_ OBJECT.

Throws java.lang.ClassCastException-if this CRivAtom is not
of type IRivDataType.RDT OBJECT.

Returns The deep copy of this atom.

15)

Method public boolean raEvalRelop(int operator, CRivAtom
atomToCompare)

Description Compare this atom with the supplied atom parameter.

Parameters atomToCompare-the CRivAtom to compare with this atom.

operator—the type of operator to use in the comparison, must be
one of the values defined in IRivOper.

Returns true, if this atom and atomToCompare satisfy the condition
specified by the operator.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4

The NMOS Java API Classes

16)
Method

Description

Parameters

Returns

17)

Method
Description

Parameters

18)

Method
Description

Parameters

19)

Method
Description

Parameters

20)

Method
Description

Parameters

Class CRivAtom I

public int raLex(CRivAtom comp)

Performs a lexical comparison of this atom with the supplied atom
parameter.

comp—the CRivAtom to compare with.

0 if they represent the same data lexicographically, +/- otherwise.

public void setRAValue(CRivASN1Address value)
Set a new value to this atom.

value-the new value to be set.

public void setRAValue (CRivVarBindList value)

Set a new value to this atom.

value—the new value to be set.

public void setR AValue(float value)
Set a new value to this atom.

value-the new value to be set.

public void setRAValue(int value)
Set a new value to this atom.

value-—the new value to be set.

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

21)

Method public void setR AValue(String value)
Description Set a new value to this atom.

Parameters value—the new value to be set.

22)

Method public void setRAValue(java.util.Vector value)

Description Set a new value to this atom.

Parameters value-the new value to be set.

Throws java.lang.ClassCastException-if the Vector is not a list of CRivAtom
objects.

23)

Method public String toString()
Description Return a String representation of this atom.

Overrides toStringinclass java.lang.Object

Class CRivClient

(com.riversoft.riv_web.vertigo)

Hierarchy

Figure 4-4 Hierarchy of class CRivClient

java.lang.Object]
|

com.riversoft.riv_web.vel

public class CRivClient

extends java.lang.Object

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4 The NMOS Java API Classes

Description

See Also

Class CRivAtom I

This basic class manages a session to Rendezvous, handles initialization and client handling. A client is
created to handle requests from a given MWFM domain. Rendezvous sessions can be started for Java
applications or applets, using the relevant rcInitSession () method. Requests are then made on
certain MWFM subjects, as defined by constants in the interface IRivSubjects. For example, to make
queries for information from the topology store, riv_model, or to request updates from the event store
riv_f_amos.

Many common requests and operations can be handled through the helper class
CRivClientInterface, so that the user does not have to call any of the methods of this class directly
after initialization.

IRivSubjects

Field summary

Reference
Field Page

1. public static final long RIV_DEFAULT LATENCY |29

Constructor summary
Reference
Constructor Page
1. public CRivClient(long timeOut, String 29
domain)
Cisco Mobile Wireless Fault Mediator 2.0 - Java API Guide
[oL1219-m .m

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

Method summary

Reference

Method Page

1. public String getRCDomain () 29

2. public String getRCDomainSubj (String 30
subjStub)

3. public long getRCTimeOut () 30

4. public boolean isRCValidOutboundType (Object |30
data)

5. public COM.TIBCO.rv.RvTimer 31

rcAddOnceOnlyTimer (long interval,
COM.TIBCO.rv.RvTimerCallback handler)

6. public COM.TIBCO.rv.RvTimer 31
rcAddRepeatTimer (long interval,
COM.TIBCO.rv.RvTimerCallback handler)

1. public int rcAddService(String subject, 32
COM.TIBCO.rv.RvDataCallback updateHandler)

8. public int rcInitSession() 32

9. public int rcInitSession(String hostname) 32

10. public int rcInitSession(String hostname, 33
int port)

1. public int rcInitSession(String service, 33
String network, String daemon)

12. public void rcRemoveTimer (RvTimer timer) 34

13. public int reSend (String subject, Object 35
data)

