
Basic TAPI Implementation

This chapter outlines the TAPI 2.1 functions, events, and messages that the Cisco Unified TAPI Service
Provider (TSP) supports. This chapter contains functions in the following sections:

• Overview, on page 1
• TAPI Line Functions, on page 1
• TAPI Line Messages, on page 57
• TAPI Line Device Structures, on page 74
• TAPI Phone Functions, on page 132
• TAPI Phone Messages, on page 148
• TAPI Phone Structures, on page 156
• Wave Functions, on page 163

Overview
TAPI comprises a set of classes that expose the functionality of the Cisco Unified Communications Solutions.
TAPI enables developers to create customized IP telephony applications for Unified CommunicationsManager
without specific knowledge of the communication protocols between the Unified Communications Manager
and the service provider. For example, a developer could create a TAPI application that communicates with
an external voice-messaging system.

TAPI Line Functions
The number of TAPI devices that are configured in the Unified Communications Manager determines the
number of available lines. CiscoMedia Driver is used to terminate a media stream in the first-party call control
models.

Table 1: TAPI Line Functions Supported

TAPI line functions supported

lineAccept, on page 4

lineAddProvider, on page 4

lineAddToConference, on page 5

Basic TAPI Implementation
1

TAPI line functions supported

lineAnswer, on page 6

lineBlindTransfer, on page 6

lineCallbackFunc, on page 7

lineClose, on page 8

lineCompleteTransfer, on page 8

lineConfigProvider, on page 9

lineDeallocateCall, on page 10

lineDevSpecific, on page 10

lineDevSpecificFeature, on page 12

lineDial, on page 13

lineDrop, on page 14

lineForward, on page 15

lineGenerateDigits, on page 17

lineGenerateTone, on page 18

lineGetAddressCaps, on page 19

lineGetAddressID, on page 20

lineGetAddressStatus, on page 21

lineGetCallInfo, on page 21

lineGetCallStatus, on page 22

lineGetConfRelatedCalls, on page 22

lineGetDevCaps, on page 23

lineGetID, on page 24

lineGetLineDevStatus, on page 25

lineGetMessage, on page 25

lineGetNewCalls, on page 26

lineGetNumRings, on page 27

lineGetProviderList, on page 28

lineGetRequest, on page 29

Basic TAPI Implementation
2

Basic TAPI Implementation
TAPI Line Functions

TAPI line functions supported

lineGetStatusMessages, on page 30

lineGetTranslateCaps, on page 30

lineHandoff, on page 31

lineHold, on page 32

lineInitialize, on page 33

lineInitializeEx, on page 34

lineMakeCall, on page 35

lineMonitorDigits, on page 36

lineMonitorTones, on page 36

lineNegotiateAPIVersion, on page 37

lineNegotiateExtVersion, on page 38

lineOpen, on page 39

linePark, on page 40

linePrepareAddToConference, on page 41

lineRedirect, on page 43

lineRegisterRequestRecipient, on page 43

lineRemoveFromConference, on page 44

lineSetAppPriority, on page 46

lineSetCallPrivilege, on page 47

lineSetNumRings, on page 48

lineSetStatusMessages, on page 49

lineSetTollList, on page 50

lineSetupConference, on page 51

lineSetupTransfer, on page 52

lineShutdown, on page 52

lineTranslateAddress, on page 53

lineTranslateDialog, on page 54

lineUnhold, on page 56

Basic TAPI Implementation
3

Basic TAPI Implementation
TAPI Line Functions

TAPI line functions supported

lineUnpark, on page 56

lineAccept
The lineAccept function accepts the specified offered call.

Function Details

LONG lineAccept(HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize
);

Parameters

hCall

A handle to the call to be accepted. The application must be an owner of the call. Call state of hCall must
be offering.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party as part of the call
accept. Leave this pointer NULL if you do not want to send user-user information. User-user information
is sent only if supported by the underlying network. The protocol discriminator member for the user-user
information, if required, should appear as the first byte of the buffer that is pointed to by lpsUserUserInfo
and must be accounted for in dwSize.

The Cisco Unified TSP does not support user-user information.Note

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineAddProvider
The lineAddProvider function installs a new telephony service provider into the telephony system.

Function Details

LONG WINAPI lineAddProvider(LPCSTR lpszProviderFilename,
HWND hwndOwner,
LPDWORD lpdwPermanentProviderID

);

Basic TAPI Implementation
4

Basic TAPI Implementation
lineAccept

Parameters

lpszProviderFilename

A pointer to a null-terminated string that contains the path of the service provider to be added.

hwndOwner

A handle to a window in which dialog boxes that need to be displayed as part of the installation process
(for example, by the service provider's TSPI_providerInstall function) would be attached. Can be NULL
to indicate that any window created during the function should have no owner window.

lpdwPermanentProviderID

A pointer to a DWORD-sizedmemory location into which TAPI writes the permanent provider identifier
of the newly installed service provider.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values are:

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALPARAM

• LINEERR_NOMULTIPLEINSTANCE

• LINEERR_INVALPOINTER

• LINEERR_OPERATIONFAILED

lineAddToConference
This function takes the consult call that is specified by hConsultCall and adds it to the conference call that is
specified by hConfCall.

Function Details

LONG lineAddToConference(HCALL hConfCall,
HCALL hConsultCall

);

Parameters

hConfCall

A pointer to the conference call handle. The state of the conference call must be
OnHoldPendingConference or OnHold.

hConsultCall

A pointer to the consult call that will be added to the conference call. The application must be the owner
of this call, and it cannot be a member of another conference call. The allowed states of the consult call
comprise connected, onHold, proceeding, or ringback

Basic TAPI Implementation
5

Basic TAPI Implementation
lineAddToConference

lineAnswer
The lineAnswer function answers the specified offering call.

CallProcessing requires previous calls on the device to be in connected call state before answering further
calls on the same device. If calls are answered without checking for the call state of previous calls on the same
device, then Cisco Unified TSPmight return a successful answer response but the call will not go to connected
state and needs to be answered again.

Note

Function Details

LONG lineAnswer(HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize

);

Parameters

hCall

A handle to the call to be answered. The application must be an owner of this call. The call state of hCall
must be offering or accepted.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party at the time the call
is answered. You can leave this pointer NULL if no user-user information will be sent.

User-user information only gets sent if supported by the underlying network. The protocol discriminator
field for the user-user information, if required, should be the first byte of the buffer that is pointed to by
lpsUserUserInfo and must be accounted for in dwSize.

The Cisco Unified TSP does not support user-user information.Note

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineBlindTransfer
The lineBlindTransfer function performs a blind or single-step transfer of the specified call to the specified
destination address.

Basic TAPI Implementation
6

Basic TAPI Implementation
lineAnswer

The lineBlindTransfer function that is implemented until Cisco Unified TSP 3.3 does not comply with the
TAPI specification. This function actually gets implemented as a consultation transfer and not a single-step
transfer. FromCisco Unified TSP 4.0, the lineBlindTransfer complies with the TAPI specs wherein the transfer
is a single-step transfer.

Note

If the application tries to blind transfer a call to an address that requires a FAC, CMC, or both, then the
lineBlindTransfer function will return an error. If a FAC is required, the TSP will return the error
LINEERR_FACREQUIRED. If a CMC is required, the TSPwill return the error LINEERR_CMCREQUIRED.
If both a FAC and a CMC are required, the TSP will return the error LINEERR_FACANDCMCREQUIRED.
An application that wants to blind transfer a call to an address that requires a FAC, CMC, or both, should use
the lineDevSpecific -BlindTransferFACCMC function.

Function Details

LONG lineBlindTransfer(HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

);

Parameters

hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state of
hCall must be connected.

lpszDestAddress

A pointer to a NULL-terminated string that identifies the location to which the call is to be transferred.
The destination address uses the standard dial number format.

dwCountryCode

The country code of the destination. The implementation uses this parameter to select the call progress
protocols for the destination address. If a value of 0 is specified, the defined default call-progress protocol
is used.

lineCallbackFunc
The lineCallbackFunc function provides a placeholder for the application-supplied function name.

Function Details

VOID FAR PASCAL lineCallbackFunc(DWORD hDevice,
DWORD dwMsg,
DWORD dwCallbackInstance,
DWORD dwParam1,
DWORD dwParam2,
DWORD dwParam3

);

Basic TAPI Implementation
7

Basic TAPI Implementation
lineCallbackFunc

Parameters

hDevice

A handle to either a line device or a call that is associated with the callback. The context that dwMsg
provides determines the nature of this handle (line handle or call handle). Applications must use the
DWORD type for this parameter because using the HANDLE type may generate an error.

dwMsg

A line or call device message.

dwCallbackInstance

Callback instance data that is passed back to the application in the callback. TAPI does not interpret
DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For information about parameter values that are passed to this function, see TAPI Line Functions, on page
1.

lineClose
The lineClose function closes the specified open line device.

Function Details

LONG lineClose(HLINE hLine
);

Parameter

hLine

A handle to the open line device to be closed. After the line has been successfully closed, this handle no longer
remains valid.

lineCompleteTransfer
The lineCompleteTransfer function completes the transfer of the specified call to the party that is connected
in the consultation call.

Basic TAPI Implementation
8

Basic TAPI Implementation
lineClose

Function Details

LONG lineCompleteTransfer(HCALL hCall,
HCALL hConsultCall,
LPHCALL lphConfCall,
DWORD dwTransferMode

);

Parameters

hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state of
hCall must be onHold, onHoldPendingTransfer.

hConsultCall

A handle to the call that represents a connection with the destination of the transfer. The application must
be comprise an owner of this call. The call state of hConsultCall must be connected, ringback, busy, or
proceeding.

lphConfCall

A pointer to a memory location where an hCall handle can be returned. If dwTransferMode is
LINETRANSFERMODE_CONFERENCE, the newly created conference call is returned in lphConfCall
and the application becomes the sole owner of the conference call. Otherwise, TAPI ignores this parameter.

dwTransferMode

Specifies how the initiated transfer request is to be resolved. This parameter uses the following
LINETRANSFERMODE_constant:

• LINETRANSFERMODE_TRANSFER—Resolve the initiated transfer by transferring the initial
call to the consultation call.

• LINETRANSFERMODE_CONFERENCE—The transfer gets resolved by establishing a three-way
conference among the application, the party connected to the initial call, and the party connected
to the consultation call. Selecting this option creates a conference call.

lineConfigProvider
The lineConfigProvider function causes a service provider to display its configuration dialog box. This basically
provides a straight pass-through to TSPI_providerConfig.

Function Details

LONG WINAPI lineConfigProvider(HWND hwndOwner,
DWORD dwPermanentProviderID

);

Basic TAPI Implementation
9

Basic TAPI Implementation
lineConfigProvider

Parameters

hwndOwner

A handle to a window to which the configuration dialog box (displayed by TSPI_providerConfig) is
attached. This parameter can equal NULL to indicate that any window that is created during the function
should have no owner window.

dwPermanentProviderID

The permanent provider identifier of the service provider to be configured.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALPARAM

• LINEERR_OPERATIONFAILED

lineDeallocateCall
The lineDeallocateCall function deallocates the specified call handle.

Function Details

LONG lineDeallocateCall(HCALL hCall
);

Parameter

hCall

The call handle to be deallocated. An application with monitoring privileges for a call can always deallocate
its handle for that call. An application with owner privilege for a call can deallocate its handle unless it is the
sole owner of the call and the call is not in the idle state. The call handle is invalid after it is deallocated.

lineDevSpecific
The lineDevSpecific function enables service providers to provide access to features that other TAPI functions
do not offer. The extensions are device-specific and the applications must be able to read the extensions to
take advantage of these extensions.

When used with the Cisco Unified TSP, lineDevSpecific can be used to:

• Enable the message waiting lamp for a particular line.

• Handle the audio stream (instead of using the provided Cisco wave driver).

• Turn On or Off the reporting of media streaming messages for a particular line.

• Register a CTI port or route point for dynamic media termination.

Basic TAPI Implementation
10

Basic TAPI Implementation
lineDeallocateCall

• Set the IP address and the UDP port of a call at a CTI port or route point with dynamic media termination.

• Redirect a Call and Reset the OriginalCalledID of the call to the party that is the destination of the redirect.

• Redirect a call and set the OriginalCalledID of the call to any party.

• Join two or more calls into one conference call.

• Redirect a Call to a destination that requires a FAC, CMC, or both.

• Blind Transfer a Call to a destination that requires a FAC, CMC, or both.

• Open a CTI port in third party mode.

• Set the SRTP algorithm IDs that a CTI port supports.

• Acquire any CTI-controllable device in the Cisco Unified Communications Manager system, which
needs to be opened in super provider mode.

• Deacquire any CTI-controllable device in the Cisco Unified Communications Manager system.

• Trigger the actual line open from the TSP side. This is used for the delayed open mechanism.

• Initiate TalkBack on the Intercom Whisper call of the Intercom line

• Query SpeedDial and Label setting of a Intercom line.

• Set SpeedDial and Label setting of a Intercom line.

• Start monitoring a call

• Start recording of a call

• Stop recording of a call

• Direct call with feature priority (see Secure Conference for more information.

• Transfer without media

• Direct Transfer

• Message Summary

• Register call pickup group for notification
• Unregister call pickup group for notification
• Call pickup request
• Start send media to BIB
• Stop send media to BIB
• Agent zip tone
• Enable feature
• Add remote destination
• Remove remote destination
• Update remote destination
• Hold enhancement

Basic TAPI Implementation
11

Basic TAPI Implementation
lineDevSpecific

cucm_b_tapi-dev-guide-14_chapter3.pdf#nameddest=unique_113

In Cisco Unified TSP Releases 4.0 and later, the TSP no longer supports the ability to perform a
SwapHold/SetupTransfer on two calls on a line in the CONNECTED and the ONHOLD call states. Therefore,
these calls can be transferred by using lineCompleteTransfer. Cisco Unified TSP Releases 4.0 and later enable
to transfer these calls using the lineCompleteTransfer function without having to perform the
SwapHold/SetupTransfer beforehand.

Note

Function Details

LONG lineDevSpecific(HLINE hLine,
DWORD dwAddressID,
HCALL hCall,
LPVOID lpParams,
DWORD dwSize

);

Parameters

hLine

A handle to a line device. This parameter is required.

dwAddressID

An address identifier on the given line device.

hCall

A handle to a call. Although this parameter is optional, if it is specified, the call that it represents must
belong to the hLine line device. The call state of hCall is device specific.

lpParams

A pointer to a memory area that is used to hold a parameter block. The format of this parameter block
specifies device specific, and TAPI passes its contents to or from the service provider.

dwSize

The size in bytes of the parameter block area.

lineDevSpecificFeature
The lineDevSpecificFeature function enables service providers to provide access to features that other TAPI
functions do not offer. The extensions are device-specific and the applications must be able to read the
extensions to take advantage of these extensions. When used with the Cisco TSP, lineDevSpecificFeature can
be used to enable/disable Do-Not-Disturb feature on a device.

Function Details

LONG lineDevSpecificFeature(HLINE hLine,
DWORD dwFeature,
LPVOID lpParams,
DWORD dwSize
);

Basic TAPI Implementation
12

Basic TAPI Implementation
lineDevSpecificFeature

Parameters

hLine

A handle to a line device. This parameter is required.

dwFeature

Feature to invoke on the line device. This parameter uses the PHONEBUTTONFUNCTION_TAPI
constants. When used with the Cisco TSP, the only value that is considered valid is
PHONEBUTTONFUNCTION_DONOTDISTURB (0x0000001A).

lpParams

A pointer to a memory area used to hold a parameter block. The format of this parameter block is
device-specific and TAPI passes its contents to or from the service provider.

dwSize

The size in bytes of the parameter block area.

Return Values

Returns a positive request identifier if the function is completed asynchronously or a negative number if an
error occurs. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if the function
succeeds or it is a negative number if an error occurs.

Possible return values follow:

• LINEERR_INVALFEATURE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED.

Error Codes

The following new error can be returned by Cisco TSP for Do-Not-Disturb feature:

LINERR_ALREADY_IN_REQUESTED_STATE 0xC0000009

lineDial
The lineDial function dials the specified number on the specified call.

The application can use this function to enter a FAC or CMC. The FAC or CMC can be entered one digit at
a time or multiple digits at a time. The application may also enter both the FAC and CMC if required in one
lineDial() request as long as the FAC and CMC are separated by a “#” character. If sending both a FAC and

Basic TAPI Implementation
13

Basic TAPI Implementation
lineDial

CMC in one lineDial() request, Cisco recommends that you terminate the lpszDestAddress with a “#” character
to avoid waiting for the T.302 interdigit time-out.

You cannot use this function to enter a dial string along with a FAC and/or a CMC. You must enter the FAC
and/or CMC in a separate lineDial request.

Function Details

LONG lineDial(HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

);

Parameters

hCall

A handle to the call on which a number is to be dialed. Ensure the application is an owner of the call.
The call state of hCall can be any state except idle and disconnected.

lpszDestAddress

The destination to be dialed by using the standard dial number format.

dwCountryCode

The country code of the destination. The implementation uses this code to select the call progress protocols
for the destination address. If a value of 0 is specified, the default call progress protocol is used.

lineDrop
The lineDrop function drops or disconnects the specified call. The application can specify user-user information
to be transmitted as part of the call disconnect.

Function Details

LONG lineDrop(HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize

);

Parameters

hCall

A handle to the call to be dropped. Ensure the application is an owner of the call. The call state of hCall
can be any state except an Idle state.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party as part of the call
disconnect. You can leave this pointer NULL if no user-user information is to be sent. User-user
information is sent only if it is supported by the underlying network. The protocol discriminator field
for the user-user information, if required, should appear as the first byte of the buffer that is pointed to
by lpsUserUserInfo and must be accounted for in dwSize.

Basic TAPI Implementation
14

Basic TAPI Implementation
lineDrop

The Cisco Unified TSP does not support user-user information.Note

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineForward
The lineForward function forwards calls that are destined for the specified address on the specified line,
according to the specified forwarding instructions.When an originating address (dwAddressID) is forwarded,
the switch deflects the specified incoming calls for that address to the other number. This function provides
a combination of forward all feature. This API allows calls to be forwarded unconditionally to a forwarded
destination. This function can also cancel forwarding that is currently in effect.

To indicate that the forward is set/reset, upon completion of lineForward, TAPI fires LINEADDRESSSTATE
events that indicate the change in the line forward status.

Change forward destination with a call to lineForward without canceling the current forwarding set on that
line.

lineForward implementation of Cisco Unified TSP allows user to set up only one type for forward as
dwForwardMode = UNCOND. The lpLineForwardList data structure accepts LINEFORWARD entry with
dwForwardMode = UNCOND.

Note

Function Details

LONG lineForward(HLINE hLine,
DWORD bAllAddresses,
DWORD dwAddressID,
LPLINEFORWARDLIST const lpForwardList,
DWORD dwNumRingsNoAnswer,
LPHCALL lphConsultCall,
LPLINECALLPARAMS const lpCallParams

);

Parameters

hLine

A handle to the line device.

bAllAddresses

Specifies whether all originating addresses on the line or just the one that is specified gets forwarded. If
TRUE, all addresses on the line get forwarded, and dwAddressID is ignored; if FALSE, only the address
that is specified as dwAddressID gets forwarded.

Basic TAPI Implementation
15

Basic TAPI Implementation
lineForward

dwAddressID

The address of the specified line whose incoming calls are to be forwarded. This parameter gets ignored
if bAllAddresses is TRUE.

If bAllAddresses is FALSE, dwAddressID must equal 0.Note

lpForwardList

A pointer to a variably sized data structure that describes the specific forwarding instructions of type
LINEFORWARDLIST.

To cancel the forwarding that currently is in effect, ensure lpForwardList Parameter is set to NULL.Note

dwNumRingsNoAnswer

The number of rings before a call is considered a no answer. If dwNumRingsNoAnswer is out of range,
the actual value gets set to the nearest value in the allowable range.

This parameter is not used because this version of Cisco Unified TSP does not support call forward no
answer.

Note

lphConsultCall

A pointer to an HCALL location. In some telephony environments, this location is loaded with a handle
to a consultation call that is used to consult the party to which the call is being forwarded, and the
application becomes the initial sole owner of this call. This pointer must be valid even in environments
where call forwarding does not require a consultation call. This handle is set to NULL if no consultation
call is created.

This parameter is also ignored because a consult call is not created for setting up lineForward.Note

lpCallParams

A pointer to a structure of type LINECALLPARAMS. This pointer gets ignored unless lineForward
requires the establishment of a call to the forwarding destination (and lphConsultCall is returned; in
which case, lpCallParams is optional). If NULL, default call parameters get used. Otherwise, the specified
call parameters get used for establishing hConsultCall.

This parameter must be NULL for this version of Cisco Unified TSP because we do not create a consult
call.

Note

Basic TAPI Implementation
16

Basic TAPI Implementation
lineForward

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALLINEHANDLE

• LINEERR_NOMEM

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALADDRESS

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCOUNTRYCODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALPARAM

• LINEERR_UNINITIALIZED

For lpForwardList[0].dwForwardMode other than UNCOND, lineForward returns
LINEERR_OPERATIONUNAVAIL. For lpForwardList.dwNumEntries more than 1, lineForward returns
LINEERR_INVALPARAM

Note

lineGenerateDigits
The lineGenerateDigits function initiates the generation of the specified digits on the specified call as
out-of-band tones by using the specified signaling mode.

The Cisco Unified TSP supports neither invoking this function with a NULL value for lpszDigits to abort a
digit generation that is currently in progress nor invoking lineGenerateDigits while digit generation is in
progress. Cisco Unified IP Phones pass DTMF digits out of band. This means that the tone is not injected into
the audio stream (in-band) but is sent as a message in the control stream. The phone on the far end then injects
the tone into the audio stream to present it to the user. CTI port devices do not inject DTMF tones. Also, be
aware that some gateways will not inject DTMF tones into the audio stream on the way out of the LAN.

Note

Function Details

LONG lineGenerateDigits(HCALL hCall,
DWORD dwDigitMode,
LPCSTR lpszDigits,
DWORD dwDuration

);

Basic TAPI Implementation
17

Basic TAPI Implementation
lineGenerateDigits

Parameters

hCall

A handle to the call. The application must be an owner of the call. Call state of hCall can be any state.

dwDigitMode

The format to be used for signaling these digits. The dwDigitMode can have only a single flag set. This
parameter uses the following LINEDIGITMODE_constant:

• LINEDIGITMODE_DTMF -Uses DTMF tones for digit signaling. Valid digits for DTMF mode
include ‘0’ -‘9’, ‘*’, ‘#’.

lpszDigits

Valid characters for DTMF mode in the Cisco Unified TSP include ‘0’ through ‘9’, ‘*’, and ‘#’.

dwDuration

Duration in milliseconds during which the tone should be sustained.

Cisco Unified TSP does not support dwDuration.Note

lineGenerateTone
The lineGenerateTone function generates the specified tone over the specified call.

The Cisco Unified TSP supports neither invoking this function with a 0 value for dwToneMode to abort a
tone generation that is currently in progress nor invoking lineGenerateTone while tone generation is in progress.
Cisco Unified IP Phones pass tones out of band. This means that the tone is not injected into the audio stream
(in-band) but is sent as a message in the control stream. The phone on the far end then injects the tone into
the audio stream to present it to the user. Also, be aware that some gateways will not inject tones into the
audio stream on the way out of the LAN.

Note

Function Details

LONG lineGenerateTone(HCALL hCall,
DWORD dwToneMode,
DWORD dwDuration,
DWORD dwNumTones,
LPLINEGENERATETONE const lpTones

);

Parameters

hCall

A handle to the call on which a tone is to be generated. The application must be an owner of the call.
The call state of hCall can be any state.

Basic TAPI Implementation
18

Basic TAPI Implementation
lineGenerateTone

dwToneMode

Defines the tone to be generated. Tones can be either standard or custom tones. A custom tone comprises
a set of arbitrary frequencies. A small number of standard tones are predefined. The duration of the tone
gets specified with dwDuration for both standard and custom tones. The dwToneMode parameter can
have only one bit set. If no bits are set (the value 0 is passed), tone generation gets canceled.

This parameter uses the following LINETONEMODE_constant:

• LINETONEMODE_BEEP -The tone is a beep, as used to announce the beginning of a recording.
The service provider defines the exact beep tone.

dwDuration

Duration in milliseconds during which the tone should be sustained.

Cisco Unified TSP does not support dwDuration.Note

dwNumTones

The number of entries in the lpTones array. This parameter is ignored if dwToneMode ≠ CUSTOM.

lpTones

A pointer to a LINEGENERATETONE array that specifies the components of the tone. This parameter
gets ignored for non-custom tones. If lpTones is a multifrequency tone, the various tones play
simultaneously.

lineGetAddressCaps
The lineGetAddressCaps function queries the specified address on the specified line device to determine its
telephony capabilities.

Function Details

LONG lineGetAddressCaps(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAddressID,
DWORD dwAPIVersion,
DWORD dwExtVersion,
LPLINEADDRESSCAPS lpAddressCaps

);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device that contains the address to be queried. Only one address gets supported per line, so
dwAddressID must be zero.

Basic TAPI Implementation
19

Basic TAPI Implementation
lineGetAddressCaps

dwAddressID

The address on the given line device whose capabilities are to be queried.

dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the API that is to be used. The high-order
word contains the major version number; the low-order word contains the minor version number.

dwExtVersion

The version number of the extensions to be used. This number can be left zero if no device-specific
extensions are to be used. Otherwise, the high-order word contains the major version number and the
low-order word contains the minor version number.

lpAddressCaps

A pointer to a variably sized structure of type LINEADDRESSCAPS. Upon successful completion of
the request, this structure gets filled with address capabilities information. Prior to calling
lineGetAddressCaps, the application should set the dwTotalSize member of this structure to indicate the
amount of memory that is available to TAPI for returning information.

lineGetAddressID
The lineGetAddressID function returns the address identifier that is associated with an address in a different
format on the specified line.

Function Details

LONG lineGetAddressID(HLINE hLine,
LPDWORD lpdwAddressID,
DWORD dwAddressMode,
LPCSTR lpsAddress,
DWORD dwSize

);

Parameters

hLine

A handle to the open line device.

lpdwAddressID

A pointer to a DWORD-sized memory location that returns the address identifier.

dwAddressMode

The address mode of the address that is contained in lpsAddress. The dwAddressMode parameter can
have only a single flag set. This parameter uses the following LINEADDRESSMODE_constant:

• LINEADDRESSMODE_DIALABLEADDR -The address is specified by its dialable address. The
lpsAddress parameter represents the dialable address or canonical address format.

lpsAddress

A pointer to a data structure that holds the address that is assigned to the specified line device.
dwAddressMode determines the format of the address. Because the only valid value equals

Basic TAPI Implementation
20

Basic TAPI Implementation
lineGetAddressID

LINEADDRESSMODE_DIALABLEADDR, lpsAddress uses the common dialable number format and
is NULL-terminated.

dwSize

The size of the address that is contained in lpsAddress.

lineGetAddressStatus
The lineGetAddressStatus function allows an application to query the specified address for its current status.

Function Details

LONG lineGetAddressStatus(HLINE hLine,
DWORD dwAddressID,
LPLINEADDRESSSTATUS lpAddressStatus

);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the given open line device. This parameter specifies the address to be queried.

lpAddressStatus

A pointer to a variably sized data structure of type LINEADDRESSSTATUS. Prior to calling
lineGetAddressStatus, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

lineGetCallInfo
The lineGetCallInfo function enables an application to obtain fixed information about the specified call.

Function Details

LONG lineGetCallInfo(HCALL hCall,
LPLINECALLINFO lpCallInfo

);

Parameters

hCall

A handle to the call to be queried. The call state of hCall can be any state.

lpCallInfo

A pointer to a variably sized data structure of type LINECALLINFO. Upon successful completion of
the request, call-related information fills this structure. Prior to calling lineGetCallInfo, the application

Basic TAPI Implementation
21

Basic TAPI Implementation
lineGetAddressStatus

should set the dwTotalSize member of this structure to indicate the amount of memory that is available
to TAPI for returning information.

lineGetCallStatus
The lineGetCallStatus function returns the current status of the specified call.

Function Details

LONG lineGetCallStatus(HCALL hCall,
LPLINECALLSTATUS lpCallStatus

);

Parameters

hCall

A handle to the call to be queried. The call state of hCall can be any state.

lpCallStatus

A pointer to a variably sized data structure of type LINECALLSTATUS. Upon successful completion
of the request, call status information fills this structure. Prior to calling lineGetCallStatus, the application
should set the dwTotalSize member of this structure to indicate the amount of memory available to TAPI
for returning information.

lineGetConfRelatedCalls
The lineGetConfRelatedCalls function returns a list of call handles that are part of the same conference call
as the specified call. The specified call represents either a conference call or a participant call in a conference
call. New handles get generated for those calls for which the application does not already have handles, and
the application receives monitor privilege to those calls.

