
Programming Guide for Cisco Unified CVP VXML Server and Cisco
Unified Call Studio, Release 12.6(2)
First Published: 2023-04-28

Last Modified: 2023-04-28

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 1994–2023 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

Preface

• Change History, on page iii
• About this Guide, on page iii
• Audience, on page iii
• Related Documents, on page iv
• Communications, Services, and Additional Information, on page iv
• Documentation Feedback, on page iv

Change History
This table lists changes made to this guide. Most recent changes appear at the top.

DateSeeChange

April 2023Initial Release of Document for Release 12.6(2)

October 2023Initial Release of Document for Release 12.6(2) ES03

Added "Remote Execution" section as part of Unified CVP API
Introduction Call Start Action, Call End Action, Dynamic Element
Configurations, Standard Action Elements, Standard Decision Elements,
Configurable Elements, Application Start Classes, Application End
Classes, Say It Smart Plugins, and Loggers chapters.

About this Guide
This document describes how to use the programming APIs provided by Cisco Unified CVP VXML Server
(VXML Server). Topics covered include building custom elements and the Cisco Unified Customer Voice
Portal (Unified CVP) VoiceXML Java and XML APIs

Audience
This document is intended for developers writing system and voice applications/components using Cisco
Unified CVP VoiceXML.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
iii

The grammar logic supplied with the out-of-the-box plug-in follows English grammar logic only. To achieve
logic for other languages, you must develop your own plug-in.

Note

Related Documents

Planning your Unified CVP solution is an important part of the process in setting up Unified CVP. Read the
Solution Design Guide for Cisco Unified Contact Center Enterprise before you configure Unified CVP
solution.

Note

For additional information about Unified ICME, refer to theCisco web site listing Unified ICME documentation.

Communications, Services, and Additional Information
• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit
Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system
that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides
you with detailed defect information about your products and software.

Documentation Feedback
Provide your comments about this document to: mailto:contactcenterproducts_docfeedback@cisco.com.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
iv

Preface
Related Documents

https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/go/marketplace/
https://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com
https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html
mailto:contactcenterproducts_docfeedback@cisco.com

C O N T E N T S

Preface iiiP R E F A C E

Change History iii

About this Guide iii

Audience iii

Related Documents iv

Communications, Services, and Additional Information iv

Documentation Feedback iv

Introduction 1C H A P T E R 1

Requirements 1

Unified CVP API Introduction 3C H A P T E R 2

Java API 4

Design Considerations 4

Compiling Custom Java Components 5

Deployment 5

Remote Execution 7

XML API 8

DTD Diagrams 9

Deployment 11

Session API 13C H A P T E R 3

Java API 13

XML API 14

XML Document Sent Inputs 15

XML Document Sent Settings 16

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
v

Call Start Action 21C H A P T E R 4

Java API Use 22

XML API Use 22

Remote Execution 24

Call End Action 25C H A P T E R 5

Java API Use 26

XML API Use 26

Remote Execution 28

Dynamic Element Configurations 29C H A P T E R 6

Java API Use 29

Remote Execution of Dynamic Element Configuration 30

XML API Use 31

Decision and Action Element Configuration DTD 31

Voice Element Configuration DTD 33

Substitution XML Format 36

Standard Action Elements 39C H A P T E R 7

Java API Use 39

XML API Use 39

Remote Execution 41

Standard Decision Elements 43C H A P T E R 8

Java API Use 43

XML API Use 43

Remote Execution 45

Configurable Elements 47C H A P T E R 9

Design 48

Common Methods 49

Configuration Classes 51

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
vi

Contents

Action Elements 51

Remote Execution 52

Decision Elements 52

Remote Execution 53

Voice Elements 53

Restrictions and Design Considerations 55

VoiceElementBase Methods 56

Interaction Logging 60

Remote Execution 62

Application Start Classes 63C H A P T E R 1 0

Application Start Classes 63

Remote Execution 64

Application End Classes 65C H A P T E R 1 1

Application End Classes 65

Remote Execution 66

Say It Smart Plugins 67C H A P T E R 1 2

Design 67

Methods to Run 68

Configuration Methods 70

Utility Methods 70

Loggers 73C H A P T E R 1 3

VXML Server Logging Design 73

Logger Events 73

Loggers Use 74

Logger Design 76

Global Logger Methods 76

Application Logger Methods 77

Utility Methods 79

Common Utility Methods 79

Application Logger Utility Methods 80

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
vii

Contents

Remote Execution of Custom Logger 80

On Error Notification 83C H A P T E R 1 4

On Error Notification 83

Application Management API 85C H A P T E R 1 5

Design 85

Management Bean Samples 88

Application Management Interfaces 88

Voice Foundation Classes 91A P P E N D I X A

VFC Design 91

VFC Classes 93

Java 8 Migration 97A P P E N D I X B

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
viii

Contents

C H A P T E R 1
Introduction

Cisco Unified Customer Voice Portal (Unified CVP) software has been designed to be easy to use but highly
extendable. While the software provides enough to produce high quality voice applications out of the box,
many users will want to extend the functionality of the software by building custom components that perform
very specific tasks. This document describes the processes and application programming interfaces (APIs)
provided for a developer to construct and deploy these components.

The components a developer uses the APIs to construct are: configurable action, decision, and voice elements,
standard action and decision elements, dynamic element configurations, start and end of call actions, start and
end of application actions, the on error notification, hotevents, Say It Smart plugins, and global and application
loggers.

• Requirements, on page 1

Requirements
All components require programming effort to construct. In order to build these components, Unified CVP
provides a Java API as well as an API that allows the use of other programming languages. Therefore, the
reader should at least possess a familiarity with programming concepts.

Some components can only be constructed using the Java API and so for these components, the reader should
possess a familiarity with the Java programming language. The reader should understand Java interfaces and
abstract classes, extending classes and overriding methods, static variables and methods, Java collections, and
compiling and deploying Java classes and JAR files. Unified CVP does not require very complex Java coding,
knowing the basics of the Java language will be sufficient to start working with the Unified CVP Java API.
Most of the information about the Java API is encapsulated in the API’s Javadocs. This document will serve
to provide a starting point and the Javadocs will provide the details.

Some components are used to produce VoiceXML, the language used to communicate with a voice browser.
When building these components, a familiarity with VoiceXML is essential. The Java API used to produce
VoiceXML follows the same design as the VoiceXML language, so a developer that understands how to write
VoiceXML will be able to produce it using the API much easier and faster than a developer not familiar with
VoiceXML.

Finally, the reader should familiarize themselves with the way Cisco Unified CVP VXML Server (VXML
Server) works by reading the User Guide for Cisco Unified CVP VXML Server and Unified Call Studio,
especially Chapter 2, which explains the purpose for each of the components described in this document.
Familiarity with Cisco Unified Call Studio (Call Studio) and Builder for Call Studio is required for
understanding how to construct configurable elements and Say It Smart plugins since they define how they
are displayed within the Builder.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
1

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

The grammar logic supplied with the out-of-the-box plug-in follows English grammar logic only. To achieve
logic for other languages, you must develop your own plug-in.

Note

You can create your custom elements or use additional Java classes in the Cisco Call Studio. If you need
support in developing or troubleshooting it, you must have a developer support services contract or work with
a Cisco partner/Cisco Advanced Services who has a developer support services contract.

Note

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
2

Introduction
Requirements

C H A P T E R 2
Unified CVP API Introduction

Unified CVP’s API design has three goals: to be simple to use, to provide all the information a developer may
need, and to allow the use of as many programming languages as possible. The API is used for simple tasks
such as getting the ANI of the call or complex tasks such as creating a custom voice element. The API defines
some mechanisms for custom components to integrate with Call Studio, though the API is primarily used to
create components for integration with VXML Server.

Unified CVP provides a Java API, which is the most efficient way to interface with Unified CVP software.
The Java API is also the most comprehensive; all components can be constructed using it. It is also the only
way to build the components that require integration with Unified CVP Studio. Many components can be
built with an equivalent API called the XMLAPI. This API works by sending and receiving XML documents
over an HTTP connection. This scheme allows the use of any programming language with the ability to create
and parse XML and handle HTTP connections. Languages such as Perl or ASP in conjunction with a web
server like Tomcat are sufficient to interface with VXML Server using the XML APIs. The requirement for
integrating with Call Studio must be through Java, so the XMLAPI is used to construct only those components
that need to integrate with VXML Server. The table below lists each component, which API can be used to
construct it, and whether that component must integrate with Call Studio.

Table 1: Unified CVP Components with Different APIs

Call Studio
Integration

Build With XML APIBuild With Java
API

Unified CVP Component

NoYesYesOn Call Start / On Call End Actions

NoYesYesDynamic Element Configurations

NoYesYesGeneric Action and Decision Elements

NoNoYesHotevents

YesNoYesSay It Smart Plugins

NoNoYesOn Application Start / End Actions

NoNoYesLoggers

NoNoYesOn Error Notification

• Java API, on page 4
• XML API, on page 8

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
3

Java API
There are two parts of the Unified CVP Java API: a set of Java interfaces and classes that are implemented
or extended to build a custom component and a set of classes used by those components to obtain information
on the environment in which the call is occurring. Each component implements or extends a different class,
though many of them share a common base. Similarly, the class used to obtain environment information
differs for each component, though each of those classes shares a common base class.

The classes used to obtain and change environment information are referred to as the Session API. All
components receive an instance of one of the classes to act as the conduit between the component and VXML
Server. The classes in the Session API are organized into a hierarchy where the classes for each component
add unique capabilities to the common base with regards to what data is available to it and what it is allowed
to modify.

When building a component, the design requires the component to implement a single method VXML Server
uses to access the component. This method can be seen as the “main” method for that component; it is where
VXML Server leaves its context and enters the component’s. It is this method that receives as a parameter a
class belonging to the Session API to provide the component access to environment information.

The method is used exclusively by VXML Server. Two components, custom configurable elements and Say
It Smart plugins, require integration with Builder for Call Studio. For those components, the API additionally
requires methods that define how to render it.

For those components that need to produce VoiceXML (primarily configurable voice elements and hotevents),
Unified CVP provides another set of Java API classes called the Voice Foundation Classes (VFCs). These
classes act as an abstraction layer to VoiceXML and allow Unified CVP components to work seamlessly on
any supported voice browser. Building VoiceXML using the VFCs is very much like building VoiceXML
statically, except in a Java environment.

The API Javadocs contain detailed descriptions for each of the classes in the Java API, including the Session
API and the VFCs.

Design Considerations
A few notes on VXML Server and how it interacts with custom components written in Java is warranted. This
information is important to keep in mind since how a developer approaches the design of the components
they wish to build is impacted by them:

• Each application is run by VXML Server in its own separate classloader. The classloader’s focus includes
all Java classes found in the local application’s java folder, all classes found in VXML Server’s common
folder, and the other classes available in the application server’s CLASSPATH. The advantage of this
approach is that developers need only worry about class name conflicts within an individual application.
One consequence, however, is that static class variables are static only within each application, even if
they appear in classes stored in common.

Additionally, when an application is updated, a new classloader is created for the application, replacing
the previous one. This is not a problem unless dealing with static variables, which would be reset once
the application is updated.While knowledge of classloaders is not required in order to know how to build
custom components, it can be useful to understand how classloaders work in Java to understand how
custom component code integrates with VXML Server.

• An application is loaded into memory when VXML Server first starts up or the application is updated.
During this process, a single instance of each element (both standard and configurable) is created and

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
4

Unified CVP API Introduction
Java API

cached for the application to use. Whenever a call to that application encounters an element, VXML
Server will call the method of that single instance. This means that a single element instance will handle
requests made across all calls to the application. This applies to multiple uses of an element type in the
call flow (for example, if the call flow contains two Digits elements, VXML Server will actually use the
same instance for both across all calls). This is very important because in this design, the element class
acts as if it is static.

The consequence of this is that all member variables defined in the element class act as static variables,
meaning that once changed, every caller experiencing that element type is exposed to the same value.
Use only static final member variables, store any persistent data in the session (which the API provides
access to), and keep all other variables local to the method. Everything an element needs is provided by
the API so while this is important to be aware of, this design restriction should not prevent the developer
from implementing any desired functionality within the element.

• VXML Server runs in a multi-threaded environment. If the guidelines above are followed, such as
avoiding member variables and non-final static variables this does not pose a problem. The developer
does not need to worry about architecting their code with synchronization in mind when dealing with
local or session variables. They would, however, when performing tasks such as accessing external
resources such as files.

Compiling Custom Java Components
Once a component is constructed in Java, the process for compiling and deploying these classes is very simple.
The VXML Server lib directory includes JAR files containing everything a developer requires to compile
custom components. The main JAR file of interest is framework.jar, which defines the entire Unified CVP
Java API (including the VFCs).

To create custom components, all that is needed is to ensure that this JAR file appears in the compiler’s
CLASSPATH or referred to in a Java IDE project file. Some Java IDEs may require additional JAR files,
servlet.jar and xalan.jar, to appear in the CLASSPATH since the classes within framework.jar refer to
classes defined in those JAR files and these IDEs cannot compile without definitions for these additional
classes. The command-line Java compiler does not require servlet.jar or xalan.jar to appear in the
CLASSPATH. The developer is then responsible for adding to the CLASSPATH any additional JAR files their
custom code requires.

Deployment
Once compiled, component class files are deployed separately for Call Studio and VXML Server. Within
these deployments, a developer can choose to associate component classes with a specific application or with
the system as a whole so that the components can be shared across all applications. The deployment process
for Call Studio and VXML Server are described in the following sections. A third section provides details on
the specific deployment directories developers should use.

Call Studio Deployment

Call Studio provides a location to place components that are to be shared across all applications: Call
Studio\eclipse\plugins\com.audiumcorp.studio.library.common. Individual classes are placed in the
classes subdirectory and JAR file archives are placed in the lib subdirectory.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
5

Unified CVP API Introduction
Compiling Custom Java Components

The only classes that need to be placed here are custom configurable elements and Say It Smart plugins since
all other components have no Call Studio interface and hence require deployment only on VXML Server.

Note

Once deployed in this folder, custom configurable elements will appear in the element pane directly under
the Elements folder alongside with Unified CVP-provided elements.

For component classes that apply to a specific application only, a developer uses the deploy\java directory
found in that application’s project folder. Within Call Studio, compiled classes and/or JAR files can be dragged
from outside Call Studio to the appropriate subdirectory in the deploy\java folder.

An alternative method that does not require Call Studio to be running would be to copy the files into the
appropriate subdirectory of the deploy\java folder using the file system.

The application project folder can be found in Call Studio\eclipse\workspace (unless the developer sets
the workspace to a custom directory) and the deploy\java folder within the application will appear here
exactly as it appears in the Call Studio application project window. This can also be done while Call Studio
is running, though to view the copied files in Call Studio, the deploy folder should be selected and the Refresh
option chosen from the contextual menu.

Custom configurable elements placed in the deploy\java directory will appear in Call Studio’s element pane
under the folder named Local Elements. The call flow editor for that application must be closed and reopened
in order for newly copied local elements to appear in the element pane.

When the application is deployed fromwithin Call Studio, the VXML Server folder created for that application
will contain a folder named java whose contents is identical to the deploy\java folder in the Call Studio
project.

It is important to mention that you can have a Java library with *.zip filenames in your development environment
(Call Studio), because classpaths are explicitly specified. However, the VXML Server runtime environment
has to preload all library classes implicitly. The naming convention the VXML Server enforces the *.jar
filename extension and will not load classes with *.zip filenames. Therefore you must use *.jar filenames for
classes that are developed on Call Studio and will run on VXML Server.

VXML Server Deployment

When an application is deployed through Call Studio, a folder is created that encapsulates all the information
for that application, including all Java code the developer placed in the Call Studio project as per the instructions
given in the previous section. If the application is to change in any way, from changes to the call flow, to the
addition or subtraction of required Java files, those changes must be done through Call Studio and then
redeployed to VXML Server.

One deployment requirement that must be performed by the developer is to ensure that the Java components
and utility libraries stored in the Call Studio\eclipse\plugins\com.audiumcorp.studio.library.common

folder are also placed in the VXML Server common folder. When an application is deployed from Call Studio,
only that application’s files are created, any common code is not included. As a result, it is the developer’s
responsibility that the contents of the common folder in Call Studio also appear in the VXML Server common
folder.

When VXML Server initializes, it first loads the classes in common and then loads each application’s classes.
Due to the way Java classloaders work, if a Java class appears in both the common folder and an application’s
java folder, the one in common will take precedence and the one in the application’s java folder will not be
loaded.

Note

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
6

Unified CVP API Introduction
Deployment

Due to the order in which these classes are loaded, the developer cannot place a class in common that refers to
a class that only appears in an application’s java folder since the classes in common are loaded first. Keep in
mind that some application servers have advanced options to change this precedence to parent-last, meaning
that the application-level classloaders take precedence. By default, all application servers should be configured
to be parent-first.

Note

Subdirectories of the Java Folder

The java folder of a Call Studio project and a VXML Server application folder contain two subdirectories
named application and util. Each folder encapsulates Java classes used for different purposes, their
distinctions applying primarily to how the application works within VXML Server.

The application folder should contain all Java code for components that are used by the application.

In Call Studio, any custom configurable elements that are utilized only by the application would be placed in
this folder and will appear in Call Studio’s element pane under the folder named Local Elements. The call
flow editor for that application must be closed and reopened in order for newly copied local elements to appear
in the element pane.

Note

The second subdirectory of the java folder is the util folder. This is used for Java libraries that provide the
application with utilities unaffiliated with Unified CVP (such as math libraries, XML parsing libraries, etc.).

Notes concerning which folder to use:

• Any class that refers to Unified CVP-specific API classes cannot be deployed in the util folder. If the
class is application-specific, it must be placed in the application folder of that application. If the class
is to be shared across all applications, it must be placed in the common folder of VXML Server.

• The classes in the util folder will not be reloaded when the application is updated using the updateApp
administration script. If this behavior is not desired or the utility libraries are frequently updated, place
these files in the application folder. See User Guide for Cisco Unified CVP VXML Server and Unified
Call Studio for more information.

• Utility classes that do not refer to Unified CVP classes at all (such as third-party libraries) can be placed
anywhere within the CLASSPATH of the application server. For example, on the Tomcat application
server, a library for connecting to a mainframe system can be placed in TOMCAT_HOME\lib rather than
any Unified CVP directory.

Remote Execution
A property tab titled Remote Url Settings is added in the Call Studio Application properties. This will be
used for configuring the remote URL values for the remote execution of elements, loggers, Application Start
and End Classes, On start and end call URI, and Say it smart plugins.

Description of the values in the Remote URL Settings property tab is as follows:

• Static: Both IP or FQDN value along with Port number can be provided. In case of multiple Static entries,
it will be load balanced among the servers using Round Robin Algorithm. Default setting is static with
local host IP and Port configured in Call Studio Settings.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
7

Unified CVP API Introduction
Remote Execution

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

• At a time either DNS or Static values can be present.

DNS: Only one FQDN value along with the Port Number can be added. At a time, either DNS or Static
values can be present.

• Type: Can be HTTP or RPC which will determine the connection type for the remote server.

• Timeout: Default value is 10 seconds and can be any value between 1 and 60 seconds.

• User ID and Password for basic authentication have been provided. These are optional, will be masked
in UI, and encrypted when stored in application setting xml file.

• Subdirectory: Is the path for remote server(name of the war file) to be used which is customapis
by default.

• Secure connection: Is false by default and determines the connection type to be secure or not.

• Stickiness: Is false by default and determines whether the stickiness feature to be used or not. Enabling
stickiness indicates that all the RPCs and Rest APIs call will be made to same server for that entire
session.

External Load balancer or proxy can also be used to distribute the load/calls across multiple servers.

XML API
The philosophy behind the XML API is to provide as much of the functionality found in the Java API as
possible in a way that can be accessed by non-Java developers. This is managed by using XML, which can
be produced and parsed easily, and by using HTTP connections, which can be handled by many different
programming languages. Interpreted languages such as Perl or PHP are just as effective in interfacing using
this API as other languages such as ASP or CGI via C++.

The API works in a similar fashion as the Java API. VXML Server creates one or more XML documents and
places their contents in POST arguments in an HTTP request. These documents contain the same environment
information available through the Java Session API classes. This request is sent to a developer-specified URL
whose purpose is to produce an XML document and return it as the HTTP response. As with the Java API,
the XML documents returned by various components differ to reflect the different functionality each component
possesses. All these XML documents comprise the XML API. The DTDs for the XML API documents are
found in the dtds directory in VXML Server. The DTDs exist as a reference, a DOCTYPE line is not required
in either request or response XML documents. The format of each XML document will be described in detail
in each component’s section in this document.

A component using the Java API has the ability to access methods that interface with VXML Server whenever
needed. The XML API, since it is run over HTTP in a request / response fashion does not have that luxury.
VXML Server does not know in advance what session information the component will need. Providing a
separate interface for every piece of information desired would cause unnecessary overhead since a component
could potentially access this information dozens of times, each time requiring a new HTTP request and
response. To resolve this issue, VXML Server sends to the component all information in several XML
documents passed as POST parameters.While this may seem like a lot to put into a single document, especially
if the component does not need more than a few pieces, a typical application will not possess so much session
information as to adversely affect the performance of the XML API.

Another consequence of the request/response mechanism for accessing the XML API is that while the Java
API can call a method to read information and set information, the XMLAPI must separate the read and write
functionality. The HTTP request XML documents produced by VXML Server contains all desired information

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
8

Unified CVP API Introduction
XML API

to read while the XML response sent back from the component specifies how to manipulate the desired
information. Since the tasks each component can perform are different, the response XML document will
differ for each component type.

While the XMLAPI provides the same functionality as the Java API, there are some small deficiencies. Firstly,
there is additional overhead involved in the XML API since it involves the creation and parsing of XML as
well as the overhead inherent in HTTP communications. This overhead, though, is not large as the XML
documents involved are typically small and only a single HTTP request and response are used per component.
However the developer should test their system to ensure that any overhead introduced is acceptable. Secondly,
some components, both Unified CVP and custom built, utilize Java classes as efficient mechanisms for storing
data. Using the Java API, these classes can be accessed and modified directly. The XML API, however, will
not be able to because it is a text-only interface designed to work identically using different programming
languages. A developer must be aware of this restriction before designing components that rely on Java-only
concepts.

Due to the nature of XML and HTTP and the complexity of some Unified CVP components, the XML API
is available as an alternative only for some components.

The components that can utilize the XML API are:

• standard action and decision elements

• dynamic element configurations

• start and end of call actions

Since configurable elements require more integration with Call Studio and VXML Server, they can only be
created using the Java API.

DTD Diagrams
While the Java API has Javadocs explaining what can be done with the classes and methods in the API, the
DTDs for every XML document sent either as a request or a response is described within this document. A
quick introduction to DTD diagrams is warranted at this point in order to fully understand the XML API.

