
Message Sequence Charts

This appendix contains message sequences or call scenarios and illustrates a subset of these scenarios that are
supported by the Cisco Unified TSP. Be aware that the event order is not guaranteed in all cases and can vary
depending on the scenario and the event.

This appendix contains the following sections:

• Abbreviations, on page 2
• 3XX, on page 2
• Agent Greeting, on page 3
• Agent Zip Tone, on page 20
• Announcement Call, on page 28
• Blind Transfer, on page 31
• Call Control Discovery, on page 33
• CallFwdAll Notification, on page 51
• Calling Party IP Address, on page 55
• Calling Party Normalization, on page 56
• Call PickUp, on page 59
• Call Queuing, on page 66
• CCMEncryption Enhancements, on page 102
• CIUS Session Persistency, on page 103
• Click to Conference, on page 106
• Conference Enhancements, on page 115
• CTI Remote Device, on page 121
• CTI RD Call Forwarding, on page 199
• Video Capabilities and Multimedia Information, on page 200
• Direct Transfer Across Lines, on page 231
• Do Not Disturb-Reject, on page 240
• Drop Any Party, on page 242
• Early Offer, on page 256
• End-To-End Call Trace, on page 269
• EnergyWise Deep Sleep Mode Use Cases, on page 302
• Extension Mobility Cross Cluster, on page 313
• Extension Mobility Memory Optimization Option, on page 320
• External Call Control, on page 324
• Forced Authorization and Client Matter Code Scenarios, on page 337

Message Sequence Charts
1

• Gateway Recording, on page 349
• Hunt List, on page 360
• Hunt Pilot Connected Number Feature, on page 424
• Intercom, on page 446
• IPv6 Use Cases, on page 449
• Join Across Lines, on page 455
• Logical Partitioning, on page 470
• Manual Outbound Call, on page 473
• Monitoring and Recording, on page 476
• NuRD (Number Matching for Remote Destination) Support, on page 483
• Park Monitoring, on page 483
• Persistent Connection Use Cases, on page 494
• Presentation Indication, on page 508
• Redirect Set Original Called (TxToVM), on page 516
• Refer and Replace Scenarios, on page 518
• Secure Conferencing, on page 529
• Secure Monitoring and Recording, on page 534
• Shared Lines-Initiating a New Call Manually, on page 558
• SRTP, on page 563
• Support for Cisco IP Phone 6900 Series, on page 564
• Support for Cisco Unified IP Phone 6900 and 9900 Series Use Cases, on page 574
• Swap or Cancel, on page 578
• Unrestricted Unified CM, on page 601
• LineHold Enhancement, on page 603
• Whisper Coaching, on page 603

Abbreviations
The following list gives abbreviations that are used in the CTI events that are shown in each scenario:

• NP—Not Present

• LR—LastRedirectingParty

• CH—CtiCallHandle

• GCH—CtiGlobalCallHandle

• RIU—RemoteInUse flag

• DH—DeviceHandle

3XX
Application monitors B.

Message Sequence Charts
2

Message Sequence Charts
Abbreviations

Table 1: 3XX

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

TSPI: LINE_APPNEWCALL

Reason = LINECALL

REASON_REDIRECT

A calls external phone that is
running SIP, which has
CFDUNC set to B

Agent Greeting

Configuration
Customer Phone—IP Phone A with DN 1001.

Agent Phone—IP Phone B with DN 1002.

Agent Phone—IP Phone C with DN 1002 (shared line)

Supervisor Phone—IP Phone D with DN 1003.

IVR1—with DN 5555

IVR2—with DN 6666

Procedure
Application monitoring all lines on all devices.

New extension is negotiated when application opens lines.

SRTP is also supported at IVR side, can be variation of following use cases.

Message Sequence Charts
3

Message Sequence Charts
Agent Greeting

Table 2: StartSendMediaToBIB Success Case

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit is set

Media event sent to application

(StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002
with 5555 and CgpnToIVR

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB by feature

IVR1 selects/plays agent’s greeting

Message Sequence Charts
4

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED,0,0) event

At 5555:

Call goes IDLE

IVR1 drops call after agent greeting completes

Table 3: StopSendMediaToBIB Success Case

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

At 5555:

CONNECTED

Calling = 5555

Called = 5555

Connected =

Agent playing is in progress…

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED,0,0) event

At 5555:

Call goes IDLE

StopTransmissionEvent

Application issues
CCiscoLineDevSpecificStopSendMediaToBIBRequest on 1002

Message Sequence Charts
5

Message Sequence Charts
Message Sequence Charts

Table 4: StartSendMediaToBIB Failure While Monitoring in Progress at Agent Side

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1003:

CCiscoLineDevSpecificStartCallMonitoring request successful,
monitoring is in session

Application issues CCiscoLineDevSpecificStartCallMonitoring
on 1003 to monitor active call on 1002

At 1002:

LINE_REPLY returns with LINEERR_RESOURCEUNAVAIL

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

Table 5: StartSendMediaToBIB Followed by Monitoring Request

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

Message Sequence Charts
6

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call redirected to BIB

IVR1 selects/plays agent’s greeting

At 1003:

LINE_REPLY returns with LINEERR_RESOURCEUNAVAIL

Application issues CCiscoLineDevSpecificStartCallMonitoring
on 1003 to monitor active call on 1002

Message Sequence Charts
7

Message Sequence Charts
Message Sequence Charts

Table 6: StartSendMediaToBIB While Recording Is in Session

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

CCiscoLineDevSpecificStartCallRecording will be successful
and recording is in session

Application sends CCiscoLineDevSpecificStartCallRecording to
1002

Message Sequence Charts
8

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call redirected to BIB

IVR1 selects/plays agent’s greeting

At 1002:

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED,0,0) event

At 5555:

Call goes IDLE

IVR1 drops call after agent greeting completes

Message Sequence Charts
9

Message Sequence Charts
Message Sequence Charts

Table 7: StartSendMediaToBIB Followed by Recording Request

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB

IVR1 selects/plays agent’s greeting

Message Sequence Charts
10

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

CCiscoLineDevSpecificStartCallRecording will be successful
and recording is in session

Application sends CCiscoLineDevSpecificStartCallRecording to
1002

Table 8: StartSendMediaToBIB Failure While Barge in Session

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002 (device C)

Barge call is created.

Phone C (1002) barges in

At 1002 (B):

LINE_REPLY with LINEERR_RESOURCEUNAVAIL

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002
(B)

Message Sequence Charts
11

Message Sequence Charts
Message Sequence Charts

Table 9: StartSendMediaToBIB Followed by Barge From Shared Line

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB

IVR1 selects/plays agent’s greeting

Barge will fail on phone CPhone C (1002 shared line) try to barge in

Message Sequence Charts
12

Message Sequence Charts
Message Sequence Charts

Table 10: This Behavior Is Also Seen During Consult Operation. Agent Holds Call While Agent Greeting Is Being Played

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB

IVR1 selects/plays agent’s greeting

Message Sequence Charts
13

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED,0,0) event Call will go
on hold

With StopReception and StopTransmission event

At 5555:

Call goes IDLE

1002 put call on hold

At 1002:

Call will go CONNECTED with StartTransmission and
StartReception.

1002 Unhold scenario

Table 11: Agent Redirects Call While Agent Greeting Is Being Played

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

Message Sequence Charts
14

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB

IVR1 selects/plays agent’s greeting

At 1003:

New call from 1002

At 1002:

Call goes IDLE

No MEDIA_TO_BIB_ENDED event

At 5555:

Call goes IDLE

Application redirects call on 1002 to 1003

Message Sequence Charts
15

Message Sequence Charts
Message Sequence Charts

Table 12: IVR1 Redirects Call to IVR2

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR 5555, 5555 answers call)

Server-IVR call is redirected to BIB

IVR1 selects/plays agent’s greeting

Message Sequence Charts
16

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 5555:

Call goes IDLE

At 6666:

Calling =

Called = 6666

Connected = Redirecting = 5555

Redirection = 6666

CallAttributeBitMask = BIBCall

(StartTransmissionEvent)

Application redirect call on IVR1 to IVR2

IVR2 answers and plays second agent greeting

At 1002:

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED,0,0) event

At 6666:

Call goes IDLE

IVR2 drops call after agent greeting completes

Table 13: Application-2 Opened Line After Agent Greeting Is in Playing

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

Message Sequence Charts
17

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application-1 issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002
with 5555 and CgpnToIVR

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB by feature

IVR1 selects/plays agent’s greeting

At 1002 (from application-2):

CallAttributeBitMask SendMediaToBIB will be set to indicate
agent greeting is playing on the agent line.

Application-2 opens agent line from another client

CallAttributeBitMask = BIBCallApplication 2 opens IVR line

Message Sequence Charts
18

Message Sequence Charts
Message Sequence Charts

Table 14: Start Agent Greeting After Conference Is Setup

Events, requests and responsesAction

At 1001:

CONNECTED

CONFERENCED

Calling = 1001, Called = 1002, Connected = 1002

CONFERENCED

Calling = 1001, Called = 1003, Connected = 1003At 1002:

CONNECTED

CONFERENCED

Calling = 1001, Called = 1002, Connected = 1001

CONFERENCED

Calling = 1002, Called = 1003, Connected = 1003

At 1003:

CONNECTED

CONFERENCED

Calling = 1002, Called = 1003, Connected = 1002

CONFERENCED

Calling = 1003, Called = 1001, Connected = 1001

Make call from 1001 to 1002, 1002 answers, 1002 sets up
conference to 1003, 1003 answers, and 1002 completes

Message Sequence Charts
19

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

1001 and 1002 also hears the agent greeting

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002
with 5555 and CgpnToIVR

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB by feature

IVR1 selects/plays agent’s greeting

Agent Zip Tone
The devices mentioned in the use cases below also apply to SIP TNP phones.

Configuration
SCCP phones: A (Customer/Remote), B (Agent/Local).

All Lines are Opened with Ext Version – 0x000B0000

Message Sequence Charts
20

Message Sequence Charts
Agent Zip Tone

Table 15: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent. PlayToneDirection – Remote

Expected eventsAction

Zip Tone is played at A.

LINE_DEVSPECIFIC Event with dwParam1 =
SLDSMT_CALL_TONE_CHANGEDdwParam2=CTONE_ZIP,
dwParam3 = 0(local) is reported on A and
alsoLINE_DEVSPECIFIC Event with dwParam1 =
SLDSMT_CALL_TONE_CHANGEDdwParam2=CTONE_ZIP,
dwParam3 = 1(Remote) is reported on B.

LineInitialize.

LineOpen on A,B

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line A and B.

A calls B;B answers the Call

B issues LineDevSpecific (start PlayTone) request with Agent
callid and ZIP Tone as input.

Table 16: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent. PlayToneDirection – Local

Expected eventsAction

Zip Tone is played at B.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local) is fired for B indicating Zip
Tone has been played on B.

LineInitialize.

LineOpen on A,B

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line A and B.

A calls B;B answers the Call

B issues LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input.

Message Sequence Charts
21

Message Sequence Charts
Message Sequence Charts

Table 17: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent. PlayToneDirection –
BothLocalandRemote/NoLocalOrRemote

Expected eventsAction

LineDevSpecific (start PlayTone) request fails with error
LINEERR_OPERATIONUNAVAIL.

LineInitialize.

LineOpen on A,B

A calls B; B answers the Call

B issues LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input

Table 18: Application Issues the Play Tone Request (with Unsupported Tone) When the Call Is Established Between Customer and Agent. PlayToneDirection – Local

Expected eventsAction

LineDevSpecific (start PlayTone) request fails with error
LINEERR_OPERATIONFAILED.

LineInitialize.

LineOpen on A,B

A calls B; B answers the Call

B issues LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input

Application Issues the Play Tone Request on a CTI Port with PlayToneDirection -Local/Remote

Configuration

A (Customer/Remote) is SCCP Phone.

B (Agent/local) is a CTIport/Route Point

Message Sequence Charts
22

Message Sequence Charts
Application Issues the Play Tone Request on a CTI Port with PlayToneDirection -Local/Remote

Table 19: Application Issues the Play Tone Request on a CTI Port with PlayToneDirection – Local/Remote

Expected eventsAction

LineDevSpecific (start PlayTone) request fails with error
LINEERR_OPERATIONUNAVAIL.

Zip Tone is played at A.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local)) is fired for A indicating Zip
Tone has been played on A

And also Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 1(remote) is fired for B

LineInitialize.

LineOpen on A,B

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line A.

A calls B;B answers the Call

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input, and direction as local.

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input, and direction as remote.

Application Issues the Play Tone Request When the Call Is Established Between Customer and
Agent (Shared Line). PlayToneDirection -Local

Configuration

SCCP phones: A (Customer/ Remote), B, B’ (Agent/Local)

Message Sequence Charts
23

Message Sequence Charts
Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent (Shared Line). PlayToneDirection -Local

Table 20: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent (Shared Line). PlayToneDirection – Local

Expected eventsAction

LineInitialize.

LineOpen on A, B, B’

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line B and B’.

A calls B;B and B’ starts ringing; B answers the Call

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input.

Variants:

B’ issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input direction remote.

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input direction remote.

A issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input direction remote.

Message Sequence Charts
24

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Zip Tone is played at B.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local)) is fired for B indicating Zip
Tone has been played on B.

There is no Zip Tone played at B’and no Zip tone notification on
B’.

The LineDevSpecific (start PlayTone) request fails with Error
LINEERR_OPERATIONFAILED

Zip Tone is played at A.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local))) will be fired for A also
Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 1(remote) will be fired for B.

There is no Zip Tone played at B’and no Zip tone notification on
B’.

Zip Tone is played at B and B’.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local))) is fired for B and B’ also
Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =

Message Sequence Charts
25

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CTONE_ZIP, dwParam3 = 1(remote) is fired for A.

Table 21: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent (Intercom Line). PlayToneDirection – Local

Expected eventsAction

The LineDevSpecific (start PlayTone) request fails with error
LINEERR_OPERATIONUNAVAIL.

The LineDevSpecific (start PlayTone) request fails with error
LINEERR_OPERATIONUNAVAIL.

LineInitialize.

Phone A have 2 lines: Line1 is a normal line with X, Line2 is a
intercom line (B), SpeedDial DN = D

Phone B have 2 lines: Line1 is a normal line with Y, Line2 is a
intercom line (D)

LineOpen on B,D

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line B, D

B calls D; D starts ringing; D answers the Call

D issues the LineDevSpecific (start PlayTone) request with
agent(D) callid and ZIP Tone as input.

Variant 1:

D issues the LineDevSpecific (start PlayTone) request with
agent(D) callid and ZIP Tone as input, and direction as remote.

Conference Scenario: PlayToneDirection -local.

Configuration

A, B, and C are SCCP Phones.

Message Sequence Charts
26

Message Sequence Charts
Conference Scenario: PlayToneDirection -local.

Table 22: Conference Scenario. PlayToneDirection – Local

Expected eventsAction

Zip Tone is played at B.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local)) is fired for B indicating Zip
Tone has been played on B.

The LineDevSpecific (start PlayTone) request will be Success.

But there will be no Tone played on the Coneference members.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 1(remote)) is fired for B

LineInitialize.

LineOpen on A, B, and C

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line B.

A calls B; B answers the call; B sets up the conference with C; B
completes the conference.

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input.

Variant 1:

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input and direction as Remote

Application Issues the Play Tone Request When the Call Is Established Between Customer and
Agent Agent Puts the Call on Hold. PlayToneDirection -Remote

Configuration

A and B are SCCP Phones.

Message Sequence Charts
27

Message Sequence Charts
Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent Agent Puts the Call on Hold. PlayToneDirection -Remote

Table 23: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent, Agent Puts the Call on Hold. PlayToneDirection –
Remote

Expected eventsAction

Zip Tone is played at B.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 1(remote)) is fired for A also
Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local) is fired for B.

LineInitialize.

LineOpen on A,B

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line B.

A calls B;B answers the Call; B puts the Call on hold

A issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input.

Announcement Call
Prerequisites

Pre-conditions to all announcement call use cases, unless specified otherwise:

• CTIRD (CTI Remote Device -Name: CTIRD-1)

• Remote Destinations configured on CTIRD-1:

• RD1-(Name: Mobile, Number: 914086271309)

• Line-A (DN -1000) - Line-A configured on CTIRD-1 (shared line of Enterprise
• DN -1000 configured on EP-1)

• EP-1 (Enterprise Phone - SCCP -IP Phone)

• Line-A' -DN -1000 configured on EP-1

• Provider is opened (lineInitializeEx successfully executed)
• All relevant lines are opened with Extension version 0x000D0000 and in service

Persistent call has been created on A / RD-1.

Message Sequence Charts
28

Message Sequence Charts
Announcement Call

Announcement with ID "WelcomeID" is defined on CUCM.

Table 24: Create Announcement Call

TAPI StructureTAPI MessagesAction

LINE_ CALLSTATE

hDevice = hCall-2 dwParam1 = 0x40000002

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + OFFERING)

LINE_CALLSTATEdwParam1= 0x40000004

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + ACCEPTED)

Create Announcement Call:

LineMakeCall() on Line-A:

lpCallParams:

devSpecific =

Cisco_ CallParamsDevSpecific {

dwCallPriority = 0x00000000;

dwDevSpecificFlags = 0x00000004

(Cisco_ CALLPARAMS_
DEVSPECIFICFLAGS_
ANNOUNCEMENTCALL)

}

CallData = "WelcomeID"

LINECALLINFO (hCall-2)
dwOrigin = OUTBOUND
dwReason = DIRECT CallerID =
5000

CallerIDName=RD5000CalledID
= A

ConnectedID = 5000

In DevSpecific portion:

CallAttributeType = 0x00008000
(TSPCallAttribute_
AnnouncementCall)

LINE_ CALLSTATE

hDevice = hCall-2 dwParam1 = 0x40000100

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + CONNECTED)

LINE_ CALLDEVSPECIFIC

hDevice = hCall-2

dwParam1=SLDSMT_ANNOUNCEMENT_
STARTED

dwParam2 = 0 dwParam3 = 0

LINE_ CALLDEVSPECIFIC

hDevice = hCall-2

dwParam1=SLDSMT_ANNOUNCEMENT_
ENDED

dwParam2 = 0 dwParam3 = 0

LINE_ CALLSTATE dwParam1

=

0x40004000

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + DIS

CONNECTED)

Message Sequence Charts
29

Message Sequence Charts
Message Sequence Charts

TAPI StructureTAPI MessagesAction

LINE_CALLSTATEdwParam1= 0x40000001

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + IDLE

)

Persistent call has been created on A / RD-1.

Announcement with ID "WelcomeID" is defined on CUCM.

Table 25: Drop Announcement Call

TAPI StructuresTAPI MessagesAction

LINE_ CALLSTATE

hDevice = hCall-2 dwParam1 = 0x40000002

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + OFFERING)

LINE_CALLSTATE dwParam1 = 0x40000004

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + ACCEPTED)

Create Announcement Call:

LineMakeCall() on Line-A:

lpCallParams:

devSpecific =

Cisco_ CallParamsDevSpecific {

dwCallPriority = 0x00000000;

dwDevSpecificFlags = 0x00000004

(Cisco_ CALLPARAMS_
DEVSPECIFICFLAGS_
ANNOUNCEMENTCALL)

}

CallData = "WelcomeID"

LINECALLINFO (hCall-2)
dwOrigin = OUTBOUND
dwReason = DIRECT CallerID =
5000

CallerIDName = RD5000
CalledID = A

ConnectedID = 5000

In DevSpecific portion:

CallAttributeType = 0x00008000
(TSPCallAttribute_
AnnouncementCall)

LINE_ CALLSTATE

hDevice = hCall-2 dwParam1 = 0x40000100

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + CONNECTED)

LINE_ CALLDEVSPECIFIC

hDevice = hCall-2

dwParam1=SLDSMT_ANNOUNCEMENT_
STARTED

dwParam2 = 0 dwParam3 = 0

Message Sequence Charts
30

Message Sequence Charts
Message Sequence Charts

TAPI StructuresTAPI MessagesAction

LINE_ CALLDEVSPECIFIC

hDevice = hCall-2

dwParam1=SLDSMT_ANNOUNCEMENT_
ENDED

dwParam2 = 0 dwParam3 = 0

LINE_CALLSTATE dwParam1 = 0x40004000
(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + DIS CONNECTED)

LINE_CALLSTATE dwParam1 = 0x40000001

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + IDLE

)

Drop AnnouncementtCall:

(while announcement being played)

LineDrop() on Line-A:

Precondition: No Persistent call on CTIRD-1

Table 26: Negative -Create Announcement Call Failed / No Persistent Call

TAPI
Structures

TAPI MessagesAction

LINE_ REPLY

LINEERR_ NO_ PERSISTENT_ CALL_ EXISTS
(0xC0000021)

Create Announcement Call:

LineMakeCall() on Line-A:

lpCallParams:

devSpecific =

Cisco_ CallParamsDevSpecific {

dwCallPriority = 0x00000000;

dwDevSpecificFlags = 0x00000004

(Cisco_ CALLPARAMS_ DEVSPECIFICFLAGS_
ANNOUNCEMENTCALL)

}

CallData = "WelcomeID"

Blind Transfer
The following table describes the message sequences for Blind Transfer when A calls B, B answers, and A
and B are connected.

Message Sequence Charts
31

Message Sequence Charts
Blind Transfer

Table 27: Message Sequences for Blind Transfer

TAPI structuresTAPI messagesCTI messagesAction

Party AParty B does a
lineBlindTranfser() to blind
transfer call from party A to
party C

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NULL

dwRedirectingID = NP

dwRedirectionID = NP

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1=CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

CallPartyInfoChangedEvent,

CH = C1,

CallingChanged = False,

Calling = A,

CalledChanged = True,

Called = C,

OriginalCalled = B,

LR = B,

Cause = BlindTransfer

Party B

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NULL

dwRedirectingID = NULL

dwRedirectionID = NULL

TSPI: LINE_CALLSTATE

|hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = IDLE

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C2,

State = Idle,

Reason = Direct,

Calling = A,

Called = B,

OriginalCalled = B,

LR = NULL

Party C

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = TRANSFER

dwCallerID = A

dwCalledID = C

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C

TSPI: LINE_APPNEWCALL
hDevice = C

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C3,

origin = Internal_Inbound,

Reason = BlindTransfer,

Calling = A,

Called = C,

OriginalCalled = B,

LR = B

Party A

Message Sequence Charts
32

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

CallStateChangeEvent,

CH = C1,

State = Ringback,

Reason = Direct,

Calling = A,

Called = C,

OriginalCalled = B,

LR = B

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = RINGBACK
dwParam2 = 0

dwParam3 = 0

Party C

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = C

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = OFFERING
dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C3,

State = Offering,

Reason = BlindTransfer,

Calling = A,

Called = C,

OriginalCalled = B, LR = B

Call Control Discovery

Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2

Configuration
SCCP phone A(1900) are registered to cluster A

Phones A are associated with the end-user cluster1

SCCP phone B(1000) registered to cluster B

Phones B are associated with the end-user cluster2

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network. TAPI is observing
A.

Procedure

Application monitors A

Application sends a lineMakeCall at A to call B

Message Sequence Charts
33

Message Sequence Charts
Call Control Discovery

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

A receives NewCallEvent and
CallStateChangeEvent (Dialtone/Dialing)

A dials 1000, this call first will be
intercepted by CCD Requesting Feature,
and CCD Requesting feature will extend
this call to SIP trunk

LineA: LINE_CALLSTATE
(LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallReason =
LINECALLREASON_DIRECT

CallerID = A / CalledID = 1000 /
ConnectedID = / RedirectingID = /
RedirectionID =

A receives CallStateChangeEvent
(PROCEEDING)

SIP trunk rejects this call due to no more
bandwidth available

CCD Requesting feature will start PSTN
failover by directing this caller to 1000’s
PSTN failover number, that is,
14089721000. Call is sent out to a PSTN
GW

Message Sequence Charts
34

Message Sequence Charts
Message Sequence Charts

TAPI messagesCTI messagesAction

A:CPIC event received on party A

LineA: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK /
LINECALLSTATE_CONNECTED)

CallReason =
LINECALLREASON_DIRECT

LINECALLINFO.dwCallID =
0x00400BBA

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1900(A)

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 1000:

LINECALLINFO.dwCalledIDName =
CCD Pattern

LINECALLINFO.dwConnectedID =
1000(B)

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID= 1000

LINECALLINFO.dwRedirectionIDName
=

LINECALLINFO.dwRedirectingID= 1000

LINECALLINFO.dwRedirectingIDName
= CCD Pattern

ExtendCallReason =
CtiReasonSAF_CCD_PSTNFailover(2B)

A receivesCPIC andCallStateChangeEvent
(Ringback/connected)

Provide TSPI_LinegetcallInfo on A
connected with B

CCD Requesting feature will start PSTN
failover by directing this caller to 1000’s
PSTN failover number, that is,
14089721000. Call is sent out to a PSTN
GW

Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2 with PSTN Failover
Rule Not Set

Configuration

SCCP phone A are registered to cluster A.

Phones A are associated with the end-user “cluster1”.

SCCP phone B(1000) registered to cluster B.

Message Sequence Charts
35

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2 with PSTN Failover Rule Not Set

Phones B are associated with the end-user “cluster2”.

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network is not set.

Procedure

Application monitors A.

Application sends a lineMakeCall at A to call B.

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

A receives NewCallEvent and
CallStateChangeEvent (Dialtone/Dialing)

A dials 1000, this call first will be
intercepted by CCD Requesting Feature,
and CCD Requesting feature will extend
this call to SIP trunk

A:A receives CPIC event

LineA: LINE_CALLSTATE
(LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallReason =
LINECALLREASON_DIRECT

CallerID = A / CalledID = 1000 /
ConnectedID = / RedirectingID = /
RedirectionID =

A receives CallStateChangeEvent
(PROCEEDING)

SIP trunk rejects this call due to lack of
bandwidth

LineA: LINE_CALLSTATE
(LINECALLSTATE_Disconnected)

EVENT = LINE_CALLSTATE = 2

m_lpfnEventProc = 0xXXX

m_htLine = 0x000XXXX

htCall = 0x000XXX

A receives CallStateChangeEvent
(disconnected)

Message Sequence Charts
36

Message Sequence Charts
Procedure

TAPI messagesCTI messagesAction

dwParam1 =
0x00004000(LINECALLSTATE_DISCONNECTED)

dwParam2 =
0x00200000(LINEDISCONNECTMODE_SAFCCD)

dwParam3 = 0x00000004

LINECALLINFO.dwCallID =
0x00400BCF

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1900

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 10XX:

LINECALLINFO.dwCalledIDName =
CCD Pattern

LINECALLINFO.dwConnectedID =

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID=1000:

LINECALLINFO.dwRedirectionIDName
= CCD Pattern

LINECALLINFO.dwRedirectingID=1000:

LINECALLINFO.dwRedirectingIDName
= CCD Pattern

ExtendCallReason =
CtiReasonSAF_CCD_PSTNFailover

Provide TSPI_linegetcallinfo on the
Disconnected call

Basic Call Initiated From TAPI From Phone A(1900) and B(1901) on Cluster 1 B Redirects to Phone
C(1000) on Cluster2 with PSTN Failover Rule Set

Configuration

SCCP phone A and B are registered to cluster A.

Phones A and B are associated with the end-user cluster1.

SCCP phone C(1000) registered to cluster B.

Phones C are associated with the end-user cluster2.

Message Sequence Charts
37

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A(1900) and B(1901) on Cluster 1 B Redirects to Phone C(1000) on Cluster2 with PSTN Failover Rule Set

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network.

Procedure

Application monitors A and B.

Application sends a lineMakeCall at A to call B

Table 28: Basic Call Initiated From TAPI From Phone A(1900) and B(1901) on Cluster 1, B Redirects to Phone C(1000) on Cluster2 with PSTN Failover Rule Set

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING,
LINECALLSTATE_CONNECTED,)

CallerID = A / CalledID = B

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_RINGING,
LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B

A receives NewCallEvent and
CallStateChangeEvent
(Dialtone/Dialing/Proceeding
/ringback/connected).

B receives NewCallEvent and
CallStateChangeEvent (offering/ringing/
connected).

A dials B

Message Sequence Charts
38

Message Sequence Charts
Procedure

TAPI messagesCTI messagesAction

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

B: receives CPIC event

LineB: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK /
LINECALLSTATE_CONNECTED)

ExtendCallReason =
CtiReasonSAF_CCD_PSTNFailover

A, B and C are in conference.

B setsupconference, consult call to C(1000),
this call first will be intercepted by CCD
Requesting Feature, and CCD Requesting
feature will extend this call to SIP trunk

SIP trunk rejects this call due to no more
bandwidth available

CCD Requesting feature will start PSTN
failover by directing this caller to 1000's
PSTN failover number, i.e. 14089721000.
Call is sent out to a PSTN GW

TSPI_linegetcallinfo on the consult call
between B and C.

B completes conference.

Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on
Cluster 2 with PSTN Failover Rule

Configuration

SCCP phone A and B are registered to cluster A.

Phones A(1900) and B(1901) are associated with the end-user cluster1.

SCCP phone C(1000) registered to cluster B.

Phones C are associated with the end-user cluster2.

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network.

Message Sequence Charts
39

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on Cluster 2 with PSTN Failover Rule

Procedure

Application monitors A and B.

Application sends a lineMakeCall at A to call B.

Table 29: Basic Call Initiated From TAPI From Phone A and B on Cluster 1, B Transfers to Phone C(1000) on Cluster 2 with PSTN Failover Rule

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING,
LINECALLSTATE_CONNECTED,)

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_RINGING,
LINECALLSTATE_CONNECTED)

A receives NewCallEvent and
CallStateChangeEvent
(Dialtone/Dialing/Proceeding
/ringback/connected).

B receives NewCallEvent and
CallStateChangeEvent (offering/ringing/
connected)

A(1900) dials B(1901)

Message Sequence Charts
40

Message Sequence Charts
Procedure

TAPI messagesCTI messagesAction

B(1901) setups transfer to C(1000)

This call first will be intercepted by CCD
Requesting Feature, and CCD Requesting
feature will extend this call to SIP trunk

SIP trunk rejects this call due to no more
bandwidth available

CCD Requesting feature will start PSTN
failover by directing this caller to 1000’s
PSTN failover number, i.e. 14089721000.
Call is sent out to a PSTN GW.

TSPI_linegetcallinfo on Consult call on B
with C.