Function Details

LONG WINAPI lineGetConfRelatedCalls(HCALL hCall,
LPLINECALLLIST lpCallList

);

Parameters

hCall

A handle to a call. This represents either a conference call or a participant call in a conference call. For
a conference parent call, the call state of hCall can be any state. For a conference participant call, it must
be in the conferenced state.

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion of the
request, call handles to all calls in the conference call return in this structure. The first call in the list
represents the conference call, the other calls represent the participant calls. The application receives
monitor privilege to those calls for which it does not already have handles; the privileges to calls in the

Basic TAPI Implementation
22

Basic TAPI Implementation
lineGetCallStatus

list for which the application already has handles remains unchanged. Prior to calling
lineGetConfRelatedCalls, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_NOCONFERENCE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineGetDevCaps
The lineGetDevCaps function queries a specified line device to determine its telephony capabilities. The
returned information applies for all addresses on the line device.

Function Details

LONG lineGetDevCaps(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
DWORD dwExtVersion,
LPLINEDEVCAPS lpLineDevCaps

);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the API to be used. The high-order word
contains the major version number; the low-order word contains the minor version number.

dwExtVersion

The version number, obtained by lineNegotiateExtVersion, of the extensions to be used. It can be zero
if no device-specific extensions are to be used. Otherwise, the high-order word contains the major version
number; the low-order word contains the minor version number.

Basic TAPI Implementation
23

Basic TAPI Implementation
lineGetDevCaps

lpLineDevCaps

A pointer to a variably sized structure of type LINEDEVCAPS. Upon successful completion of the
request, this structure gets filled with line device capabilities information. Prior to calling lineGetDevCaps,
the application should set the dwTotalSize member of this structure to indicate the amount of memory
that is available to TAPI for returning information.

lineGetID
The lineGetID function returns a device identifier for the specified device class that is associated with the
selected line, address, or call.

Function Details

LONG lineGetID(HLINE hLine,
DWORD dwAddressID,
HCALL hCall,
DWORD dwSelect,
LPVARSTRING lpDeviceID,
LPCSTR lpszDeviceClass

);

Parameters

hLine

A handle to an open line device.

dwAddressID

An address on the given open line device.

hCall

A handle to a call.

dwSelect

Specifies whether the requested device identifier is associated with the line, address or a single call. The
dwSelect parameter can only have a single flag set. This parameter uses the following
LINECALLSELECT_constants:

• LINECALLSELECT_LINE Selects the specified line device. The hLine parameter must be a valid
line handle; hCall and dwAddressID are ignored.

• LINECALLSELECT_ADDRESS Selects the specified address on the line. Both hLine and
dwAddressID must be valid; hCall is ignored.

• LINECALLSELECT_CALLSelects the specified call. hCall must be valid; hLine and dwAddressID
are both ignored.

lpDeviceID

A pointer to a memory location of type VARSTRING, where the device identifier is returned. Upon
successful completion of the request, the device identifier fills this location. The format of the returned
information depends on the method that the device class API uses for naming devices. Before calling

Basic TAPI Implementation
24

Basic TAPI Implementation
lineGetID

lineGetID, the application must set the dwTotalSize member of this structure to indicate the amount of
memory that is available to TAPI for returning information.

lpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class of the device whose identifier
is requested. Device classes include wave/in, wave/out and tapi/line.

Valid device class strings are those that are used in the SYSTEM.INI section to identify device classes.

lineGetLineDevStatus
The lineGetLineDevStatus function enables an application to query the specified open line device for its
current status.

Function Details

LONG lineGetLineDevStatus(HLINE hLine,
LPLINEDEVSTATUS lpLineDevStatus

);

Parameters

hLine

A handle to the open line device to be queried.

lpLineDevStatus

A pointer to a variably sized data structure of type LINEDEVSTATUS. Upon successful completion of
the request, the device status of the line fills this structure. Prior to calling lineGetLineDevStatus, the
application should set the dwTotalSize member of this structure to indicate the amount of memory that
is available to TAPI for returning information.

lineGetMessage
The lineGetMessage function returns the next TAPI message that is queued for delivery to an application that
is using the Event Handle notification mechanism (see lineInitializeEx, on page 34 for more information).

Function Details

LONG WINAPI lineGetMessage(HLINEAPP hLineApp,
LPLINEMESSAGE lpMessage,
DWORD dwTimeout

);

Parameters

hLineApp

The handle that lineInitializeEx returns. Ensure that the application has set the
LINEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
LINEINITIALIZEEXPARAMS structure.

Basic TAPI Implementation
25

Basic TAPI Implementation
lineGetLineDevStatus

lpMessage

A pointer to a LINEMESSAGE structure. Upon successful return from this function, the structure contains
the next message that had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no message
can be returned. If dwTimeout is zero, the function checks for a queued message and returns immediately.
If dwTimeout is INFINITE, the function time-out interval never elapses.

Return Values

Returns zero if the request succeeds or returns a negative number if an error occurs. Possible return values
follow:

• LINEERR_INVALAPPHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_NOMEM

lineGetNewCalls
The lineGetNewCalls function returns call handles to calls on a specified line or address for which the
application currently does not have handles. The application receives monitor privilege for these calls.

An application can use lineGetNewCalls to obtain handles to calls for which it currently has no handles. The
application can select the calls for which handles are to be returned by basing this selection on scope (calls
on a specified line, or calls on a specified address). For example, an application can request call handles to
all calls on a given address for which it currently has no handle.

Function Details

LONG WINAPI lineGetNewCalls(HLINE hLine,
DWORD dwAddressID,
DWORD dwSelect,
LPLINECALLLIST lpCallList

);

Parameters

hLine

A handle to an open line device.

dwAddressID

An address on the given open line device. An address identifier permanently associates with an address;
the identifier remains constant across operating system upgrades.

dwSelect

The selection of calls that are requested. This parameter uses one and only one of the
LINECALLSELECT_Constants.

Basic TAPI Implementation
26

Basic TAPI Implementation
lineGetNewCalls

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion of the
request, call handles to all selected calls get returned in this structure. Prior to calling lineGetNewCalls,
the application should set the dwTotalSize member of this structure to indicate the amount of memory
that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLSELECT

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALLINEHANDLE

• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALPOINTER

• LINEERR_UNINITIALIZED

• LINEERR_NOMEM

lineGetNumRings
The lineGetNumRings function determines the number of rings that an incoming call on the given address
should ring before the call is answered.

Function Details

LONG WINAPI lineGetNumRings(HLINE hLine,
DWORD dwAddressID,
LPDWORD lpdwNumRings

);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the line device. An address identifier permanently associates with an address; the identifier
remains constant across operating system upgrades.

lpdwNumRings

The number of rings that is the minimum of all current lineSetNumRings requests.

Basic TAPI Implementation
27

Basic TAPI Implementation
lineGetNumRings

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONFAILED

• LINEERR_INVALLINEHANDLE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_UNINITIALIZED

• LINEERR_NOMEM

lineGetProviderList
The lineGetProviderList function returns a list of service providers that are currently installed in the telephony
system.

Function Details

LONG WINAPI lineGetProviderList(DWORD dwAPIVersion,
LPLINEPROVIDERLIST lpProviderList

);

Parameters

dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on some particular line device).

lpProviderList

A pointer to a memory location where TAPI can return a LINEPROVIDERLIST structure. Prior to
calling lineGetProviderList, the application should set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_NOMEM

• LINEERR_INIFILECORRUPT

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

Basic TAPI Implementation
28

Basic TAPI Implementation
lineGetProviderList

lineGetRequest
The lineGetRequest function retrieves the next by-proxy request for the specified request mode.

Function Details

LONG WINAPI lineGetRequest(HLINEAPP hLineApp,
DWORD dwRequestMode,
LPVOID lpRequestBuffer

);

Parameters

hLineApp

The application's usage handle for the line portion of TAPI.

dwRequestMode

The type of request that is to be obtained. dwRequestMode can have only one bit set. This parameter
uses one and only one of the LINEREQUESTMODE_Constants.

lpRequestBuffer

A pointer to a memory buffer where the parameters of the request are to be placed. The size of the buffer
and the interpretation of the information that is placed in the buffer depends on the request mode. The
application-allocated buffer provides sufficient size to hold the request. If dwRequestMode is
LINEREQUESTMODE_MAKECALL, interpret the content of the request buffer by using the
LINEREQMAKECALL structure. If dwRequestMode is LINEREQUESTMODE_MEDIACALL,
interpret the content of the request buffer by using the LINEREQMEDIACALL structure.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALAPPHANDLE

• LINEERR_NOTREGISTERED

• LINEERR_INVALPOINTER

• LINEERR_OPERATIONFAILED

• LINEERR_INVALREQUESTMODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

• LINEERR_NOREQUEST

Basic TAPI Implementation
29

Basic TAPI Implementation
lineGetRequest

lineGetStatusMessages
The lineGetStatusMessages function enables an application to query the notification messages that the
application receives for events related to status changes for the specified line or any of its addresses.

Function Details

LONG WINAPI lineGetStatusMessages(HLINE hLine,
LPDWORD lpdwLineStates,
LPDWORD lpdwAddressStates

);

Parameters

hLine

Handle to the line device.

lpdwLineStates

A bit array that identifies the line device status changes for which a message is to be sent to the application.
If a flag is TRUE, that message is enabled; if FALSE, it is disabled. This parameter uses one or more
LINEDEVSTATE_Constants.

lpdwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application. If
a flag is TRUE, that message is enabled; if FALSE, disabled. This parameter uses one or more
LINEADDRESSSTATE_Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineGetTranslateCaps
The lineGetTranslateCaps function returns address translation capabilities.

Function Details

LONG WINAPI lineGetTranslateCaps(HLINEAPP hLineApp,
DWORD dwAPIVersion,

Basic TAPI Implementation
30

Basic TAPI Implementation
lineGetStatusMessages

LPLINETRANSLATECAPS lpTranslateCaps
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the lineInitializeEx
function, it can set the hLineApp parameter to NULL.

dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on some particular line device).

lpTranslateCaps

A pointer to a location to which a LINETRANSLATECAPS structure is loaded. Prior to calling
lineGetTranslateCaps, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_NOMEM

• LINEERR_INIFILECORRUPT

• LINEERR_OPERATIONFAILED

• LINEERR_INVALAPPHANDLE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

• LINEERR_NODRIVER.

lineHandoff
The lineHandoff function gives ownership of the specified call to another application. Specify the application
either directly by its file name or indirectly as the highest priority application that handles calls of the specified
media mode.

Function Details

LONG WINAPI lineHandoff(HCALL hCall,
LPCSTR lpszFileName,
DWORD dwMediaMode

);

Basic TAPI Implementation
31

Basic TAPI Implementation
lineHandoff

Parameters

hCall

A handle to the call to be handed off. The application must be an owner of the call. The call state of hCall
can be any state.

lpszFileName

A pointer to a null-terminated string. If this pointer parameter is non-NULL, it contains the file name of
the application that is the target of the handoff. If NULL, the handoff target represents the highest priority
application that has opened the line for owner privilege for the specified media mode. A valid file name
does not include the path of the file.

dwMediaMode

The media mode that is used to identify the target for the indirect handoff. The dwMediaMode parameter
indirectly identifies the target application that is to receive ownership of the call. This parameter gets
ignored if lpszFileName is not NULL. This parameter uses one and only one of the
LINEMEDIAMODE_Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALMEDIAMODE

• LINEERR_TARGETNOTFOUND

• LINEERR_INVALPOINTER

• LINEERR_TARGETSELF

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

• LINEERR_NOTOWNER

lineHold
The lineHold function places the specified call on hold.

Function Details

LONG lineHold(HCALL hCall
);

Parameter

hCall

Basic TAPI Implementation
32

Basic TAPI Implementation
lineHold

A handle to the call that is to be placed on hold. Ensure that the application is an owner of the call and the
call state of hCall is connected.

lineInitialize
Although the lineInitialize function is obsolete, tapi.dll and tapi32.dll continue to export it for backward
compatibility with applications that are using API versions 1.3 and 1.4.

Function Details

LONG WINAPI lineInitialize(LPHLINEAPP lphLineApp,
HINSTANCE hInstance,
LINECALLBACK lpfnCallback,
LPCSTR lpszAppName,
LPDWORD lpdwNumDevs

);

Parameters

lphLineApp

A pointer to a location that is filled with the application's usage handle for TAPI.

hInstance

The instance handle of the client application or DLL.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls. For more information, see lineCallbackFunc.

lpszAppName

A pointer to a null-terminated text string that contains only displayable characters. If this parameter is
not NULL, it contains an application-supplied name for the application. The LINECALLINFO structure
provides this name to indicate, in a user-friendly way, which application originated, originally accepted,
or answered the call. This information can prove useful for call logging purposes. If lpszAppName is
NULL, the application's file name gets used instead.

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location gets
filled with the number of line devices that is available to the application.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALAPPNAME

• LINEERR_OPERATIONFAILED

• LINEERR_INIFILECORRUPT

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

Basic TAPI Implementation
33

Basic TAPI Implementation
lineInitialize

• LINEERR_REINIT

• LINEERR_NODRIVER

• LINEERR_NODEVICE

• LINEERR_NOMEM

• LINEERR_NOMULTIPLEINSTANCE.

lineInitializeEx
The lineInitializeEx function initializes the use of TAPI by the application for the subsequent use of the line
abstraction. It registers the specified notification mechanism of the application and returns the number of line
devices that are available. A line device represents any device that provides an implementation for the
line-prefixed functions in the telephony API.

Function Details

LONG lineInitializeEx(LPHLINEAPP lphLineApp,
HINSTANCE hInstance,
LINECALLBACK lpfnCallback,
LPCSTR lpszFriendlyAppName,
LPDWORD lpdwNumDevs,
LPDWORD lpdwAPIVersion,
LPLINEINITIALIZEEXPARAMS lpLineInitializeExParams

);

Parameters

lphLineApp

A pointer to a location that is filled with the TAPI usage handle for the application.

hInstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for this
parameter, in which case TAPI uses the module handle of the root executable of the process (for purposes
of identifying call handoff targets and media mode priorities).

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the “hidden window”method of event notification. This
parameter gets ignored and should be set to NULLwhen the application chooses to use the “event handle”
or “completion port” event notification mechanisms.

lpszFriendlyAppName

A pointer to a NULL-terminated ASCII string that contains only standard ASCII characters. If this
parameter is not NULL, it contains an application-supplied name for the application. The LINECALLINFO
structure provides this name to indicate, in a user-friendly way, which application originated, originally
accepted, or answered the call. This information can prove useful for call-logging purposes. If
lpszFriendlyAppName is NULL, the module filename of the application gets used instead (as returned
by the Windows API GetModuleFileName).

Basic TAPI Implementation
34

Basic TAPI Implementation
lineInitializeEx

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location gets
filled with the number of line devices that are available to the application.

lpdwAPIVersion

A pointer to a DWORD-sized location. The application must initialize this DWORD, before calling this
function, to the highest API version that it is designed to support (for example, the same value that it
would pass into dwAPIHighVersion parameter of lineNegotiateAPIVersion). Make sure that artificially
high values are not used; ensure that the value is set to 0x00020000. TAPI translates any newer messages
or structures into values or formats that the application supports. Upon successful completion of this
request, this location is filled with the highest API version that TAPI supports, which allows the application
to adapt to being installed on a system with an older TAPI version.

lpLineInitializeExParams

A pointer to a structure of type LINEINITIALIZEEXPARAMS that contains additional parameters that
are used to establish the association between the application and TAPI (specifically, the selected event
notification mechanism of the application and associated parameters).

lineMakeCall
The lineMakeCall function places a call on the specified line to the specified destination address. Optionally,
you can specify call parameters if anything but default call setup parameters are requested.

Function Details

LONG lineMakeCall(HLINE hLine,
LPHCALL lphCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode,
LPLINECALLPARAMS const lpCallParams
);
typedef struct LineParams {
DWORD FeaturePriority;

Parameters

hLine

A handle to the open line device on which a call is to be originated.

lphCall

A pointer to an HCALL handle. The handle is only valid after the application receives LINE_REPLY
message that indicates that the lineMakeCall function successfully completed. Use this handle to identify
the call when you invoke other telephony operations on the call. The application initially acts as the sole
owner of this call. This handle registers as void if the reply message returns an error (synchronously or
asynchronously).

lpszDestAddress

A pointer to the destination address. This parameter follows the standard dialable number format. This
pointer can be NULL for non-dialed addresses or when all dialing is performed by using lineDial. In the
latter case, lineMakeCall allocates an available call appearance that would typically remain in the dial
tone state until dialing begins.

Basic TAPI Implementation
35

Basic TAPI Implementation
lineMakeCall

dwCountryCode

The country code of the called party. If a value of 0 is specified, the implementation uses a default.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and if specified as non-zero,
automatically disconnects a call if not answered after the specified time. For more information, see
LINECALLPARAMS.

lineMonitorDigits
The lineMonitorDigits function enables and disables the unbuffered detection of digits that are received on
the call. Each time that a digit of the specified digit mode is detected, a message gets sent to the application
to indicate which digit has been detected.

Function Details

LONG lineMonitorDigits(HCALL hCall,
DWORD dwDigitModes

);

Parameters

hCall

A handle to the call on which digits are to be detected. The call state of hCall can be any state except
idle or disconnected.

dwDigitModes

The digit mode or modes that are to be monitored. If dwDigitModes is zero, the system cancels digit
monitoring. This parameter which can have multiple flags set, uses the following
LINEDIGITMODE_constant:

LINEDIGITMODE_DTMF -Detect digits as DTMF tones. Valid digits for DTMF include ‘0’ through
‘9’, ‘*’, and ‘#’.

lineMonitorTones
The lineMonitorTones function enables and disables the detection of inband tones on the call. Each time that
a specified tone is detected, a message gets sent to the application.

Function Details

LONG lineMonitorTones(HCALL hCall,
LPLINEMONITORTONE const lpToneList,
DWORD dwNumEntries

);

Basic TAPI Implementation
36

Basic TAPI Implementation
lineMonitorDigits

cucm_b_tapi-dev-guide-14_chapter6.pdf#nameddest=unique_186

Parameters

hCall

A handle to the call on which tones are to be detected. The call state of hCall can be any state except
idle.

lpToneList

A list of tones to be monitored, of type LINEMONITORTONE. Each tone in this list has an
application-defined tag field that is used to identify individual tones in the list to report a tone detection.
Calling this operation with either NULL for lpToneList or with another tone list cancels or changes tone
monitoring in progress.

dwNumEntries

The number of entries in lpToneList. This parameter gets ignored if lpToneList is NULL.

lineNegotiateAPIVersion
The lineNegotiateAPIVersion function allows an application to negotiate an API version to use. The Cisco
Unified TSP supports TAPI 2.0 and 2.1.

Function Details

LONG lineNegotiateAPIVersion(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPILowVersion,
DWORD dwAPIHighVersion,
LPDWORD lpdwAPIVersion,
LPLINEEXTENSIONID lpExtensionID

);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPILowVersion

The least recent API version with which the application is compliant. The high-order word specifies the
major version number; the low-order word specifies the minor version number.

dwAPIHighVersion

The most recent API version with which the application is compliant. The high-order word specifies the
major version number; the low-order word specifies the minor version number.

lpdwAPIVersion

A pointer to a DWORD-sized location that contains the API version number that was negotiated. If
negotiation succeeds, this number falls in the range between dwAPILowVersion and dwAPIHighVersion.

Basic TAPI Implementation
37

Basic TAPI Implementation
lineNegotiateAPIVersion

lpExtensionID

Apointer to a structure of type LINEEXTENSIONID. If the service provider for the specified dwDeviceID
supports provider-specific extensions, upon a successful negotiation, this structure gets filled with the
extension identifier of these extensions. This structure contains all zeros if the line provides no extensions.
An application can ignore the returned parameter if it does not use extensions.

The Cisco Unified TSP extensionID specifies 0x8EBD6A50, 0x138011d2, 0x905B0060, 0xB03DD275.

lineNegotiateExtVersion
The lineNegotiateExtVersion function allows an application to negotiate an extension version to use with the
specified line device. Do not call this operation if the application does not support extensions.

Function Details

LONG lineNegotiateExtVersion(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
DWORD dwExtLowVersion,
DWORD dwExtHighVersion,
LPDWORD lpdwExtVersion

);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The API version number that was negotiated for the specified line device by using
lineNegotiateAPIVersion.

dwExtLowVersion

The least recent extension version of the extension identifier that lineNegotiateAPIVersion returns and
with which the application is compliant. The high-order word specifies the major version number; the
low-order word specifies the minor version number.

dwExtHighVersion

The most recent extension version of the extension identifier that lineNegotiateAPIVersion returns and
with which the application is compliant. The high-order word specifies the major version number; the
low-order word specifies the minor version number.

lpdwExtVersion

A pointer to a DWORD-sized location that contains the extension version number that was negotiated.
If negotiation succeeds, this number falls between dwExtLowVersion and dwExtHighVersion.

Basic TAPI Implementation
38

Basic TAPI Implementation
lineNegotiateExtVersion

lineOpen
The lineOpen function opens the line device that its device identifier specifies and returns a line handle for
the corresponding opened line device. Subsequent operations on the line device use this line handle.

Function Details

LONG lineOpen(HLINEAPP hLineApp,
DWORD dwDeviceID,
LPHLINE lphLine,
DWORD dwAPIVersion,
DWORD dwExtVersion,
DWORD dwCallbackInstance,
DWORD dwPrivileges,
DWORD dwMediaModes,
LPLINECALLPARAMS const lpCallParams

);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

Identifies the line device to be opened. It can either be a valid device identifier or the value LINEMAPPER

The Cisco Unified TSP does not support LINEMAPPER at this time.Note

lphLine

A pointer to an HLINE handle that is then loaded with the handle that represents the opened line device.
Use this handle to identify the device when you are invoking other functions on the open line device.

dwAPIVersion

The API version number under which the application and Telephony API operate. Obtain this number
with lineNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service provider operate. This number
remains zero if the application does not use any extensions. Obtain this number with
lineNegotiateExtVersion.

dwCallbackInstance

User-instance data that is passed back to the application with each message that is associated with this
line or with addresses or calls on this line. The Telephony API does not interpret this parameter.

dwPrivileges

The privilege that the application wants for the calls for which it is notified. This parameter can be a
combination of the LINECALLPRIVILEGE_ constants. For applications that are using TAPI version
2.0 or later, values for this parameter can also be combined with the LINEOPENOPTION_constants:

Basic TAPI Implementation
39

Basic TAPI Implementation
lineOpen

• LINECALLPRIVILEGE_NONE -The application can make only outgoing calls.

• LINECALLPRIVILEGE_MONITOR -The application can monitor only incoming and outgoing
calls.

• LINECALLPRIVILEGE_OWNER -The application can own only incoming calls of the types that
are specified in dwMediaModes.

• LINECALLPRIVILEGE_MONITOR + LINECALLPRIVILEGE_OWNER -The application can
own only incoming calls of the types that are specified in dwMediaModes, but if the application
does not represent an owner of a call, it acts as a monitor.

• Other flag combinations return the LINEERR_INVALPRIVSELECT error.

dwMediaModes

The media mode or modes of interest to the application. Use this parameter to register the application as
a potential target for incoming call and call handoff for the specified media mode. This parameter proves
meaningful only if the bit LINECALLPRIVILEGE_OWNER in dwPrivileges is set (and ignored if it is
not).

This parameter uses the following LINEMEDIAMODE_constant:

• LINEMEDIAMODE_INTERACTIVEVOICE -The application can handle calls of the interactive
voice media type; that is, it manages voice calls with the user on this end of the call. Use this
parameter for third-party call control of physical phones and CTI port and CTI route point devices
that other applications opened.

• LINEMEDIAMODE_AUTOMATEDVOICE -Voice energy exists on the call. An automated
application locally handles the voice. This represents first-party call control and is used with CTI
port and CTI route point devices.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and if it is non-zero, automatically
disconnects a call if it is not answered after the specified time.

linePark
The linePark function parks the specified call according to the specified park mode.

Function Details

LONG WINAPI linePark(HCALL hCall,
DWORD dwParkMode,
LPCSTR lpszDirAddress,
LPVARSTRING lpNonDirAddress
);

Parameters

hCall

Handle to the call to be parked. The application must act as an owner of the call. The call state of hcall
must be connected.

Basic TAPI Implementation
40

Basic TAPI Implementation
linePark

dwParkMode

Park mode with which the call is parked. This parameter can have only a single flag set and uses one of
the LINEPARKMODE_Constants.

Ensure that LINEPARKMODE_Constants is set to LINEPARKMODE_NONDIRECTED.Note

lpszDirAddress

Pointer to a null-terminated string that indicates the address where the call is to be parked when directed
park is used. The address specifies in dialable number format. This parameter gets ignored for nondirected
park.

This parameter gets ignored.Note

lpNonDirAddress

Pointer to a structure of type VARSTRING. For nondirected park, the address where the call is parked
gets returned in this structure. This parameter gets ignored for directed park. Within the VARSTRING
structure, ensure that dwStringFormat is set to STRINGFORMAT_ASCII (an ASCII string buffer that
contains a null-terminated string), and the terminating NULLmust be accounted for in the dwStringSize.
Before calling linePark, the application must set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

linePrepareAddToConference
The linePrepareAddToConference function prepares an existing conference call for the addition of another
party.

If LINEERR_INVALLINESTATE is returned, that means that the line is currently not in a state in which this
operation can be performed. The dwLineFeatures member includes a list of currently valid operations (of the
type LINEFEATURE) in the LINEDEVSTATUS structure. (Calling lineGetLineDevStatus updates the
information in LINEDEVSTATUS.)

Obtain a conference call handle with lineSetupConference or with lineCompleteTransfer that is resolved as
a three-way conference call. The linePrepareAddToConference function typically places the existing conference
call in the onHoldPendingConference state and creates a consultation call that can be added later to the existing
conference call with lineAddToConference.

You can cancel the consultation call by using lineDrop. You may also be able to swap an application between
the consultation call and the held conference call with lineSwapHold.

Function Details

LONG WINAPI linePrepareAddToConference(HCALL hConfCall,
LPHCALL lphConsultCall,
LPLINECALLPARAMS const lpCallParams

);

Basic TAPI Implementation
41

Basic TAPI Implementation
linePrepareAddToConference

Parameters

hConfCall

A handle to a conference call. The application must act as an owner of this call. Ensure that the call state
of hConfCall is connected.

lphConsultCall

A pointer to an HCALL handle. This location then gets loaded with a handle that identifies the consultation
call to be added. Initially, the application serves as the sole owner of this call.

lpCallParams

A pointer to call parameters that gets used when the consultation call is established. You can set this
parameter to NULL if no special call setup parameters are desired.

Return Values

Returns a positive request identifier if the function completes asynchronously, or a negative number if an
error occurs. The dwParam2 parameter of the corresponding LINE_REPLY message specifies zero if the
function succeeds, or it is a negative number if an error occurs.

Possible return values follow:

• LINEERR_BEARERMODEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_CALLUNAVAIL

• LINEERR_INVALRATE

• LINEERR_CONFERENCEFULL

• LINEERR_NOMEM

• LINEERR_INUSE

• LINEERR_NOTOWNER

• LINEERR_INVALADDRESSMODE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALBEARERMODE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLPARAMS

• LINEERR_RATEUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCONFCALLHANDLE

• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALLINESTATE

Basic TAPI Implementation
42

Basic TAPI Implementation
linePrepareAddToConference

• LINEERR_USERUSERINFOTOOBIG

• LINEERR_INVALMEDIAMODE

• LINEERR_UNINITIALIZED

lineRedirect
The lineRedirect function redirects the specified offered or accepted call to the specified destination address.

If the application tries to redirect a call to an address that requires a FAC, CMC, or both, the lineRedirect
function returns an error. If a FAC is required, the TSP returns the message LINEERR_FACREQUIRED. If
a CMC is required, the TSP returns the message LINEERR_CMCREQUIRED. If both a FAC and a CMC
are required, the TSP returns the message LINEERR_FACANDCMCREQUIRED. An application that wants
to redirect a call to an address that requires a FAC, CMC, or both, should use the lineDevSpecific
RedirectFACCMC function.

Note

Function Details

LONG lineRedirect(HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

);

Parameters

hCall

A handle to the call to be redirected. The application must act as an owner of the call. The call state of
hCall must be offering, accepted, or connected.