Figure 1: Sample DTD Diagram for XML

The preceding figure shows a sample DTD diagram that contains most of what can be found in an XMLDTD.
A DTD diagram is a graphical representation of a DTD, which explains how an XML document is formatted.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
9

Unified CVP API Introduction
DTD Diagrams

Due to the nature of XML, syntax is very important and DTD diagrams describe the syntax of an XML
document. The diagram shows the hierarchical structure of XML by using a sideways tree display, listing
tags and their child tags from left to right. The diagram shows the attributes of tags as well as how those tags
can be added to their parent tags.

The characteristics of the sample DTD diagram are:

• The root tag is named parent. A Tag is denoted by a blue diamond in its box.

• The parent tag has two attributes: attribute1 and attribute2, displayed in a red box emerging from the
tag. An attribute is denoted by a blue circle in its box.

• The type of each attribute is shown in the gray section of the box (enumeration and string in this
example).

An enumerated type is an attribute whose value can be one of a select group of options (for example,
“apple”, “orange” or “grape”).

• In this example, attribute2 is an optional attribute, denoted by a question mark to its left.

• In this example, attribute1 is a required attribute, denoted by having no symbol to its left.

• The parent tag has four child tags that can appear within the encapsulating parent tag. This is denoted
by a red bracket encapsulating all the tags.

• A bracket indicates that the child tags must appear within the parent tag in the order set in the
diagram.

• A "*" at the left edge of the tag indicates it can appear from 0 to many times.

• A "+" indicates it can appear from 1 to many times (that is, it must appear at least once in the
document).

• A "?" indicates it can appear from 0 to 1 time (if it appears, it can only be once).

• The child2 tag contains its own tags, another_child1 and another_child2.

This time, however, an angled red line is used to encapsulate the tags. This indicates that either one or
the other can appear, but not both.

• The child4 tag has a similar situation, but a + sign appears before its child tags, indicating that the child
tags can appear any number of times, in any order, as long as there is at least one appearance.

The following code is an example XML document that conforms to the above DTD:
<parent attribute1=”something”>

<child1 attribute=”a value”/>
<child1/>
<child2>

<another_child1 attribute=”this is required”>
Some value for the another_child1 tag.

</another_child1>
<another_child2>

The content for another_child2.
</another_child2>

</child2>
<child4>

<child1_of_child4/>
<child2_of_child4/>
<child2_of_child4/>

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
10

Unified CVP API Introduction
DTD Diagrams

<child1_of_child4/>
</child4>

</parent>

The child1 tag is allowed to appear multiple times because it has a * next to it. One child1 tag does not have
an attribute because it is optional. Additionally, since these tags do not encompass any additional content, the
tag is closed with a “/>” so there is no need for a closing tag.

Note

The child2 tag contains its two child tags. The another_child1 and another_child2 tags encapsulate text so
they have an open and close tag. The another_child1 tag must specify its required attribute.

Note

The child3 tag can be omitted because it is optional.Note

The child4 tag contains any number of its child tags in any order. It would be a syntax error to not include
any child tag at all since at least one is required.

Note

The order in which the child tags of parent must conform to the diagram. If child4, for example, appeared
before the child1 tag, that would be a syntax error.

Note

Deployment
It is up to the developer to set up the environment necessary to support the requests made by VXML Server.
Since the API is accessed over HTTP, the XML content must be served by a web or application server. This
content could potentially be served on the same machine as VXML Server though the act of parsing XML
and the details of using HTTP will add additional overhead to the performance of VXML Server. To get the
best performance, the setup should consist of a separate system handing the requests on the same subnet as
the machine on which VXML Server is installed. Maintaining the two systems on the same subnet will reduce
any network overhead as well as allow the administrator to restrict communication to occur only within the
same subnet.

Keep in mind that, unlike Java, changes made to components using the XMLAPI are not graceful. Components
using the Java API are deployed on top of VXML Server and therefore take advantage of the graceful nature
of VXML Server administration activity, while components using the XML API are hosted on separate
systems. Any changes made to system that would affect the XML sent as response to VXML Server requests
would be available immediately. The administrator must ensure that maintenance activity be performed on
both systems to ensure callers do not experience changes within a single phone call. For handling updates to
applications using components using the XML API, suspend the application before changes are made to the
server hosting the XML.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
11

Unified CVP API Introduction
Deployment

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
12

Unified CVP API Introduction
Deployment

C H A P T E R 3
Session API

As described in the previous chapter, Unified CVP provides a mechanism for the developer to access and
change information having to do with the phone call or the session. Through this API one can get environment
information such as the phone number of the caller (ANI), the time the call began, and application settings
such as the default audio path. This API is also the conduit for the developer to set element or session data,
send custom logging events, or access the user management system. A subset of the Session API, called the
Global API provides access to data that exists beyond individual sessions.

Any custom component built by the developer will be sent this API to interface with the session. This section
of the document describes the API and what it can be used for. Both the Java and XML versions of this API
are described. Subsequent chapters will detail the APIs used to actually construct components.

• Java API, on page 13
• XML API, on page 14

Java API
As described previously, every Unified CVP component is constructed by implementing a Java interface or
extending a Java class and overriding a single method. One argument to this method is a Unified CVP-specified
Java class that acts as the API to the session. Methods in this class are used to get or change information stored
in the session, such as element or session data.

A different API class is used depending on the component. All API classes are derived from the base class
APIBase, though all non-logger API classes directly extend ComponentAPI (both are found in the
com.audium.server.session package). APIBase defines information retrieval functions any component
accessed within a call session can use, such as:

• Obtaining telephony information such as the ANI and DNIS.

• Obtaining application setting data such as the gateway adapter name, default audio path, maintainer, etc.

• Getting element or session data created by components run prior to the current component.

• Retrieving a list of elements and the exit states encountered by the caller prior to the current component.

• Obtaining information on where the current application resides in order to aid in the loading of custom
content found there.

ComponentAPI adds to this the ability to alter some environment settings:

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
13

• Getting access to the User Management system, allowing the component to create, modify, or query
information on users.

• Creating session data. This class does not allow the creation of element data because only elements can
do so (the start of call class cannot, for example).

• Adding custom content to the activity log and warnings to the error log.

• Triggering custom logging events and warning events that are picked up by loggers.

• Setting the maintainer, default audio path, application language and encoding, as well as the call’s session
timeout. At any point in the application, these settings can be changed.

• Accessing the Global API to get and set application and global data (See User Guide for Cisco Unified
CVP VXML Server and Unified Call Studio for more information on application and global data).

The following bullets list the API classes that are used for various components (also found in the
com.audium.server.session package). A detailed description of what each class provides is given in the
individual section for that component.

• CallStartAPI – This class is sent as an argument to the start of call class.

• CallEndAPI – This class is sent as an argument to the end of call class.

• ElementAPI – This class is used by all standard and configurable element classes as well as dynamic
configuration classes. The following classes extend ElementAPI to provide additional functionality
required for different kinds of elements.

• ActionAPI / ActionElementData – The ActionAPI class is used by generic action element classes
and is extended by ActionElementData which is used by configurable action element classes.

• DecisionElementData – This class is used by configurable decision element classes.

• VoiceElementData – This class is used by configurable voice element classes.

• LoggerAPI – This class is sent as an argument to a logger’s method for handling a session-specific
logging event.

XML API
When a component uses the Java API, the Session API is accessed via an object passed to the method. A
similar setup exists when a component uses the XML API. The entire contents of the Session API are made
available via a set of XML documents passed to the component in the HTTP request. Each component will
receive this information whether they need it or not, since VXML Server does not know in advance what
information the component could require. The component can choose to ignore these documents if the
information contained within are not required, or use a fast, event-based parser to extract only the desired
information from the documents.

Each component receives two POST arguments containing complete XML documents representing the Session
API. The first, named inputs, lists the session information representing the state of the application up to the
point when the component was reached. The second argument, named settings, lists the current value for the
application settings.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
14

Session API
XML API

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

XML Document Sent Inputs
The following example is the DTD diagram for the XML document sent to all components in the inputs
argument. Its DTD is defined in the file ElementRequest.dtd in the VXML Server dtds folder.

Figure 2: XML Example Diagram for Document Sent to All Components in "inputs"

The tags in this XML document are:

• telephony – This tag holds information about the call itself such as the ANI. It also contains the area
code and exchange of the ANI. All values areNA if not sent by the voice browser (area code and exchange
won’t appear at all in the case that the ANI is not sent).

• call – This tag holds call information. The session ID is used by VXML Server to identify the call. The
<source> tag, if applicable, contains the name of the application that transferred to this one (the tag does
not appear if application visit is a new call). The <start> tag contains the time when the call started.
The <application> tag contains the name of the application.

• history – This tag holds the history of elements visited so far in the call. The name and exit state of the
element is included as attributes to a <visited> tag. Multiple tags are listed in the order in which the

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
15

Session API
XML Document Sent Inputs

elements were visited in the call. The <history> tag will not appear if no elements were visited before
this one (that is, the start of the call).

• data – This tag holds all the element and session data created so far in the call. The <element> tag’s
name attribute holds the name of the element. All the variables created by this element appear in this tag.
The log attribute indicates whether this variable’s value will appear in the activity log file (no session
variables appear in the log). The <data> tag will not appear if no element or session data exist. If the
session data variable holds a Java class, the tag will contain the results of the toString()method called
on that object.

• user – This tag appears only if the application is configured to use the user management system and the
call has been associated with a particular UID. The <demographics> tag holds the user demographic
information. The <account> tag contains information about the account such as when it was created and
modified, the account number and pin (if applicable), etc. This data appears exactly as in the user database.
See User Guide for Cisco Unified CVP VXML Server and Unified Call Studio for more information on
user management.

• user_by_ani – This tag appears only if the application is configured to use the user management system,
though unlike <user>, the tag appears even if the call is not associated with a UID. The tag holds
information about the number of calls made to this application by the current phone number and the last
time a call was received to the application by that number.

• call_ended – This tag appears only when being sent as a request to an end of call event. It defines how
the call ended and the result of the call. The possible content of <how> are: hangup (the caller hung up),
disconnect (the application hung up on the caller), application_transfer (the application visit ended by
transferring to another application), call_transfer (a blind transfer took place) and app_session_complete
(the application visit ended even if the call itself continued - such as via a CTI event).

The possible content of <result> can be normal, max_ports (the caller hung up while on hold waiting
to enter the application), suspended (the caller called into a suspended application), error (an error
occurred during the call), timeout (the session timed out) and invalidated (the session was invalidated
by an element).

The invalidated attribute of <call_ended> also indicates if the session was
invalidated by an element.

Note

XML Document Sent Settings
The following example shows the DTD diagram for the XML document sent to all components in the settings
argument. Its DTD is defined in the file Settings.dtd in the VXML Server dtds folder.

This document shares the same DTD as the static application settings file settings.xml created when an
application is deployed from Call Studio to VXML Server. This document is simply an XML representation
of the application settings in Call Studio’s project preferences for the application.

Note

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
16

Session API
XML Document Sent Settings

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

Figure 3: DTD Diagram for XML Document Sent to All Components in Settings Argument

The tags in this XML document are:

• application – The root tag. The key and serial attributes are used by Call Studio and VXML Server
and can be safely ignored here. The version attribute holds the version of the file. The above diagram
represents version 1.2 of the DTD. The subdialog attribute holds a true value if the application is
accessed as a subdialog, a false value if it is not.

• maintainer – This tag holds the e-mail address of the maintainer.

• language – This tag holds the language for the application. This value shows up in the VoiceXML pages
produced by VXML Server. The contents of this tag are formatted according to the specification for
using languages in VoiceXML (for example, en-US).

• encoding – This tag holds the encoding format for the application. This value determines how the
VoiceXMLpages produced byVXMLServer are encoded. The contents of this tag are formatted according
to the specification for encoding XML pages (for example, UTF-8).

• audio – This tag holds all audio files and/or TTS phrases to use for various situations.

• error – This tag encapsulates the message to play when an error occurs and the application does
not contain an error element.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
17

Session API
XML Document Sent Settings

• suspended – This tag encapsulates the message to play when a caller calls an application that is
suspended.

• initial_on_hold – This tag encapsulates the first message a caller hears when all the VXML Server
ports are in use.

• main_on_hold – This tag encapsulates the message repeatedly played after the initial on hold audio
is played until a VXML Server port is available.

• default_path – This tag lists the URI path in which all pre-recorded audio for this application is
located.

• session_timeout – This tag lists the length of time in minutes of inactivity VXML Server will time out
the call session.

• voice_browser – This tag lists the voice browser selected for this application.

The real name of the voice browser is used here, not the display name. Gateway
Adapter real names can be seen by reading the folder name for that adapter in
the gateways folder of VXML Server.

Note

• user_management – This tag encapsulates information concerning the user management database. The
<database> tag’s jndi_name attribute contains the JNDI name for the database and the tag itself contains
the database to use, which is either MySQL or SQLServer.

• endpoints – This tag encapsulates actions to perform at the endpoints of an application and a call.

• on_start_call – The Java class or URI to call when a call to the application starts. The class attribute
lists the full class name of the Java class. The src attribute contains the URI to call. The two attributes
are mutually exclusive. The attribute run_in_background is true if the Java class or URI is to be
accessed in a separate thread by VXML Server; it is false if the call is to wait for the action to
complete.

• on_end_call – The Java class or URI to call when a call to the application ends. The class attribute
lists the full class name of the Java class. The src attribute contains the URI to call. The two attributes
are mutually exclusive.

• on_start_app – The Java class(es) to call when the application is loaded or updated. The class
attribute lists the full class name of the Java class. The tag can appear multiple times, denoting
multiple classes to run at the start of an application. The classes will be run in the order in which
they appear in the document. The error_cancels_deploy attribute is set to true when an error in
the class should cause the application loading to fail.

• on_end_app – The Java class(es) to call when the application is taken down (either as a result of
the application server shutting down or due to an update). The class attribute lists the full class
name of the Java class. The tag can appear multiple times, denoting multiple classes to run at the
end of an application. The classes will be run in the order in which they appear in the document.

• root_doc – This tag contains tags representing the additions made to the application’s root document.
This tag will not appear if no language, encoding, properties or variables are added to the root document.
The possible additions are:

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
18

Session API
XML Document Sent Settings

• vxml_property – This tag can appear any number of times listing the VoiceXML properties to add
to the root document. Typically most voice browsers will take a property set here as an indication
that it apply to the entire application. The name attribute lists the name of the property and the tag
itself encapsulates the value.

• vxml_variable – This tag can appear any number of times listing the VoiceXML variables to add
to the root document. A variable set in the root document is available to all VoiceXML pages in the
application. The name attribute lists the name of the variable and the tag itself encapsulates the value.

• javascript – This tag encapsulates a Javascript function to place in the application’s root document.
Any number of these tags can appear to add multiple Javascript functions to the root document.

• loggers – This tag contains one or more <logger_instance> tags defining the loggers that are to listen
to the events for calls for this application. The name attribute defines the logger instance name (all logger
instances must have unique names). The class attribute defines the full Java class name of the logger
to use. The optional configuration tag points to a configuration file for the logger instance. When the
optional attribute enforce_call_event_order is true, VXML Server will ensure that the logger receives
the logger events for a call in the order in which they occurred in the call.

Again, these two documents are sent as HTTP POST arguments to any URL using the XML API. The
documents mirror all the functionality provided in the Java API to obtain session information. Changing
session information, such as setting session data, is done in the response XML document. Since each component
has a separate response document, they are described in each component’s individual chapter.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
19

Session API
XML Document Sent Settings

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
20

Session API
XML Document Sent Settings

C H A P T E R 4
Call Start Action

VXML Server can be configured to run code when a call has been received before the call flow is visited.
The call start action can be implemented with either the Java API or the XML API. The call start action is a
good way to create session data to be used by the rest of the application. There are two situations where session
data may already exist:

• If the voice browser passed additional arguments to VXML Server when the call was first received, these
additional arguments are added as session data with the arguments’ name/value pairs translated to the
session data name and value (each is a String).

• If a separate Unified CVP voice application transferred to the current application, the application designer
may have chosen to transfer element and session data to the destination application. This data will be
converted to session data in the destination application.

The call start action is also given the ability to change the voice browser and any root document-affecting
settings for the call. These changes apply to the current call only, and allows for a truly dynamic application.
By allowing the voice browser to change, the application can be deployed on multiple voice browsers at once
and use a simple DNIS check to output VoiceXML to the appropriate browser. Changing root document
settings such as properties and language allow the call start action to control how the application appears to
the caller using information it knows only at call time.

These changes can only be made by the call start action because it runs before VXML Server has returned
the first VoiceXML page and therefore can make changes that affect the outputted VoiceXML. Aside from
these settings, the call start action can also change the maintainer and default audio path, though any component
run within the call can do this as well.

Note

The start of call event can be run in the background by checking the appropriate checkbox in the Call Studio
application settings. If this is not done, the caller will hear silence until the call start action is complete and
the call flow reaches the first VoiceXML-producing element. Answering the phone with too much silence
could cause the caller to end the call, thinking something went wrong. Latency issues are not as big a concern
later in the application because audio can be played while action is run or the application could make the caller
aware that some potentially lengthy action is about to occur. Running the call start action in the background
will ensure that the call flow will begin immediately.

Some notes of caution are warranted when running the call start action in the background:

• Ensure that elements in the call flow that attempt to access data created by the call start action do not try
too quickly since it is possible the data has not been created yet. Since the call start action is run in a

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
21

separate thread, there is no guarantee it will complete before the data it creates is required. The application
can be architected to handle this by checking if the data exists before accessing it and if not, make the
caller wait until it is created.

• Any errors that occur while running this action are placed in the error log but do not end the call (unless
the application cannot run without performing the tasks in the call start action).

• Java API Use, on page 22
• XML API Use, on page 22
• Remote Execution, on page 24

Java API Use
The call start action is built in Java by implementing the Unified CVP class StartCallInterface found in
the com.audium.server.proxy package. It contains a single method named onStartCall that is the method
for the call start class. This method receives a single argument, an instance of CallStartAPI. This class
belongs to the Session API and is used to access and modify session information such as session data (See
Session API, on page 13 for more information on this API). The method does not have a return value. It is
expected that, should an unrecoverable error occur, the call start action will throw an AudiumException.

XML API Use
As described in Session API, the standard inputs and settings XML documents are sent via POST to the call
start URI. The following figure shows the DTD diagram of the XML document that must be sent in response.
The DTD for the start of call action response is defined in the file CallStartResponse.dtd found in the
VXML Server dtds folder.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
22

Call Start Action
Java API Use

Figure 4: DTD Diagram of XML Document to Be Sent in Response

The tags in these XML documents are:

• new_data – This tag holds the session data to be created. Any number of <session> tags can appear,
one for each session data variable to be created.

Element data cannot be created because the call start action is not an element.Note

• set_uid – This tag is used to associate the call to a UID in the user management system. The content of
the tag should be the integer UID.

• log – This tag is used to trigger logger events for this application. Any number of <custom> tags can
appear, denoting the triggering of a custom event. The name attribute holds the name of the data, and the
<custom> tag encapsulates the value. Any number of <warning> tags can appear, denoting the triggering
of a warning event. The <warning> tag encapsulates the warning message.

• error – This tag reports to VXML Server that an error occurred while running the call start action. VXML
Server will then throw an exception whose message is contained in the <error> tag. This allows the
XML API to throw exceptions just as the Java API does.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
23

Call Start Action
XML API Use

• set_default_path – This tag is used to change the default audio path.

• set_maintainer – This tag is used to change the maintainer e-mail address.

• set_voice_browser – This tag is used to change the voice browser for this particular call.

The real name of the voice browser must be used here, not the display name.
Gateway Adapter real names can be seen by reading the folder name for that
adapter in the gateways folder of VXML Server.

Note

• set_timeout – This tag allows the timeout length set for this session to be changed. The contents of the
tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag allows the encoding and language settings for the application to be
changed for this call. The <language> tag content is formatted according to the specification for using
languages in VoiceXML (for example, en-US). The <encoding> tag content is formatted according to
the specification for encoding XML pages (for example, UTF-8).

• set_root_doc_content – This tag allows the addition and removal of VoiceXML properties and variables.
The <delete> tag is necessary only if properties or variables were set in the application’s project pane
in Call Studio and due to runtime circumstances the call start action determines they are no longer needed.
The name attribute specifies the property or variable name and the tag contents encapsulate the value.

All the tags are optional, there is no tag required except for the root <result> tag. Since the XMLAPI requires
a document in response, it is acceptable to return an XML document whose <result> tag is empty.

Note

Remote Execution
For remote execution of the Call Start Action, the following syntax for URI is to be used:

For HTTP and RPC call:
remote://system/?classurl=<fully_qualified_java_class_path>

For example:
remote://system/?classurl=com.cisco.cvp.callstudio.Action.TestCallClass

remote://system indicates that the configurations will be fetched from theRemote Url Settings property
tab which is application-specific.

If a direct remote server URI is provided, then that IP:Port will be used and not fetched from the Remote
Url Settings property tab.

For example:
http://<IP>:<Port>/<target_path>/?classurl=<fully_qualified_java_class_path>

Note

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
24

Call Start Action
Remote Execution

C H A P T E R 5
Call End Action

VXML Server can be configured to run code once a call has ended. Unlike the call start action, the call end
action can occur at any time in the call and there are several different situations that would trigger the call
end action. The following lists those situations:

• The caller usually ends the call.

• The application ends the call. This includes any errors that are caught by the system that lead to ending
a call, or places in the application when the call’s purpose is over.

• A blind telephony transfer takes place. Blind transfers connect the caller with the party called using
telephony switching equipment, removing the voice browser (and hence VXML Server) from the calling
context. Even though the physical phone call continues, the role of the automated system ends and so
for it, the call has ended.

The availability of blind transfers is determined by the voice browser’s
functionality and network setup.

Note

• The application performs a transfer to another Unified CVP application. This is not a telephony transfer,
but the results are very similar. Since the call leaves the source application, it is considered the end of
the call to that application.

• VXML Server times out a session. This occurs only rarely, it would be seen only when some error
prevented VXML Server from receiving a request in the middle of a call and it waited a certain amount
of time before timing out the session. This could be due to a voice browser going down or if the request
coming from the voice browser is malformed andVXMLServer cannot determinewhich call that request
was supposed to be for.

• The session is invalidated by a custom element. Standard and configurable elements have the ability to
invalidate the session for situations where some process ends the call that would not prompt VXML
Server to be notified that the call ended. This functionality is described in more detail in the chapters on
custom elements.