B completes transfer

Message Sequence Charts
41

Message Sequence Charts
Message Sequence Charts

TAPI messagesCTI messagesAction

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

LINECALLINFO.dwCallID =
0x00400BBA

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1901(B)

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 1000:

LINECALLINFO.dwCalledIDName =
CCD Pattern

LINECALLINFO.dwConnectedID =
1000(C)

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID= 1000

LINECALLINFO.dwRedirectionIDName
=

LINECALLINFO.dwRedirectingID= 1000

LINECALLINFO.dwRedirectingIDName
= CCD Pattern

Extendedcallreason =
CtiReasonSAF_CCD_PSTNFailover

B:

LINE_CALLSTATE
(LINECALLSTATE_DISCONNECTED)

ExtendCallReason =

Message Sequence Charts
42

Message Sequence Charts
Message Sequence Charts

TAPI messagesCTI messagesAction

CtiReasonTransferredCall

Call Initiated From TAPI From Phone A and B on Cluster 1 B Sets Up Conference to Phone C(1000)
on Cluster 2 with PSTN Failover Rule

Configuration

SCCP phone A and B are registered to cluster A

Phones A(1900) and B(1901) are associated with the end-user cluster1

SCCP phone C(1000) registered to cluster B

Phones C are associated with the end-user cluster2

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network

Procedure

Application monitors A and B

Application sends a lineMakeCall at A to call B

Table 30: Call Initiated From TAPI From Phone A and B on Cluster 1, B Sets Up Conference to Phone C(1000) on Cluster 2 with PSTN Failover Rule

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING,
LINECALLSTATE_CONNECTED,)

CallerID = A / CalledID = B

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_RINGING,
LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B

A receives NewCallEvent and
CallStateChangeEvent
(Dialtone/Dialing/Proceeding
/ringback/connected)

B receives NewCallEvent and
CallStateChangeEvent (offering/ringing/
connected)

A dials B

Message Sequence Charts
43

Message Sequence Charts
Call Initiated From TAPI From Phone A and B on Cluster 1 B Sets Up Conference to Phone C(1000) on Cluster 2 with PSTN Failover Rule

TAPI messagesCTI messagesAction

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

B: receives CPIC event

LineB: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK /
LINECALLSTATE_CONNECTED)

ExtendCallReason =
CtiReasonSAF_CCD_PSTNFailover

A, B and C are in conference

B setsupconference, consult call to C(1000),
this call first will be intercepted by CCD
Requesting Feature, and CCD Requesting
feature will extend this call to SIP trunk

SIP trunk rejects this call due to no more
bandwidth available

CCD Requesting feature will start PSTN
failover by directing this caller to 1000’s
PSTN failover number, that is,
14089721000. Call is sent out to a PSTN
GW

TSPI_linegetcallinfo on the consult call
between B and C

B completes conference

Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster 2 Over SAF Trunk

Configuration

SCCP phone A(1900) are registered to cluster A

Phones A are associated with the end-user cluster1

SCCP phone B(1000) registered to cluster B

Phones B are associated with the end-user cluster2

CUCM learns a pattern 10XX, no PSTN failover rule as SAF network has unlimited Bandwidth, TAPI is
observing A

Procedure

Application monitors A

Message Sequence Charts
44

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster 2 Over SAF Trunk

Application sends a lineMakeCall at A to call B

Table 31: Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster 2 Over SAF Trunk

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

A receives NewCallEvent and
CallStateChangeEvent (Dialtone/Dialing)

A dials 1000

LineA: LINE_CALLSTATE
(LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallReason =
LINECALLREASON_DIRECT

CallerID = A / CalledID = 1000 /
ConnectedID = / RedirectingID = /
RedirectionID =

A receives CallStateChangeEvent
(PROCEEDING)

Message Sequence Charts
45

Message Sequence Charts
Message Sequence Charts

TAPI messagesCTI messagesAction

A:CPIC event received on party A

LineA: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK /
LINECALLSTATE_CONNECTED)

CallReason =
LINECALLREASON_DIRECT

CallerID = A / CalledID = 1000 /
ConnectedID = 1000 / RedirectingID =
1000 / RedirectionID = 1000

LINECALLINFO.dwCallID=0x00400FB1

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1900

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 1000:

LINECALLINFO.dwCalledIDName =
CCD Pattern

LINECALLINFO.dwConnectedID= 1000

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID= 1000

LINECALLINFO.dwRedirectionIDName
=

LINECALLINFO.dwRedirectingID=1000:

LINECALLINFO.dwRedirectingIDName
= CCD Pattern

A receives CallStateChangeEvent
(Ringback/connected)

Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Redirects to Phone C(1000) on
Cluster 2 Over SAF Trunk

Configuration

SCCP phone A and B are registered to cluster A

Phones A and B are associated with the end-user cluster1

SCCP phone C(1000) registered to cluster B

Phones C are associated with the end-user cluster2

Message Sequence Charts
46

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Redirects to Phone C(1000) on Cluster 2 Over SAF Trunk

CUCM learns a pattern 10XX, from SAF network as unlimited Bandwidth

Procedure

Application monitors A and B

Application sends a lineMakeCall at A to call B

Table 32: Basic Call Initiated From TAPI From Phone A and B on Cluster 1, B Redirects to Phone C(1000) on Cluster 2 Over SAF Trunk

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING,
LINECALLSTATE_CONNECTED,)

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_RINGING,
LINECALLSTATE_CONNECTED)

A receives NewCallEvent and
CallStateChangeEvent
(Dialtone/Dialing/Proceeding
/ringback/connected)

B receives NewCallEvent and
CallStateChangeEvent (offering/ringing/
connected)

A dials B

Message Sequence Charts
47

Message Sequence Charts
Procedure

TAPI messagesCTI messagesAction

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DISCONNECTED)

ExtendCallReason = CtiReasonRedirect

A:CPIC event received on A

LineA: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK)

LineA: LINE_CALLSTATE
(LINECALLSTATE_CONNECTED)/
LINE_CALLINFO

CallReason =
LINECALLREASON_DIRECT

LINECALLINFO.dwCallID=0x00400FB2

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1900

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 1901

LINECALLINFO.dwCalledIDName =

LINECALLINFO.dwConnectedID= 1000

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID= 1000

LINECALLINFO.dwRedirectionIDName
=

LINECALLINFO.dwRedirectingID= 1901

LINECALLINFO.dwRedirectingIDName
=

ExtendCallReason = CtiReasonRedirect

A receives CallStateChangeEvent
(Connected)

B redirects call to 1000 over ICT trunk

TSPI_linegetcallinfo on A

Message Sequence Charts
48

Message Sequence Charts
Message Sequence Charts

Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on
Cluster 2 Over SAF Trunk

Configuration

SCCP phone A and B are registered to cluster A

Phones A and B are associated with the end-user cluster1

SCCP phone C(1000) registered to cluster B

Phones C are associated with the end-user cluster2

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network, SAF network has
unlimited bandwidth.

Procedure

Application monitors A and B

Application sends a lineMakeCall at A to call B

Table 33: Basic Call Initiated From TAPI From Phone A and B on Cluster 1, B Transfers to Phone C(1000) on Cluster 2 Over SAF Trunk

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING,
LINECALLSTATE_CONNECTED,)

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_RINGING,
LINECALLSTATE_CONNECTED)

A receives NewCallEvent and
CallStateChangeEvent
(Dialtone/Dialing/Proceeding
/ringback/connected)

B receives NewCallEvent and
CallStateChangeEvent (offering/ringing/
connected)

A calls B

Message Sequence Charts
49

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on Cluster 2 Over SAF Trunk

TAPI messagesCTI messagesAction

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING/Proceeding)

LineB: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK /
LINECALLSTATE_CONNECTED)

CallReason =
LINECALLREASON_DIRECT

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DISCONNECTED)

ExtendCallReason =
CtiReasonTransferredCall

B: receives CPIC event

B setup transfers to C(1000), through the
ICT(SAF) trunk

Complete transfer on B

TSPI_linegetcallinfo on disconnected call
on B

Message Sequence Charts
50

Message Sequence Charts
Message Sequence Charts

TAPI messagesCTI messagesAction

A:

LineA: LINE_CALLSTATE
(LINECALLSTATE_CONNECTED)/
LINE_CALLINFO

CallReason =
LINECALLREASON_DIRECT

LINECALLINFO.dwCallID=0x00400FB4

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1000

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 1901

LINECALLINFO.dwCalledIDName =

LINECALLINFO.dwConnectedID= 1000

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID= 1900

LINECALLINFO.dwRedirectionIDName
=

LINECALLINFO.dwRedirectingID= 1901

LINECALLINFO.dwRedirectingIDName
=

ExtendCallReason =
CtiReasonTransferredCall

A receives CallStateChangeEvent
(Connected)

TSPI_linegetcallinfo on A

CallFwdAll Notification
This section describes the CallFwdAll Notification usecases.

Application Pressed CFwdAll on TAPI Monitored Device
Application opens the line with new ExtVersion 0x000A0000. User presses CFwdAll softkey on A when
device is in on-hook condition.

Message Sequence Charts
51

Message Sequence Charts
CallFwdAll Notification

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A with new ExtVesrion
0x000A0000

NewCallEvent received for AUser presses CFwdAll softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask 0x00000040

LineGetCallInfo on A

TAPI Monitored Device Goes Off Hook
Application opens the line with new ExtVersion 0x000A0000. Device goes off hook.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A with new ExtVesrion
0x000A0000

NewCallEvent received for AA goes off-hook

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000000

LineGetCallInfo on A

Application Monitors Off Hook Device
Device goes off hook. Application does a LineInitialize and opens line A with new ExtVersion 0x000A0000

Expected resultsCTI eventsAction

Device goes offhook

ExistingCallEvent received at ALineInitialize

LineOpen on A with new ExtVesrion
0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain CallType 00000000

LineGetCallInfo on A

Application Monitors Device After User Presses CFwdAll
User presses CFwdAll softkey on the device. Application does a LineInitialize and opens line A with new
ExtVersion 0x000A0000.

Expected resultsCTI eventsAction

User presses CFwdAll softkey on
the device

Message Sequence Charts
52

Message Sequence Charts
TAPI Monitored Device Goes Off Hook

Expected resultsCTI eventsAction

ExistingCallEvent received for ALineInitialize

LineOpen on A with new
ExtVesrion 0x000A0000

LINECALLINFO::DEVSPECIFIC
would contain
CallAttributeBitMask : 0x00000040

LineGetCallInfo on A

User Presses CFwdAll Softkey After Device Is Off Hook
TAPI application does a LineInitialize and opens line A with new ExtVersion 0x000A0000. Device goes off
hook and user presses CFwdAll softkey.

Expected resultsCTI eventsAction

ExistingCallEvent received for ALineInitialize

LineOpen on A with new ExtVesrion
0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000040

NewCallEvent received for AA goes off-hook

User presses CFwdAll softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000000

LineGetCallInfo on A

User Presses CFwdAll Softkey on a Multiline Device
TAPI application does LineInitialize and opens all lines-A1 and A2 for the device with new ExtVersion
0x000A0000. User presses the CFwdAll softkey.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A1,

LineOPen on A2 with new ExtVesrion
0x000A0000

NewCallEvent received for A1User presses CFwdAll softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000040

LineGetCallInfo on A1

User Presses CFwdAll on a Multiline Device by Selecting a Line
TAPI application does a LineInitialize and opens all lines-A1 and A2 for the device with new ExtVersion
0x000A0000. User selects line A2 and presses CFwdAll softkey.

Message Sequence Charts
53

Message Sequence Charts
User Presses CFwdAll Softkey After Device Is Off Hook

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A1,

LineOPen on A2 with new ExtVesrion
0x000A0000

NewCallEvent received for A1User selects line A2 and presses CFwdAll
softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000000

LineGetCallInfo on A2

Shared Line Scenario on Pressing CFwdAll Softkey
TAPI application does a LineInitialize and opens a shared line Awith new ExtVersion 0x000A0000 on devices
P and Q. User presses CFwdAll softkey on device P.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A

LineOpen on A’ with new ExtVesrion
0x000A0000

NewCallEvent received at A

NewCallEvent received at A’ for RIU call

On device P, user presses ‘CFwdAll’
softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000040

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000000

LineGetCallInfo on A

Cancellation of CFwdAll
TAPI application does a LineInitialize and open line Awith new ExtVersion 0x000A0000. User sets CFwdAll
for line A by pressing CFwdAll softkey followed by CallFwdAll destination number.

Later, user presses ‘CFwdAll’ softkey again to cancel CFwdAll setting.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A with new ExtVesrion
0x000A0000

NewCallEvent received for AUser presses CFwdAll and enters FwdAll
destination

Message Sequence Charts
54

Message Sequence Charts
Shared Line Scenario on Pressing CFwdAll Softkey

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000040

LineGetCallInfo on A

NewCallEvent received for AUser again presses ‘CFwdAll’ softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000080

LineGetCallInfo on A

Calling Party IP Address

Basic Call
TAPI application monitors party B

Party A represents an IP phone

A calls B

IP Address of A is available to TAPI application that is monitoring party B

Consultation Transfer
TAPI application monitors party C

Party B represents an IP phone

A talks to B

B initiates a consultation transfer call to C

IP Address of B is available to TAPI application that is monitoring party C.

B Completes the transfer

Calling IP address of A is not available to TAPI application that is monitoring party C (not a supported
scenario).

Consultation Conference
TAPI application monitors party C

Party B represents an IP phone

A talks to B

B initiates a consultation conference call to C

IP Address of B is available to TAPI application that is monitoring party C.

B Completes the conference

Calling IP address of A and B is not available to TAPI application that is monitoring party C (not a supported
scenario)

Message Sequence Charts
55

Message Sequence Charts
Calling Party IP Address

Redirect
TAPI application monitors party B and party C

Party A represents an IP phone

A calls B

IP Address of A is available to TAPI application that is monitoring party B

Party A redirects B to party C

Calling IP address is not available to TAPI application that is monitoring party B (not a supported scenario)

Calling IP address B is available to TAPI application that is monitoring party C

Calling Party Normalization

Incoming Call From PSTN to End Point
TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party =
5551212, Displayed Called
Party = 2000, Displayed
Redirection Party = , Displayed
Redirected Party = , Globalized
Calling Party = +14085551212,
Calling Party Number Type =
SUBSCRIBER, Called Party
Number Type = UNKNOWN,
Redirection Party Number Type
= , Redirecting Party Number
Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
5551212, UnModified Called
Party = 2000, UnModified
Original Called Party = 2000,
Modified Calling Party =
5551212,Modified Called Party
= 2000, Modified Original
Called Party = 2000, Globalized
Calling party = +14085551212,
Calling Party Number Type =
SUBSCRIBER, Called Party
Number Type = UNKNOWN,
Original Called Party Number
Type, = UNKNOWN State =
Connected, Origin =OutBound,
Reason = Direct

A Call gets offered from a
PSTN number
5551212/<SUBSCRIBER>
through a San Jose gateway to
a CCM end point 2000

Message Sequence Charts
56

Message Sequence Charts
Redirect

Incoming Call From National PSTN to CTI-Observed End Point

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party =
9725551212, Displayed Called
Party = 2000, Displayed
Redirection Party = , Displayed
Redirected Party = , Globalized
Calling Party = +19725551212,
Calling Party Number Type =
NATIONAL, Called Party
Number Type = UNKNOWN,
Redirection Party Number Type
= , Redirecting Party Number
Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
9725551212, UnModified
Called Party = 2000,
UnModified Original Called
Party = 2000, Modified Calling
Party = 9725551212, Modified
Called Party = 2000, Modified
Original Called Party = 2000,
Globalized Calling party =
+19725551212, Calling Party
Number Type = NATIONAL,
Called Party Number Type =
UNKNOWN, Original Called
Party Number Type, =
UNKNOWNState =Connected,
Origin = OutBound, Reason =
Direct

A Call gets offered from a
Dallas PSTN number
5551212/<NATIONAL>
through a San Jose gateway to
a CCM end point 2000

Incoming Call From International PSTN to CTI-Observed End Point

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party =
011914422221111, Displayed
Called Party = 2000, Displayed
Redirection Party = , Displayed
Redirected Party = , Globalized
Calling Party =
+914422221111, Calling Party
Number Type =
INTERNATIONAL, Called
Party Number Type =
UNKNOWN,Redirection Party
Number Type = , Redirecting
Party Number Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
011914422221111, UnModified
Called Party = 2000,
UnModified Original Called
Party = 2000, Modified Calling
Party = 011914422221111,
Modified Called Party = 2000,
Modified Original Called Party
= 2000, Globalized Calling
party = +914422221111, Calling
Party Number Type =
INTERNATIONAL, Called
Party Number Type =
UNKNOWN, Original Called
Party Number Type, =
UNKNOWNState =Connected,
Origin = OutBound, Reason =
Direct

A Call gets offered from a
PSTN number in India
22221111/<INTERNATIONAL>
through a San Jose gateway to
a CCM end point 2000

Message Sequence Charts
57

Message Sequence Charts
Incoming Call From National PSTN to CTI-Observed End Point

Outgoing Call From CTI-Observed End Point to PSTN Number

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party = 2000,
Displayed Called Party =
5551212, DisplayedRedirection
Party = , Displayed Redirected
Party = , Globalized Calling
Party = +14085551212, Calling
Party Number Type =
UNKNOWN, Called Party
Number Type = SUBSCRIBER,
Redirection Party Number Type
= , Redirecting Party Number
Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
2000, UnModified Called Party
= 5551212, UnModified
Original Called Party =
5551212, Modified Calling
Party = 2000, Modified Called
Party = 5551212, Modified
Original Called Party =
5551212, Globalized Calling
party = +14085551212, Calling
Party Number Type =
UNKNOWN, Called Party
Number Type = SUBSCRIBER,
Original Called Party Number
Type, = SUBSCRIBER State =
Connected, Origin =OutBound,
Reason = Direct

A Call gets initiated from a
CCM end point 2000 through a
San Jose gateway to a PSTN
number
5551212/<NATIONAL>

Outgoing Call From CTI-Observed End Point to National PSTN Number

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party = 2000,
Displayed Called Party =
9725551212, Displayed
Redirection Party = , Displayed
Redirected Party = , Globalized
Calling Party = +19725551212,
Calling Party Number Type =
UNKNOWN, Called Party
Number Type = NATIONAL,
Redirection Party Number Type
= , Redirecting Party Number
Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
2000, UnModified Called Party
= 9725551212, UnModified
Original Called Party =
9725551212, Modified Calling
Party = 2000, Modified Called
Party = 9725551212, Modified
Original Called Party =
9725551212, GlobalizedCalling
party = +19725551212, Calling
Party Number Type =
UNKNOWN, Called Party
Number Type = NATIONAL,
Original Called Party Number
Type, = NATIONAL State =
Connected, Origin =OutBound,
Reason = Direct

A Call gets initiated from a
CCM end point 2000 through a
San Jose gateway to a Dallas
PSTN number
9725551212/<NATIONAL>

Message Sequence Charts
58

Message Sequence Charts
Outgoing Call From CTI-Observed End Point to PSTN Number

Outgoing Call From CTI-Observed End Point to International PSTN Number

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party = 2000,
Displayed Called Party =
011914422221111, Displayed
Redirection Party = , Displayed
Redirected Party = , Globalized
Calling Party =
+914422221111, Calling Party
Number Type = UNKNOWN,
Called Party Number Type =
INTERNATIONAL,
Redirection Party Number Type
= , Redirecting Party Number
Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
2000, UnModified Called Party
= 011914422221111,
UnModified Original Called
Party = 011914422221111,
Modified Calling Party = 2000,
Modified Called Party =
011914422221111, Modified
Original Called Party =
011914422221111, Globalized
Calling party = +914422221111,
Calling Party Number Type =
UNKNOWN, Called Party
Number Type =
INTERNATIONAL, Original
Called Party Number Type, =
INTERNATIONAL State =
Connected, Origin =OutBound,
Reason = Direct

A Call gets initiated from a
CCM end point 2000 through a
San Jose gateway to a PSTN
number in India
914422221111/<INTERNATIONAL>

Call PickUp

Registering CallPickUpGroup for Notification

Configuration
Service parameter “Auto Call Pickup Enabled” is enabled.

Devices/Lines: 1000:P1,1001:P1.1002:P1,4000:P1 and 4001:P1

Pickup group P1:1111 is configured

P1:1000, P1:1001, P1:1002 are all in pickup group P1:1111

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Message Sequence Charts
59

Message Sequence Charts
Outgoing Call From CTI-Observed End Point to International PSTN Number

Expected eventsAction

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpenSuccessful

LineInService Event as well

LineOpen for P1:1111

DN and Partition information will be pickup Group DN and
partition.

LineName – “CtiCallPickupDevice”

LineType -LINEDEVCAPSDEVSPECIFIC_PICKUPDN
-0x00000004

LineInfo

UnRegistering CallPickUpGroup for Notification

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Line Open SuccessfulLineOpen for P1:1111

Line_Reply with success.

LINE_REMOVE event will be sent to Application for P1:1111

Application sends
CciscoLineDevSpecificUnRegisterCallPickupGroupForNotification
on new line opened for PickUpGroup P1:1111

Re-Registering CallPickUpGroup for Notification

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Message Sequence Charts
60

Message Sequence Charts
UnRegistering CallPickUpGroup for Notification

Expected eventsAction

Line Open SuccessfulLineOpen for P1:1111

Line_Reply with Error “LINEERR_OPERATIONUNAVAIL”Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Variant : Test the Same with UnRegister

Registering/UnRegistering CallPickUpGroup for Notification with Invalid Information

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Replywith Error Code “LINEERR_OPERATIONFAILED”Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with InValid DN or Partition

Variant : Test the Same with UnRegister

CallPickUp After Enabling Auto Call Pickup Enabled

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Line Open SuccessfulLineOpen for P1:1111

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Message Sequence Charts
61

Message Sequence Charts
Registering/UnRegistering CallPickUpGroup for Notification with Invalid Information

Expected eventsAction

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin : Outbound

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo on new call on P1:1111

Events on P1:1000:

LINE_NEWCALL and

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 4000, Called = 1002, Connected = 4000, dwReason =
Direct, dwOrigin = Internal.

There is no notification at P1:1111 after the call has
been pickup.

Note

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:1000

First incoming Call will be picked up

(i.e call from 4000 will be picked up by 1000)

Varaint : P1:4000 calls P1:1002 and P1:4001 calls P1:1002

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:1000

CallPickUp with Auto Call Pickup Enabled Disabled

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Message Sequence Charts
62

Message Sequence Charts
CallPickUp with Auto Call Pickup Enabled Disabled

Expected eventsAction

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo

Events on P1:1000:

Call 1:

LINE_NEWCALL and

LINE_CALLSTATE with state =

LINECALLSTATE_IDLE

First call will go IDLE state after Proceeding state.Note

Call2:

LINE_NEWCALL and

LINE_CALLSTATE with state =

LINECALLSTATE_OFFERING

Once the call is Answered

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 4000, Called = 1002, Connected = 4000, dwReason =
PickUp, dwOrigin = Outbound

There is no notification at P1:1111 after the call has
been pickup.

Note

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:1000

CallPickup Request will be successful and the newcall will be
created and the call will be in Offering state

Varaint : Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:1002

Message Sequence Charts
63

Message Sequence Charts
Message Sequence Charts

CallPickUp with Multiple Calls Available

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Reply with success

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Call 2:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4001 calls P1:1001

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4001

dwCalledID : 1001

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo on Call

LineGetCallInfo on Call2

Message Sequence Charts
64

Message Sequence Charts
CallPickUp with Multiple Calls Available

Expected eventsAction

Events on P1:1000:

Call 3:

LINE_NEWCALL and

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 4000, Called = 1002, Connected = 4000, dwReason =
Direct, dwOrigin = Internal

There is no notification at P1:1111 after the call has
been pickup.

Note

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:1000

CallPickupGroup Changed for a Device on AdminPage
Pickup group P1:9999 is configured

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCapswith ExtensionVersion – 000A0000 on 1000:P1

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Changed CallPickUp Group DN and Partition Information will
be sent to application

Now from Admin page change the CallPickupGroup of 1000:P1
line to None or some other group P1:9999

LineGetDevCapswith ExtensionVersion – 000A0000 on 1000:P1

CallPickUpGroup Partition or DN Information Updated

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCapswith ExtensionVersion – 000A0000 on 1000:P1

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Message Sequence Charts
65

Message Sequence Charts
CallPickupGroup Changed for a Device on AdminPage

Expected eventsAction

LineOpen SuccessfulLineOpen with new DeviceID

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo

LINE_REMOVE for the line P1:1111Now From Admin Pages change the Partition or DN information
of the Pickup Group

Changed CallPickUp Group DN and Partition Information will
be sent to application

LineGetDevCapswith ExtensionVersion – 000A0000 on 1000:P1

CallPickUpGroup Is Deleted

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

LINE_REMOVE for the line P1:1111Now From Admin Pages Pickup Group 1111:P1 is deleted

Call Queuing
HP1 is a Huntpilot with the below configuration:

"Queue Calls" check box is selected.

“Display Line Group Member DN as Connected Party" check box is selected.

HP1: LG1

Message Sequence Charts
66

Message Sequence Charts
CallPickUpGroup Is Deleted

HP2: LG1

A, B (IP phones/CTI Ports)

Table 34: Basic Hunt List Call (HP1 Has at Least One Member Free)

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = A

HuntPilot = HP1

App initiates call from A to HP1 and call is answered by LG1.

Message Sequence Charts
67

Message Sequence Charts
Message Sequence Charts

Table 35: Basic Hunt List Call. HP1 Has All Members Busy (LG1)

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = HP1

HuntPilot =

App initiates call from A to HP1 and call is Queued.

Message Sequence Charts
68

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Message Sequence Charts
69

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:Call on LG1 goes idle (LG1 is free). Queued call from A is
de-queued and offered on LG1. LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x2e(CallDeQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x2e(CallDeQueue)

Caller = A,

Called = HP1

HuntPilot = HP1

LG1 Answers the call. At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(direct)

ExtendedCallReason = x2e(CallDeQueue)

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x2e(CallDeQueue)

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A
Variance: Repeat and verify info when

Message Sequence Charts
70

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Same as aboveDisplay Line Group Member DN as Connected Party is enabled

Table 36: Hunt List Call to HP1 When Queue Depth Is Reached. (Maximum Number of Callers Allowed in Queue = 2)

Expected eventsAction

At A:

LINE_CALLSTATE -DISCONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

HP1 has 2 queued calls.

App initiates call from A to HP1, call is disconnected

Message Sequence Charts
71

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

At B:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x30(CallDeQueueAgentsBusy)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1

HuntPilot = HP1

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x30(CallDeQueueAgentsBusy)

Caller = A

Called = HP1

Connected = A

Variance:

Destination When Queue is Full = B

B Answers the call.

Message Sequence Charts
72

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Variance:

Destination When Queue is Full = HP2

Call on LG1 of HP2 goes idle (LG1 is free). Queued call from A
is de-queued and offered on LG1.

Message Sequence Charts
73

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x30(CallDeQueueAgentsBusy)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1 of HP2

HuntPilot = HP2

At LG1 of HP2:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x30(CallDeQueueAgentsBusy)

Caller = A

Called = HP1

Message Sequence Charts
74

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Connected = A

Table 37: Hunt List Call to HP1 and Maximum Wait Time in Queue Is Met

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = HP1

HuntPilot =

At A:

LINE_CALLSTATE -DISCONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

HuntMember LG1 of HP1 is busy.

App initiates call from A to HP1.

Maximum wait time at queue is reached.

Message Sequence Charts
75

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

At B:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x2f(CallDeQueueTimerExpired)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1

HuntPilot = HP1

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x2f(CallDeQueueTimerExpired)

Caller = A

Called = HP1

Connected = A

Variance:

Destination When maximum wait time in Queue expires = B

Message Sequence Charts
76

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Variance:

Destination maximum wait time in Queue expires = HP2

Message Sequence Charts
77

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x2f(CallDeQueueTimerExpired)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A Called = HP1

HuntPilot = HP1

Connected = LG1 of HP2

HuntPilot = HP2

At LG1 of HP2:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x2f(CallDeQueueTimerExpired)

Caller = A

Message Sequence Charts
78

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Called = HP1

Connected = A

Message Sequence Charts
79

Message Sequence Charts
Message Sequence Charts

Table 38: Hunt List Call to HP1 and No Agents Logged In or Registered

Expected eventsAction

App initiates call from A to HP1. (None of the Huntmembers are
registered or logged in).

DestinationWhen There Are No Agents Logged In or Registered
= ' B'

Call offered on B.

B Answers the call.

Message Sequence Charts
80

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

At B:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x31(CallDeQueueAgentsUnavailable)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = B

HuntPilot =

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x31(CallDeQueueAgentsUnavailable)

Caller = A

Called = HP1

Connected = A

Message Sequence Charts
81

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x31(CallDeQueueAgentsUnavailable)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = B

HuntPilot = HP2

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x31(CallDeQueueAgentsUnavailable)

Caller = A

Called = HP1

Connected = A

App initiates call from A to HP1. (None of the Huntmembers are
registered or logged in).

DestinationWhen There Are No Agents Logged In or Registered
= 'HP2'

Call offered on HP2.

HP2 Answers the call.

Message Sequence Charts
82

Message Sequence Charts
Message Sequence Charts

Table 39: Basic Hunt List Call. A Calls B, and B Redirects/forwards/transfers the Call to HP1

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = B,

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = B,

Connected = A

App initiates call from A to B

Message Sequence Charts
83

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

The call on B is transferred to HP1 (Blind transfer).

Message Sequence Charts
84

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At B:

LINE_CALLSTATE -IDLE

CallReason = x1(Direct)

ExtendedCallReason = x7(BlindTransferCall)

Caller = A

Called = B,

HuntPilot =

Connected =

HuntPilot =

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x100(LINECALLREASON_TRANSFER)

ExtendedCallReason = x7(BlindTransferCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected =

HuntPilot =

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A Called = B,

HuntPilot =

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason=x100(LINECALLREASON_TRANSFER)

Caller = A

Called = HP1,

HuntPilot = HP1

Message Sequence Charts
85

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Connected = A

HuntPilot =

Message Sequence Charts
86

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Variance:

Call on B is redirected to HP1

LG1 Answers the call.

Message Sequence Charts
87

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At B:

LINE_CALLSTATE -IDLE

CallReason = x1(Direct)

ExtendedCallReason = x6(Redirect)

Caller = A

Called = B,

HuntPilot =

Connected =

HuntPilot =

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x40(LINECALLREASON_REDIRECT)

ExtendedCallReason = x6(Redirect)

Caller = A

Called = B,

HuntPilot =

Connected =

HuntPilot =

At A:

LIN_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = B,

HuntPilot =

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x40(LINECALLREASON_REDIRECT)

ExtendedCallReason = x6(Redirect)

Caller = A,

Called = B

Message Sequence Charts
88

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

HuntPilot =

Connected = LG1

HuntPilot =

Message Sequence Charts
89

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Variance:

Call on B is forwarded to HP1 (Forward All)

LG1 Answers the call.

Message Sequence Charts
90

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RING_BACK

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = B,

HuntPilot =

Connected =

HuntPilot =

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x8(LINECALLREASON_FWDUNCOND)

ExtendedCallReason = x5(ForwardAllCall)

Caller = A

Called = B,

HuntPilot =

Connected =

HuntPilot =

At A:

LIN_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = B,

HuntPilot =

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x8(LINECALLREASON_FWDUNCOND)

ExtendedCallReason = x5(ForwardAllCall)

Message Sequence Charts
91

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Caller = A,

Called = B

Connected = LG1

Table 40: Basic Hunt List Call. HP1 Has All Members Busy (LG1), Queued Call on A Is Redirected

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = HP1

HuntPilot =

App initiates call from A to HP1 and call is Queued.

Message Sequence Charts
92

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Queued Call on A is redirected to B. B Answers.

Call on LG1 goes idle (LG1 is free). Queued call from B is
de-queued and offered on LG1.

LG1 Answers the call.

Message Sequence Charts
93

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x40(LINECALLREASON_REDIRECT)

ExtendedCallReason = x6(Redirect)

Caller = HP1

Called = B,

HuntPilot =

Connected = HP1

HuntPilot =

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x2e(CallDeQueue)

Caller = B,

Called = HP1

HuntPilot = HP1

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x40(LINECALLREASON_REDIRECT)

ExtendedCallReason = x2e(CallDeQueue)

Caller = B

Called = B

HuntPilot =

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x2e(CallDeQueue)

Caller = B

Called = HP1

Message Sequence Charts
94

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

HuntPilot = HP1

Connected = B

Table 41: Hunt List Call to HP1 and No Agents Logged In or Registered

Expected eventsAction

At A:

LINE_CALLSTATE -DISCONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1. (None of the Huntmembers are
registered or logged in).

Call is disconnected.

FailOver or FailBack Scenario
Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCapswith ExtensionVersion – 000A0000 on 1000:P1

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Message Sequence Charts
95

Message Sequence Charts
FailOver or FailBack Scenario

Expected eventsAction

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo

OutofService for the line P1:1111

INService for the line P1:1111.