14. public int reSend(String subject, Object 35
data, COM.TIBCO.rv.RvDataCallback handler)

15. public int rcTerminateSession() 36

16. public int rcTimedSend(String subject, 36

Object data, long timeout,
COM.TIBCO.rv.RvDataCallback handler)

17. public void setRCTimeOut (long timeout) 36

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4 The NMOS Java API Classes

Class CRivAtom I

Field detail

1y
Field public static final long RIV_DEFAULT_LATENCY
Description Define a default value for the latency, in milliseconds.
Value 3000

Constructor detail
1)

Constructor public CRivClient(long timeOut, String domain)

Description Create a new client object to manage a session to Rendezvous,
with the specified timeout period (in milliseconds) for a response,
and for the specified domain.

Parameters timeOut—the timeout latency held by this CRivClient, in
milliseconds.

domain-a named view consisting of a single set of core NMOS
applications.

Method detail

D)

Method public String getRCDomain()

Description Return a reference to the domain name, where a domain is a named
“view” of a single set of core NMOS components. Each domain has
its own set of users and passwords and manages a particular
configured view of a network.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

2)

Method public String getRCDomainSubj(String subjStub)

Description Construct a String for sending to the Rendezvous host,
incorporating the supplied MWFM subject stub and this client's
domain.

Parameters subjStub-the subject stub.

Returns A String which incorporates the subject stub and the client’s
domain, where the subject stub should be one of the values defined
in IRivSubjects.

3)

Method public long getRCTimeOut()

Description Returns the default latency, or time out interval, in milliseconds, of
the client object. This value can be used in methods where a timed
listener will be created for replies. A timed listener expects to receive
a data message before its time limit expires. If no message is received
within that time then the TIB/Rendezvous event manager will call the
onTimeOut () method of the listeners handler object.

Returns The time out, in milliseconds.
4)
Method public boolean isRCValidOutboundType (Object data)

Description Determine whether the specified data object is a valid outbound data
type. Only certain classes can be encoded into valid TIB/Rendezvous
messages for outbound transport, which are :String, Boolean,
Byte, Short, Integer, Long, Float, Double, Date,
java.net.InetAddress or bytel].

Parameters data—the data to be validated as an outbound type.

Returns true, if the class of the specified data is a valid outbound data type,
false otherwise.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4 The NMOS Java API Classes

Class CRivAtom I

5)

Method public COM.TIBCO.rv.RvTimer rcAddOnceOnlyTimer (long interval,
COM.TIBCO.rv.RvTimerCallback handler)

Description Add a once-only timer. Rendezvous has a timer despatch thread which
triggers the onTimer () RvTimerCallback method.

Note The user should not need to call this method directly. Instead, the
equivalent method in CRivClientInterface should be used
(rciAddOnceOnlyTimer).

Parameters interval-the timer trigger interval, in milliseconds, which must be >
0.

handler-the object to handle the timer event activity, which must be
non-null.

Returns The RvTimer that was created, null if a RvTimer was not
successfully created.

Throws CRivException-if the TIB/Rendezvous session is not valid, or the
timer could not be added.

6)

Method public COM.TIBCO.rv.RvTimer rcAddRepeatTimer(long interval,
COM.TIBCO.rv.RvTimerCallback handler)

Description Add a repeating timer. Rendezvous has a timer despatch thread
which triggers the onTimer () RvTimerCallback method.

Note The user should not need to call this method directly. Instead,
the equivalent method in CRivClientInterface should
be used (rciAddRepeatTimer).

Parameters interval-the timer trigger interval, in milliseconds, which must
be > 0.
handler-the object to handle the timer event activity which must

be non-null.

Returns The RvTimer that was created; null if a RvTimer was not
successfully created.

Throws CRivException-if the TIB/Rendezvous session is not valid, or
the timer could not be added.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

7)

Method public int rcAddService(String subject,
COM.TIBCO.rv.RvDataCallback updateHandler)

Description Add a listener to listen for updates from Rendezvous on the specified
subject.