The Cisco Unified TSP supports redirecting of calls in the connected call state.Note

lpszDestAddress

A pointer to the destination address. This follows the standard dialable number format.

dwCountryCode

The country code of the party to which the call is redirected. If a value of 0 is specified, the implementation
uses a default.

lineRegisterRequestRecipient
The lineRegisterRequestRecipient function registers the invoking application as a recipient of requests for
the specified request mode.

Basic TAPI Implementation
43

Basic TAPI Implementation
lineRedirect

Function Details

LONG WINAPI lineRegisterRequestRecipient(HLINEAPP hLineApp,
DWORD dwRegistrationInstance,
DWORD dwRequestMode,
DWORD bEnable

);

Parameters

hLineApp

The application's usage handle for the line portion of TAPI.

dwRegistrationInstance

An application-specific DWORD that is passed back as a parameter of the LINE_REQUEST message.
This message notifies the application that a request is pending. This parameter gets ignored if bEnable
is set to zero. TAPI examines this parameter only for registration, not for deregistration. The
dwRegistrationInstance value that is used while deregistering need not match the dwRegistrationInstance
that is used while registering for a request mode.

dwRequestMode

The type or types of request for which the application registers. This parameter uses one or more
LINEREQUESTMODE_Constants.

bEnable

If TRUE, the application registers the specified request modes; if FALSE, the application deregisters for
the specified request modes.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALAPPHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALREQUESTMODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineRemoveFromConference
The lineRemoveFromConference function removes a specified call from the conference call to which it
currently belongs. The remaining calls in the conference call are unaffected.

Basic TAPI Implementation
44

Basic TAPI Implementation
lineRemoveFromConference

Function Details

LONG WINAPI lineRemoveFromConference(HCALL hCall
);

Parameters

hCall

Handle to the call that is to be removed from the conference. The application must be an owner of this
call. The call state of hCall must be conference.

Return Values

Returns a positive request identifier if the function is completed asynchronously, or a negative number if an
error occurs. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if the function
succeeds or it is a negative number if an error occurs. The following table shows the return values for this
function:

DescriptionValue

The handle to the call that is to be removed is invalid.LINEERR_INVALCALLHANDLE

The operation is unavailable.LINEERR_OPERATIONUNAVAIL

The call state is something other than conferenced.LINEERR_INVALCALLSTATE

The operation failed.LINEERR_OPERATIONFAILED

Not enough memory.LINEERR_NOMEM

The resources are unavailable.LINEERR_RESOURCEUNAVAIL

The application is not the owner of this call.LINEERR_NOTOWNER

A parameter is uninitialized.LINEERR_UNINITIALIZED

lineRemoveProvider
The lineRemoveProvider function removes an existing telephony service provider from the system.

Function Details

LONG WINAPI lineRemoveProvider(DWORD dwPermanentProviderID,
HWND hwndOwner

);

Parameters

dwPermanentProviderID

The permanent provider identifier of the service provider that is to be removed.

Basic TAPI Implementation
45

Basic TAPI Implementation
lineRemoveProvider

hwndOwner

A handle to a window to which any dialog boxes that need to be displayed as part of the removal process
(for example, a confirmation dialog box by the service provider's TSPI_providerRemove function) would
be attached. The parameter can be a NULL value to indicate that any window that is created during the
function should have no owner window.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALPARAM

• LINEERR_OPERATIONFAILED

lineSetAppPriority
The lineSetAppPriority function allows an application to set its priority in the handoff priority list for a
particular media type or Assisted Telephony request mode or to remove itself from the priority list.

Function Details

LONG WINAPI lineSetAppPriority(LPCSTR lpszAppFilename,
DWORD dwMediaMode,
LPLINEEXTENSIONID lpExtensionID,
DWORD dwRequestMode,
LPCSTR lpszExtensionName,
DWORD dwPriority

);

Parameters

lpszAppFilename

A pointer to a string that contains the application executable module filename (without directory
information). In TAPI version 2.0 or later, the parameter can specify a filename in either long or 8.3
filename format.

dwMediaMode

The media type for which the priority of the application is to be set. The value can be one
LINEMEDIAMODE_Constant; only a single bit may be on. Use the value zero to set the application
priority for Assisted Telephony requests.

lpExtensionID

A pointer to a structure of type LINEEXTENSIONID. This parameter gets ignored.

dwRequestMode

If the dwMediaMode parameter is zero, this parameter specifies the Assisted Telephony request mode
for which priority is to be set. It must be either LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL. This parameter gets ignored if dwMediaMode is nonzero.

Basic TAPI Implementation
46

Basic TAPI Implementation
lineSetAppPriority

lpszExtensionName

This parameter gets ignored.

dwPriority

The new priority for the application. If the value 0 is passed, the application gets removed from the
priority list for the specified media or request mode (if it was already not present, no error gets generated).
If the value 1 is passed, the application gets inserted as the highest priority application for the media or
request mode (and removed from a lower-priority position, if it was already in the list). Any other value
generates an error.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INIFILECORRUPT

• LINEERR_INVALREQUESTMODE

• LINEERR_INVALAPPNAME

• LINEERR_NOMEM

• LINEERR_INVALMEDIAMODE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPARAM

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

lineSetCallPrivilege
The lineSetCallPrivilege function sets the application privilege to the specified privilege.

Function Details

LONG WINAPI lineSetCallPrivilege(HCALL hCall,
DWORD dwCallPrivilege

);

Parameters

hCall

A handle to the call whose privilege is to be set. The call state of hCall can be any state.

dwCallPrivilege

The privilege that the application can have for the specified call. This parameter uses one and only one
LINECALLPRIVILEGE_Constant.

Basic TAPI Implementation
47

Basic TAPI Implementation
lineSetCallPrivilege

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLSTATE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCALLPRIVILEGE

• LINEERR_UNINITIALIZED

• LINEERR_NOMEM

lineSetNumRings
The lineSetNumRings function sets the number of rings that must occur before an incoming call is answered.
Use this function to implement a toll saver-style function. It allows multiple, independent applications to each
register the number of rings. The function lineGetNumRings returns the minimum number of rings that are
requested. The application that answers incoming calls can use it to determine the number of rings that it
should wait before answering the call.

Function Details

LONG WINAPI lineSetNumRings(HLINE hLine,
DWORD dwAddressID,
DWORD dwNumRings

);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the line device. An address identifier permanently associates with an address; the identifier
remains constant across operating system upgrades.

dwNumRings

The number of rings before a call should be answered to honor the toll saver requests from all applications.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALADDRESSID

Basic TAPI Implementation
48

Basic TAPI Implementation
lineSetNumRings

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineSetStatusMessages
The lineSetStatusMessages function enables an application to specify the notification messages to receive for
events that are related to status changes for the specified line or any of its addresses.

Function Details

LONG lineSetStatusMessages(HLINE hLine,
DWORD dwLineStates,
DWORD dwAddressStates

);

Parameters

hLine

A handle to the line device.

dwLineStates

A bit array that identifies for which line-device status changes a message is to be sent to the application.
This parameter uses the following LINEDEVSTATE_constants:

• LINEDEVSTATE_OTHER -Device-status items other than the following ones changed. The
application should check the current device status to determine which items changed.

• LINEDEVSTATE_RINGING -The switch tells the line to alert the user. Service providers notify
applications on each ring cycle by sending LINE_LINEDEVSTATE messages that contain this
constant. For example, in the United States, service providers send a message with this constant
every 6 seconds.

• LINEDEVSTATE_NUMCALLS -The number of calls on the line device changed.

• LINEDEVSTATE_REINIT -Items changed in the configuration of line devices. To become aware
of these changes (as with the appearance of new line devices) the application should reinitialize its
use of TAPI. New lineInitialize, lineInitializeEx, and lineOpen requests get denied until applications
have shut down their usage of TAPI. The hDevice parameter of the LINE_LINEDEVSTATE
message remains NULL for this state change as it applies to any lines in the system. Because of the
critical nature of LINEDEVSTATE_REINIT, such messages cannot be masked, so the setting of
this bit is ignored, and the messages always get delivered to the application.

• LINEDEVSTATE_REMOVED -Indicates that the service provider is removing the device from
the system (most likely through user action, through a control panel or similar utility). Normally, a
LINE_CLOSEmessage on the device immediately follows LINE_LINEDEVSTATEmessage with
this value. Subsequent attempts to access the device prior to TAPI being reinitialized result in
LINEERR_NODEVICE being returned to the application. If a service provider sends a
LINE_LINEDEVSTATE message that contains this value to TAPI, TAPI passes it along to
applications that have negotiated TAPI version 1.4 or later; applications that negotiate a previous
TAPI version do not receive any notification.

Basic TAPI Implementation
49

Basic TAPI Implementation
lineSetStatusMessages

dwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application.
This parameter uses the following LINEADDRESSSTATE_constant:

• LINEADDRESSSTATE_NUMCALLS -The number of calls on the address changed. This change
results from events such as a new incoming call, an outgoing call on the address, or a call changing
its hold status.

lineSetTollList
The lineSetTollList function manipulates the toll list.

Function Details

LONG WINAPI lineSetTollList(HLINEAPP hLineApp,
DWORD dwDeviceID,
LPCSTR lpszAddressIn,
DWORD dwTollListOption

);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the lineInitializeEx
function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations in
dialing procedures on different lines can be applied to the translation process.

lpszAddressIn

A pointer to a null-terminated string that contains the address from which the prefix information is to be
extracted for processing. Ensure that this parameter is not NULL, and also ensure that it is in the canonical
address format.

dwTollListOption

The toll list operation to be performed. This parameter uses one and only one of the
LINETOLLLISTOPTION_Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_BADDEVICEID

• LINEERR_NODRIVER

• LINEERR_INVALAPPHANDLE

• LINEERR_NOMEM

• LINEERR_INVALADDRESS

Basic TAPI Implementation
50

Basic TAPI Implementation
lineSetTollList

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPARAM

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INIFILECORRUPT

• LINEERR_UNINITIALIZED

• LINEERR_INVALLOCATION

lineSetupConference
The lineSetupConference function initiates a conference for an existing two-party call that the hCall parameter
specifies. A conference call and consult call are established, and the handles return to the application. Use the
consult call to dial the third party and the conference call replaces the initial two-party call. The application
can also specify the destination address of the consult call that will allow the PBX to dial the call for the
application.

Function Details

LONG lineSetupConference (HCALL hCall,
HLINE hLine,
LPHCALL lphConfCall,
LPHCALL lphConsultCall,
DWORD dwNumParties,
LPLINECALLPARAMS const lpCallParams
);

Parameters

hCall

The handle of the existing two-party call. Ensure that the application is the owner of the call.

hLine

The line on which the initial two-party call was made. This parameter is not used because hCall must be
set.

lphConfCall

A pointer to the conference call handle. The service provider allocates this call and returns the handle to
the application.

lphConsultCall

A pointer to the consult call. If the application does not specify the destination address in the call
parameters, it should use this call handle to dial the consult call. If the destination address is specified,
the consult call will be made using this handle.

dwNumParties

The number of parties in the conference call. Currently the Cisco Unified TAPI Service Provider supports
a three-party conference call.

Basic TAPI Implementation
51

Basic TAPI Implementation
lineSetupConference

lpCallParams

The call parameters that are used to set up the consult call. The application can specify the destination
address if it wants the consult call to be dialed for it in the conference setup.

lineSetupTransfer
The lineSetupTransfer function initiates a transfer of the call that the hCall parameter specifies. It establishes
a consultation call, lphConsultCall, on which the party can be dialed that can become the destination of the
transfer. The application acquires owner privilege to the lphConsultCall parameter.

Function Details

LONG lineSetupTransfer(HCALL hCall,
LPHCALL lphConsultCall,
LPLINECALLPARAMS const lpCallParams

);

Parameters

hCall

The handle of the call to be transferred. Ensure that the application is an owner of the call and ensure
that the call state of hCall is connected.

lphConsultCall

A pointer to an hCall handle. This location is then loaded with a handle that identifies the temporary
consultation call. When setting up a call for transfer, a consultation call automatically gets allocated that
enables lineDial to dial the address that is associated with the new transfer destination of the call. The
originating party can carry on a conversation over this consultation call prior to completing the transfer.
The call state of hConsultCall does not apply.

This transfer procedure may not be valid for some line devices. The application may need to ignore the
new consultation call and remove the hold on an existing held call (using lineUnhold) to identify the
destination of the transfer. On switches that support cross-address call transfer, the consultation call can
exist on a different address than the call that is to be transferred. It may also be necessary to set up the
consultation call as an entirely new call, by lineMakeCall, to the destination of the transfer. The address
capabilities of the call specifies which forms of transfer are available.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and, if is non-zero, used to
automatically disconnect a call if it is not answered after the specified time.

lineShutdown
The lineShutdown function shuts down the usage of the line abstraction of the API.

Function Details

LONG lineShutdown(HLINEAPP hLineApp
);

Basic TAPI Implementation
52

Basic TAPI Implementation
lineSetupTransfer

Parameters

hLineApp

The usage handle of the application for the line API.

lineTranslateAddress
The lineTranslateAddress function translates the specified address into another format.

Function Details

LONG WINAPI lineTranslateAddress(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
LPCSTR lpszAddressIn,
DWORD dwCard,
DWORD dwTranslateOptions,
LPLINETRANSLATEOUTPUT lpTranslateOutput

);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If a TAPI 2.0 application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL. TAPI 1.4 applications must still
call lineInitialize first.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations in
dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI that the application supports (not necessarily the value that is
negotiated by lineNegotiateAPIVersion on some particular line device).

lpszAddressIn

Pointer to a null-terminated string that contains the address from which the information is to be extracted
for translation. This parameter must either use the canonical address format or an arbitrary string of
dialable digits (non-canonical). This parameter must not be NULL. If the AddressIn contains a subaddress
or name field, or additional addresses separated from the first address by CR and LF characters, only the
first address gets translated.

dwCard

The credit card to be used for dialing. This parameter proves valid only if the CARDOVERRIDE bit is
set in dwTranslateOptions. This parameter specifies the permanent identifier of a Card entry in the [Cards]
section in the registry (as obtained from lineTranslateCaps) that should be used instead of the
PreferredCardID that is specified in the definition of the CurrentLocation. It does not cause the
PreferredCardID parameter of the current Location entry in the registry to be modified; the override
applies only to the current translation operation. This parameter gets ignored if the CARDOVERRIDE
bit is not set in dwTranslateOptions.

Basic TAPI Implementation
53

Basic TAPI Implementation
lineTranslateAddress

dwTranslateOptions

The associated operations to be performed prior to the translation of the address into a dialable string.
This parameter uses one of the LINETRANSLATEOPTION_Constants.

If you have set the LINETRANSLATEOPTION_CANCELCALLWAITING bit, also set the
LINECALLPARAMFLAGS_SECUREbit in the dwCallParamFlagsmember of the LINECALLPARAMS
structure (passed in to lineMakeCall through the lpCallParams parameter). This action prevents the line
device from using dialable digits to suppress call interrupts.

Note

lpTranslateOutput

A pointer to an application-allocated memory area to contain the output of the translation operation, of
type LINETRANSLATEOUTPUT. Prior to calling lineTranslateAddress, the application should set the
dwTotalSize member of this structure to indicate the amount of memory that is available to TAPI for
returning information.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_BADDEVICEID

• LINEERR_INVALPOINTER

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_NODRIVER

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALADDRESS

• LINEERR_OPERATIONFAILED

• LINEERR_INVALAPPHANDLE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCARD

• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALPARAM

lineTranslateDialog
The lineTranslateDialog function displays an application-modal dialog box that allows the user to change the
current location of a phone number that is about to be dialed, adjust location and calling card parameters, and
see the effect.

Basic TAPI Implementation
54

Basic TAPI Implementation
lineTranslateDialog

Function Details

LONG WINAPI lineTranslateDialog(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
HWND hwndOwner,
LPCSTR lpszAddressIn

);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the lineInitializeEx
function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations in
dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on the line device that dwDeviceID indicates).

hwndOwner

A handle to a window to which the dialog box is to be attached. Can be a NULL value to indicate that
any window that is created during the function should have no owner window.

lpszAddressIn

A pointer to a null-terminated string that contains a phone number that is used, in the lower portion of
the dialog box, to show the effect of the user's changes on the location parameters. Ensure that the number
is in canonical format; if noncanonical, the phone number portion of the dialog box does not display.
You can leave this pointer NULL, in which case the phone number portion of the dialog box does not
display. If the lpszAddressIn parameter contains a subaddress or name field, or additional addresses
separated from the first address by CR and LF characters, only the first address gets used in the dialog
box.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_BADDEVICEID

• LINEERR_INVALPARAM

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_INVALPOINTER

• LINEERR_INIFILECORRUPT

• LINEERR_NODRIVER

• LINEERR_INUSE

• LINEERR_NOMEM

Basic TAPI Implementation
55

Basic TAPI Implementation
lineTranslateDialog

• LINEERR_INVALADDRESS

• LINEERR_INVALAPPHANDLE

• LINEERR_OPERATIONFAILED

lineUnhold
The lineUnhold function retrieves the specified held call.

Function Details

LONG lineUnhold(HCALL hCall
);

Parameters

hCall

The handle to the call to be retrieved. The application must be an owner of this call. The call state of
hCall must be onHold, onHoldPendingTransfer, or onHoldPendingConference.

lineUnpark
The lineUnpark function retrieves the call that is parked at the specified address and returns a call handle for
it.

Function Details

LONG WINAPI lineUnpark(HLINE hLine,
DWORD dwAddressID,
LPHCALL lphCall,
LPCSTR lpszDestAddress
);

Parameters

hLine

Handle to the open line device on which a call is to be unparked.

dwAddressID

Address on hLine at which the unpark is to be originated. An address identifier permanently associates
with an address; the identifier remains constant across operating system upgrades.

lphCall

Pointer to the location of type HCALL where the handle to the unparked call is returned. This handle is
unrelated to any other handle that previously may have been associated with the retrieved call, such as
the handle that might have been associated with the call when it was originally parked. The application
acts as the initial sole owner of this call.

Basic TAPI Implementation
56

Basic TAPI Implementation
lineUnhold

lpszDestAddress

Pointer to a null-terminated character buffer that contains the address where the call is parked. The address
displays in standard dialable address format.

TAPI Line Messages
This section describes the line messages that the Cisco Unified TSP supports. These messages notify the
application of asynchronous events such as a new call arriving in the Cisco Unified CommunicationsManager.
The messages get sent to the application by the method that the application specifies in lineInitializeEx

.

Table 2: TAPI Line Messages

TAPI Line Messages

LINE_ADDRESSSTATE, on page 58

LINE_APPNEWCALL, on page 59

LINE_CALLDEVSPECIFIC, on page 60

LINE_CALLINFO, on page 60

LINE_CALLSTATE, on page 61

LINE_CLOSE, on page 65

LINE_CREATE, on page 65

LINE_DEVSPECIFIC, on page 66

LINE_DEVSPECIFICFEATURE, on page 67

LINE_GATHERDIGITS, on page 68

LINE_GENERATE, on page 69

LINE_LINEDEVSTATE, on page 70

LINE_MONITORDIGITS, on page 71

LINE_MONITORTONE, on page 71

LINE_REMOVE, on page 72

LINE_REPLY, on page 73

LINE_REQUEST, on page 74

Basic TAPI Implementation
57

Basic TAPI Implementation
TAPI Line Messages

LINE_ADDRESSSTATE
The LINE_ADDRESSSTATE message gets sent when the status of an address changes on a line that is
currently open by the application. The application can invoke lineGetAddressStatus to determine the current
status of the address.

Function Details

LINE_ADDRESSSTATE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idAddress;
dwParam2 = (DWORD) AddressState;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device.

dwCallbackInstance

The callback instance supplied when the line is opened.

dwParam1

The address identifier of the address that changed status.

dwParam2

The address state that changed. Can be a combination of these values:

LINEADDRESSSTATE_OTHER

Address-status items other than those that are in the following list changed. The application should
check the current address status to determine which items changed.

LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status changed.

LINEADDRESSSTATE_INUSEZERO

The address changed to idle (it is now in use by zero stations).

LINEADDRESSSTATE_INUSEONE

The address changed from idle or from being used by many bridged stations to being used by just
one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address changed from being used by one station to being used by more
than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This change results from events such as a new
inbound call, an outbound call on the address, or a call changing its hold status.

Basic TAPI Implementation
58

Basic TAPI Implementation
LINE_ADDRESSSTATE

LINEADDRESSSTATE_FORWARD

The forwarding status of the address changed, including the number of rings for determining a
no-answer condition. The application should check the address status to determine details about the
current forwarding status of the address.

LINEADDRESSSTATE_TERMINALS

The terminal settings for the address changed.

LINEADDRESSSTATE_CAPSCHANGE

Indicates that due to configuration changes that the user made, or other circumstances, one or more
of the members in the LINEADDRESSCAPS structure for the address changed. The application
should use lineGetAddressCaps to read the updated structure. Applications that support API versions
earlier than 1.4 receive a LINEDEVSTATE_REINIT message that requires them to shut down and
reinitialize their connection to TAPI to obtain the updated information.

dwParam3

This parameter is not used.

LINE_APPNEWCALL
The LINE_APPNEWCALLmessage informs an application when a new call handle is spontaneously created
on its behalf (other than through an API call from the application, in which case the handle would have been
returned through a pointer parameter that passed into the function).

Function Details

LINE_APPNEWCALL
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) dwInstanceData;
dwParam1 = (DWORD) dwAddressID;
dwParam2 = (DWORD) hCall;
dwParam3 = (DWORD) dwPrivilege;

Parameters

dwDevice

The handle of the application to the line device on which the call was created.

dwCallbackInstance

The callback instance that is supplied when the line belonging to the call is opened.

dwParam1

Identifier of the address on the line on which the call appears.

dwParam2

The handle of the application to the new call.

dwParam3

The privilege of the application to the new call (LINECALLPRIVILEGE_OWNER or
LINECALLPRIVILEGE_MONITOR).

Basic TAPI Implementation
59

Basic TAPI Implementation
LINE_APPNEWCALL

LINE_CALLDEVSPECIFIC
The TSPI LINE_CALLDEVSPECIFICmessage is sent to notify TAPI about device-specific events that occur
on a call. The meaning of the message and the interpretation of the dwParam1 through dwParam3 parameters
are device specific.

Function Details

LINE_CALLDEVSPECIFIC
htLine = (HTAPILINE) hLineDevice;
htCall = (HTAPICALL) hCallDevice;
dwMsg = (DWORD) LINE_CALLDEVSPECIFIC;
dwParam1 = (DWORD) DeviceData1;
dwParam2 = (DWORD) DeviceData2;
dwParam3 = (DWORD) DeviceData3;

Parameters

htLine

The TAPI opaque object handle to the line device.

htCall

The TAPI opaque object handle to the call device.

dwMsg

The value LINE_CALLDEVSPECIFIC.

dwParam1

Device specific

dwParam2

Device specific

dwParam3

Device specific

LINE_CALLINFO
The TAPI LINE_CALLINFOmessage gets sent when the call information about the specified call has changed.
The application can invoke lineGetCallInfo to determine the current call information.

Function Details

LINE_CALLINFO
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) CallInfoState;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Basic TAPI Implementation
60

Basic TAPI Implementation
LINE_CALLDEVSPECIFIC

Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the call's line is opened.

dwParam1

The call information item that changed. Can be one or more of the

LINECALLINFOSTATE_constants.

dwParam2

This parameter is not used.

dwParam3

This parameter is not used.

LINE_CALLSTATE
The LINE_CALLSTATE message gets sent when the status of the specified call changes. Typically, several
such messages occur during the lifetime of a call. Applications get notified of new incoming calls with this
message; the new call exists in the offering state. The application can use the lineGetCallStatus function to
retrieve more detailed information about the current status of the call.

Function Details

LINE_CALLSTATE
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) CallState;
dwParam2 = (DWORD) CallStateDetail;
dwParam3 = (DWORD) CallPrivilege;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line that belongs to this call is opened.

dwParam1

The new call state. Cisco Unified TSP supports only the following LINECALLSTATE_values:

LINECALLSTATE_IDLE

The call remains idle; no call actually exists.

Basic TAPI Implementation
61

Basic TAPI Implementation
LINE_CALLSTATE

LINECALLSTATE_OFFERING

The call gets offered to the station, which signals the arrival of a new call. In some environments,
a call in the offering state does not automatically alert the user. The switch that instructs the line to
ring does alerts; it does not affect any call states.

LINECALLSTATE_ACCEPTED

The system offered the call and it has been accepted. This indicates to other (monitoring) applications
that the current owner application claimed responsibility for answering the call. In ISDN, this also
indicates that alerting to both parties started.

LINECALLSTATE_CONFERENCED

The call is a member of a conference call and is logically in the connected state.

LINECALLSTATE_DIALTONE

The call receives a dial tone from the switch, which means that the switch is ready to receive a
dialed number.

LINECALLSTATE_DIALING

Destination address information (a phone number) is sent to the switch over the call. The
lineGenerateDigits does not place the line into the dialing state.

LINECALLSTATE_RINGBACK

The call receives ringback from the called address. Ringback indicates that the call has reached the
other station and is being alerted.

LINECALLSTATE_ONHOLDPENDCONF

The call currently remains on hold while it gets added to a conference.

LINECALLSTATE_CONNECTED

The call is established and the connection is made. Information can flow over the call between the
originating address and the destination address.

LINECALLSTATE_PROCEEDING

Dialing completes and the call proceeds through the switch or telephone network.

LINECALLSTATE_ONHOLD

The switch keeps the call on hold.

LINECALLSTATE_ONHOLDPENDTRANSFER

The call that is currently on hold awaits transfer to another number.

LINECALLSTATE_DISCONNECTED

The remote party disconnected from the call.

LINECALLSTATE_UNKNOWN

The state of the call is not known. This state may occur due to limitations of the call-progress
detection implementation.

Cisco Unified TSP supports two new call states that indicate more information about the call state
within the Cisco Unified Communications Manager setup. The standard TAPI call state is set to

Basic TAPI Implementation
62

Basic TAPI Implementation
LINE_CALLSTATE

LINECALLSTATE_UNKNOWN and the following call states will be ORed with the unknown
call state.

#define CLDSMT_CALL_PROGRESSING_STATE 0x0100000

The Progressing state indicates that the call is in progress over the network. The application must
negotiate extension version 0x00050001 to receive this call state.

#define CLDSMT_CALL_WAITING_STATE 0x02000000

The waiting state indicates that the REFER request is in progress on Referrer's line and the application
should not request any other function on this call. All the requests will result in
LINEERR_INVALCALLSTATE. Application has to negotiate extension version 0x00070000 to
receive this call state.

#define CLDSMT_CALL_WHISPER_STATE 0x03000000

The whisper state indicates that the Intercom call is connected in one-way audio mode. The Intercom
originator cannot issue other function other that to drop the Intercom call. While at destination side,
the system allows only Talkback and dropping call. All other requests result in
LINEERR_OPERATIONUNAVAIL.

dwParam2

Call-state-dependent information.

• If dwParam1 is LINECALLSTATE_CONNECTED, dwParam2 contains details about the connected
mode. This parameter uses the following LINECONNECTEDMODE_constants:

LINECONNECTEDMODE_ACTIVE

Call connects at the current station (the current station acts as a participant in the call).

LINECONNECTEDMODE_INACTIVE

Call stays active at one or more other stations, but the current station does not participate in the call.

When a call is disconnected with cause code = DISCONNECTMODE_TEMPFAILURE and the
lineState = LINEDEVSTATE_INSERVICE, applications must take care of dropping the call. If the
application terminates media for a device, then it is also takes the responsibility to stop the RTP
streams for the same call. Cisco Unified TSP will not provide Stop Transmission/Reception events
to applications in this scenario. The behavior is exactly the same with IP phones. The user must
hang up the disconnected -temp fail call on IP phone to stop the media. The application is also
responsible for stopping the RTP streams in case the line goes out of service
(LINEDEVSTATE_OUTOFSERVICE) and the call on a line is reported as IDLE.

If an applicationwith negotiated extension version 0x00050001 or greater receives
device-specific CLDSMT_CALL_PROGRESSING_STATE = 0x01000000with
LINECALLSTATE_UNKNOWN, the cause code is reported as the standard
Q931 cause codes in dwParam2.

Note

• If dwParam1 specifies LINECALLSTATE_DIALTONE, dwParam2 contains the details about the
dial tone mode. This parameter uses the following LINEDIALTONEMODE_constant:

LINEDIALTONEMODE_UNAVAIL

The dial tone mode is unavailable and cannot become known.