The call end action can be implemented with either the Java API or the XML API. Unlike the call start action
using the XML API, the call end action does not have an option to perform it in the background. In fact, one
need not worry about performing time consuming tasks in the call end action because it will not affect the
performance of the call since it has ended. One must still be careful not to perform tasks that maximize CPU
usage since that would aversely affect the handling of other calls.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
25

Like the call start action, the call end action can modify the session such as creating session data or changing
the default audio path, though these actions would not make sense as there is no more call flow to visit. The
call end action can access everything that occurred within the call, including how the call ended (hangup, call
transfer, etc.) This is useful for activities such as creating CDR records which must list everything a caller
did.

A unique feature of the call end action is to optionally send back a final VoiceXML page to the voice browser.
Some voice browsers will actually interpret a VoiceXML page sent back in response to a request triggered
by a disconnect or call-end event. As the caller is no longer interacting with the IVR, this page would obviously
only be useful for limited functionality that had nothing to do with interacting with the caller, such as running
<log> tags.

This final page applies to only when the caller ends the call on the application or the application ends the call.Note

• Java API Use, on page 26
• XML API Use, on page 26
• Remote Execution, on page 28

Java API Use
The end of call action is built in Java by implementing the Unified CVP class EndCallInterface found in
the com.audium.server.proxy package. It contains a single method named onEndCall that is the method for
the call end class. This method receives a single argument, an instance of CallEndAPI. This class belongs to
the Session API and is used to access session information such as session data (See Session API, on page 13
for more information on this API). The method does not have a return value. It is expected that should an
unrecoverable error occur, the call end action will throw an AudiumException.

If the call end action is to return a final VoiceXML page to the voice browser, this is done by using the Voice
Foundation Classes (VFCs) (See Voice Foundation Classes, on page 91 for more on the VFCs) and accessing
methods in the CallEndAPI Session API class.

XML API Use
As described in Session API, the standard inputs and settings XML documents are sent via POST to the call
start URI. The following shows the DTD diagram of the XML document that must be sent in response. The
DTD for the end of call action response is defined in the file CallEndResponse.dtd found in the VXML
Server dtds folder.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
26

Call End Action
Java API Use

The tags in these XML documents are:

• new_data – This tag holds the session data to be created. Any number of <session> tags can appear,
one for each session data variable to be created.

Element data cannot be created because the call end action is not an element.Note

• set_uid – This tag is used to associate the call to a UID in the user management system. The content of
the tag should be the integer UID.

• log – This tag is used to trigger logger events for this application. Any number of <custom> tags can
appear, denoting the triggering of a custom event. The name attribute holds the name of the data, and the
<custom> tag encapsulates the value. Any number of <warning> tags can appear, denoting the triggering
of a warning event. The <warning> tag encapsulates the warning message.

• error – This tag reports to VXML Server that an error occurred while running the call end action. VXML
Server will then throw an exception whose message is contained in the <error> tag. This allows the
XML API to throw exceptions just as the Java API does.

Since the call has ended, there would be no adverse affect to the call itself, though
an error event will be thrown.

Note

• set_default_path – This tag is used to change the default audio path.

• set_maintainer – This tag is used to change the maintainer e-mail address.

• vxml_response – This optional tag encapsulates the VoiceXML page that is to be passed to the voice
browser for the final response. It is expected to contain a CDATA tag that encapsulates the entire
VoiceXML document as it is to be returned to the voice browser (including the first line starting with
<?xml).The developer is responsible for ensuring the VoiceXML is correct as VXML Server does no
validation of the VoiceXML before returning it to the browser.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
27

Call End Action
XML API Use

Since the VFCs are not used to throw the VoiceXML like the Java API, the
developer is responsible for ensuring the VoiceXML is compatible with the voice
browser(s) being deployed to.

Note

All the tags are optional, there is no tag required except for the root <result> tag. Since the XMLAPI requires
a document in response, it is acceptable to return an XML document whose <result> tag is empty.

Note

Remote Execution
For remote execution of the Call End Action, the following syntax for URI is to be used:

For HTTP and RPC call:
remote://system/?classurl=<fully_qualified_java_class_path>

For example:
remote://system/?classurl=com.cisco.cvp.callstudio.Action.TestEndCallClass

remote://system indicates that the configurations will be fetched from theRemote Url Settings property
tab which is application-specific.

If a direct remote server URI is provided, then that IP:Port will be used and not fetched from the Remote
Url Settings property tab.

For example:
http://<IP>:<Port>/<target_path>/?classurl=<fully_qualified_java_class_path>

Note

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
28

Call End Action
Remote Execution

C H A P T E R 6
Dynamic Element Configurations

Configurable voice, action, and decision elements used in an application must have configurations. Usually,
the configuration will be fixed, that is, it acts the same every time a caller visits it. In this case, the configuration
itself exists as an XML file stored on the system. Builder for Call Studio creates this file when the application
is deployed. Programming is required when a dynamic element configuration is desired, that is, one which is
thrown at runtime each time a caller visits it.

The manner in which configurations are used warrants closer examination. A configuration functions based
on its pre-built elements. Since configurable elements are constructed with Java, the configuration for the
element must be given to it in the form of a Java class. The API provides a set of Java classes that encapsulate
an entire element configuration. The Java classes are Java expressions of the visual Builder for Call Studio’s
Configuration Pane consisting of three tabs: General, Settings, and Data for action and decision elements,
and a fourth tab, Audio, for voice elements.

When a static configuration is used, this information is stored as an XML file thrown by Builder for Call
Studio. VXML Server converts this XML file to one of the Java configuration classes and then passed it on
to the element.

A dynamic configuration adds an additional step in this process. Once VXML Server loads the static
representation of the configuration (known as the base configuration), it will pass this to the dynamic
configuration Java class or URI for modification, instead of passing it directly to the element. The class or
URI adds to or changes the base configuration depending on the application business logic and returns a
complete configuration. VXML Server then passes this new configuration to the element.

• Java API Use, on page 29
• XML API Use, on page 31

Java API Use
Dynamic voice, action, and decision element configurations are constructed in the Java API by implementing
the Java interfaces VoiceElementInterface, ActionConfigInterface and DecisionConfigInterface

respectively, all found in the com.audium.server.proxy package.

The name of the voice element interface is not consistent with the others due to backwards compatibility
concerns. Each of these interfaces contains a single method named getConfig that receives three arguments:

Note

• The name of the element as a String.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
29

• An instance of ElementAPI or ActionAPI (for dynamic action element configurations). These classes
belong to the Session API and are used to access session information. (See Session API, on page 13 for
more information on this API.)

• An instance of VoiceElementConfig, ActionElementConfig or DecisionElementConfig (found in the
com.audium.server.xml package) that contains the base configuration for the element (or null if there
is no base configuration).

The methodmust return an instance of the configuration object (VoiceElementConfig, ActionElementConfig
or DecisionElementConfig). This can be a modified version of the object passed as input to the method or
one built from scratch. It is expected that should an unrecoverable error occur, the dynamic configuration
class should throw an AudiumException.

Due to the fact that most dynamic configurations involve only a few changes to the static configuration,
obtaining a base configuration as input to the method saves significant coding effort since the dynamic
configuration class simply needs to modify this object in order to create the final configuration object then
return it.

All three configuration classes extend a common base class, ElementConfig. This class defines those features
common to all three element configurations: settings, element and session data created, custom log content,
and associating the call with a UID. ActionElementConfig and DecisionElementConfig are essentially
identical, separate classes are used for design considerations and for possible future differentiation.
VoiceElementConfig, however, expands upon the ElementConfig class by introducing voice element only
features: local hotlinks, VoiceXML properties and audio groups. The three configuration classes allow the
developer to obtain everything about a configuration as well as change or add to the configuration in any way.

To handle audio groups, VoiceElementConfig introduces inner classes that define an audio group (AudioGroup)
and a generic audio item (AudioItem). Two additional inner classes define audio item types that extend the
AudioItem class to define a Say It Smart audio item (SayItSmart) and a static audio item (StaticAudio). The
AudioGroup class encapsulates any number of AudioItem objects of either type. A developer can create new
audio groups separately and call a method in VoiceElementConfig to add the audio group to the configuration,
or an existing AudioGroup object can be obtained, modified, and then reinserted into the configuration.

To handle local hotlinks, which are supported on voice elements only and add page-scoped VoiceXML links
to the pages generated by the voice element, VoiceElementConfig introduces an inner class called
LocalHotlink.

The Javadocs provide much more detail regarding these classes and their methods.

Remote Execution of Dynamic Element Configuration
For remote execution of the Dynamic Element Configuration, choose the option URI in drop-down for the
dynamic configuration option.

The following syntax for URI is to be used:

For HTTP and RPC call:
remote://system/?classurl=<fully_qualified_java_class_path>

For example: example- remote://system/?classurl=com.cisco.cvp.callstudio.Action.CustomVoiceConfig

This is valid for Voice, Decision and Action Elements dynamic configuration. remote://system indicates
that the configurations will be fetched from theRemote Url Settings property tab which is application-specific.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
30

Dynamic Element Configurations
Remote Execution of Dynamic Element Configuration

If direct remote server URI is provided, then that IP:Port will be used and not fetched from the Remote Url
Settings property tab.

Note

For example:
http://<IP>:<Port>/<target_path>/?classurl=<fully_qualified_java_class_path>.

Add Events in the Element Configuration to handle any particular or general exception gracefully.

XML API Use
Dynamic element configurations using the XML API send four HTTP POST arguments to the URI specified:

• name – The name of the element whose configuration is dynamic as a string.

• inputs – One of the standard arguments passed to all components utilizing the XML API as described
in Session API.

• settings – One of the standard arguments passed to all components utilizing the XML API as described
in Session API.

• defaults – The base configuration for the element represented as an XML document. If there is no base
configuration, this argument is not included. There are two possible DTDs for this argument. One is used
if the dynamic configuration is for a voice element and the other is if the dynamic configuration is for
decision and action elements.

The responsemust contain the final configuration to use, which follows the sameDTD as the base configuration
XML document. Incidentally, this DTD is the same one used for the fixed element configuration XML files
created by Builder for Call Studio.

Decision and Action Element Configuration DTD
The following figure shows the DTD for decision and action element configurations sent in the argument
defaults. The DTD for decision element configurations is defined in the file
DecisionElementConfiguration.dtd and the DTD for action element configurations is defined in the file
ActionElementConfiguration.dtd, both located in the VXML Server dtds folder. Each DTD is stored as a
separate file despite being syntactically identical, to allow for future divergence.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
31

Dynamic Element Configurations
XML API Use

Figure 5: Decision and Action DTD

The tags in this XML document are:

• configuration – The root tag. The class attribute refers to the Java class defining the configurable action
or decision element whose configuration is being dynamically produced. Refer to the Element
Specifications for Cisco Unified CVP VXML Server and Unified Call Studio document for the full Java
class names of all Unified CVP elements. The serial attribute is used by Call Studio and can be safely
ignored here.

• error – This tag reports to VXML Server that an error occurred while running the dynamic configuration.
VXML Server will then throw an exception whose message is contained in the <error> tag. This allows
the XML API to throw exceptions just as the Java API does.

• setting – This tag holds an element setting, the name appearing in the name attribute and the value of
the setting contained within the <setting> tag. It is repeated for each setting included in the base
configuration. No <setting> tags appear if the base configuration contains no settings or the element
itself defines no settings.

• substitute – This tag holds information on substitution. Substitution is typically used in static
configurations and since static and dynamic configuration XML documents share the same DTDs, it
appears here. Substitution usually would not be used with dynamic configurations. The substitution tag
contents are fully described in Substitution XML Format, on page 36.

• new_data – This tag holds the element and session data this dynamic element configuration is to create.
Any number of <set_element> and <set_session> tags can appear, one for each element and session
data variable to be created. The log attribute of <set_element> sets whether the value of the variable is
stored in the activity log. The optional type attribute is used to specify the data type of the variable and
can be string, int, float, or boolean. The create attribute found in both tags determines when the variable
is created, before the element is entered (before_enter), or after the element exits (after_exit).

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
32

Dynamic Element Configurations
Decision and Action Element Configuration DTD

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html

• set_uid – This tag is used to associate the call with a UID in the user management system. The content
of the tag should be the integer UID.

• log – This tag is used to trigger logger events when this dynamic configuration is run. Any number of
<custom> tags can appear, denoting the triggering of a custom event. The name attribute holds the name
of the data, and the <custom> tag encapsulates the value. Any number of <warning> tags can appear,
denoting the triggering of a warning event. The <warning> tag encapsulates the warning message.

• set_default_path – This tag is used to change the default audio path from this point onwards for this
call.

• set_maintainer – This tag is used to change the maintainer e-mail address from this point onwards for
this call.

• set_timeout – This tag allows the timeout length set for this session to be changed. The contents of the
tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag enables the encoding and language settings for the application to be
changed for this call. The <language> tag content is formatted according to the specification for using
languages in VoiceXML (for example, en-US). The <encoding> tag content is formatted according to
the specification for encoding XML pages (for example, UTF-8).

• invalidate_session – This tag, if included in the XML, will prompt VXML Server to invalidate the call
session it retains in memory, call the end of call class or URI (if defined), and free up the VXML Server
port utilized by the call. The session is invalidated only after the dynamic configuration method is run.
This tag is rarely used and would be needed in a few circumstances where some external process takes
the call away from VXML Server such as when using a CTI system to transfer the call to an agent.

Voice Element Configuration DTD
The following figure shows the DTD diagram for the voice element configuration XML document sent in the
argument defaults. The DTD is defined in the file VoiceElementConfiguration.dtd found in the VXML
Server dtds folder.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
33

Dynamic Element Configurations
Voice Element Configuration DTD

Figure 6: Voice Element Configuration DTD

The tags in this XML document are:

• configuration – The root tag. The class attribute refers to the Java class defining the configurable voice
element whose configuration is being dynamically produced. Refer to the Element Specifications for
Cisco Unified CVP VXML Server and Unified Call Studio document for the full Java class names of all
Unified CVP elements. The serial attribute is used by Call Studio and can be safely ignored here.

• error – This tag reports to VXML Server that an error occurred while running the dynamic configuration.
VXML Server will then throw an exception whose message is contained in the <error> tag. This allows
the XML API to throw exceptions just as the Java API does.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
34

Dynamic Element Configurations
Voice Element Configuration DTD

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html

• setting – This tag holds an element setting, the name appearing in the name attribute and the value of the
setting containedwithin the <setting> tag. It is repeated for each setting included in the base configuration.
No <setting> tags appear if the base configuration contains no settings or the element itself defines no
settings.

• substitute – This tag holds information on substitution. Substitution is typically used in static
configurations and as static and dynamic configuration XML documents share the sameDTDs, it appears
here. Substitution usually would not be used with dynamic configurations. The substitution tag contents
are fully described in the section entitled Substitution XML Format at the end of this chapter.

• vxml_property – This tag holds a VoiceXML property, the name appearing in the name attribute and
the value of the property contained within the <vxml_property> tag. It is repeated for each VoiceXML
property referred to in the base configuration.

• audio_group – This tag holds all the audio items for a single audio group. Attributes to <audio_group>
set its name, bargein preference and count (for those audio groups that can have counts greater than 1),
and the language that it encapsulates. Each audio item is represented as a single <audio> or
<say_it_smart> tag.

• The <audio> tag defines a name for the audio item, the source of the audio file (optional if no audio
file is being referenced), whether to use the default audio path (the use_default_path attribute may
be true or false), and encapsulates the TTS backup message.

• The <say_it_smart> tag’s attributes define the name of the audio item, the output format to represent
the data, and Java class name of the Say It Smart plugin. Its contents encapsulate a <value> tag
representing either a static value or a value from a variable. The format attribute of <value> defines
the input format of the data. The <variable> tag contains tags for obtaining the data from element
data, session data or call data. The var_name attribute can contain the following values: ani, dnis,
iidigits, uui, start_date, start_time, and application_name.

You can avoid using the <variable> tag by referring to a substitution string in
the contents of the <value> tag. This also allows for the substitution of content
in addition to element, session, and call data. The <variable> tag remains for
backwards compatibility and for those not willing to use substitution.

Note

• new_data – This tag holds the element and session data this dynamic element configuration is to create.
Any number of <set_element> and <set_session> tags can appear, one for each element and session
data variable to be created. The log attribute of <set_element> sets whether the value of the variable is
stored in the activity log. The optional type attribute is used to specify the data type of the variable and
can be string, int, float, or boolean. The create attribute found in both tags determines when the variable
is created, before the element is entered (before_enter), or after the element exits (after_exit).

• local_hotlink – This tag is used for local hotlink configurations. The name attribute defines the local
hotlink’s name and must be unique within the element configuration.

• The child <speech> tag indicates whether the inline or external speech grammar was set for this
hotlink. The <external> tag should contain the URI to the external speech grammar. The
<inline_component> tags encapsulate each utterance that activates the hotlink.

• The child <keypad> tag indicates whether the inline or external DTMF grammar was set for this
hotlink. The <external> tag should contain the URI to the external DTMF grammar. The
<inline_component> tags encapsulate each DTMF entry that activates the hotlink.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
35

Dynamic Element Configurations
Voice Element Configuration DTD

• The optional child <throw_event> tag is used if this hotlink throws an event.

• set_uid – This tag is used to associate the call with a UID in the user management system. The content
of the tag should be the integer UID.

• log – This tag is used to trigger logger events when this dynamic configuration is run. Any number of
<custom> tags can appear, denoting the triggering of a custom event. The name attribute holds the name
of the data, and the <custom> tag encapsulates the value. Any number of <warning> tags can appear,
denoting the triggering of a warning event. The <warning> tag encapsulates the warning message.

• set_default_path – This tag is used to change the default audio path from this point onwards for this
call.

• set_maintainer – This tag is used to change the maintainer e-mail address from this point onwards for
this call.

• set_timeout – This tag allows the timeout length set for this session to be changed. The contents of the
tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag allows the encoding and language settings for the application to be
changed from this point onwards for this call. The <language> tag content is formatted according to the
specification for using languages in VoiceXML (for example, en-US). The <encoding> tag content is
formatted according to the specification for encoding XML pages (for example, UTF-8).

• invalidate_session – This tag, if included in the XML, will prompt VXML Server to invalidate the call
session it retains in memory, call the end of call class or URI (if defined), and free up the VXML Server
port utilized by the call. The session is invalidated only after the method of the dynamic configuration
is completed. This tag is rarely used and would be needed in a few circumstances where some external
process takes the call away from VXML Server such as when using a CTI system to transfer the call to
an agent.

Substitution XML Format
The DTD for element configuration XML documents contain a tag <substitute> that is used to define
substitution. Substitution is the process of constructing a value from a combination of static and dynamic
content. It is used as a way for a developer to use dynamic content in an element configuration without having
to resort to a dynamic configuration. Substitution can be used throughout an element’s configuration such as
settings, audio, VoiceXML properties, etc.

See User Guide for Cisco Unified CVP VXML Server and Unified Call Studio for more information on
substitution.

Since the DTDs of the documents returned by the XML API are the same as those for static element
configurations produced by Builder for Call Studio, dynamic configurations may also utilize substitution.
Using substitution in dynamic configurations, however, makes little sense as the dynamic configuration is
produced by programming code which could just as easily set the appropriate value rather explicitly rather
than assemble it using substitution. To be comprehensive, this section briefly describes the contents of the
<substitute> tag.

A value for a setting, audio source, audio TTS or any other configuration option that supports substitution
contains static content combined with integer values encapsulated by braces. When this format is detected,
VXML Server knows to replace (substitute) the parts encapsulated in braces with the dynamic data. For
example, http://{0}/grammar/{1} as a value for a setting indicates to substitute some dynamic content for

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
36

Dynamic Element Configurations
Substitution XML Format

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

“{0}” and “{1}”, where the indices are used for uniqueness (the same index can be used multiple times in the
same value or in separate values if applicable).

This is where the <substitute> tag comes in. Each <substitute> tag specifies what dynamic data to substitute
for a particular number surrounded by braces. The index attribute must be an integer that matches the number
to substitute. A diagram of what it can contain is shown in the following figure.

Figure 7: Content for the Substitute Tag

The content to substitute can be one of the six possible tags:

• call_data – Represents call information such as the ANI.

• data – Represents element or session data.

• user_info – Represents information about the user associated with the call (available only when the user
management system is turned on and the call is associated with a particular UID).

• general_date_time – Represents the current time or the start of the call.

• caller_activity – Represents the activity taken by the caller in this call.

• historical_data – Represents past actions taken by the user associated with this call (available only when
the user management system is turned on and the call is associated with a particular UID).

These tags are identical to tags of the same name used within the XML decision format. These tags are
described in the User Guide for Cisco Unified CVP VXML Server and Unified Call Studio.

For example, in the above situation where a setting has the value http://{0}/grammar/{1}, the following
substitute tag can represent index 0 coming from element data:
<substitute index="0">

<data>
<element name="AnElementName" variable="SomeValue"/>

</data>
</substitute>

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
37

Dynamic Element Configurations
Substitution XML Format

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
38

Dynamic Element Configurations
Substitution XML Format

C H A P T E R 7
Standard Action Elements

Action elements are responsible for performing some action and returning an indication whether the action
was a success. A pre-built, configurable action element has already defined the actions to take and only requires
a configuration to modify its behaviors. Standard action elements, however, are defined by the developer and
have no configuration since they represent actions specific to an application.

A standard action element, in addition to the functionality provided all components, is allowed to create and
modify element data. It can also act as a flag if desired.

• Java API Use, on page 39
• XML API Use, on page 39
• Remote Execution, on page 41

Java API Use
A standard action element is built in Java by extending the abstract base class ActionElementBase found in
the com.audium.server.voiceElement package (this package’s name is such due to backwards compatibility
considerations). It contains a single abstract method named doAction, that acts as the method for the action
element, and must be implemented by the developer. The method receives two arguments: the name of the
action element (as a String) and an instance of ActionElementData. This class belongs to the Session API
and is used to access session information (See Session API, on page 13 for more on this API). The method
does not expect anything in return because all action elements have a single exit state (done). It is expected
that should an unrecoverable error occur, an AudiumException is thrown.

The ActionElementBase class defines manymethods in addition to doAction. These are used for configurable
action elements, which also extend the class. The only method required for standard action elements is
doAction, as it is the only abstract method in ActionElementBase.

XML API Use
As described in Session API, the standard inputs and settings XML documents are sent via POST to the
standard action element URI. An additional parameter, called name, is sent containing the name of the action
element. The following figure shows the DTD diagram of the XML document that must be sent in response.
The DTD for the standard action element response is defined in the file ActionResponse.dtd found in the
VXML Server dtds folder.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
39

Figure 8: ActionElementsDTD

The elements in this XML document are:

• status – Since the XML API accesses a process that exists in context separate from VXML Server, there
is no automatic way for an error that occurs during the creation of a response to be caught and handled
properly by VXML Server. This tag exists to simulate that process by containing either the word success
or a text message describing the error. When anything but success is returned, VXML Server throws an
exception using the content of <status> as the error message. This way, from the perspective of VXML
Server and the application logs, the result will be the same no matter whether the Java API or the XML
API is used. See the description for the <error> tag below as there is some overlap in functionality.

