
Database

The database element provides the ability to run an SQL command on external databases within a voice
application call flow. The element requires JNDI to be configured in the Java application server to handle
database connections. Only a single SQL statement can be run per element. There are four types of commands
that can be made:

• Single – This is used to run a SQL query that returns only a single row. Element data will be created
with the variable names being the names of the columns returned and the value of that column as the
element data value (as a string). If no row is returned, no element data will be set.

• Multiple – This is used to run a SQL query that returns multiple rows. A Unified CVP-defined Java
data structure, the Java class ResultSetList, stores the full result and is placed in session data. If no
rows are returned, the ResultSetList object in session data will be empty. For detail about the
ResultSetList data structure, refer to the javadocs for this class.

• Inserts – This is used to run a SQL INSERT command that inserts information into the database.

• Updates – This is used to run a SQL UPDATE command that updates information in the database.

The developer can utilize substitution to create dynamic queries. The Database element is ideal for performing
simple queries and updates. It may not be sufficient for performing complex database interactions such as
multiple dependent queries or stored procedure calls. One would use a custom configurable or generic action
element for these tasks. To avoid performance issues while creating database connections, youmust implement
database pooling on the application server.

• Settings, on page 2
• Element Data, on page 2
• Session Data, on page 3
• Exit States, on page 3
• Folder and Class Information, on page 3
• Events, on page 3
• Create JNDI Database Connection in Tomcat for Use in VXML Applications, on page 4

Database
1



Settings
NotesDefaultSubstitution

Allowed
Single
Setting
Value

Req'dTypeName (Label)

The type of query: single,
multiple, insert or update.

singletruetrueYesstring
enum

type

(Type)
The "xml_resultset"
element data is not
created when
insert or update is
selected.

Note

JNDI name for the SQL
datasource of the database.

NonetruetrueYesstringjndiName

(JNDI Name)

For queries of type multiple, the
name of the session variable for

NonetruetrueYesstringkey

(Session Data Key) which the results of the query will
be stored.

The SQL query to run.NonetruetrueYesstringquery

(SQL Query)

If the Result-Set XML option is
set to False, the "xml_resultset"

truefalsetrueYesBooleanenableXmlResultSet
(Result-Set XML)

element data is not created when
the XML Data conversion
functionality is disabled.

Element Data
In the substitution tag, the two element data num_rows_processed and xml_resultset are available by
default when a database element is selected. The {Data.Element.DBElement1.num_rows_processed} and
{Data.Element.Database_01.xml_resultset} are the two tags that can be added for these element data
respectively. The Database element num_rows_processed carries the number of rows fetched when a query
is selected from the database, and the number of rows updated when any update, delete or insert operation
is made in the database. The xml_resultset carries the database result in the XML form for a single query
or multiple select query. The num_rows_processed can be used for any data type settings. The xml_resultset
can only be used for Insert and Update type settings. However, when the type setting is set to single for an
Element data, the names of the return columns are created containing the respective return values.

For example, if a query returned the following information:

foo bar

Database
2

Database
Settings



123 456

The following element data will be created: foo with the value 123 and bar with the value 456.

Session Data
Session data is created only when the type setting is set to multiple. In all other cases, no session data is
created.

NotesTypeName

The Java data structure that stores the returned values from a
multiple type query. The name of the session data variable is
specified by the developer in the key setting.

ResultSetList[value of setting “key”]

Exit States
NotesName

The database query was successfully completed.done

Folder and Class Information
Class NameStudio Element Folder Name

com.audium.server.action.database.DatabaseActionIntegration

Events
NotesName (Label)

You can select Java Exception as event handler type.Event Type

The output of the Customer_Lookup element can be in JSON format . To know more about parsing the JSON
Data refer to "Parsing JSON Data" section in User Guide for Cisco Unified CVP VXML Server and Cisco
Unified Call Studio.

Database
3

Database
Session Data



Create JNDI Database Connection in Tomcat for Use in VXML
Applications

Summary

Steps
This section explains how to create a new JNDI database connection in Tomcat. These instructions are useful
when you want to use the built-in Studio Database element, or create some custom code that accesses database
functionality through JNDI.

1. To enable database access on your application server, a compatible JDBC driver must be installed. These
drivers, typically packaged as JAR files, should be placed in a directory accessible to the application
server classpath (on Tomcat, for example, place in %CVP_HOME%\VXMLServer\Tomcat\lib).

The database must exist for this connection to work. CVP VXML Server will not create
the database for you.

Note

2. Add a Tomcat Context for the database connection so that the CVP VXML Server knows how to
communicate with your database. For more information, see https://tomcat.apache.org/tomcat-9.0-doc/
jndi-datasource-examples-howto.html

3. In Audium Builder for CVP Studio, edit the configuration of the Database element in question. Enter
the string you entered below in <LABEL_YOU_CHOOSE> from the Tomcat Context into the JNDI
Name property of the Settings tab of your Database element.

Do not include the jdbc/ portion here.Note

Here is an example that uses MySQL (edit context.xml from AUDIUM_HOME\Tomcat\conf folder):

•
<Context>
<Resource name="jdbc/<LABEL_YOU_CHOOSE>"
auth="Container"
type="javax.sql.DataSource"
username="USER_NAME"
password="USER_PW"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://HOSTNAME_OR_IP:PORT/DB_NAME" />
</Context>

The default port number for MySQL is 3306. An example url for the above Context would be
jdbc:mysql://localhost:3306/DB_name

Alternately, the <Resource> can be configured in the server.xml file under
<GlobalNamingResources>, and a <ResourceLink> created in context.xml under <Context>

Note

4. Under heavy load conditions, enable Database Connection Pooling.

A database connection pool creates and manages a pool of connections to a database. Recycling and reusing
already existing connections to a database is more efficient than opening a new connection. For further
information on Tomcat Database Pooling, see https://tomcat.apache.org/tomcat-9.0-doc/
jndi-datasource-examples-howto.html.

Database
4

Database
Create JNDI Database Connection in Tomcat for Use in VXML Applications

https://tomcat.apache.org/tomcat-9.0-doc/jndi-datasource-examples-howto.html
https://tomcat.apache.org/tomcat-9.0-doc/jndi-datasource-examples-howto.html
https://tomcat.apache.org/tomcat-9.0-doc/jndi-datasource-examples-howto.html
https://tomcat.apache.org/tomcat-9.0-doc/jndi-datasource-examples-howto.html


Tomcat 8.0 has two connection pool libraries: commons-dbcp and tomcat-jdbc-pool. Due to a
known issue with tomcat-jdbc-pool connection pool library, if the connection between the CVP
VXML server and the remote SQL server goes down, the connections are not re-established
automatically. The connections can be re-established only after the VXMLServer tomcat service
is restarted.

The commons-dbcp connection pool library does not have this problem. The commons-dbcp
library is used by default, and the tomcat-jdbc-pool is only used if the tomcat context.xml file
contains the following line:
factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"

Due to this issue, Cisco does not recommend using the tomcat-jdbc-pool library.

Note

Database
5

Database
Steps



Database
6

Database
Steps


	Database
	Settings
	Element Data
	Session Data
	Exit States
	Folder and Class Information
	Events
	Create JNDI Database Connection in Tomcat for Use in VXML Applications
	Summary
	Steps