Basic TAPI Implementation
63

Basic TAPI Implementation
LINE_CALLSTATE

• If dwParam1 specifies LINECALLSTATE_OFFERING, dwParam2 contains details about the
connected mode. This parameter uses the following LINEOFFERINGMODE_constants:

LINEOFFERINGMODE_ACTIVE

The call alerts at the current station (accompanied by LINEDEVSTATE_RINGINGmessages) and,
if an application is set up to automatically answer, it answers. For TAPI versions 1.4 and later, if
the call state mode is ZERO, the application assumes that the value is active (which represents the
situation on a non-bridged address).

The Cisco Unified TSP does not send LINEDEVSTATE_RINGING messages
until the call is accepted and moves to the LINECALLSTATE_ACCEPTED
state. IP_phones auto-accept calls. CTI ports and CTI route points do not
auto-accept calls. Call the lineAccept() function to accept the call at these types
of devices.

Note

• If dwParam1 specifies LINECALLSTATE_DISCONNECTED, dwParam2 contains details about
the disconnect mode. This parameter uses the following LINEDISCONNECTMODE_constants:

LINEDISCONNECTMODE_NORMAL

This specifies a normal disconnect request by the remote party; call terminated normally.

LINEDISCONNECTMODE_UNKNOWN

The reason for the disconnect request remains unknown.

LINEDISCONNECTMODE_REJECT

The remote user rejected the call.

LINEDISCONNECTMODE_BUSY

The station that belongs to the remote user is busy.

LINEDISCONNECTMODE_NOANSWER

The station that belongs to the remote user does not answer.

LINEDISCONNECTMODE_CONGESTION

This message indicates that the network is congested.

LINEDISCONNECTMODE_UNAVAIL

The reason for the disconnect remains unavailable and cannot become known later.

LINEDISCONNECTMODE_FACCMC

Indicates that the FAC/CMC feature disconnected the call.

LINEDISCONNECTMODE_FACCMC is returned only if the extension version
that is negotiated on the line is 0x00050000 (6.0(1)) or higher. If the negotiated
extension version is not at least 0x00050000, TSP sets the disconnect mode to
LINEDISCONNECTMODE_UNAVAIL.

Note

Basic TAPI Implementation
64

Basic TAPI Implementation
LINE_CALLSTATE

dwParam3

If zero, this parameter indicates that no change in the privilege occurred for the call to this application.

If nonzero, this parameter specifies the privilege for the application to the call. This occurs in the following
situations: (1) The first time that the application receives a handle to this call; (2) When the application
is the target of a call hand-off (even if the application already was an owner of the call). This parameter
uses the following LINECALLPRIVILEGE_ constants:

LINECALLPRIVILEGE_MONITOR

The application has monitor privilege.

LINECALLPRIVILEGE_OWNER

The application has owner privilege.

LINE_CLOSE
The LINE_CLOSEmessage gets sent when the specified line device has been forcibly closed. The line device
handle or any call handles for calls on the line no longer remains valid after this message is sent.

Function Details

LINE_CLOSE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device that was closed. This handle is no longer valid

dwCallbackInstance

The callback instance that is supplied when the line that belongs to this call is opened.

dwParam1

This parameter is not used.

dwParam2

This parameter is not used.

dwParam3

This parameter is not used.

LINE_CREATE
The LINE_CREATE message informs the application of the creation of a new line device.

Basic TAPI Implementation
65

Basic TAPI Implementation
LINE_CLOSE

CTI Manager cluster support, extension mobility, change notification, and user addition to the directory can
generate LINE_CREATE events.

Note

Function Details

LINE_CREATE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) idDevice;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

This parameter is not used.

dwCallbackInstance

This parameter is not used.

dwParam1

The dwDeviceID of the newly created device.

dwParam2

This parameter is not used.

dwParam3

This parameter is not used.

LINE_DEVSPECIFIC
The LINE_DEVSPECIFIC message notifies the application about device-specific events that occur on a line,
address, or call. The meaning of the message and interpretation of the parameters are device specific.

Function Details

LINE_DEVSPECIFIC
dwDevice = (DWORD) hLineOrCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) DeviceSpecific1;
dwParam2 = (DWORD) DeviceSpecific2;
dwParam3 = (DWORD) DeviceSpecific3;

Parameters

dwDevice

This device-specific parameter specifies a handle to either a line device or call.

Basic TAPI Implementation
66

Basic TAPI Implementation
LINE_DEVSPECIFIC

dwCallbackInstance

The callback instance that is supplied when the line opens.

dwParam1

is device specific

dwParam2

is device specific

dwParam3

is device specific

LINE_DEVSPECIFICFEATURE
This line message, added in Cisco Unified Communications Manager Release 6.0, enables a Do Not Disturb
(DND) change notification event. Cisco TSP notifies applications by using the LINE_DEVSPECIFICFEATURE
message about changes in the DND configuration or status. In order to receive change notifications an
application needs to enable DEVSPECIFIC_DONOTDISTURB_CHANGED message flag by using
lineDevSpecific SLDST_SET_STATUS_MESSAGES request.

LINE_DEVSPECIFICFEATURE message is sent to notify the application about device-specific events
occurring on a line device. In case of a DND change notification, the message includes information about the
type of change that occurred on a device and resulted feature status or configured option.

Function Details

dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) PHONEBUTTONFUNCTION_DONOTDISTURB;
dwParam2 = (DWORD) typeOfChange;
dwParam3 = (DWORD) currentValue;

enum CiscoDoNotDisturbOption {
DoNotDisturbOption_NONE = 0,
DoNotDisturbOption_RINGEROFF = 1,
DoNotDisturbOption_REJECT = 2

};

enum CiscoDoNotDisturbStatus {
DoNotDisturbStatus_UNKNOWN = 0,
DoNotDisturbStatus_ENABLED = 1,
DoNotDisturbStatus_DISABLED = 2

};

enum CiscoDoNotDisturbNotification {
DoNotDisturb_STATUS_CHANGED = 1,
DoNotDisturb_OPTION_CHANGED = 2

};

Parameters

dwDevice

A handle to a line device.

Basic TAPI Implementation
67

Basic TAPI Implementation
LINE_DEVSPECIFICFEATURE

dwCallbackInstance

The callback instance supplied when opening the line.

dwParam1

Always equal to PHONEBUTTONFUNCTION_DONOTDISTURB for the Do-Not-Disturb change
notification

dwParam2

Indicates the type of change and can have one of the following enum values:

enum CiscoDoNotDisturbNotification {
DoNotDisturb_STATUS_CHANGED = 1,
DoNotDisturb_OPTION_CHANGED = 2

};

dwParam3

If the dwParm2 indicates status change (is equal to DoNotDisturb_STATUS_CHANGED) this parameter
can have one of the following enum values:

enum CiscoDoNotDisturbStatus {
DoNotDisturbStatus_UNKNOWN = 0,
DoNotDisturbStatus_ENABLED = 1,
DoNotDisturbStatus_DISABLED = 2

};

If the dwParm2 indicates option change (is equal to DoNotDisturb_OPTION_CHANGED) this parameter
can have one of the following enum values:

enum CiscoDoNotDisturbOption {
DoNotDisturbOption_NONE = 0,
DoNotDisturbOption_RINGEROFF = 1,
DoNotDisturbOption_REJECT = 2

};

LINE_GATHERDIGITS
The TAPI LINE_GATHERDIGITS message is sent when the current buffered digit-gathering request is
terminated or canceled. You can examine the digit buffer after the application receives this message.

Function Details

LINE_GATHERDIGITS
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) GatherTermination;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Basic TAPI Implementation
68

Basic TAPI Implementation
LINE_GATHERDIGITS

Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line opens.

dwParam1

The reason why digit gathering terminated. This parameter must be one and only one of the
LINEGATHERTERM_constants.

dwParam2
Unused.

dwParam3

The tick count (number of milliseconds since Windows started) at which the digit gathering completes.
For TAPI versions earlier than 2.0, this parameter is not used.

LINE_GENERATE
The TAPI LINE_GENERATE message notifies the application that the current digit or tone generation
terminated. Only one such generation request can be in progress an a given call at any time. This message
also gets sent when digit or tone generation is canceled.

Function Details

LINE_GENERATE
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) GenerateTermination;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line opens.

dwParam1

The reason that digit or tone generation terminates. This parameter must be the only one of the
LINEGENERATETERM_constants.

dwParam2

This parameter is not used.

dwParam3

The tick count (number of milliseconds since Windows started) at which the digit or tone generation
completes. For API versions earlier than 2.0, this parameter is not used.

Basic TAPI Implementation
69

Basic TAPI Implementation
LINE_GENERATE

LINE_LINEDEVSTATE
The TAPI LINE_LINEDEVSTATEmessage gets sent when the state of a line device changes. The application
can invoke lineGetLineDevStatus to determine the new status of the line.

Function Details

LINE_LINEDEVSTATE
hDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) DeviceState;
dwParam2 = (DWORD) DeviceStateDetail1;
dwParam3 = (DWORD) DeviceStateDetail2;

Parameters

hDevice

A handle to the line device. This parameter is NULL when dwParam1 is LINEDEVSTATE_REINIT.

dwCallbackInstance

The callback instance that is supplied when the line is opened. If the dwParam1 parameter is
LINEDEVSTATE_REINIT, the dwCallbackInstance parameter is not valid and is set to zero.

dwParam1

The line device status item that changed. The parameter can be one or more of the
LINEDEVSTATE_constants.

LINEDEVSTATE_OUTOFSERVICE

Indicates the line device unregisters as it enters Energywise DeepSleep/PowersavePlus mode

dwParam2

The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam2 contains the ring mode with which the switch instructs the
line to ring. Valid ring modes include numbers in the range one to dwNumRingModes, where
dwNumRingModes specifies a line device capability.

If dwParam1 is LINEDEVSTATE_REINIT, and TAPI issued the message as a result of translation of a
new API message into a REINIT message, dwParam2 contains the dwMsg parameter of the original
message (for example, LINE_CREATE or LINE_LINEDEVSTATE). If dwParam2 is zero, this indicates
that the REINIT message represents a real REINIT message that requires the application to call
lineShutdown at its earliest convenience.

If dw Param1 is LINEDEVSTATE_OUTOFSERVICE, dwParam2 contains the reason
EnergyWisePowerSavePlus when the line device unregisters as it enters EnergywiseDeepSleep.

dwParam3

The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam3 contains the ring count for this ring event. The ring count
starts at zero.

If dwParam1 is LINEDEVSTATE_REINIT, and TAPI issued the message as a result of translation of a
new API message into a REINIT message, dwParam3 contains the dwParam1 parameter of the original
message (for example, LINEDEVSTATE_TRANSLATECHANGE or some other

Basic TAPI Implementation
70

Basic TAPI Implementation
LINE_LINEDEVSTATE

LINEDEVSTATE_value, if dwParam2 is LINE_LINEDEVSTATE, or the new device identifier, if
dwParam2 is LINE_CREATE).

LINE_MONITORDIGITS
The LINE_MONITORDIGITS message gets sent when a digit is detected. The lineMonitorDigits function
controls the sending of this message.

Function Details

LINE_MONITORDIGITS
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) Digit;
dwParam2 = (DWORD) DigitMode;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line for this call is opened.

dwParam1

The low-order byte contains the last digit that is received in ASCII.

dwParam2

The digit mode that was detected. This parameter must be one and only one of the following
LINEDIGITMODE_constant:

LINEDIGITMODE_DTMF

Detect digits as DTMF tones. Valid digits for DTMF include ‘0’ through ‘9’, ‘*’, and ‘#’.

dwParam3

The “tick count” (number of milliseconds afterWindows started) at which the specified digit was detected.
For API versions earlier than 2.0, this parameter is not used.

LINE_MONITORTONE
The LINE_MONITORTONE message gets sent when a tone is detected. The lineMonitorTones function
controls the sending of this message.

Cisco Unified TSP supports only silent detection through LINE_MONITORTONE.Note

Basic TAPI Implementation
71

Basic TAPI Implementation
LINE_MONITORDIGITS

Function Details

LINE_MONITORTONE
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) dwAppSpecific;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) tick count;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance supplied when the line opens for this call.

dwParam1

The application-specific dwAppSpecific member of the LINE_MONITORTONE structure for the tone
that was detected.

dwParam2

This parameter is not used.

dwParam3

The “tick count” (number of milliseconds afterWindows started) at which the specified digit was detected.

LINE_REMOVE
The LINE_REMOVE message informs an application of the removal (deletion from the system) of a line
device. Generally, this parameter is not used for temporary removals, such as extraction of PCMCIA devices,
but only for permanent removals in which, the service provider would no longer report the device, if TAPI
were reinitialized.

CTI Manager cluster support, extension mobility, change notification, and user deletion from the directory
can generate LINE_REMOVE events.

Note

Function Details

LINE_REMOVE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) dwDeviceID;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Basic TAPI Implementation
72

Basic TAPI Implementation
LINE_REMOVE

Parameters

dwDevice

Reserved. Set to zero.

dwCallbackInstance

Reserved. Set to zero.

dwParam1

Identifier of the line device that was removed.

dwParam2

Reserved. Set to zero.

dwParam3

Reserved. Set to zero.

LINE_REPLY
The LINE_REPLY message reports the results of function calls that completed asynchronously.

Function Details

LINE_REPLY
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idRequest;
dwParam2 = (DWORD) Status;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

This parameter is not used.

dwCallbackInstance

Returns the callback instance for this application.

dwParam1

The request identifier for which this is the reply.

dwParam2

The success or error indication. The application should cast this parameter into a long integer:

• Zero indicates success.

• A negative number indicates an error.

dwParam3

This parameter is not used.

Basic TAPI Implementation
73

Basic TAPI Implementation
LINE_REPLY

LINE_REQUEST
The TAPI LINE_REQUEST message reports the arrival of a new request from another application.

Function Details

LINE_REQUEST
hDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) hRegistration;
dwParam1 = (DWORD) RequestMode;
dwParam2 = (DWORD) RequestModeDetail1;
dwParam3 = (DWORD) RequestModeDetail2;

Parameters

hDevice

This parameter is not used.

dwCallbackInstance

The registration instance of the application that is specified on lineRegisterRequestRecipient.

dwParam1

The request mode of the newly pending request. This parameter uses the
LINEREQUESTMODE_constants.

dwParam2

If dwParam1 is set to LINEREQUESTMODE_DROP, dwParam2 contains the hWnd of the application
that requests the drop. Otherwise, dwParam2 is not used.

dwParam3

If dwParam1 is set to LINEREQUESTMODE_DROP, the low-order word of dwParam3 contains the
wRequestID as specified by the application requesting the drop. Otherwise, dwParam3 is not used.

TAPI Line Device Structures
The following table lists the TAPI line device structures that the Cisco Unified TSP supports. This section
lists the possible values for the structure members as set by the TSP, and provides a cross reference to the
functions that use them. If the value of a structure member is device, line, or call specific, the system notes
the value for each condition.

Table 3: TAPI Line Device Structures

TAPI Line Device Structures

LINEADDRESSCAPS, on page 75

LINEADDRESSSTATUS, on page 86

LINEAPPINFO, on page 87

LINECALLINFO, on page 89

Basic TAPI Implementation
74

Basic TAPI Implementation
LINE_REQUEST

TAPI Line Device Structures

LINECALLLIST, on page 97

LINECALLPARAMS, on page 98

LINECALLSTATUS, on page 100

LINECARDENTRY, on page 106

LINECOUNTRYENTRY, on page 108

LINECOUNTRYLIST, on page 109

LINEDEVCAPS, on page 110

LINEDEVSTATUS, on page 115

LINEEXTENSIONID, on page 117

LINEFORWARD, on page 117

LINEFORWARDLIST, on page 121

LINEGENERATETONE, on page 121

LINEINITIALIZEEXPARAMS, on page 122

LINELOCATIONENTRY, on page 123

LINEMESSAGE, on page 125

LINEMONITORTONE, on page 126

LINEPROVIDERENTRY, on page 127

LINEPROVIDERLIST, on page 127

LINEREQMAKECALL, on page 128

LINETRANSLATECAPS, on page 129

LINETRANSLATEOUTPUT, on page 130

LINEADDRESSCAPS

Members

ValuesMembers

For All Devices:The device identifier of the line device with which
this address is associated.

dwLineDeviceID

Basic TAPI Implementation
75

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For All Devices:The size, in bytes, of the variably sized address
field and the offset, in bytes, from the beginning of this data
structure

dwAddressSizedwAddressOffset

For All Devices:0dwDevSpecificSize

dwDevSpecificOffset

For All Devices:0dwAddressSharing

For All Devices (except Park
DNs):LINEADDRESSSTATE_FORWARD

dwAddressStates

For Park DNs:0

Basic TAPI Implementation
76

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For All Devices (except Park
DNs):LINECALLINFOSTATE_CALLEDID

LINECALLINFOSTATE_CALLERID

LINECALLINFOSTATE_CALLID

LINECALLINFOSTATE_CONNECTEDID

LINECALLINFOSTATE_MEDIAMODE

LINECALLINFOSTATE_MONITORMODES

LINECALLINFOSTATE_NUMMONITORS

LINECALLINFOSTATE_NUMOWNERDECR

LINECALLINFOSTATE_NUMOWNERINCR

LINECALLINFOSTATE_ORIGIN

LINECALLINFOSTATE_REASON

LINECALLINFOSTATE_REDIRECTINGID

LINECALLINFOSTATE_REDIRECTIONID

dwCallInfoStates

For Park DNs:

LINECALLINFOSTATE_CALLEDID

LINECALLINFOSTATE_CALLERID

LINECALLINFOSTATE_CALLID

LINECALLINFOSTATE_CONNECTEDID

LINECALLINFOSTATE_NUMMONITORS
LINECALLINFOSTATE_NUMOWNERDECR

LINECALLINFOSTATE_NUMOWNERINCR
LINECALLINFOSTATE_ORIGIN

LINECALLINFOSTATE_REASON

LINECALLINFOSTATE_REDIRECTINGID

LINECALLINFOSTATE_REDIRECTIONID

For All Devices:LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwCallerIDFlags

Basic TAPI Implementation
77

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

dwCalledIDFlags

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwConnectedIDFlags

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwRedirectionIDFlags

For All Devices:LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

dwRedirectingIDFlags

Basic TAPI Implementation
78

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For IP Phones and CTI Ports:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DIALING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_ONHOLDPENDCONF

LINECALLSTATE_ONHOLDPENDTRANSFER

LINECALLSTATE_PROCEEDING

LINECALLSTATE_RINGBACK

LINECALLSTATE_UNKNOWN

dwCallStates

For CTI Route Points (without
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_UNKNOWN

For CTI Route Points (with
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_ONHOLD

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_UNKNOWN

Basic TAPI Implementation
79

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For Park DNs:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_UNKNOWN

For IP Phones and CTI
Ports:LINEDIALTONEMODE_UNAVAIL

dwDialToneModes

For CTI Route Points and Park DNs:0

For All Devices:0dwBusyModes

For All Devices:0dwSpecialInfo

ForAll Devices:LINEDISCONNECTMODE_BADDADDRESS

LINEDISCONNECTMODE_BUSY

LINEDISCONNECTMODE_CONGESTION

LINEDISCONNECTMODE_FORWARDED

LINEDISCONNECTMODE_NOANSWER

LINEDISCONNECTMODE_NORMAL

LINEDISCONNECTMODE_REJECT

LINEDISCONNECTMODE_TEMPFAILURE

LINEDISCONNECTMODE_UNREACHABLE

LINEDISCONNECTMODE_FACCMC (if negotiated extension
version is 0x00050000 or greater)

dwDisconnectModes

For IP Phones, CTI Ports, and Park DNs:1dwMaxNumActiveCalls

For CTI Route Points (without media): 0

For CTI Route Points (with media):Cisco Unified
Communications Manager Administration configuration

Basic TAPI Implementation
80

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For IP Phones, CTI Ports:200dwMaxNumOnHoldCalls

For CTI Route Points:0

For CTI Route Points (with media):Cisco Unified
Communications Manager Administration configuration (same
configuration as dwMaxNumActiveCalls)

For Park DNs:

1

For IP Phones and CTI Ports:1dwMaxNumOnHoldPendingCalls

For CTI Route Points and Park DNs:0

For IP Phones, CTI Ports, and Park DNs:16dwMaxNumConference

For CTI Route Points:0

For All Devices:0dwMaxNumTransConf

For IPPhones:LINEADDRCAPFLAGS_CONFERENCEHELD

LINEADDRCAPFLAGS_DIALED

LINEADDRCAPFLAGS_FWDSTATUSVALID

LINEADDRCAPFLAGS_PARTIALDIAL

LINEADDRCAPFLAGS_TRANSFERHELD

dwAddrCapFlags

For CTI Ports:LINEADDRCAPFLAGS_CONFERENCEHELD

LINEADDRCAPFLAGS_DIALED

LINEADDRCAPFLAGS_ACCEPTTOALERT

LINEADDRCAPFLAGS_FWDSTATUSVALID

LINEADDRCAPFLAGS_PARTIALDIAL

LINEADDRCAPFLAGS_TRANSFERHELD

For CTI Route
Points:LINEADDRCAPFLAGS_ACCEPTTOALERT

LINEADDRCAPFLAGS_FWDSTATUSVALID

LINEADDRCAPFLAGS_ROUTEPOINT

ForParkDNs:LINEADDRCAPFLAGS_NOEXTERNALCALLS

LINEADDRCAPFLAGS_NOINTERNALCALLS

Basic TAPI Implementation
81

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For IP Phones (except VG248 and ATA186) and CTI
Ports:LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ADDTOCONF

LINECALLFEATURE_ANSWER

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_COMPLETETRANSF

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_PARK

LINECALLFEATURE_PREPAREADDTOCONF

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_SETUPCONF

LINECALLFEATURE_SETUPTRANSFER

LINECALLFEATURE_UNHOLD

LINECALLFEATURE_UNPARK

dwCallFeatures

Basic TAPI Implementation
82

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For VG248 and ATA186
Devices:LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ADDTOCONF

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_COMPLETETRANSF

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_PARK

LINECALLFEATURE_PREPAREADDTOCONF

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_SETUPCONF

LINECALLFEATURE_SETUPTRANSFER

LINECALLFEATURE_UNHOLD

INECALLFEATURE_UNPARK

Basic TAPI Implementation
83

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For CTI Route Points (without
media):LINECALLFEATURE_ACCEPT

LINECALLFEATURE_DROP

LINECALLFEATURE_REDIRECT

For CTI Route Points (with
media):LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ANSWER

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_UNHOLD

dwCallFeatures (continued)

For Park DNs:0

For All Devices:0dwRemoveFromConfCaps

For All Devices:0dwRemoveFromConfState

For IP Phones and CTI
Ports:LINETRANSFERMODE_TRANSFER

LINETRANSFERMODE_CONFERENCE

dwTransferModes

For CTI Route Points and Park DNs:0

For IP Phones and CTI
Ports:LINEPARKMODE_NONDIRECTED

dwParkModes

For CTI Route Points and Park DNs:0

For All Devices (except
ParkDNs):LINEFORWARDMODE_UNCOND

dwForwardModes

For Park DNs:0

For All Devices (except ParkDNs):1dwMaxForwardEntries

For Park DNs:0

Basic TAPI Implementation
84

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For All Devices:0dwMaxSpecificEntries

For All Devices:0dwMinFwdNumRings

For All Devices:0dwMaxFwdNumRings

For All Devices:0dwMaxCallCompletions

For All Devices:0dwCallCompletionConds

For All Devices:0dwCallCompletionModes

For All Devices:0dwNumCompletionMessages

For All Devices:0dwCompletionMsgTextEntrySize

For All Devices:0dwCompletionMsgTextSize

dwCompletionMsgTextOffset

For IP Phones andCTI Ports:LINEADDRFEATURE_FORWARD

LINEADDRFEATURE_FORWARDFWD

LINEADDRFEATURE_MAKECALL

dwAddressFeatures

For CTI Route Points:LINEADDRFEATURE_FORWARD

LINEADDRFEATURE_FORWARDFWD

For Park DNs:0

For All Devices:0dwPredictiveAutoTransferStates

For All Devices:0dwNumCallTreatments

For All Devices:0dwCallTreatmentListSizedwCallTreatmentListOffset

For All Devices (except Park DNs):

"tapi/line"

"tapi/phone"

"wave/in"

"wave/out"

dwDeviceClassesSize

dwDeviceClassesOffset

For Park DNs :

"tapi/line"

For All Devices:0dwMaxCallDataSize

Basic TAPI Implementation
85

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For IP Phones and CTI
Ports:LINECALLFEATURE2_TRANSFERNORM

LINECALLFEATURE2_TRANSFERCONF

dwCallFeatures2

For CTI Route Points and Park DNs:0

For IP Phones and CTI Ports:

4294967295 (0xFFFFFFFF)

dwMaxNoAnswerTimeout

For CTI Route Points and Park DNs:0

For IP Phones, CTI Ports

LINECONNECTEDMODE_ACTIVE

LINECONNECTEDMODE_INACTIVE

dwConnectedModes

For Park DNs:

LINECONNECTEDMODE_ACTIVE

For CTI Route Points (without media):0

For CTI Route Points (with
media)LINECONNECTEDMODE_ACTIVE

For All Devices:

LINEOFFERINGMODE_ACTIVE

dwOfferingModes

For All Devices:0dwAvailableMediaModes

LINEADDRESSSTATUS

Members

ValuesMembers

For All Devices:1dwNumInUse

For All Devices:

The number of calls on the address that are in call states other
than idle, onhold, onholdpendingtransfer, and
onholdpendingconference.

dwNumActiveCalls

For All Devices:

The number of calls on the address in the onhold state.

dwNumOnHoldCalls

Basic TAPI Implementation
86

Basic TAPI Implementation
LINEADDRESSSTATUS

ValuesMembers

For All Devices:

The number of calls on the address in the onholdpendingtransfer
or the onholdpendingconference state.

dwNumOnHoldPendCalls

For IP Phones andCTI Ports:LINEADDRFEATURE_FORWARD

LINEADDRFEATURE_FORWARDFWD

LINEADDRFEATURE_MAKECALL

dwAddressFeatures

For CTI Route Points:LINEADDRFEATURE_FORWARD

LINEADDRFEATURE_FORWARDFWD

For Park DNs:0

For All Devices:0dwNumRingsNoAnswer

For All Devices (except Park DNs):

The number of entries in the array to which dwForwardSize and
dwForwardOffset refer.

dwForwardNumEntries

For Park DNs:0

For All Devices (except Park DNs):

The size, in bytes, and the offset, in bytes, from the beginning of
this data structure of the variably sized field that describes the
address forwarding information. This information appears as an
array of dwForwardNumEntries elements, of type
LINEFORWARD. Consider the offsets of the addresses in the
array relative to the beginning of the LINEADDRESSSTATUS
structure. The offsets dwCallerAddressOffset and
dwDestAddressOffset in the variably sized field of type
LINEFORWARD towhich dwForwardSize and dwForwardOffset
point are relative to the beginning of the LINEADDRESSSTATUS
data structure (the root container).

dwForwardSize

dwForwardOffset

For Park DNs:0

For All Devices:0dwTerminalModesSizedwTerminalModesOffset

For All Devices:0dwDevSpecificSizedwDevSpecificOffset

LINEAPPINFO
The LINEAPPINFO structure contains information about the application that is currently running. The
LINEDEVSTATUS structure can contain an array of LINEAPPINFO structures.

Basic TAPI Implementation
87

Basic TAPI Implementation
LINEAPPINFO

Structure Details

typedef struct lineappinfo_tag {
DWORD dwMachineNameSize;
DWORD dwMachineNameOffset;
DWORD dwUserNameSize;
DWORD dwUserNameOffset;
DWORD dwModuleFilenameSize;
DWORD dwModuleFilenameOffset;
DWORD dwFriendlyNameSize;
DWORD dwFriendlyNameOffset;
DWORD dwMediaModes;
DWORD dwAddressID;

} LINEAPPINFO, *LPLINEAPPINFO;

Members

ValuesMembers

Size (bytes) and offset from beginning of LINEDEVSTATUS of
a string that specifies the name of the computer on which the
application is executing.

dwMachineNameSize

dwMachineNameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS of
a string that specifies the user name under whose account the
application is running.

dwUserNameSize

dwUserNameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS of
a string that specifies the module filename of the application. You
can use this string in a call to lineHandoff to perform a directed
handoff to the application.

dwModuleFilenameSize

dwModuleFilenameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS of
the string that the application provides to lineInitialize or
lineInitializeEx, which should be used in any display of
applications to the user.

dwFriendlyNameSize

dwFriendlyNameOffset

Themedia types for which the application has requested ownership
of new calls; zero if the line dwPrivileges did not include
LINECALLPRIVILEGE_OWNER when it opened.

dwMediaModes

If the line handle that was opened by using
LINEOPENOPTION_SINGLEADDRESS contains the address
identifier that is specified, set to 0xFFFFFFFF if the single address
option was not used.