• error – This tag reports to VXML Server that an error occurred while running the standard action. VXML
Server will then throw an exception whose message is contained in the <error> tag. This tag acts almost
exactly like the <status> tag and was introduced later to allow for consistency across all components.
An error listed in this tag takes precedence over an error message listed in the <status> tag. The <status>
tag must still be used to indicate that the standard action element was run without error by containing
the word success.

• new_data – This tag holds the element and session data this standard action element is to create. Any
number of <set_element> and <set_session> tags can appear, one for each element and session data
variable to be created. The log attribute of <set_element> sets whether the value of the variable is stored
in the activity log. The optional type attribute is used to specify the data type of the variable and can be
string, int, float, or boolean. The create attribute found in both tags determines when the variable is
created, before the element is entered (before_enter), or after the element exits (after_exit).

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
40

Standard Action Elements
XML API Use

• set_uid – This tag is used to associate the call with a UID in the user management system. The content
of the tag should be the integer UID.

• set_flag – This tag is used to make the action element act like a flag when visited. If it appears, a flag
with the same name as the action element will be considered triggered and that fact will be noted in the
activity log.

• log – This tag is used to trigger logger events when this standard action element is run. Any number of
<custom> tags can appear, denoting the triggering of a custom event. The name attribute holds the name
of the data, and the <custom> tag encapsulates the value. Any number of <warning> tags can appear,
denoting the triggering of a warning event. The <warning> tag encapsulates the warning message.

• set_default_path – This tag is used to change the default audio path from this point onwards for this
call.

• set_maintainer – This tag is used to change the maintainer e-mail address from this point onwards for
this call.

• set_timeout – This tag allows the timeout length set for this session to be changed. The contents of the
tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag allows the encoding and language settings for the application to be
changed from this point onwards for this call. The <language> tag content is formatted according to the
specification for using languages in VoiceXML (for example, en-US). The <encoding> tag content is
formatted according to the specification for encoding XML pages (for example, UTF-8).

• invalidate_session – This tag, if included in the XML, will prompt VXML Server to invalidate the call
session it retains in memory, call the end of call class or URI (if defined), and free up the VXML Server
port utilized by the call. The session is invalidated only after the method of the standard action element
is completed. This tag is rarely used and would be needed in a few circumstances where some external
process takes the call away from VXML Server such as when using a CTI system to transfer the call to
an agent.

Remote Execution
For remote execution of Standard Action Elements, the following syntax is added in the source tab ofGeneral
Settings.

For HTTP and RPC call→remote://system/?classurl=<fully_qualified_java_class_path>

For example:
remote://system/?classurl=com.cisco.cvp.callstudio.Action.CustomAction

where remote://system indicates that the configurations will be fetched from the Remote Url Settings
property tab which is application-specific.

If a direct remote server URI is provided, then that IP:Port will be used and not fetched from the Remote
Url Setting property tab.

Note

For example:
http://<IP>:<Port>/<target_path>/?classurl=<fully_qualified_java_class_path>

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
41

Standard Action Elements
Remote Execution

Add Events in the Element Configuration to handle any particular or general exception gracefully.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
42

Standard Action Elements
Remote Execution

C H A P T E R 8
Standard Decision Elements

Decision elements apply business logic to decide which exit state to return. A pre-built, configurable decision
element has already defined the business logic and only requires a configuration to modify its behavior.
Standard decision elements, however, are defined by the developer and have no configuration since they
represent decisions specific to an application. For simple to moderately complex decisions, Unified CVP
provides a means of defining decisions without programming by constructing an XML document (the Unified
CVP XML decision format is described in the User Guide for Cisco Unified CVP VXML Server and Unified
Call Studio). Should this format prove insufficient, Java or XML APIs are provided to allow the developer
to build the business logic programmatically.

A standard decision element, in addition to the functionality provided all components, is allowed to create
and modify element data.

• Java API Use, on page 43
• XML API Use, on page 43
• Remote Execution, on page 45

Java API Use
A standard decision element is built in Java by extending the abstract base class DecisionElementBase found
in the com.audium.server.voiceElement package (this package’s name is such due to backwards compatibility
considerations). It contains a single abstract method named doDecision that acts as the method for the decision
element, and must be implemented by the developer. The method receives two arguments: the name of the
decision element (as a String) and an instance of DecisionElementData. This class belongs to the Session
API and is used to access session information (See Session API, on page 13 for more on this API). Themethod
expects a String object in return containing the exit state in the exact format specified in Builder for Call
Studio when the standard decision element was first defined.

The DecisionElementBase class defines many methods in addition to doDecision. These are used for
configurable decision elements, which also extend the class. The only method required for generic decision
elements is doDecision, as it is the only abstract method in DecisionElementBase.

XML API Use
As described in Session API, the standard inputs and settings XML documents are sent via POST to the
decision element URI. An additional parameter, called name, is sent containing the name of the decision
element. The following figure shows the DTD diagram of the XML document that must be sent in response.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
43

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

The DTD for the generic action element response is defined in the file DecisionResponse.dtd found in the
VXML Server dtds folder.

Figure 9: Standard Decision Elements DTD Diagram

The elements in this XML document are:

• exit_state – This tag contains the string value representing the exit state in the exact format specified in
Builder for Call Studio when the standard decision element was first defined.

• error – This tag reports to VXML Server that an error occurred while running the standard decision
element. VXML Server will then throw an exception whose message is contained in the <error> tag.
This allows the XML API to throw exceptions just as the Java API does.

• new_data – This tag holds the element and session data this standard decision element is to create. Any
number of <set_element> and <set_session> tags can appear, one for each element and session data
variable to be created. The log attribute of <set_element> sets whether the value of the variable is stored
in the activity log. The optional type attribute is used to specify the data type of the variable and can be
string, int, float, or boolean. The create attribute found in both tags determines when the variable is
created, before the element is entered (before_enter), or after the element exits (after_exit).

• set_uid – This tag is used to associate the call with a UID in the user management system. The content
of the tag should be the integer UID.

• set_flag – This tag is used to make the decision element act like a flag when visited. If it appears, a flag
with the same name as the decision element will be considered triggered and that fact will be noted in
the activity log.

• log – This tag is used to store information in log files for this application when this standard decision
element is run. Any number of <custom> tags can appear, denoting the information to insert in the

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
44

Standard Decision Elements
XML API Use

application’s activity log. The name attribute holds the name of the data, and the <custom> tag encapsulates
the value. Any number of <warning> tags can appear, denoting warnings to be placed in the application’s
error log. The <warning> tag encapsulates the warning message.

• set_default_path – This tag is used to change the default audio path from this point onwards for this
call.

• set_maintainer – This tag is used to change the maintainer e-mail address from this point onwards for
this call.

• set_timeout – This tag allows the timeout length set for this session to be changed. The contents of the
tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag allows the encoding and language settings for the main VoiceXML
documents to be changed from this point onwards for this call. The <language> tag content is formatted
according to the specification for using languages in VoiceXML (for example, en-US). The <encoding>
tag content is formatted according to the specification for encoding XML pages (for example, UTF-8).

• invalidate_session – This tag, if included in the XML, will prompt VXML Server to invalidate the call
session it retains in memory, call the end of call class or URI (if defined), and free up the VXML Server
port utilized by the call. The session is invalidated only after the method of the standard decision element
is completed. This tag is rarely used and would be needed in a few circumstances where some external
process takes the call away from VXML Server such as when using a CTI system to transfer the call to
an agent.

Remote Execution
For remote execution of the Standard Decision Elements, the following syntax for URI is used in the source
tab of General Settings:

For HTTP and RPC call:
remote://system/?classurl=<fully_qualified_java_class_path>

For example:
remote://system/?classurl=com.cisco.cvp.callstudio.Action.CustomAction

remote://system indicates that the configurations are fetched from the Remote Url Settings property
tab which is application-specific.

If a direct remote server URI is provided, then that IP:Port is used and not fetched from the Remote Url
Setting property tab.

For example:
http://<IP>:<Port>/<target_path>/?classurl=<fully_qualified_java_class_path>

Note

Add Events in the Element Configuration to handle any particular or general exception gracefully.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
45

Standard Decision Elements
Remote Execution

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
46

Standard Decision Elements
Remote Execution

C H A P T E R 9
Configurable Elements

The large array of Unified CVP Elements bundled with Unified CVP software encapsulate a lot of functionality
a typical voice application requires. There are, however, situations where more customized, proprietary, or
robust elements are desired. This is certainly the case with action and decision elements, which tend to be
highly specialized for interfacing with proprietary backend systems or implementing custom business logic.
To a lesser extent this applies for voice elements as well. Unified CVP has tried to provide pre-built voice
elements that cover most of what a typical voice application requires. There is always the option of using
VoiceXML insert elements to handle a situation that there are no voice elements to manage.

The disadvantages of VoiceXML insert elements, however, are in their inconsistencies across various voice
browsers, the size they can be before management becomes burdensome, the difficulty of interacting with
backend systems, and their overall performance. Custom voice elements are the best way to achieve these
goals as they are fast, use the Unified CVP Voice Foundation Classes (VFCs) that work consistently across
multiple voice browsers, and are built with Java, so complex calculations and integrations are simple.

Unified CVP software was designed to be modular without compromising integration. Custom elements are
integrated into both VXML Server and Call Studio as easily as Unified CVP Elements are. They can be
deployed for a specific application or shared across all applications and are configured in the Call Studio
alongside Unified CVPElements, including supporting dynamic configurations.With such seamless integration
and effortless deployment, a developer can, over time, create entire libraries of custom elements to use for
their voice applications or potentially for resale.

Due to the requirements to integrate with both Call Studio and VXML Server, configurable elements can only
be constructed using the Java API. This is not to be confused with standard action and decision elements, both
of which can be constructed using both Java and XML APIs. It is the configuration of a configurable element
that places demands that can only be met by the Java API. Building standard action and decision elements
are fully explained in Standard Action Elements, on page 39 and Standard Decision Elements, on page 43.

This chapter describes in detail how to create custom voice, action, and decision elements and integrate them
into both Call Studio and VXML Server.

• Design, on page 48
• Common Methods, on page 49
• Configuration Classes, on page 51
• Action Elements, on page 51
• Decision Elements, on page 52
• Voice Elements, on page 53
• Remote Execution, on page 62

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
47

Design
Configurable elements are built by extending an abstract Java class. This base class lays out the methods used
to identify the element’s configuration, how it is run, and any utility methods available to it. The developer
simply implements the appropriate methods and uses the Java API provided to build the element. Within the
method, the developer is then free to use Java in any way possible, such as creating a complex class hierarchy,
accessing files or backend systems, utilizing third party libraries, even communicating with external systems
via HTTP or RMI.

Voice elements must extend VoiceElementBase, action elements extend ActionElementBase, and decision
elements extend DecisionElementBase, all found in the com.audium.server.voiceElement package. These
three base classes all extend a common base class for configurable elements, ElementBase.

In order for Builder for Call Studio to identify the Java class representing the actual element (as opposed to
another class lower in the class hierarchy or a standard element that also extends that class), a marker Java
interface named ElementInterface must be implemented. Only those classes that implement this interface
are shown in the Builder’s Element Pane.

Each configurable element contains a single method in which the element performs its function. This method
is called by VXML Server when that element is visited in the call flow. One can equate this method to the
element’s main() method, it begins and ends there.

One argument to the method is an instance of a Session API class. Aside from the standard functionality
available in this class such as obtaining the ANI and setting element data, this API class can be used to obtain
a Java object representing the element’s configuration. VXML Server automatically creates this configuration
object with the data entered by the application developer in the Builder or made available through a dynamic
configuration. The name of the method and the API class passed to it differ for each element type as do the
classes encapsulating the element’s configuration. The method for decision and voice elements must return
an exit state and the method for action elements do not return anything (since all action elements explicitly
have a single exit state).

The method for action and decision elements can throw an AudiumExceptionwhile voice elements can throw
an ElementException. The developer would throw this exception if an error was encountered within the
method that the developer wishes to end the call. A call that encountered this exception would then visit the
error element (or the application-specific error message if the error element was not defined), and the error
message is placed in the error log including the exception’s full stack trace.

The base class also includes various methods used to define the element’s configuration. These methods define
everything from the element’s name to its possible exit states. These methods are essential for Builder for
Call Studio to visually render the element and its configuration correctly. Custom elements will be
indistinguishable from Unified CVP Elements within the Builder. The developer can choose as simple or
complex a configuration as desired (or even no configuration at all, though it wouldn’t be very reusable).

Element data generated by an element will be overwritten if that same element is visited again in the call flow.
For example, a variable set by a voice element handling the main menu of an application will be reset the next
time the main menu is visited. The activity log, however, is a historical account of the call, so would have all
values of the element data. Should the developer wish to retain all data created by all visits to the element,
they must build that into the element, such as creating new variables or appending the new value to an existing
variable.

Note

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
48

Configurable Elements
Design

Common Methods
The methods listed below are defined in ElementBase and are common to all configurable elements no matter
what type. All custom Unified CVP classes used by these methods are defined in the
com.audium.server.voiceElement package. Refer to the Javadocs for more in depth explanations of these
methods and the classes they utilize.

• String getElementName()

This method returns the display name for the element. This is the name displayed in the Element Pane
of Builder for Call Studio. There are no restricted characters for the display name. Use a short display
name that avoids spaces and punctuation.

• String getDescription()

This method returns the description of the element. The Builder displays this information in a tool tip
when the cursor is placed above the element’s icon in the Element Pane. There is no restriction on the
size or contents of the description.

• String getDisplayFolderName()

This method returns the name of the folder in the Builder Element Pane in which the element resides. If
null is returned, the element appears directly under the Elements folder (currently, only the Audio voice
element appears directly under the Elements folder). To support a hierarchy of folders, the folder name
can include a full path and the folder tree will automatically be generated by the Builder (that is,
MyElements/Financial/Banking/ would put the element icon inside three levels of folders). Use short
folder names that avoid spaces and punctuation.

• ExitState[] getExitStates()

This method defines the exit states this element can return. It is necessary in order for the Builder to
properly render the exit state dropdown menu when the element is right-clicked. The method returns an
array of ExitState classes. The ExitState class encapsulates the real and display name for an exit state.
The display name is used only by the Builder and the real name is used everywhere else (within code or
XML decisions).

For configurable action elements, this method need not be implemented because
all action elements automatically have a single exit state named done.

Note

• ElementData[] getElementData()

This method describes the element data generated by this element. This method returns an array of
ElementData objects or can be null if the element does not create any element data. The ElementData
object encapsulates the variable’s name and its description. The description exits for future compatibility
when the Builder obtains the ability to display a tool tip for element data.

Element data does not have a display name.Note

At this juncture, neither the Builder nor VXML Server use the information returned from this method.
One of the reasons is that, for some elements, what element data is created may not be known until

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
49

Configurable Elements
Common Methods

runtime. In future versions, the Builder may utilize the results of this method to aid the application
designer in choosing element data when using substitution. In themeantime, themethodmust be configured
to return something, either null or at least one element data variable.

• Setting[] getSettings()

This method describes the settings this element contains in its configuration. All element types have
settings which allow a designer to control how the element functions when visited. The Builder uses
information returned in this method to render the Settings tab in the Element Configuration Pane. This
method returns an array of Setting objects, where each Setting object represents a single setting rendered
on a separate line in the Element Configuration Pane. The Setting object lists the following information
about a setting:

• Its real and display name. The Builder uses the display name in the Element Configuration Pane
and the real name is used everywhere else (such as when referring to the setting in the element Java
code).

• The setting data type. The data type determines how the information is entered in the Builder. The
following lists the different data types available:

Boolean – The boolean data type displays a dropdown menu with two options, true and false.

Enumerated – The enumerated data type displays a dropdown menu with the options defined in
the enumeration.

Float – The float data type displays a text box that accepts only floating point numbers. The setting
can define upper and lower limits for the entered number.

Integer – The integer data type displays a text box that accepts only integer numbers. The setting
can define upper and lower limits for the entered number.

String – The string data type displays a text box that accepts any input.

Textbox – The textbox data type displays a button that when clicked produces a large text field that
accepts any input. It should be used when text content tends to be long and it is desirable to give
more space to enter the setting value than would usually be given with a string data type.

• Whether the setting is required or repeatable. A required setting is displayed with a red star next to
it and the Builder will not allow the application to be deployed or validated if this setting is left
blank. A repeatable setting is displayed with a plus sign next to it and can be given multiple values
by the application designer. A setting can be both required and repeatable in which case there must
be at least one value.

• Whether the setting allows substitution within it. Substitution is a mechanism for specifying the
assembly of dynamic content in the Builder at build time. A setting can be configured to allow
substitution or prevent it, for example if that setting’s behavior would be too unpredictable if its
value were set dynamically. See the User Guide for Cisco Unified CVP VXML Server and Unified
Call Studio for information on substitution.

• The setting default value.When an element is dragged to the workspace for the first time, the element
can specify default values for all settings. This allows the application designer to create applications
very rapidly by choosing the default values and tweaking them later during the testing phase. A
setting need not have a default value, especially if one cannot be predicted (such as a call transfer
phone number).

• Setting dependencies. A setting can specify criteria that determine whether it appears in the Builder’s
Element Configuration Pane. The criteria involve setting the relationship between the setting and
the other setting(s) that it depends on. One can even build complex logic expressions for determining

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
50

Configurable Elements
Common Methods

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

when the setting appears. The main purpose for setting dependencies is to simplify the process of
configuring the element in the Builder. By displaying only the settings appropriate for the
configuration the designer desires, settings that are not applicable can be safely hidden to avoid
confusion and possible conflicting information. For example, a setting for specifying the confidence
value of a data capture field would not be required if the input mode of the element were set to
DTMF. So one can set the confidence setting to appear only when the input mode setting is not
DTMF. Many Unified CVP Elements employ dependencies to simplify their configuration and so
are good examples of how dependencies are implemented.

A setting’s dependencies are defined by using the Dependency Java class. A single dependency
instance defines any number of setting values combined with the and logical operator. For example,
a single Dependency object can define that a setting appears only if one setting is set to true and
another is set to “10”.

A setting can take an array of Dependency objects. Each Dependency object in the array is considered
combined with the or logical operator. So to make a setting appear when one setting is true or
another setting is “10”, two Dependency objects are created and placed in a 2-member array.

Configuring dependencies for settings can be complex and involved, though once set up, they can
greatly simplify the configuration of a complex element. The Javadocs for the various classes
describe what each class and its member methods are used for.

Configuration Classes
As described in the above section, each configurable element’s method receives a Session API class that is
used to obtain the element’s configuration. Do not confuse this with the methods in ElementBase that are
used to describe the configuration to Builder for Call Studio.We are referring here to a Java object that contains
a full configuration the application designer entered in the Builder or that came from a dynamic element
configuration Java class or via the XML API.

These Java classes, ActionElementConfig, DecisionElementConfig, and VoiceElementConfig are found in
the com.audium.server.xml package and all extend the base class ElementConfig. These classes are identical
to those used when constructing dynamic element configuration classes. Refer to Dynamic Element
Configurations, on page 29 for a description of these configuration classes. While dynamic configurations
are responsible for creating and editing a configuration object, a custom element uses these classes basically
to read their information. There is little reason to edit the configuration classes within a custom element as
the configuration object applies only to that particular use of the element (revisiting the element will provide
it with a new configuration).

Action Elements
A configurable action element extends the abstract Java class ActionElementBase found in the
com.audium.server.voiceElement package. This class has default implementations for the abstract
configuration methods inherited from the ElementBase class. The default implementation sets an empty
configuration (null name, folder name, description, element data, settings, and one exit state named done).
This was done because this same base class is extended to create standard action elements as well as
configurable action elements. What makes a configurable action element different is the fact that it defines a
specific configuration, so the custom action element must re-implement all the configuration methods rather
than relying on the default implementation. Some of the default implementations, though, may be appropriate

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
51

Configurable Elements
Configuration Classes

even for a custom action element. For example, the default implementation of the getExitStates method
returns a single exit state named done, which applies to all action elements and so a custom action element
need not implement this method.

The method, doAction(), receives an instance of the API class ActionElementData. This class belongs to
the Session API and is used to access session information (See Session API, on page 13 for more on this
API). In addition to providing access to session information, this API class is also used to return the action
element configuration that drives the functionality of the element. The getActionElementConfig() method
in ActionElementData returns an ActionElementConfig object. VXML Server takes care of obtaining the
appropriate configuration and returning it in this method, whether or not the configuration is dynamic. The
element need not worry about where the configuration came from.

ActionElementConfig is almost a direct extension of the base ElementConfig class. It is kept separate for
future differentiation.

Remote Execution
For remote execution of the Action Elements, the Remote Execution checkbox is added in the General
Settings tab.

On selecting the checkbox, the default URI mentioned below is auto populated.

For HTTP and RPC call→remote://system/?classurl=<fully_qualified_java_class_path>

For example:
remote://system/?classurl=com.cisco.cvp.callstudio.Action.CustomAction

Where remote://system indicates that the configurations will be fetched from the Remote Url Settings
property tab which is application specific.

If a direct remote server URI is provided, then that IP:Port will be used and not fetched from the Remote Url
Settings property tab.

Note

For example:
http://<IP>:<Port>/<target_path>/?classurl=<fully_qualified_java_class_path>

Add Events in the Element Configuration to handle any particular or general exception gracefully.

Decision Elements
A configurable decision element extends the abstract Java class DecisionElementBase found in the
com.audium.server.voiceElement package. This class has default implementations of the abstract
configuration methods inherited from the ElementBase class. The default implementation sets an empty
configuration (null name, folder name, description, element data, settings, and exit states). This was done
because this same base class is extended to create generic decision elements as well.What makes a configurable
decision element different is the fact that it defines a specific configuration, so the custom decision element
must re-implement all the configuration methods rather than relying on the default implementation. Some of
the default implementations, though, may be appropriate even for a custom decision element. For example,
if the decision element creates no element data, the custom decision element need not implement the
getElementData method as the default implementation is sufficient.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
52

Configurable Elements
Remote Execution

The method, doDecision(), receives an instance of the API class DecisionElementData. This class belongs
to the Session API and is used to access session information (See Session API, on page 13 for more on this
API). In addition to providing access to session information, this API class is also used to return the decision
element configuration that drives the functionality of the element. The getDecisionElementConfig()method
in DecisionElementData returns a DecisionElementConfig object. VXML Server takes care of obtaining
the appropriate configuration and returning it in this method, whether or not the configuration is dynamic.
The element need not worry about where the configuration came from.

DecisionElementConfig is almost a direct extension of the base ElementConfig class. It is kept separate for
future differentiation.

Remote Execution
For remote execution of the Decision Elements, the Remote Execution checkbox is added in the General
Settings tab.