Parameters subject-one of the values from IRivSubjects.

updateHandler—the object implementing the
RvDataCallback interface to process any incoming messages.

Returns An int, one of the constants defined in CRivException,
signalling whether the listener was added successfully, e.g.,
CRivException.RIV_OK if successful.

Throws CRivException-if the TIB/Rendezvous session is not valid.
8)
Method public int rcInitSession()

Description Initialize a Rendezvous rvd session for an independent Java
application.

Returns An int, one of the constants defined in CRivException,
signalling whether the RvSession was created successfully, e.g.,
CRivException.RIV_OK if successful.

9)

Method public int rcInitSession(String hostname)

Description Attempts to connect to a Rendezvous rva session for Java applets.
TCP port 7600 is used as the default port. The applet cannot start an
rva process, but must connect to an agent process that is already
running. This can be started at the command line by typing the
command “rva - flavor 1167, after having previously killed
off any existing rvd sessions.

Parameters hostname—the Rendezvous agent (rva) to connect to that is
running on the computer with this hostname.

Returns An int, one of the constants defined in CRivException,
signalling whether the RvSession was created successfully, e.g.,
CRivException.RIV_OKif successful.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4 The NMOS Java API Classes

Class CRivAtom I

10)

Method public int rcInitSession(String hostname, int port)

Description Attempts to connect to a Rendezvous rva session for Java applets.
The applet cannot start a rva process, but must connect to an agent
process that is already running. This can be started at the command
line using the command “rva - flavor 1167, after having
previously killed off any existing rvd sessions.

Parameters hostname-the Rendezvous agent (rva) to connect to that is
running on the computer with this hostname.

port—the Rendezvous agent (rva) on this TCP port to connect to.
This value must match the -11isten parameter of rva (the

- listen parameter of the Rendezvous daemon specifies where the
Rendezvous daemon should listen for new application sessions).

Returns An int, one of the constants defined in CRivException,

signalling whether the RvSession was created successfully, e.g.,
CRivException.RIV_OK if successful.

11)

Method public int rcInitSession(String service, String network, String
daemon)

Description Initialize a rvd session, with the specified service, network and
daemon parameters.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

Parameters

Returns

12)

Method

Description

Parameters

service-specifies the service group to communicate with; null
specifies the default Rendezvous service. The Rendezvous daemon
divides the network into service groups. Each session belongs to a
single service group and a session can only communicate with other
sessions in the same service group. To communicate with more than
one service group, applications must initialize more than one
session.

network—instructs the Rendezvous daemon to use a particular
network for all communications involving this session; null
specifies the primary network interface for the host computer. Every
application session communicates with other sessions over a single
network. On computers with more than one network interface, this
parameter instructs the Rendezvous daemon to use a particular
network for all communications involving this session. To
communicate over more than one network, applications must
initialize more than one session.

daemon-instructs a rvd session about how and where to find the
Rendezvous daemon and establish communication; null specifies
the default - find the local daemon on TCP port 45001.

An int, one of the constants defined in CRivException,
signalling whether the RvSession was created successfully, e.g.,
CRivException.RIV_OK if successful.

public void rcRemoveTimer (RvTimer timer)

Remove timer activity to cancel interest in the corresponding event.

A once-only timer can be removed before it triggers its handler's
callback method, and it should be noted that triggering will
automatically remove it, so that calling this method would be
unnecessary.

Removing any timer that has already been removed has no effect.

Note The user should not need to call this method directly. Instead,
the equivalent method in CRivClientInterface should
be used (rciRemoveTimer).

t imer—the timer to be removed.

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

| Chapter4 The NMOS Java API Classes

Class CRivAtom I

13)

Method public int rcSend(String subject, Object data)

Description Send a message to a Rendezvous domain, using a specific subject.

Parameters subject—the destination subject for which to send the message.
This should be one of the values from IRivSubjects.

data-the object to send as the contents of the message.