An address identifier permanently associates with an address; the
identifier remains constant across operating system upgrades.

dwAddressID

Basic TAPI Implementation
88

Basic TAPI Implementation
LINEAPPINFO

LINECALLINFO

Members

ValuesMembers

For All Devices:

The handle for the line device with which this call is associated.

hLine

For All Devices:

The device identifier of the line device with which this call is
associated.

dwLineDeviceID

For All Devices:0dwAddressID

For All Devices:

LINEBEARERMODE_SPEECH

LINEBEARERMODE_VOICE

dwBearerMode

For All Devices:0dwRate

For IP Phones and Park
DNs:LINEMEDIAMODE_INTERACTIVEVOICE

dwMediaMode

For CTI Ports and CTI Route
Points:LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

For All Devices:

Not interpreted by the API implementation and service provider.
Any owner application of this call can set it with the
lineSetAppSpecific function.

dwAppSpecific

For All Devices:

In some telephony environments, the switch or service provider
can assign a unique identifier to each call. This allows the call to
be tracked across transfers, forwards, or other events. The domain
of these call IDs and their scope is service provider-defined. The
dwCallID member makes this unique identifier available to the
applications. The Cisco Unified TSP uses dwCallID to store the
“GlobalCallID” of the call. The “GlobalCallID” represents a
unique identifier that allows applications to identify all call handles
that are related to a call.

dwCallID

For All Devices:0dwRelatedCallID

For All Devices:0dwCallParamFlags

Basic TAPI Implementation
89

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For IP Phones and CTI Ports:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DIALING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_ONHOLDPENDCONF

LINECALLSTATE_ONHOLDPENDTRANSFER

LINECALLSTATE_PROCEEDING

LINECALLSTATE_RINGBACK

LINECALLSTATE_UNKNOWN

dwCallStates

Basic TAPI Implementation
90

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For CTI Route Points (without
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_UNKNOWN

For CTI Route Points (with
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_BUSY

LINECALLSTATE_CONNECTED

LINECALLSTATE_DIALING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_PROCEEDING

LINECALLSTATE_RINGBACK

LINECALLSTATE_UNKNOWN

dwCallStates (continued)

For Park DNs:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_UNKNOWN

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINEDIGITMODE_DTMF

dwMonitorDigitModes

For CTI Route Points and Park DNs:0

Basic TAPI Implementation
91

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For IP Phones and Park
DNs:LINEMEDIAMODE_INTERACTIVEVOICE

dwMonitorMediaModes

For CTI Ports and CTI Route
Points:LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

For All Devices:0DialParams

For All Devices:LINECALLORIGIN_CONFERENCE

LINECALLORIGIN_EXTERNAL

LINECALLORIGIN_INTERNAL

LINECALLORIGIN_OUTBOUND

LINECALLORIGIN_UNAVAIL

LINECALLORIGIN_UNKNOWN

dwOrigin

For All Devices:

LINECALLREASON_DIRECT

LINECALLREASON_FWDBUSY

LINECALLREASON_FWDNOANSWER

LINECALLREASON_FWDUNCOND

LINECALLREASON_PARKED

LINECALLREASON_PICKUP

LINECALLREASON_REDIRECT

LINECALLREASON_REMINDER

LINECALLREASON_TRANSFER

LINECALLREASON_UNKNOWN

LINECALLREASON_UNPARK

dwReason

For All Devices:0dwCompletionID

For All Devices:

The number of application modules with different call handles
with owner privilege for the call.

dwNumOwners

For All Devices:

The number of application modules with different call handles
with monitor privilege for the call.

dwNumMonitors

For All Devices:0dwCountryCode

For All Devices:0xFFFFFFFFdwTrunk

Basic TAPI Implementation
92

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For All Devices:LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwCallerIDFlags

For All Devices:

The size, in bytes, of the variably sized field that contains the
caller party ID number information and the offset, in bytes, from
the beginning of this data structure.

dwCallerIDSize

dwCallerIDOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
caller party ID name information and the offset, in bytes, from
the beginning of this data structure.

dwCallerIDNameSize

dwCallerIDNameOffset

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

dwCalledIDFlags

For All Devices:

The size, in bytes, of the variably sized field that contains the
called-party ID number information and the offset, in bytes, from
the beginning of this data structure.

dwCalledIDSize

dwCalledIDOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
called-party ID name information and the offset, in bytes, from
the beginning of this data structure.

dwCalledIDNameSize

dwCalledIDNameOffset

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwConnectedIDFlags

For All Devices:

The size, in bytes, of the variably sized field that contains the
connected party identifier number information and the offset, in
bytes, from the beginning of this data structure.

dwConnectedIDSize

dwConnectedIDOffset

Basic TAPI Implementation
93

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For All Devices:

The size, in bytes, of the variably sized field that contains the
connected party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwConnectedIDNameSize

dwConnectedIDNameOffset

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwRedirectionIDFlags

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirection party identifier number information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectionIDSize

dwRedirectionIDOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirection party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectionIDNameSize

dwRedirectionIDNameOffset

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

dwRedirectingIDFlags

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirecting party identifier number information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectingIDSize

dwRedirectingIDOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirecting party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectingIDNameSize

dwRedirectingIDNameOffset

For All Devices:

The size, in bytes, and the offset, in bytes, from the beginning of
this data structure of the variably sized field that holds the
user-friendly application name of the application that first
originated, accepted, or answered the call. This specifies the name
that an application can specify in lineInitializeEx. If the application
specifies no such name, the applicationmodule filename gets used
instead.

dwAppNameSize

dwAppNameOffset

Basic TAPI Implementation
94

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For All Devices: 0dwDisplayableAddressSize

dwDisplayableAddressOffset

For All Devices: 0dwCalledPartySize

dwCalledPartyOffset

For All Devices: 0dwCommentSize

dwCommentOffset

For All Devices: 0dwDisplaySize

dwDisplayOffset

For All Devices: 0dwUserUserInfoSize

dwUserUserInfoOffset

For All Devices: 0dwHighLevelCompSize

dwHighLevelCompOffset

For All Devices: 0dwLowLevelCompSize

dwLowLevelCompOffset

For All Devices: 0dwChargingInfoSize

dwChargingInfoOffset

For All Devices: 0dwTerminalModesSize

dwTerminalModesOffset

Basic TAPI Implementation
95

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For All Devices:

If dwExtVersion > = 0x00060000 (6.0), this field will point to
TSP_Unicode_Party_Names structure,

If dwExtVersion > = 0x00070000 (7.0), this field will also point
to a common structure that has a pointer to SRTP structure,
DSCPValueForAudioCalls value, and Partition information. The
LINECALLINFO defines the structure.

The ExtendedCallInfo structure contains ExtendedCallReason
that represents the last feature-related reason that caused a change
in the callinfo/callstatus for this call. The ExtendedCallInfo will
also provide SIP URL information for all call parties.

If dwExtVersion > = 0x00080000 (8.0), this field will also point
to common structure which has pointer to CallSecurityStatus
structure.

For IP Phones: If dwExtVersion > = 0x00080000 (8.0), this field
will also point to common structure that has pointer to
CallAtributeInfo and CCMCallID structure. The structures are
defined below.

If dwExtVersion > = 0x00080000 (8.0), this field will also point
to common structure which has pointer to CallSecurityStatus
structure.

dwDevSpecificSize

dwDevSpecificOffset

CallAttributeType: This field holds information about
DN.Partition.DeviceName for regular calls, monitoring calls,
monitored calls, and recording calls.

PartyDNOffset, PartyDNSize, provides the size, in bytes, of the
variably sized field that contains the
Monitoring/Monitored/Recorder party DN information and the
offset, in bytes, from the beginning of LINECALLINFO data
structure. PartyPartitionOffset PartyPartitionSize, provides the
size, in bytes, of the variably sized field that contains the
Monitoring/Monitored/Recorder party Partition information and
the offset, in bytes, from the beginning of LINECALLINFO data
structure.

DevcieNameSizeprovides the size, in bytes, of the variably sized
field that contains the Monitoring/Monitored/Recorder party
Device Name and the offset, in bytes, from the beginning of
LINECALLINFO data structure. OverallCallSecurityStatus holds
the security status of the call for two-party call as well for
conference call. CCMCallID field holds the CCM call Id for each
call leg.

For All Devices: 0dwCallTreatment

Basic TAPI Implementation
96

Basic TAPI Implementation
LINECALLINFO

cucm_b_tapi-dev-guide-14_chapter6.pdf#nameddest=unique_166

ValuesMembers

For All Devices: 0dwCallDataSize

dwCallDataOffset

For All Devices: 0dwSendingFlowspecSize

dwSendingFlowspecOffset

For All Devices: 0dwReceivingFlowspecSize

dwReceivingFlowspecOffset

LINECALLLIST
The LINECALLLIST structure describes a list of call handles. The lineGetNewCalls and
lineGetConfRelatedCalls functions return a structure of this type.

You must not extend this structure.Note

Structure Details

typedef struct linecalllist_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwCallsNumEntries;
DWORD dwCallsSize;
DWORD dwCallsOffset;

} LINECALLLIST, FAR *LPLINECALLLIST;

Members

ValuesMembers

The total size, in bytes, that is allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

The number of handles in the hCalls array.dwCallsNumEntries

The size, in bytes, and the offset, in bytes, from the beginning of
this data structure of the variably sized field (which is an array of
HCALL-sized handles).

dwCallsSized

wCallsOffset

Basic TAPI Implementation
97

Basic TAPI Implementation
LINECALLLIST

LINECALLPARAMS

Members

ValuesMembers

not supporteddwBearerMode

not supporteddwMinRatedwMaxRate

not supporteddwMediaMode

not supporteddwCallParamFlags

not supporteddwAddressMode

not supporteddwAddressID

not supportedDialParams

not supporteddwOrigAddressSize

dwOrigAddressOffset

not supporteddwDisplayableAddressSize

dwDisplayableAddressOffset

not supporteddwCalledPartySize

dwCalledPartyOffset

not supporteddwCommentSize

dwCommentOffset

not supporteddwUserUserInfoSize

dwUserUserInfoOffset

not supporteddwHighLevelCompSize

dwHighLevelCompOffset

not supporteddwLowLevelCompSize

dwLowLevelCompOffset

not supporteddwDevSpecificSize

dwDevSpecificOffset

not supporteddwPredictiveAutoTransferStates

not supporteddwTargetAddressSize

dwTargetAddressOffset

Basic TAPI Implementation
98

Basic TAPI Implementation
LINECALLPARAMS

ValuesMembers

not supporteddwSendingFlowspecSize

dwSendingFlowspecOffset

not supporteddwReceivingFlowspecSize

dwReceivingFlowspecOffset

not supporteddwDeviceClassSize

dwDeviceClassOffset

not supporteddwDeviceConfigSize

dwDeviceConfigOffset

not supporteddwCallDataSize

dwCallDataOffset

For All Devices:

The number of seconds, after the completion of dialing, that the
call should be allowed to wait in the PROCEEDING or
RINGBACK state before the service provider automatically
abandons it with a LINECALLSTATE_DISCONNECTED and
LINEDISCONNECTMODE_NOANSWER. A value of 0
indicates that the application does not want automatic call
abandonment.

dwNoAnswerTimeout

not supporteddwCallingPartyIDSize

dwCallingPartyIDOffset

Basic TAPI Implementation
99

Basic TAPI Implementation
LINECALLPARAMS

LINECALLSTATUS

Members

ValuesMembers

For IP Phones and CTI Ports:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DIALING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_ONHOLDPENDCONF

LINECALLSTATE_ONHOLDPENDTRANSFER

LINECALLSTATE_PROCEEDING

LINECALLSTATE_RINGBACK

LINECALLSTATE_UNKNOWN

dwCallState

Basic TAPI Implementation
100

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For CTI Route Points (without
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_UNKNOWN

For CTI Route Points (with
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DIALING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_PROCEEDING

LINECALLSTATE_RINGBACK

LINECALLSTATE_UNKNOWN

For Park DNs:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_UNKNOWN

dwCallState (continued)

Basic TAPI Implementation
101

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For IP Phones, CTI Ports:LINECONNECTEDMODE_ACTIVE

LINECONNECTEDMODE_INACTIVE

LINEDIALTONEMODE_NORMAL

LINEDIALTONEMODE_UNAVAIL

LINEDISCONNECTMODE_BADADDRESS

LINEDISCONNECTMODE_BUSY

LINEDISCONNECTMODE_CONGESTION

LINEDISCONNECTMODE_FORWARDED

LINEDISCONNECTMODE_NOANSWER

LINEDISCONNECTMODE_NORMAL

LINEDISCONNECTMODE_REJECT

LINEDISCONNECTMODE_TEMPFAILURE

LINEDISCONNECTMODE_UNREACHABLE

LINEDISCONNECTMODE_FACCMC (if negotiated extension
version is 0x00050000 or greater)

dwCallStateMode

For CTI Route
Points:LINEDISCONNECTMODE_BADADDRESS

LINEDISCONNECTMODE_BUSY

LINEDISCONNECTMODE_CONGESTION

LINEDISCONNECTMODE_FORWARDED

LINEDISCONNECTMODE_NOANSWER

LINEDISCONNECTMODE_NORMAL

LINEDISCONNECTMODE_REJECT

LINEDISCONNECTMODE_TEMPFAILURE

LINEDISCONNECTMODE_UNREACHABLE

LINEDISCONNECTMODE_FACCMC (if negotiated extension
version is 0x00050000 or greater)

Basic TAPI Implementation
102

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For Park DNs:LINECONNECTEDMODE_ACTIVE

LINEDISCONNECTMODE_BADADDRESS

LINEDISCONNECTMODE_BUSY

LINEDISCONNECTMODE_CONGESTION

LINEDISCONNECTMODE_FORWARDED

LINEDISCONNECTMODE_NOANSWER

LINEDISCONNECTMODE_NORMAL

LINEDISCONNECTMODE_REJECT

LINEDISCONNECTMODE_TEMPFAILURE

LINEDISCONNECTMODE_UNREACHABLE

For All Devices

LINECALLPRIVILEGE_MONITOR

LINECALLPRIVILEGE_NONE

LINECALLPRIVILEGE_OWNER

dwCallPrivilege

Basic TAPI Implementation
103

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For IP Phones (except VG248 and ATA186) and CTI Ports:

LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ADDTOCONF

LINECALLFEATURE_ANSWER

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_COMPLETETRANSF

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_PARK

LINECALLFEATURE_PREPAREADDTOCONF

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_SETUPCONF

LINECALLFEATURE_SETUPTRANSFER

LINECALLFEATURE_UNHOLD

LINECALLFEATURE_UNPARK

dwCallFeatures

Basic TAPI Implementation
104

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For VG248 and ATA186
Devices:LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ADDTOCONF

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_COMPLETETRANSF

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_PARK

LINECALLFEATURE_PREPAREADDTOCONF

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_SETUPCONF

LINECALLFEATURE_SETUPTRANSFER

LINECALLFEATURE_UNHOLD

LINECALLFEATURE_UNPARK

Basic TAPI Implementation
105

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For CTI Route Points (without
media):LINECALLFEATURE_ACCEPT

LINECALLFEATURE_DROP

LINECALLFEATURE_REDIRECT

For CTI Route Points (with
media):LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ANSWER

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_DIA

LLINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_UNHOLD

dwCallFeatures (continued)

For Park DNs:0dwCallFeatures (continued)

For All Devices:0dwDevSpecificSizedwDevSpecificOffset

For IP Phones and CTI
Ports:LINECALLFEATURE2_TRANSFERNORM

LINECALLFEATURE2_TRANSFERCONF

dwCallFeatures2

For CTI Route Points and Park DNs:0

For All Devices:

The Coordinated Universal Time at which the current call state
was entered.

tStateEntryTime

LINECARDENTRY
The LINECARDENTRY structure describes a calling card. The LINETRANSLATECAPS structure can
contain an array of LINECARDENTRY structures.

Basic TAPI Implementation
106

Basic TAPI Implementation
LINECARDENTRY

You must not extend this structure.Note

Structure Details

typedef struct linecardentry_tag {
DWORD dwPermanentCardID;
DWORD dwCardNameSize;
DWORD dwCardNameOffset;
DWORD dwCardNumberDigits;
DWORD dwSameAreaRuleSize;
DWORD dwSameAreaRuleOffset;
DWORD dwLongDistanceRuleSize;
DWORD dwLongDistanceRuleOffset;
DWORD dwInternationalRuleSize;
DWORD dwInternationalRuleOffset;
DWORD dwOptions;

} LINECARDENTRY, FAR *LPLINECARDENTRY;

Members

ValuesMembers

The permanent identifier that identifies the card.dwPermanentCardID

A null-terminated string (size includes the NULL) that describes
the card in a user-friendly manner.

dwCardNameSize

dwCardNameOffset

The number of digits in the existing card number. The card number
itself is not returned for security reasons (TAPI stores it in
scrambled form). The application can use this parameter to insert
filler bytes into a text control in “password” mode to show that a
number exists.

dwCardNumberDigits

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of bytes
in the dialing rule that is defined for calls to numbers in the same
area code. The rule specifies a null-terminated string.

dwSameAreaRuleSize

dwSameAreaRuleOffset

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of bytes
in the dialing rule that is defined for calls to numbers in the other
areas in the same country or region. The rule specifies a
null-terminated string.

dwLongDistanceRuleSize dwLongDistanceRuleOffset

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of bytes
in the dialing rule that is defined for calls to numbers in other
countries/regions. The rule specifies a null-terminated string.

dwInternationalRuleSize dwInternationalRuleOffset

Indicates other settings that are associated with this calling card,
by using the LINECARDOPTION_

dwOptions

Basic TAPI Implementation
107

Basic TAPI Implementation
LINECARDENTRY

LINECOUNTRYENTRY
The LINECOUNTRYENTRY structure provides the information for a single country entry. An array of one
or more of these structures makes up part of the LINECOUNTRYLIST structure that the lineGetCountry
function returns.

You must not extend this structure.Note

Structure Details

typedef struct linecountryentry_tag {
DWORD dwCountryID;
DWORD dwCountryCode;
DWORD dwNextCountryID;
DWORD dwCountryNameSize;
DWORD dwCountryNameOffset;
DWORD dwSameAreaRuleSize;
DWORD dwSameAreaRuleOffset;
DWORD dwLongDistanceRuleSize;
DWORD dwLongDistanceRuleOffset;
DWORD dwInternationalRuleSize;
DWORD dwInternationalRuleOffset;

} LINECOUNTRYENTRY, FAR *LPLINECOUNTRYENTRY;

Members

ValuesMembers

The country or region identifier of the entry that specifies an
internal identifier that allows multiple entries to exist in the
country or region list with the same country code (for example,
all countries in North America and the Caribbean share country
code 1, but require separate entries in the list).

dwCountryID

The actual country code of the country or region that the entry
represents (that is, the digits that would be dialed in an
international call). Display only this value to users (Country IDs
should never display, as they could be confusing).

dwCountryCode

The country identifier of the next entry in the country or region
list. Because country codes and identifiers are not assigned in
numeric sequence, the country or region list represents a single
linked list, with each entry pointing to the next. The last country
or region in the list includes a dwNextCountryID value of zero.
When the LINECOUNTRYLIST structure is used to obtain the
entire list, the entries in the list appear in sequence as linked by
their dwNextCountryID members.

dwNextCountryID

The size, in bytes, and the offset, in bytes, from the beginning of
the LINECOUNTRYLIST structure of a null-terminated string
that gives the name of the country or region.

dwCountryNameSize dwCountryNameOffset

Basic TAPI Implementation
108

Basic TAPI Implementation
LINECOUNTRYENTRY

ValuesMembers

The size, in bytes, and the offset, in bytes, from the beginning of
the LINECOUNTRYLIST structure of a null-terminated string
that contains the dialing rule for direct-dialed calls to the same
area code.

dwSameAreaRuleSize dwSameAreaRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning of
the LINECOUNTRYLIST structure of a null-terminated string
that contains the dialing rule for direct-dialed calls to other areas
in the same country or region.

dwLongDistanceRuleSize dwLongDistanceRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning of
the LINECOUNTRYLIST structure of a null-terminated string
that contains the dialing rule for direct-dialed calls to other
countries/regions.

dwInternationalRuleSize dwInternationalRuleOffset

LINECOUNTRYLIST
The LINECOUNTRYLIST structure describes a list of countries/regions. This structure can contain an array
of LINECOUNTRYENTRY structures. The lineGetCountry function returns LINECOUNTRYLIST.

You must not extend this structure.Note

Structure Details

typedef struct linecountrylist_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwNumCountries;
DWORD dwCountryListSize;
DWORD dwCountryListOffset;

} LINECOUNTRYLIST, FAR *LPLINECOUNTRYLIST;

Members

ValuesMembers

The total size, in bytes, that are allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

Basic TAPI Implementation
109

Basic TAPI Implementation
LINECOUNTRYLIST

ValuesMembers

The number of LINECOUNTRYENTRY structures that are
present in the array dwCountryListSize and dwCountryListOffset
dominate.

dwNumCountries

The size, in bytes, and the offset, in bytes, from the beginning of
this data structure of an array of LINECOUNTRYENTRY
elements that provide information on each country or region.

dwCountryListSize dwCountryListOffset

LINEDEVCAPS

Members

ValuesMembers

For All Devices:

The size, in bytes, of the variably sized field that contains service
provider information and the offset, in bytes, from the beginning
of this data structure. The dwProviderInfoSize/ Offset member
provides information about the provider hardware and/or software.
This information is useful when a user needs to call customer
service with problems regarding the provider. The Cisco Unified
TSP sets this field to "Cisco Unified TSPxxx.TSP: Cisco IP PBX
Service Provider Ver. x.x(x.x)" where the text before the colon
specifies the file name of the TSP and the text after "Ver."
specifies the version of TSP.

dwProviderInfoSize

dwProviderInfoOffset

For All Devices:

The size, in bytes, of the variably sized device field that contains
switch information and the offset, in bytes, from the beginning
of this data structure. The dwSwitchInfoSize/Offset member
provides information about the switch to which the line device
connects, such as the switch manufacturer, the model name, the
software version, and so on. This information is useful when a
user needs to call customer service with problems regarding the
switch. The Cisco Unified TSP sets this field to "Cisco Unified
Communications Manager Ver. x.x(x.x), Cisco CTI Manager Ver
x.x(x.x)" where the text after "Ver." specifies the version of the
Cisco Unified Communications Manager and the version of the
CTI Manager, respectively.

dwSwitchInfoSize

dwSwitchInfoOffset

Basic TAPI Implementation
110

Basic TAPI Implementation
LINEDEVCAPS

ValuesMembers

For All Devices:

The permanent DWORD identifier by which the line device is
known in the system configuration. This identifier specifies a
permanent name for the line device. This permanent name (as
opposed to dwDeviceID) does not change as lines are added or
removed from the system and persists through operating system
upgrades. You can therefore use it to link line-specific information
in .ini files (or other files) in a way that is not affected by adding
or removing other lines or by changing the operating system.

dwPermanentLineID

For All Devices:

The size, in bytes, of the variably sized device field that contains
a user-configurable name for this line device and the offset, in
bytes, from the beginning of this data structure. You can configure
this name when you configure the line device service provider,
and the name gets provided for the convenience of the user. Cisco
Unified TSP sets this field to “Cisco Line: [deviceName] (dirn)”
where deviceName specifies the name of the device on which the
line resides, and dirn specifies the directory number for the device.

dwLineNameSize

dwLineNameOffset

For All Devices:

STRINGFORMAT_ASCII

dwStringFormat

For All Devices:

LINEADDRESSMODE_ADDRESSID

dwAddressModes

For All Devices:1dwNumAddresses

For All Devices:

LINEBEARERMODE_SPEECH

LINEBEARERMODE_VOICE

dwBearerModes

For All Devices:0dwMaxRate

For IP Phones and Park DNs:

LINEMEDIAMODE_INTERACTIVEVOICE

dwMediaModes

For CTI Ports and CTI Route Points:

LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINETONEMODE_BEEP

dwGenerateToneModes

For CTI Route Points (without media) and Park DNs:0

For All Devices:0dwGenerateToneMaxNumFreq

Basic TAPI Implementation
111

Basic TAPI Implementation
LINEDEVCAPS

ValuesMembers

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINETONEMODE_DTMF

dwGenerateDigitModes

For CTI Route Points and Park DNs:0

For All Devices:0dwMonitorToneMaxNumFreq

For All Devices:0dwMonitorToneMaxNumEntries

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINETONEMODE_DTMF

dwMonitorDigitModes

For CTI Route Points (without media) and Park DNs:0

For All Devices:0dwGatherDigitsMinTimeout

dwGatherDigitsMaxTimeout

For All Devices:0dwMedCtlDigitMaxListSize

dwMedCtlMediaMaxListSize

dwMedCtlToneMaxListSize

dwMedCtlCallStateMaxListSize

For IP Phones:0dwDevCapFlags

For All Other Devices:

LINEDEVCAPFLAGS_CLOSEDROP

For All Devices:1dwMaxNumActiveCalls

For CTI Route Points (without media):0

For CTI Route Points (with media):

Cisco Unified Communications Manager Administration
configuration

For IP Phones (except for VG248 and ATA186), CTI Route Points
(with media) and CTI Ports:

LINEANSWERMODE_HOLD

dwAnswerMode

For VG248 devices, ATA186 devices, CTI Route Points (without
media), and Park DNs:0

For All Devices:1dwRingModes

Basic TAPI Implementation
112

Basic TAPI Implementation
LINEDEVCAPS

ValuesMembers

For IP Phones, CTI Ports, and Route Points (with media):

LINEDEVSTATE_CLOSE

LINEDEVSTATE_DEVSPECIFIC

LINEDEVSTATE_INSERVICE

LINEDEVSTATE_MSGWAITOFF

LINEDEVSTATE_MSGWAITON

LINEDEVSTATE_NUMCALLS

LINEDEVSTATE_OPEN

LINEDEVSTATE_OUTOFSERVICE

LINEDEVSTATE_REINIT

LINEDEVSTATE_RINGING

LINEDEVSTATE_TRANSLATECHANGE

dwLineStates

For CTI Route Points (without media):

LINEDEVSTATE_CLOSE

LINEDEVSTATE_INSERVICE

LINEDEVSTATE_OPEN

LINEDEVSTATE_OUTOFSERVICE

LINEDEVSTATE_REINIT

LINEDEVSTATE_RINGING

LINEDEVSTATE_TRANSLATECHANGE

For Park DNs:LINEDEVSTATE_CLOSE

LINEDEVSTATE_DEVSPECIFIC

LINEDEVSTATE_INSERVICE

LINEDEVSTATE_NUMCALLS

LINEDEVSTATE_OPEN

LINEDEVSTATE_OUTOFSERVICE

LINEDEVSTATE_REINIT

LINEDEVSTATE_TRANSLATECHANGE

For All Devices:0dwUUIAcceptSize

For All Devices:0dwUUIAnswerSize

For All Devices:0dwUUIMakeCallSize

For All Devices:0dwUUIDropSize

Basic TAPI Implementation
113

Basic TAPI Implementation
LINEDEVCAPS

ValuesMembers

For All Devices:0dwUUISendUserUserInfoSize

For All Devices:0dwUUICallInfoSize

For All Devices:0MinDialParams

MaxDialParams

For All Devices:0DefaultDialParams

For All Devices:0dwNumTerminals

For All Devices:0dwTerminalCapsSize

dwTerminalCapsOffset

For All Devices:0dwTerminalTextEntrySize

For All Devices:0dwTerminalTextSize

dwTerminalTextOffset

For All Devices (except ParkDNs):

If dwExtVersion > 0x00030000
(3.0):LINEDEVCAPS_DEV_SPECIFIC.m_DevSpecificFlags =
0

dwDevSpecificSize

dwDevSpecificOffset

For Park DNs:

If dwExtVersion > 0x00030000
(3.0):LINEDEVCAPS_DEV_SPECIFIC.m_DevSpecificFlags =
LINEDEVCAPSDEVSPECIFIC_PARKDN

For Intercom DNs:

LINEDEVCAPS_DEV_SPECIFIC. M_DevSpecificFlags =
LINEDEVCAPSDEVSPECIFIC_INTERCOMDNLOCALE info
PARTITION_INFO INTERCOM_SPEEDDIAL_INFO

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINEFEATURE_DEVSPECIFIC

LINEFEATURE_FORWARD

LINEFEATURE_FORWARDFWD

LINEFEATURE_MAKECALL

dwLineFeatures

For CTI Route Points (without media):

LINEFEATURE_FORWARD

LINEFEATURE_FORWARDFWD

For Park DNs:0

Basic TAPI Implementation
114

Basic TAPI Implementation
LINEDEVCAPS

ValuesMembers

For All Devices:0dwSettableDevStatus

For IP Phones and CTI Route Points:

"tapi/line"

"tapi/phone"

dwDeviceClassesSize

dwDeviceClassesOffset

For CTI Ports:

"tapi/line"

"tapi/phone"

"wave/in"

"wave/out"

For Park DNs:

"tapi/line"

The GUID that is permanently associated with the line device.PermanentLineGuid

LINEDEVSTATUS

Members

ValuesMembers

For All Devices:

The number of active opens on the line device.

dwNumOpens

For All Devices:

Bit array that indicates for which media types the line device is
currently open.

dwOpenMediaModes

For All Devices:

The number of calls on the line in call states other than idle,
onhold, onholdpendingtransfer, and onholdpendingconference.

dwNumActiveCalls

For All Devices:

The number of calls on the line in the onhold state.

dwNumOnHoldCalls

For All Devices:

The number of calls on the line in the onholdpendingtransfer or
onholdpendingconference state.

dwNumOnHoldPendCalls

Basic TAPI Implementation
115

Basic TAPI Implementation
LINEDEVSTATUS

ValuesMembers

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINEFEATURE_DEVSPECIFIC

LINEFEATURE_FORWARD

LINEFEATURE_FORWARDFWD

LINEFEATURE_MAKECALL

dwLineFeatures

For CTI Route Points (without media):

LINEFEATURE_FORWARD

LINEFEATURE_FORWARDFWD

For Park DNs:0

For All Devices:0dwNumCallCompletions

For All Devices:0dwRingMode

For All Devices:0dwSignalLevel

For All Devices:0dwBatteryLevel

For All Devices:0dwRoamMode

For IP Phones and CTI Ports:

LINEDEVSTATUSGLAGS_CONNECTED

LINEDEVSTATUSGLAGS_INSERVICE

LINEDEVSTATUSGLAGS_MSGWAIT

dwDevStatusFlags

For CTI Route Points and Park DNs:

LINEDEVSTATUSGLAGS_CONNECTED

LINEDEVSTATUSGLAGS_INSERVICE

For All Devices:0dwTerminalModesSizedwTerminalModesOffset

For All Devices:0dwDevSpecificSizedwDevSpecificOffset

For All Devices:0dwAvailableMediaModes

For All Devices:

Length, in bytes, and offset from the beginning of
LINEDEVSTATUS of an array of LINEAPPINFO structures.
The dwNumOpens member indicates the number of elements in
the array. Each element in the array identifies an application that
has the line open.

dwAppInfoSizedwAppInfoOffset

Basic TAPI Implementation
116

Basic TAPI Implementation
LINEDEVSTATUS

LINEEXTENSIONID

Members

ValuesMembers

For All Devices:

0x8EBD6A50

dwExtensionID0

For All Devices:

0x128011D2

dwExtensionID1

For All Devices:

0x905B0060

dwExtensionID2

For All Devices:

0xB03DD275

dwExtensionID3

LINEFORWARD
The LINEFORWARD structure describes an entry of the forwarding instructions.