On selecting the checkbox, the default URI is auto-populated as follows:

For HTTP and RPC call - remote://system/?classurl=<fully_qualified_java_class_path>

For example:
remote://system/?classurl=com.cisco.cvp.callstudio.Action.CustomDecision

remote://system indicates that the configurations will be fetched from the Remote Url Settings property
tab which is application-specific.

If a direct remote server URI is provided, then that IP: Port will be used and not fetched from the Remote
Url Settings property tab.

Note

For example:
http://<IP>:<Port>/<target_path>/?classurl=<fully_qualified_java_class_path>

Add Events in the Element Configuration to handle any particular or general exception gracefully.

Voice Elements
Voice elements are more complex custom elements because they are responsible for producing VoiceXML
pages to send to the voice browser. The method for voice elements contains more arguments and the voice
element class requires additional configuration methods to be implemented. Finally, while action and decision
elements complete in one call of the method, a typical voice element requires multiple VoiceXML pages to
be produced in a certain order determined at runtime. Voice elements, therefore, must have state management
where other elements do not.

It is important to understand how voice elements integrate with VXML Server and the voice browser to prepare
the developer for constructing voice elements. Unlike a traditional static VoiceXML page or a script-generated
VoiceXML page that is accessed directly from the voice browser, the system uses VXML Server as an
abstraction layer between the voice browser and the voice element that produces the VoiceXML pages. This
abstraction layer not only allows the developer to avoid coding to a specific browser, it also saves the developer
from having to deal with HTTP request and response management. Each page the voice element produces is
passed through VXML Server, which acts as the central access point for the voice browser. Each link for a
new document specified in the VoiceXML page points back to VXML Server and VXML Server’ internal

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
53

Configurable Elements
Remote Execution

call flow data indicates which voice element it is currently visiting. All arguments passed by the voice browser
through those links are sent by VXML Server to the voice element for it to manage.

EachVoiceXML page generated by a voice element begins as a shell page that contains the VoiceXMLVXML
Server requires. The voice element then adds to this page any custom VoiceXML content desired before
passing it back to VXML Server to send to the voice browser. Most voice elements will require multiple
pages, the content of each depending on the actions of the caller. When a voice element is done producing
VoiceXML pages, it returns an appropriate exit state so VXML Server can visit the next element according
to the call flow. As long as the proper VoiceXML is passed back through the method, the developer is free
to do anything allowed by Java, including creating helper classes, accessing backend systems, and so on.

Having a single voice element class produce multiple VoiceXML pages poses a problem. With multiple calls
simultaneously accessing the element in various stages of a call, how is the voice element to know where a
particular caller is within the element at any one moment in time? Unified CVP helps by providing “scratch
space” for custom voice elements to store any data it wishes. VXML Server maintains separate scratch data
for each call and makes this data available to the voice element through the Session API. Usually the data
stored in the scratch space will be the state of the element for a particular call. Each time the method is called,
the element can check the scratch space, determine where the caller is within the element’s internal call flow,
and produce the appropriate VoiceXML page. Borrowingweb application terminology, scratch space provides
“session and state management” functionality to voice elements. Any Java class can be added to the scratch
space so the developer can get as complex as desired in handling the state management.

When the voice element is complete, the scratch space is automatically cleared by VXML Server, meaning
that a voice element that is revisited in the same call will start off with empty scratch space.

Note

The following figure shows a diagram that visualizes the above points concerning how a voice element interacts
with VXML Server and the voice browser.

Figure 10: Voice Element Interaction with the VXML Server and the Voice Browser

The diagram shows a typical exchange between the voice browser, VXML Server, and several voice elements
as follows:

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
54

Configurable Elements
Voice Elements

1. The voice browser makes an HTTP request for a VoiceXML page to VXML Server.

2. According to its record of the application call flow, VXML Server accesses the voice element Foo. The
voice element Foo is shown on the right. The element is coded to contain within it a small call flow
with three possible exit states. It can produce three separate VoiceXML pages, A, B, and C. In step 2,
the scratch space is empty, indicating that the element is being visited for the first time. Foo therefore
needs to produce the VoiceXML page A.

The A contains in it a submit that points back to VXML Server and includes two arguments arg1 and arg2.Note

3. Foo produces the VoiceXML page by assembling VFC objects and passes those objects back to VXML
Server. Before exiting, it puts in the scratch space information indicating that page A was completed.
Foo returns a null exit state, indicating to VXML Server that the voice element is not done.

4. VXML Server converts the VFC objects into a complete VoiceXML page that is sent back to the voice
browser.

5. The voice browser has parsed the VoiceXML and makes a new request for the next VoiceXML page.
The request contains the two arguments specified in the VoiceXML page A.

6. VXML Server knows to go back to Foo because it previously returned a null exit state. It revisits Foo,
passing along the two arguments. Since VXML Server maintains the session for each call, and the
scratch space is stored in the session, Foo can access the Session API to get the scratch space. Foo’s
scratch space indicates that A is complete. It makes a decision C based on the arguments passed to it
and chooses option 3, therefore requiring page D to be produced. Foo also notes that after producing
this page, it is done.

7. Foo returns the VFC objects containing page D and returns with the exit state “Exit3”.

8. VXML Server produces the VoiceXML page and sends it to the voice browser.

9. The voice browser parsed the VoiceXML page and asks for the next one.

10. Finally, VXML Server notes that Foo returned an exit state of Exit3 so refers to the application call flow
to discover where to go once Foo returns an exit state of Exit3. It determines that the next voice element
to access is Bar. The call continues in this manner until it ends.

Restrictions and Design Considerations
Unified CVP tries to make as few restrictions on building custom elements as possible. However, in order to
ensure proper integration of custom voice elements with the rest of the system, some restrictions must be set.
Additionally, there are guidelines that do not necessarily need to be followed, though can be used for design
and tighter integration considerations.

• The voice element must produce VoiceXML using the Unified CVP Voice Foundation Classes (VFCs).
The VFCs are the mechanism through which the voice element produces the VoiceXML to send to the
voice browser and VXML Server is tightly integrated with them. See Voice Foundation Classes for a
full description of the VFCs.

• The voice element cannot define its own root document. The root document is automatically generated
by VXML Server and is vital for many features to function such as the ability to activate hotlinks, perform
logging, and activate the end of call action.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
55

Configurable Elements
Restrictions and Design Considerations

• The voice element cannot use a <submit> or a <goto> to link to a VoiceXML page external to VXML
Server. When it is time to return to the voice element in a VoiceXML page, a URL pointing back to
VXML Server must be used. This is required by the design using VXML Server as the abstraction layer
between the voice browser and the voice element. The only exception to this rule allows for the call to
continue from a Unified CVP application to an external application but only if steps are taken to properly
end the VXML Server session first.

• The VoiceXML <form> the developer wishes the browser to visit first must be named start.

• The voice element must obtain the VPreference object to use in all VFC constructors by calling the
getPreference()method in VoiceElementData. This VPreference object contains, among other things,
the voice browser choice made by the application designer in Builder for Call Studio (or dynamically in
a start of call action). VPreference is a VFC and is described in more detail in Voice Foundation Classes.
VoiceElementData is described in more detail in the following sections.

• The interaction category of the activity log is used to record the activity of callers within the VoiceXML
pages produced by voice elements. Since this activity occurs on the voice browser, the only way to record
this in the VXML Server logs is to store the appropriate information within the VoiceXML and submit
it back to VXML Server. Unified CVP defines an interaction logging convention for recording caller
behavior within the VoiceXML. By conforming to this convention, the developer ensures that the activity
log will contain the detail expected for application testing and reporting.

While interaction logging is not required in a custom voice element, not performing logging will reveal
nothing about what the callers did within the element. See the section entitled Interaction Logging for
more information. Description of the activity log is available in the User Guide for Cisco Unified CVP
VXML Server and Unified Call Studio.

• Try to produce VoiceXML that conforms to the VoiceXML specifications, understanding that using
browser-specific functionality will prompt that element to function correctly only on that browser.

• Throw an ElementException where appropriate so an error logger event can be thrown. Exceptions
should indicate the voice element encountered a situation which prevents it from doing its assigned task.
Non-fatal exceptions should be caught within the voice element (and possibly linked to exit states) and
warnings placed in the error log.

• Do not end the call in the voice element manually using the <exit> or <disconnect> tags. Instead, exit
the voice element with a specific exit state that can then be linked to a end-call element in the call flow.
If it must be done, use <disconnect> so that VXML Server can detect the end-call and run the on end
call action. Using <exit>would cause VXMLServer to not know the calls had ended, using up an VXML
Server port until it times out on its own. This is obviously not a desirable situation.

• A voice element can add any Java object to scratch space via the setScratchData() method in
VoiceElementData. Scratch data is used for voice element internal uses only since the scratch space is
cleared when the voice element ends, even if it is revisited in the same call. Additionally, the data in the
scratch space is stored in the session managed by VXML Server. To minimize performance issues, do
not place large Java objects in the scratch space.

VoiceElementBase Methods
A voice element extends the abstract Java class VoiceElementBase found in the
com.audium.server.voiceElement package. Like other elements, it shares methods obtained from the base
class ElementBase described in the previous sections. VoiceElementBase, however, adds many additional
methods that apply to voice elements only. Its method is also more complex.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
56

Configurable Elements
VoiceElementBase Methods

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

Method to Run

String addXmlBody(VMain vxml, Hashtable params,
VoiceElementData data) throws VException, ElementException

This method must be run for voice elements. The arguments to the method are:

• vxml – The VMain object is the container VFC object in which all VoiceXML content is added (by adding
other VFC objects to it). The desired VoiceXML page to produce must be assembled using the VFCs
and added to this object. If no VFCs are added, an incomplete VoiceXML page will be produced, causing
the voice browser to encounter an error. Simply add all VForm objects to this object. VXML Server will
take care of the rest.

The form youwish to be visited first must be named start.This is very important!Note

• params – The params object is a Hashtable that contains all HTTP arguments passed by the voice
browser through VXML Server. For example, if the voice element produces a VoiceXML page with a
variable named dataToCollect that is then included in a submit argument list, the params Hashtable

will contain an entry with the key dataToCollect and the value as a String. To access it, the developer
would write:
String data = (String) params.get("dataToCollect");

• data – The VoiceElementData object belongs to the Session API and is used to access session information
(See Session API for more information on this API). Aside from the standard functionality,
VoiceElementData provides all data required by the voice element such as ways to access the scratch
space, obtain the VPreference object used to instantiate the VFCs, and obtain the voice element’s
configuration object, VoiceElementConfig.

The String return value of the method must refer to the real name of the voice element’s exit state. The real
name of the exit state must match one of the names given in the getExitStates() configuration method.
Since voice elements can span multiple VoiceXML pages, returning null indicates that the voice element is
not done and the method should be visited again when the voice browser sends its next request to VXML
Server. Only when the method returns a proper exit state will VXML Server follow the application call flow
and proceed to the next element. The method throws an ElementException that is used to indicate an error
occurred within the method that prevented the voice element from doing its assigned task. The error message
will be logged in the application’s error log and the error element (if applicable) will be visited. This method
additionally throws a VException, which is generated by incorrectly configured VFCs and does not need to
be thrown explicitly by the element method itself.

• Striung getSubmitURL()

One of the restrictions listed for creating a voice element is to use a Unified CVP-specified URL when
submitting back to VXML Server. This method returns the URL to use. The developer would use this
URL in a <submit> adding any arguments desired.

• VAction getSubmitVAction(String args, VPreference pref)

This is a convenience method which provides more than getSubmitURL() does by returning a new
VAction object containing the entire submit to VXML Server along with any arguments passed as input
(as a space-delimited list). The VPreference object is required to instantiate the VAction object and can
be obtained by calling the getPreference() method of the VoiceElementData object. The VAction
object returned by the getSubmitVAction()method is just like any other, the developer can add additional
actions to it as desired.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
57

Configurable Elements
VoiceElementBase Methods

• VAction getSubmitVAction(VAction existing, String args)

This convenience method does the same as the above method except it adds the submit to an existing
VAction object passed as input. There is no VPreference object required because no new VFC objects
are instantiated in this method. This method may be more convenient if the developer wants to perform
some actions (such as the declaration or assigning variables) before the submit occurs.

See Voice Foundation Classes for a full description of the VFCs.

• VoiceElementResult createSubVoiceElement(VoiceElementBasemainVoiceElement, VMain vxml,
Hashtable params, VoiceElementData data)

There are times when one wishes to create a voice element that acts a combination of a group of existing
voice elements, something like a super-element. While one can simply build this element from scratch,
it would be desirable to somehow leverage the work already done with existing voice elements. The
advantage would be that the super-element code need not contain any VFC code, it would only act as
the container for sub-elements within it. This is possible utilizing the createSubVoiceElement()method.

This method is intended to be called from an instance of a sub-element, not the super-element. The
super-element first creates an instance of the sub-element and then calls this method from that instance.
This runs a sub-element within the super-element using the same context. The sub-element runs, it reads
from a configuration object and creates VFC classes. The difference is that the super-element can take
what the sub-element produced and modify it or add to it.

The arguments to the createSubVoiceElement() method are required in order to provide the correct
context for the sub-element to run within. A voice element requires the correct context in order for it to
be able to read from a configuration object, use the appropriate VFC objects, and have access to the
system. The first argument to the createSubVoiceElement() method must be an instance of the
super-element (which will be this). The last three arguments are simply the arguments the super-element
receives in it’s addXmlBody() method.

The VoiceElementResult object returned is a small data structure class containing the exit state of the
sub-element (if any), and whether the sub-element produced any VoiceXML. This last value is important
because the only time a voice element is allowed to produce no VoiceXML is when it is visited for the
last time. It returns an exit state and no VoiceXML so VXML Server knows to visit the next voice element
immediately rather than producing a VoiceXML page first and visiting the element after the browser
makes the next request. If the sub-element does not return any VoiceXML, the super-element must add
its own VoiceXML content directly, visit another sub-element, or exit with an appropriate exit state.
After the createSubVoiceElement()method runs, the VMain object will contain a complete VoiceXML
page. If the VoiceElementResult object indicates that the sub-element returned no VoiceXML, VMain
will contain an incomplete VoiceXML page.

Building super-elements in this manner is a tricky process. The developer must be aware of the following:

• Since the sub-element runs in the super-element’s context, it shares the same configuration. The
consequence of this is that the super-element must ensure that its configuration contains all the
settings and audio groups expected by the sub-element. If it does not, the super-element must modify
its configuration object before calling the createSubVoiceElement() method or the sub-element
may throw an exception. This issue is compounded when the super-element encapsulates multiple
sub-elements that have settings or audio groups with the same real name. The super-element’s
configuration would need to define separate settings for each sub-element’s settings and then rename
them appropriately in order for the sub-element to understand it.

• The scratch space for a super-element is shared with all sub-elements. The consequence for this is
that any scratch data stored by the super-element must not conflict with the scratch data stored by
the sub-element. Many times, though, voice elements do not publicize the names of the scratch data

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
58

Configurable Elements
VoiceElementBase Methods

used. A good bet would be to name the super-element scratch data uniquely so there will not be any
conflicts. Another consequence is that the super-element must be responsible for clearing the scratch
data when a sub-element is complete. VXML Server automatically clears the scratch data, but only
for the elements it is aware of, which in this case is only the super-element.

• The element data namespace is shared across the super-element and all sub-elements. Again, VXML
Server uses a separate namespace for each element it is aware of, which means the super-element.
The super-element must ensure that element data created by one sub-element does not overwrite
the element data created by another sub-element.

• The super-element must handle all the internal call flow between sub-elements. Essentially, the
super-elementmust perform the tasks VXMLServer usually performs to handle the call flow between
sub-elements. This means keeping track of state, managing the exit states of sub-elements, and
knowing when to leave the super-element with its own exit states.

Even though creating super-elements can be a tedious and potentially error-prone process, it may be
better than creating a new voice element from scratch.

Configuration Methods

In addition to the existing configuration methods defined in ElementBase, two additional methods are required
for a voice element class to implement. These methods deal with audio, a feature unique to voice element
configurations. The values returned by these methods are used by Builder for Call Studio to render the contents
of the Audio tab of a voice element’s configuration.

• HashMap getAudioGroups()

Unlike element settings, which are defined in a simple one-dimensional array, audio groups are combined
into sets. This is done to facilitate organization and ease of use when configuring the voice element in
the Builder. When right-clicking on the Audio Groups folder in the Element Configuration Pane, the
dropdown menu lists all the audio group sets. The designer can then choose an audio group within a set
by selecting the appropriate name from the submenu. This method is used to return the audio groups for
the element and the sets they belong to.

A single audio group is contained within a single AudioGroup instance (AudioGroup is found in the
com.audium.server.voiceElement package). The object encapsulates the audio group’s real name,
display name, and description. The display name is shown within the dropdown menu in the Builder, the
real name is used for all other situations. The audio group description is displayed as a tool tip when the
cursor points to the audio group in the Element Configuration Pane.

The AudioGroup class also defines setting dependencies. As with element settings, the appearance of
audio groups can also depend on the values of certain settings. Again, this exists to simplify configuring
a complex voice element in the Builder. For example, an audio group that introduces a confirmation
menu would not be necessary if a setting determining if a confirmation should exist is turned off. See
the previous section describing the getSettings() method for a full description of how dependencies
work. Configuring audio groups to depend on settings works the same way as configuring settings to
depend on other settings.

The audio groups are arranged in sets by storing them in a HashMap Java collection. The keys of the
HashMap are the names of the audio group sets and the values of the HashMap are arrays of AudioGroup
instances that belong to their set. The array represents the audio groups to display within that set. The
order specified in the array is the order they appear in the Builder.

• String[] getAudioGroupDisplayOrder()

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
59

Configurable Elements
VoiceElementBase Methods

This method is provided for the developer to determine the order in which the sets of audio groups appear
in the Builder. The String array is a list of set names in the order in which they should appear in the
drop-down list. The values must match those used as keys to the HashMap returned by the
getAudioGroups() method.

Interaction Logging
Interaction logging is a Unified CVP-defined mechanism for voice elements to record to the VXML Server
logs the actions of a caller when they are interacting with the voice browser. Many voice browsers have the
ability to record detailed logs of a phone call and a caller’s interaction with a VoiceXML page. These logs,
however, are stored on the voice browser, which may be inaccessible or at least difficult to access. Additionally,
logs on the VXML Server side and the browser side would need to be cross-referenced in order to determine
what happened in a particular call. It would be desirable to store all pertinent information in one place, which
is what the interaction logging attempts to do. Interaction logging is stored in the application’s activity log,
which already stores other information such as the ANI and DNIS, what elements were visited in the call with
what exit states, element data, etc. While it does not have the fine level of detail that a browser log can provide,
interaction logging is sufficient for an administrator to determine what happened in a call or a designer to
calculate call statistics to aid in improving the application.

Since VoiceXML is used to tell the voice browser how to interact with the caller, it must also be used to keep
track of the caller’s activity. The mechanism Unified CVP uses to do this is to create a single VoiceXML
variable in which all the interaction logging data is stored. As new data becomes available, it is appended to
the variable using a convention to delineate the data. This variable is automatically defined in the VXML
Server-generated root document; all the voice element developer needs to do is append content to it. The
variable is named audium_vxmlLog, though a voice element developer should not use this name directly in
their code. Instead, they should use the Java constant VXML_LOG_VARIABLE_NAME, defined in VoiceElementBase
to refer to the variable. The reason for this is that the VoiceXML variable name is subject to change while the
Java constant name is not. The Java constant will always contain the name of this variable so the developer
need not recompile their code if the VoiceXML variable name changes.

Once a VoiceXML page is visited and the audium_vxmlLog variable is filled with content, it must be passed
back to VXML Server for parsing to place in the activity log. This means that every submit back to VXML
Server must include this variable as an argument. If the voice element uses the getSubmitURL() method to
obtain the submit URL, audium_vxmlLogmust be explicitly added to the argument list in order to log correctly.
Another advantage of using the getSubmitVAction() methods are that they already add this variable to the
submit.

The convention used to for interaction logging appends the action name, description, and timestamp using
the following format:
“|||ACTION$$$VALUE^^^ELAPSED”

Where:

• ACTION is the name of the action. There are currently seven different actions that can be logged (the
names are exactly as listed, all lowercase):

• audio_group – This is used to indicate that the caller heard an audio group play. The value is the
name of the audio group.

• inputmode – This is used to report how the caller entered their data, whether by voice or by DTMF
keypresses. The value is stored in the inputmode VoiceXML shadow variable.

• utterance –This is used to report the utterance as recorded by the speech recognition engine (available
using a VoiceXML shadow variable). The value is the actual utterance.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
60

Configurable Elements
Interaction Logging

• interpretation – This is used to report the interpretation as recorded by the speech recognition
engine. The value is the actual interpretation.

• confidence – This is used to report the confidence as recorded by the speech recognition engine
(available using a VoiceXML shadow variable). The value is the confidence value.

• nomatch – This is used to indicate the caller entered the wrong information, incurring a nomatch
event. The value is the count of the nomatch event.

• noinput – This is used to indicate the caller entered nothing, incurring a noinput event. The value
is the count of the noinput event.

• VALUE is the value (description) to put in the log.

• ELAPSED is the number of milliseconds since the VoiceXML page was entered. This is required in
order to keep an accurate timestamp in the activity log. Luckily, the VXML Server-generated root
document provides a Javascript function named application.getElapsedTime(START_TIME) that returns
the number of milliseconds elapsed since the time specified in START_TIME. A VoiceXML variable is
declared in the root document that holds the time the VoiceXML page was entered and should be passed
as input to this method. The variable name is audium_element_start_time_millisecs, though just as
with audium_vxmlLog, a Java constant defined in VoiceElementBase named
ELEMENT_START_TIME_MILLISECS should be used to refer to this variable.

Interaction logging is best explained though several examples. The first example wishes to add to the interaction
log the fact that the xyz audio group was played. The VoiceXML necessary to produce this logging as per the
specified convention would be:
<assign name="audium_vxmlLog" expr="audium_vxmlLog+'|||audio_group$$$xyz^^^' +
application.getElapsedTime(audium_element_start_time_millisecs)"/>

The expr attribute of <assign> is used because the value is actually an expression that concatenates various
strings together. First, the audium_vxmlLog variable must be listed because we are appending new data to it.
We append the string listing the audio group action and the name of the audio group, all contained within
single quotes because this is a string literal. The final part is the Javascript, which cannot be within single
quotes.

Note

To do this within a voice element, one would have to use the VAction object (since it handles the <assign>
tag) like this:

VAction log = VAction.getNew(pref, VAction.ASSIGN,
VXML_LOG_VARIABLE_NAME,
VXML_LOG_VARIABLE_NAME + "+'|||audio_group" +
"$$$xyz^^^' + application.getElapsedTime(" +
ELEMENT_START_TIME_MILLISECS + ")",
VAction.WITHOUT_QUOTES);

The audium_vxmlLog and audium_element_start_time_millisecs variables are not mentioned by name,
the VXML_LOG_VARIABLE_NAME and ELEMENT_START_TIME_MILLISECS Java constants are used instead. Where
Java constants are used, they must appear outside the double quotes defining the string.