Returns An int, one of the constants defined in CRivException,
signalling whether the data was sent successfully, e.g.,
CRivException.RIV_OK if successful.

14)

Method public int rcSend(String subject, Object data,
COM.TIBCO.rv.RvDataCallback handler)

Description Send a message to a Rendezvous domain, using a specific subject,
specifying the listener to handle the reply. No time limit is set for the
listener to receive the reply.

The specified handler object to listen for replies should be non-null
or the method will return
CRivException.NULL POINTER REF.

Parameters subject-the destination subject for which to send the message.
This should be one of the values from IRivSubjects.

data-the object to send as the contents of the message.

handler-the object implementing the Rendezvous
RvDataCallback interface, which will process any replies.

Returns An int, one of the constants defined in CRivException,
signalling whether the data was sent successfully, e.g.,
CRivException.RIV_ OKif successful.

See Also rcTimedSend (String, Object, long,
COM.TIBCO.rv.RvDataCallback)

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter4 The NMOS Java API Classes |

I Class CRivAtom

15)

Method public int rcTerminateSession ()

Description Terminate the Rendezvous session, severing its connection to the
TIB/Rendezvous daemon (rvd) or agent (rva). It is recommended
that all programs call rcTerminateSession () before deleting
the last reference to a session object.

Returns An int, one of the constants defined in CRivException,
signalling whether the session was terminated successfully, e.g.,
CRivException.RIV_OK if successful.

16)

Method public int rcTimedSend(String subject, Object data, long timeout,
COM.TIBCO.rv.RvDataCallback handler)

Description Send a message to a Rendezvous domain, using a specific subject,
specifying the listener to handle the reply. The listener that handles
the request will use the specified time limit for reply. If the time limit
expires before the listener receives a message, the event manager will
call the onTimeOut () method of the handler object.

The specified handler should be non-null or the method will return
CRivException.NULL POINTER REF.

Parameters subject—one of the values from IRivSubjects.
data—the object to send.
timeout—the time limit, in milliseconds, in which to receive a reply.

handler—the object implementing the RvDataCallback interface to
process any incoming messages.

Returns An int, one of the constants defined in CRivException,

signalling whether the data was sent successfully, e.g.,
CRivException.RIV_ OK if successful.

17)

Method public void setRCTimeOut (long timeout)

Description Set the timeout limit held in this CRivC1lient that can be used in
the methods that take a latency parameter.

Parameters timeout-the timeout latency held by this CRivClient, in
milliseconds.

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
m. oL-1279-01 |

| Chapter4 The NMOS Java API Classes

Class CRivClientHelper

Class CRivClientHelper

(com.riversoft.riv_web.vertigo)

Hierarchy
java.lan_

com.riversoft.riv_web.vertigo.CF

com.riversoft.riv_web.vertig

public class CRivClientHelper
extends CRivClientInterface

implements IRivConstants

Description

This class is an extension of CRivClientInterface and acts as an intermediary between a
CRivClient object and user defined classes. It provides convenience methods to allow polling of an
active MWFM domain and abstracts out the Rendezvous methods and objects. It contains methods to
obtain specific pieces of information from, or to insert, update or delete records from riv_f _amos,
riv_model and riv_auth.

The constructor of this class requires the application level code to provide a valid user name and
password for a user currently held in riv_auth. This is required in order to obtain certain pieces of
information from riv_auth.