Structure Details

typedef struct lineforward_tag {
DWORD dwForwardMode;
DWORD dwCallerAddressSize;
DWORD dwCallerAddressOffset;
DWORD dwDestCountryCode;
DWORD dwDestAddressSize;
DWORD dwDestAddressOffset;

} LINEFORWARD, FAR *LPLINEFORWARD;

Basic TAPI Implementation
117

Basic TAPI Implementation
LINEEXTENSIONID

Members

ValuesMembers

dwForwardMode

Basic TAPI Implementation
118

Basic TAPI Implementation
LINEFORWARD

ValuesMembers

The types of forwarding. The dwForwardModemember can have
only a single bit set. This member uses the following
LINEFORWARDMODE_ constants:

LINEFORWARDMODE_UNCOND

Forward all calls unconditionally, irrespective of their origin.
Use this value when unconditional forwarding for internal
and external calls cannot be controlled separately.
Unconditional forwarding overrides forwarding on busy
and/or no-answer conditions.

LINEFORWARDMODE_UNCOND is the only
forward mode that Cisco Unified TSP supports.

Note

LINEFORWARDMODE_UNCONDINTERNAL

Forward all internal calls unconditionally. Use this value
when unconditional forwarding for internal and external calls
can be controlled separately.

LINEFORWARDMODE_UNCONDEXTERNAL

Forward all external calls unconditionally. Use this value
when unconditional forwarding for internal and external calls
can be controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC

Unconditionally forward all calls that originated at a specified
address (selective call forwarding).

LINEFORWARDMODE_BUSY

Forward all calls on busy, irrespective of their origin. Use
this value when forwarding for internal and external calls
both on busy and on no answer cannot be controlled
separately.

LINEFORWARDMODE_BUSYINTERNAL

Forward all internal calls on busy. Use this value when
forwarding for internal and external calls on busy and on no
answer can be controlled separately.

LINEFORWARDMODE_BUSYEXTERNAL

Forward all external calls on busy. Use this value when
forwarding for internal and external calls on busy and on no
answer can be controlled separately.

LINEFORWARDMODE_BUSYSPECIFIC

Forward on busy all calls that originated at a specified address
(selective call forwarding).

LINEFORWARDMODE_NOANSW

Basic TAPI Implementation
119

Basic TAPI Implementation
LINEFORWARD

ValuesMembers

Forward all calls on no answer, irrespective of their origin.
Use this value when call forwarding for internal and external
calls on no answer cannot be controlled separately.

LINEFORWARDMODE_NOANSWINTERNAL

Forward all internal calls on no answer. Use this value when
forwarding for internal and external calls on no answer can
be controlled separately.

LINEFORWARDMODE_NOANSWEXTERNAL

Forward all external calls on no answer. Use this value when
forwarding for internal and external calls on no answer can
be controlled separately.

LINEFORWARDMODE_NOANSWSPECIFIC

Forward all calls that originated at a specified address on no
answer (selective call forwarding).

LINEFORWARDMODE_BUSYNA

Forward all calls on busy or no answer, irrespective of their
origin. Use this value when forwarding for internal and
external calls on both busy and on no answer cannot be
controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL

Forward all internal calls on busy or no answer. Use this value
when call forwarding on busy and on no answer cannot be
controlled separately for internal calls.

LINEFORWARDMODE_BUSYNAEXTERNAL

Forward all external calls on busy or no answer. Use this
value when call forwarding on busy and on no answer cannot
be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNASPECIFIC

Forward on busy or no answer all calls that originated at a
specified address (selective call forwarding).

LINEFORWARDMODE_UNKNOWN

Calls get forwarded, but the conditions under which
forwarding occurs are not known at this time.

LINEFORWARDMODE_UNAVAIL

Calls are forwarded, but the conditions under which
forwarding occurs are not known and are never known by
the service provider.

Basic TAPI Implementation
120

Basic TAPI Implementation
LINEFORWARD

ValuesMembers

The size in bytes of the variably sized address field that contains
the address of a caller to be forwarded and the offset in bytes from
the beginning of the containing data structure. The
dwCallerAddressSize/Offset member gets set to zero if
dwForwardMode is not one of the following
choices:LINEFORWARDMODE_BUSYNASPECIFIC,
LINEFORWARDMODE_NOANSWSPECIFIC,
LINEFORWARDMODE_UNCONDSPECIFIC, or
LINEFORWARDMODE_BUSYSPECIFIC.

dwCallerAddressSize dwCallerAddressOffset

The country code of the destination address to which the call is
to be forwarded.

dwDestCountryCode

The size in bytes of the variably sized address field that contains
the address where calls are to be forwarded and the offset in bytes
from the beginning of the containing data structure.

dwDestAddressSize dwDestAddressOffset

LINEFORWARDLIST
The LINEFORWARDLIST structure describes a list of forwarding instructions.

Structure Details

typedef struct lineforwardlist_tag {
DWORD dwTotalSize;
DWORD dwNumEntries;
LINEFORWARD ForwardList[1];

} LINEFORWARDLIST, FAR *LPLINEFORWARDLIST;

Members

ValuesMembers

The total size in bytes of the data structure.dwTotalSize

Number of entries in the array, specified as ForwardList[].dwNumEntries

An array of forwarding instruction. The array entries specify type
LINEFORWARD.

ForwardList[]

LINEGENERATETONE
The LINEGENERATETONE structure contains information about a tone to be generated. The lineGenerateTone
and TSPI_lineGenerateTone functions use this structure.

Basic TAPI Implementation
121

Basic TAPI Implementation
LINEFORWARDLIST

You must not extend this structure.Note

This structure gets used only for the generation of tones; it is not used for tone monitoring.

Structure Details

typedef struct linegeneratetone_tag {
DWORD dwFrequency;
DWORD dwCadenceOn;
DWORD dwCadenceOff;
DWORD dwVolume;

} LINEGENERATETONE, FAR *LPLINEGENERATETONE;

Members

ValuesMembers

The frequency, in hertz, of this tone component. A service provider
may adjust (round up or down) the frequency that the application
specified to fit its resolution.

dwFrequency

The “on” duration, in milliseconds, of the cadence of the custom
tone to be generated. Zero means no tone gets generated.

dwCadenceOn

The “off” duration, in milliseconds, of the cadence of the custom
tone to be generated. Zero means no off time, that is, a constant
tone.

dwCadenceOff

The volume level at which the tone gets generated. A value of
0x0000FFFF represents full volume, and a value of 0x00000000
means silence.

dwVolume

LINEINITIALIZEEXPARAMS
The LINEINITIZALIZEEXPARAMS structure describes parameters that are supplied when calls are made
by using LINEINITIALIZEEX.

Structure Details

typedef struct lineinitializeexparams_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwOptions;

union
{
HANDLE hEvent;
HANDLE hCompletionPort;
} Handles;

Basic TAPI Implementation
122

Basic TAPI Implementation
LINEINITIALIZEEXPARAMS

DWORD dwCompletionKey;

} LINEINITIALIZEEXPARAMS, FAR *LPLINEINITIALIZEEXPARAMS;

Members

ValuesMembers

The total size, in bytes, that is allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

One of the LINEINITIALIZEEXOPTION_constants. Specifies
the event notification mechanism that the application wants to
use.

dwOptions

If dwOptions specifies
LINEINITIALIZEEXOPTION_USEEVENT, TAPI returns the
event handle in this field.

hEvent

If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this field the handle of an existing
completion port that was opened by using
CreateIoCompletionPort.

hCompletionPort

If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this field a value that is returned
through the lpCompletionKey parameter of
GetQueuedCompletionStatus to identify the completion message
as a telephony message.

dwCompletionKey

Further Details

See lineInitializeEx, on page 34 for further information on these options.

LINELOCATIONENTRY
The LINELOCATIONENTRY structure describes a location that is used to provide an address translation
context. The LINETRANSLATECAPS structure can contain an array of LINELOCATIONENTRY structures.

You must not extend this structure.Note

Basic TAPI Implementation
123

Basic TAPI Implementation
LINELOCATIONENTRY

Structure Details

typedef struct linelocationentry_tag {
DWORD dwPermanentLocationID;
DWORD dwLocationNameSize;
DWORD dwLocationNameOffset;

DWORD dwCityCodeSize;
DWORD dwCityCodeOffset;
DWORD dwPreferredCardID;
DWORD dwLocalAccessCodeSize;
DWORD dwLocalAccessCodeOffset;
DWORD dwLongDistanceAccessCodeSize;
DWORD dwLongDistanceAccessCodeOffset;
DWORD dwTollPrefixListSize;
DWORD dwTollPrefixListOffset;
DWORD dwCountryID;
DWORD dwOptions;
DWORD dwCancelCallWaitingSize;
DWORD dwCancelCallWaitingOffset;

} LINELOCATIONENTRY, FAR *LPLINELOCATIONENTRY;

Members

ValuesMembers

The permanent identifier that identifies the location.dwPermanentLocationID

Contains a null-terminated string (size includes the NULL) that
describes the location in a user-friendly manner.

dwLocationNameSize

dwLocationNameOffset

The country code of the location.dwCountryCode

The preferred calling card when dialing from this location.dwPreferredCardID

Contains a null-terminated string that specifies the city or area
code that is associated with the location (the size includes the
NULL). Applications can use this information, along with the
country code, to “default” entry fields for the user when you enter
the phone numbers, to encourage the entry of proper canonical
numbers.

dwCityCodeSize

dwCityCodeOffset

The size, in bytes, and the offset, in bytes, from the beginning of
the LINETRANSLATECAPS structure of a null-terminated string
that contains the access code to be dialed before calls to addresses
in the local calling area.

dwLocalAccessCodeSize

dwLocalAccessCodeOffset

The size, in bytes, and the offset, in bytes, from the beginning of
the LINETRANSLATECAPS structure of a null-terminated string
that contains the access code to be dialed before calls to addresses
outside the local calling area.

dwLongDistanceAccessCodeSize

dwLongDistanceAccessCodeOffset

Basic TAPI Implementation
124

Basic TAPI Implementation
LINELOCATIONENTRY

ValuesMembers

The size, in bytes, and the offset, in bytes, from the beginning of
the LINETRANSLATECAPS structure of a null-terminated string
that contains the toll prefix list for the location. The string contains
only prefixes that consist of the digits “0” through “9” and are
separated from each other by a single “,” (comma) character.

dwTollPrefixListSize

dwTollPrefixListOffset

The country identifier of the country or region that is selected for
the location. Use this identifier with the lineGetCountry function
to obtain additional information about the specific country or
region, such as the country or region name (you cannot use the
dwCountryCode member for this purpose because country codes
are not unique).

dwCountryID

Indicates options in effect for this location with values taken from
the LINELOCATIONOPTION_Constants.

dwOptions

The size, in bytes, and the offset, in bytes, from the beginning of
the LINETRANSLATECAPS structure of a null-terminated string
that contains the dial digits and modifier characters that should
be prefixed to the dialable string (after the pulse/tone character)
when an application sets the
LINETRANSLATEOPTION_CANCELCALLWAITING bit in
the dwTranslateOptions parameter of lineTranslateAddress. If no
prefix is defined, dwCancelCallWaitingSize set to zero may
indicate this, or dwCancelCallWaitingSize set to 1 and
dwCancelCallWaitingOffset pointing to an empty string (single
NULL byte) may indicate this.

dwCancelCallWaitingSize

dwCancelCallWaitingOffset

LINEMESSAGE
The LINEMESSAGE structure contains parameter values that specify a change in status of the line that the
application currently has open. The lineGetMessage function returns the LINEMESSAGE structure.

Structure Details

typedef struct linemessage_tag {
DWORD hDevice;
DWORD dwMessageID;
DWORD_PTR dwCallbackInstance;
DWORD_PTR dwParam1;
DWORD_PTR dwParam2;
DWORD_PTR dwParam3;

} LINEMESSAGE, FAR *LPLINEMESSAGE;

Basic TAPI Implementation
125

Basic TAPI Implementation
LINEMESSAGE

Members

ValuesMembers

A handle to either a line device or a call. The context that
dwMessageID provides can determine the nature of this handle
(line handle or call handle).

hDevice

A line or call device message.dwMessageID

Instance data passed back to the application, which the application
in the dwCallBackInstance parameter of lineInitializeEx specified.
TAPI does not interpret this DWORD.

dwCallbackInstance

A parameter for the message.dwParam1

A parameter for the message.dwParam2

A parameter for the message.dwParam3

For details about the parameter values that are passed in this structure, see TAPI Line Messages, on page 57.

LINEMONITORTONE
The LINEMONITORTONE structure defines a tone for the purpose of detection. Use this as an entry in an
array. An array of tones gets passed to the lineMonitorTones function that monitors these tones and sends a
LINE_MONITORTONE message to the application when a detection is made.

A tone with all frequencies set to zero corresponds to silence. An application can thus monitor the call
information stream for silence.

You must not extend this structure.Note

Structure Details

typedef struct linemonitortone_tag { DWORD dwAppSpecific;
DWORD dwDuration;
DWORD dwFrequency1;
DWORD dwFrequency2;
DWORD dwFrequency3;

} LINEMONITORTONE, FAR *LPLINEMONITORTONE;

Members

ValuesMembers

Used by the application for tagging the tone. When this tone is
detected, the value of the dwAppSpecific member gets passed
back to the application.

dwAppSpecific

Basic TAPI Implementation
126

Basic TAPI Implementation
LINEMONITORTONE

ValuesMembers

The duration, in milliseconds, during which the tone should be
present before a detection is made.

dwDuration

dwFrequency2dwFrequency1

The frequency, in hertz, of a component of the tone. If fewer than
three frequencies are needed in the tone, a value of 0 should be
used for the unused frequencies. A tone with all three frequencies
set to zero gets interpreted as silence and can be used for silence
detection.

dwFrequency3

LINEPROVIDERENTRY
The LINEPROVIDERENTRY structure provides the information for a single service provider entry. An array
of these structures gets returned as part of the LINEPROVIDERLIST structure that the function
lineGetProviderList returns.

You cannot extend this structure.Note

Structure Details

typedef struct lineproviderentry_tag {
DWORD dwPermanentProviderID;
DWORD dwProviderFilenameSize;
DWORD dwProviderFilenameOffset;

} LINEPROVIDERENTRY, FAR *LPLINEPROVIDERENTRY;

Members

ValuesMembers

The permanent provider identifier of the entry.dwPermanentProviderID

The size, in bytes, and the offset, in bytes, from the beginning of
the LINEPROVIDERLIST structure of a null-terminated string
that contains the filename (path) of the service provider DLL
(.TSP) file.

dwProviderFilenameSizedwProviderFilenameOffset

LINEPROVIDERLIST
The LINEPROVIDERLIST structure describes a list of service providers. The lineGetProviderList function
returns a structure of this type. The LINEPROVIDERLIST structure can contain an array of
LINEPROVIDERENTRY structures.

Basic TAPI Implementation
127

Basic TAPI Implementation
LINEPROVIDERENTRY

You must not extend this structure.Note

Structure Details

typedef struct lineproviderlist_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;

DWORD dwNumProviders;
DWORD dwProviderListSize;
DWORD dwProviderListOffset;

} LINEPROVIDERLIST, FAR *LPLINEPROVIDERLIST;

Members

ValuesMembers

The total size, in bytes, that are allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

The number of LINEPROVIDERENTRY structures that are
present in the array that is denominated by dwProviderListSize
and dwProviderListOffset.

dwNumProviders

The size, in bytes, and the offset, in bytes, from the beginning of
this data structure of an array of LINEPROVIDERENTRY
elements, which provide the information on each service provider.

dwProviderListSize

dwProviderListOffset

LINEREQMAKECALL
The LINEREQMAKECALL structure describes a request that a call initiated to the lineGetRequest function.

You cannot extend this structure.Note

Structure Details

typedef struct linereqmakecall_tag {
char szDestAddress[TAPIMAXDESTADDRESSSIZE];
char szAppName[TAPIMAXAPPNAMESIZE];
char szCalledParty[TAPIMAXCALLEDPARTYSIZE];

Basic TAPI Implementation
128

Basic TAPI Implementation
LINEREQMAKECALL

char szComment[TAPIMAXCOMMENTSIZE];
} LINEREQMAKECALL, FAR *LPLINEREQMAKECALL;

Members

ValuesMembers

The null-terminated destination address of the make-call request.
The address uses the canonical address format or the dialable
address format. The maximum length of the address specifies
TAPIMAXDESTADDRESSSIZE characters, which include the
NULL terminator. Longer strings get truncated.

szDestAddress

[TAPIMAXADDRESSSIZE]

The null-terminated, user-friendly application name or filename
of the application that originated the request. Themaximum length
of the address specifies TAPIMAXAPPNAMESIZE characters,
which include the NULL terminator.

szAppName

[TAPIMAXAPPNAMESIZE]

The null-terminated, user-friendly called-party name. The
maximum length of the called-party information specifies
TAPIMAXCALLEDPARTYSIZE characters, which include the
NULL terminator.

szCalledParty

[TAPIMAXCALLEDPARTYSIZE]

The null-terminated comment about the call request. The
maximum length of the comment string specifies
TAPIMAXCOMMENTSIZE characters, which include theNULL
terminator.

szComment

[TAPIMAXCOMMENTSIZE]

LINETRANSLATECAPS
The LINETRANSLATECAPS structure describes the address translation capabilities. This structure can
contain an array of LINELOCATIONENTRY structures and an array of LINECARDENTRY structures. the
lineGetTranslateCaps function returns the LINETRANSLATECAPS structure.

You must not extend this structure.Note

Structure Details

typedef struct linetranslatecaps_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwNumLocations;
DWORD dwLocationListSize;
DWORD dwLocationListOffset;
DWORD dwCurrentLocationID;
DWORD dwNumCards;
DWORD dwCardListSize;
DWORD dwCardListOffset;

Basic TAPI Implementation
129

Basic TAPI Implementation
LINETRANSLATECAPS

DWORD dwCurrentPreferredCardID;
} LINETRANSLATECAPS, FAR *LPLINETRANSLATECAPS;

Members

ValuesMembers

The total size, in bytes, that is allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

The number of entries in the location list. It includes all locations
that are defined, including zero (default).

dwNumLocations

List of locations that are known to the address translation. The
list comprises a sequence of LINELOCATIONENTRY structures.
The dwLocationListOffset member points to the first byte of the
first LINELOCATIONENTRY structure, and the
dwLocationListSize member indicates the total number of bytes
in the entire list.

dwLocationListSize

dwLocationListOffset

The dwPermanentLocationID member from the
LINELOCATIONENTRY structure for the CurrentLocation.

dwCurrentLocationID

The number of entries in the CardList.dwNumCards

List of calling cards that are known to the address translation. It
includes only non-hidden card entries and always includes card
0 (direct dial). The list comprises a sequence of
LINECARDENTRY structures. The dwCardListOffset member
points to the first byte of the first LINECARDENTRY structure,
and the dwCardListSize member indicates the total number of
bytes in the entire list.

dwCardListSize

dwCardListOffset

The dwPreferredCardID member from the
LINELOCATIONENTRY structure for the CurrentLocation.

dwCurrentPreferredCardID

LINETRANSLATEOUTPUT
The LINETRANSLATEOUTPUT structure describes the result of an address translation. The
lineTranslateAddress function uses this structure.

You must not extend this structure.Note

Basic TAPI Implementation
130

Basic TAPI Implementation
LINETRANSLATEOUTPUT

Structure Details

typedef struct linetranslateoutput_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwDialableStringSize;
DWORD dwDialableStringOffset;
DWORD dwDisplayableStringSize;
DWORD dwDisplayableStringOffset;
DWORD dwCurrentCountry;
DWORD dwDestCountry;
DWORD dwTranslateResults;

} LINETRANSLATEOUTPUT, FAR *LPLINETRANSLATEOUTPUT;

Members

ValuesMembers

The total size, in bytes, that is allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

Contains the translated output that can be passed to the
lineMakeCall, lineDial, or other function that requires a dialable
string. The output always comprises a null-terminated string
(NULL gets included in the count in dwDialableStringSize). This
output string includes ancillary fields such as name and subaddress
if they were in the input string. This string may contain private
information such as calling card numbers. To prevent inadvertent
visibility to unauthorized persons, it should not display to the
user.

dwDialableStringSize

dwDialableStringOffset

Contains the translated output that can display to the user for
confirmation. Identical to DialableString, except the “friendly
name” of the card enclosedwithin bracket characters (for example,
“[AT&TCard]”) replaces calling card digits. The ancillary fields,
such as name and subaddress, get removed. You can display this
string in call-status dialog boxes without exposing private
information to unauthorized persons. You can also include this
information in call logs.

dwDisplayableStringSize

dwDisplayableStringOffset

Contains the country code that is configured in CurrentLocation.
Use this value to control the display by the application of certain
user interface elements for local call progress tone detection and
for other purposes.

dwCurrentCountry

Basic TAPI Implementation
131

Basic TAPI Implementation
LINETRANSLATEOUTPUT

ValuesMembers

Contains the destination country code of the translated address.
This value may pass to the dwCountryCode parameter of
lineMakeCall and other dialing functions (so the call progress
tones of the destination country or region such as a busy signal
are properly detected). This field gets set to zero if the destination
address that is passed to lineTranslateAddress is not in canonical
format.

dwDestCountry

Indicates the information that is derived from the translation
process, which may assist the application in presenting
user-interface elements. This field uses one
LINETRANSLATERESULT_.

dwTranslateResults

TAPI Phone Functions
TAPI phone functions enable an application to control physical aspects of a phone

Table 4: TAPI Phone Functions

TAPI phone functions

phoneCallbackFunc, on page 133

phoneClose, on page 134

phoneDevSpecific, on page 134

phoneGetDevCaps, on page 134

phoneGetDisplay, on page 135

phoneGetLamp, on page 136

phoneGetMessage, on page 136

phoneGetRing, on page 137

phoneGetStatus, on page 138

phoneGetStatusMessages, on page 139

phoneInitialize, on page 140

phoneInitializeEx, on page 141

phoneNegotiateAPIVersion, on page 143

phoneOpen, on page 144

phoneSetDisplay, on page 145

Basic TAPI Implementation
132

Basic TAPI Implementation
TAPI Phone Functions

TAPI phone functions

phoneSetStatusMessages, on page 146

phoneShutdown, on page 148

phoneCallbackFunc
The phoneCallbackFunc function provides a placeholder for the application-supplied function name.

All callbacks occur in the application context. The callback function must reside in a dynamic-link library
(DLL) or application module and be exported in the module-definition file.

Function Details

VOID FAR PASCAL phoneCallbackFunc(
HANDLE hDevice,
DWORD dwMsg,
DWORD dwCallbackInstance,
DWORD dwParam1,
DWORD dwParam2,
DWORD dwParam3

);

Parameters

hDevice

A handle to a phone device that is associated with the callback.

dwMsg

A line or call device message.

dwCallbackInstance

Callback instance data that is passed to the application in the callback. TAPI does not interpret this
DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For more information about the parameters that are passed to this callback function, see TAPI Line Messages,
on page 57 and TAPI Phone Messages, on page 148.

Basic TAPI Implementation
133

Basic TAPI Implementation
phoneCallbackFunc

phoneClose
The phoneClose function closes the specified open phone device.

Function Details

LONG phoneClose(
HPHONE hPhone

);

Parameter

hPhone

A handle to the open phone device that is to be closed. If the function succeeds, this means that the handle
is no longer valid.

phoneDevSpecific
The phoneDevSpecific function gets used as a general extension mechanism to enable a telephony API
implementation to provide features that are not described in the other TAPI functions. The meanings of these
extensions are device specific.

When used with the Cisco Unified TSP, you can use phoneDevSpecific to send device-specific data to a phone
device.

Function Details

LONG WINAPI phoneDevSpecific (
HPHONE hPhone,
LPVOID lpParams,
DWORD dwSize
);

Parameters

hPhone

A handle to a phone device.

lpParams

A pointer to a memory area used to hold a parameter block. Its interpretation is device specific. TAPI
passes the contents of the parameter block unchanged to or from the service provider.

dwSize

The size in bytes of the parameter block area.

phoneGetDevCaps
The phoneGetDevCaps function queries a specified phone device to determine its telephony capabilities.

Basic TAPI Implementation
134

Basic TAPI Implementation
phoneClose

Function Details

LONG phoneGetDevCaps(
HPHONEAPP hPhoneApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
DWORD dwExtVersion,
LPPHONECAPS lpPhoneCaps

);

Parameters

hPhoneApp

The handle to the registration with TAPI for this application.

dwDeviceID

The phone device that is to be queried.

dwAPIVersion

The version number of the telephony API that is to be used. The high-order word contains the major
version number; the low-order word contains the minor version number. You can obtain this number
with the function phoneNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number is obtained with
the function phoneNegotiateExtVersion. It can be left as zero if no device-specific extensions are to be
used. Otherwise, the high-order word contains the major version number, the low-order word contains
the minor version number.

lpPhoneCaps

A pointer to a variably sized structure of type PHONECAPS. Upon successful completion of the request,
this structure is filled with phone device capabilities information.

phoneGetDisplay
The phoneGetDisplay function returns the current contents of the specified phone display.

Function Details

LONG phoneGetDisplay(
HPHONE hPhone,
LPVARSTRING lpDisplay

);

Parameters

hPhone

A handle to the open phone device.

lpDisplay

A pointer to the memory location where the display content is to be stored, of type VARSTRING.

Basic TAPI Implementation
135

Basic TAPI Implementation
phoneGetDisplay

phoneGetLamp
The phoneGetLamp function returns the current lamp mode of the specified lamp.