Note

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
61

Configurable Elements
Interaction Logging

pref is expected to be a valid VPreference object.Note

In a more complex example, the utterance of a field named xyz is to be appended to the log. The utterance is
determined by a VoiceXML shadow variable. The VoiceXML would look like:
<assign name="audium_vxmlLog" expr="audium_vxmlLog + '|||utterance$$$' + xyz.$utterance +
'^^^' + application.getElapsedTime(
audium_element_start_time_millisecs)"/>

and the VAction object would be configured like:

VAction log = VAction.getNew(pref, VAction.ASSIGN,
VXML_LOG_VARIABLE_NAME,
VXML_LOG_VARIABLE_NAME + "+'|||utterance" +
"$$$' + xyz.$utterance + '^^^' + " +
"application.getElapsedTime(" +
ELEMENT_START_TIME_MILLISECS + ")",
VAction.WITHOUT_QUOTES);

See Element Specifications for Cisco Unified CVP VXML Server and Unified Call Studio for details about
the different logs VXML Server records and the data that can appear in the logs.

Remote Execution
For remote execution of the Voice Elements, the Remote Execution checkbox is added in the General
Settings tab.

On selecting the checkbox, the default URI is auto-populated as follows:

For HTTP and RPC call, remote://system/?classurl=<fully_qualified_java_path>

Where remote://system indicates that the configurations will be fetched from the Remote Url Settings
property tab which is application-specific.

If a direct remote server URI is provided, then that IP:Port will be used and not fetched from the Remote Url
Settings property tab.

Note

For example:
http://<IP>:<Port>/<target_path>/?classurl=<fully_qualified_java_path>

Add Events in the Element Configuration to handle any particular or general exception gracefully.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
62

Configurable Elements
Remote Execution

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html

C H A P T E R 10
Application Start Classes

• Application Start Classes, on page 63

Application Start Classes
Application start classes are unlike most components in that they are not related to a call session. Application
start classes are instead associated with a particular application and are run when the application itself is
initialized or updated. Currently, only the Java API can construct code to run when an application starts.

An application can define in its application settings any number of application start classes. VXML Server
will run the classes sequentially in the order they appear in the application’s settings. By conforming to this
order, a developer can create an application start class that stores information that can then be referenced by
subsequent start of application classes.

The application settings can specify that an error on a particular application start class will cancel the
application’s deployment. This is an optional attribute and by default the system will not allow an error in
one of these classes to stop the application deployment. If set, an error encountered in the class will stop the
application from being deployed, an error message will appear in the application server console, and an error
event will be thrown to be logged by any error loggers. This attribute is provided should an application require
its application start class to run without error for calls the application to succeed.

There are four situations where the application start class is run:

• The application server is launched. VXML Server is configured to begin initializing applications once
it is loaded by the application server. This process triggers each application’s start classes to be run.

• The VXML Server web application is restarted. Most application servers provide the ability to restart
just a certain web application running within it rather than restarting the entire application server. The
act of restarting the web application that defines the VXML Server will prompt it to start the application
loading process just like an application server restart.

• An application is deployed after the VXML Server has started. Using the deployment administration
scripts, an application can be deployed while the system is actively handling calls to other applications.
When the application is loaded, the application start classes will be run.

• An application is updated. The process of updating an application prompts VXML Server to create a
new instance of the application in memory, while keeping the old instance in memory long enough for
all existing callers to complete their calls. The new application must initialize itself, including calling all
application start classes.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
63

An application start class only has access to the Global API, which allows for the creation of global and
application data. It does not have access to the Session API because it is not run within a call session and is
associated only with an application, not a call.

The main purpose for an application start class would be to prepare information that would then be used by
call-specific components, especially if the setup process takes a long time to run. For example, if an application
has elements that are written to access a backend database or mainframe system, they could initiate connections
to that system each time they need to. This, however, would incur overhead in initiating the connection each
time. An alternative would be to write an application start class that will open up the connection to the database
or mainframe and perform all necessary setup. The class could take as long as necessary to run because the
application is being initialized and is not actively taking calls. The application start class could then store the
connection in application data that the elements could then access when needed. This solution incurs overhead
at the best time, during application initialization, and eliminates it at the worst time, during a call.

The application start class action is built by implementing the Unified CVP class StartApplicationInterface
found in the com.audium.server.proxy package. It contains a single method named onStartApplication

that is the method to run for the application start class. This method receives a single argument, an instance
of ApplicationStartAPI. This class belongs to the Global API and is used to access and create application
data and global data (see the User Guide for Cisco Unified CVP VXML Server and Unified Call Studio for
details on application and global data). The method does not have a return value. It is expected that should
an unrecoverable error occur, the application start class will throw an AudiumException.

Remote Execution
For remote execution of the Application Start Classes, the following syntax for URI is to be used:

For HTTP and RPC call:
remote://system/?classurl=<fully_qualified_java_class_path>

For example:
remote://system/?classurl=com.cisco.cvp.callstudio.Action.TestStartApplicationClass

remote://system indicates that the configurations will be fetched from theRemote Url Settings property
tab which is application-specific.

If a direct remote server URI is provided, then that IP:Port will be used and not fetched from the Remote
Url Settings property tab.

For example:
http://<IP>:<Port>/<target_path>/?classurl=<fully_qualified_java_class_path>

Note

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
64

Application Start Classes
Remote Execution

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

C H A P T E R 11
Application End Classes

• Application End Classes, on page 65

Application End Classes
Application end classes are unlike most components in that they are not related to a call session. Application
end classes are instead associated with a particular application and are run when the application itself is taken
down or updated. Currently, only the Java API can construct code to run when an application starts.

An application can define in its application settings any number of application end classes. VXML Server
will run the classes sequentially in the order they appear in the application’s settings. By conforming to this
order, a developer can create an application end class that stores information that can then be referenced by
subsequent end of application classes.

Unlike application start classes, an error in one application end class does not cancel the application release,
once started the application will be released no matter what occurs. Should an error occur in an application
end class, an error event will be thrown for any error loggers to report.

There are four situations where the application end class is run:

• The application server is shut down. VXML Server is configured to shut down all of its own operations
as well as shut down each individual application by running their application end classes.

• The VXML Server web application is restarted. Most application servers provide the ability to restart
just a certain web application running within it rather than restarting the entire application server. The
act of restarting the web application that defines VXML Server will prompt it to initiate the application
unloading process, including calling its application end classes just like an application server restart.

• An application is released after the VXML Server has started. Using the release administration scripts,
an application can be released while the system is actively handling calls to other applications. VXML
Server will first run all application end classes for the application and then release it from memory.

• An application is updated. The process of updating an application prompts VXML Server to create a
new instance of the application in memory, while keeping the old instance in memory long enough for
all existing callers to complete their calls. Once all calls have completed with the old instance, that
instance’s application end classes are run.

An application end class only has access to the Global API, which allows for the creation of global and
application data. It does not have access to the Session API because it is not run within a call session and is
associated only with an application, not a call.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
65

The main purpose for an application end class would be to perform cleanup operations for an application.
Typically this would involve closing database connections or files that were opened by an application start
class or by code run within calls to the application. Application end classes have the ability to create application
or global data, though the concept of creating data right before the application is released would seem pointless.
The one situation where this would be useful would be to set data that a subsequent application end class
could use. For example, an application start class could open up a database connection and store it in global
data so that all applications deployed on VXML Server could utilize the connection. This connection would
need to be closed, but if there are multiple applications with multiple application end classes, the desire would
be to close the connection by the last application to be released, in case the application end classes need to
use the connection. Each application start classes could increment an application count value stored in global
data that the application end classes would decrement. The application end class that yielded a zero would
know that it was the last application released and so close the database connection.

The application end class action is built by implementing the Unified CVP class EndApplicationInterface
found in the com.audium.server.proxy package. It contains a single method named onEndApplication that
is the method to run for the application end class. This method receives a single argument, an instance of
ApplicationEndAPI. This class belongs to the Global API and is used to access and create application data
and global data (see the User Guide for Cisco Unified CVP VXML Server and Unified Call Studio for details
on application and global data). The method does not have a return value. It is expected that should an
unrecoverable error occur, the application end class will throw an AudiumException.

Remote Execution
For remote execution of the Application End Classes, the following syntax for URI is to be used:

For HTTP and RPC call:
remote://system/?classurl=<fully_qualified_java_class_path>

For example:
remote://system/?classurl=com.cisco.cvp.callstudio.Action.TestEndApplicationClass

remote://system indicates that the configurations will be fetched from theRemote Url Settings property
tab which is application-specific.

If a direct remote server URI is provided, then that IP:Port will be used and not fetched from the Remote
Url Settings property tab.

For example:
http://<IP>:<Port>/<target_path>/?classurl=<fully_qualified_java_class_path>

Note

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
66

Application End Classes
Remote Execution

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

C H A P T E R 12
Say It Smart Plugins

Similar to the ability for a developer to create custom elements, a developer can create their own Say It Smart
plugins. A developer can produce plugins that handle brand new Say It Smart types as well as plugins that
extend the functionality of existing Say it Smart plugins. Due to the integration requirements for Say It Smart
plugins, they can be built only by using the Java API.

Custom Say It Smart plugins are integrated into both VXML Server and Call Studio as easily as Unified CVP
Say It Smart plugins are. They can be deployed for a specific application or shared across all applications and
are configured in the Studio in the same manner Unified CVP Say It Smart plugins are. With such seamless
integration and effortless deployment, a developer can, over time, create entire libraries of custom Say It
Smart plugins to use for their voice applications or potentially for resale.

This chapter describes in detail how to create custom Say It Smart plugins and integrate them into both Call
Studio and VXML Server.

• Design, on page 67
• Methods to Run, on page 68
• Configuration Methods, on page 70
• Utility Methods, on page 70

Design
Say It Smart plugins were designed to be very simple to build, extend, and deploy. Much of the design mirrors
that of custom configurable elements, though Say It Smart plugins are simpler and set far fewer restrictions.
Their sole purpose is to take input representing formatted data and convert it into a list of pre-recorded audio
files with TTS backups and pauses if desired.

Similar to configurable elements, a Say It Smart plugin is constructed by creating a Java class that extends
an abstract base class, SayItSmartBase. The base class defines abstract methods that must be implemented
by the plugin to describe how Builder for Call Studio displays the plugin. A plugin that is to appear in the
Builder must implement a Java marker interface named SayItSmartPlugin. Unlike elements, though, Say It
Smart plugins have two methods to run, one for converting data to a set of audio files with TTS backups, and
the other for converting the data using TTS only. These methods to run may throw a SayItSmartException
that is used to indicate the inability of the plugin to convert the data passed to it.

The configuration of a Say It Smart plugin involves four options:

• The first is the Say It Smart type (such as phone number or date). Each type must be defined in a separate
plugin class.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
67

• The second option is the chosen input format. Input formats list how to expect the input data to arrive
(such as a date with just the month and year or a date with the month, day and year). A plugin defines
all the input formats it supports.

• The next option is the chosen output format. Output formats list how to render the converted data (such
as reading back a time where 12:00 AM is read back as noon as opposed to 12 AM). Output formats are
dependent on input formats, so when the input format changes, the list of output formats available changes
accordingly. The plugin defines these dependencies using a configuration method.

• The final option is the fileset. Filesets determine what group of audio files is used to render the same
data (such as one that reads back a better-sounding number by requiring more audio files). Filesets are
dependent on output formats, so when the output format changes, the list of filesets available changes
accordingly. The plugin defines these dependencies using a configuration method.

A fileset deals with audio files so does not apply when the Say It Smart value is
rendered in TTS only.

Note

As usually occurs with components configured in Builder for Call Studio, each type, input format, output
format, and fileset has a real name, display name, and description. The display name is shown in the Builder
in dropdown menus. The real name is used everywhere else. This design allows the Say It Smart plugin
developer to use a display name that visually represents the appropriate information but choose a real name
that is small, easy to remember, and will not change. As long as the real name stays the same, the developer
can change the display name of any component without affecting backwards compatibility. At this point, the
descriptions are not displayed in the Builder and are there for future compatibility.

All Java classes related to Say It Smart plugins are found in the com.audium.server.sayitsmart package.

Unlike elements, Say It Smart plugin classes are instantiated as needed. This means that the developer is free
to use static, member, and local variables as they would expect. You must avoid using static variables in Say
It Smart plugin classes unless they are static final because static variables will be reset whenever the application
is updated.

Note

A checkbox titled Remote Execution is added to the Say It Smart Plugin for running it remotely. If the
Remote Execution checkbox is enabled, it will use the URI values provided in the Remote Url Settings tab.

Methods to Run
The following points describe the methods to run:

• SayItSmartContent convertToFiles(Object data, String inputFormat,
String outputFormat, String fileset)

This is the method to run for converting data to a list of audio files with TTS backups. The first argument
is the data to convert. This data can be any Java object and it is up to the plugin to cast to the appropriate
type (usually depending on what the input format is). Most of the time, though, it will be considered a
String. The next three arguments list the real names of the input format, output format, and fileset
specified in the voice element configuration (either statically in Builder for Call Studio or dynamically).

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
68

Say It Smart Plugins
Methods to Run

The method returns an instance of SayItSmartContent. This class encapsulates any number of audio
filenames, their TTS backups, and pauses to insert in the playback. The method to run must create an
instance of this class, add the desired content to it, and return it. VXML Server then reads this content
to generate the VoiceXML for the Say It Smart audio item in the audio group.

The path and file type options available in the Say It Smart configuration in the
Builder are not passed here because they are added automatically by VXML
Server once the plugin has converted the data. The plugin should produce just
the audio file names without any paths or extensions.

Note

While the option exists, the plugin need not include TTS backups for the audio
files. They are used as a backup in case the audio file is not found or is corrupted.
Not including a transcript (by making it null) would mean that if the audio file
could not be found, the application would prematurely end with an error.

Note

The developer can throw a SayItSmartException in this method indicating the data passed to the plugin
could not be converted using the specified configuration. This would most likely end the call prematurely
so the exception should be thrown only when the Say It Smart plugin cannot do what it is supposed to
do and is unable to recover.

convertToFiles() is abstract, meaning every Say It Smart plugin must implement this method.

• SayItSmartContent convertToTTS(Object data, String inputFormat,
String outputFormat, String fileset)

This is the method to run for converting data to a TTS string. The arguments are identical in this method
as the convertToFiles() method.

Even though the fileset option technically does not apply here, it is included in
case the plugin does alter the TTS output based on fileset information.

Note

The method must still return a SayItSmartContent object since the plugin may still decide to play back
the TTS content with pauses at certain points. In this case, the filename value would be set to null.

convertToTTS() is not abstract, SayItSmartBase actually provides a default
implementation of this method. The default implementation simply calls the
converToFiles() method, combines the TTS transcripts it receives and returns
a new SayItSmartContent object with just those transcripts and any pauses. The
plugin need only provide its own implementation of this method if the desired
behavior is different.

Note

The developer can throw a SayItSmartException in this method indicating the data passed to the plugin
could not be converted using the specified configuration. This would most likely end the call prematurely
so the exception should be thrown only when the Say It Smart plugin cannot do what it is supposed to
do and is unable to recover.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
69

Say It Smart Plugins
Methods to Run

Configuration Methods
The following bullets describe the configuration methods:

• SayItSmartDisplay getDisplayInformation()

This method is used to specify display information for Builder for Call Studio to render this plugin’s
configuration. The SayItSmartDisplay object lists the plugin type, input formats, output format, and
filesets. Each type, input format, output format, and fileset must have a real name, display name, and
description. The relationship between the input formats, output formats, and filesets are defined by the
methods listed below.

This method throws a SayItSmartException if the SayItSmartDisplay object is not configured correctly.

getDisplayInformation() is abstract, meaning every Say It Smart plugin must implement this method.

• SayItSmartDependency getFormatDependencies()

As described in the design section, a plugin’s output formats are dependent on the input formats. This
method defines those relationships. The SayItSmartDependency object is used to specify which output
formats listed in the getDisplayInformation() method apply to which input formats.

The SayItSmartDependency class is defined generically with the concepts of parents and children. For
this method, the parents are input formats and the children are output formats. The developer simply uses
the addParent() methods to add a new input format and the output formats that depend on it. The
addChild() and addChildren() methods are used to add additional output formats that are dependent
on the specified parent. This is done until all input formats are listed and all the output formats that
depend on it are listed. Remember that the names to use here are the real names, the display names are
used only by the Builder. All the input formats and output formats defined in the
getDisplayInformation() method must be mapped here.

This method throws a SayItSmartException if the SayItSmartDependency object is not configured
correctly.

getFormatDependencies() is abstract, meaning every Say It Smart plugin must implement this method.

• SayItSmartDependency getFilesetDependencies()

This method is identical to the getFormatDependencies() method except it defines which filesets are
dependent on which output formats. This method also returns a SayItSmartDependency object, except
this time the parent is an output format, and the child is a fileset. Again, the real names of the output
formats and filesets must be used here. All the output formats and filesets defined in the
getDisplayInformation() method must be mapped here.

This method throws a SayItSmartException if the SayItSmartDependency object is not configured
correctly.

getFilesetDependencies() is abstract, meaning every Say It Smart plugin must implement this method.

Utility Methods
The following utility methods are provided to aid Say It Smart plugin developers. Their use is optional.

• void validateArguments(Object data, String inputFormat,
String outputFormat, String fileset)

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
70

Say It Smart Plugins
Configuration Methods

This method validates each argument and throws a SayItSmartException if there is an error with one
of them. The exception is thrown if data is null, or inputFormat, outputFormat, or fileset does not
correspond to the ones defined in the getDisplayInformation() method. Additionally, an exception is
thrown if outputFormat does not depend on inputFormat or fileset does not depend on the
outputFormat. The error message lists all the appropriate options available.

All Unified CVP Say It Smart plugins call this method in the first line of their methods to run.

• String createError(String header, String[] options, String footer)

This utility method is a shortcut for creating an error message when some value does not match one of
an array of different possible values. The error conveys that and lists all the values the data can be. Many
Unified CVP Say It Smart plugins provide an array of String elements containing formats that they will
accept input data to arrive in and this method is used when the input data does not arrive in a supported
format. The output string starts with SayItSmart Error – PLUGIN where PLUGIN is the name of the
plugin type as returned by the getDsplayInformation()method. The header then appears, followed by
a comma-delimited list of correct values (with the last option following an and) followed by the footer.

This is best explained with an example. A Say It Smart plugin named Foo has the input formats a, b, c,
and d. If the input format passed was e, this method can be called to create the error message. Calling
the message like so:
createError("The only input formats supported are: ", new String[] {"a", "b", "c",

"d"}, " Please use a supported format.").

will produce the following error message:
SayItSmart Error - Foo: The only input formats supported are: "a", "b", "c", and "d".
Please use a supported format.

• String[] getFilesetContents(String fileset)

This utility method returns an array of Strings containing the filenames required for the fileset passed as
input. This method can be used to determine what audio files need to be recorded to fully support a fileset
for a Say It Smart plugin. At this point, this method exists only for informational purposes, it is not
accessed by either Builder for Call Studio or VXML Server.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
71

Say It Smart Plugins
Utility Methods

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
72

Say It Smart Plugins
Utility Methods

C H A P T E R 13
Loggers

The mechanism used by VXML Server to record information about global administrations, errors caused by
sub-systems, activities taken by callers to deployed applications or administrators is by using loggers. Loggers
collect this information and can do any number of tasks with it, from aggregating it for reporting purposes,
to sending that information to external systems for managing, to simply storing the information in log files.
A developer can produce a logger to supplement or replace the functionality the loggers included with VXML
Server provide. Due to the complexity of integrating with VXML Server, loggers can be built only by using
the Java API.

This chapter describes in detail how to create custom loggers and integrate them with VXML Server. For
more detail on the loggers included with VXML Server, refer to the User Guide for Cisco Unified CVPVXML
Server and Unified Call Studio.

• VXML Server Logging Design, on page 73
• Logger Design, on page 76
• Global Logger Methods, on page 76
• Application Logger Methods, on page 77
• Utility Methods, on page 79
• Remote Execution of Custom Logger, on page 80

VXML Server Logging Design
Before discussing the design of an individual logger, it is warranted to introduce the design of the logging
mechanism within VXML Server. Knowledge of this design will help the logger developer create loggers
that work harmoniously with the system.

Logger Events
The mechanism by which information is passed to a logger is through an event object. This object will
encapsulate information about what just occurred, including a timestamp. Event objects are created by VXML
Server in many different situations that belong to three levels: related to global activities, related to an
application and related to a call session. The event object will contain all the information accessible to the
logger for the particular event as well as information about the environment. For global level events, the
environment varies. For some events the environment consists of HTTP information about the request such
as parameters and headers. Other events were activated internally and so do not define any environment
information. For application-level events such as an administration event, the environment consists of
application data and global data (not call data since this event is not affiliated with a call). For call-level events

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
73

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

such as a call start event, the environment consists of information about the call such as the ANI, element and
session data, default audio path, etc. Since the purpose of a logger is to report information, loggers are limited
to obtaining environment information and cannot change any value. Loggers may still need to store
session-related information for its purposes so to accommodate this VXML Server provides loggers scratch
data that is stored in the session and will be available to the logger only for those events associated with the
session.

The following figure shows the class hierarchy for all events both global and application.

Figure 11: Logger Event

Notes on events:

• GlobalEvent and ApplicationEvent both extend the generic event class LoggerEvent. In this structure,
new event types in the future can be added without affecting the existing class hierarchy.

• All events have an ID, obtained by calling the getID method.

Loggers Use
An application designer can define any number of loggers to use in an application and an administrator can
define any number of global loggers to deploy to Unified CVP VXML Server. Logger instances are defined
with unique names and loggers can be built to support configurations. Multiple instances of the same logger
class can also be defined, with a different configuration for each. Unified CVP VXML Server will then create
a separate instance of the logger class for each instance referenced in the application’s settings and in the

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
74

Loggers
Loggers Use

server configuration. Application logger instances are created when the individual applications are initialized
and are maintained for the lifetime of the application. All events for the application, both application-level
events as well as call-level events, are handled by this single instance.

An instance variable in the logger class will allow it to maintain information that spans calls. Global logger
instances are created when VXML Server initializes and are maintained for the lifetime of the system and
hence the logger class can maintain information that lasts the lifetime of the system. It will handle any global
events that occur.

Note

A logger is expected to register the events it wishes to act on. This is done on logger initialization. When
VXML Server loads, it initializes all the global loggers and the loggers referenced for an application and
records which events each will act on. When a situation occurs that would constitute an event, VXML Server
checks to see if any loggers will act on the event and if so, will create the event object and pass it to the logger
instances. This registration mechanism allows VXML Server to save the overhead in creating an event if no
loggers will act on it. Additionally, should there be multiple loggers acting on an event, only one event object
is created and passed to all of them.