There will not be any notification for the existing calls.Note

Stop Primary CTI Manager

GroupCallPickup

Configuration

Service parameter “Auto Call Pickup Enabled” is enabled.

Pickup group P1:1111 is configured and opened

P1:1000, P1:1001, P1:1002 are all in pickup group P1:1111

P1:2000, P1:2001, P1:2002 are all in pickup group P1:2222

P1:4000 and P1:4001 are configured

ExpectedAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

LineGetDevCaps with Extension Version – 000A0000 on
P1:2000CallPickUp Group DN and Partition Information will be
sent to application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Message Sequence Charts
96

Message Sequence Charts
GroupCallPickup

ExpectedAction

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
GroupCallPickup option and GroupPickUp DN 1111 on
P1:2000Events on P1:2000:

LINE_NEWCALL and

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 4000, Called = 1111, Connected = 4000, dwReason =
Direct, dwOrigin = Internal

There is no notification at P1:1111 after the call has
been pickup.

Note

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
GroupCallPickup option and GroupPickUp DN 1111 on P1:2000

OtherCallPickup

Configuration

Service parameter “Auto Call Pickup Enabled” is enabled.

Pickup groups P1:1111, P1:2222, P1:3333 is configured and opened

P1:1000, P1:1001, P1:1002 are all in pickup group P1:1111

P1:2000, P1:2001, P1:2002 are all in pickup group P1:2222

P1:3000, P1:3001, P1:3002 are all in pickup group P1:3333

P1:1111, and P1:2222 are sub-groups, in order of priority, of pickup group P1:3333.

P1:4000 and P1:4001 are configured.

Expected EventAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Message Sequence Charts
97

Message Sequence Charts
OtherCallPickup

Expected EventAction

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

Call 2:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:2000

P1:4001 calls P1:1000

Events on P1:3000:

LINE_NEWCALL and

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 4001, Called = 1000, Connected = 4001, dwReason =
Direct, dwOrigin = Internal

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
OtherPickup option on P1:3000

Group DN is not requiredNote

DirectCallPickup

Expected EventAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Message Sequence Charts
98

Message Sequence Charts
DirectCallPickup

Expected EventAction

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

Call 2:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

P1:4001 calls P1:1000

Events on P1:1001:

LINE_NEWCALL and

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 1001, Called = 1000, Connected = 4001, dwReason =
Direct, dwOrigin = Internal

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
DirectCallPickup option with pickup groupDN (1000) on
P1:10001

CallPickup (Negative Use Case)

Configuration

Service parameter Auto Call Pickup Enabled is enabled.

P1:2000 is already opened by the application.

Pickup groups P1:1111, P1:2222, P1:3333 is configured and opened.

P1:1000, P1:1001, P1:1002 are all in pickup group P1:1111

P1:2000, P1:2001, P1:2002 are all in pickup group P1:2222

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Message Sequence Charts
99

Message Sequence Charts
CallPickup (Negative Use Case)

Expected eventsAction

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Line_Reply with Error LINEERR_OPERATIONUNAVAILApplication sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:2000

GroupCallPickup with SuperSet Call PickupDN

Configuration

Service parameter Auto Call Pickup Enabled is enabled.

Pickup groups P1:1111, P1:2222, P1:3333 is configured and opened.

P1:1000, P1:1001, P1:1002 are all in pickup group P1:1111.

P1:2000, P1:2001, P1:2002 are all in pickup group P1:2222.

P1:3000, P1:3001, P1:3002 are all in pickup group P1:3333.

P1:1111, and P1:2222 are sub-groups, in order of priority, of pickup group P1:3333.

P1:4000 and P1:4001 are configured.

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Line_Reply with success

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Message Sequence Charts
100

Message Sequence Charts
GroupCallPickup with SuperSet Call PickupDN

Expected eventsAction

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

Call 2:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:2000

P1:4001 calls P1:1000

Line_Reply with Error LINEERR_CALLUNAVAILApplication sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
GroupPickup option with pickup group(3333) on P1:3000

Group or Direct CallPickup with Invalid DN

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Line_Reply with Error LINEERR_OPERATIONFAILED
Line_Reply with Error LINEERR_INVALLINESTATE

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
GroupPickup option with pickup group(9999) on P1:3000

Variant -Direct Call Pickup with InValid DN

Message Sequence Charts
101

Message Sequence Charts
Group or Direct CallPickup with Invalid DN

CCMEncryption Enhancements
Precondition: CTI service Parameter - "Require Public Key encryption" = true/false

Table 42: CiscoTSP Connecting to 10.x CUCM

TAPI StructuresTAPI MessagesAction

Devices are
Enumerated/ Lines are
Enumerated

PhoneInitializeEx/LineInitializeEx

Applications would be able to control /monitor devices/Lines as before no change.

Variant: Test the same with Secure CUCM and Secure Connection between CiscoTSP and CTI.

Note

Precondition: CTI service Parameter - "Require Public Key encryption" = False

Table 43: 9.x CiscoTSP Connecting to 10.x CUCM

TAPI StructuresTAPI MessagesAction

Devices are
Enumerated/
Lines are
Enumerated

PhoneInitializeEx/LineInitializeEx

Applications would be able to control /monitor devices/Lines as before no changeNote

Precondition: CTI service Parameter - "Require Public Key encryption" = False

Table 44: 9.x CiscoTSP Connecting to 10.x CUCM

TAPI StructuresTAPI MessagesAction

Notifier will pop-up error
message indicating that Provider
Init failed.

Error - Provider Init failed -
Incompatible protocol version

Initialization fails
and CiscoTSP
devices won't be
Enumerated.

PhoneInitializeEx/LineInitializeEx

Message Sequence Charts
102

Message Sequence Charts
CCMEncryption Enhancements

CIUS Session Persistency

Notify the Line Application and Expose the Changed IP Address
TAPI structuresTAPI messagesAction

lineDevices are EnumeratedlineInitializeEx

lineOpen() returns successlineOpen for a lineDevice on the wireless
device TAPI100

LINEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.250"
(FA1F4D0A -Little endian Hex format)

lineGetDevCaps() returns successlineGetDevCaps() with DeviceID =
DeviceId of TAPI100

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_DEVICE_IPADDRESS

Variation result:

1) Same as above

2) Same as above

The device TAPI100 moves across WiFi
networks resulting in change in the IPv4
address from 10.77.31.250 to 10.77.31.176

Variation 1: The device TAPI100 moves
from a IPv4 n/w to a Ipv6 n/w with new ip
as 2001:db8::1:0:0:1

Variation 2: The device TAPI100 is
docked/undocked and hence changes from
WAN/LAN to wireless network

Message Sequence Charts
103

Message Sequence Charts
CIUS Session Persistency

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.176"
(B01F4D0A -Little endian Hex format)

Variation 1:

LINEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv6_only

RegisteredIPv6Address =
"2001:db8::1:0:0:1"

(Application should use the Offset and size
fields of IPv6 address from
LINEDEVCAPS to retrieve the value of
IPv6 address)

Variation 2:

LINEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.176"

lineGetDevCaps() returns successlineGetDevCaps() with DeviceID =
DeviceId of TAPI100

Notify the Phone Application and Expose the Changed IP Address

TAPI structuresTAPI MessageAction

phoneDevices are EnumeratedphoneInitializeEx

phoneOpen() returns successphoneOpen for a phoneDevice of wireless
device TAPI100

PHONEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.250"
(FA1F4D0A -Little endian Hex format)

phoneGetDevCaps() returns successphoneGetDevCaps() with DeviceID =
DeviceId of TAPI100

Message Sequence Charts
104

Message Sequence Charts
Notify the Phone Application and Expose the Changed IP Address

TAPI structuresTAPI MessageAction

EVENT = PHONE_DEVSPECIFIC

dwParam1 =
CPDSMT_PHONE_PROPERTY_
CHANGED_EVENT

dwParam2 =
PPCT_DEVICE_IPADDRESS

Variation result:

1) Same as above

2) Same as above

The device TAPI100 moves across WiFi
networks resulting in change in the IPv4
address from 10.77.31.250 to 10.77.31.176

Variation 1: The deivce TAPI100 moves
from a IPv4 n/w to a Ipv6 n/w with new ip
as 2001:db8::1:0:0:1

Variation 2: The deivce TAPI100 is
docked/undocked and hence changes from
WAN/LAN to wireless network

PHONEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.176"
(B01F4D0A -Little endian Hex format)

Phone Type = Cisco Cius.

Phone Name = Cisco Phone
[SEP123456789000]

Variation 1:

PHONEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv6_only

RegisteredIPv6Address =
"2001:db8::1:0:0:1"

(Application should use the Offset and size
fields of IPv6 address from
PHONEDEVCAPS to retrieve the value of
IPv6 address)

Variation 2:

PHONEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.176"
(B01F4D0A -Little endian Hex format)

phoneGetDevCaps() returns successphoneGetDevCaps() with DeviceID =
DeviceId of TAPI100

Message Sequence Charts
105

Message Sequence Charts
Message Sequence Charts

Click to Conference
Third-party conference gets created by using click-2-conference feature:

EventsAction

For A:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = B

For B:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = A

Use Click-to-Call to create call from A to B, and B answers

Message Sequence Charts
106

Message Sequence Charts
Click to Conference

EventsAction

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

For C

CONNECTED

Reason = UNKNOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Use Click-2-Conference feature to add C into conference, and C
answers

Message Sequence Charts
107

Message Sequence Charts
Message Sequence Charts

Creating Four-Party Conference by Using Click-2-Conference Feature

EventsAction

For A:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = B

For B:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = A

Use Click-to-Call to create call from A to B

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = C, Called = C, Connected = C

For C

CONNECTED

Reason = DIRECT

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Use Click-2-Conference feature to add C into conference

Message Sequence Charts
108

Message Sequence Charts
Message Sequence Charts

EventsAction

Use Click-2-Conference feature to add party D

Message Sequence Charts
109

Message Sequence Charts
Message Sequence Charts

EventsAction

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

CONFERENCED

Calling = A, Called = D, Connected = D

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

CONFERENCED

Calling = B, Called = D, Connected = D

For C

CONNECTED

Reason = UNKNOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

CONFERENCED

Calling = C, Called = D, Connected = D

For D

CONNECTED

Reason = UNKNOWN

Message Sequence Charts
110

Message Sequence Charts
Message Sequence Charts

EventsAction

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = D, Called = A, Connected = A

CONFERENCED

Calling = D, Called = B, Connected = B

CONFERENCED

Calling = D, Called = C, Connected = C

Message Sequence Charts
111

Message Sequence Charts
Message Sequence Charts

Drop Party by Using Click-2-Conference
EventsAction

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

For C

CONNECTED

Reason = UNKNOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Conference gets created by using Click-2-Conference feature to
add C into conference

Message Sequence Charts
112

Message Sequence Charts
Drop Party by Using Click-2-Conference

EventsAction

For A

CONNECTED

Reason = DIRECT

ExtendedCallReason = DIRECT

Calling = A, Called = B, Connected = B

For B

CONNECTED

Reason = DIRECT

ExtendedCallReason = DIRECT

Calling = A, Called = B, Connected = A

For C

IDLE

Drop C from Click-2-Conference feature

Message Sequence Charts
113

Message Sequence Charts
Message Sequence Charts

Drop Entire Conference by Using Click-2-Conference Feature

EventsAction

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

For C

CONNECTED

Reason = UNKOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Conference gets created by using Click-2-Conference feature to
add C into conference

For A

IDLE

For B

IDLE

For C

IDLE

Drop entire conference

Message Sequence Charts
114

Message Sequence Charts
Drop Entire Conference by Using Click-2-Conference Feature

Conference Enhancements

Noncontroller Adding Parties to Conferences
A,B, and C exist in a conference that A created.

EventsAction

At A:

Conference – Caller = A, Called = B, Connected = B

Connected

Conference – Caller = A, Called = C, Connected = C

At B:

Conference – Caller = A, Called = B, Connected = A

Connected

Conference – Caller = B, Called = C, Connected = C

At C:

Conference – Caller = B, Called = C, Connected = B

Connected

Conference – Caller = C, Called = A, Connected = A

A,B, and C exist in a conference

At A:

Conference – Caller = A, Called = B, Connected = B

Connected

Conference – Caller = A, Called = C, Connected = C

At B:

Conference – Caller = A, Called = B, Connected = A

Connected

Conference – Caller = B, Called = C, Connected = C

At C:

Conference – Caller = B, Called = C, Connected = B

OnHoldPendConf

Conference – Caller = C, Called = A, Connected = A

Connected -Caller = C, Called = D, Connected = D

At D:

Connected -Caller = C, Called = D, Connected = C

C issues a linePrepareAddToConference to D

Message Sequence Charts
115

Message Sequence Charts
Conference Enhancements

EventsAction

At A:

Conference – Caller = A, Called = B, Connected = B

Connected

Conference – Caller = A, Called = C, Connected = C

Conference – Caller = A, Called = D, Connected = D

At B:

Conference – Caller = A, Called = B, Connected = A

Connected

Conference – Caller = B, Called = C, Connected = C

Conference – Caller = B, Called = D, Connected = D

At C:

Conference – Caller = B, Called = C, Connected = B

Connected

Conference – Caller = C, Called = A, Connected = A

Conference – Caller = C, Called = D, Connected = D

At D:

Conference – Caller = C, Called = D, Connected = C

Connected

Conference – Caller = D, Called = A, Connected = A

Conference – Caller = D, Called = B, Connected = B

C issues a lineAddToConference to D

Message Sequence Charts
116

Message Sequence Charts
Message Sequence Charts

Chaining Two Ad Hoc Conferences Using Join

TSP CallInfoActions

At A:

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = A

Called = B

CONFERENCED : Caller = A

Called = C

At B:

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = A

Called = B

CONFERENCED : Caller = B

Called = C

At C:

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = B

Called = C

CONFERENCED : Caller = C

Called = A

A calls B, B answers, then B initiates conference to C, C answers,
and B completes the conference

Message Sequence Charts
117

Message Sequence Charts
Chaining Two Ad Hoc Conferences Using Join

TSP CallInfoActions

C initiates or completes conference to D and E

Message Sequence Charts
118

Message Sequence Charts
Message Sequence Charts

TSP CallInfoActions

No Change for A and B

At C:

-First conference

GCID-1

ONHOLD : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = A

Called = B

CONFERENCED : Caller = A

Called = C

-Second conference

GCID-2

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = C

Called = D

CONFERENCED : Caller = C

Called = E

At D:

GCID-2

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = C

Called = D

CONFERENCED : Caller = D

Called = E

At E:

GCID-2

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = C

Called = E

CONFERENCED : Caller = E

Message Sequence Charts
119

Message Sequence Charts
Message Sequence Charts

TSP CallInfoActions

Called = D

At A:

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = A

Called = B

CONFERENCED : Caller = A

Called = C

CONFERENCED : Caller = A

Called = Conference-2

At B :

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = A

Called = B

CONFERENCED : Caller = B

Called = C

CONFERENCED : Caller = B

Called = Conference-2

At C:

-First conference

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = B

Called = C

CONFERENCED : Caller = C

Called = A

CONFERENCED : Caller = C

Called = Conference-2

C initiates JOIN request to join to conference call together, with
GCID as the primary call

Message Sequence Charts
120

Message Sequence Charts
Message Sequence Charts

TSP CallInfoActions

At D:

GCID-2

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = D

Called = E

CONFERENCED : Caller = D

Called = Conference-1

At E :

GCID-2

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = E

Called = D

CONFERENCED : Caller = E

Called = Conference-1

CTI Remote Device
Expose Remote Destination Info for CTI Remote Device in ProviderDeviceLineInfoEvent

PreCondition: User has a CTI remote device "CTIRD1" under it control list. CTIRD1 device has 3 remote
destinations configured.

CTI messages/EventsAction

CTI acquires the devices which are under control list of the userApplication opens the provider.

CTI sends ProviderDeviceLineInfoEvent to application and
exposes 3 RDs configured on the device as part of "Remote
Destination Info" structure.

Application sends GetSignleDeviceAndLineInfoRequest to CTI
to fetch info for CTIRD1 device.

Expose Remote Destination Info for CTI Remote Device in ProviderDeviceRegisteredWithLineInfoNotify

PreCondition: User has a CTI remote device "CTIRD1" under it control list. CTIRD1 device has 3 remote
destinations configured.

Message Sequence Charts
121

Message Sequence Charts
CTI Remote Device

CTI messages/EventsAction

CTI acquires the devices which are under control list of the userApplication opens the provider.

CTI sends ProviderDeviceLineInfoEvent to application and
exposes 3 RDs configured on the device as part of "Remote
Destination Info" structure.

Application sends GetSignleDeviceAndLineInfoRequest to
application to fetch info for CTIRD1 device.

CTI sends ProviderDeviceRegisteredWithLineInfoNotify to
application and exposes 3 RDs configured on the device as part
of "Remote Destination Info" structure.

Application resets the device CTIRD1 from the admin page.

Expose New Device Type for CTI Remote Device

Precondition:

CTIRD (CTI Remote Device -Name: CTIRDdrajesh)

Remote Destinations configured/will be configured on CTI Remote Device:

RD1-CTIRD -(Name: Mobile, Number: 914086271309)

RD2-CTIRD -(Name: Office, Number: 914089022131)

Line-A (DN -1000) -Line-A configured on CTI Remote Device (shared line of Enterprise DN -1000 configured
on Device EP)

EP (Enter Prise Phone -SCCP -IP Phone)

Line-A' -DN -1000 configured on Device EP

CSF (CSF Device -Name: CSFdrajesh)

Line-A'' -DN -1000 configured on Device CSF

Remote Destination configured on CSF device:

RD1-CSF -(Name: CSF-Mobile, Number: 914086271310)

RD2-CSF -(Name: CSF-Office, Number: 914089022132)

TAPI structuresTAPI messagesAction

Devices are EnumeratedPhoneInitializeEx

PHONECAPS::PhoneInfo = "CTI Remote
Device"

PHONECAPS:: PhoneName = "Cisco
Phone: [CTIRDdrajesh]"

PhoneGetDevCaps() returns successPhoneGetDevCaps() with DeviceID =
DeviceId of CTIRD.

PHONECAPS::PhoneInfo = "CiscoUnified
Client Services Framework"

PHONECAPS:: PhoneName = "Cisco
Phone: [CSF-drajesh]"

PhoneGetDevCaps() returns successPhoneGetDevCaps() with DeviceID =
DeviceId of CSF.

Message Sequence Charts
122

Message Sequence Charts
Message Sequence Charts

Enumerating CTI Remote Devices and Exposing Remote Destination Information to Application

Precondition: same as above usecase; RD1-CTIRD and RD1-CSF are configured on respective devices

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "91486271310"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A'' on CSF.

Add Remote Destination From Admin and Expose Multiple Remote Destination Information to Application

Precondition: In addition to above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Message Sequence Charts
123

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A on
CTIRD

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Add other RemoteDestinationRD2-CTIRD
on CTI Remote Device from Admin Pages

RD2-CTIRD Info -(Name:Office, Number:
4089022131)

Message Sequence Charts
124

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "91486271310"

isActiveRD = 0x00000000

unicodeRDName = "CSF-Office"

RDNumber = "4089022132"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

Variation :

Test the same on CSF device [CSF
-Line-A'']

Update RD Info (RDName/Number/Both) From Admin -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

Message Sequence Charts
125

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A on
CTIRD

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD2-CTIRD
Name on CTI Remote Device "CTIRD"
from Admin Pages

RD2-CTIRD Info -(Name:Home, Number:
4089022132)

Message Sequence Charts
126

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Home"

RDNumber = "4089022132"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD2-CTIRD
Number on CTI Remote Device CTIRD
from Admin Pages

RD2Info -(Name: Home, Number:
4089021234)

LINEDEVCAPS::DevSpecificLineGetDevCaps() returnsLineGetDevCaps() with dwDeviceID =

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Home"

RDNumber = "4089021234"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

successLineDeviceId of Line-A on CTIRD.

Message Sequence Charts
127

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD2-CTIRD
Name and Number on CTI Remote Device
CTIRD from Admin Pages

RD2Info -(Name: Office, Number:
4089022131)

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Same as for CTI Remote Device other than
dwLineTypes andDeviceProtocolType Info
with respective RD Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Remove RD From Admin -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Message Sequence Charts
128

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Remove Remote Destination RD2-CTIRD
on CTI Remote Device CTIRD from
Admin Pages

RD2Info -(Name: Office, Number:
4089022131)

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Message Sequence Charts
129

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Remote Destination Information on CTI RemoteDevice/CSF Device Which Does Not Have Remote Destination's
Configured

Precondition: In addition to above usecase

CTIRD2 (CTI remote device -doesn't have any RemoteDestination's configured)

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info is empty

RemoteDestinationOffset = 0

RemoteDestinationSize = 0

RemoteDestinationCount = 0

RemoteDestinationElementFixedSize = 0

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-C on CTIRD2.

Remote Destination Information on Non CTI RemoteDevice / CSF Device

Precondition: In addition to above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Message Sequence Charts
130

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

DeviceProtocolType =

DeviceProtocolType_SCCP (0x01)

Remote Destination Info is empty

RemoteDestinationOffset = 0

RemoteDestinationSize = 0

RemoteDestinationCount = 0

RemoteDestinationElementFixedSize = 0

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A' on EP.

Add RD From Application -RD Info Change Notification to Application

Precondition: Remove All RD's from Admin Page

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

RemoteDestinationOffset = 0

RemoteDestinationSize = 0

RemoteDestinationCount = 0

RemoteDestinationElementFixedSize = 0

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Message Sequence Charts
131

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LINE_REPLY with success

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Add Remote Destination RD2-CTIRD to
CTI Remote Device CTIRD:

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "4089022131"

m_UnicodeRDName = "Office"

m_activeRD = 0x00000000

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Update RD Info (RDNumber/RDName/Both) From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Message Sequence Charts
132

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

LINE_REPLY with success

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination name of
RD2-CTIRD on CTI Remote Device
"CTIRD":

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "4089022131"

m_UnicodeRDName = "Office-Change"

m_NewRDNumber = "4089022131"

m_activeRD = 0x00000000

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office-Change"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Message Sequence Charts
133

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINE_REPLY with success

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination Number of
RD2-CTIRD on CTI Remote Device
"CTIRD":

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "4089022131"

m_UnicodeRDName = "Office-Change"

m_NewRDNumber = "4089020000"

m_activeRD = 0x00000000

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office-Change"

RDNumber = "4089020000"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LINE_REPLY with success

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination Name and
Number of RD2-CTIRD on CTI Remote
Device "CTIRD":

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "408902000"

m_UnicodeRDName = "Office"

m_NewRDNumber = "4089022131"

m_activeRD = 0x00000000

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Message Sequence Charts
134

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Update RD Info (SetActive RD) From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Message Sequence Charts
135

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Set RD2-CTIRD as ActiveRD:

Req

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "4089022131"

m_UnicodeRDName = "Office"

m_RDNumber = "4089022131"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineShutdown successLineShutdown()

Active RD will be RESET to False when the Application which has set RD as ACTIVE is shutdown or closed

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Message Sequence Charts
136

Message Sequence Charts
Message Sequence Charts

Add Other RD (RD2-CTIRD with IsActive Set) From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessLineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A on
CTIRD

Set RD2-CTIRD -"Office" as ACTIVE

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Add Remote Destination RD1-CTIRD on
CTI Remote Device CTIRD with
"IsActive" set to true

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Message Sequence Charts
137

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Variation :

AddRD1-CTIRDwith IsActive RD=False

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Update RD (RD1-CTIRD -Name, Number and Set IsActive) From Application -RD Info Change Notification to
Application

Precondition: continuation from previous UseCase Variation (RD2 is added with IsActive = false)

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Set RD2-CTIRD-"Office" as ACTIVE

Message Sequence Charts
138

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

*** 2 Change Nofitications

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1-CTIRD
on CTI Remote Device "CTIRD" with
IsActive set to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile-t"

m_NewRDNumber = "91408627130900"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile-t"

RDNumber = "9148627130900"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Message Sequence Charts
139

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Remove RD (RD1-CTIRD Which Is Active RD) From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Set RD1-CTIRD-"Mobile-t" as ACTIVE

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile-t"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Remove Remote Destination RD1-CTIRD
on CTI Remote Device "CTIRD"

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "9148627130900"

Message Sequence Charts
140

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Negative -Add RD From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A of CTIRD.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Message Sequence Charts
141

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult = LINEERR_INVALPARAM

Add Remote Destination on CTI Remote
Device CTIRD

Variation 1:

Empty RD Number :

m_RDNumber = ""

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = ""

m_UnicodeRDName = ""

m_activeRD = 0x00000000

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_DUPLICATE_INFORMATION
(0xC0000013)

Variation 2:

RDNumber : same RD Number as any of
the existing RD's Name

"12345" -RD already configured on
CUCM.

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "12345"

m_UnicodeRDName = "Office"

m_activeRD = 0x00000000

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_REMOTE_DESTINATION_LIMIT_EXCEEDED
(0xC0000015)

Variation 3:

Add RD when the user Limit for UserID
used for CTI RD is reached.

For example : if User has limit set to 4 and
then if RemoteDevice is already configured
with 4 Remote Destination and User tries
to Add 5th one from Application.

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "12345"

m_UnicodeRDName = "temp"

m_activeRD = 0x00000000

Message Sequence Charts
142

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult = LINEERR_INVALPARAM

Variation 4:

RDNumber : Invalid Remote Destination
Name [name has unsupported characters,
eg-name&] or invalid number [cant
configure any of the local device DN as
number which is not supported]

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "1000"

m_UnicodeRDName = "Office&"

m_activeRD = 0x00000000

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_ENDUSER_NOT_ASSOCIATED_WITH_DEVICE
(0xC000001B)

Variation 5:

Add RD to a CSF device which doesn't
have Owner/END User ID configured

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "12345"

m_UnicodeRDName = "Office"

m_activeRD = 0x00000000

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Negative -Update RD From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Message Sequence Charts
143

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult = LINEERR_INVALPARAM

Update RemoteDestination on CTI Remote
Device:

Variation 1:

Empty RD Number :

m_RDNumber = ""

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = ""

m_UnicodeRDName = ""

m_NewRDNumber = ""

m_activeRD = 0x00000000

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_REMOTE_DESTINATION_UNAVAIL
(0xC0000014)

Variation 2:

RDNNumber : RD Number in Request
doesn't match with any of the existing RD
in the RD List on Device

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "12345"

m_UnicodeRDName = "Temp"

m_RDNumber = "12345"

m_activeRD = 0x00000000

Message Sequence Charts
144

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult = LINEERR
_DUPLICATE_INFORMATION
(0xC0000013)

Variation 3:

RDNaumber : same RD Number as any of
the existing RD's Name

*** RDNumber "4086271309" is already
configured on other RemoteDestination

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "4089022131"

m_UnicodeRDName = "Office"

m_RDNumber = "4086271309"

m_activeRD = 0x00000000

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Negative -Remove RD From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Message Sequence Charts
145

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult = LINEERR_INVALPARAM

Remove Remote Destination on CTI
Remote Device:

Empty RDNumber :

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = ""

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_REMOTE_DESTINATION_UNAVAIL
(0xC0000014)

Variation 1:

RDNumber : RD Number in Request
doesn't match with any of the existing RD
in the List

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "1234567"

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Test the same on CSF device [CSF
-Line-A'']

Negative -Add/remove/update RD From Application -on Non-CTI RD /CSF Device Line or Line Is Not Opened
with Required Extension

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Message Sequence Charts
146

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_OPERATIONUNAVAIL

Add/Remove/Update Remote Destination
on CTI Remote Device CTIRD

Variation 1:

Previous step Line is not opened with
required ext Version -(0x000C0000 or
greater)

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_OPERATIONUNAVAIL

Variation 2:

Req on Line which is not on CTI Remote
Device / CSF device

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_OPERATIONFAILED

Variation 3:

Failure of Add/Remove/update Req for any
other reasons not captured in above
useCases

Multiple Apps Setting Active RD

Precondition: same as UseCase 1

TAPI structuresTAPI messagesAction

Lines are EnumeratedApp1 and App2:

LineInitializeEx

Message Sequence Charts
147

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successApp1 and App2:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

App1 and App2:

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Change Notification to App1 and App2:

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

App1:

Update Remote Destination RD2 on CTI
Remote Device "CTIRD"with IsActive set
to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

Message Sequence Charts
148

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successApp1:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successApp2:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Message Sequence Charts
149

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Change Notification to App1 and App2:

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

App2:

Update Remote Destination RD2 on CTI
Remote Device "CTIRD"with IsActive set
to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914089022131"

m_UnicodeRDName = "Office"

m_NewRDNumber = "914089022131"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successApp1:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Message Sequence Charts
150

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successApp2:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineShutdown() returns success

Change Notification to App1:

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000

Variant 1:

App2:

LineShutdown()

Message Sequence Charts
151

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successApp1:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineShutdown() returns success

No Change Notification to App2

Variant 2:

App1:

LineShutdown()

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successApp2:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Message Sequence Charts
152

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

CTI/CCM Manager FailOver Scenario - Active RD

Precondition: same as UseCase 1

TSP is configured with Primary and Secondary CTI Manager

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Message Sequence Charts
153

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1 on CTI
Remote Device "CTIRD"with IsActive set
to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Event on Line A :

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

Stop Primary CTI Manager

TSP connects to Secondary CTIManager

and

Active RD configuration is RE-SET by
CiscoTSP

Message Sequence Charts
154

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Event on Line A :

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

Set RD -Mobile to ACTIVE RD and then
Stop Call Manager on the node of
Secondary CTI Manager

ActiveRD configuration is not changed/ not
RESET

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

CTI/CCM Manager FailOver Scenario - Active RD Set by Other Application

Precondition: same as UseCase 1

TSP is configured with Primary and Secondary CTI Manager

Other Application has set the ACTIVE RD on the Device and Application is connected to Secondary CTI
Manager

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Message Sequence Charts
155

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Event on Line A :

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

Stop Primary CTI Manager

Active RD configuration is not RESET as
the this Application has not set the ACTIVE
RD

Message Sequence Charts
156

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Event on Line A :

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

Stop Call Manager on the node of
Secondary CTI Manager

ActiveRD configuration is not changed/ not
RESET

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Monitoring CSF Device in Soft Phone/Desk Phone Mode

Precondition: continuation from previous UseCase

Message Sequence Charts
157

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A'' on CSF Device.

LineOpen() returns SuccessLineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A"

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineSetStatusMessages()on Line-A" with
dwLineStates = INSERVICE and
OUTOFSERVICE

Call Events are reported to ApplicationLineMake Call() or any Incoming Call

LineClose and LineShutdown SuccessLineclose and ShutDown

Monitoring CSF Device Switching Mode From Soft/Desk Phone Mode to Extend Mode

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Message Sequence Charts
158

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A" on CSF device.

LineOpen() returns SuccessLineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A"

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineSetStatusMessages() on Line-A" with
dwLineStates = INSERVICE and
OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_DEVICE_PROTOCOL_TYPE
(0x00008000)

From Jabber Client Switch the mode to
Extend Mode

Message Sequence Charts
159

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A".

LineClose and LineShutdown SuccessLineclose and ShutDown

Monitoring CSF Device in Extend Mode, Switches Back to Soft / Desk Phone Mode

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A" on CSF device.

LineOpen() returns SuccessLineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A"

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineSetStatusMessages()on Line-A" with
dwLineStates = INSERVICE and
OUTOFSERVICE

Message Sequence Charts
160

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_DEVICE_PROTOCOL_TYPE
(0x00008000)

From Jabber Client Switch themode to Soft
Mode

Or

From Jabber Client Switch the mode to
Deskphone Mode

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A".