See Also

CRivClient

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide
[oL-1279-m .m

Chapter4 The NMOS Java API Classes |

M Class CRivClientHelper

Constructor summary
Reference

Constructor Page

1. public CRivClientHelper (CRivClient client, 39
String username, String password)

Method summary
Reference

Method Pages

1. public CRivRecord[] getRCHAIIEventRecords () 40

2. public CRivRecord[] getRCHAIIModelRecords () 40

3. public boolean getRCHAuthPermission (String 41
category, String action)

4. public CRivRecord[] getRCHAuthProfiles () 41

5. public CRivRecord[] getRCHAuthUsers () 42

6. public CRivRecordl[] 42
getRCHEventRecords (CRivFilter filter)

1. public CRivRecordl[] 43
getRCHEventRecords (CRivVarBindList vbList)

8. public CRivRecord[] getRCHInterfaces (CRivRecord |43
modelRec)

9. public CRivRecordl[] 44
getRCHModelRecords (CRivFilter filter)

10. public CRivRecordl[] 44
getRCHModelRecords (CRivVarBindList vbList)

1. protected bytel[] getRCHPacketForAuth (String 45
gryString)

12. protected CRivRecord[] 45
getRCHQueryRecords (String subject, Object
gryData)

13. public wvoid 46
rchAddAmosListener (IRivRecordListener
recListener)

14. public wvoid 46
rchAddModelListener (IRivRecordListener
recListener)

15. public boolean rchClearEventRecord (CRivRecord 47
eventRec)

16. public boolean rchDeleteModelRecord (CRivRecord 47
modelRec)

17. public boolean rchDeleteProfileRecord (CRivRecord 48
profileRec)

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

| Chapter4

The NMOS Java API Classes

Class CRivClientHelper

Reference

Method Pages

18. public boolean rchDeleteUserRecord (CRivRecord 48
userRec)

19. public boolean rchinsertEventRecord (CRivRecord 49
eventRec)

20. public boolean rchinsertModelRecord (CRivRecord 49
modelRec)

21. public boolean rchinsertProfileRecord (CRivRecord 50
profileRec)

22. public boolean rchinsertUserRecord (CRivRecord 51
userRec)

23. public void 51
rchRemoveAmosListener (IRivRecordListener
recListener)

24. public void 52
rchRemoveModelListener (IR1vRecordListener
recListener)

25. public boolean rchUpdateEventRecord (CRivRecord 52
eventRec, CRivVarBindList evVbList)

26. public boolean rchUpdateModelRecord (CRivRecord |53
modelRec, CRivVarBindList modVbList)

2]. public boolean rchUpdateProfileRecord (CRivRecord |53
profileRec, CRivVarBindList modVbList)

28. public boolean rchUpdateUserRecord (CRivRecord 54
userRec, CRivVarBindList modVbList)

Constructor detail
1)
Constructor public CRivClientHelper (CRivClient client, String username,
String password
Description Constructa CRivClientHelper forthe specified CRivClient
object. A username and password must also be provided as they
define what information can be accessed from the client.
Throws java.lang.NullPointerException—if the username or
password are null.
See Also CRivClient
Cisco Mobile Wireless Fault Mediator 2.0 - Java API Guide
[oL-1279-01 .m

Chapter4 The NMOS Java API Classes |

M Class CRivClientHelper

Method detail

D)

Method

Description

Returns

Throws

See also

2)

Method

Description

Returns

Throws

See Also

public CRivRecord[] getRCHAIlIEventRecords ()

Return an array of all the event records currently held in the
mojo.events table of riv_f_amos.

After sending the data, the client engine will expect to receive a response
from riv_f_amos within the time limit specified by the latency timeout
of the client, or the method will throw a CRivException.

This method is blocking so it is recommended that any lengthy queries
be performed by placing the call to this method in a separate thread.

An array containing all the event records, as CRivRecord objects in
the mojo.events table of riv_f_amos.

CRivException-ifthe helperhasanull CRivClient object, orif
the Client failed to send the query due to an invalid Rendezvous session,
or if the query to riv_f_amos times out.

CRivRecord, CRivClient.getRCTimeOut ()

public CRivRecord[] getRCHAlIModelRecords ()

Return an array of all the model records currently held in the
master.entityByName table of riv_model.

After sending the data, the client engine will expect to receive a response
from riv_model within the time limit specified by the latency timeout of
the client, or the method will throw a CRivException.

Note This method is blocking, so it is recommended that any lengthy
queries be performed by placing the call to this method in a
separate thread.

