Call End Action

VXML Server can be configured to run code once a call has ended. Unlike the call start action, the call end
action can occur at any time in the call and there are several different situations that would trigger the call
end action. The following lists those situations:

* The caller usually ends the call.

* The application ends the call. This includes any errors that are caught by the system that lead to ending
a call, or places in the application when the call’s purpose is over.

* A blind telephony transfer takes place. Blind transfers connect the caller with the party called using
telephony switching equipment, removing the voice browser (and hence VXML Server) from the calling
context. Even though the physical phone call continues, the role of the automated system ends and so
for it, the call has ended.

N

Note The availability of blind transfers is determined by the voice browser’s
functionality and network setup.

* The application performs a transfer to another Unified CVP application. This is not a telephony transfer,
but the results are very similar. Since the call leaves the source application, it is considered the end of
the call to that application.

* VXML Server times out a session. This occurs only rarely, it would be seen only when some error
prevented VXML Server from receiving a request in the middle of a call and it waited a certain amount
of time before timing out the session. This could be due to a voice browser going down or if the request
coming from the voice browser is malformed and VXML Server cannot determine which call that request
was supposed to be for.

* The session is invalidated by a custom element. Standard and configurable elements have the ability to
invalidate the session for situations where some process ends the call that would not prompt VXML
Server to be notified that the call ended. This functionality is described in more detail in the chapters on
custom elements.

The call end action can be implemented with either the Java API or the XML API. Unlike the call start action
using the XML API, the call end action does not have an option to perform it in the background. In fact, one
need not worry about performing time consuming tasks in the call end action because it will not affect the
performance of the call since it has ended. One must still be careful not to perform tasks that maximize CPU
usage since that would aversely affect the handling of other calls.

Call End Action .

Call End Action |
. Java APl Use

Like the call start action, the call end action can modify the session such as creating session data or changing
the default audio path, though these actions would not make sense as there is no more call flow to visit. The
call end action can access everything that occurred within the call, including how the call ended (hangup, call
transfer, etc.) This is useful for activities such as creating CDR records which must list everything a caller
did.

A unique feature of the call end action is to optionally send back a final Voice XML page to the voice browser.
Some voice browsers will actually interpret a Voice XML page sent back in response to a request triggered
by a disconnect or call-end event. As the caller is no longer interacting with the IVR, this page would obviously
only be useful for limited functionality that had nothing to do with interacting with the caller, such as running
<log> tags.

\)

Note This final page applies to only when the caller ends the call on the application or the application ends the call.

 Java API Use, on page 2
* XML API Use, on page 2
* Remote Execution, on page 4

Java API Use

The end of call action is built in Java by implementing the Unified CVP class Endcallinterface found in
the com.audium. server.proxy package. It contains a single method named onEndca11 that is the method for
the call end class. This method receives a single argument, an instance of ca11Endap1. This class belongs to
the Session API and is used to access session information such as session data (See Session API for more
information on this API). The method does not have a return value. It is expected that should an unrecoverable
error occur, the call end action will throw an AudiumException.

If the call end action is to return a final VoiceXML page to the voice browser, this is done by using the Voice
Foundation Classes (VFCs) (See Voice Foundation Classes for more on the VFCs) and accessing methods in
the ca11EndaprT Session API class.

XML APl Use

As described in Session API, the standard inputs and settings XML documents are sent via POST to the call
start URI. The following shows the DTD diagram of the XML document that must be sent in response. The
DTD for the end of call action response is defined in the file cal1Endresponse.dtd found in the VXML
Server dtds folder.

. Call End Action

ccvp_b_1262-programming-guide-for-cisco-unified-cvp-vxml-server-and-cisco-unified-call-studio1_chapter3.pdf#nameddest=unique_20
ccvp_b_1262-programming-guide-for-cisco-unified-cvp-vxml-server-and-cisco-unified-call-studio1_appendix1.pdf#nameddest=unique_31
ccvp_b_1262-programming-guide-for-cisco-unified-cvp-vxml-server-and-cisco-unified-call-studio1_chapter3.pdf#nameddest=unique_20

| call End Action

xmLAPiuse i

r -

(3| * new_ dataz ¥ session# # nameg
L = |string .string J
(3| * set_uidg
7 linteger

I cusmm% ' ® nameg
e o et tri wstri J
@ + IDQE @< 4 string L string]

e warning%
+ result% strin
@ + errnr%

(7) * set_default_path

string

& * se[_maintainer%
email

L5 * vxml_response%
| string

The tags in these XML documents are:

» new_data — This tag holds the session data to be created. Any number of <session> tags can appear,
one for each session data variable to be created.

N

Note FElement data cannot be created because the call end action is not an element.

* set_uid — This tag is used to associate the call to a UID in the user management system. The content of
the tag should be the integer UID.

* log — This tag is used to trigger logger events for this application. Any number of <custom> tags can
appear, denoting the triggering of a custom event. The name attribute holds the name of the data, and the
<custom> tag encapsulates the value. Any number of <warning> tags can appear, denoting the triggering
of a warning event. The <warning> tag encapsulates the warning message.

* error — This tag reports to VXML Server that an error occurred while running the call end action. VXML
Server will then throw an exception whose message is contained in the <error> tag. This allows the
XML API to throw exceptions just as the Java API does.

\)

Note Since the call has ended, there would be no adverse affect to the call itself, though
an error event will be thrown.

» set_default_path — This tag is used to change the default audio path.
 set_maintainer — This tag is used to change the maintainer e-mail address.

» vxml_response — This optional tag encapsulates the Voice XML page that is to be passed to the voice
browser for the final response. It is expected to contain a CDATA tag that encapsulates the entire
VoiceXML document as it is to be returned to the voice browser (including the first line starting with
<?xm1).The developer is responsible for ensuring the VoiceXML is correct as VXML Server does no
validation of the Voice XML before returning it to the browser.

Call End Action .

Call End Action |
. Remote Execution

\}

Note Since the VFCs are not used to throw the VoiceXML like the Java API, the
developer is responsible for ensuring the VoiceXML is compatible with the voice
browser(s) being deployed to.

)

Note All the tags are optional, there is no tag required except for the root <result> tag. Since the XML API requires
a document in response, it is acceptable to return an XML document whose <result> tag is empty.

Remote Execution

For remote execution of the Call End Action, the following syntax for URI is to be used:

For HTTP and RPC call:
remote://system/?classurl=<fully qualified java class path>

For example:
remote://system/?classurl=com.cisco.cvp.callstudio.Action.TestEndCallClass

remote: //systemindicates that the configurations will be fetched from the Remote Ur| Settings property
tab which is application-specific.

\}

Note If a direct remote server URI is provided, then that | P:Port will be used and not fetched from the Remote
Url Settings property tab.

For example:
http://<IP>:<Port>/<target path>/?classurl=<fully qualified java class path>

. Call End Action

	Call End Action
	Java API Use
	XML API Use
	Remote Execution