Cisco Unified IP Phones 79xx series do not support this function.Note

Function Details

LONG phoneGetLamp(
HPHONE hPhone,
DWORD dwButtonLampID,
LPDWORD lpdwLampMode

);

Parameters

hPhone

A handle to the open phone device.

dwButtonLampID

The identifier of the lamp that is to be queried. See PHONE_BUTTON, on page 149 for lamp IDs.

lpdwLampMode

Cisco Unified IP Phones 79xx series do not support this function.Note

A pointer to a memory location that holds the lamp mode status of the given lamp. The lpdwLampMode
parameter can have atmost one bit set. This parameter uses the following PHONELAMPMODE_constants:

• PHONELAMPMODE_FLASH -Flash means slow on and off.

• PHONELAMPMODE_FLUTTER -Flutter means fast on and off.

• PHONELAMPMODE_OFF -The lamp is off.

• PHONELAMPMODE_STEADY -The lamp is continuously lit.

• PHONELAMPMODE_WINK -The lamp winks.

• PHONELAMPMODE_UNKNOWN -The lamp mode is currently unknown.

• PHONELAMPMODE_DUMMY -Use this value to describe a button/lamp position that has no
corresponding lamp.

phoneGetMessage
The phoneGetMessage function returns the next TAPI message that is queued for delivery to an application
that is using the Event Handle notification mechanism (see phoneInitializeEx for further details).

Basic TAPI Implementation
136

Basic TAPI Implementation
phoneGetLamp

Function Details

LONG WINAPI phoneGetMessage(
HPHONEAPP hPhoneApp,
LPPHONEMESSAGE lpMessage,
DWORD dwTimeout

);

Parameters

hPhoneApp

The handle that phoneInitializeEx returns. The application must have set the
PHONEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
PHONEINITIALIZEEXPARAMS structure.

lpMessage

A pointer to a PHONEMESSAGE structure. Upon successful return from this function, the structure
contains the next message that had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no message
can be returned. If dwTimeout is zero, the function checks for a queued message and returns immediately.
If dwTimeout is INFINITE, the time-out interval never elapses.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_OPERATIONFAILED, PHONEERR_INVALPOINTER,
PHONEERR_NOMEM.

phoneGetRing
The phoneGetRing function enables an application to query the specified open phone device as to its current
ring mode.

Function Details

LONG phoneGetRing(
HPHONE hPhone,
LPDWORD lpdwRingMode,
LPDWORD lpdwVolume

);

Parameters

hPhone

A handle to the open phone device.

lpdwRingMode

The ringing pattern with which the phone is ringing. Zero indicates that the phone is not ringing.

Basic TAPI Implementation
137

Basic TAPI Implementation
phoneGetRing

The system supports four ring modes.

The following table lists the valid ring modes.

Table 5: Ring Modes

DefinitionRing Modes

Off0

Inside Ring1

Outside Ring2

Feature Ring3

lpdwVolume

The volume level with which the phone is ringing. This parameter has no meaning; the value 0x8000
always gets returned.

phoneGetStatus
The phoneGetStatus function enables an application to query the specified open phone device for its overall
status.

Function Details

LONG WINAPI phoneGetStatusMessages(
HPHONE hPhone,
LPPHONESTATUS lpPhoneStatus
) ;

Parameters

hPhone

A handle to the open phone device to be queried.

lpPhoneStatus

A pointer to a variably sized data structure of type PHONESTATUS, which is loaded with the returned
information about the phone status.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Return values include the following:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL PHONEERR_OPERATIONFAILED,
PHONEERR_STRUCTURETOOSMALL PHONEERR_OPERATIONUNAVAIL,
PHONEERR_UNINITIALIZED

Basic TAPI Implementation
138

Basic TAPI Implementation
phoneGetStatus

phoneGetStatusMessages
The phoneGetStatusMessages function returns information about which phone-state changes on the specified
phone device generate a callback to the application.

An application can use phoneGetStatusMessages to query the generation of the corresponding messages. The
phoneSetStatusMessages can control Message generation. All phone status messages remain disabled by
default.

Function Details

LONG WINAPI phoneGetStatusMessages(
HPHONE hPhone,
LPDWORD lpdwPhoneStates,
LPDWORD lpdwButtonModes,
LPDWORD lpdwButtonStates

);

Parameters

hPhone

A handle to the open phone device that is to be monitored.

lpdwPhoneStates

A pointer to a DWORD holding zero, one or more of the PHONESTATE_Constants. These flags specify
the set of phone status changes and events for which the application can receive notification messages.
You can enable or disable monitoring individually for the following states:

• PHONESTATE_OTHER

• PHONESTATE_CONNECTED

• PHONESTATE_DISCONNECTED

• PHONESTATE_OWNER

• PHONESTATE_MONITORS

• PHONESTATE_DISPLAY

• PHONESTATE_LAMP

• PHONESTATE_RINGMODE

• PHONESTATE_RINGVOLUME

• PHONESTATE_HANDSETHOOKSWITCH

• PHONESTATE_HANDSETVOLUME

• PHONESTATE_HANDSETGAIN

• PHONESTATE_SPEAKERHOOKSWITCH

• PHONESTATE_SPEAKERVOLUME

• PHONESTATE_SPEAKERGAIN

Basic TAPI Implementation
139

Basic TAPI Implementation
phoneGetStatusMessages

• PHONESTATE_HEADSETHOOKSWITCH

• PHONESTATE_HEADSETVOLUME

• PHONESTATE_HEADSETGAIN

• PHONESTATE_SUSPEND

• PHONESTATE_RESUMEF

• PHONESTATE_DEVSPECIFIC

• PHONESTATE_REINIT

• PHONESTATE_CAPSCHANGE

• PHONESTATE_REMOVED

lpdwButtonModes

A pointer to a DWORD that contains flags that specify the set of phone-button modes for which the
application can receive notification messages. This parameter uses zero, one, or more of the
PHONEBUTTONMODE_Constants.

lpdwButtonStates

A pointer to a DWORD that contains flags that specify the set of phone button state changes for which
the application can receive notification messages. This parameter uses zero, one, or more of the
PHONEBUTTONSTATE_ Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALPHONEHANDLE

PHONEERR_NOMEM

PHONEERR_INVALPOINTER

PHONEERR_RESOURCEUNAVAIL

PHONEERR_OPERATIONFAILED

PHONEERR_UNINITIALIZED.

phoneInitialize
Although the phoneInitialize function is obsolete, tapi.dll and tapi32.dll continue to export it for backward
compatibility with applications that are using TAPI versions 1.3 and 1.4.

Function Details

LONG WINAPI phoneInitialize(
LPHPHONEAPP lphPhoneApp,
HINSTANCE hInstance,
PHONECALLBACK lpfnCallback,
LPCSTR lpszAppName,

Basic TAPI Implementation
140

Basic TAPI Implementation
phoneInitialize

LPDWORD lpdwNumDevs
);

Parameters

lphPhoneApp

A pointer to a location that is filled with the application usage handle for TAPI.

hInstance

The instance handle of the client application or DLL.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the phone device.

lpszAppName

A pointer to a null-terminated string that contains displayable characters. If this parameter is non-NULL,
it contains an application-supplied name of the application. This name, which is provided in the
PHONESTATUS structure, indicates, in a user-friendly way, which application is the current owner of
the phone device. You can use this information for logging and status reporting purposes. If lpszAppName
is NULL, the application filename gets used instead.

lpdwNumDevs

A pointer to DWORD. This location gets loaded with the number of phone devices that are available to
the application.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALAPPNAME

PHONEERR_INIFILECORRUPT

PHONEERR_INVALPOINTER

PHONEERR_NOMEM

PHONEERR_OPERATIONFAILED

PHONEERR_REINIT

PHONEERR_RESOURCEUNAVAIL

PHONEERR_NODEVICE

PHONEERR_NODRIVER

PHONEERR_INVALPARAM

phoneInitializeEx
The phoneInitializeEx function initializes the application use of TAPI for subsequent use of the phone
abstraction. It registers the application specified notification mechanism and returns the number of phone
devices that are available to the application. A phone device represents any device that provides an
implementation for the phone-prefixed functions in the telephony API.

Basic TAPI Implementation
141

Basic TAPI Implementation
phoneInitializeEx

Function Details

LONG WINAPI phoneInitializeEx(
LPHPHONEAPP lphPhoneApp,
HINSTANCE hInstance,
PHONECALLBACK lpfnCallback,
LPCSTR lpszFriendlyAppName,
LPDWORD lpdwNumDevs,
LPDWORD lpdwAPIVersion,
LPPHONEINITIALIZEEXPARAMS lpPhoneInitializeExParams

);

Parameters

lphPhoneApp

A pointer to a location that is filled with the application usage handle for TAPI.

hInstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for this
parameter, in which case TAPI uses the module handle of the root executable of the process.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the "hidden window" method of event notification (for
more information, see phoneCallbackFunc). When the application chooses to use the event handle or
completion port event notification mechanisms, this parameter gets ignored and should be set to NULL.

lpszFriendlyAppName

A pointer to a null-terminated string that contains only displayable characters. If this parameter is not
NULL, it contains an application-supplied name for the application. This name, which is provided in the
PHONESTATUS structure, indicates, in a user-friendly way, which application has ownership of the
phone device. If lpszFriendlyAppName is NULL, the application module filename gets used instead (as
returned by the Windows function GetModuleFileName).

lpdwNumDevs

A pointer to a DWORD. Upon successful completion of this request, the number of phone devices that
are available to the application fills this location.

lpdwAPIVersion

A pointer to a DWORD. The application must initialize this DWORD, before calling this function, to
the highest API version that it is designed to support (for example, the same value that it would pass into
dwAPIHighVersion parameter of phoneNegotiateAPIVersion). Do no use artificially high values; ensure
the values are accurately set. TAPI translates any newer messages or structures into values or formats
that the application version supports. Upon successful completion of this request, the highest API version
that TAPI supports fills this location, which allows the application to detect and adapt to being installed
on a system with an older version of TAPI.

lpPhoneInitializeExParams

A pointer to a structure of type PHONEINITIALIZEEXPARAMS that contains additional parameters
that are used to establish the association between the application and TAPI (specifically, the
application-selected event notification mechanism and associated parameters).

Basic TAPI Implementation
142

Basic TAPI Implementation
phoneInitializeEx

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALAPPNAME

PHONEERR_OPERATIONFAILED

PHONEERR_INIFILECORRUPT

PHONEERR_INVALPOINTER

PHONEERR_REINIT

PHONEERR_NOMEM

PHONEERR_INVALPARAM

phoneNegotiateAPIVersion
Use the phoneNegotiateAPIVersion function to negotiate the API version number to be used with the specified
phone device. It returns the extension identifier that the phone device supports, or zeros if no extensions are
provided.

Function Details

LONG WINAPI phoneNegotiateAPIVersion(
HPHONEAPP hPhoneApp,
DWORD dwDeviceID,
DWORD dwAPILowVersion,
DWORD dwAPIHighVersion,
LPDWORD lpdwAPIVersion,
LPPHONEEXTENSIONID lpExtensionID

);

Parameters

hPhoneApp

The handle to the application registration with TAPI.

dwDeviceID

The phone device to be queried.

dwAPILowVersion

The least recent API version with which the application is compliant. The high-order word represents
the major version number, and the low-order word represents the minor version number.

dwAPIHighVersion

The most recent API version with which the application is compliant. The high-order word represents
the major version number, and the low-order word represents the minor version number.

lpdwAPIVersion

A pointer to a DWORD in which the API version number that was negotiated will be returned. If
negotiation succeeds, this number ranges from dwAPILowVersion to dwAPIHighVersion.

Basic TAPI Implementation
143

Basic TAPI Implementation
phoneNegotiateAPIVersion

lpExtensionID

A pointer to a structure of type PHONEEXTENSIONID. If the service provider for the specified
dwDeviceID parameter supports provider-specific extensions, this structure gets filled with the extension
identifier of these extensions when negotiation succeeds. This structure contains all zeros if the line
provides no extensions. An application can ignore the returned parameter if it does not use extensions.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALAPPHANDLE

PHONEERR_OPERATIONFAILED

PHONEERR_BADDEVICEID

PHONEERR_OPERATIONUNAVAIL

PHONEERR_NODRIVER

PHONEERR_NOMEM

PHONEERR_INVALPOINTER

PHONEERR_RESOURCEUNAVAIL,PHONEERR_INCOMPATIBLEAPIVERSION

PHONEERR_UNINITIALIZED

PHONEERR_NODEVICE

phoneOpen
The phoneOpen function opens the specified phone device. Open the device by using either owner privilege
or monitor privilege. An application that opens the phone with owner privilege can control the lamps, display,
ringer, and hookswitch or hookswitches that belong to the phone. An application that opens the phone device
with monitor privilege receives notification only about events that occur at the phone, such as hookswitch
changes or button presses. Because ownership of a phone device is exclusive, only one application at a time
can have a phone device opened with owner privilege. The phone device can, however, be opened multiple
times with monitor privilege.

To open a phone device on a CTI port, first ensure a corresponding line device is open.Note

Function Details

LONG phoneOpen(
HPHONEAPP hPhoneApp,
DWORD dwDeviceID,
LPHPHONE lphPhone,
DWORD dwAPIVersion,
DWORD dwExtVersion,
DWORD dwCallbackInstance,
DWORD dwPrivilege

);

Basic TAPI Implementation
144

Basic TAPI Implementation
phoneOpen

Parameters

hPhoneApp

A handle by which the application is registered with TAPI.

dwDeviceID

The phone device to be opened.

lphPhone

A pointer to an HPHONE handle that identifies the open phone device. Use this handle to identify the
device when invoking other phone control functions.

dwAPIVersion

The API version number under which the application and telephony API agreed to operate. Obtain this
number from phoneNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service provider agree to operate.
This number is zero if the application does not use any extensions. Obtain this number from
phoneNegotiateExtVersion.

dwCallbackInstance

User instance data that is passed back to the application with each message. The telephony API does not
interpret this parameter.

dwPrivilege

The privilege requested. The dwPrivilege parameter can have only one bit set. This parameter uses the
following PHONEPRIVILEGE_constants:

• PHONEPRIVILEGE_MONITOR -An application that opens a phone device with this privilege
gets informed about events and state changes that occur on the phone. The application cannot invoke
any operations on the phone device that would change its state.

• PHONEPRIVILEGE_OWNER -An application that opens a phone device in this mode can change
the state of the lamps, ringer, display, and hookswitch devices of the phone. Having owner privilege
to a phone device automatically includes monitor privilege as well.

phoneSetDisplay
The phoneSetDisplay function causes the specified string to display on the specified open phone device.

Prior to Release 4.0, Cisco Unified Communications Manager messages that were passed to the phone would
automatically overwrite any messages sent to the phone by using phoneSetDisplay(). In Cisco Unified
Communications Manager 4.0, the message sent to the phone in the phoneSetDisplay() API remains on the
phone until the phone is rebooted. If the application wants to clear the text from the display and see the Cisco
Unified Communications Manager messages again, a NULL string, not spaces, should be passed in the
phoneSetDisplay() API. In other words, the lpsDisplay parameter should be NULL and the dwSize should be
set to 0.

Note

Basic TAPI Implementation
145

Basic TAPI Implementation
phoneSetDisplay

Function Details

LONG phoneSetDisplay(
HPHONE hPhone,
DWORD dwRow,
DWORD dwColumn,
LPCSTR lpsDisplay,
DWORD dwSize

);

Parameters

hPhone

A handle to the open phone device. The application must be the owner of the phone.

dwRow

The row position on the display where the new text displays.

dwColumn

The column position on the display where the new text displays.

lpsDisplay

A pointer to the memory location where the display content is stored. The display information must
follow the format that is specified in the dwStringFormat member of the device capabilities for this
phone.

dwSize

The size in bytes of the information to which lpsDisplay points.

phoneSetStatusMessages
The phoneSetStatusMessages function enables an application to monitor the specified phone device for selected
status events.

See TAPI Phone Messages, on page 148 for supported messages.

Function Details

LONG phoneSetStatusMessages(
HPHONE hPhone,
DWORD dwPhoneStates,
DWORD dwButtonModes,
DWORD dwButtonStates

);

Parameters

hPhone

A handle to the open phone device to be monitored.

Basic TAPI Implementation
146

Basic TAPI Implementation
phoneSetStatusMessages

dwPhoneStates

These flags specify the set of phone status changes and events for which the application can receive
notification messages. This parameter can have zero, one, or more bits set. This parameter uses the
following PHONESTATE_ constants:

• PHONESTATE_OTHER -Phone status items other than those in the following list changed. The
application should check the current phone status to determine which items changed.

• PHONESTATE_OWNER -The number of owners for the phone device changed.

• PHONESTATE_MONITORS -The number of monitors for the phone device changed.

• PHONESTATE_DISPLAY -The display of the phone changed.

• PHONESTATE_LAMP -A lamp of the phone changed.

• PHONESTATE_RINGMODE -The ring mode of the phone changed.

• PHONESTATE_SPEAKERHOOKSWITCH -The hookswitch state changed for this speakerphone.

• PHONESTATE_REINIT -Items changed in the configuration of phone devices. To become aware
of these changes (as with the appearance of new phone devices), the application should reinitialize
its use of TAPI. New phoneInitialize, phoneInitializeEx, and phoneOpen requests get denied until
applications have shut down their usage of TAPI. The hDevice parameter of the PHONE_STATE
message stays NULL for this state change because it applies to any line in the system. Because of
the critical nature of PHONESTATE_REINIT, you cannot mask such messages, so the setting of
this bit gets ignored, and the messages always get delivered to the application.

• PHONESTATE_REMOVED -Indicates that the service provider is removing the device from the
system (most likely through user action, through a control panel or similar utility). A PHONE_CLOSE
message on the device immediately follows a PHONE_STATEmessage with this value. Subsequent
attempts to access the device prior to TAPI being reinitialized result in PHONEERR_NODEVICE
being returned to the application. If a service provider sends a PHONE_STATEmessage that contains
this value to TAPI, TAPI passes it along to applications that negotiated TAPI version 1.4 or later;
applications that negotiated a previous TAPI version do not receive any notification.

dwButtonModes

The set of phone-buttonmodes for which the application can receive notificationmessages. This parameter
can have zero, one, or more bits set. This parameter uses the following
PHONEBUTTONMODE_constants:

• PHONEBUTTONMODE_CALL -The button is assigned to a call appearance.

• PHONEBUTTONMODE_FEATURE -The button is assigned to requesting features from the switch,
such as hold, conference, and transfer.

• PHONEBUTTONMODE_KEYPAD -The button is one of the 12 keypad buttons, ‘0’ through ‘9’,
‘*’, and ‘#’.

• PHONEBUTTONMODE_DISPLAY -The button is a “soft” button that is associated with the phone
display. A phone set can have zero or more display buttons.

dwButtonStates

The set of phone-button state changes for which the application can receive notification messages. If the
dwButtonModes parameter is zero, the system ignores dwButtonStates. If dwButtonModes has one or

Basic TAPI Implementation
147

Basic TAPI Implementation
phoneSetStatusMessages

more bits set, this parameter also must have at least one bit set. This parameter uses the following
PHONEBUTTONSTATE_constants:

• PHONEBUTTONSTATE_UP -The button is in the “up” state.

• PHONEBUTTONSTATE_DOWN -The button is in the “down” state (pressed down).

• PHONEBUTTONSTATE_UNKNOWN -The up or down state of the button is unknown at this
time but may become known later.

• PHONEBUTTONSTATE_UNAVAIL -The service provider does not know the up or down state
of the button, and the state will not become known.

phoneShutdown
The phoneShutdown function shuts down the application usage of the TAPI phone abstraction.

If this function is called when the application has open phone devices, these devices are closed.Note

Function Details

LONG WINAPI phoneShutdown(
HPHONEAPP hPhoneApp

);

Parameter

hPhoneApp

The application usage handle for TAPI.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_NOMEM, PHONEERR_UNINITIALIZED,
PHONEERR_RESOURCEUNAVAIL.

TAPI Phone Messages
Messages notify the application of asynchronous events. All messages get sent to the application through the
message notificationmechanism that the application specified in lineInitializeEx. Themessage always contains
a handle to the relevant object (phone, line, or call), of which the application can determine the type from the
message type. The following table describes TAPI Phone messages.

Table 6: TAPI Phone Messages

TAPI Phone Messages

PHONE_BUTTON, on page 149

Basic TAPI Implementation
148

Basic TAPI Implementation
phoneShutdown

TAPI Phone Messages

PHONE_CLOSE, on page 152

PHONE_CREATE, on page 152

PHONE_REMOVE, on page 153

PHONE_REPLY, on page 154

PHONE_STATE, on page 154

PHONE_BUTTON
The PHONE_BUTTON message notifies the application that button press monitoring is enabled if it has
detected a button press on the local phone.

Function Details

PHONE_BUTTON
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idButtonOrLamp;
dwParam2 = (DWORD) ButtonMode;
dwParam3 = (DWORD) ButtonState;

Parameters

hPhone

A handle to the phone device.

dwCallbackInstance

The callback instance that is provided when the phone device for this application is opened.

dwParam1

The button/lamp identifier of the button that was pressed. Button identifiers zero through 11 always
represent the KEYPAD buttons, with ‘0’ being button identifier zero, ‘1’ being button identifier 1 (and
so on through button identifier 9), and with ‘*’ being button identifier 10, and ‘#’ being button identifier
11. Find additional information about a button identifier with phoneGetDevCaps, on page 134.

dwParam2

The button mode of the button. The button mode for each button ID gets listed as shown in the table
below.

The TAPI service provider cannot detect button down or button up state changes. To conform to the
TAPI specification, two messages are sent to simulate a down state followed by an up state in dwparam3.

This parameter uses the following PHONEBUTTONMODE_constants:

• PHONEBUTTONMODE_CALL -The button is assigned to a call appearance.

Basic TAPI Implementation
149

Basic TAPI Implementation
PHONE_BUTTON

• PHONEBUTTONMODE_FEATURE -The button is assigned to requesting features from the switch,
such as hold, conference, and transfer.

• PHONEBUTTONMODE_KEYPAD -The button is one of the 12 keypad buttons, ‘0’ through ‘9’,
‘*’, and ‘#’.

• PHONEBUTTONMODE_DISPLAY -The button is a soft button that is associated with the phone
display. A phone set can have zero or more display buttons.

dwParam3

Specifies whether this is a button-down event or a button-up event. This parameter uses the following
PHONEBUTTONSTATE_constants:

• PHONEBUTTONSTATE_UP -The button is in the up state.

• PHONEBUTTONSTATE_DOWN -The button is in the down state (pressed down).

• PHONEBUTTONSTATE_UNKNOWN -The up or down state of the button is not known at this
time and may be known later.

• PHONEBUTTONSTATE_UNAVAIL -The service provider does not know the up or down state
of the button, and the state cannot become known at a future time.

Button ID values of zero through 11 map to the keypad buttons as defined by TAPI. Values above 11
map to line and feature buttons. The low-order part of the DWORD specifies the feature. The high-order
part of the DWORD specifies the instance number of that feature. The following table lists all possible
values for the low-order part of the DWORD that corresponds to the feature.

Use the following expression to make the button ID:

ButtonID = (instance << 16) | featureID

The following table lists the valid phone button values.

Table 7: Phone Button Values

Button ModeHas InstanceFeatureValue

KeypadNoKeypad button 00

KeypadNoKeypad button 11

KeypadNoKeypad button 22

KeypadNoKeypad button 33

KeypadNoKeypad button 44

KeypadNoKeypad button 55

KeypadNoKeypad button 66

KeypadNoKeypad button 77

KeypadNoKeypad button 88

KeypadNoKeypad button 99

Basic TAPI Implementation
150

Basic TAPI Implementation
PHONE_BUTTON

Button ModeHas InstanceFeatureValue

KeypadNoKeypad button ‘*’10

KeypadNoKeypad button ‘#’11

FeatureNoLast Number Redial12

FeatureYesSpeed Dial13

FeatureNoHold14

FeatureNoTransfer15

FeatureNoForward All (for line one)16

FeatureNoForward Busy (for line one)17

FeatureNoForward No Answer (for line
one)

18

FeatureNoDisplay19

CallYesLine20

FeatureNoChat (for line one)21

FeatureNoWhiteboard (for line one)22

FeatureNoApplication Sharing (for line
one)

23

FeatureNoT120 File Transfer (for line one)24

FeatureNoVideo (for line one)25

FeatureNoVoice Mail (for line one)26

FeatureNoAnswer Release27

FeatureNoAuto-answer28

FeatureYesGeneric Custom Button 144

FeatureYesGeneric Custom Button 245

FeatureYesGeneric Custom Button 346

FeatureYesGeneric Custom Button 447

FeatureYesGeneric Custom Button 548

Basic TAPI Implementation
151

Basic TAPI Implementation
PHONE_BUTTON

PHONE_CLOSE
The PHONE_CLOSE message gets sent when an open phone device is forcibly closed as part of resource
reclamation. The device handle is no longer valid after this message is sent.

Function Details

PHONE_CLOSE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the open phone device that was closed. The handle is no longer valid after this message is
sent.

dwCallbackInstance

The callback instance of the application that is provided on an open phone device.

dwParam1
Not used.

dwParam2
Not used.

dwParam3
Not used.

PHONE_CREATE
The PHONE_CREATE message gets sent to inform applications of the creation of a new phone device.

CTI Manager cluster support, extension mobility, change notification, and user addition to the directory can
generate PHONE_CREATE events.

Note

Function Details

PHONE_CREATE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) idDevice;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Basic TAPI Implementation
152

Basic TAPI Implementation
PHONE_CLOSE

Parameters

hPhone

Not used.

dwCallbackInstance
Not used.

dwParam1

The dwDeviceID of the newly created device.

dwParam2
Not used.

dwParam3
Not used.

PHONE_REMOVE
The PHONE_REMOVEmessage gets sent to inform an application of the removal (deletion from the system)
of a phone device. Generally, this method is not used for temporary removals, such as extraction of PCMCIA
devices, but only for permanent removals in which the service provider would no longer report the device, if
TAPI were reinitialized.

CTI Manager cluster support, extension mobility, change notification, and user deletion from the directory
can generate PHONE_REMOVE events.

Note

Function Details

PHONE_REMOVE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) dwDeviceID;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice
Reserved. Set to zero.

dwCallbackInstance
Reserved. Set to zero.

dwParam1

Identifier of the phone device that was removed.

dwParam2
Reserved. Set to zero.

dwParam3
Reserved. Set to zero.

Basic TAPI Implementation
153

Basic TAPI Implementation
PHONE_REMOVE

PHONE_REPLY
The TAPI PHONE_REPLY message gets sent to an application to report the results of function call that
completed asynchronously.

Function Details

PHONE_REPLY
hPhone = (HPHONE) 0;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idRequest;
dwParam2 = (DWORD) Status;
dwParam3 = (DWORD) 0;

Parameters

hPhone
Not used.

dwCallbackInstance

Returns the application callback instance.

dwParam1

The request identifier for which this is the reply.

dwParam2

The success or error indication. The application should cast this parameter into a LONG. Zero indicates
success; a negative number indicates an error.

dwParam3
Not used.

PHONE_STATE
TAPI sends the PHONE_STATE message to an application whenever the status of a phone device changes.

Function Details

PHONE_STATE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) PhoneState;
dwParam2 = (DWORD) PhoneStateDetails;
dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the phone device.

dwCallbackInstance

The callback instance that is provided when the phone device is opened for this application.

Basic TAPI Implementation
154

Basic TAPI Implementation
PHONE_REPLY

dwParam1

The phone state that changed. This parameter uses the following PHONESTATE_constants:

• PHONESTATE_OTHER -Phone-status items other than the following ones changed. The application
should check the current phone status to determine which items changed.

• PHONESTATE_CONNECTED -The connection between the phone device and TAPI was just
made. This happens when TAPI is first invoked or when the wire that connects the phone to the
computer is plugged in while TAPI is active.

• PHONESTATE_DISCONNECTED -The connection between the phone device and TAPI just
broke. This happens when the wire that connects the phone set to the computer is unplugged while
TAPI is active.

• PHONESTATE_OWNER -The number of owners for the phone device changed.

• PHONESTATE_MONITORS -The number of monitors for the phone device changed.

• PHONESTATE_DISPLAY -The display of the phone changed.

• PHONESTATE_LAMP -A lamp of the phone changed.

• PHONESTATE_RINGMODE -The ring mode of the phone changed.

• PHONESTATE_HANDSETHOOKSWITCH -The hookswitch state changed for this speakerphone.

• PHONESTATE_REINIT -Items changed in the configuration of phone devices. To become aware
of these changes (as with the appearance of new phone devices), the application should reinitialize
its use of TAPI. The hDevice parameter of the PHONE_STATE message stays NULL for this state
change as it applies to any of the phones in the system.