In order to ensure that no call be held up due to logging activities, the entire VXMLServer loggingmechanism
is fully single-threaded. The only logging-related activity that an HTTP request thread (provided by the
application server) performs is creating an event object and adding it to a queue. It does not actually handle
the logging of that event and once it has added the event to the queue, it continues with the call. A separate,
constantly running asynchronous process, called the Logger Manager, will process the events in the queue.
This allows the logging process to act independently from the process of handling a call and so will not directly
affect the performance of the system.

In order to ensure that no logger be held up due to the activities of another logger (or the same logger) while
handling an event, a second layer of threads are used. While the Logger Manager handles the queue, when it
is time for a logger to be given the event to handle, this is itself done in a separate thread. The Logger Manager
therefore is responsible only for managing the queue of events and spawning threads for loggers to handle
them. This ensures that a logger that takes a long time to handle an event does not hold up the logging for the
same or other applications, it only holds up the thread in which it is running. A thread pooling mechanism
exists to efficiently manage thread use. To avoid creating too many threads when under load, the maximum
number of allowable threads in the pool can be configured in the global configuration file named
global_config.xml found in the conf directory of VXML Server by editing the contents of the
<maximum_thread_pool_size> tag. For a thread to be reused after it is done with the current task, the
<keep_alive_time> tag from the same configuration file can be set. When all the allowable threads in the
pool are taken, VXML Server will not process the queue until a thread becomes available from the pool.

One of the consequences here is that the longer the events remain in the queue, the less real-time the logging
will occur. Additionally, if the maximum thread pool size is made too low to handle a given call volume, the
queue can become very large and could eventually cause issues with memory and spiking CPU. Typically,
though, a logger handles an event in a very short period of time, allowing a small number of threads to handle
the events created by many times that number of simultaneous callers.

Note

There are times when the true asynchronous nature of the logging design works against the developer. The
tasks done by a logger can take a variable amount of time to complete so there is no guarantee when a call
event will be handled. This is by design, and for a logger that simply records events that are then sorted by
timestamp later, this is not a problem. A logger that requires more context, though, could encounter issues.
For example, if a logger needed to note when a call was received so that an event that occurred later on in the

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
75

Loggers
Loggers Use

call could be handled correctly, problems could be encountered because there would be no guarantee that the
events would be handled in the same order they occurred within the call.

To remedy this situation while keeping the design unfettered, it is possible to specify that VXML Server pass
a logger instance events in the same order they occurred in a call. With this option on, the logger developer
can be assured that the events for a call would not be handled out of order. In fact, the Activity Logger included
with VXML Server has this requirement. The penalty for this requirement, however, is a loss of some of the
true asynchronous nature of the system as there will now be situations where events that are ready to be
handled must wait for a previous event to be handled by the logger. If a logger hung while handling one event,
the queue would forever contain the events that occurred after it in the call, and that call session would not
be fully logged. This feature, however, is available to application loggers only, global loggers handle their
events as soon as a thread is allocated from the pool to handle it. This is understandable because global log
events are more holistic in nature and do not track detailed behavior as application loggers do.

Some of the conclusions that can be deduced from the VXML Server logging design are summarized below:

• A logger developer need not worry about the time taken by the logger to handle an event as it will have
no bearing on the performance of the call. With that said, the developer must also be aware of the expected
call volume and ensure that the logger not take so long as to use up the event threads faster than they can
be handled.

• When possible, design an application logger so that it does not rely on events within a call being passed
to it in the order in which they occurred in the call. Doing so will maximize performance due to being
able to handle events whenever they occur. Should the logger be unable to do so, require that the enforce
call event order option be turned on for the logger.

Logger Design
Similar to configurable elements, a logger is constructed by creating a Java class that extends an abstract base
class, GlobalLoggerBase or ApplicationLoggerBase, which in turn extend from the LoggerBase class. The
base classes define abstract methods that must be implemented by the logger. Loggers have methods for
initialization and destruction as well as a method to run when an event must be handled. These methods may
throw an EventException to indicate an error in the logger.

An application logger has the additional requirement of implementing a Java marker interface named
LoggerPlugin to allow Unified CVP Builder for Call Studio to recognize it as a valid logger.

All Java classes related to loggers are found in the com.audium.server.logger package while the logger
event classes are found in the com.audium.server.logger.events package.

Global Logger Methods
The following bullets details the global logger methods:

• void initialize(File configFile, LoggerGlobalAPI api)

This method is called by VXMLServer when a new logger instance is created. This occurs in two different
situations: the application server starts up or the VXML Server web application is restarted.

The global logger designer has optionally included a reference to a configuration file for the logger which
is passed here as a File object. If no configuration file reference was specified in the conf directory, this
object will be null.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
76

Loggers
Logger Design

The method also receives a LoggerGlobalAPI object, which is used to access the GlobalAPI. The
GlobalAPI provides access to global data (see the User Guide for Cisco Unified CVP VXML Server
and Unified Call Studio for details).

Aside from initializing the logger, this method is also responsible for configuring which events the logger
instance is to handle. This is done by setting the value of the member variable eventsToListenFor. This
variable is a HashSet that must contain all the event IDs that the logger listens for. VXML Server accesses
this HashSet to determine if a new event should be sent to the logger. When an event occurs,
eventsToListenFor is accessed to see if the event ID can be found. If so, the logger will be notified of
the event. The IDs for the events are defined in the interface IEventIDs. GlobalLoggerBase implements
this interface so the event IDs are available directly within the logger class.

Global loggers can only register for global events (those whose event names begin
with GLOBAL).

Note

• void destroy(LoggerGlobalAPI api)

This method is called in two different situations: the application server is shut down, or the VXML Server
web application is restarted.

The method also receives a LoggerGlobalAPI object, which is used to access the GlobalAPI. The
GlobalAPI provides access to global data.

The purpose of this method is to give the logger the opportunity to perform clean up operations. Typically,
this would involve closing database connections or files that were opened by the logger in its initialize
method or while handling events. A logger that does not have that requirement must still implement the
destroy method but can define an empty implementation.

• void log(GlobalEvent event)

This method is the method to run for the logger and is called by VXML Server when a new event has
occurred that the logger must handle. This method is called only if VXML Server has found the event’s
ID in the eventsToListenFor HashSet.

Only one object is passed to this method, a GlobalEvent. This object encapsulates all the information
about the event and provides access to other environment information depending on the type of event.
GlobalEvent is a base class for all global level events and the logger will typically check for the event
type and cast to the appropriate event to get its information. All event classes are found in the
com.audium.server.logger.events package.

• void doPreLogActivity(GlobalEvent event)
void doPostLogActivity(GlobalEvent event)

These two methods can be optionally overridden to perform any activity desired before and after the log
method is called. By default these methods are defined in the GlobalLoggerBase class to do nothing.

Application Logger Methods
The following are the application logger methods:

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
77

Loggers
Application Logger Methods

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

void initialize(File configFile, LoggerApplicationAPI api)

This method is called by VXML Server when a new logger instance is created. This occurs in four
different situations: the application server starts up, VXML Server web application is restarted, the
application the logger instance belongs to is deployed after the application server had started up, and the
application is updated. These situations are the same as those for when the application start class is called
(see Application Start Classes, on page 63 for more on these situations).

The application designer has optionally included a reference to a configuration file for the logger which
is passed here as a File object. If no configuration file reference was specified in the application settings,
this object will be null.

The method also receives a LoggerApplicationAPI object, which is used to access the GlobalAPI. The
GlobalAPI provides access to application data and global data (see the User Guide for Cisco Unified
CVP VXML Server and Unified Call Studio for details).

Aside from initializing the logger, this method is also responsible for configuring which events the logger
instance is to handle. This is done by setting the value of the member variable eventsToListenFor. This
variable is a HashSet that must contain all the event IDs that the logger listens for. VXML Server accesses
this HashSet to determine if a new event should be sent to the logger. When an event occurs,
eventsToListenFor is accessed to see if the event ID can be found. If so, the logger will be notified of
the event. The IDs for the events are defined in the interface IEventIDs. ApplicationLoggerBase
implements this interface so the event IDs are available directly within the logger class.

void destroy(LoggerApplicationAPI api)

This method is called by VXML Server when an application is released. This occurs in four different
situations: the application server is shut down, VXML Server web application is restarted, the application
the logger instance belongs to is released, and the application is updated. These situations are the same
as those for when the application end class is called (see Application End Classes, on page 65 for more
on these situations).

The method also receives a LoggerApplicationAPI object, which is used to access the GlobalAPI. The
GlobalAPI provides access to application data and global data.

The purpose of this method is to give the logger the opportunity to perform clean up operations. Typically,
this would involve closing database connections or files that were opened by the logger in its initialize
method or while handling calls. A logger that does not have that requirement must still implement the
destroy method but can define an empty implementation.

void log(ApplicationEvent event)

This method is the method to run for the logger and is called by VXML Server when a new event has
occurred that the logger must handle. This method is called only if VXML Server has found the event’s
ID in the eventsToListenFor HashSet.

Only one object is passed to this method, an ApplicationEvent. This object encapsulates all the
information about the event and provides access to other environment information depending on the type
of event. ApplicationEvent is a base class for all application-level events and the logger will typically
check for the event type and cast to the appropriate event to get its information. All event classes are
found in the com.audium.server.logger.events package.

The following notes refer to the figure in Logger Events, on page 73:

• All application events have access to the Global API to get application and global data.

• Application events are defined at two levels: call-level, and application-level.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
78

Loggers
Application Logger Methods

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

Call-level events extend from ActivityEvent and are associated with a particular call. As such,
these events provide information about the call environment through the method getLoggerAPI().
The resulting LoggerAPI object is from the Session API (see Session API, on page 13 for more)
and provides read-only access to session information such as element and session data.

Application-level events are associated only with an application and not a call session. Currently,
the only application-level events are the application administration event (ApplicationAdminEvent)
that reports on administration activity performed on the application and the application administration
error event (ApplicationAdminErrorEvent) that reports any errors encountered while performing
administration activities.

• The events extending ActivityEvent are all the events that can occur in a call: a new call, a call
ending, an element being entered, an element exiting, an element storing data, a flag element being
triggered, an element interacting with the caller, a hotevent being activated, a hotlink being activated,
a custom event caused by calling the addToLog method of the Session API or entering data in an
element’s configuration pane in Builder for Call Studio, a warning event, an error event, and an
HTTP event signifying a new HTTP request made to VXML Server.

• Error events are defined in a hierarchy to define different types of errors. This allows a logger
developer to act on certain types of errors or to do different tasks based on the error type.

• Currently, when a voice element returns interaction data, VXML Server sends loggers a
DefaultInteractionEvent, which extends from ElementInteractionEvent. This design will allow
for different interaction content in the future without affecting the existing class hierarchy.

void doPreLogActivity(ApplicationEvent event) and void doPostLogActivity(ApplicationEvent

event)

These two methods can be optionally overridden to perform any activity desired before and after the log
method is called. By default these methods are defined in the ApplicationLoggerBase class to do nothing.

Utility Methods
These utility methods provide important information to the logger.

Common Utility Methods
These methods are defined in the LoggerBase class and are therefore applicable to both application and global
loggers.

• int getLoggerType()

This method returns the type of the logger, and is for future use. Currently, it returns APPLICATION_LOGGER
or GLOBAL_LOGGER.

• String getLoggerInstanceName()

This method returns the name of the logger instance as defined in either VXML Server’s configuration
or the settings of the application.

• HashSet getEventsListeningFor()

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
79

Loggers
Utility Methods

This method returns the HashSet containing the event IDs that the logger is handling. This method is
called by VXML Server to determine if to send a new event to the logger. This methods simply returns
the protected member variable eventsToListenFor defined in LoggerBase.

• String getLogFileDirectory()

This method returns the full path of the directory VXML Server has provided this logger to store its logs,
if necessary. On startup, VXML Server creates a folder for each global logger instance within the global
logs folder. It also creates a folder for each application logger instance within the logs folder of the
particular application. The folders are given the logger instance name. The folder is for exclusive use of
the logger instance should it require it. Should the logger create log files, it should use this directory
unless the logger’s is designed to log somewhere else. Should the logger not use files, such as if it logs
directly to a database, this method and the folder it references can be ignored.

Application Logger Utility Methods
The following utility methods apply only to application loggers.

• String getApplicationName()

This method returns the name of the application that the logger instance belongs to.

• String enforceCallEventOrder()

This method returns true if the logger instance has been configured to enforce the call event order, false
otherwise. This is useful if the logger wishes to throw an error if the logger instance was not configured
a certain way.

Remote Execution of Custom Logger
Changes required at the VXMLServer side to enable remote execution of custom logger:

• To enable remote execution of Custom Logger, right-click CallStudio application and go to
Properties > General Settings

• Under the Loggers section, select any Custom Logger you want to run remotely and click Edit button.

• Enable the Remote Execution checkbox.

• Check the Include Configuration checkbox and the Edit button is enabled. Once the Edit button is
clicked, a new window will be opened for configuring the Logger Instance Configuring File.

• Provide the File name with a .properties extension, and add the following set of properties in File
Content as shown in the following sample:
logger.enable.threadlocals = true

logger.exceptionHandler =
logger.ringBufferSize = 262144
logger.waitStrategy = Timeout
logger.timeout = 10
logger.sleepTimeNs = 100
logger.retries = 200
logger.synchronizeEnqueueWhenQueueFull = true
logger.threadNameStrategy = CACHED
logger.AsyncQueueFullPolicy = Discard
logger.DiscardThreshold = All

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
80

Loggers
Application Logger Utility Methods

logger.ignoreTCL = false
loggerGrpcUrl = <Remote machine IP>:8090

If Remote Url Settings property tab is configured, then that IP and Port values
will be used for loggerGrpcUrl. Comment the loggerGrpcUrl tag in the above
properties file in this case.

Note

• Validate and deploy the application:

• New Custom logger folder should be created in the location
%CVP_HOME%\VXMLServer\applications\{applicationName}\logs

Changes required at the Remote Server side to enable remote execution of custom logger:

• Create a sample folder for copying applications in the remote server machine.

• Provide the path in the application.properties of the remote server under the loggerPath property.
Example:- loggerPath= C:\\All\\CustomLogger

• Copy the VXMLServer/applications/{applicationName}/data folder to the loggerPath
in the remote server machine.

• Copy the VXMLServer/dtds folder also to the the loggerPath in the remote server machine. Final
logger folder shall contain both applications and dtds folder at the same hierarchy.

• Restart the remote server. In the cvp.log of the remote server, custom logger instance should be loaded.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
81

Loggers
Remote Execution of Custom Logger

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
82

Loggers
Remote Execution of Custom Logger

C H A P T E R 14
On Error Notification

• On Error Notification, on page 83

On Error Notification
The error notification process can only be implemented using Java because when an error occurs, one desires
the most reliable method for reporting that error. There is no guarantee an HTTP request to a URI could even
be generated, a response received and the XML parsed without incurring another error.

The on error notification class is built in Java by implementing the class GlobalErrorInterface found in the
com.audium.server.proxy package. It contains a single method named doError that acts as the method to
run for the class. The method receives nine arguments containing information on the status of the application
and VXML Server at the time the error occurred. No API classes are passed to this method because accessing
themmay cause additional errors due to their complexity. Any of the arguments may be null if the data cannot
be determined or the error is such that it is not related to a specific application.

The arguments are: the VXML Server session ID (as a String), the name of the application (as a String),
the ANI (as a String), the DNIS (as a String), the IIDIGITS (as a String), the UUI (as a String), an
ArrayList of String types listing the elements visited in the call up to the time the error occurred, an ArrayList
of the String types listing the exit states for each of the elements, and a HashMap containing the session data
created up to the time the error occurred (the key of the HashMap is the name of the session data, and the value
is the session data value).

The on error notification class must be deployed in the common directory of VXML Server since classes placed
there are shared across applications.

To configure VXML Server to use this class if an error occurs, a file named global_config.xml found in the
conf directory of VXML Server must be used. This XML file contains a tag named <error_class> that should
encapsulate the full Java name of this class (package name included). The changes will take effect only the
next time the Java application server on which VXML Server is installed is restarted.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
83

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
84

On Error Notification
On Error Notification

C H A P T E R 15
Application Management API

VXMLServer comeswith an applicationmanagement facility to provide visibility into the runtime environment
and provides control over the platform together with its components and services. This comprehensive feature
set allows an administrator to operate, administrate and manage (OA&M) the health of the platform as well
as obtain statistics and performance measurements.

This chapter describes in detail how to the management server system has been designed and how to create
custom management support based on the API provided with the VXML Server platform.

• Design, on page 85
• Management Bean Samples, on page 88
• Application Management Interfaces, on page 88

Design
All the OA&M features on VXML Server are built with JMX management standards. Applications and
components on VXML Server are instrumented using Managed Beans (MBeans). MBeans expose their
management interfaces, composed of attributes, operations and event notifications, through a JMX agent for
remote management and monitoring.

Managed resources are categorized at levels of application, global configuration and command, and platform.
Each level may facilitate three typical JMXmanagements: lookup and modify configuration, collect and avail
application statistics, notify of state changes and erroneous conditions.

At the application level, administrators can operate the following:

• Get/set default audio path

• Get/set suspended audio

• Get/set session timeout

• Get gateway adapter

• Application release

• Application resume

• Runtime status

• Application update

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
85

• Suspend/resume application

• Retrieve application administration history

• Get application data

• Set and remove application data

• Remove all application data

• Get application data names

The global level manages VXML Server as a web application. It allows:

• Read logger event queue size

• Read/write maximum logger thread pool size

• Read/write minimum logger thread pool size

• Read/write logger thread keep alive time

• Read/write session invalidation delay

• Get global status

• Deploy all new applications. This command assumes all the deployable applications have been updated
to the AudiumHome. All this command does is to deploy these applications.

• List all new applications. This command lists the names of all new applications (that is, those which have
yet to be deployed).

• Deploy new application. This command deploys the specified application. To retrieve a list of new
application names, use List all new applications (above) first.

• Flush all old applications

• Update all applications

• Update common classes

• Suspend/resume VXML Server

• Retrieve global administration history

• Get/set global data

• Get all global data names

• Remove all global data

At the same level, the management system also provides information regarding metrics collection:

• The total number of calls since VXML Server starts up.

• Maximum and average number of concurrent calls, the timestamp when it reaches the maximum calls.

• Maximum and average response time.

• Number of calls that time out.

• Number of calls that encounter errors.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
86

Application Management API
Design

• Transfer/zero-out rate. The number of calls transferring to an operator or live agent.

• Abandon rate. The number of calls that end as hang up.

• Call completion rate. The number of calls that are completed as expected through the callflow.

• Maximum logger event queue size.

• Maximum loggers thread count.

The platform level consists of information for VXML Server as a product:

• Product Name

• Product Version

• Installation Key

• Licensed Ports

• License Expiration Date

• Licensed GW Adapters

VXML Server MBeans implement a Java API set that is defined for management interfaces. Developers can
create custom management beans that use the API. The following figure depicts the relationship among the
management API packages: com.audium.server.management and the built-in beans (which use the package
com.audium.server.management.mbean) and custom beans.

Figure 12: Management Relationship Example: MBeans

When VXML Server starts, all the beans that are deployed to management directory would be loaded and
registered to the JMX server. Depending on the base class it extends, a bean is grouped in VoiceApplication,
Global or Info under the domainCisco VXML Server Application Management API. For an application-scoped
bean that extends AbstractApplicationCommand, AbstractApplicationConfig or AbstractApplicationData,
a bean instance will be created for each application. For instance, if bean A extends
AbstractApplicationCommand and there are currently two applications deployed: appA and appB, then two
instances of bean A class will be created, one for appA, the other for appB.

For a logger that has been deployed with an application, a management bean will be dynamically generated
and registered for it. Currently there is no extra requirement for a logger to become manageable. However,
the following operations are excluded from logger beans due to their irrelevance with respect to manageability:
log(), init(), equals(), destroy(), initialize(), hasCode(), getClass(), wait(), notify(), notifyAll(),
and toString().

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
87

Application Management API
Design

Custom beans that directly implement AudiumManagementBeanInterface but do not extend any of the following
abstract classes will be loaded but not registered when VXMLServer starts up: AbstractApplicationCommand,
AbstractApplicationConfig, AbstractApplicationData, AbstractGlobalCommand, AbstractGlobalConfig,
AbstractGlobalData, and AbstractCallServicesInfo.

This type of bean should register itself to the management server and will not have access to the information
provided by VXML Server. VXML Server only loads these beans.

The standard VXML Server logging mechanism does not pick up errors or exceptions that happen in a custom
bean and the developer is responsible for handling the errors themselves or let them propagate to the JMX
console.

Note

Management Bean Samples
This section describes how typical bean can be created based on the VXML Server management system API.

1. Create the bean interface where it defines the attributes and operations it will manage. For example:
public interface ApplicationConfigMBean {

public String getDefaultAudioPath();
public void setDefaultAudioPath(String path);
public String getSuspendedAudioFile();
public void setSuspendedAudioFile(String file);

}

2. Create the bean class that implements the interface and extend the predefined abstract class.
public class ApplicationConfig extends AbstractApplicationConfig implements
ApplicationConfigMBean{

public String getDefaultAudioPath() {
return super.getDefaultAudioPath();

}
public void setDefaultAudioPath(String path) {

super.setDefaultAudioPath(path);
}

public String getSuspendedAudioFile() {
return super.getSuspendedAudioFile();

}
public void setSuspendedAudioFile(String file) {

super.setSuspendedAudioFile(file);
}
}

3. By extending the predefined abstract class, a custom bean gets access to the information provided by
VXML Server. For example, a bean class that extends AbstractGlobalData can call getAllDataNames(),
removeAllData(), getData(), and so on. These methods are made accessible when the bean gets loaded.

Application Management Interfaces
When writing custom management beans, the public APIs are used to gain access to the runtime information
that will be provided by VXML Server. We now discuss each of these interfaces and abstract classes in details.
The following figure displays the static class structure which corresponds to the three levels of the

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
88

Application Management API
Management Bean Samples

aforementioned information structure. The built-in management beans are also included in the diagram to
show the relationship between the APIs and the beans.

Figure 13: Application Management Static Class Structure

The following list describes the elements in the figure:

• AudiumManagementBeanInterface – This is a marker interface for any JMX MBeans to load at the
server startup. All the management beans must implement this interface or its subinterfaces.

• AbstractApplicationCommand – This abstract class encapsulates all the application commands. The
JMX beans that extend this class will have access to all these operations.

• AbstractApplicationConfig – This class can be used to set and get application configuration attributes.

• AbstractApplicationData – MBeans that extend this class will have access to application data and can
manipulate this data by adding or removing them. Application data is typically used to store
application-specific information that is available to all calls.