LineClose and LineShutdown SuccessLineclose and ShutDown

Basic Incoming Call to CTI Remote Device

CTI remote device:

A (CTI Remote Device -Name: CTIRD1)

Remote Destination:

RD1 -Remote Destination configured on CTI Remote Device A

(Name: Mobile, Number: 914086271309)

RD2 -Remote Destination configured on CTI Remote Device A

(Name: Office, Number: 914089022131)

Message Sequence Charts
161

Message Sequence Charts
Message Sequence Charts

Line:

Line-A1 (DN -2000) (Alerting Name:2000name, Display Name: CTIRD-2000name) configured on CTI
Remote Device A (shared line of Enterprise DN -2000 configured on Device B)

Line-A2 (DN -2001) (Alerting Name:2001name, Display Name: CTIRD-2001name) configured on CTI
Remote Device A (shared line of Enterprise DN -2001 configured on Device B)

Enterprise Phones:

B (IP Phone -Name: SEPxxxxxxxx)

Line:

Line-A1' -DN -2000(Alerting Name: 2000name, Display Name: EP-2000name) configured on Device B

Line-A2' -DN -2001(Alerting Name: 2001name, Display Name: EP-2001name) configured on Device B

C (IP Phone -Name: SEPxxxxxxxx)

Line:

Line-C -DN -1000(Alerting Name: 1000name, Display Name: 1000Name) configured on Device C

D (IP Phone -Name: SEPxxxxxxxx)

Line:

Line-D -DN -1001(Alerting Name: 1001name, Display Name: 1001Name) configured on Device D

CSF Device:

D (CSF Device -Name: CSF-drajesh)

Remote Destination:

RD-01 -Remote Destination configured on CSF device D

(Name: CSF-Mobile, Number: 914086271309)

RD-02 -Remote Destination configured on CSF device D

(Name: CSF-Office, Number: 914089022131)

Line:

Line-A'' (DN -2000) -Line-A (Alerting Name: 2000name, Display Name: CSF-2000) configured on CSF
device D (shared line of Enterprise DN -2000 configured on Device B)

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Message Sequence Charts
162

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns SuccessOpen all Lines (A, A' and C)

LineOpen() with ExtVer-0x000C0000

LineMakeCall() success

Call on C :

LINE_CALLSTATE -Param1=DIALING

LINE_CALLSTATE -Param1 =
PROCEEDING

LINE_CALLSTATE -Param1 =
RINGBACK

Call on CTI Remote Device :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Call on Enterprise Phone :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

LineMakeCall on Line-C with DN (A -DN
2000)

Message Sequence Charts
163

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

After "Delay Before Ringing Timer" expires the call is offered on Remote Destinations and all Remote Destinations Ring

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device C

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

Message Sequence Charts
164

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED (active)

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Answer on any of the Remote Destination

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =
CTIRD-2000name

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device C

Message Sequence Charts
165

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =
CTIRD-2000name

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

LineDrop() for the call on Device A
(CTI-RD)

*** Call on Remote Destination is dropped

Message Sequence Charts
166

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Variation :

Answer the call on Enterprise Phone (B)

LineAnswer() on the call on Device B

*** Call on Remote Device/Remote
Destination drops

Expected Result :

All calls go to Disconnected/IDLE State

Variation :

One of the Remote Destination answers the
call before the "Answer Too Soon Timer"

Expected result:

only Remote Destination which is set
ACTIVE rings

Call rings immediately and "Delay before
Ringing Timer" wouldn't be effective when
ACTIVE RD is set.

Remote Destination can answer the call
Immediately and "Answer Too Soon
Timer" wouldn't be effective when
ACTIVE RD is set.

Variation :

Active RD set on CTI Remote Device

There won't be second call on Remote
Destination, only at Remote Device second
call will present and reported to
Application.

Continuation to above variation

On second Incoming Call...

Expected result:

would be same as observed on CTI Remote
Device

Variation :

Test with CSF Device in Extend Mode

DVO Call (Outgoing Call Initiation From CTI Remote Device)

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Message Sequence Charts
167

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns SuccessOpen all Lines (A, A' and C)

LineOpen() with ExtVer-0x000C0000

LineMakeCall() returns RequestID

LINE_REPLY

Param1 = RequestID

Param2 =
LINEERR_OPERATION_FAIL_NO_ACTIVE_RD_SET
(0xC0000016)

LineMakeCall on Line-A with DN (C -DN
1000)

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1
"Mobile"on CTI Remote Device A with
IsActive set to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

Message Sequence Charts
168

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineMakeCall() success

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
OFFERING

LineMakeCall on Line-A with DN (C -DN
1000)

*** Only Remote Destination "Mobile"
rings and it rings immediately as the RD is
set Active

*** No Call presented on EP

LineAnswer() fail with Error
LINEEE_OPERATIONUNAVAIL

Answer the first Call on CTI Remote
Device:

Answer() on the call on CTIRemote
Device(A)

Message Sequence Charts
169

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 2000

dwCallerIDName = voiceConnect

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName =

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

ModifiedCallingParty = 2000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device
A(CTIRD)

Call on C :

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED

LINE_CALLSTATE -Param1 =
RINGBACK

Call on Enterprise Phone :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
ACCEPTED

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Once Remote Destination answers the call,
call will be offered on initial dialed number
C

Call will be present on Enterprise Phone
and call will be Remote In Use Call

Message Sequence Charts
170

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineAnswer() success

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED (active)

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

C answers the call

LineAnswer() on call on Device-C

LineCallInfo ::

CallReason = UNKNOWN (0x400)

dwCallerID = 2000

dwCallerIDName = 2000name

dwCalledID = 1000

dwCalledIDName = 1000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

ExtendedCallReason =
CtiReasonMobility(0x021 = 33)

UnicodeCallerPartyName = 2000name

UnicodeCalledPartyName = 1000name

UnicodeConnectedPartyName= 2000name

ModifiedCallingParty = 2000

ModifiedCalledParty = 1000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device C

Message Sequence Charts
171

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 2000

dwCallerIDName = 2000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 1000

dwConnectedIDName = 1000name

DevSpecific ::

CallAttributeType =
TSPCallAttribute_DVOCall (0x00002000)

UnicodeCallerPartyName = 2000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName= 1000name

ModifiedCallingParty = 2000

ModifiedCalledParty = 2000

ModifiedConnectedID = 1000

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

LineDrop() for the call on Device A
(CTI-RD)

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Message Sequence Charts
172

Message Sequence Charts
Message Sequence Charts

Multiple Calls -Answer/Hold/Resume

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1
"Mobile"on CTI Remote Device A with
IsActive set to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

Make Call between C and A[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same as above test cases

Message Sequence Charts
173

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineMakeCall() success

Call on Device-D :

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Second Call on CTI Remote Device[A] [D
' A] :

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Second Call on Enterprise Phone[B] [D '
A]:

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

LineMakeCall on Line-D with DN (A -DN
2000)

There won't be second call offered to Remote Destination

LineAnswer() returns success

Calls on CTI Remote Device :

Call1 [C ' A]:

LINE_CALLSTATE -Param1 =ONHOLD

Call1 [D ' A]:

LINE_CALLSTATE -Param1 =
CONNECTED

Calls on Enterprise Phone[B] :

Call1 [C ' A]:

LINE_CALLSTATE -Param1 =ONHOLD

Call1 [D ' A]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Answer() on the second call on CTIRemote
Device(A)

Remote Destination and D will be talking/
will have Media connection

Message Sequence Charts
174

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineUnHold() returns success

Calls on CTI Remote Device :

Call1 [C ' A]:

LINE_CALLSTATE -Param1 =
CONNECTED

Call1 [D ' A]:

LINE_CALLSTATE -Param1 =ONHOLD

Calls on Enterprise Phone[B] :

Call1 [C ' A]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Call1 [D ' A]:

LINE_CALLSTATE -

Param1 = ONHOLD

Resume the first call on CTIRemote Device
[A]

LineUnhold() on the call [c ' A] on Device
A

Remote Destination and C will be talking/
will have Media connection

LineUnHold() returns success

Calls on CTI Remote Device :

Call1 [C ' A]:

LINE_CALLSTATE -Param1 =
CONNECTED

Call1 [D ' A]:

LINE_CALLSTATE -Param1 = IDLE

Calls on Enterprise Phone[B] :

Call1 [C ' A]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Call1 [D ' A]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x01(active)

Resume the ONHOLD call [D ' A]from
Enterprise Phone

LineUnHold() on the call [D ' A] on Device
B

Message Sequence Charts
175

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

LineDrop() for the call on Device A
(CTI-RD)

Call on RemoteDestinationwill be dropped

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Multiple Calls -Multiple Lines -Answer/Hold/Resume

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1
"Mobile"on CTI Remote Device A with
IsActive set to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

Message Sequence Charts
176

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Make Call between C and A[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

LineMakeCall() success

Call on Device-D :

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Second Call on CTI Remote Device[A] [D
' A2]:

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Second Call on Enterprise Phone[B] [D '
A2]:

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

LineMakeCall on Line-DwithDN (A2 -DN
2001)

There won't be second call offered to Remote Destination

LineAnswer() returns success

Calls on CTI Remote Device :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =ONHOLD

Call1 [D ' A2]:

LINE_CALLSTATE -Param1 =
CONNECTED

Calls on Enterprise Phone[B] :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =ONHOLD

Call1 [D ' A2]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Answer() on the second call on CTIRemote
Device(A)

Remote Destination and D will be talking/
will have Media connection

Message Sequence Charts
177

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineUnHold() returns success

Calls on CTI Remote Device :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =
CONNECTED

Call1 [D ' A2]:

LINE_CALLSTATE -Param1 =ONHOLD

Calls on Enterprise Phone[B] :

Call1 [C ' A1]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Call1 [D ' A2]:

LINE_CALLSTATE -

Param1 = ONHOLD

Resume the first call on CTIRemote Device
[A]

LineUnhold() on the call [c ' A1] on Device
A

Remote Destination and C will be talking/
will have Media connection

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Calls on CTI Remote Device :

[C ' A1] :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

Call [C ' A1]

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

Drop the Connected Active Call on CTI
Remote Device.

LineDrop() for the call[C ' A1] on Device
A (CTI-RD)

Call on Remote Destination will not be
dropped as there is other Active/OnHold
call on CTI Remote Device

As second Call is on OnHold state, Remote
Destination will listen Dead Air

Message Sequence Charts
178

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDrop() success

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Drop the onHold call on CTI Remote
Device

LineDrop() for the call on Device A
(CTI-RD)

Call on Remote Destination is dropped

C and EP call will not be disconnected.

On C call will be in Connected state and
on EP call will be in OnHold state.

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Transfer

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same as above test cases

LineSetupTransfer returns success

Primary Call on CTI Remote Device[A] [C
' A1] :

LINE_CALLSTATE -Param1 =
OnholdPendingTransfer

Consult Call on CTI Remote Device[A]
[A1 ' D]:

Setup Transfer and Dial D

LineSetupTransfer() on the call [C ' A1] on
Device A

Message Sequence Charts
179

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINE_CALLSTATE -Param1 =
DIALTONE

LINE_CALLSTATE -Param1=DIALING

Calls on Enterprise Phone[B] :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =ONHOLD

Call1 [A1 ' D]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Consult Call on CTI Remote Device[A]
[A1 ' D]:

LINE_CALLSTATE -Param1 =
PROCEEDING

LINE_CALLSTATE -Param1 =
RINGBACK

LineDial() on Consult call with DN -D

Secondary Call on CTI Remote Device:

Call1 [A1 ' D]:

LINE_CALLSTATE -Param1 =
CONNECTED

Param2 = 0x01(active)

Answer the Call on Device D

Remote Destination and D will be talking/
will have Media connection

Both the Calls on CTI Remote Device Drop

Primary Call on CTI Remote Device :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Secondary Call on CTI Remote Device:

Call1 [A ' D]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Complete Transfer on the Primary Call[C
' A]with [A ' D] call as consult call

LineCompleteTranfer() on the call [c ' A1]
on Device A

D and C will be talking/ will have Media
connection

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Message Sequence Charts
180

Message Sequence Charts
Message Sequence Charts

Direct Transfer on Same Line

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

Make Call between D and A1

Call Info is same above Multiple Call across lines test case

Both the Calls on CTI Remote Device Drop

Primary Call on CTI Remote Device :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Secondary Call on CTI Remote Device:

Call1 [A1 ' D]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

DirectTrnasfer on the calls on CTI Remote
Device

Both Calls on Remote Device and call on
Remote Destination drop

Both the Calls on CTI Remote Device Drop

Primary Call on CTI Remote Device :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Secondary Call on CTI Remote Device:

Call1 [A1 ' D]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

DirectTrnasfer on the calls on CTI Remote
Device

Both Calls on Remote Device and call on
Remote Destination drop

CciscoLineDevSpecificDirectTransfer on
the call [c ' A1] on Device A with
ConsultCallID = CallID of [D ' A1]

D and C will be talking/ will have Media
connection

Message Sequence Charts
181

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Conference -Setupconference/AddtoConference

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

Message Sequence Charts
182

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineSetupConference returns success

Original Call on CTI Remote Device[A] :

LINE_CALSTATE = CONFERENCE

Conference Parent Call on CTI Remote
Device[A] :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
OnholdPendingConference

Consult Call on CTI Remote Device[A] :

LINE_CALLSTATE -Param1 =
DIALTONE

LINE_CALLSTATE -Param1=DIALING

Calls on Enterprise Phone[B] :

Call1 [C ' A]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Call1 [A ' D]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Consult Call on CTI Remote Device[A] :

LINE_CALLSTATE -Param1 =
PROCEEDING

LINE_CALLSTATE -Param1 =
RINGBACK

Setup Conference and Dial D

LineSetupConference() on the call [C ' A1]
on Device A

LineDial() on Consult call with DN -D

Secondary Call on CTI Remote Device:

Call1 [A ' D]:

LINE_CALLSTATE -Param1 =
CONNECTED

LINE_CALLSTATE -Param1 = IDLE

Answer the Call on Device D

Remote Destination and D will be talking/
will have Media connection

Message Sequence Charts
183

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Call model on CTI Remote Device :

[C ' A1]-[Original Call1]-[state =
Conference]

[A1 ' Conference]-[Conference Parent
Call]-[State = CONNECTED]

[A1 ' D]-[Consult Call]-[state
-CONFERENCE]

Call Model on Enterprise Phone:

Same as CTI Remote Device, all calls are
RIU Calls

Complete Conference on the Primary
Call[C ' A]with [A ' D] call as consult call

LineAddtoConference() on the call [c ' A1]
on Device A

All 3 parties C, D and CTI Remote
Device[Remote Destination] will be in
Conference

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Join on Same Line

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

Make Call between D and A1

Call Info is same above Multiple Call across lines test case

Message Sequence Charts
184

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Original Call on CTI Remote Device[A]
[C ' A1]:

LINE_CALSTATE = CONFERENCE

Conference Parent Call on CTI Remote
Device[A] :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
CONNECTED

Consult Call on CTI Remote Device[A] [D
' A1]:

LINE_CALLSTATE -Param1 =
CONFERENCE

Conference Model will be created on CTI
RemoteDevice andRIUConferenceModel
on EP

Join on the Primary Call[C ' A1]with [A1
' D] call as consult call

CCiscoLineDevSpecificJoin() on the call
[c ' A1] on Device A with CallIDstoJoin =
CallID of Call [D ' A1]

CTIRemoteDevice [A -Remote
Destination], D and C will be in
Conference.

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Direct Transfer/Join Across Line on CTI Remote Device

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

Make Call between D and A2

Call Info is same above Multiple Call across lines test case

Message Sequence Charts
185

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Line_Reply with error =
LINEERR_OPERATIONUNAVAIL

Join on the Primary Call[C ' A1]with [A2
' D] call as consult call

CCiscoLineDevSpecificJoin() on the call
[c ' A1] on Device A with CallIDstoJoin =
CallID of Call [D ' A2]

Or

CciscoLineDevSpecificDirectTransfer on
the call [c ' A1] on Device A with
ConsultCallID = CallID of [D ' A2]

Direct Transfer / Join Across Line is not
supported on CTI Remote Device

LINEERR_OPERATIONUNAVAIL

Or PHONEERR_OPERATIONUNAVAIL

Depending on the Line/Phone API request.

Variation:

On any unsupported Feature Request

For Example:

CallAcceptRequest

CallAnswerRequest

CallParkRequest

LineCallUnParkRequest

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Cbarge

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

Message Sequence Charts
186

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Conference Call model on CTI Remote
Device :

[C ' A1]-[Original Call1]-[state =
Conference]

[A1 ' Conference]-[Conference Parent
Call]-[State = CONNECTED]

[A1 ' A1(EP)]-[Consult Call]-[state
-CONFERENCE]

Call Model on Enterprise Phone:

Active Conference Calls:

[C ' A1(CTIRD)]-[Original Call1]-[state
= Conference]

[A1(EP) ' Conference]-[Conference Parent
Call]-[State = CONNECTED]

[A1(EP) ' A1(CTIRD)]-[Consult
Call]-[state -CONFERENCE]

RIU Conference Calls:

[C ' A1]-[Original Call1]-[state =
Conference]

[A1 ' Conference]-[Conference Parent
Call]-[State = CONNECTED]

[A1 ' A1(EP)]-[Consult Call]-[state
-CONFERENCE]

cBarge from CTI Remote Device is not
supported as CTI Remote Device is a Static
virtual Device.

cBarge from EP [Enterprise phone]

*** cBarge will be successful and
CTIRemote Device, EP and Caller will be
in Conference.

*** as CTI Remote Device doesn't report
RIU calls, there won't be RIU Conference
created on CTI Remote Device reflecting
Active Conference Call on EP

Barge Operation will fail as CTI Remote
Devices doesn't have BIB.

Variation:

Barge Operation on Enterprise Phone

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

URI Dialing -Basic Incoming Call to CTI Remote Device

Precondition: InAddition to configuration from previous usecases

CTI Remote Device:

Line:

Line-A (DN -2000) (URI Configured -drajesh@cisco.com)

C (IP Phone -Name: SEPxxxxxxxx)

Line:

Message Sequence Charts
187

Message Sequence Charts
Message Sequence Charts

Line-C -DN -1000(URI configured -1000@cisco.com)

D (IP Phone -Name: SEPxxxxxxxx)

Line:

Line-D -DN -1001(URI configured -1001@cisco.com)

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A' and C)

LineOpen() with ExtVer-0x000C0000

LineMakeCall() success

Call on C :

LINE_CALLSTATE -Param1=DIALING

LINE_CALLSTATE -Param1 =
PROCEEDING

LINE_CALLSTATE -Param1 =
RINGBACK

Call on CTI Remote Device :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Call on Enterprise Phone :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

LineMakeCall on Line-C with URI of CTI
Remote Device (DestinationAddress
-drajesh@cisco.com)

After "Delay Before Ringing Timer" expires the call is offered on Remote Destinations and all Remote Destinations Ring

Message Sequence Charts
188

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected : Empty

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device C

Message Sequence Charts
189

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected : Empty

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED (active)

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Answer on any of the Remote Destination

Message Sequence Charts
190

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =
CTIRD-2000name

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device C

Message Sequence Charts
191

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =
CTIRD-2000name

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

Message Sequence Charts
192

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

LineDrop() for the call on Device A
(CTI-RD)

Call on Remote Destination is dropped

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Variation :

Answer the call on Enterprise Phone (B)

LineAnswer() on the call on Device B

Call on RemoteDevice/RemoteDestination
drops

URI Dialing -DVO Call (Outgoing Call Initiation From CTI Remote Device)

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A' and C)

LineOpen() with ExtVer-0x000C0000

Message Sequence Charts
193

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineMakeCall() returns RequestID

LINE_REPLY

Param1 = RequestID

Param2 =
LINEERR_OPERATION_FAIL_NO_ACTIVE_RD_SET
(0xC0000016)

LineMakeCall on Line-A with DN (C -DN
1000)

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1
"Mobile"on CTI Remote Device A with
IsActive set to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineMakeCall() success

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
OFFERING

LineMakeCall on Line-A with URI of C
(DestinationAddress -1000@cisco.com)

*** Only Remote Destination "Mobile"
rings and it rings immediately as the RD is
set Active

*** No Call presented on EP

Message Sequence Charts
194

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineAnswer() fail with Error
LINEEE_OPERATIONUNAVAIL

Answer the first Call on CTI Remote
Device:

Answer() on the call on CTIRemote
Device(A)

LineCallInfo ::

dwCallerID = 2000

dwCallerIDName = voiceConnect

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName =

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = empty

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected :

[User | Host | Port | TransportType | URI
Type] = empty

ModifiedCallingParty = 2000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device
A(CTIRD)

Message Sequence Charts
195

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Call on C :

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED

LINE_CALLSTATE -Param1 =
RINGBACK

Call on Enterprise Phone :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
ACCEPTED

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Once Remote Destination answers the call,
call will be offered on initial dialed number
C

Call will be present on Enterprise Phone
and call will be Remote In Use Call

LineAnswer() success

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED (active)

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

C answers the call

LineAnswer() on call on Device-C

Message Sequence Charts
196

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

CallReason = UNKNOWN (0x400)

dwCallerID = 2000

dwCallerIDName = 2000name

dwCalledID = 1000

dwCalledIDName = 1000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

ExtendedCallReason =
CtiReasonMobility(0x021 = 33)

UnicodeCallerPartyName = 2000name

UnicodeCalledPartyName = 1000name

UnicodeConnectedPartyName= 2000name

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

Connected :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

ModifiedCallingParty = 2000

ModifiedCalledParty = 1000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device C

Message Sequence Charts
197

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 2000

dwCallerIDName = 2000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 1000

dwConnectedIDName = 1000name

DevSpecific ::

CallAttributeType =
TSPCallAttribute_DVOCall (0x00002000)

UnicodeCallerPartyName = 2000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName= 1000name

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected :

[User | Host | Port | TransportType | URI
Type] = [1000 | Cisco.com | 0x0 | 0x0 | 0x1]

ModifiedCallingParty = 2000

ModifiedCalledParty = 2000

ModifiedConnectedID = 1000

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

Message Sequence Charts
198

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

LineDrop() for the call on Device A
(CTI-RD)

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

CTI RD Call Forwarding
Table 45: Use Case 1: Device A Calls CTIRD When Active RD Is Not Set and "Route calls to all remote destinations when client is not connected" Is Enabled.

Expected ResultScenario

Incoming calls are Forwarded to all remote
destinations.

1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote
destinations

3. Phone A makes a call to CTIRD

Table 46: Use Case 2: Device A Calls CTIRD When Active RD Is Not Set and "Route calls to all remote destinations when client is not connected" Is Disabled. There
Is No Call Forward Number Set on the Shared Enterprise Phone

Expected ResultScenario

Call is disconnectedwith reason code -USER_BUSY.1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote
destinations

3. Phone A makes a call to CTIRD

Message Sequence Charts
199

Message Sequence Charts
CTI RD Call Forwarding

Table 47: Use Case 3: Device A Calls CTIRD When CTI Remote Device Is Observed , Remote Destination Is Not Configured and "Route calls to all remote destinations
when client is not connected" Is Enabled (CFNA Is Configured On Enterprise Number to Voice Mail Box)

Expected ResultScenario

Call will route to voice mail number.1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote destinations

3. Phone A makes a call to CTIRD

Table 48: Use Case 4: Device A Calls CTIRD When CTI Remote Device Is Observed , Remote Destination Is Not Configured and "Route calls to all remote destinations
when client is not connected" Is Disabled (CFNA Is Configured On Enterprise Number to Voice Mail Box)

Expected ResultScenario

Call will route to voice mail number.1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote destinations

3. Phone A makes a call to CTIRD

Table 49: Use Case 5: DeviceA Calls CTIRD When Active RD Is Set and "Route calls to all remote destinations when client is not connected" Is Enabled. Setup: A IP
Phone, B CTI-RD, C RDD1, D RDD2. Active RD Is Set to C

Expected ResultScenario

Incoming calls is routed to active remote destination,
such as C.

1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote
destinations

3. Phone A makes a call to B

4. C answers the call

Table 50: Use Case 6: Device A Calls CTIRD When Active RD Is Set and "Route calls to all remote destinations when client is not connected" Is Enabled. Setup: A IP
Phone, B CTI-RD, C RDD1, D RDD2. Active RD Is Set to C

Expected ResultScenario

Incoming calls is routed to active remote destination.1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote
destinations

3. Phone A makes a call to B

Video Capabilities and Multimedia Information
Use cases related to Video Capabilities and Multi-Media Information feature are mentioned below:

Message Sequence Charts
200

Message Sequence Charts
Video Capabilities and Multimedia Information

Media Capability on Device A (SIP Phone with Camera) Which Is Video-Enabled, Supports Telepresence,
and Has 2 Screens

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposes Video Capability
=

0x00000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 1

ScreenCount = 2

LineInitializeEx

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

LineShutdown

Media Capability on Device A (SIP Phone) Which Is Not Video-Enabled, Supports Telepresence, and Has 2
Screens

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposesMedia Capability
=

0x00000000 [CiscoDeviceVideoCapability_None]

TelepresenceInfo = 1

ScreenCount = 2

LineInitializeEx

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

LineShutdown

Message Sequence Charts
201

Message Sequence Charts
Message Sequence Charts

Media Capability on Device A (CTI Port/Remote Point)

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposesMedia Capability
= 0x00000000 [CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0

Screen Count = 0

LineInitializeEx

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

LineShutdown

Media Capability on an Acquired Device B Which Is Media-Enabled (super Provider Scenario), Supports
Telepresence, and Has 3 Screens

Expected eventsAction

LineOpen successful.

Device Acquired Successfully. LINE_CREATE message fired.

LINEGETDEVCAPS::DEVSPECIFIC exposesMedia Capability
= 0x00000001 [CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 1

Screen Count = 3

LineInitializeEx

LineOpen with Ext version 0x000D0000 with deviceId for
linedevice A

Issue CCiscoLineDevSpecificAcquire to Acquire Device B.

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice B

LineShutdown

Message Sequence Charts
202

Message Sequence Charts
Message Sequence Charts

Media Capability on Device A (ParkDN/Pickupdevice)

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposesMedia Capability
= 0x00000000 [CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0

Screen Count = 0

LineInitializeEx

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

LineShutdown

Media Capability on Device A (SIP Phone Which Is Unregistered and Is Video-Enabled)

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposesMedia Capability
= 0x00000000 [CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0

Screen Count = 0

LineInitializeEx

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

LineShutdown

Message Sequence Charts
203

Message Sequence Charts
Message Sequence Charts

Video Capability on Device B (A Is a SIP Phone with Video-Enabled and B Is SIP Phone with Video-Enabled)
, Both Devices Support Telepresence, and Have 3 Screens

Expected eventsAction

B :

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapabilities :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000001(Telepresence Enabled)

Screen Count = 3

CalledPartyVideoCapabilities :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000001(Telepresence Enabled)

Screen Count = 3

LineInitializeEx

A does a LineMakeCall to B, B answers.

Issue LineGetcallInfo() with Ext version for linedevice B

LineShutdown

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapabilities :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000001(Telepresence Enabled)

Screen Count = 3

CalledPartyVideoCapabilities :

VideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 1

Variation 1:

A has video enabled and B has video disabled. A has Telepresence
enabled and has 3 screens, B has Telepresence disabled and has
1 screens.

Message Sequence Charts
204

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapabilities :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 1

CalledPartyVideoCapabilities :

VideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 0

Variation 2:

A has video enabled,1 scren and B is a CTI Port or Route Point.

Video Capability on Device C After Redirect (A Is a SIP Phone Which Is Video-Disabled, B and C Are
Video-Enabled)

Expected eventsAction

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled

LineInitializeEx

A does a LineMakeCall to B.

B redirects to C, C answers

Issue LineGetcallInfo() with Ext version for linedevice C

LineShutdown

Message Sequence Charts
205

Message Sequence Charts
Message Sequence Charts

Video Capability on Device C After Blindtransfer (A Is a SIP Phone Which Is Video-Disabled, B and C Are
Video-Enabled)

Expected eventsAction

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled

LineInitializeEx

A does a LineMakeCall to B.

B does a blindtransfers to C, C answers

Issue LineGetcallInfo() with Ext version for linedevice C

LineShutdown

Video Capability on Device C After Consult Transfer (A Is a SIP Phone Which Is Video-Disabled, B and C Are
Video-Enabled)

Expected eventsAction

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled

LineInitializeEx

A does a LineMakeCall to B.

B does a LineSetupTransfer to C,

C answers

B does a LineCompleteTransfer

Issue LineGetcallInfo() with Ext version for linedevice C

LineShutdown

Message Sequence Charts
206

Message Sequence Charts
Message Sequence Charts

Video Capability on Device B on an Existing Call (Both A and B Are SIP Phones Which Are Video-Enabled)

Expected eventsAction

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

A does a Call to B, B answers.

LineInitializeEx

Issue LineGetcallInfo() with Ext version for linedevice B

LineShutdown

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None

Variation 1:

A has video enabled and B has video disabled.

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None

Variation 2:

A has video enabled and B is a CTI Port or Route Point.

Message Sequence Charts
207

Message Sequence Charts
Message Sequence Charts

Dynamic Media Capability Change on Device A (SIP Phone with Camera) Which Is Video-Enabled

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposes Video Capability
=

0x00000001[CiscoDeviceVideoCapability_Enabled]

TSP will fire SLDSMT_LINE_PROPERTY_CHANGED event
to application with dwParam2 =
LPCT_DEVICE_VIDEO_INFO(0x00010000).

LineInitializeEx

LineOpen on A

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

Change Video Capability of device to Disabled from CUCM
Admin page

LineShutdown

TSP will fire SLDSMT_LINE_PROPERTY_CHANGED event
to application with dwParam2 =
LPCT_DEVICE_VIDEO_INFO(0x00010000).

Variation 1:

Intially Device A has Video disabled and then change Video
Capability of device to enabled from CUCM Admin page.

Message Sequence Charts
208

Message Sequence Charts
Message Sequence Charts

Video Capability on Device A and B; Both Are Video-Enabled SIP Phones And, Both Devices Support
Telepresence and Has 3 Screens

Expected eventsAction

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapBitMask = 0x00000007

CalledPartyMultiMediaCapBitMask = 0x00000007

CallingPartyMultiMediaCapInfo :

VideoCapability =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000001(Telepresence Enabled)

Screen Count = 3

CalledPartyMultiMediaCapInfo :

VideoCapability =
0x00000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x00000001(Telepresence Enabled

Screen Count = 3

LineInitializeEx

LineOpen on A and B

A does a LineMakeCall to B, B answers.

Issue LineGetcallInfo() with Ext version for linedevice A

LineShutdown

Message Sequence Charts
209

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapBitMask = 0x00000007

CalledPartyMultiMediaCapBitMask = 0x00000007

CallingPartyMultiMediaCapInfo :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000001(Telepresence Enabled)

Screen Count = 3

CalledPartyMultiMediaCapInfo :

VideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 1

Variation 1:

A has video enabled and B has video disabled. A has Telepresence
enabled and has 3 screens, B has Telepresence disabled and has
1 screens.

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapBitMask = 0x00000007

CalledPartyMultiMediaCapBitMask = 0x00000000

CallingPartyMultiMediaCapInfo :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 0x00000001

CalledPartyMultiMediaCapInfo :

VideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 0x00000000

Variation 2:

A has video enabled,1 screen and B is a CTI Port or Route Point.