• PHONESTATE_REMOVED -Indicates that the device is being removed from the system by the
service provider (most likely through user action, through a control panel or similar utility). Normally,
a PHONE_CLOSE message on the device immediately follows a PHONE_STATE message with
this value. Subsequent attempts to access the device prior to TAPI being reinitialized result in
PHONEERR_NODEVICE being returned to the application. If a service provider sends a
PHONE_STATE message that contains this value to TAPI, TAPI passes it along to applications
that negotiated TAPI version 1.4 or later; applications that negotiated a previous API version do
not receive any notification.

• PHONESTATE_SUSPEND -Indicates the phone unregisters as it enters Energywise
DeepSleep/PowersavePlus mode.

dwParam2

Phone state-dependent information that details the status change. This parameter is not used if multiple
flags are set in dwParam1 because multiple status items get changed. The application should invoke
phoneGetStatus to obtain a complete set of information.

Parameter dwparam2 can comprise one of PHONESTATE_LAMP, PHONESTATE_DISPLAY,
PHONESTATE_HANDSETHOOKSWITCH, or PHONESTATE_RINGMODE. Because the Cisco
Unified TSP cannot differentiate among hook switches for handsets, headsets, or speaker, the
PHONESTATE_HANDSETHOOKSWITCH value always gets used for hook switches.

If dwparam2 is PHONESTATE_LAMP, dwparam2 is the button ID that the PHONE_BUTTONmessage
defines.

Basic TAPI Implementation
155

Basic TAPI Implementation
PHONE_STATE

If dwParam1 is PHONESTATE_OWNER, dwParam2 contains the new number of owners.

If dwParam1 is PHONESTATE_MONITORS, dwParam2 contains the new number of monitors.

If dwParam1 is PHONESTATE_LAMP, dwParam2 contains the button/lamp identifier of the lamp that
changed.

If dwParam1 is PHONESTATE_RINGMODE, dwParam2 contains the new ring mode.

If dwParam1 is PHONESTATE_HANDSET, SPEAKER, or HEADSET, dwParam2 contains the new
hookswitch mode of that hookswitch device. This parameter uses the following
PHONEHOOKSWITCHMODE_constants:

• PHONEHOOKSWITCHMODE_ONHOOK -The microphone and speaker both remain on hook
for this device.

• PHONEHOOKSWITCHMODE_MICSPEAKER -Themicrophone and speaker both remain active
for this device. The Cisco Unified TSP cannot distinguish among handsets, headsets, or speakers,
so this value gets sent when the device is off hook.

If dw Param1 is PHONESTATE_SUSPEND, dwParam2 contains the reason EnergyWisePowerSavePlus
when the phone unregisters as it enters EnergywiseDeepSleep.

dwParam3

The TAPI specification specifies that dwparam3 is zero; however, the Cisco Unified TSP will send the
new lamp state to the application in dwparam3 to avoid the call to phoneGetLamp to obtain the state
when dwparam2 is PHONESTATE_LAMP.

TAPI Phone Structures
This section describes the TAPI phone structures that Cisco Unified TSP supports:

.

Table 8: TAPI Phone Structures

TAPI Phone Structure

PHONECAPS Structure, on page 156

PHONEINITIALIZEEXPARAMS, on page 158

PHONEMESSAGE, on page 159

PHONESTATUS, on page 160

VARSTRING, on page 162

PHONECAPS Structure
This section lists the Cisco-set attributes for each member of the PHONECAPS structure. If the value of a
structure member is device, line, or call specific, the list gives the value for each condition.

Basic TAPI Implementation
156

Basic TAPI Implementation
TAPI Phone Structures

Members

dwProviderInfoSize
dwProviderInfoOffset

"Cisco Unified TSPxxx.TSP: Cisco IP PBX Service Provider Ver. X.X(x.x)" where the text before the
colon specifies the file name of the TSP, and the text after "Ver. " specifies the version of the TSP.

dwPhoneInfoSize
dwPhoneInfoOffset

"DeviceType:[type]" where type specifies the device type that is specified in the Cisco Unified
Communications Manager database.

dwPermanentPhoneID
dwPhoneNameSize
dwPhoneNameOffset

"Cisco Phone: [deviceName]" where deviceName specifies the name of the device in the Cisco Unified
Communications Manager database.

dwStringFormat

STRINGFORMAT_ASCII

dwPhoneStates

PHONESTATE_OWNER |

PHONESTATE_MONITORS |

PHONESTATE_DISPLAY | (Not set for CTI Route Points)

PHONESTATE_LAMP | (Not set for CTI Route Points)

PHONESTATE_RESUME |

PHONESTATE_REINIT |

PHONESTATE_SUSPEND

dwHookSwitchDevs

PHONEHOOKSWITCHDEV_HANDSET (Not set for CTI Route Points)

dwHandsetHookSwitchModes

PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_MICSPEAKER | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_UNKNOWN (Not set for CTI Route Points)

dwDisplayNumRows (Not set for CTI Route Points)
1

dwDisplayNumColumns

20 (Not set for CTI Route Points)

dwNumRingModes

3 (Not set for CTI Route Points)

Basic TAPI Implementation
157

Basic TAPI Implementation
PHONECAPS Structure

dwPhoneFeatures (Not set for CTI Route Points)

PHONEFEATURE_GETDISPLAY |

PHONEFEATURE_GETLAMP |

PHONEFEATURE_GETRING |

PHONEFEATURE_SETDISPLAY |

PHONEFEATURE_SETLAMP

dwMonitoredHandsetHookSwitchModes

PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_MICSPEAKER (Not set for CTI Route Points)

PHONEINITIALIZEEXPARAMS
The PHONEINITIALIZEEXPARAMS structure contains parameters that are used to establish the association
between an application and TAPI; for example, the application selected event notification mechanism. The
phoneInitializeEx function uses this structure.

Structure Details

typedef struct phoneinitializeexparams_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwOptions;
union
{
HANDLE hEvent;
HANDLE hCompletionPort;

} Handles;
DWORD dwCompletionKey;

} PHONEINITIALIZEEXPARAMS, FAR *LPPHONEINITIALIZEEXPARAMS;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwOptions

One of the PHONEINITIALIZEEXOPTION_Constants. Specifies the event notificationmechanism that
the application wants to use.

Basic TAPI Implementation
158

Basic TAPI Implementation
PHONEINITIALIZEEXPARAMS

hEvent

If dwOptions specifies PHONEINITIALIZEEXOPTION_USEEVENT, TAPI returns the event handle
in this member.

hCompletionPort

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the application
must specify, in this member, the handle of an existing completion port that is opened by using
CreateIoCompletionPort.

dwCompletionKey

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the application
must specify in this field a value that is returned through the lpCompletionKey parameter of
GetQueuedCompletionStatus to identify the completion message as a telephony message.

PHONEMESSAGE
The PHONEMESSAGE structure contains the next message that is queued for delivery to the application.
The phoneGetMessage function returns the following structure.

Structure Details

typedef struct phonemessage_tag {
DWORD hDevice;
DWORD dwMessageID;
DWORD_PTR dwCallbackInstance;
DWORD_PTR dwParam1;
DWORD_PTR dwParam2;
DWORD_PTR dwParam3;

} PHONEMESSAGE, FAR *LPPHONEMESSAGE;

Members

hDevice

A handle to a phone device.

dwMessageID

A phone message.

dwCallbackInstance

Instance data that is passed back to the application, which the application specified in phoneInitializeEx.
TAPI does not interpret DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Basic TAPI Implementation
159

Basic TAPI Implementation
PHONEMESSAGE

Further Details

For details on the parameter values that are passed in this structure, see “TAPI PhoneMessages, on page 148.”

PHONESTATUS
The PHONESTATUS structure describes the current status of a phone device. The phoneGetStatus and
TSPI_phoneGetStatus functions return this structure.

Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset) variably
sized area of this data structure.

The dwPhoneFeatures member is available only to applications that open the phone device with an API version
of 2.0 or later.

Note

Structure Details

typedef struct phonestatus_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwStatusFlags;
DWORD dwNumOwners;
DWORD dwNumMonitors;
DWORD dwRingMode;
DWORD dwRingVolume;
DWORD dwHandsetHookSwitchMode;
DWORD dwHandsetVolume;
DWORD dwHandsetGain;
DWORD dwSpeakerHookSwitchMode;
DWORD dwSpeakerVolume;
DWORD dwSpeakerGain;
DWORD dwHeadsetHookSwitchMode;
DWORD dwHeadsetVolume;
DWORD dwHeadsetGain;
DWORD dwDisplaySize;
DWORD dwDisplayOffset;
DWORD dwLampModesSize;
DWORD dwLampModesOffset;
DWORD dwOwnerNameSize;
DWORD dwOwnerNameOffset;
DWORD dwDevSpecificSize;
DWORD dwDevSpecificOffset;
DWORD dwPhoneFeatures;

} PHONESTATUS, FAR *LPPHONESTATUS;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

Basic TAPI Implementation
160

Basic TAPI Implementation
PHONESTATUS

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwStatusFlags

Provides a set of status flags for this phone device. This member uses one of the
PHONESTATUSFLAGS_Constants.

dwNumOwners

The number of application modules with owner privilege for the phone.

dwNumMonitors

The number of application modules with monitor privilege for the phone.

dwRingMode

The current ring mode of a phone device.

dwRingVolume
0x8000

dwHandsetHookSwitchMode

The current hookswitch mode of the phone handset. PHONEHOOKSWITCHMODE_UNKNOWN

dwHandsetVolume
0

dwHandsetGain
0

dwSpeakerHookSwitchMode

The current hookswitchmode of the phone speakerphone. PHONEHOOKSWITCHMODE_UNKNOWN

dwSpeakerVolume
0

dwSpeakerGain
0

dwHeadsetHookSwitchMode

The current hookswitch mode of the phone's headset. PHONEHOOKSWITCHMODE_UNKNOWN

dwHeadsetVolume
0

dwHeadsetGain
0

dwDisplaySize
dwDisplayOffset

0
dwLampModesSize
dwLampModesOffset

0
dwOwnerNameSize
dwOwnerNameOffset

The size, in bytes, of the variably sized field that contains the name of the application that is the current
owner of the phone device and the offset, in bytes, from the beginning of this data structure. The name
is the application name that the application provides when it invokes with phoneInitialize or

Basic TAPI Implementation
161

Basic TAPI Implementation
PHONESTATUS

phoneInitializeEx. If no application name was supplied, the application's filename is used instead. If the
phone currently has no owner, dwOwnerNameSize is zero.

dwDevSpecificSize
dwDevSpecificOffset

Application can send XSI data to phone by using DeviceDataPassThrough device-specific extension.
Phone can pass back data to Application. The data is returned as part of this field. The format of the data
is as follows:

struct PhoneDevSpecificData
{ DWORD m_DeviceDataSize ; // size of device data

DWORD m_DeviceDataOffset ; // offset from PHONESTATUS
structure

// this will follow the actual variable length device data.
}

dwPhoneFeatures

The application negotiates an extension version > = 0x00020000. The following features are supported:

• PHONEFEATURE_GETDISPLAY

• PHONEFEATURE_GETLAMP

• PHONEFEATURE_GETRING

• PHONEFEATURE_SETDISPLAY

• PHONEFEATURE_SETLAMP

VARSTRING
The VARSTRING structure returns variably sized strings. The line device class and the phone device class
both use it.

No extensibility exists with VARSTRING.Note

Structure Details

typedef struct varstring_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwStringFormat;
DWORD dwStringSize;
DWORD dwStringOffset;

} VARSTRING, FAR *LPVARSTRING;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

Basic TAPI Implementation
162

Basic TAPI Implementation
VARSTRING

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwStringFormat

The format of the string. This member uses one of the STRINGFORMAT_Constants.

dwStringSize
dwStringOffset

The size, in bytes, of the variably sized device field that contains the string information and the offset,
in bytes, from the beginning of this data structure.

If a string cannot be returned in a variable structure, the dwStringSize and dwStringOffset members get
set in one of the following ways:

• dwStringSize and dwStringOffset members both get set to zero.

• dwStringOffset gets set to nonzero and dwStringSize gets set to zero.

• dwStringOffset gets set to nonzero, dwStringSize gets set to 1, and the byte at the given offset gets
set to zero.]

Wave Functions
The AVAudio32.dll implements the wave interfaces to the Cisco wave drivers. The system supports all APIs
for input and output waveform devices.

Cisco TSP 8.0 includes CiscoMedia Driver, a new and innovative way for TAPI-based applications, to provide
media interaction. Cisco TSP 8.0(1) includes support for Cisco Media Driver and Cisco Wave Driver. Only
one driver is active at any given time. For more information, see Cisco TSP Media Driver.

Table 9: Wave Functions

Wave functions

waveInAddBuffer, on page 164

waveInClose, on page 164

waveInGetID, on page 165

waveInGetPosition, on page 165

waveInOpen, on page 166

waveInPrepareHeader, on page 167

waveInReset, on page 168

waveInStart, on page 168

Basic TAPI Implementation
163

Basic TAPI Implementation
Wave Functions

cucm_b_tapi-dev-guide-14_chapter7.pdf#nameddest=unique_234

Wave functions

waveInUnprepareHeader, on page 168

waveOutClose, on page 169

waveOutGetDevCaps, on page 169

waveOutGetID, on page 170

waveOutGetPosition, on page 170

waveOutOpen, on page 171

waveOutPrepareHeader, on page 172

waveOutReset, on page 172

waveOutUnprepareHeader, on page 173

waveOutWrite, on page 173

waveInAddBuffer
The waveInAddBuffer function sends an input buffer to the given waveform-audio input device. When the
buffer is filled, the application receives notification.

Function Details

MMRESULT waveInAddBuffer(
HWAVEIN hwi,
LPWAVEHDR pwh,
UINT cbwh

);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveInClose
The waveInClose function closes the given waveform-audio input device.

Basic TAPI Implementation
164

Basic TAPI Implementation
waveInAddBuffer

Function Details

MMRESULT waveInClose(
HWAVEIN hwi

);

Parameter

hwi

Handle of the waveform-audio input device. If the function succeeds, the handle no longer remains valid
after this call.

waveInGetID
The waveInGetID function gets the device identifier for the given waveform-audio input device.

This function gets supported for backward compatibility. New applications can cast a handle of the device
rather than retrieving the device identifier.

Function Details

MMRESULT waveInGetID(
HWAVEIN hwi,
LPUINT puDeviceID

);

Parameters

hwi

Handle of the waveform-audio input device.

puDeviceID

Address of a variable to be filled with the device identifier.

waveInGetPosition
The waveInGetPosition function retrieves the current input position of the given waveform-audio input device.

Function Details

MMRESULT waveInGetPosition(
HWAVEIN hwi,
LPMMTIME pmmt,
UINT cbmmt

);

Parameters

hwi

Handle of the waveform-audio input device.

Basic TAPI Implementation
165

Basic TAPI Implementation
waveInGetID

pmmt

Address of the MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.

waveInOpen
The waveInOpen function opens the given waveform-audio input device for recording.

Function Details

MMRESULT waveInOpen(
LPHWAVEIN phwi,
UINT uDeviceID,
LPWAVEFORMATEX pwfx,
DWORD dwCallback,
DWORD dwCallbackInstance,
DWORD fdwOpen

);

Parameters

phwi

Address that is filled with a handle that identifies the open waveform-audio input device. Use this handle
to identify the device when calling other waveform-audio input functions. This parameter can be NULL
if WAVE_FORMAT_QUERY is specified for fdwOpen.HDR structure.

uDeviceID

Identifier of the waveform-audio input device to open. It can be either a device identifier or a handle of
an open waveform-audio input device. You can use the following flag instead of a device identifier:

WAVE_MAPPER -The function selects a waveform-audio input device that is capable of recording in
the specified format.

pwfx

Address of aWAVEFORMATEX structure that identifies the desired format for recordingwaveform-audio
data. You can free this structure immediately after waveInOpen returns.

The formats that the TAPI Wave Driver supports include a 16-bit PCM at 8000 Hz, 8-bit mulaw at 8000
Hz, and 8-bit alaw at 8000 Hz.

Note

dwCallback

Address of a fixed callback function, an event handle, a handle to a window, or the identifier of a thread
to be called during waveform-audio recording to process messages that are related to the progress of
recording. If no callback function is required, this value can specify zero. For more information on the
callback function, see waveInProc in the TAPI API.

Basic TAPI Implementation
166

Basic TAPI Implementation
waveInOpen

dwCallbackInstance

User-instance data that is passed to the callback mechanism. This parameter is not used with the window
callback mechanism.

fdwOpen

Flags for opening the device. The following values definitions apply:

• CALLBACK_EVENT -The dwCallback parameter specifies an event handle.

• CALLBACK_FUNCTION -The dwCallback parameter specifies a callback procedure address.

• CALLBACK_NULL -No callback mechanism. This represents the default setting.

• CALLBACK_THREAD -The dwCallback parameter specifies a thread identifier.

• CALLBACK_WINDOW -The dwCallback parameter specifies a window handle.

• WAVE_FORMAT_DIRECT -If this flag is specified, the A driver does not perform conversions
on the audio data.

• WAVE_FORMAT_QUERY -The function queries the device to determine whether it supports the
given format, but it does not open the device.

• WAVE_MAPPED -The uDeviceID parameter specifies a waveform-audio device to which the wave
mapper maps.

waveInPrepareHeader
The waveInPrepareHeader function prepares a buffer for waveform-audio input.

Function Details

MMRESULT waveInPrepareHeader(
HWAVEIN hwi,
LPWAVEHDR pwh,
UINT cbwh

);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.

Basic TAPI Implementation
167

Basic TAPI Implementation
waveInPrepareHeader

waveInReset
The waveInReset function stops input on the given waveform-audio input device and resets the current position
to zero. All pending buffers get marked as done and get returned to the application.

Function Details

MMRESULT waveInReset(
HWAVEIN hwi

);

Parameter

hwi

Handle of the waveform-audio input device.

waveInStart
The waveInStart function starts input on the given waveform-audio input device.

Function Details

MMRESULT waveInStart(
HWAVEIN hwi

);

Parameter

hwi

Handle of the waveform-audio input device.

waveInUnprepareHeader
The waveInUnprepareHeader function cleans up the preparation that the waveInPrepareHeader function
performs. This function must be called after the device driver fills a buffer and returns it to the application.
You must call this function before freeing the buffer.

Function Details

MMRESULT waveInUnprepareHeader(
HWAVEIN hwi,
LPWAVEHDR pwh,
UINT cbwh

);

Basic TAPI Implementation
168

Basic TAPI Implementation
waveInReset

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveOutClose
The waveOutClose function closes the given waveform-audio output device.

Function Details

MMRESULT waveOutClose(
HWAVEOUT hwo

);

Parameter

hwo

Handle of the waveform-audio output device. If the function succeeds, the handle no longer remains
valid after this call.

waveOutGetDevCaps
The waveOutGetDevCaps function retrieves the capabilities of a given waveform-audio output device.

Function Details

MMRESULT waveOutGetDevCaps(
UINT uDeviceID,
LPWAVEOUTCAPS pwoc,
UINT cbwoc

);

Parameters

uDeviceID

Identifier of the waveform-audio output device. It can be either a device identifier or a handle of an open
waveform-audio output device.

pwoc

Address of a WAVEOUTCAPS structure that is to be filled with information about the capabilities of
the device.

Basic TAPI Implementation
169

Basic TAPI Implementation
waveOutClose

cbwoc

Size, in bytes, of the WAVEOUTCAPS structure.

waveOutGetID
The waveOutGetID function retrieves the device identifier for the given waveform-audio output device.

This function gets supported for backward compatibility. New applications can cast a handle of the device
rather than retrieving the device identifier.

Function Details

MMRESULT waveOutGetID(
HWAVEOUT hwo,
LPUINT puDeviceID

);

Parameters

hwo

Handle of the waveform-audio output device.

puDeviceID

Address of a variable to be filled with the device identifier.

waveOutGetPosition
The waveOutGetPosition function retrieves the current playback position of the given waveform-audio output
device.

Function Details

MMRESULT waveOutGetPosition(
HWAVEOUT hwo,
LPMMTIME pmmt,
UINT cbmmt

);

Parameters

hwo

Handle of the waveform-audio output device.

pmmt

Address of an MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.

Basic TAPI Implementation
170

Basic TAPI Implementation
waveOutGetID

waveOutOpen
The waveOutOpen function opens the given waveform-audio output device for playback.

Function Details

MMRESULT waveOutOpen(
LPHWAVEOUT phwo,
UINT uDeviceID,
LPWAVEFORMATEX pwfx,
DWORD dwCallback,
DWORD dwCallbackInstance,
DWORD fdwOpen

);

Parameters

phwo

Address that is filled with a handle that identifies the open waveform-audio output device. Use the handle
to identify the device when other waveform-audio output functions are called. This parameter might be
NULL if the WAVE_FORMAT_QUERY flag is specified for fdwOpen.

uDeviceID

Identifier of the waveform-audio output device to open. It can be either a device identifier or a handle
of an open waveform-audio input device. You can use the following flag instead of a device identifier:

WAVE_MAPPER -The function selects a waveform-audio output device that is capable of playing the
given format.

pwfx

Address of a WAVEFORMATEX structure that identifies the format of the waveform-audio data to be
sent to the device. You can free this structure immediately after passing it to waveOutOpen.

The formats that the TAPI Wave Driver supports include 16-bit PCM at 8000 Hz, 8-bit mulaw at 8000
Hz, and 8-bit alaw at 8000 Hz.

Note

dwCallback

Address of a fixed callback function, an event handle, a handle to a window, or the identifier of a thread
to be called during waveform-audio playback to process messages that are related to the progress of the
playback. If no callback function is required, this value can specify zero. For more information on the
callback function, see waveOutProc in the TAPI API.

dwCallbackInstance

User-instance data that is passed to the callback mechanism. This parameter is not used with the window
callback mechanism.

fdwOpen

Flags for opening the device. The following value definitions apply:

• CALLBACK_EVENT -The dwCallback parameter represents an event handle.

Basic TAPI Implementation
171

Basic TAPI Implementation
waveOutOpen

• CALLBACK_FUNCTION -The dwCallback parameter specifies a callback procedure address.

• CALLBACK_NULL -No callback mechanism. This value specifies the default setting.

• CALLBACK_THREAD -The dwCallback parameter represents a thread identifier.

• CALLBACK_WINDOW -The dwCallback parameter specifies a window handle.

• WAVE_ALLOWSYNC -If this flag is specified, a synchronous waveform-audio device can be
opened. If this flag is not specified while a synchronous driver is opened, the device will fail to
open.

• WAVE_FORMAT_DIRECT -If this flag is specified, the ACM driver does not perform conversions
on the audio data.

• WAVE_FORMAT_QUERY -If this flag is specified, waveOutOpen queries the device to determine
whether it supports the given format, but the device does not actually open.

• WAVE_MAPPED -If this flag is specified, the uDeviceID parameter specifies a waveform-audio
device to which the wave mapper maps.

waveOutPrepareHeader
The waveOutPrepareHeader function prepares a waveform-audio data block for playback.

Function Details

MMRESULT waveOutPrepareHeader(
HWAVEOUT hwo,
LPWAVEHDR pwh,
UINT cbwh

);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveOutReset
The waveOutReset function stops playback on the given waveform-audio output device and resets the current
position to zero. All pending playback buffers get marked as done and get returned to the application.

Basic TAPI Implementation
172

Basic TAPI Implementation
waveOutPrepareHeader

Function Details

MMRESULT waveOutReset(
HWAVEOUT hwo

);

Parameter

hwo

Handle of the waveform-audio output device.

waveOutUnprepareHeader
The waveOutUnprepareHeader function cleans up the preparation that the waveOUtPrepareHeader function
performs. Ensure this function is called after the device driver is finished with a data block. You must call
this function before freeing the buffer.

Function Details

MMRESULT waveOutUnprepareHeader(
HWAVEOUT hwo,
LPWAVEHDR pwh,
UINT cbwh

);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveOutWrite
The waveOutWrite function sends a data block to the given waveform-audio output device.

Function Details

MMRESULT waveOutWrite(
HWAVEOUT hwo,
LPWAVEHDR pwh,
UINT cbwh

);

Basic TAPI Implementation
173

Basic TAPI Implementation
waveOutUnprepareHeader

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that contains information about the data block.

cbwh

Size, in bytes, of the WAVEHDR structure.

Basic TAPI Implementation
174

Basic TAPI Implementation
waveOutWrite

	Basic TAPI Implementation
	Overview
	TAPI Line Functions
	lineAccept
	lineAddProvider
	lineAddToConference
	lineAnswer
	lineBlindTransfer
	lineCallbackFunc
	lineClose
	lineCompleteTransfer
	lineConfigProvider
	lineDeallocateCall
	lineDevSpecific
	lineDevSpecificFeature
	lineDial
	lineDrop
	lineForward
	lineGenerateDigits
	lineGenerateTone
	lineGetAddressCaps
	lineGetAddressID
	lineGetAddressStatus
	lineGetCallInfo
	lineGetCallStatus
	lineGetConfRelatedCalls
	lineGetDevCaps
	lineGetID
	lineGetLineDevStatus
	lineGetMessage
	lineGetNewCalls
	lineGetNumRings
	lineGetProviderList
	lineGetRequest
	lineGetStatusMessages
	lineGetTranslateCaps
	lineHandoff
	lineHold
	lineInitialize
	lineInitializeEx
	lineMakeCall
	lineMonitorDigits
	lineMonitorTones
	lineNegotiateAPIVersion
	lineNegotiateExtVersion
	lineOpen
	linePark
	linePrepareAddToConference
	lineRedirect
	lineRegisterRequestRecipient
	lineRemoveFromConference
	lineRemoveProvider
	lineSetAppPriority
	lineSetCallPrivilege
	lineSetNumRings
	lineSetStatusMessages
	lineSetTollList
	lineSetupConference
	lineSetupTransfer
	lineShutdown
	lineTranslateAddress
	lineTranslateDialog
	lineUnhold
	lineUnpark

	TAPI Line Messages
	LINE_ADDRESSSTATE
	LINE_APPNEWCALL
	LINE_CALLDEVSPECIFIC
	LINE_CALLINFO
	LINE_CALLSTATE
	LINE_CLOSE
	LINE_CREATE
	LINE_DEVSPECIFIC
	LINE_DEVSPECIFICFEATURE
	LINE_GATHERDIGITS
	LINE_GENERATE
	LINE_LINEDEVSTATE
	LINE_MONITORDIGITS
	LINE_MONITORTONE
	LINE_REMOVE
	LINE_REPLY
	LINE_REQUEST

	TAPI Line Device Structures
	LINEADDRESSCAPS
	LINEADDRESSSTATUS
	LINEAPPINFO
	LINECALLINFO
	LINECALLLIST
	LINECALLPARAMS
	LINECALLSTATUS
	LINECARDENTRY
	LINECOUNTRYENTRY
	LINECOUNTRYLIST
	LINEDEVCAPS
	LINEDEVSTATUS
	LINEEXTENSIONID
	LINEFORWARD
	LINEFORWARDLIST
	LINEGENERATETONE
	LINEINITIALIZEEXPARAMS
	LINELOCATIONENTRY
	LINEMESSAGE
	LINEMONITORTONE
	LINEPROVIDERENTRY
	LINEPROVIDERLIST
	LINEREQMAKECALL
	LINETRANSLATECAPS
	LINETRANSLATEOUTPUT

	TAPI Phone Functions
	phoneCallbackFunc
	phoneClose
	phoneDevSpecific
	phoneGetDevCaps
	phoneGetDisplay
	phoneGetLamp
	phoneGetMessage
	phoneGetRing
	phoneGetStatus
	phoneGetStatusMessages
	phoneInitialize
	phoneInitializeEx
	phoneNegotiateAPIVersion
	phoneOpen
	phoneSetDisplay
	phoneSetStatusMessages
	phoneShutdown

	TAPI Phone Messages
	PHONE_BUTTON
	PHONE_CLOSE
	PHONE_CREATE
	PHONE_REMOVE
	PHONE_REPLY
	PHONE_STATE

	TAPI Phone Structures
	PHONECAPS Structure
	PHONEINITIALIZEEXPARAMS
	PHONEMESSAGE
	PHONESTATUS
	VARSTRING

	Wave Functions
	waveInAddBuffer
	waveInClose
	waveInGetID
	waveInGetPosition
	waveInOpen
	waveInPrepareHeader
	waveInReset
	waveInStart
	waveInUnprepareHeader
	waveOutClose
	waveOutGetDevCaps
	waveOutGetID
	waveOutGetPosition
	waveOutOpen
	waveOutPrepareHeader
	waveOutReset
	waveOutUnprepareHeader
	waveOutWrite