• AbstractGlobalCommand – This abstract class encapsulates all the global commands. The JMX beans
that extend this class will have access to all these operations.

• AbstractGlobalConfig – This class can be used to set and get global configuration attributes.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
89

Application Management API
Application Management Interfaces

• AbstractGlobalData – Subclasses of this class will have access to global data and can manipulate these
data by adding or removing them. Global data is typically used to store static information that needs to
be available to all components, no matter which application they reside in.

• AbstractMetricsCollection – This class can be used to access all the metrics information at the global
level.

• AbstractMetricsObserver – This is a marker class. When VXML Server starts up, subclasses of this
class will be added as listeners to application activity events, logging management events and global
events. Although a subclass will be notified when any of these events occurs, it only needs to react to
the interested events. Events are supposed to be handled by overwriting the update() method.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
90

Application Management API
Application Management Interfaces

A P P E N D I X A
Voice Foundation Classes

The Unified CVPVoice Foundation Classes are a Java API for generating VoiceXML. Any custom component
wishing to produce VoiceXMLmust use the VFCs because their main purpose is to act as an abstraction layer
between VoiceXML and the component. The VFCs handle the vagaries of VoiceXML and especially the
differences in the VoiceXML interpreted by various voice browsers. This allows the developer to simply
focus on the functionality desired without worrying about the details of writing VoiceXML or the quirks of
their chosen voice browser. The VFCs are primarily used to construct voice elements, though hotevents and
on call end classes use the VFCs as well.

• VFC Design, on page 91
• VFC Classes, on page 93

VFC Design
The high level design of the VFCs is to simulate standard VoiceXML in Java. The behavior of these classes
directly matches the VoiceXML specifications (both versions 1 and 2). This, however, acts only as a basis
from which supporting a particular voice browser begins, since no two browsers have exactly the same
compliance. The software provides voice browser compatibility by extending these base VFCs to create a
layer that produces the VoiceXML compatible with a particular voice browser. Most of the functionality is
still defined in the base VFC classes and only the browser-specific functionality needs to be included in the
subclasses. The classes for a particular voice browser are encapsulated in a separate plugin or driver, called
a Gateway Adapter. Installing a newGateway Adapter will add support for a new voice browser and a Unified
CVP application can be deployed on a new browser by simply selecting the Gateway Adapter to use.

The design of the base VFCs follows roughly the design of VoiceXML, utilizing similar concepts and naming,
so prior knowledge of VoiceXML is beneficial for understanding the VFC design. The VFCs allow full
compatibility with VoiceXML in that anything you can do in VoiceXML you can do in the VFCs, including
using proprietary tags and/or attributes introduced by supported browsers.

Many times, a single VoiceXML tag maps to a single VFC that is similarly named. The class VForm, for
example, deals with VoiceXML <form> tags and the class VField with <field> tags. Some tags, however,
have been combined into a single VFC for ease of use. For example, the VAction class encapsulates tags from
<var> and <assign> to <break> and <submit>. As a result, there are fewer VFCs than VoiceXML tags. The
VFCs also help the developer by producing some VoiceXML automatically. The developer will quickly find
that using the VFCs is very much like coding in VoiceXML, except in Java.

There are a few concepts that need to be described before delving into the individual VFCs. First, each VFC
class extends a common base class, VRoot. The purpose for this is similar to having all Java classes extend

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
91

Object, it is a way to help define common functionality of the VFCs as well as being able to identify if a Java
class is a VFC.

The second concept involves the hierarchy of the VFCs. There are, in fact, several layers of abstraction in the
VFCs that separate not only differences between various voice browsers but also versions of the VoiceXML
standard. There are separate VFCs for VoiceXML version 1.0 and version 2.0, and the similarities are
encapsulated in a common base class. The following figure, shows this graphically with the VForm class. The
main VForm class extends the VRoot class and is itself extended by VFormV1 and VFormV2, representing
VoiceXML 1.0 and 2.0 compliances. Luckily, there are only a few differences between these versions, so the
developer can still do most coding to the base VForm class. The Gateway Adapters introduce VFCs that extend
VFormV1 or VFormV2 depending on whether the voice browser it supports is compatible with VoiceXML 1.0
or 2.0.

Figure 14: VForm and Its Extensions

The last concept is that VFC objects are not instantiated using the new keyword. A static factory method named
getNew is used instead. The reason for this is related to the abstraction of the voice browser differences. As
mentioned previously, a developer need only code using the base VFC classes. At runtime, the factory methods
used to instantiate VFC classes actually returns the appropriate voice browser-specific VFC (for example,
VFormFoo in the illustration). But since the developer treats the return object as the base VFC, that object is
downcasted. This is the heart of the VFC abstraction design. Since all VFC derivative classes extend their
base VFCs, a developer need only code to the base VFCs and that automatically makes their code compatible
with any voice browser represented by a Gateway Adapter.

In order to identify which voice browser VFC to return, every factory methodmust include as its first argument
an instance of VPreference. VPreference, while a VFC class, does not match to a VoiceXML tag, it is used
instead to hold preferences made by the user in Builder for Call Studio for the application, such as the voice
browser and default audio path. By passing this object to all factory methods, the appropriate object can be

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
92

Voice Foundation Classes
Voice Foundation Classes

returned. The VPreference instance is automatically created for the developer and made available through
the Session API passed to voice elements, hotevents, or call end classes.

The following Java code demonstrates the concepts described above:
VPreference pref = ved.getPreference();
VForm form = VForm.getNew(pref, "start");

Here, the VPreference object is obtained from the VoiceElementData object passed as input to a voice element.
It is used to create a VForm object. Assuming the application is using the voice browser Foo, that choice is
reflected in the VPreference object and therefore the getNew factory method returns a VFormFoo object, which
is automatically downcasted to a VForm object. The developer then uses the form object as desired.

This ability to treat all objects returned as a root VFC object is not available when the developer wishes to
use functionality that exists either in a particular version of VoiceXML or a particular voice browser. The
developer must understand that doing so would prevent their code from functioning on all voice browsers. In
this case, the developer simply treats the return of the factory method as a class higher in the class hierarchy
(VFormV2 or VFormFoo in the illustration).

The following Java code demonstrates this:
VGrammar myGrammar = VGrammar.getNew(pref);
((VGrammarV2) myGrammar).setMaxage(1000);

The setMaxagemethod exists only in the VGrammarV2 class since this is a feature that exists only in VoiceXML
2.0. To call this method, one must first upcast the previously downcasted object back to VGrammarV2. If this
is not done, an exception will be thrown indicating that VGrammar does not have a method named setMaxage.

If the user in the Builder chose a voice browser that was compatible with VoiceXML 1.0 only, a runtime
exception would be thrown when this code is encountered because that browser would be unable to understand
VoiceXML referring to maxage.

Note

VFC Classes
The following lists all the VFC classes (with full package names) and briefly explains what they are responsible
for. The Javadocs for the VFCs provide significantly more detail about the classes, their methods, and how
they are used.

• com.audium.core.vfc.util.VMain – This object is the container for a complete VoiceXML document.
It includes methods for managing information about the page such as the meta tags, the doc type, and
the value to put in the <vxml> tag’s xml:lang attribute. It includes methods for adding document-scope
data such as links, variables, and VoiceXML properties. VForm objects are added to this object to create
the VoiceXML page. VXML Server uses the VMain object to handle the printing of the VoiceXML page.
Voice elements receive an instantiated VMain object as input and the developer need only worry about
filling the object with the appropriate content.

• com.audium.core.vfc.form.VForm – This class is a container for all the content in a VoiceXML page
not handled by the VMain class. It is a direct mapping of the <form> tag, though it also produces other
form-level tags such as <var> or <filled>.

• com.audium.core.vfc.list.VList – This class is used to encapsulate a list of items that can be deployed
as either a traverse list or a streaming list. A traverse list presents a menu after an item is presented that
allows the caller to move forwards and backwards through the list. A streaming list is one where all the

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
93

Voice Foundation Classes
VFC Classes

items are played one after the other. This VFC class does not reflect any VoiceXML tags, it was produced
by Unified CVP to facilitate the creation of lists within VoiceXML. The class outputs a set of forms that
implement the list.

• Form Items – The VForm classes encapsulate most of the content of a VoiceXML page, and each form
has any number of form items added to it. These form items span the range of capturing input from the
caller to performing a telephony transfer. Each form item has a different purpose, though many form
items share features in common. The VFCs relate the classes that handle each form item by creating a
hierarchy starting with the simplest form items, with features common to all, to more complex form items
that add features through each successive class extension. The following figure shows this class hierarchy
and a description of each branch is listed after the figure.

Figure 15: VForm Class Hierarchy

VForm Hierarchy branches and descriptions:

• com.audium.core.vfc.form.VFormItemRoot – This class is the base class for all form items. It
defines the ability to include audio, which every form item shares.

com.audium.core.vfc.form.VInitial – This class is used when performing mixed initiative data
capture. Mixed initiative data capture is a way of capturing multiple inputs in one utterance, such
as a person’s first and last names together rather than having to prompt for each individually. It is
a direct mapping of the <initial> tag.

• com.audium.core.vfc.form.VFormItem – This class defines a standard form item. It defines the
ability to perform actions within the form item (some form items do this within a <filled> tag).

com.audium.core.vfc.form.VBlock – This class deals with producing a block in which any action
and/or audio can be placed. It is a direct mapping of the <block> tag.

• com.audium.core.vfc.form.VFormProcessItem – This class defines form items that process data
from the caller or an external source. Process form items define the ability to catch and handle
VoiceXML events and refer to VoiceXML properties.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
94

Voice Foundation Classes
Voice Foundation Classes

com.audium.core.vfc.form.VSubdialog – This class is used to make a call to a VoiceXML
subdialog. A subdialog acts very much like a function call in VoiceXML, performing some
encapsulated task and then returning to the calling context. It is a direct mapping of the <subdialog>
tag.

com.audium.core.vfc.form.VObject – This class is used to produce VoiceXML that calls an
external data object. It is a direct mapping of the <object> tag.

• com.audium.core.vfc.form.VFormInputItem – This class defines form items that take input from
the caller. Input form items define a grammar to capture the data.

com.audium.core.vfc.call.VTransfer – This class deals with performing a telephony transfer. It
is a direct mapping of the <transfer> tag.

The reason this is considered an input form item is because theoretically according
to the VoiceXML specification, a grammar can be active within a call transfer.
This, though, is rarely used or supported.

Note

com.audium.core.vfc.audio.VRecord – This class deals with performing a recording of the caller’s
voice. It is a direct mapping of the <record> tag.

• com.audium.core.vfc.form.VField – This class defines field form items, which deal with capturing
utterances from the caller and converting them into information. Fields define the ability to specify
utterance links.

com.audium.core.vfc.form.VBuiltInField – This class deals with producing fields that capture
data specified by grammars built into the voice browser. Any voice browser supporting VoiceXML
is required to support data capture of numbers, dates, times, currency values, phone numbers,
digit-by-digit values, and boolean values (yes / no). The class produces <field> tags as well as
other field-related tags such as <prompt> and <filled>.

• com.audium.core.vfc.form.VMenuField – This class is used when a menu is desired in the
VoiceXML document. The class produces <field> tags with <option> tags defining each menu
option. The <menu> and <choice> tags in VoiceXML are just shortcuts for this and cannot be
produced with the VFCs.

• com.audium.core.vfc.form.VListField – This class is a special kind of menu that is used by the
VList class when it is configured to act as a traverse list. The menu is pre-built to support options
to go forwards and backwards.

• com.audium.core.vfc.util.VAction – This VFC class encapsulates multiple VoiceXML tags that represent
taking certain actions. All the VoiceXML tags produced by this class have the same parent tags and so
can be used in the same locations. Combining these tags into one class reduces the complexity of the
VFCs since special handlers are not needed for each tag. The following lists the actions that the VAction
tag encapsulates and the corresponding VoiceXML tag: variable declarations (<var>), variable assignment
(<assign>), gotos (<goto>), HTTP submits (<submit>), clearing forms and fields (<clear>), scripts
(<script>), logging (<log>), throwing events (<throw>), reprompting (<reprompt>), returning from
subdialogs (<return>), disconnects (<disconnect>) and exits (<exit>).

• com.audium.core.vfc.audio.VAudio – This class deals with audio, both TTS and through audio files.
A single VAudio object can contain any number of audio items (so an entire voice element audio group
can be encapsulated in one VAudio object). The class also deals with playing back a recording, managing
bargein, adding pauses to the playback.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
95

Voice Foundation Classes
Voice Foundation Classes

SSML (Speech Synthesis Markup Language) that is entered by the application
designer in Builder for Call Studio is handled correctly by this class.

Note

• com.audium.core.vfc.util.VEvent – This class handles VoiceXML events and what to do when they
occur. Events may be user-triggered such as nomatch or noinput events, or custom events thrown by the
developer or voice browser. Hotevents are basically VEvent classes that VXML Server adds to the
VoiceXML root document. It is a direct mapping of the <catch> tag.

The <noinput>, <nomatch>, and <help> tags are all shortcuts for variations of
the <catch> tag so are not produced by the VFCs.

Note

• com.audium.core.vfc.util.VGrammar – This class deals with specifying either an inline or external
DTMF or speech grammar. It is a direct mapping of the <grammar> tag.

• com.audium.core.vfc.util.VIfGroup – This class deals with producing an if statement within VoiceXML.
It is a direct mapping of the <if>, <elseif>, and <else> tags.

• com.audium.core.vfc.util.VLink – This class deals with creating an utterance-activated link within the
VoiceXML page. It is a direct mapping of the <link> tag.

• com.audium.core.vfc.util.VProperty – This class deals with including VoiceXML properties in the
VoiceXML page. It is a direct mapping of the <property> tag.

• com.audium.core.vfc.VException – This exception class is thrown when a VFC class encounters an
error.

• Utility Classes – These classes are used by the VFCs to aid in the organization of data they require. The
following lists those classes:

• com.audium.core.vfc.util.VoiceInput – This class is used to encapsulate how input is to be expected
from the caller. It can encapsulate voice only input, DTMF only input, or both. It is also used to
specify what data to look for, which can be a single or multiple keywords or keypresses. This class
is typically used with menus and forms.

• com.audium.core.vfc.util.IfCondition – This class is used to specify an expression to put inside
an if statement. It handles standard numerical and string operations and can support expressions
contains ands (&&) and ors (||).

• com.audium.core.vfc.form.UsedInFilled – This class is a Java interface that is used to identify
all the VFCs that can be used inside a <filled> tag. It is used simply as a marker for those VFCs.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
96

Voice Foundation Classes
Voice Foundation Classes

A P P E N D I X B
Java 8 Migration

The code base has been compiled with Java 8. To ensure backward compatibility, all APIs remain unchanged.
Any custom Java class, such as custom elements, that have been compiled with the earlier JDK versions will
continue to work on the new platform, except for the known incompatibilities listed in the Java 8 compatibility
document by Oracle.

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
97

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
98

Java 8 Migration
Java 8 Migration

I N D E X

A

Action Elements 39, 51
also see Standard Action Elements 39
extend ActionElementBase 51
two kinds, pre-built and standard 39

ActionConfigInterface 29
ActionElementConfig 51
API 1, 3, 8

also see Java API and XML API 8
components listed in table 3
components that extend it 1
requirements for constructing components 1

Application End Classes 65
only accesses Global API 65
run in four situations 65

Application Management API 85, 88
built with JMX mgmt standards 85
control over the platfom 85
interfaces, diagram, and listing 88
sample beans 88
three levels 85
types of beans 85

Application Start Classes 63
access Global API only 63
run in four situations 63

audio_group 31
list of attributes 31

C

Call End Action 25–26
can send a final page 25
situations that cause it 25
tag definitions 26
using Java 26
using XML 26

Call Start Action 21–22
change setting that affect the call 21
using Java 22
using XML 22

Call Studio 3, 5
deployment with Java API components 5
Integration of CVP API components 3
locations of directories 5

Call Studio Integration 3
requires Java 3

CallStartResponse.dtd 22
tag definitions 22

Code Example 36, 56
substitution tag 36
VoiceElementBase methods 56

Code Examples 88, 91
management beans 88
Voice Foundation Classes 91

Common Methods 49
listed, for configurable elements 49

Configurable Elements 47–49, 51–53, 55–56, 60
action elements 51
config classes 51
custom voice elements 47
decision elements 52
extend voice, action, and decision bases 48
interaction logging 60
methods common to all configurable elements 49
only with Java 47
restrictions and considerations 55
voice elements 53
VoiceElementBase methods 56

Configuration Classes 51
for configurable elements 51

create and modify data with standard decision elements 43

D

Decision Action Elements 36
substitution, use dynamic content without dynamic config 36

Decision Elements 52
for configurable elements 52

DecisionConfigInterface 29
doAction 51

receives ActionElementData 51
doAction method 39

arguments explained 39
doDecision 43
DTD Diagrams 9, 15–16, 22, 26, 31, 33, 36, 39, 43

Call End Action 26
CallStartResponse.dtd 22
document sent in settings argument 16
document sent in the input argument 15

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
IN-1

DTD Diagrams (continued)
dynamic element configs 31
overview 9
sample code 9
standard action elements 39
standard decision elements 43
substitution 36
voice element config 33

Dynamic Element Configs 29, 31
DTD 31
four HTTP POST arguments 31
overview 29
using Java 29
using XML 31

dynamic versus static configurations 29

E

EndApplicationInterface 65
event object hierarchy 73

G

getActionElementConfig 51
Global API 13

access to data beyond sessions 13

H

hotlinks using LocalHotlink 29

I

Interaction Logging 60
log interaction with caller and voice browser 60

J

Java API 3–5, 13, 22, 26, 29, 43, 48, 76
Call End Action 26
Call Start Action 22
classes and components used 4
classes for Session API 13
compiling custom Java components 5
deployment process 5
deployment with Call Studio 5
deployment with VXML Server 5
design consideration 4
dynamic element configs 29
folder structure for Call Studio and VXML Server 5
how VXML Server interacts with Java 4
implementing Session API components 13
most efficient way to interact with CVP 3
see API Javadocs for details 4
standard decision elements 43

Java API (continued)
used for loggers 76
used to create configurable elements 48

Java Language 1
required for some components 1

L

Loggers 73–74, 76–77, 79–80
application methods () described 77
design summary 74
event object hierarchy 73
global methods () named and detailed 76
how they work 74
methods () common to application loggers 80
purposes 73
use Java API 76
utility methods () described 79
utility methods common to application and global loggers 79

O

On Error Notification 83
only through Java 83

P

Programming Languages Allowed 3
any that can create and parse HTML 3

R

Requirements for programming 1
read user guide for VXML server 1

S

Say It Smart Plugins 67–68, 70
can create custom plugins 67
configuration methods () 70
configuration, four options 67
methods to run() 68
utility methods () 70

servlet.jar 5
Session API 13–14

as implemented by Java API 13
purpose, get information about call session 13
subset is Global API 13
with XML API 14

set_maintainer 39
Standard Action Elements 39

can act as a flag 39
can create and modify data 39
doAction method 39
exit state is "done" 39

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
IN-2

INDEX

Standard Action Elements (continued)
how to build in Java 39
using XML 39

Standard Decision Elements 43
create and modify data 43

StartApplicationInterface 63
substitution 36

code example 36
dynamic content without dynamic config 36

T

Tags 22, 26, 31, 33, 36, 39, 43
audio_group 31
general_date_time, for start of call 36
historical_data 36
invalidate_session 39, 43
set_default_path for audio 22
set_maintainer 31, 43
set_maintainer, for e-mail address 26
set_voice_browser 22
status, standard action elements 39
vxml_response, for final response 26

V

Voice Element Config 33
DTD 33
tags defined 33

Voice Elements 53, 60
diagram, how they interact with VXML Server and voice

browser 53
for configurable elements 53
interaction logging 60

Voice Elements (continued)
typical exchange with VXML Server and voice browser 53

Voice Foundation Classes 91, 93
classes listed with diagram 93
concepts with VRoot diagram 91
design to support browser differences 91
purpose of 91

VoiceElementBase Methods 56
for configurable elements 56

VPreference 55
VXML 1

knowledge of language required 1
VXML Server 21

run code when call first received 21

X

xalan.jar 5
XML API 3, 8–9, 11, 14–16, 22, 26, 31, 39, 43, 48

Call End Action 26
Call Start Action 22
components inputs and settings arguments 14
CVP API components that can use 3
deployment 11
DTD diagram of inputs argument 15
DTD diagrams overview 9
DTD of document sent in settings argument 16
dynamic element configs 31
implementing Session API 14
not used for configurable elements 48
overview 8
standard action elements 39
standard decision elements 43

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
IN-3

INDEX

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
IN-4

INDEX

	Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio, Release 12.6(2)
	Contents
	Preface
	Change History
	About this Guide
	Audience
	Related Documents
	Communications, Services, and Additional Information
	Documentation Feedback

	Introduction
	Requirements

	Unified CVP API Introduction
	Java API
	Design Considerations
	Compiling Custom Java Components
	Deployment
	Remote Execution

	XML API
	DTD Diagrams
	Deployment

	Session API
	Java API
	XML API
	XML Document Sent Inputs
	XML Document Sent Settings

	Call Start Action
	Java API Use
	XML API Use
	Remote Execution

	Call End Action
	Java API Use
	XML API Use
	Remote Execution

	Dynamic Element Configurations
	Java API Use
	Remote Execution of Dynamic Element Configuration

	XML API Use
	Decision and Action Element Configuration DTD
	Voice Element Configuration DTD
	Substitution XML Format

	Standard Action Elements
	Java API Use
	XML API Use
	Remote Execution

	Standard Decision Elements
	Java API Use
	XML API Use
	Remote Execution

	Configurable Elements
	Design
	Common Methods
	Configuration Classes
	Action Elements
	Remote Execution

	Decision Elements
	Remote Execution

	Voice Elements
	Restrictions and Design Considerations
	VoiceElementBase Methods
	Interaction Logging

	Remote Execution

	Application Start Classes
	Application Start Classes
	Remote Execution

	Application End Classes
	Application End Classes
	Remote Execution

	Say It Smart Plugins
	Design
	Methods to Run
	Configuration Methods
	Utility Methods

	Loggers
	VXML Server Logging Design
	Logger Events
	Loggers Use

	Logger Design
	Global Logger Methods
	Application Logger Methods
	Utility Methods
	Common Utility Methods
	Application Logger Utility Methods

	Remote Execution of Custom Logger

	On Error Notification
	On Error Notification

	Application Management API
	Design
	Management Bean Samples
	Application Management Interfaces

	Voice Foundation Classes
	VFC Design
	VFC Classes

	Java 8 Migration
	INDEX
	A
	C
	D
	E
	G
	H
	I
	J
	L
	O
	P
	R
	S
	T
	V
	X