Message Sequence Charts
210

Message Sequence Charts
Message Sequence Charts

Check If the Multimedia Streams Info Has Not Returned on the Call From Both Calling Party and Called Party,
If Lines Are Opened with Ext 0x000B0000 (TLS Connections Must Be Disabled, Phone A and B Are
Video-Disabled)

Expected eventsAction

No CallDevSpecific event returned
-SLDSMT_MULTIMEDIA_STREAMSDATA

LineInitializeEx

LineOpen at A and B with extension version 0x000B0000

A does a LineMakeCall to B / B answers the call

Check there is no CallDevSpecific event returned.

Message Sequence Charts
211

Message Sequence Charts
Message Sequence Charts

Check If the Multimedia Streams Info Has Returned on the Call From Both Calling Party and Called Party, If
Lines Are Opened with Ext 0x000D0000 (TLS Connections Must Be Disabled, Phone A and B Are Video-Enabled)

Expected eventsAction

LineInitializeEx

LineOpen at A and B with extension version 0x000B0000

A does a LineMakeCall to B / B answers the call

Check there is CallDevSpecific event returned.

LineGetCallInfo on A

Message Sequence Charts
212

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CallDevSpecific event returned
-SLDSMT_MULTIMEDIA_STREAMSDATA

DevSpecificPart of LINECALLINFO For Party A: Video Stream
Information returned for the following:

CompressionType = The actual compression type

BitRate = The actual bit rate

MediaMode = 0x00000000

PacketSize = The actual packet size

bSilenceSupressionFlag = 0x00000000

bKeyInfoPresen = 0x00000000

RxRTPDestinationV6Offset = The actual IPV6 address offset

RxRTPDestinationV6Size = The actual IPV6 address size

RxRTPIPV4Address = The actual IPV4 address

RxRTPIPV4Por t = The actual IPV4 port

RxIpAddrMode = The actual IPV4 mode

TxRTPDestinationV6Offset = The actual IPV6 address offset

TxRTPDestinationV6Size = The actual IPV6 address size

TxRTPIPV4Address = The actual IPV4 address

TxRTPIPV4Port = The actual IPV4 port

TxIpAddrMode = The actual IPV4 mode

MultiMediaEncryptionKey Information returned is the following

AlgorithmID = 0x00000000

TxKeyOffset = 0x00000000

TxKeySize = The actual size

RxKeyOffset = The actual offset

RxKeySize = The actual size

TxSaltOffset = The actual offset

TxSaltSize = The actual size

RxSaltOffset = The actual offset

RxSaltSize = The actual size

TxIsMKIPresent = 0x00000000

Message Sequence Charts
213

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

RxIsMKIPresent = 0x00000000

SecurityIndicator = 0x00000001

CallDevSpecific event returned
-SLDSMT_MULTIMEDIA_STREAMSDATA

The value of MediaMode should be changed 0x000000003

CallDevSpecific event returned
-SLDSMT_MULTIMEDIA_STREAMSDATA

The value of MediaMode should be changed 0x000000000

CallDevSpecific event returned
-SLDSMT_MULTIMEDIA_STREAMSDATA

The value of MediaMode should be changed 0x000000003

Variation 1:

A does a LineMakeCall to B / B answers the call

Application does LineHold on B

LineGetCallInfo on A and B

Application does LineUnHold on B

LineGetCallInfo on A and B

Application does a LineDrop on B.

LineGetCallInfo on A and B

Message Sequence Charts
214

Message Sequence Charts
Message Sequence Charts

Negotiated Video Capability Will Be Reported to the Called Party Accross a Inter Cluster Call (over SIP – ICT
Trunk) Using Early Offer (Phone A Is Video-Disabled SIP Phone and Phone B Is Video-Enabled, A Is in Cluster
1 and B Is in Cluster 2)

Expected eventsAction

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

LineInitializeEx

A does a LineMakeCall to B. B answers.

LineGetCallInfo on A

LineGetCallInfo on B

LineShutdown

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

Variation 1:

A and B are SIP Phone and have video enabled.

LineGetCallInfo on A

LineGetCallInfo on B

Message Sequence Charts
215

Message Sequence Charts
Message Sequence Charts

Multiple Redirect Over SIP Trunk (Phone A, B, and C Are Video-Enabled SIP Phones, Phone D Is Video-Disabled.
Phone A Is in Cluster 1 and Phone B, C, and D Are in Cluster 2)

Expected eventsAction

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

D:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

Message Sequence Charts
216

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineInitializeEx

A does a LineMakeCall to B.

LineGetCallInfo on B

B redirects the call to C,

LineGetCallInfo on C

C redirects the call to D,

LineGetCallInfo on D

Message Sequence Charts
217

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineShutdown

Message Sequence Charts
218

Message Sequence Charts
Message Sequence Charts

Redirect Over SIP Trunk (Phone A Is Video-Enabled SIP Phone and Phone B and C Is Video-Disabled, Phone
A Is in Cluster 1 and Phone B and C Are in Cluster 2)

Expected eventsAction

Message Sequence Charts
219

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineInitializeEx

A does a LineMakeCall to B. B answers.

B redirects to C, C answers.

LineGetCallInfo on A

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

LineGetCallInfo on C

LineShutdown

A and B have video enabled, C has video disabled

Message Sequence Charts
220

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

A:

A does a LineMakeCall to B. B answers. LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]B redirects to C, C answers.
CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

LineGetCallInfo on A

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =

0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

LineGetCallInfo on C

Message Sequence Charts
221

Message Sequence Charts
Message Sequence Charts

Shared Line – Hold and Resume Scenario Over SIP Trunk (Phone A and C Are Video-Enabled SIP Phones and
Phone B Is Video-Disabled, Phone A Is in Cluster 1 and Phone B and C Are in Cluster 2. Phone B and C Are
Shared Lines)

Expected eventsAction

Message Sequence Charts
222

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineInitializeEx

A does a LineMakeCall to B. B answers.

B Holds the call.

C Unholds the call.

LineGetCallInfo on A

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]LineGetCallInfo on C

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

LineShutdown

A and B are have video enabled and C has video disabled.

A does a LineMakeCall to B. B answers.
A:

Message Sequence Charts
223

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B Holds the call. LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]C Unholds the call.
CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

LineGetCallInfo on A

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

LineGetCallInfo on C

Message Sequence Charts
224

Message Sequence Charts
Message Sequence Charts

Multiple Redirect Over H323 ICT Trunk (Phone A, B, C and D Are Video-Enabled SIP Phones, Phone A Is in
Cluster 1 and Phone B, C, and D Are in Cluster 2)

Expected eventsAction

Message Sequence Charts
225

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapabilityBitMask = 0x000000001

CalledPartyMultiMediaCapabilityBitMask = 0x000000001

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapabilityBitMask = 0x000000001

CalledPartyMultiMediaCapabilityBitMask = 0x000000001

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

D:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapabilityBitMask = 0x000000001

CalledPartyMultiMediaCapabilityBitMask = 0x000000001

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

Message Sequence Charts
226

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineInitializeEx

A does a LineMakeCall to B.

LineGetCallInfo on B

B redirects the call to C.

LineGetCallInfo on C

Message Sequence Charts
227

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

C redirects the call to D.

LineGetCallInfo on D

LineShutdown

Message Sequence Charts
228

Message Sequence Charts
Message Sequence Charts

Redirect Over H323 Trunk (Phone A Is Video-Enabled SIP Phone and Phone B and C Are Video-Disabled,
Phone A Is in Cluster 1 and Phone B and C Are in Cluster 2)

Expected eventsAction

Message Sequence Charts
229

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineInitializeEx

A does a LineMakeCall to B. B answers.

B redirects to C, C answers.

LineGetCallInfo on A

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]LineGetCallInfo on C

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

LineShutdown

A and B have video enabled, C has video disabled
A:

LINEGETCALLINFO::DEVSPECIFIC exposesA does a LineMakeCall to B. B answers.
CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

B redirects to C, C answers. CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

Message Sequence Charts
230

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineGetCallInfo on A

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

LineGetCallInfo on C

Direct Transfer Across Lines
Use cases related to Direct Transfer Across Lines feature are mentioned below:

The device mentioned in the use cases also apply to SCCP device and SIP TNP phones when Direct Transfer
is issued from application.

Note

Direct Transfer Across Lines on RoundTable Phones via Application

Device A, B, and C where B is roundtable phone and has line B1 and B2 configured.

Message Sequence Charts
231

Message Sequence Charts
Direct Transfer Across Lines

Expected eventsAction

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

param1 = x100, HOLD

Caller = C, Called = B2 , Connected = C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B2, Connected = B2

A ‡B1 is connected,

C ‡B2 is on hold

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected C

For B1:

Call goes IDLE

For B2:

Call goes IDLE

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B2, Connected = A

Application sends CciscoLineDevSpecificDirectTransfer on B1
with B2 as consult call

Direct Transfer on Same Line on RoundTable Phones Via Application

Device A, B, C where B is roundtable phone.

Message Sequence Charts
232

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

For B:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

Call-2

LINE_CALLSTATE

param1 = x100, HOLD

Caller = C, Called = B, Connected = C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B, Connected = B

A ‡ B (c1) is connected,

C ‡ B (c2) is on hold

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected C

For B:

Call-1 and Call-2 will go IDLE

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B, Connected = A

Application sends CciscoLineDevSpecificDirectTransfer on B
(c1) with c2 as consult call

Direct Transfer Across Lines on RoundTable Phones via Application with Call in Offering State

Device A, B, C where B is roundtable phone and has line B1 and B2 configured.

Message Sequence Charts
233

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

param1 = x100, HOLD

Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

param1 = x100, RINGBACK

Caller = B2, Called = C

For C:

LINE_CALLSTATE

param1 = x100, OFFERING

Caller = B2, Called = C

A (c1) ‡ B1(c2) is on hold,

B2 (c3) ‡ C (c4) is ringing

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected C

For B1:

Call goES IDLE

For B2:

Call goes IDLE

For C:

LINE_CALLSTATE

param1 = x100, OFFERING

Caller = C, Called = B,

Application sends CciscoLineDevSpecificDirectTransfer on B1
(c2) with B2 (c3) as consult call

Failure of Direct Transfer Calls Across Lines

Device A, B, C where B is roundtable phone and has line B1 and B2 configured.

Message Sequence Charts
234

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

param1 = x100, HOLD

Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

param1 = x100, DIALTONE

A (c1) ‡ B1(c2) is on hold,

Initiate new call (c3) on B2

CciscoLineDevSpecificDirectTransfer gets error as
LINEERR_INVALCALLSTATE.

Application sends CciscoLineDevSpecificDirectTransfer on B1
(c2) with B2 (c3) as consult call

Direct Transfer Calls Across Lines in Conference Scenario

Device A, B, C, D and E where C is roundtable phone and has line C1 and C2 configured.

Message Sequence Charts
235

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = A, called = C1, connected = C1

A/B/C1 in conference, B is controller, call on C1 is in hold state.

C2 /D/E in conference, D is controller, call on C2 is in connect
state.

For B:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = B, called = C1, connected = C1

For C1:

ONHOLD

CONFERENCED

Caller = B, called = C1, connected = B

CONFERENCED

Caller = C1, called = A, connected = A

For C2:

CONNECTED

CONFERENCED

Caller = C2, called = D, connected = D

CONFERENCED

Caller = C2, called = E, connected = E

For D:

CONNECTED

CONFERENCED

Caller = D, called = C1, connected = C1

CONFERENCED

Caller = D, called = E, connected = E

Message Sequence Charts
236

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For E:

CONNECTED

CONFERENCED

Caller = D, called = E, connected = D

CONFERENCED

Caller = E, called = C2, connected = C2

Message Sequence Charts
237

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CciscoLineDevSpecificDirectTransfer will succeed.

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = A, called = CB-2, connected = CB-2

For B:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = B, called = CB-2, connected = CB-2

For C1:

IDLE

For C2:

IDLE

For D:

CONNECTED

CONFERENCED

Caller = D, called = CB-1, connected = CB-1

CONFERENCED

Caller = D, called = E, connected = E

For E:

CONNECTED

CONFERENCED

Caller = D, called = E, connected = D

CONFERENCED

Caller = E, called = CB-1, connected = CB-1

Application sends CciscoLineDevSpecificDirectTransfer on C1
with C2-call as consult call

Connect Transfer Across Lines on RoundTable Phones

Device A, B, C where B is roundtable phone and has line B1 and B2 configured.

Message Sequence Charts
238

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

param1 = x100, HOLD

Caller = C, Called = B2, Connected = C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B2, Connected = B2

A ‡ B1 is connected,

C ‡ B2 is on hold

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected C

For B1:

Call goes IDLE

For B2:

Call goes IDLE

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B2, Connected = A

User performs connect transfer on B.

Message Sequence Charts
239

Message Sequence Charts
Message Sequence Charts

Do Not Disturb-Reject

Application Enables DND-R on a Phone
TAPI structuresTAPI messagesAction

LINE_CALLDEVSPECIFIC

hDevice = C

dwCallbackInstance = 0

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_DND_OPTION_STATUS

dwParam3 = 2

Phone A enables DND-Reject in the admin
pages

Normal Feature Priority

TAPI structuresTAPI messagesAction

Party AWith Phone B DND-R enabled, Phone A
calls Phone B with feature priority as
Normal

LINE_CALLSTATE = IDLE

Party B

No TAPI messages

Feature Priority - Emergency

TAPI structuresTAPI messagesAction

Party AWith Phone B DND-R enabled, Phone A
calls Phone B with feature priority as
Emergency

Message Sequence Charts
240

Message Sequence Charts
Do Not Disturb-Reject

TAPI structuresTAPI messagesAction

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE = CONNECTED

dwParam1 = 0x00000100

dwParam2 = 0x00000001

Party B

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE = CONNECTED

dwParam1 = 0x00000100

dwParam2 = 0x00000001

Shared Line Scenario for DND-R

TAPI structuresTAPI messagesAction

Party APhones B and B’ represents shared lines.
Phone B’ is DND-R enabled but not B.
Phone A calls Phone Bwith feature priority
normal

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE = CONNECTED

dwParam1 = 0x00000100

dwParam2 = 0x00000001

Party B

Message Sequence Charts
241

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE = CONNECTED

dwParam1 = 0x00000100

dwParam2 = 0x00000001

Party B’

LINE_CALLSTATE = CONNECTED

dwParam1 = 0x00000100

dwParam2 = 0x00000002

Application Disables DND-R or Changes the Option for DND

TAPI structuresTAPI messagesAction

LINE_CALLDEVSPECIFIC

hDevice = C

dwCallbackInstance = 0

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_DND_OPTION_STATUS

dwParam3 = 1

Phone A changes from DND-Reject to
DND-RingerOff.

Drop Any Party
Use cases related to Drop Any Party feature are mentioned below:

Message Sequence Charts
242

Message Sequence Charts
Drop Any Party

Conference: Unified CM Service Parameter Advanced Ad Hoc Conference Enabled = False

Expected eventsAction

Conference Model:

Each line in conference will be having 4 callLegs, 3 conferenced
and 1 connected

A,B,C and D are in conference; B is conference Controller.

CallLegs on A:

Connected -to Conference Bridge

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

CallLegs on B:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

CallLegs on C:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -D)

CallLegs on D:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -C)

Application does a LineOpen (B) with new Ext ver.

Message Sequence Charts
243

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

A is dropped out of conference.

CallLegs after the Party is dropped from Conference:

Each line in conference will be having 4 callLegs, 2 Conferenced,1
IDLE and 1 connected

1. Application does LineRemoveFromConference on the
‘Conferenced’ callLeg on B which is connected to A.

CallLegs on A:

All 4 CallLegs will be in IDLE state

CallLegs on B:

Connected -to Conference Bridge

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

IDLE -(on the conferenced callLeg which was connected to A)

CallLegs on C:

Connected -to Conference Bridge

IDLE -(on the conferenced callLeg which was connected to A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -D)

CallLegs on D:

Connected -to Conference Bridge

IDLE -(on the conferenced callLeg which was connected to A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -C)

All IDLECallLegs will have CallStateChange Reason
as CtiDropConferee.

Note

Application does a LineOpen (A) with new Ext ver.

Error Message LINEERR_OPERATIONUNAVAIL will be sent
to application

1. Application does LineRemoveFromConference on the
‘Conferenced’ callLeg on A which is connected to B.

Message Sequence Charts
244

Message Sequence Charts
Message Sequence Charts

Conference: Unified CM Service Parameter Advanced Ad Hoc Conference Enabled = True

Expected eventsAction

Conference Model:

Each line in conference will be having 4 callLegs, 3 conferenced
and 1 connected

A,B,C and D are in conference; B is conference Controller.

CallLegs on A:

Connected -to Conference Bridge

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

CallLegs on B:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

CallLegs on C:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -D)

CallLegs on D:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -C)

Application does a LineOpen (A) with new Ext ver.

Application does LineRemoveFromConference on the
‘Conferenced’ callLeg on A which is connected to B.

Message Sequence Charts
245

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B is dropped out of conference.

CallLegs after the Party is dropped from Conference:

Each line in conference will be having 4 callLegs, 2 Conferenced,1
IDLE and 1 connected

1. Drop Ad Hoc Conference = Never

CallLegs on B:

All 4 CallLegs will be in IDLE state

CallLegs on A:

Connected -to Conference Bridge

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

IDLE -(on the conferenced callLeg which was connected to B)

CallLegs on C:

Connected -to Conference Bridge

IDLE -(on the conferenced callLeg which was connected to B)

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -D)

CallLegs on D:

Connected -to Conference Bridge

IDLE -(on the conferenced callLeg which was connected to B)

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -C)

All IDLECallLegs will have CallStateChange Reason
as CtiDropConferee.

Note

B is dropped out of conference and Conference will be ended.

CallLegs after the Party is dropped from Conference:

Each line in conference will be having 4 callLegs, all in IDLE
state

CallLegs on A,B,C and D:

All 4 CallLegs will be in IDLE state

1. Drop Ad Hoc Conference = ‘When Conference Controller
Leaves’

Message Sequence Charts
246

Message Sequence Charts
Message Sequence Charts

Shared Line-Scenario

Expected eventsAction

Conference Model:

Lines B and C in conference will be having 4 callLegs, 3
conferenced and 1 connected

Lines A and A' will be having 8 CallLegs

A,B,C and A' are in conference; A is conference Controller

Unified CM Parameter "Drop Ad Hoc Conference = Never"

CallLegs on A:

Connected -to Conference Bridge (Active)

Conferenced -(caller Id -A ;Called Id -B; Connected Id -B)
(Active)

Conferenced -(caller Id -A ;Called Id -C; Connected Id -C)
(Active)

Conferenced -(caller Id -A ;Called Id -A' ; Connected Id -A')
(Active)

Connected -to Conference Bridge (Remote in Use)

Conferenced -(caller Id -A' ;Called Id -B; Connected Id -B)
(Remote in Use)

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Remote in Use)

Conferenced -(caller Id -A' ;Called Id -A; Connected Id -A)
(Remote in Use)

Message Sequence Charts
247

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CallLegs on A':

Connected -to Conference Bridge (Active)

Conferenced -(caller Id -A' ;Called Id -B; Connected Id -B)
(Active)

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Active)

Conferenced -(caller Id -A' ;Called Id -A; Connected Id -A)
(Active)

Connected -to Conference Bridge (Remote in Use)

Conferenced -(caller Id -A ;Called Id -B; Connected Id -B)
(Remote in Use)

Conferenced -(caller Id -A ;Called Id -C; Connected Id -C)
(Remote in Use)

Conferenced -(caller Id -A ;Called Id -A'; Connected Id -A')
(Remote in Use)

CallLegs on B:

Connected -to Conference Bridge

Conferenced -(caller Id -B ;Called Id -A; Connected Id -A)

Conferenced -(caller Id -B ;Called Id -C; Connected Id -C)

Conferenced -(caller Id -B ;Called Id -A'; Connected Id -A')

CallLegs on C:

Connected -to Conference Bridge

Conferenced -(caller Id -C ;Called Id -A; Connected Id -A)

Conferenced -(caller Id -C ;Called Id -B; Connected Id -B)

Conferenced -(caller Id -C ;Called Id -A' ; Connected Id -A')

Application does a LineOpen (A) with new Ext ver.

Unified CMParameter ‘AdvancedAdHocConference Enabled
= False’

Error LINEERR_INVALCALLSTATE is sent to application.1. Application does LineRemoveFromConference on the
‘Conferenced’ CallLeg on A which is connected to B and
mode is "Inactive or Remote In use".

Message Sequence Charts
248

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B will be dropped out of conference.

LINECALLSTATE Event will be sent to Application with state
= Idle.

1. Application does LineRemoveFromConference on the
‘Conferenced’ CallLeg on A which is connected to B and
mode is ‘Active’.

Message Sequence Charts
249

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CallLegs after the Party is dropped from Conference:

CallLegs on A:

Connected -to Conference Bridge (Active)

IDLE -(on the conferenced callLeg which was connected to A
-B)

Conferenced -(caller Id -A ;Called Id -C; Connected Id -C)
(Active)

Conferenced -(caller Id -A ;Called Id -A'; Connected Id -A')
(Active)

Connected -to Conference Bridge (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Remote in Use)

Conferenced -(caller Id -A' ;Called Id -A; Connected Id -A)
(Remote in Use)

CallLegs on A':

Connected -to Conference Bridge (Active)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Active)

Conferenced -(caller Id -A' ;Called Id -A; Connected Id -A)
(Active)

Connected -to Conference Bridge (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A
-B)

Conferenced -(caller Id -A ;Called Id -C; Connected Id -C)
(Remote in Use)

Conferenced -(caller Id -A ;Called Id -A'; Connected Id -A')
(Remote in Use)

CallLegs on B:

All 4 CallLegs are in IDLE state

CallLegs on C:

Connected -to Conference Bridge

Conferenced -(caller Id -C ;Called Id -A; Connected Id -A)

IDLE -(on the conferenced callLeg which was connected to C

Message Sequence Charts
250

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

-B)

Conferenced -(caller Id -C ;Called Id -A'; Connected Id -A')

Application does a LineOpen (B)with new Ext ver. Unified CM
Parameter Advanced Ad Hoc Conference Enabled = True

Message Sequence Charts
251

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

A will be dropped out of conference.

LINECALLSTATE Event will be sent to Application with state
= Idle.

1. Application does LineRemoveFromConference on the
‘Conferenced’ CallLeg on B which is connected to A and
mode is "Active".

CallLegs after the Party is dropped from Conference:

CallLegs on A:

IDLE -(on the Connected callLeg which was connected to
Conference Bridge,A-CFB)

IDLE -(on the conferenced callLeg which is connected to A -B)

IDLE -(on the conferenced callLeg which is connected to A -C)

IDLE -(on the conferenced callLeg which is connected to A -A')

Connected -to Conference Bridge (Remote in Use)

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Remote in Use)

Conferenced -(caller Id -A' ;Called Id -B; Connected Id -B)
(Remote in Use)

CallLegs on A':

IDLE -(on the Connected callLeg which was connected to
Conference Bridge,A -CFB)

IDLE -(on the conferenced callLeg which is connected to A -B)

IDLE -(on the conferenced callLeg which is connected to A -C)

IDLE -(on the conferenced callLeg which is connected to A -A')

Connected -to Conference Bridge

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Active)

Conferenced -(caller Id -A' ;Called Id -B; Connected Id -B)
(Active)

CallLegs on B:

Connected -to Conference Bridge

Conferenced -(caller Id -B ;Called Id -A; Connected Id -A')

IDLE -(on the conferenced callLeg which was connected to B
-A)

Conferenced -(caller Id -B ;Called Id -C; Connected Id -C)

Message Sequence Charts
252

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CallLegs on C:

Connected -to Conference Bridge

Conferenced -(caller Id -C ;Called Id -A'; Connected Id -A')

IDLE -(on the conferenced callLeg which was connected to C
-A)

Conferenced -(caller Id -C ;Called Id -B; Connected Id -B)

Chained Conference

Expected eventsAction

B is disconnected and dropped out of Conference.

A is now in conference with CB2.

LINECALLSTATE Event is sent to Application for Line B with
state = Idle.

A,B and CB2 are in conference(CB1); B is conference Controller

C,D and E are in Conference (CB2); D is conference Controller

Unified CM Parameter Advanced Ad Hoc Conference Enabled
= True

Application does a LineOpen (A) with new Ext ver.

1. Application does LineRemoveFromConference on the
Conferenced" CallLeg on A which is connected to B.

C-Barge: Unified CM Service Parameter Advanced Ad Hoc Conference Enabled = True.

Expected eventsAction

B call A and A';

A answers the call and on A' do c-Barge;

A,B and A' will be in conference; A is conference Controller

Unified CM Parameter "Drop Ad Hoc Conference = Never"

Application does a LineOpen (A) with new Ext ver.

Message Sequence Charts
253

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B is dropped out of conference.

LINECALLSTATE Event will be sent to Application with state
= Idle.

CallLegs after the Party is dropped from Conference:

CallLegs on A:

Connected -(on the conferenced callLeg which was connected to
A -A') (Active)

Connected -on the conferenced callLeg which was connected to
A' -A) (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A
-B)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A -CFB)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A' -CFB)

CallLegs on A':

Connected -(on the conferenced callLeg which was connected to
A' -A) (Active)

Connected -on the conferenced callLeg which was connected to
A -A') (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A
-B)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A -CFB)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A' -CFB)

CallLegs on B:

All 4 CallLegs are in IDLE state

A' is dropped out of conference.

LINECALLSTATE Event will be sent to Application with state
= Idle.

Application does a LineOpen (A) with new Ext ver.

1. Application does LineRemoveFromConference on the
"Conferenced" CallLeg on A which is connected to B and
mode is Active

Message Sequence Charts
254

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CallLegs on A':

Connected -(on the conferenced callLeg which was connected to
A -B) (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

IDLE -(on the conferenced callLeg which was connected to A
-A') (active)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A -CFB)

IDLE -(on the conferenced callLeg which was connected to A'
-A) (Remote in Use)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A' -CFB)

CallLegs on B:

Connected -(on the conferenced callLeg which was connected to
B -A)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; B -CFB)

CallLegs after the Party is dropped from Conference:

CallLegs on A:

Connected -(on the conferenced callLeg which was connected to
A -B) (Active)

IDLE -(on the conferenced callLeg which was connected to A'
-B) (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A
-A') (active)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A -CFB)

IDLE -(on the conferenced callLeg which was connected to A'
-A) (Remote in Use)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A' -CFB)

1. Application does LineRemoveFromConference on the
Conferenced CallLeg onAwhich is connected to A' andmode
is Active.

Message Sequence Charts
255

Message Sequence Charts
Message Sequence Charts

Early Offer
The following section describes how the application dynamically registers for various port with Early Offer
Support.

Application Dynamically Registers CTI Port with Early Offer Support

Configuration
A – CTI Port in Cluster1

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns SuccessLineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with Success

LineInserviceEvent reports to Application

Line_LineDevState

dwParam1 = x040, InService

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

Message Sequence Charts
256

Message Sequence Charts
Early Offer

TSP message to application dataAction

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

LINE_DEVSPECIFIC

dwParam1 = SLDSMT_RTP_GET_IP_PORT

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 1 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits) – IPAddressing Mode

Application calls LineMakeCall() on A dialing a Party in Cluster2

Call is being routed through the SIP trunk with Early Offer
Enabled

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCall)
with IPAddress and Port Info

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

LINE_DEVSPECIFIC

dwParam1 = compressionType &
SLDSMT_OPEN_LOGICAL_CHANNEL

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 0 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits) – IPAddressing Mode

Other Party answers the Call

A:

LINE_CALLSTATE
(LINECALLSTATE_HOLD/LINECALLSTATE_CONNECTED)

LINE_DEVSPECIFIC

dwParam1 = compressionType &
SLDSMT_OPEN_LOGICAL_CHANNEL

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 1 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits) – IPAddressing Mode

*** Applications have to set the RTP info as the SetRTP flag is
set.

Hold and unHold the Call

Message Sequence Charts
257

Message Sequence Charts
Message Sequence Charts

TSP message to application dataAction

Line_Reply with Success

Media will be set and Media events will be reported

Application sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCall)
with IPAddress and Port Info

Line_Reply with Error LINEERR_OPERATIONUNAVAIL

But the Media is setup with the RTP information provided at the
SLDSMT_RTP_GET_IP_PORT information request

*** Application should not set the RTP Info Again

Variant 1:

Application sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCall)
with IPAddress and Port Info

New Notification not reported to Application

Call goes to Disconnect State with cause as
LINEDISCONNECTMODE_UNKNOWN

Variant 2:

Application does not set the Filter to receive new Notification
using lineDevSpecific (CCiscoLineDevSpecificSetStatusMsgs)
and Application does not Set RTP at Proceeding State as there is
no Notification

Or

Application does not set RTP info on New Notification

Behavior should be sameVariant 3: A – CTI Port is Registered Secure

Line_Devspecific fails with Error

LINEERR_OPERATIONUNAVAIL

Variant 4: Application tried to disable the Early Offer support on
the CTI Port that is Dynamically Registered with the Early Offer
support

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability
-0x00000000

Application Dynamically Registers CTI Port Without Early Offer Support

Configuration

A – CTI Port in Cluster1

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Delayed Offer

TSP message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x800B0000 for Line A

Message Sequence Charts
258

Message Sequence Charts
Application Dynamically Registers CTI Port Without Early Offer Support

TSP message to application dataAction

LineSetStatusMessages returns SuccessLineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with Success

LineInserviceEvent reports to Application

Line_LineDevState

Dwparam1 = x040, InService

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

Application calls LineMakeCall() on A dialing a Party in Cluster2

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

LINE_DEVSPECIFIC

dwParam1 = compressionType &
SLDSMT_OPEN_LOGICAL_CHANNEL

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 1 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits) -IPAddressingMode

Other Party answers the Call

Line_Reply with Success

Media will be Setup

Application sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCall)
with IPAddress and Port Inf0

Behavior is same and new SLDSMT_RTP_GET_IP_PORT
Notification will not be fired to application.

Variant 1: A – SCCP/SIP Phone

Application Dynamically Registers IPV6 CTI Port with Early Offer Support

Configuration

A – CTI Port; CDC – IPV6 Only

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns SuccessLineSetStatusMessages() – with dwLinestates – 0xcc

Message Sequence Charts
259

Message Sequence Charts
Application Dynamically Registers IPV6 CTI Port with Early Offer Support

TSP message to application dataAction

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with Success

Line_Reply with Success

LineInserviceEvent will be repored to Application

Line_LineDevState

Dwparam1 = x040, InService

Application sends
lineDevSpecific(CciscoLineDevSpecificSetIPv6AddressAndMode)
with MediaCaps Info

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

SLDSMT_RTP_GET_IP_PORTNotification for IPV6
CTI Port is not supported.

Note

Application has to set the RTP info after OpenLogicalChannel
Notification.

Application calls LineMakeCall() on A dialing a Party in Cluster2

Call is routed through SIP trunk with Early Offer Enabled

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

LINE_DEVSPECIFIC

dwParam1 = compressionType &
SLDSMT_OPEN_LOGICAL_CHANNEL

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 1 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits)-IPAddressingMode

Other Party answers the Call

Line_Reply with Success

Media will be Setup

Application sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCallIPv6)
with IPAddress and Port Info

Message Sequence Charts
260

Message Sequence Charts
Message Sequence Charts

Mutiple Applications Dynamically Register CTI Port/RP

Configuration

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

Applications:

• App1 – Dynamically Registers CTI Port/RP with Early Offer Support

• App2 – Dynamically Registers CTI Port/RP without Early Offer Support

*** App1 and App2 are running on Different Client Machines.

TSP message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

App1 and App2:

lineInitialize

Line_Open successfulApp1 and App2:

lineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns SuccessApp1 and App2:

LineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with Success

App1:

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with Success

LineInserviceEvent reports to the application.