An array containing all the model records, as CRivRecord objects in
the master.entityByName table of riv_model.

CRivException-if the helper has anull CRivClient object or if
the Client failed to send the query due to an invalid Rendezvous session,

or if the query to riv_model times out.

CRivRecord, CRivClient.getRCTimeOut ()

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

| Chapter4

The NMOS Java API Classes

3)

Method

Description

Parameters

Returns

Throws

4

Method

Description

Returns

Throws

See Also

Class CRivClientHelper

public booleangetRCHAuthPermission (String category,
String action)

Return whether the user is allowed to carry out the given action in the
specified category. For example, “Can the user clear an Event?”, or
“Can the user create new users?”

category-the specified category to which the action belongs.

action—the action the user wishes to carry out.

true, if the given action is allowed by the user's Profile in riv_auth.
false otherwise.

java.lang.NullPointerException-if the specified category
or action are null.

CRivException-if the client is unable to process the query.

public CRivRecord[] getRCHAuthProfiles ()

Return an array of all the profile records currently held in the
auth.profiles table of riv_auth.

After sending the data, the client engine will expect to receive a
response from riv_auth within the time limit specified by the latency
timeout of the client, or the method will throw a CRivException.

This method is blocking, so it is recommended that any lengthy queries
be performed by placing the call to this method in a separate thread.

An array containing all the profile records, as CRivRecord objects in
the auth.profiles table of riv_auth.

CRivException-if the helper has anull CRivClient object or
if the Client failed to send the query due to an invalid Rendezvous

session, or if the query to riv_auth times out.

CRivRecord, CRivClient .getRCTimeOut ()

[oL-1279-01

Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide B

Chapter4 The NMOS Java API Classes |

M Class CRivClientHelper

5)

Method

Description

Returns

Throws

See Also

6)

Method

Description

Parameters
Returns

See Also

public CRivRecord[] getRCHAuthUsers ()

Return an array of all the user records currently held in the auth.users
table of riv_auth.

After sending the data, the client engine will expect to receive a
response from riv_auth within the time limit specified by the latency
timeout of the client, or the method will throw a CRivException.

This method is blocking so it is recommended that any lengthy queries
be performed by placing the call to this method in a separate thread.

An array containing all the user records, as CRivRecord objects in the
auth.users table of riv_auth.

CRivException-ifthe helperhasanull CRivClient object or if
the Client failed to send the query due to an invalid Rendezvous session,
or if the query to riv_auth times out.

CRivRecord, CRivClient.getRCTimeOut ()

public CRivRecord getRCHEventRecords(CRivFilter filter)
Get all the event records matching a particular query, expressed as a
CRivFilter.

After sending the data, the client engine will expect to receive a response
from riv_f_amos within the time limit specified by the latency timeout
of the client, or the method will throw an exception.

This method is blocking so it is recommended that any lengthy queries
be performed by placing the call to this method in a separate thread.

filter—the CRivFilter query.
An array of all the CRivRecords matching the given query.

CRivFilter, CRivRecord, CRivClient .getRCTimeOut ()

H Cisco Mobile Wireless Fault Mediator 2.0 - Java APl Guide

0L-1279-01 |

| Chapter4

The NMOS Java API Classes

7)

Method

Description

Parameters

Returns

See Also

8)

Method

Description

Parameters

Returns

Class CRivClientHelper

public CRivRecord[]
getRCHEventRecords (CRivVarBindList vbList)

Get all the event records matching a particular query.

After sending the data, the client engine will expect to receive a
response from riv_f_amos within the time limit specified by the
latency timeout of the client, or the method will throw an exception.

This method is blocking, so it is recommended that any lengthy queries
be performed by placing the call to this method in a separate thread.

vbList-a list of the CRivVarBinds which make up the query.
Each name/value pair will form a Name=Value condition. All the
name/value pairs in the list will be ANDed together to form the query.

An array of all the CRivRecords matching the given query.

CRivRecord, CRivClient.