App1:

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

Line_Devspecific fails with Error

LINEERR_REGISTER_GETPORT_SUPPORT_MISMATCH

App2:

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

Multiple Applications Dynamically Register CTI Port/RP with Early Offer Support

Configuration

A – CTI Port in Cluster1

Message Sequence Charts
261

Message Sequence Charts
Mutiple Applications Dynamically Register CTI Port/RP

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

Applications:

• App1 – Dynamically Registers CTI Port/RP with Early Offer Support

• App2 – Dynamically Registers CTI Port/RP with Early Offer Support

*** App1 and App2 are running on Different Client Machines.

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

App1 and App2:

lineInitialize

Line_Open successful

App1 and App2:

lineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns Success

App1 and App2:

LineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with Success

App1 and App2:

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with Success

LineInserviceEvent reports to Application.

App1 and App2:

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

*** Both Applications set with same Capabilities

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

App1 and App2:

LINE_DEVSPECIFIC

dwParam1 = SLDSMT_RTP_GET_IP_PORT

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 1 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

uy (8 bits) – IPAddressing Mode

App1:

Application calls LineMakeCall() on A dialing a Party in Cluster2

Call is being routed through the SIP trunk with Early Offer
Enabled

Message Sequence Charts
262

Message Sequence Charts
Message Sequence Charts

TSP Message to application dataAction

Line_Reply with Success

App1:

Application sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCall)
with IPAddress and Port Info

Line_Reply with error LINEERR_OPERATIONUNAVAIL

App2:

Application sends LineDevSpecific
(CciscoLineDevSpecificSetRTPParamsForCall) with IPAddress
and Port Info different from the Info App1 has set.

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

LINE_DEVSPECIFIC

dwParam1 = compressionType &
SLDSMT_OPEN_LOGICAL_CHANNEL

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 0 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits) – IPAddressingMode

Other Party answers the Call

Application Statically Registers CTI Port with Early Offer Support and Then Disable the Early Offer
Support

Configuration

A – CTI Port in Cluster1

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns SuccessLineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Message Sequence Charts
263

Message Sequence Charts
Application Statically Registers CTI Port with Early Offer Support and Then Disable the Early Offer Support

TSP Message to application dataAction

Line_Reply with Success

LineInserviceEvent reports to Application

Line_LineDevState

dwParam1 = x040, InService

Application sends
lineDevSpecific(CCiscoLineDevSpecificUserControlRTPStream)
with MediaCaps Info

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

LINE_DEVSPECIFIC

dwParam1 = SLDSMT_RTP_GET_IP_PORT

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 0 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy – IPAddressing Mode

Application calls LineMakeCall() on A dialing a Party in Cluster
2

Call is being routed through the SIP trunk with Early Offer
Enabled

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

Other Party answers the Call

Line_Reply with Success

*** Disconnect the Existing Call

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability
-0x00000000 – to disable the Early Offer support

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING/
LINECALLSTATE_RINGBACK)

Application calls LineMakeCall() on A dialing a Party in Cluster
2

Call is being routed through the SIP trunk with Early Offer
Enabled

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

Other Party answers the Call

Message Sequence Charts
264

Message Sequence Charts
Message Sequence Charts

Application Statically Registers CTI Port with Out Early Offer Support and Then Enables Early Offer
Support

Configuration

A – CTI Port in Cluster1

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns SuccessLineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with Success

LineInserviceEvent reports to Application

Line_LineDevState

Dwparam1 = x040, InService

Application sends
lineDevSpecific(CCiscoLineDevSpecificUserControlRTPStream)
with MediaCaps Info

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001 – to enable the Early Offer support

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

LINE_DEVSPECIFIC

dwParam1 = SLDSMT_RTP_GET_IP_PORT

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 0 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy – IPAddressing Mode

Application calls LineMakeCall() on A dialing a Party in Cluster2

Message Sequence Charts
265

Message Sequence Charts
Application Statically Registers CTI Port with Out Early Offer Support and Then Enables Early Offer Support

TSP Message to application dataAction

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

Media will be set and Media Events will be Reported to
Application

Other Party answers the Call

Behavior is same and new SLDSMT_RTP_GET_IP_PORT
Notification will not be fired to application.

Variant 1: A – SCCP/SIP Phone

Application Registers CTI Port with Legacy Wave Driver and Enables Early Offer Support

Configuration

A – CTI Port;

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x000B0000 for Line A

LineSetStatusMessages returns Success

LineInserviceEvent reports to Application Line_LineDevState

Dwparam1 = x040, InService

LineSetStatusMessages() – with dwLinestates – 0xcc

Line_Devspecific fails with error
LINEERR_OPERATIONUNAVAIL

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

Application calls LineMakeCall() on A dialing a Party in Cluster2

Call is routed through SIP trunk with Early Offer Enabled

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

Media will be set andMedia Events will be reported to Application

Other Party answers the Call

Message Sequence Charts
266

Message Sequence Charts
Application Registers CTI Port with Legacy Wave Driver and Enables Early Offer Support

Application Registers CTI Port with New Cisco Wave Driver and Enables Early Offer Support

Configuration

A – CTI Port;

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

During Installation of CiscoTSP User has to select New Wave
Driver.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x000B0000 for Line A

LineSetStatusMessages returns Success

LineInserviceEvent reports to Application Line_LineDevState

Dwparam1 = x040, InService

LineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

LINE_DEVSPECIFIC

dwParam1 = SLDSMT_RTP_GET_IP_PORT

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 0 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy – IPAddressing Mode

On this new Notification, applications has to Open the
Port.

Note

Application calls LineMakeCall() on A dialing a Party in Cluster2

Call is routed through SIP trunk with Early Offer Enabled

Message Sequence Charts
267

Message Sequence Charts
Application Registers CTI Port with New Cisco Wave Driver and Enables Early Offer Support

TSP Message to application dataAction

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

Media will be set andMedia Events will be reported to Application

Other Party answers the Call

Mutiple Applications Statically Register CTI Port

Configuration

A – CTI Port in Cluster 1

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

Applications:

• App1 – Statically Registers CTI Port/RP with Early Offer Support

• App2 – Statically Registers CTI Port/RP without Early Offer Support

*** App1 and App2 are running on Different Client Machines.

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

App1 and App2: Both Connecting to same CTI Manager

lineInitialize

Line_Open successful

App1 and App2:

lineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns Success

App1 and App2:

LineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with Success

App1:

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with Success

LineInserviceEvent reports to Application.

App1:

Application sends
lineDevSpecific(CCiscoLineDevSpecificUserControlRTPStream)
with MediaCaps Info to Register A

Message Sequence Charts
268

Message Sequence Charts
Mutiple Applications Statically Register CTI Port

TSP Message to application dataAction

Line_Devspecific fails with Error

LINEERR_REGISTER_GETPORT_SUPPORT_MISMATCH

App2:

Application sends
lineDevSpecific(CCiscoLineDevSpecificUserControlRTPStream)
with MediaCaps Info to Register A

LineReply – success

LINE_CLOSE for the CTI Port

Variant: App1 and App2 connecting to different Cti Managers

App2: (After App1 has already registered CtiPort -A)

Application sends
lineDevSpecific(CCiscoLineDevSpecificUserControlRTPStream)
with MediaCaps Info to register CtiPort A

End-To-End Call Trace

Direct Call Scenario: Variation 1
Application does a LineInitializ. Application opens all lines with new ExtVersion 0x000A0000. A calls B
and B answers the call.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B with new
ExtVesrion 0x000A0000

Message Sequence Charts
269

Message Sequence Charts
End-To-End Call Trace

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Direct Call Scenario: Variation 2
A calls B and B answers the call. Application does a LineInitialize. Application opens all lines with new
ExtVersion 0x000A0000.

Expected resultsCTI eventsAction

A calls B. B answers the call

Message Sequence Charts
270

Message Sequence Charts
Direct Call Scenario: Variation 2

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

ExistingCallEvent received for A

ExistingCallEvent received for A

LineInitialize

LineOpen on A, LineOpen on B with new
ExtVesrion 0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Consult Transfer Scenario: Variation 1
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A calls B and B
answers the call. B sets up transfer to C, C answers the call, and B completes the transfer. A is connected to
C.

Expected resultsCTI eventAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

Message Sequence Charts
271

Message Sequence Charts
Consult Transfer Scenario: Variation 1

Expected resultsCTI eventAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Message Sequence Charts
272

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for B

NewCallEvent received for C

B SetupTransfer to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

(Consultation call between B and C)

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

CallGlobalCallHandleChangedEvent
received for C

C answers the call. B completes transfer.

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

(Call between A and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C2

(Consultation call between B and C)

Message Sequence Charts
273

Message Sequence Charts
Message Sequence Charts

Consult Transfer Scenario: Variation 2
A calls B and B answers the call. B sets up transfer to C. Application does a LineInitialize and opens all lines
with new ExtVersion 0x000A0000. Application completes the transfer. A is connected to C.

Expected ResultsCTI eventsAction

LineInitialize

LineOpen on A , LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

A calls B and B answers the call. B setups
transfer to C and C answers the call

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

ExistingCallEvent received for A (Primary
Call between A and B)

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

ExistingCallEvent received for B (Primary
Call between A and B)

Message Sequence Charts
274

Message Sequence Charts
Consult Transfer Scenario: Variation 2

Expected ResultsCTI eventsAction

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

ExistingCallEvent received for B
(Consultation Call between B and C)

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

ExistingCallEvent received for C
(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

(Primary Call between A and B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

(Primary Call between A and B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

(Consultation Call between B and C)

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

CallGlobalCallHandleChangedEvent
received for C

Applications completes Transfer

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

Message Sequence Charts
275

Message Sequence Charts
Message Sequence Charts

Expected ResultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

Blind Transfer Scenario
Application does a LineInitialize.Application opens all lines with new ExtVersion 0x000A0000. A calls B
and B answers the call. B does lineBlindTransfer to C. A is connected to C.

Expected resultsCTI eventAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Message Sequence Charts
276

Message Sequence Charts
Blind Transfer Scenario

Expected resultsCTI eventAction

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for CB lineBlindTransfer to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

Redirect Scenario
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A calls B and B
answers the call. Application redirects B to C; A is connected to C.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A , LineOpen on B with new
ExtVesrion 0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

Message Sequence Charts
277

Message Sequence Charts
Redirect Scenario

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for CB redirects call to C.C answers the call

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

Shared Line Scenario
Application does a LineInitialize. Application opens all lines with new ExtVersion 0x000A0000. A calls B,
B’. B answers the call.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A , LineOpen on B,

LineOpen on B’ with new ExtVesrion
0x000A0000

Message Sequence Charts
278

Message Sequence Charts
Shared Line Scenario

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B’

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

NewCallEvent received for B’

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B’

Shared Line Scenario with Barge
Application does a LineInitialize.Application opens all lines with new ExtVersion 0x000A0000. A calls B,
B’. B answers the call.

Message Sequence Charts
279

Message Sequence Charts
Shared Line Scenario with Barge

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A , LineOpen on B,

LineOpen on B’ with new ExtVesrion
0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B’

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

NewCallEvent received for B’

A calls B, B’answers the call

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B’

Message Sequence Charts
280

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

For B’

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B3

B’ barges in

Message Sequence Charts
281

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

NewCallEvent received for B

NewCallEvent received for B’

CallGlobalCallHandleChangedEvent
received for B

Message Sequence Charts
282

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For B’

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B3

CallGlobalCallHandleChangedEvent
received for B’

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B3

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B3

LineGetCallInfo on B’

Call Park Scenario: Variation 1
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A calls B and B
answers the call. Application initiates a CallPark on B. A is parked on parkedDn. C calls parkDn and C is
connected to A

Service Parameter Preserve globalcallid For Parked Calls set to False

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

Message Sequence Charts
283

Message Sequence Charts
Call Park Scenario: Variation 1

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Application initiates linepark on B

Message Sequence Charts
284

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A2

NewCallEvent received for C

CallGlobalCallHandleChangedEvent
received for A

C dials parkDn

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A2

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

Call Park Scenario: Variation 2
Application does a LineInitialize.Application opens all lines with new ExtVersion 0x000A0000. A calls B
and B answers the call. Application initiates a CallPark on B. A is parked on parkedDn. C calls parkDn and
C is connected to A

Service Parameter Preserve globalcallid For Parked Calls set to True

Message Sequence Charts
285

Message Sequence Charts
Call Park Scenario: Variation 2

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Application initiates linepark on B

Message Sequence Charts
286

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

NewCallEvent received for C

CallGlobalCallHandleChangedEvent
received for C

C dials parkDn

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

3-Party Conference Call Scenario
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A calls B and B
answers the call. B sets up conference to C, C answers the call, and B completes conference. A, B and C are
in conference.

For all conference scenarios, conference call leg’s Unique Call Reference ID is 0.Note

Message Sequence Charts
287

Message Sequence Charts
3-Party Conference Call Scenario

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

NewCallEvent received for A

NewCallEvent received for B

LineInitialize

LineOpen on A , LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Message Sequence Charts
288

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

NewCallEvent received for B

NewCallEvent received for C

B setupConference to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallnfo on C

(Consultation Call between B and C)

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

CallGlobalCallHandleChangedEvent
received for C

C answers the call. B completes conference

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

Message Sequence Charts
289

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

Three-Party Conference Drop Down to Two-Party Call Scenario
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A calls B and B
answers the call. B sets up conference with C, C answers the call, and B completes conference. A,B and C in
conference. C drops from the conference.A connected to B.

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

LineInitialize

Call lineNegotiateVersion with

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Message Sequence Charts
290

Message Sequence Charts
Three-Party Conference Drop Down to Two-Party Call Scenario

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for B

NewCallEvent received for C

B setupConference to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallnfo on C

(Consultation Call between B and C)

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

CallGlobalCallHandleChangedEvent
received for C

C answers the call. B completes conference

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

C drops from conference

Message Sequence Charts
291

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Conference Chaining Scenario Using Join
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A, B and C are in
Conference1. C, D and E are in another Conference2. Application sends CallJoinRequest to join both the
conference calls.

E drops from the conference.

Expected resultsCTI eventsAction

For A

Unique Call Reference ID = ID1

For B

Unique Call Reference ID = ID2

For C

Unique Call Reference ID = ID3

A, B and C are in conference

For C

Unique Call Reference ID = ID4

For D

Unique Call Reference ID = ID5

For E

Unique Call Reference ID = ID6

C, D and E are in conference

No change in Unique Call Reference ID
after join

Application Joins two confeences

For D

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

CallGlobalCallHandleChanged received
for D

E drops from Conference

Message Sequence Charts
292

Message Sequence Charts
Conference Chaining Scenario Using Join

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference ID1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference ID

LineGetCallnfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference ID3

LineGetCallnfo on C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference ID7

LineGetCallInfo on D

Transfer Call Scenario via QSIP Without Path Replacement
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A in Cluster 1 calls
B in Cluster 2, B answers the call, and B sets up transfer to C in Cluster 1. C answers the call and B completes
the transfer. A connected to C.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

Message Sequence Charts
293

Message Sequence Charts
Transfer Call Scenario via QSIP Without Path Replacement

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Message Sequence Charts
294

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for B

NewCallEvent received for C

B SetupTransfer to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

(Consultation Call between B and C)

C answers the call.B completes transfer.

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

Transfer Call Scenario via QSIP with Path Replacement
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A in Cluster 1 calls
B in Cluster 2, B answers the call and sets up transfer with C in Cluster 1. C answers the call amd B completes
the transfer. A connected to C.

Message Sequence Charts
295

Message Sequence Charts
Transfer Call Scenario via QSIP with Path Replacement

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Message Sequence Charts
296

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for B

NewCallEvent received for C

B SetupTransfer to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

(Consultation Call between B and C)

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

CallGlobalCallHandleChangedEvent
received for C

C answers the call.B completes transfer

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

Message Sequence Charts
297

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

Hunt List Scenario
LineGroup LG1,LG2 and LG3 configured with A,B and C. HuntList “Hunt_List” configured with Line Groups
LG1,LG2 and LG3. Hunt Pilot “99999” configured with this HuntList.

Application does a LineInitialize. Application opens all lines with new ExtVersion 0x000A0000. D calls
“99999”. Call is routed through A, B and C.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A , LineOpen on B,

LineOpen on C,

LineOpen on D

with new ExtVesrion 0x000A0000

For D

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for D

NewCallEvent received for A

D calls Hunt Pilot DN.Call is first offered
to Phone A, followed by B and then C.

Message Sequence Charts
298

Message Sequence Charts
Hunt List Scenario

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for B

NewCallEvent received for C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference D1

LineGetCallInfo on D

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

Call Pickup Scenario: Variation 1
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000.

B and C in same Call Pickup Group. Service Parameter, Auto Call Pickup Enabled, is set to False. A calls B
and C presses the NewCall softkey followed by Call Pickup softkey. Call is redirected to C.

Same Behaviour for Group Pickup.

Message Sequence Charts
299

Message Sequence Charts
Call Pickup Scenario: Variation 1

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C

with new ExtVesrion 0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for C

NewCallEvent received for C

C presses NewCall softkey followed by
Call Pickup softkey

Message Sequence Charts
300

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

Call Pickup Scenario: Variation 2
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000.

B and C are in the same Call Pickup Group. Service Parameter Auto Call Pickup Enabled is set to True. A
calls B, C presses NewCall softkey followed by Call Pickup softkey, and call is redirected to C.

Same Behaviour for Group Pickup.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C

with new ExtVesrion 0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

Message Sequence Charts
301

Message Sequence Charts
Call Pickup Scenario: Variation 2

Expected resultsCTI eventsAction

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for C

CallGlobalCallHandleChanged received
for C

C presses NewCall softkey followed by
Call Pickup softkey

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

EnergyWise Deep Sleep Mode Use Cases
Configuration

Line A on Cisco Unified IP Phones Series 9900, 7900, and 6900 phones connect to an EnergyWise Switch,
LineNegotiate with supported extension 0x000B0000 or higher, in order to receive the reason code in dwparam2
of LINE_LINEDEVSTATE /PHONE_STATE EVENT. From the Device Administration page, Enable Power
save and configure Power On and Power Off timers.

Verify EnergyWisePowerSavePlus Reason Code in LINEDEVSTATE Message
Verify EnergyWisePowerSavePlus Reason code in LINEDEVSTATEmessage, whenDevice unregisters when
going into Deep sleep.

Expected resultAction

LineInitialize

LineOpen on A with ExtVersion xB0000 or higher

Message Sequence Charts
302

Message Sequence Charts
EnergyWise Deep Sleep Mode Use Cases

Expected resultAction

CiscoTSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0

param3 = x0

Set Event filters for Inservice and Outofservice events.

LinesetstatusMessage with dwlineStates flags

LINEDEVSTATE_INSERVICE |
LINEDEVSTATE_OUTOFSERVICE

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 = CiscoLineDevStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0

When Phone A goes to Deep Sleep mode and unregisters

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0

When PowerOntime is reached, Cisco Unified IP Phones Series
7900 device registers back to CUCM.

Variance

For Cisco Unified IP Phones Series 9900 and 6900, press the Select Key to power up.

Verify EnergyWisePowerSavePlus Reason Code in PhoneState Suspend
Verify EnergyWisePowerSavePlus Reason code in PhoneState suspend, whenDevice unregisters when in
Deep Sleep Mode.

Expected resultAction

PhoneInitialize

PhoneOpen on A with ExtVersion xB0000 or higher

Message Sequence Charts
303

Message Sequence Charts
Verify EnergyWisePowerSavePlus Reason Code in PhoneState Suspend

Expected resultAction

Set Event filters for Resume and Suspend events.

For Example:

PhonesetstatusMessage with dwPhoneStates flags
PHONESTATE_SUSPEND | PHONESTATE_RESUME

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 = CiscoPhoneStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0

Phone A goes to Deep Sleep Mode and unregisters.

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0

When PowerOntime is reached, Cisco Unified IP Phones Series
7900 device registers back to CUCM.

Variance

For Cisco Unified IP Phones Series 9900 and 6900, press the Select Key to power up.

Verify Reason EnergyWisePowerSavePlus Reason Code in LineDevstate/Phone State Message
Verify EnergyWisePowerSavePlus Reason code in LineDevstate/Phone State message, when unregisters after
Power save idle time-out. Configure power save idle time-out = 20 mins(default = 1 hour).

Expected resultAction

LineInitialize

LineOpen on A with ExtVersion xB0000 or higher

Message Sequence Charts
304

Message Sequence Charts
Verify Reason EnergyWisePowerSavePlus Reason Code in LineDevstate/Phone State Message

Expected resultAction

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0

param3 = x0

Set Event filters for Inservice and Outofservice events.

LinesetstatusMessage with dwlineStates flags

LINEDEVSTATE_INSERVICE |
LINEDEVSTATE_OUTOFSERVICE

PhoneInitialize

PhoneOpen on A with ExtVersion xB0000 or higher

Set Event filters for Resume and Suspend events.

For Example:

PhonesetstatusMessage with dwPhoneStates flags
PHONESTATE_SUSPEND | PHONESTATE_RESUME

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 = CiscoPhoneStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0,

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 = CiscoLineDevStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0

Phone goes to Deep Sleep Mode and unregisters

Message Sequence Charts
305

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0,

Cisco TSP Notifies DeviceInServiceEvent to application through
Phone state Event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_RESUME

param2 = x0,

param3 = x0,

For Cisco Unified IP Phones Series 9900 and 6900, press the
Select Key to power up.

Message Sequence Charts
306

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 = CiscoPhoneStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0,

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 = CiscoLineDevStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0

Power Save idle timer expires and device goes to Deep Sleep and
unregisters

Verify Call Manager Failure Reason Code in LineDevstate/Phone State Message
Verify CallManagerFailure Reason code in LineDevstate/Phone State message, when Device unregisters when
Call Manager service is Restarted from serviceability page.

Expected resultAction

LineInitialize

LineOpen on A with ExtVersion xB0000 or higher

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0

param3 = x0

Set Event filters for Inservice and Outofservice events.

LinesetstatusMessage with dwlineStates flags

LINEDEVSTATE_INSERVICE |
LINEDEVSTATE_OUTOFSERVICE

PhoneInitialize

Message Sequence Charts
307

Message Sequence Charts
Verify Call Manager Failure Reason Code in LineDevstate/Phone State Message

Expected resultAction

PhoneOpen on A with ExtVersion xB0000 or higher

Set Event filters for Resume and Suspend events.

For Example:

PhonesetstatusMessage with dwPhoneStates flags
PHONESTATE_SUSPEND | PHONESTATE_RESUME

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 =
CiscoPhoneStateOutOfServiceReason_CallManagerFailure

param3 = x0,

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 =
CiscoLineDevStateOutOfServiceReason_CallManagerFailure

param3 = x0

Restart Call Manager services from serviceability page.

Message Sequence Charts
308

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0,

Cisco TSP Notifies DeviceInServiceEvent to application through
Phone state Event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_RESUME

param2 = x0,

param3 = x0

Call Manager Restart successful and device registers back

Verify DeviceUnregister Reason Code in LineDevstate/Phone State Event
Verify DeviceUnregister Reason code in LineDevstate/Phone State Event, whenDevice unregisters bymanually
unplugging the Ethernet cable from device.

Expected resultAction

LineInitialize

LineOpen on A with ExtVersion xB0000 or higher

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0

param3 = x0

Set Event filters for Inservice and Outofservice events.

LinesetstatusMessage with dwlineStates flags

LINEDEVSTATE_INSERVICE |
LINEDEVSTATE_OUTOFSERVICE

PhoneInitialize

Message Sequence Charts
309

Message Sequence Charts
Verify DeviceUnregister Reason Code in LineDevstate/Phone State Event

Expected resultAction

PhoneOpen on A with ExtVersion xB0000 or higher

Set Event filters for Resume and Suspend events.

For Example:

PhonesetstatusMessage with dwPhoneStates flags
PHONESTATE_SUSPEND | PHONESTATE_RESUME

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 =
CiscoPhoneStateOutOfServiceReason_DeviceUnregistered

param3 = x0,

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 =
CiscoLineDevStateOutOfServiceReason_DeviceUnregistered

param3 = x0

Manually unplug the Ethernet cable from device.

Message Sequence Charts
310

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0,

Cisco TSP Notifies DeviceInServiceEvent to application through
Phone state Event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_RESUME

param2 = x0,

param3 = x0

Device registers back after plugging back to the switch

Verify CTILinkFailure Reason Code in LineDevstate/Phone State Message
Verify CTILinkFailure Reason code in LineDevstate/Phone State message, when CTIManager services are
stopped.

Expected resultAction

LineInitialize

LineOpen on A with ExtVersion xB0000 or higher

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0

param3 = x0

Set Event filters for Inservice and Outofservice events.

LinesetstatusMessage with dwlineStates flags

LINEDEVSTATE_INSERVICE |
LINEDEVSTATE_OUTOFSERVICE

PhoneInitialize

Message Sequence Charts
311

Message Sequence Charts
Verify CTILinkFailure Reason Code in LineDevstate/Phone State Message

Expected resultAction

PhoneOpen on A with ExtVersion xB0000 or higher

Set Event filters for Resume and Suspend events.

For Example:

PhonesetstatusMessage with dwPhoneStates flags
PHONESTATE_SUSPEND | PHONESTATE_RESUME

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 =CiscoPhoneStateOutOfServiceReason_CTILinkFailure

param3 = x0,

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 =
CiscoLineDevStateOutOfServiceReason_CTILinkFailure

param3 = x0

Stop CTI Manager services from serviceability page.

Message Sequence Charts
312

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0,

Cisco TSP Notifies DeviceInServiceEvent to application through
Phone state Event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_RESUME

param2 = x0,

param3 = x0

Restart CTI Manager services

Extension Mobility Cross Cluster
Common Configuration

• User A has a device profile EM_Profile1 configured with Line1 in Cluster1 (home cluster)

• CiscoTSP uses CTIManager on Cluster1 (home cluster) in order to open provider

TAPI Application Does LineInitializeEx and EMCC User Logs Into a Device
EMCC user logs in to a deviceTitle

Testing the scenariowhere TAPIApplication does LineInitializeEx and EMCCUserLogin
to a Device

Description

EM_Profile1 is included in application control list

DeviceH is not in application control list

Test Setup

Step 2:

Application receives LINE_CREATE for Line1

Expected Results

Message Sequence Charts
313

Message Sequence Charts
Extension Mobility Cross Cluster

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to DeviceH on Cluster1.

TAPI Application Does LineInitializeEx and EMCCUser Logs Out of a Device

EMCC user logs out of a deviceTitle

Testing the scenario where TAPI Application does LineInitializeEx and EMCCUserLogs
out of a Device

Description

EM_Profile1 is included in application control list

DeviceH is not in application control list

Test Setup

Step 2:

Application receives LINE_REMOVE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM logout of a device DeviceH on Cluster1.

Application Does PhoneInitializeEx and EMCC User Logs In to a Device

EMCC user logs in to a deviceTitle

Testing the scenario where TAPI Application does PhoneInitializeEx and EMCCUserLogin to a
Device

Description

EM_Profile1 is included in application control list

DeviceH is not in application control list

Test Setup

Step 2:

Application receives PHONE_CREATE for Line1

Expected Results

1. Step1: Open the TAPI Application with User A and do PhoneInitializeEx.

2. Step2: User A EM login to DeviceH on Cluster1.

TAPI Application Does PhoneInitializeEx and EMCC User Logs Out of a Device

EMCC user logs out of a deviceTitle

Testing the scenario where TAPI Application does
PhoneInitializeEx and EMCCUserLogs out of a Device

Description

EM_Profile1 is included in application control list

DeviceH is not in application control list

Test Setup

Message Sequence Charts
314

Message Sequence Charts
TAPI Application Does LineInitializeEx and EMCCUser Logs Out of a Device

Step 2:

Application receives PHONE _REMOVE for Line1

Expected Results

1. Step1: Open the TAPI Application with User A and do PhoneInitializeEx.

2. Step2: User A EM logout of a device DeviceH on Cluster1.

EMCC User Logs in to a Device From Cluster 2 (Visiting Cluster)

EMCC user logs in to a device from cluster 2 (visiting cluster)Title

Testing the scenario where EMCCUser Login to a Device from cluster 2 (visiting cluster)Description

EM_Profile1 is included in application control list.Test Setup

Step 2:

Application receives LINE_CREATE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A goes to the Cluster 2(visiting Cluster) and EM login to a device DeviceV.

EMCC User Logs Out of a Device From Cluster 2 (Visiting Cluster)

EMCC user logs out of a device from cluster 2 (visiting cluster)Title

Testing the scenario where EMCCUser LogOut of a Device from
cluster 2 (visiting cluster)

Description

EM_Profile1 is included in application control list.Test Setup

Step 2:

Application receives LINE_REMOVE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. After the Execution of the above usecase User A EM logout of a device DeviceV.

EMCC User Logs In to a Device with LineH Configured

EMCC user logs in to a device with LineH configuredTitle

Testing the scenario where EMCCUserLogin to a Device with LineH configuredDescription

EM_Profile1 is included in application control list

DeviceH is included in application control list with LineH configured

Test Setup

Message Sequence Charts
315

Message Sequence Charts
EMCC User Logs in to a Device From Cluster 2 (Visiting Cluster)

Step 2:

• Application receives LINE_REMOVE for LineH
• Application receives LINE_CREATE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to a device DeviceH on Cluster1.

EMCC User Logs Out of a Device with LineH Configured

EMCC user logs out of a deviceTitle

Testing the scenario where EMCCUserLogs out of a DeviceDescription

EM_Profile1 is included in application control list

DeviceH is included in application control list with LineH configured

Test Setup

Step 2:

• Application receives LINE_REMOVE for Line1
• Application receives LINE_CREATE for LineH

Expected Results

1. After the Execution of the above usecase User A EM logout of a device DeviceH on Cluster1.

EMCC User Logs In to a DeviceH Configured for Multiple Lines (LineH)

EMCC user logs in to a DeviceHTitle

Testing the scenario where EMCCUser Login to a DeviceH which is configured for multiple linesDescription

EM_Profile1 is included in application control listTest Setup

Step 2:

• Application receives 2 LINE_REMOVE for LineH
• Application receives LINE_CREATE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A goes to the Cluster 2(visiting Cluster) and EM login to a device DeviceH(A device with multiple
lines (LineH)).

EMCC User Logs In to a Device with LineH Configured and Administrator Removes the Device
From Application Control List

EMCC user logs in to a device with LineH configured and the administrator removes the device
from the Application Control list

Title

Message Sequence Charts
316

Message Sequence Charts
EMCC User Logs Out of a Device with LineH Configured

Testing the scenario where EMCCUserLogin to a device with LineH configured and administrator
removes the device from the Application Control list

Description

EM_Profile1 is included in application control list

DeviceH is included in application control list with LineH configured

Test Setup

Step 2:

• Application receives LINE_REMOVE for LineH
• Application receives LINE_CREATE for Line1

Step3:

• Application will not receive any events.

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to a device DeviceH on Cluster1.

3. Administrator removes the DeviceH from application control list.

EMCC User Logs In and Out of a Device with LineH Configured and Administrator Removes the
Device From Application Control List

EMCC user logs in and logs out of a device with LineH configured and Administrator removes
the device from the Application Control List

Title

Testing the scenario where EMCCUserLogin to a Device with LineH configured and Administrator
removes the device from the Application Control List

Description

EM_Profile1 is included in application control list

DeviceH is included in application control list with LineH configured

Test Setup

Step 2:

• Application receives LINE_REMOVE for LineH
• Application receives LINE_CREATE for Line1

Step3:

• Application receives LINE_REMOVE for Line1
• Application receives LINE_CREATE for LineH

Step4:

• Application receives LINE_REMOVE for LineH

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to a device DeviceH on Cluster1.

3. User A EM logout of the device DeviceH on Cluster1.

Message Sequence Charts
317

Message Sequence Charts
EMCC User Logs In and Out of a Device with LineH Configured and Administrator Removes the Device From Application Control List

4. Administrator removes the DeviceH from application control list.

EMCC User Logs in to a Device with LineH Configured and EM_Profile Not Included in Application
Control List

EMCC user logs in to a device with LineH configured and administrator removes the device from
the Application Control list

Title

Testing the scenario where EMCCUserLogin to a device with LineH configured and administrator
removes the device from the Application Control list

Description

EM_Profile1 is not included in Application Control list

DeviceH is included in Application Control list with LineH configured

Test Setup

Step 2:

• Application receives LINE_REMOVE for LineH
• Application receives LINE_CREATE for Line1

Step3:

• Application receives no events since EM_Profile1 is not in control list.

Step4:

• Application receives LINE_REMOVE for LineH

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to a device DeviceH on Cluster1.

3. Administrator removes the DeviceH from application control list.

4. User A EM logout of the device DeviceH on Cluster1.

EMCC User Logs In to a DeviceV and EM_Profile Is Removed by Administrator From Application
Control List

EMCC user logs in to a DeviceV and administrator removes the EM_Profile from the Application
Control list

Title

Testing the scenario where EMCCUserLogin to a DeviceV and administrator removes the
EM_Profile from Application Control list

Description

EM_Profile1 is included in Application Control list.Test Setup

Step 2:

• Application receives LINE_CREATE for Line1

Step3:

• Application receives LINE_REMOVE for Line1

Expected Results

Message Sequence Charts
318

Message Sequence Charts
EMCC User Logs in to a Device with LineH Configured and EM_Profile Not Included in Application Control List

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to a DeviceV (Visiting Device).

3. Administrator removes the EM_Profile1 from application control list.

EMCC User Logs In to a Device Then Application Does Provider Open

EMCC user logs in to a DeviceVTitle

Testing the scenario where EMCCUserLogin to a DeviceV(cluster2). Then the application does
Provider Open

Description

EM_Profile1 is included in Application Control list

DeviceH is not in Application Control list

Test Setup

Step2:

• DeviceV/Line1 will be included in TAPI device/line enumeration

Expected Results

1. User A EM login to DeviceV on Cluster2.

2. Open the TAPI Application with User A and do LineInitializeEx.

EMCC User Logs In to a DeviceV in Visiting Cluster and Administrator Adds the EM_Profile to
Application Control List

EMCC user logs in to a DeviceV in Visiting cluster and administrator adds the EM_Profile to the
Application Control List

Title

Testing the scenario where EMCCUserLogin to a DeviceV in Visiting cluster and Administrator
adds the EM_Profile to the Application Control list

Description

EM_Profile1 is not included in Application Control listTest Setup

Step 2:

• Application will not receive any events as EM_Profile1 not in the Application Control list.

Step3:

• Application receives LINE_CREATE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User B EM login to a DeviceV on Cluster2.

3. Administrator Adds the EM_Profile1 to the application control list.

Message Sequence Charts
319

Message Sequence Charts
EMCC User Logs In to a Device Then Application Does Provider Open

Extension Mobility Memory Optimization Option
The following section describes common configuration and use cases for Early Offer Support.

Common Configuration
The message flow in the following figure is described below:

• IP Phone_A is configured in DB with lines Line_A1 and LineA2

• User1 has a device profile EM_Profile1 configured with Line_P11

• User2 has a device profile EM_Profile2 configured with lines Line_P21 and Line_P22

Figure 1: EM Memory Optimization Scenario 1

The message flow in the following figure is described below:

• Application uses Line_N to receive other-device state notifications

Figure 2: EM Memory Optimization Scenario 2

Use Cases
Use cases related to the EM Memory Optimization Option feature are mentioned below:

• Use Case 1

1. Line_A1 and Line_A2 are not opened

2. EM user with Profile_P1 logs in

3. EM user with Profile_P1 logs out

4. EM user with Profile_P1 logs in

The message flow in the following figure is described in steps 1 to 4.

Message Sequence Charts
320

Message Sequence Charts
Extension Mobility Memory Optimization Option

Figure 3: EM Memory Optimization Option Feature Use Case 1

• Use Case 2

1. Line_A1 and Line_A2 has been opened

2. EM user with Profile_P1 logs in

3. Application opens Line_P11

4. EM user with Profile_P1 logs out

5. Application opens Line_A1

The message flow in the following figure is described in steps 1 to 5.

Message Sequence Charts
321

Message Sequence Charts
Message Sequence Charts

Figure 4: EM Memory Optimization Option Feature Use Case 2

• Use Case 3

1. Line_A1 and Line_A2 are not opened

2. EM user with Profile_P1 logs in

3. EM user with Profile_P1 logs out

4. EM user with Profile_P2 logs in

5. EM user with Profile_P2 logs out

The message flow in the following figure is described in steps 1 to 5.

Message Sequence Charts
322

Message Sequence Charts
Message Sequence Charts

Figure 5: EM Memory Optimization Option Feature Use Case 3

• Use Case 4

1. EM user with Profile_P1 logs in

2. Operation request failed on inactive Line_A1

3. EM user with Profile_P1 logs out

4. Operation request failed on inactive Line_P11 with … error code …

The message flow in the following figure is described in steps 1 to 4.

Message Sequence Charts
323

Message Sequence Charts
Message Sequence Charts

Figure 6: EM Memory Optimization Option Feature Use Case 4

External Call Control

Basic Call Initiated From TAPI with External Call Control on Translation Pattern
and CEPM Returns Reject

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure

Application sends a lineMakeCall at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B. CEPM returns Reject.

TSP Message to App dataParty

A

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

mod Calling = A / mod Called = “”

A initiates Call to B

A receives NewCallEvent and CallStateChangeEvent
(Dialtone/Dialing)

Message Sequence Charts
324

Message Sequence Charts
External Call Control

TSP Message to App dataParty

A:

LINE_CALLSTATE (LINECALLSTATE_DISCONNECTED,
LINEDISCONNECTMODE_REJECT)

CallerID = A / CalledID = “”

mod Calling = A / mod Called = “”

A receives CallStateChangeEvent (Disconnect)

Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns
Divert with Modified Calling and Called Parties

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure

Application sends a lineMakeCall at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

CEPM returns divertTo = C, with ModifiedCalling = MA and ModifiedCalled = MB

Call will be extended to C (modified calling and modified called in divert to routing directive, overrides the
calling and called number transformation configured for translation pattern and the call is diverted to C)

TSP Message to App dataParty

A:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

mod Calling = A / mod Called = “”

A initiates call to B

A receives NewCallEvent and CallStateChangeEvent
(Dialtone/Dialing)

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallerID = A / CalledID = B1

mod Calling = A1 / mod Called = B1

A receives CallStateChangeEvent (Proceeding)

Message Sequence Charts
325

Message Sequence Charts
Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Divert with Modified Calling and Called Parties

TSP Message to App dataParty

A:

LINE_CALLSTATE (LINECALLSTATE_RINGBACK)/
LINE_CALLINFO

CallerID = A / CalledID = B1 / RedirectingID = MB /

RedirectionID = C

mod Calling = MA / mod Called = B1 /

mod Redirecting = MB / mod Redirection = C

C:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED

dwReason = LINECALLREASON_UNKNOWN

extendCallReason = CtiReasonCallIntercept

CallerID = A / CalledID = MB / RedirectingID = MB /

RedirectionID = C

mod Calling = MA / mod Called = MB /

mod Redirecting = MB / mod Redirection = C

A receives CallStateChangeEvent (RingBack)

C receives NewCallEvent

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B1 / ConnectedID = C /

RedirectingID = MB / RedirectionID = C

mod Calling = MA / mod Called = B1 /

mod Connected = C / mod Redirecting = MB /

mod Redirection = C

C:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED

CallerID = A / CalledID = MB / ConnectedID = A /

RedirectingID = MB / RedirectionID = C

mod Calling = MA / mod Called = MB /

mod Connected = MA / mod Redirecting = MB /

mod Redirection = C

C answers

A and C receives Connected Call state

Message Sequence Charts
326

Message Sequence Charts
Message Sequence Charts

Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns
Continue with Modified Calling and Called Parties

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure

Application sends a lineMakeCall at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

CEPM returns continue with ModifiedCalling = MA and ModifiedCalled = MB

Call will be extended to MB (modified calling and modified called in continue routing directive, overrides
the calling & called number transformation configured for translation pattern)

TSP Message to App DataParty

A:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

mod Calling = A / mod Called = “”

A initiates Call to B

A receives NewCallEvent and CallStateChangeEvent
(Dialtone/Dialing)

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallerID = A / CalledID = B1

mod Calling = A1 / mod Called = B1

A receives CallStateChangeEvent (Proceeding)

Message Sequence Charts
327

Message Sequence Charts
Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Continue with Modified Calling and Called Parties

TSP Message to App DataParty

A:

LINE_CALLSTATE (LINECALLSTATE_RINGBACK)/
LINE_CALLINFO

CallerID = A / CalledID = B1

mod Calling = MA / mod Called = B1

MB:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED

CallerID = A / CalledID = MB

mod Calling = MA / mod Called = MB

A receives CallStateChangeEvent (RingBack)

MB receives NewCallEvent

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B1 / ConnectedID = MB

mod Calling = MA / mod Called = B1 /

mod Connected = MB

MB:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = MB / ConnectedID = A

mod Calling = MA / mod Called = MB /

mod Connected = MA

MB answers

A and MB receives Connected Call state

Conference Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM
Returns Continue with Modified Calling and Called Parties in the Consult Call

Configuration

Phone A, B, C are in cluster devices.

Cmatches the translation pattern CXXXwhich has calling and called party transformation defined to transform
B to A1 and C to C1 and External Call Control is also enabled.

Procedure

Application sends a lineMakeCall at A to call B. Application sends a lineSetupConference/lineAddToconference
to B to consult conference the call to C.

Result

Dialed number C matches the translation pattern CXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

Message Sequence Charts
328

Message Sequence Charts
Conference Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Continue with Modified Calling and Called Parties
in the Consult Call

CEPM returns continue with ModifiedCalling = MB and ModifiedCalled = MC

Call will be extended to “MC” (modified calling and modified called in continue routing directive, overrides
the calling & called number transformation configured for translation pattern)

After conference is complete, the correct number of CONFERENCE calls are see at all the participants.

TSP Message to App DataParty

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B / ConnectedID = B

mod Calling = A / mod Called = B /

mod Connected = B

B:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B / ConnectedID = A

mod Calling = A / mod Called = B /

mod Connected = A

A and B receives Connected Call state

B:

Call-1

LINE_CALLSTATE
(LINECALLSTATE_ONHOLDPENDCONF)

CallerID = A / CalledID = B / ConnectedID = A

mod Calling = A / mod Called = B /

mod Connected = A

Call-2

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_PROCEEDING)/ LINE_CALLINFO

CallerID = B / CalledID = C1

mod Calling = MB / mod Called = C1

MC:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED)

CallerID = B / CalledID = MC

mod Calling = MB / mod Called = MC

B does a lineSetupConference / lineDial to call C.

MC receives NewCallEvent

Message Sequence Charts
329

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

B:

Call-2

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = B / CalledID = C1 / ConnectedID = MC

mod Calling = MB / mod Called = C1 /

mod Connected = MC

MC:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = B / CalledID = MC / ConnectedID = B

mod Calling = MB / mod Called = MC /

mod Connected = MB

MC answers the call

Message Sequence Charts
330

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

A:

CONFERENCE

CallerID = A / CalledID = B / ConnectedID = B

mod Calling = A / mod Called = B /

mod Connected = B

CONNECTED

CONFERENCE

CallerID = A / CalledID = MC / ConnectedID = MC

mod Calling = A / mod Called = MC /

mod Connected = MC

B:

CONFERENCE

CallerID = A / CalledID = B / ConnectedID = A

mod Calling = A / mod Called = B /

mod Connected = A

CONNECTED

CONFERENCE

CallerID = B / CalledID = C1 / ConnectedID = MC

mod Calling = B/ mod Called = C1 /

mod Connected = MC

MC:

CONFERENCE

CallerID = B / CalledID = MC / ConnectedID = B

mod Calling = B / mod Called = MC /

mod Connected = B

CONNECTED

CONFERENCE

CallerID = MC / CalledID = A / ConnectedID = A

mod Calling = MC / mod Called = A /

mod Connected = A

B1 does a lineAddToConference

Message Sequence Charts
331

Message Sequence Charts
Message Sequence Charts

Call Is Redirected to a Hunt List of Chaperones and Chaperone Enables Call Recording and
Conferences in the Called Party

Configuration

Phone A, C1, D are in cluster devices. B matches the translation pattern BXXX where External Call Control
is enabled. Application sends a lineMakeCall at A to call B.

CEPM determines this calls need to have a chaperone’s supervise. CEPM returns the permit decision with
the obligation <divert>, destination HuntPilot C, which is a hunt pilot of chaperones, and a reason string
“chaperone”.

CUCM redirects the call to the hunt pilot C, and the chaperone member C1 answers the call.

After talking to A briefly and discovered that A intended to talk to D, the chaperone C1 starts to establish a
conference to D. C1 presses the conference softkey and dials D.

CUCM queries CEPM for the call, with calling user C1 with DN C1, and called user D with DN D.

CEPM returns the response with permit decision with <continue> call routing directive, since the policy server
detects that the caller is the chaperone.

CUCM rings D’s phone and D answers the call.

C1 presses the conference softkey again, and the conference is established.

The chaperone C1 presses the “record” softkey. This triggers the call recording being setup from C1’s IP
phone to the recorder.

When the call recording is eablished successfully, the recording warning tone is playing to the C1’s phone.
The recording warning tone is enabled by setting service parameter Play Recording Notification Tone To
Observed Target to True.

A and D starts to talk under the supervision of the chaperone.

TSP Message to App DataParty

A:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

mod Calling = A / mod Called = “”

A initiates Call to B

A receives NewCallEvent and CallStateChangeEvent
(Dialtone/Dialing)

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallerID = A / CalledID = B

mod Calling = A / mod Called = B

A receives CallStateChangeEvent (Proceeding) webmail

Message Sequence Charts
332

Message Sequence Charts
Call Is Redirected to a Hunt List of Chaperones and Chaperone Enables Call Recording and Conferences in the Called Party

TSP Message to App DataParty

A:

LINE_CALLSTATE (LINECALLSTATE_RINGBACK)/
LINE_CALLINFO

CallerID = A / CalledID = B / RedirectingID = B /

RedirectionID = C

mod Calling = A / mod Called = B /

mod Redirecting = B / mod Redirection = C

C1:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED

CallerID = A / CalledID = B / RedirectingID = B /

RedirectionID = C

mod Calling = A / mod Called = B /

mod Redirecting = B / mod Redirection = C

LINECALLINFO::DEVSPECIFIC would contain
IsChaperoneCall = 0x1

A receives CallStateChangeEvent (RingBack)

C1 receives NewCallEvent

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B / ConnectedID = C / RedirectingID
= B / RedirectionID = C

mod Calling = A / mod Called = B / mod Redirecting = B / mod
Connected = B / mod Redirection = C

C1:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B / ConnectedID = C / RedirectingID
= B / RedirectionID = C

mod Calling = A / mod Called = B / mod Redirecting = B / mod
Connected = B / mod Redirection = C

C1 answers

A and C1 receives Connected Call state

Line_Reply is returned with an error code of
LINEERR_OPERATION_FAIL_CHAPERONE_DEVICE

Application issues a lineRedirect on call at C1

Message Sequence Charts
333

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

C1:

Call-1

LINE_CALLSTATE
(LINECALLSTATE_ONHOLDPENDCONF)

CallerID = A / CalledID = B / ConnectedID = A / RedirectingID
= B / RedirectionID = C

mod Calling = A / mod Called = B / mod Connected = A / mod
Redirecting = B / mod Redirection = C

CONNECTED

LINECALLINFO::DEVSPECIFIC would contain
IsChaperoneCall = 0x1

Call-2

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_PROCEEDING)/ LINE_CALLINFO

CallerID = C1 / CalledID = D

mod Calling = C1 / mod Called = D

D:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED)

CallerID = C1 / CalledID = D

mod Calling = C1 / mod Called = D

C1 does a lineSetupConference / lineDial to call D.

D receives NewCallEvent

C1:

Call-2

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = C1 / CalledID = D / ConnectedID = D

mod Calling = C1 / mod Called = D /

mod Connected = D

D:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = C1 / CalledID = D / ConnectedID = C1

mod Calling = C1 / mod Called = D / mod Connected = C1

D answers the call

Message Sequence Charts
334

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

C1 does a lineAddToConference

Message Sequence Charts
335

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

A:

CONFERENCE

CallerID = A / CalledID = B / ConnectedID = C

/ RedirectingID = B / RedirectionID = C

mod Calling = A / mod Called = B /

mod Redirecting = B / mod Connected = C /

mod Redirection = C

CONNECTED

CONFERENCE

CallerID = A / CalledID = D / ConnectedID = D

mod Calling = A / mod Called = D /

mod Connected = D

C1:

CONFERENCE

CallerID = A / CalledID = B / ConnectedID = A

/ RedirectingID = B / RedirectionID = C

mod Calling = A / mod Called = B /

mod Connected = A / mod Redirecting = B /

mod Redirection = C

CONNECTED

LINECALLINFO::DEVSPECIFIC would contain
IsChaperoneCall = 0x1

CONFERENCE

CallerID = C / CalledID = D / ConnectedID = D

mod Calling = C / mod Called = D /

mod Connected = D

D:

CONFERENCE

CallerID = C / CalledID = D / ConnectedID = C

mod Calling = C / mod Called = D /

mod Connected = C

CONNECTED

CONFERENCE

Message Sequence Charts
336

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

CallerID = D / CalledID = A / ConnectedID = A

mod Calling = D / mod Called = A /

mod Connected = A

C1:

LINE_DEVSPECIFIC(SLDSMT_RECORDING_STARTED, 0,
0)

LINE_DEVSPECIFIC(SLDSMT_LINECALLINFO_
DEVSPECIFICDATA, SLDST_CALL_ATTRIBUTE_INFO, 0)

CallAttributeTye = ‘Recording’

C1’s CCMCallId

Address = R’s DN, Partition = R’s Partition, DeviceName = R’s
DeviceName

Chaperone C1 starts recording to recording device R

Forced Authorization and Client Matter Code Scenarios

Manual Call to a Destination That Requires an FAC
The following table describes the message sequences for the Forced Authorization and Client Matter Code
scenario of Manual Call to a Destination that requires an FAC.

Preconditions

Party A is Idle. Party B requires an FAC.

The scenario remains similar if Party B requires a CMC instead of an FAC.

Message Sequence Charts
337

Message Sequence Charts
Forced Authorization and Client Matter Code Scenarios

Table 51: Message Sequences for Manual Call to a Destination That Requires an FAC

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A goes off-hook

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALTONE

dwParam2 = UNAVAIL

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialtone,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

Message Sequence Charts
338

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialing, Cause =
CauseNoError, Reason =Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

Party A dials Party B

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =

CZIPZIP_FACREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip, Feature =
FACCMC, FACRequired =
True, CMCRequired = False

Message Sequence Charts
339

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

Party A dials the FAC, and
Party B accepts the call

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

Manual Call to a Destination That Requires Both FAC and CMC
The following table describes the message sequences for the Forced Authorization and Client Matter Code
scenario of a manual call to a destination that requires both FAC and CMC.

Preconditions

Party A is Idle. Party B requires an FAC and a CMC.

Message Sequence Charts
340

Message Sequence Charts
Manual Call to a Destination That Requires Both FAC and CMC

Table 52: Message Sequences for Manual Call to a Destination That Requires Both FAC and CMC

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A goes off-hook

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALTONE

dwParam2 = UNAVAIL

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialtone,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

Message Sequence Charts
341

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

Party A dials Party B

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =

CZIPZIP_FACREQUIRED,

CZIPZIP_CMCREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip,

Feature = FACCMC,

FACRequired = True,

CMCRequired = True

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =
CZIPZIP_CMCREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip,

Feature = FACCMC,

FACRequired = False,

CMCRequired = True

Party A dials the FAC

Message Sequence Charts
342

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

Party A dials the CMC, and
Party B accepts the call

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

lineMakeCall to a Destination That Requires an FAC
The following table describes the message sequences for the Forced Authorization and Client Matter Code
scenario of lineMakeCall to a destination that requires an FAC.

Preconditions

Party A is Idle. Party B requires an FAC. Note that the scenario is similar if Party requires a CMC instead of
an FAC.

Message Sequence Charts
343

Message Sequence Charts
lineMakeCall to a Destination That Requires an FAC

Table 53: Message Sequences for lineMakeCall to a Destination That Requires an FAC

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = ORIGIN

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =

REASON, CALLERID

dwParam2 = 0

dwParam3 = 0

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A does a lineMakeCall()
to Party B

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =

CZIPZIP_FACREQUIRED

CallToneChangedEvent, CH =
C1, Tone = ZipZip, Feature =
FACCMC, FACRequired =
True, CMCRequired = False

Message Sequence Charts
344

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A does a lineDial() with
the FAC in the dial string and
Party B accepts the call

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

lineMakeCall to a Destination That Requires Both FAC and CMC
The following table describes the message sequences for the Forced Authorization and Client Matter Code
scenario of lineMakeCall to a destination that requires both FAC and CMC. In this scenario, Party A is Idle
and Party B requires both an FAC and a CMC.

Message Sequence Charts
345

Message Sequence Charts
lineMakeCall to a Destination That Requires Both FAC and CMC

Table 54: Message Sequences for lineMakeCall to a Destination That Requires Both FAC and CMC

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = ORIGIN

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =

REASON, CALLERID

dwParam2 = 0

dwParam3 = 0

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A does a lineMakeCall()
to Party B

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =

CZIPZIP_FACREQUIRED,

CZIPZIP_CMCREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip,

Feature = FACCMC,

FACRequired = True,

CMCRequired = True

Message Sequence Charts
346

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =
CZIPZIP_CMCREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip,

Feature = FACCMC,

FACRequired = False,

CMCRequired = True

Party A does a lineDial() with
the FAC in the dial string

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

Party A does a lineDial() with
the CMC in the dial string and
Party B accepts the call

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

Timeout Waiting for FAC or Invalid FAC
The following table describes the message sequences for the Forced Authorization and Client Matter Code
scenario of timeout waiting for FAC or invalid FAC entered. Here, Party A is Idle and Party B requires an
FAC.

Message Sequence Charts
347

Message Sequence Charts
Timeout Waiting for FAC or Invalid FAC

The scenario remains similar if Party B required a CMC instead of a FAC.

Table 55: Message Sequences for Timeout Waiting for FAC or Invalid FAC

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = ORIGIN

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =

REASON, CALLERID

dwParam2 = 0

dwParam3 = 0

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A does a lineMakeCall()
to Party B

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =

CZIPZIP_FACREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip,

Feature = FACCMC,

FACRequired = True,

CMCRequired = False

Message Sequence Charts
348

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1=DISCONNECTED

dwParam2 = DISCONNECT

MODE_FACCMC1

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Disconnected,

Cause =

CtiNoRouteToDDestination,

Reason = FACCMC,

Calling = A, Called = NP,

OrigCalled = NP, LR = NP

T302 timer times out waiting for
digits, or Party A does a
lineDial() with an invalid FAC

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = IDLE

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Idle, Cause =
CtiCauseNoError, Reason =
Direct, Calling = A, Called =
NP, OrigCalled = NP, LR = NP

1 dwParam2 get set to DISCONNECTMODE_FACCMC if the extension version on the line is set to at least 0x00050000.
Otherwise, dwParam2 get set to DISCONNECTMODE_UNAVAIL.

Gateway Recording
Table 56: ClusterID and RecordType in LineGetDevCaps

TSP Messages/EventsAction

Application opens the provider.

LINEGETDEVCAPS::DEVSPECIFIC contains

Cisco_LineDevCaps_Ext00080000::recordType = configured recording type

Cisco_LineDevCaps_Ext000D0000::clusteID = cluster ID of the line

Application sends lineGetDevCaps on a line on the
CTI Remote Device

Setup:

A is external caller.

CTI RD has remote destination routed externally through a gateway that does not support recording

Table 57: External Call to a CTI Remote Device Using Ingress Gateway for Forking with Selective Recording

TSP Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

Message Sequence Charts
349

Message Sequence Charts
Gateway Recording

TSP Messages/EventsAction

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

Setup:

A is external caller.

CTI RD has remote destination routed externally through a gateway that supports recording

Table 58: External Call to a CTI Remote Device Using Egress Gateway for Forking with Automatic Recording

TSP Messages/EventsAction

Application opens the provider.

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_Automatic (6)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

A calls the CTI RD, remote destination answers

Setup:

Message Sequence Charts
350

Message Sequence Charts
Message Sequence Charts

A is external caller.

CTI RD has remote destination routed externally through a gateway that supports recording

Table 59: Initiate a Recording at CTIRD Follow by Hold and Resume the Call at the CTIRD

TSP Messages/EventsAction

Application opens the provider.

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_Automatic (6)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

A calls the CTI RD, remote destination answers

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) eventCTI RD puts the call on hold

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_Automatic (6)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

CTI RD resumes the call

Setup:

A is external caller.

Message Sequence Charts
351

Message Sequence Charts
Message Sequence Charts

CTI RD has remote destination routed externally through a gateway that supports recording

Table 60: Initiate a Recording at CTIRD Follow by Hold and Resume the Call at the Internal Other Party

TSP Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

No events pass by TSP, recording continueA puts the call on hold

No events pass by TSP, recording continueA resumes the call

Setup:

A, B are internal callers to the CTI RD

CTI RD has remote destination routed externally through a gateway that supports recording

Table 61: Initiate a Recording at CTIRD Follow by Internal Other Party Redirects the Call to an Internal 3rd Party

TSP Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

Message Sequence Charts
352

Message Sequence Charts
Message Sequence Charts

TSP Messages/EventsAction

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) eventA redirects the call to B

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

B answers the call

Setup:

A, B are external callers to the CTI RD through a SIP trunk

CTI RD has remote destination routed externally through a gateway that supports recording

Table 62: Initiate a Recording at CTIRD Follow by External Other Party Redirects the Call to an External 3rd Party

TSP Messages/EventsAction

Application opens the provider.

Message Sequence Charts
353

Message Sequence Charts
Message Sequence Charts

TSP Messages/EventsAction

A calls the CTI RD, remote destination answers

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

A redirects the call to B

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) event

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

B answers the call

Setup:

A, B are internal callers to the CTI RD

Message Sequence Charts
354

Message Sequence Charts
Message Sequence Charts

CTI RD has remote destination routed externally through a gateway that supports recording

Table 63: Initiate a Recording at CTIRD Follow by Internal Other Party Transfers the Call to an Internal 3rd Party

TSP Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

A setup transfer to B

B answers the call

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) event

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

A completes the transfer to B

Message Sequence Charts
355

Message Sequence Charts
Message Sequence Charts

Setup:

A, B are external callers to the CTI RD through a SIP trunk

CTI RD has remote destination routed externally through a gateway that supports recording

Table 64: Initiate a Recording at CTIRD Follow by External Other Party Transfers the Call to an External 3rd Party

TSP Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

A setup transfer to B

B answers the call

Message Sequence Charts
356

Message Sequence Charts
Message Sequence Charts

TSP Messages/EventsAction

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) event

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

A completes the transfer to B

Setup:

A, B are internal callers to the CTI RD

CTI RD has remote destination routed externally through a gateway that supports recording

Table 65: Initiate a Recording at CTIRD Follow by Internal Other Party Conferences an Internal 3rd Party

CTI Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

Message Sequence Charts
357

Message Sequence Charts
Message Sequence Charts

CTI Messages/EventsAction

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

A setup conference to B

B answers the call

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) event

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

A completes the conference to B

Message Sequence Charts
358

Message Sequence Charts
Message Sequence Charts

CTI Messages/EventsAction

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) event

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

B drops from the conference

Setup:

A, B are internal callers to the CTI RD

CTI RD has remote destination routed externally through a gateway that supports recording

Table 66: Initiate a Recording at CTIRD Follow by Restart Recording That Fails

CTI Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

Message Sequence Charts
359

Message Sequence Charts
Message Sequence Charts

CTI Messages/EventsAction

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forkedforkingClusterID =
clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

A setup transfer to B

B answers the call

There are no recording resource available so TSP sends a
LineDevSpecific(SLDSMT_RECORDING_FAILED) event

Application needs to restart the recording

A completes the transfer to B

B setup transfer to C

C answers the call

No restart of recording by CTI Remote Device.B completes the transfer to C

Hunt List
Phones -A, B, C and X

Hunt Pilots: HP1

Member LG1, LG2, LG3

HP2.

Member LG11, LG12, LG13 are CTI port

Pickup Group1 : has LG1, lG2, LG3, X

Pickup Group2: has HP1, X

TSP app opens all lines, otherwise will be stated in use case.

Message Sequence Charts
360

Message Sequence Charts
Hunt List

Basic Hunt List Call
Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

LG1 answers the call

Message Sequence Charts
361

Message Sequence Charts
Basic Hunt List Call

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG2

HuntPilot = HP1

At LG2:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

LG2 answers the call

Variance : perform the test with all HuntList algorithm

Top-Down algorithm

Circular algorithm

Longest Idle Time algorithm

Message Sequence Charts
362

Message Sequence Charts
Message Sequence Charts

Hunt List Call Moved to Next Member

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

Called Name = HP1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

Call at LG1 goes IDLE

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG1 to LG2

Message Sequence Charts
363

Message Sequence Charts
Hunt List Call Moved to Next Member

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG2

HuntPilot = HP1

At LG2:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

LG2 answers the call

Hunt List Calls FWNA and FWNA Is Not Configured on HuntPilot

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

Message Sequence Charts
364

Message Sequence Charts
Hunt List Calls FWNA and FWNA Is Not Configured on HuntPilot

Events, requests and responsesAction

Call at LG1 goes IDLE

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG1 to LG2

Call at LG2 goes IDLE

At LG3:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG2 to LG3

At A: call will go IDLE

LINEDISCONNECTMODE_NOANSWER?

At LG3: call will go IDLE

LINEDISCONNECTMODE_NOANSWER ?

Call is aborted since LG3 does not answer the call.

Message Sequence Charts
365

Message Sequence Charts
Message Sequence Charts

Hunt List Call FWNA with FWNA to B

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

Call at LG1 goes IDLE

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG1 to LG2

Call at LG2 goes IDLE

At LG3:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG2 to LG3

Message Sequence Charts
366

Message Sequence Charts
Hunt List Call FWNA with FWNA to B

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connectedid = B

At LG3: call will go IDLE

At B:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

Redirecting = HP1

Redirection = B

Call is FWNA to B, and B answer

Hunt List Call Dropped When Hunt List Is Busy and FWB Is Not Configured

Events, requests and responsesAction

At A:

Call disconnected after it is initiated.

LINEDISCONNECTMODE_BUSY

Make LG1, LG2, LG3 busy

App initiates call from A to HP1

Message Sequence Charts
367

Message Sequence Charts
Hunt List Call Dropped When Hunt List Is Busy and FWB Is Not Configured

Hunt List Call Is Forwarded When Hunt List Is Busy and FWB Is Configured to B

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

Called Name = HP1

HuntPilot = HP1

At B:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

Redirecting = HP1

Redirection = B

Make LG1, LG2, LG3 busy

App initiates call from A to HP1 and the call is forwarded to B

HuntList Call Redirected When in ACCEPT State

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1

Message Sequence Charts
368

Message Sequence Charts
Hunt List Call Is Forwarded When Hunt List Is Busy and FWB Is Configured to B

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1: Call goes IDLE

At B:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

RedirectingID = HP1

RedirectionID = B

LG1 redirects call to B

Hunt List Call Redirected When in Connected State

Table 67: Message Sequence for Hunt List Call Redirected When in Connected State

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1

Message Sequence Charts
369

Message Sequence Charts
Hunt List Call Redirected When in Connected State

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

LG1 answers the call

At A :

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

RedirectingID = LG1

RedirectionID = B

At LG1: Call goes IDLE

At B:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

RedirectingID = LG1

RedirectionID = B

LG1 redirects call to B

Message Sequence Charts
370

Message Sequence Charts
Message Sequence Charts

Hunt List Call Member Is CTI or RP Port

Events, requests and responsesAction

Similar expectationSame as 8.1, but with CTI port

Hunt List Call Moved to Different Line Group Members and Answered by CTI Port

Table 68: Message Sequence for Hunt List Call Moved to Different Line Group Members and Answered by CTI Port

Events, requests and responsesAction

Similar expectationSame as 8.2, but with CTI port

Hunt List Call Is Redirected to Another Hunt List

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
371

Message Sequence Charts
Hunt List Call Member Is CTI or RP Port

Events, requests and responsesAction

At A: Call goes IDLE

At LG1:

LINE_CALLSTATE -RINGBACK

Caller = LG1

HuntPilot = HP1

Called = HP1

HuntPilot = HP1

RedirectionID = HP2

RedirectingID = A

At LG11:

LINE_CALLSTATE -ACCEPTED

Caller = LG1

HuntPilot = HP1

Called = HP2,

HuntPilot = HP2

RedirectionID = HP2

RedirectingID = A

A redirects the call to HP2 and call offered to LG11

Message Sequence Charts
372

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = LG1

HuntPilot = HP1

Called = HP1

HuntPilot = HP1

Connected = LG11

HuntPilot = HP2

RedirectingID = A

RedirectionID = HP2

At LG11:

LINE_CALLSTATE -OFFERING

Caller = LG1

HuntPilot = HP1

Called = HP2,

HuntPilot = HP2

Connected = LG1

HuntPilot = HP1

RedirectionID = HP2

RedirectingID = A

LG11 answers the call

Message Sequence Charts
373

Message Sequence Charts
Message Sequence Charts

Hunt List Call Is Consult Transferred to Another Line

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

At LG1

Call-1 is put on HOLD

Call-2

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = LG1

LG1 setup transfer to B, B answer

Message Sequence Charts
374

Message Sequence Charts
Hunt List Call Is Consult Transferred to Another Line

Events, requests and responsesAction

At A :

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = B

RedirectionID = B

RedirectingID = LG1

At LG1: both call goes IDLE

At B:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = B

Connected = A

RedirectionID = B

RedirectingID = LG1

LG1 completes transfer

Message Sequence Charts
375

Message Sequence Charts
Message Sequence Charts

Hunt List Call Direct Transferred to Another Line

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

At LG1

Call-1 is put on HOLD

Call-2

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

LG1 calls to B, B answer

Message Sequence Charts
376

Message Sequence Charts
Hunt List Call Direct Transferred to Another Line

Events, requests and responsesAction

At A :

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = B

RedirectionID = B

RedirectingID = LG1

At LG1: both call goes IDLE

At B:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = B

Connected = A

RedirectionID = B

RedirectingID = LG1

LG1 performs Direct Transfer

Message Sequence Charts
377

Message Sequence Charts
Message Sequence Charts

Hunt List Call Is Conferenced to Another Line

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
378

Message Sequence Charts
Hunt List Call Is Conferenced to Another Line

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

LG1 setup conference to B, B answers the call

Message Sequence Charts
379

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

LG1 completes conference

Message Sequence Charts
380

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = B

Connected = B

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

At B:

CONNECTED

CONFERENCED

Caller = LG1

Called = B

Connected = LG1

CONFERECED

Caller = B

Message Sequence Charts
381

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Called = A

Connected = A

Hunt List Call Is Joined to Another Line

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
382

Message Sequence Charts
Hunt List Call Is Joined to Another Line

Events, requests and responsesAction

At LG1

Call-1: ONHOLD

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

Call-2: CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

LG1 calls B, B answers the call

Message Sequence Charts
383

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

LG1 performs Join

Message Sequence Charts
384

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = B

Connected = B

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

At B:

CONNECTED

CONFERENCED

Caller = LG1

Called = B

Connected = LG1

CONFERECED

Caller = B

Message Sequence Charts
385

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Called = A

Connected = A

Hunt List Call Is Conferenced to Another Hunt List After LG11 Answers

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
386

Message Sequence Charts
Hunt List Call Is Conferenced to Another Hunt List After LG11 Answers

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HG2

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG1

HuntPilot = HG1

LG1 setup conference to HG2, where alerting on LG11, LG11
answers the call

Message Sequence Charts
387

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = HP2 ->LG11

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

LG1 completes conference

Message Sequence Charts
388

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG11:

CONNECTED

CONFERECED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG1

HuntPilot = HG1

HP name = -empty

CONFERECED

Caller = LG11

Called = A

Connected = A

Hunt List Call Conferenced to the Same Hunt List and Completes Conference Before Hunt List Agent
Answers

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
389

Message Sequence Charts
Hunt List Call Conferenced to the Same Hunt List and Completes Conference Before Hunt List Agent Answers

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

RINGBACK

Caller = LG1

Called = HP1

HuntPilot = HP1

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = LG1

Called = HP2

HuntPilot = HP2

LG1 setup conference to HG1, where alerting on LG2,

Message Sequence Charts
390

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = HP1

HuntPilot = HP1

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = HP1

HuntPilot = HP1

Connected = HP1

HuntPilot = HP1

LG1 completes conference

Message Sequence Charts
391

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG2:

ACCEPTED

CONFERECED

Caller = LG1

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HG1

CONFERECED

Caller = LG2

Called = A

Connected = A

Message Sequence Charts
392

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

Called Name = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG2

ConnectedName = LG2

HuntPilot = HP1

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = HP1

HuntPilot = HP1

Connected = LG2

HuntPilot = HP1

Called = A

Connected = A

LG2 answers the call

Message Sequence Charts
393

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG2:

CONNECTED

CONFERECED

Caller = LG1

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HG1

CONFERECED

Caller = LG11

Hunt List Basic Call with SharedLine
LG1’ is sharedline with LG1

Message Sequence Charts
394

Message Sequence Charts
Hunt List Basic Call with SharedLine

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

At LG1’:

LINE_CALLSTATE -CONNECTED INACTIVE

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
395

Message Sequence Charts
Message Sequence Charts

Hunt List Basic Call with DND-R Configured on LG1

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG2

HuntPilot = HP1

At LG2:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG2
since LG1 has DND enabled.. Then LG2 answers

Hunt List Call Put in Conference via Join Operation

Events, requests and responsesAction

At A:

Call-1

LINE_CALLSTATE -CONNECTED

Caller = B

Called = A

Connected = B

At G:

LINE_CALLSTATE -CONNECTED

Caller = B

Called = A

Connected = A

B calls A, A answer

Message Sequence Charts
396

Message Sequence Charts
Hunt List Basic Call with DND-R Configured on LG1

Events, requests and responsesAction

At A:

Call-1 is on HOLD

Call-2

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
397

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Application initiates JOIN calls on A with final call as call-1

Message Sequence Charts
398

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = B

Called = A

Connected = B

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

At B:

CONNECTED

CONFERENCED

Caller = B

Called = A

Connected = A

CONFERECED

Caller = B

Called = LG1

HuntPilot = HP1

Message Sequence Charts
399

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Connected = LG1

HuntPilot = HP1

Hunt List Call Is Picked Up From Pickup Group -G-Pickup Auto Pick Pp Is Enabled

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1

Got call pickup notification of call offering at LG1Line X got notification of the call

Message Sequence Charts
400

Message Sequence Charts
Hunt List Call Is Picked Up From Pickup Group -G-Pickup Auto Pick Pp Is Enabled

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = X

Called = HP1,

HuntPilot = HP1

ConnectedID = X

At X:

LINE_CALLSTATE -PROCEEDING

Caller = X

Called = PickGroup#

LINE_CALLSTATE -CONNECTED

Caller = X

Called = PickGroup#,

ConnectedID = A

Line X does group pick from LG1

Hunt List Call Is Picked Up From Pickup Group When LG1 Is in Pickup Group 1 -Auto Pickup Disabled

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1

Got call pickup notification of call offering at LG1Line X got notification of the call

Message Sequence Charts
401

Message Sequence Charts
Hunt List Call Is Picked Up From Pickup Group When LG1 Is in Pickup Group 1 -Auto Pickup Disabled

Events, requests and responsesAction

Original pickup call goes IDLELine X does group pick from LG1

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1,

HuntPilot = HP1

ConnectedID = X

At X: new call offered at X from server, and answer

LINE_CALLSTATE -CONNECTED

Caller = A

Called = X

ConnectedID = A

X got server call about the pickup call

Hunt List Call Is Picked Up From Pickup Group When HP2 Is in Pickup Group 2 -Auto Pick Up
Enabled

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP2,

HuntPilot = HP2

At LG11:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP2,

HuntPilot = HP2

App initiates call from A to HP2 and the call is offered at LG11

Got call pickup notification of call offering at HP2Line X got notification of the call

Message Sequence Charts
402

Message Sequence Charts
Hunt List Call Is Picked Up From Pickup Group When HP2 Is in Pickup Group 2 -Auto Pick Up Enabled

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP2,

HuntPilot = HP2

ConnectedID = X

At X:

LINE_CALLSTATE -CONNECTED

Caller = X

Called = PickGroup#,

ConnectedID = A

Line X does group pick from HP2

Message Sequence Charts
403

Message Sequence Charts
Message Sequence Charts

Conferenced Hunt List Call Becomes Two-Party Call

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
404

Message Sequence Charts
Conferenced Hunt List Call Becomes Two-Party Call

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HG2

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HG2

LG1 setup conference to HG2, where alerting on LG11, LG11
answers the call

Message Sequence Charts
405

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

Called Name = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = LG11

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

LG1 completes conference

Message Sequence Charts
406

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG11:

CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HG2

CONFERECED

Caller = LG11

Called = A

Connected = A

At A:

Conf Parent call goes IDLE

CONFERENCED call to LG11 goes IDLE

CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

Conf Parent call goes IDLE

CONFERENCED call to LG11 goes IDLE

CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

At LG11:

Calls go IDLE

LG11 drops call

Message Sequence Charts
407

Message Sequence Charts
Message Sequence Charts

Hunt List Broadcast Scenario (Broadcast Option Is Configured on HP1)

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

At LG3:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1, and call is offered at LG1, LG2
and LG3

HP Broadcast is not supported when interacting with Call PickUp feature.Note

Hunt List Call Is Involved in c-Barge Conference
LG1’ is sharedline with LG1

Message Sequence Charts
408

Message Sequence Charts
Hunt List Broadcast Scenario (Broadcast Option Is Configured on HP1)

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

At LG1’:

LINE_CALLSTATE -CONNECTED INACTIVE

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
409

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONNECTED

Caller = LG1

Called = B

Connected = B

At LG1’:

LINE_CALLSTATE -CONNECTED INACTIVE

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

LINE_CALLSTATE -CONNECTED INACTIVE

CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

LG1 setup conference to B, B answers the call

Message Sequence Charts
410

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = B

Called Name = B

Connected = B

Called Name = B

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

LG1 completes conference

Message Sequence Charts
411

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG1’:

CONNECTED INACTIVE

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

At B:

CONNECTED

CONFERENCED

Caller = LG1

Called = B

Connected = LG1

CONFERECED

Caller = B

Called = A

Connected = A

Message Sequence Charts
412

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = B

Connected = B

CONFERENCED

Caller = A

Called = LG1’

Connected = LG1’

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = LG1

Called = B

Connected = B

CONFERENCED

Caller = LG1

Called = LG1’

Connected = LG1’

LG1’ cBarges in

Message Sequence Charts
413

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Message Sequence Charts
414

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

CONNECTED INACTIVE

CONFERECED

Caller = LG1’

Called = LG1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = LG1’

Called = B

Connected = B

CONFERENCED

Caller = LG1’

Called = A

Connected = A

At LG1’:

CONNECTED

CONFERECED

Caller = LG1’

Called = LG1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = LG1’

Called = B

Connected = B

CONFERENCED

Caller = LG1’

Called = A

Message Sequence Charts
415

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Connected = A

CONNECTED INACTIVE

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

CONFERENCED

Caller = LG1

Called = LG1’

Connected = LG1’

At B:

CONNECTED

CONFERENCED

Caller = LG1

Called = B

Connected = LG1

CONFERECED

Caller = B

Called = A

Connected = A

CONFERENCED

Caller = B

Called = LG1’

Connected = LG1’

Message Sequence Charts
416

Message Sequence Charts
Message Sequence Charts

Hunt List Feature Interact with Four-Party Conference

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
417

Message Sequence Charts
Hunt List Feature Interact with Four-Party Conference

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONNECTED

Caller = LG1

Called = LG11

HuntPilot = HP2

Connected = LG11

HuntPilot = HG2

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG1

HuntPilot = HG1

LG1 setup conference to HG2, where alerting on LG11, LG11
answers the call

Message Sequence Charts
418

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

LG1 completes conference

Message Sequence Charts
419

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = HG2

Connected = LG11

HuntPilot = HP2

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERECED

Caller = LG1

Called = HP2

Connected = LG11

HuntPilot = HP2

At LG11:

CONNECTED

CONFERECED

Caller = LG1

Called = HP2

HuntPilot = HP2

Message Sequence Charts
420

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Connected = LG11

HuntPilot = HG2

CONFERECED

Caller = LG11

Called = A

Connected = A

At LG1:

ONHOLDPENDINGCONFERENCE

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERECED

Caller = LG1

Called = HP2

Connected = LG11

HuntPilot = HP2

CONNECTED

Caller = LG1

Called = X

Connected = X

At X:

CONNECTED

Caller = LG1

Called = X

Connected = LG1

LG1 setup conference to X, X answers the call

Message Sequence Charts
421

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

LG1 completes conference

Message Sequence Charts
422

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = LG11

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

CONFERENCED

Caller = A

Called = X

Connected = X

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERECED

Caller = LG1

Called = HP2

Connected = LG11

HuntPilot = HP2

CONFERENCED

Message Sequence Charts
423

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Caller = LG1

Called = X

Connected = X

At LG11:

CONNECTED

CONFERECED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HG1

CONFERECED

Caller = LG11

Called = A

Connected = A

CONFERENCED

Caller = LG11

Called = X

Connected = X

Hunt Pilot Connected Number Feature
HP1 and HP2 are 2 Huntpilots with configuration "Display Line Group Member DN as Connected Party" set.

HP1: LG1, LG2, LG3(LineGroup/MemberDNs

HP2: LG4, LG5, LG6(LineGroups/MemberDNs

Message Sequence Charts
424

Message Sequence Charts
Hunt Pilot Connected Number Feature

Table 69: Basic Hunt List Call

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

Message Sequence Charts
425

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG1

ModifiedRedirectingID =

ModifiedRedirectionID =

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = A

ModifiedRedirectingID =

ModifiedRedirectionID =

LG1 answers the call

Message Sequence Charts
426

Message Sequence Charts
Message Sequence Charts

Table 70: Hunt List Call Moved to Next Member

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

Call at LG1 goes IDLE

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG1 to LG2

Message Sequence Charts
427

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG2

HuntPilot = HP1

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG2

At LG2:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = A

LG2 answers the call

Variance : perform the test with all HuntList algorithm

Top-Down algorithm

Circular algorithm

Longest Idle Time algorithm

Message Sequence Charts
428

Message Sequence Charts
Message Sequence Charts

Table 71: Hunt List Call Is Redirected When It Is in Connected State

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1

Message Sequence Charts
429

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CPN:ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG1

ModifiedRedirectingID =

ModifiedRedirectionID =

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CPN :ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG1

ModifiedRedirectingID =

ModifiedRedirectionID =

LG1 answers the call

Message Sequence Charts
430

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CPN:ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG1

ModifiedRedirectingID =

ModifiedRedirectionID =

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CPN :ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG1

ModifiedRedirectingID =

ModifiedRedirectionID =

LG1 answers the call

Message Sequence Charts
431

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A :

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1

HuntPilot = HP1

Connected =

RedirectingID = HP1

RedirectionID = B

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected =

ModifiedRedirectingID = [LG1]

ModifiedRedirectionID = B

At LG1: Call goes IDLE

At B:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

RedirectingID = HP1

RedirectionID = B

CPN: ModifiedCalling = A

ModifiedCalled = [LG1]

Modifiedconnected =

ModifiedRedirectingID = LG1

ModifiedRedirectionID = B

LG1 redirects call to B

Table 72: Hunt List Call -member Is CTI / RP Port

Expected eventsAction

Similar expectation as of Basic Hunt Call.Same as ,Table 69: Basic Hunt List Call, on page 425 but with
CTI port

Message Sequence Charts
432

Message Sequence Charts
Message Sequence Charts

Table 73: Hunt List Call Moved to Different Line Group Members and Answered by CTI Port

Expected eventsAction

Similar expectation as of Hunt List call moved to next member.Same as ,Table 70: Hunt List Call Moved to Next Member, on
page 427 but with CTI port

Table 74: Hunt List Call Is Redirected to Another Hunt List

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
433

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A: Call goes IDLE

At LG1:

LINE_CALLSTATE -RINGBACK

Caller = LG1

HuntPilot = HP1

Called = HP1

HuntPilot = HP1

RedirectionID = HP2

RedirectingID = A

CPN: ModifiedCalling = LG1

ModifiedCalled = HP1

Modifiedconnected =

ModifiedRedirectingID = A

ModifiedRedirectionID = HP2

At LG11:

LINE_CALLSTATE -ACCEPTED

Caller = LG1

HuntPilot = HP1

Called = HP2,

HuntPilot = HP2

RedirectionID = HP2

RedirectingID = A

CPN:ModifiedCalling = LG1

ModifiedCalled = HP2

Modifiedconnected =

ModifiedRedirectingID = A

ModifiedRedirectionID = HP2

A redirects the call to HP2 and call offered to LG11

Message Sequence Charts
434

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = LG1

HuntPilot = HP1

Called = HP1

HuntPilot = HP1

Connected = LG11

HuntPilot = HP2

RedirectingID = A

RedirectionID = HP2

CPN: ModifiedCalling = LG1

ModifiedCalled = HP1

Modifiedconnected = LG11

ModifiedRedirectingID = A

ModifiedRedirectionID = LG11

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = LG1

HuntPilot = HP1

Called = HP2,

HuntPilot = HP2

Connected = LG1

HuntPilot = HP1

RedirectionID = HP2

RedirectingID = A

CPN: ModifiedCalling = LG1

ModifiedCalled = HP2

Modifiedconnected = LG1

ModifiedRedirectingID = A

ModifiedRedirectionID = LG11

LG11 answers the call

Message Sequence Charts
435

Message Sequence Charts
Message Sequence Charts

Table 75: Hunt List Call Is Consult Transferred to Another Line

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

At LG1

Call-1 is put on HOLD

Call-2

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = LG1

LG1 setup transfer to B, B answer

Message Sequence Charts
436

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A :

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = B

RedirectionID = B

RedirectingID = HP1

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = B

ModifiedRedirectingID = LG1

ModifiedRedirectionID = B

At LG1: both call goes IDLE

At B:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = B

Connected = A

RedirectionID = B

RedirectingID = HP1

CPN: ModifiedCalling = A

ModifiedCalled = B

Modifiedconnected = A

ModifiedRedirectingID = LG1

ModifiedRedirectionID = B

LG1 completes transfer

Message Sequence Charts
437

Message Sequence Charts
Message Sequence Charts

Table 76: Hunt List Call Is Conferenced to Another Line

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

LG1 setup conference to B, B answers the call

Message Sequence Charts
438

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = B

Connected = B

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

At B:

CONNECTED

CONFERENCED

Caller = LG1

Called = B

Connected = LG1

CONFERECED

Caller = B

Called = A

Connected = A

LG1 completes conference

Message Sequence Charts
439

Message Sequence Charts
Message Sequence Charts

Table 77: Hunt List Call Is Conferenced to Another Hunt List After LG11 Answers

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
440

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG1

HuntPilot = HP1

LG1 setup conference to HP2, where alerting on LG11, LG11
answers the call

Message Sequence Charts
441

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LG1 completes conference

Message Sequence Charts
442

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = LG11

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG1:

CONNECTED

CONFERECED [A-LG1]

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED[LG1-LG11]

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG11:

CONNECTED

CONFERECED [LG11-LG1]

Caller = LG1

Called = HP2

HuntPilot = HP2

Message Sequence Charts
443

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Connected = LG1

CONFERECED [LG11-A]

Caller = LG11

Called = A

Connected = A

Caller Consult Transfer Call to Another Hunt List
Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Message Sequence Charts
444

Message Sequence Charts
Caller Consult Transfer Call to Another Hunt List

Events, requests and responsesAction

At A

Call-1 is put on HOLD

Call-2

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP2

HuntPilot = HP2

Connected = A

A setup transfer to HP2, offered at LG11, LG11 anwser

Message Sequence Charts
445

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG1 :

LINE_CALLSTATE -CONNECTED

Caller = LG1

HuntPilot = HP1

Called = HP1

HuntPilot = HP1

Connected = LG11

HuntPilot = HP2

RedirectionID = LG11

RedirectingID = A

At A: both call goes IDLE

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = LG1

HuntPilot = HP1

Called = HP2

HuntPilot = HP2

Connected = LG1

HuntPilot = HP1

RedirectionID = LG11

RedirectingID = A

A completes transfer

Intercom
This configuration gets used for all the following use cases:

1. IPPhone A has two lines, line1 (1000) and line2 (5000). Line2 represents an intercom line. Speeddial to
5001 with label ìAssistant_1î gets configured.

2. IPPhone B has three lines, line1 (1001), line2 (5001), and Line3 (5002). Line2 and Line3 represent intercom
lines. Speeddial to 5000 with label ìManager_1î gets configured on line2. Line 3 does not have Speeddial
configured for it.

3. IPPhone C has two lines, line1 (1002) and line2 (5003). 5003 represents an intercom line that is configured
with Speeddial to 5002 with label ìAssistant_5002î.

Message Sequence Charts
446

Message Sequence Charts
Intercom

4. IPPhone D has one line (5004). 5004 represnts an intercom line.

5. CTIPort X has two lines, line1 (2000) and line2 (5555). Line2 represents an intercom line. Speedial to
5001 gets configured with label ìAssistant_1î.

6. Intercom lines (5000 to 5003) exists in same partition = Intercom_Group_1 and they remain reachable
from each other. 5004 exists in Intercom_Group_2.

7. Application monitoring all lines on all devices.

Assumption: Application initialized and CTI provided the details on speeddial and lines with intercom line
on all the devices. Behavior should act the same for phones that are running SCCP, and those that are running
SIP.

Application Invoking Speeddial
EventsAction

For 5000

receive LINE_CALLSTATE

cbInst = x0

param1 = x03000000

param2 = x1, ACTIVE

param3 = x0,

Receive StartTransmission event

For 5001

receive LINE_CALLSTATE

cbInst = x0

param1 = x03000000

param2 = x1, ACTIVE

param3 = x0,

Receive StartReception event

Receive zipzip tone with reason as intercom

LineOpen on 5000 & 5001

Initiate InterCom Call on 5000

Message Sequence Charts
447

Message Sequence Charts
Application Invoking Speeddial

Agent Invokes Talkback

EventsAction

For 5000

receive LINE_CALLSTATE

device = x10218

param1 = x100, CONNECTED

param2 = x1, ACTIVE

param3 = x0,

Receive StartReception event

For 5001

receive LINE_CALLSTATE

device = x101f6

cbInst = x0

param1 = x100, CONNECTED

param2 = x1, ACTIVE

param3 = x0,

Receive StartTransmission event

Continuing from the previous use case, 5001 initiates
LineTalkBack from application on the InterCom call

Change the SpeedDial

EventsAction

The new speed dial and label is successfully set for the intercom
line

Receive LineSpeeddialChangeEvent from CTI

Send LINE_DEVSPECIFIC to indicate that speeddial and label
changed

Open line 5000

LineChangeSpeeddial request (speeddial to 5003, label =
“Assistant_5003”)

TAPI returns configured speeddial/label that is configured on the
line.

Application issues LIneGetDevCaps to retrieve speeddial/label
that is set on the line

Message Sequence Charts
448

Message Sequence Charts
Agent Invokes Talkback

IPv6 Use Cases
The use cases related to IPv6 are provided below:

Register CTI Port with IPv4 When Unified CM Is IPv6 Disabled and Common Device Configuration Is IPv4

Expected resultSteps

Application is able to register CTI Port with IPv4 address.1. Enterprise parameter for IPv6 is disabled. IP addressing mode
for CTI Port = IPv4 only on common device config page.

2. Open provider and do a LineNegotiateExtensionVersion with
the higher bit set on both dwExtLowVersion and
dwExtHighVersion

3. Application does a LineOpen with new Ext ver. The lineopen
will be delayed till user specifies the Addressing mode

4. Application uses CCiscoLineDevSpecificSetIPAddressMode
to set the addressing mode as IPv4. Application uses
CciscoLineDevSpecificSendLineOpen to trigger Lineopen.

Register CTI Port with IPv6 When Unified CM Is IPv6 Disabled and Common Device Configuration Is IPv6

Expected resultSteps

Application is not able to register CTI Port. TSP returns error
LINEERR_OPERATIONUNAVAIL

1. Enterprise parameter for IPv6 is disabled. IP addressing mode
for CTI Port = IPv6 only on common device config page.

2. Open provider and do a LineNegotiateExtensionVersion with
the higher bit set on both dwExtLowVersion and
dwExtHighVersion

3. Application does a LineOpen with new Ext ver. The lineopen
will be delayed till user specifies the Addressing mode

4. Application uses CCiscoLineDevSpecificSetIPAddressMode
to set the addressing mode as IPv6. Application uses
CciscoLineDevSpecificSendLineOpen to trigger Lineopen.

Message Sequence Charts
449

Message Sequence Charts
IPv6 Use Cases

Register CTI Port with IPv6 When Unified CM Is IPv6 Disabled and Common Device Configuration Is IPv4_v6

Expected resultSteps

Application is not able to register CTI Port. TSP returns error
LINEERR_OPERATIONUNAVAIL

1. Enterprise parameter for IPv6 is disabled. IP addressing mode
for CTI Port = IPv4_v6 on common device config page.

2. Open provider and do a LineNegotiateExtensionVersion with
the higher bit set on both dwExtLowVersion and
dwExtHighVersion

3. Application does a LineOpen with new Ext ver. The lineopen
will be delayed till user specifies the Addressing mode

4. Application uses CCiscoLineDevSpecificSetIPAddressMode
to set the addressing mode as IPv6. Application uses
CciscoLineDevSpecificSendLineOpen to trigger Lineopen.

IPv6 Phone A Calls IPv6 Phone B

Expected resultSteps

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in devspecific part,

FarEndIPAddress: Blank

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of B.

ReceptionRTPDestinationAddress = IPv6 address of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of A.

ReceptionRTPDestinationAddress = IPv6 address of B.

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv6 calls Phone B which is IPv6

4. Events at Phone B

1. While Media is established:

• Events on phone A

• Event on phone B

Message Sequence Charts
450

Message Sequence Charts
Message Sequence Charts

IPv4_v6 Phone Calls IPv6 Phone

Expected resultSteps

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in devspecific part,

FarEndIPAddress: IPv4 address of A

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of B.

ReceptionRTPDestinationAddress = IPv6 address of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of A.

ReceptionRTPDestinationAddress = IPv6 address of B.

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv4_v6 calls Phone B which is IPv6

4. Events at Phone B

1. While Media is established:

• Events on phone A

• Event on phone B

Message Sequence Charts
451

Message Sequence Charts
Message Sequence Charts

IPv4 Phone Calls IPv6 Phone

Expected resultSteps

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in devspecific part,

FarEndIPAddress: IPv4 address of A

FarEndIPAddressIpv6:

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv4 address of MTP
Resource.

ReceptionRTPDestinationAddress = IPv4 address of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of MTP
Resource.

ReceptionRTPDestinationAddress = IPv6 address of B.

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv4 calls Phone B which is IPv6

4. Events at Phone B

1. While Media is established:

• Events on phone A

• Event on phone B

Message Sequence Charts
452

Message Sequence Charts
Message Sequence Charts

IPv6 Phone Calls IPv4 Phone

Expected resultSteps

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in devspecific part,

FarEndIPAddress:

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo will contain the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of MTP
Resource.

ReceptionRTPDestinationAddress = IPv6 address of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv4 address of MTP
Resource.

ReceptionRTPDestinationAddress = IPv4 address of B.

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv6 only calls Phone B which is IPv4

4. Events at Phone B

1. While Media is established:

• Events on phone A

• Event on phone B

Message Sequence Charts
453

Message Sequence Charts
Message Sequence Charts

IPv6 Phone Calls IPv4_v6 Phone

Expected resultSteps

Existing Call, Do a GetlineCallInfo.

LineCallInfo contains the following in devspecific part,

FarEndIPAddress:

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of MTP
Resource.

ReceptionRTPDestinationAddress = IPv6 address of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of Phone
A.

ReceptionRTPDestinationAddress = IPv6 address of B.

1. Enterprise parameter for IPv6 is enabled.

2. Phone A which is IPv6 only calls Phone B which is IPv4_v6
only.

3. Open lines A and B

4. Events at Phone B

1. While Media is established:

• Events on phone A

• Event on phone B

Common Device Configuration Device Mode Changes From IPv4_v6 to IPv4

Expected resultSteps

Application receives LineDevSpecific for the openedCTI Ports/RP
in the device config indicating that Addressingmode has changed.
All lines registered as IPv6 get a LINE_CLOSE Event.
Application can then re-register these lines later.

User changes the device configuration on common device
configuration from IPv4_v6 to IPv4 only

Message Sequence Charts
454

Message Sequence Charts
Message Sequence Charts

Common Device Configuration Device Mode Changes From IPv4 to IPv6

Expected resultSteps

Application receives LineDevSpecific for the openedCTI Ports/RP
in the device config indicating that Addressingmode has changed.
All lines registered as IPv4 get a LINE_CLOSE Event.
Application can then re-register these lines later.

User changes the device configuration on common device
configuration from IPv4 only to IPv6 only

Join Across Lines
Setup

Line A on device A

Line B1 and B2 on device B

Line C on device C

Line D on device D

Line B1’ on device B1’, B1’ is a shared line with B1

Join Two Calls From Different Lines to B1

Expected eventsAction

For AA ‡ B1 is HOLD

LINE_CALLSTATE param1 = x100, CONNECTED Caller = A,
Called = B1 Connected B1

C ‡ B2 is connected

For B1: LINE_CALLSTATE param1 = x100, HOLD Caller = A,
Called = B1, Connected = A

For B2: LINE_CALLSTATE param1 = x100, CONNECTED
Caller = C, Called = B2 , Connected = C

For C: LINE_CALLSTATEparam1= x100, CONNECTEDCaller
= C, Called = B2, Connected = B2

For B1’: LINE_CALLSTATE param1 = x100, CONNECTED,
INACTIVE Caller = A, Called = B1, Connected = A

For AApplication issues lineDevSpecific(SLDST_JOIN) with the call
on B1 as survival call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

CONFERENCED Caller = A Called = C, Connected = C

Message Sequence Charts
455

Message Sequence Charts
Join Across Lines

Expected eventsAction

For B1

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

For B2

Call will go IDLE

For C

CONNECTED

CONFERENCED Caller = C, Called = B2, Connected = B1 (or
A)

CONFERENCED Caller = C Called = A, Connected = A (or B1)

For B1’

CONNECTED INACTIVE

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

Join Three Calls From Different Lines to B1

Expected eventsAction

A ‡ B1 is hold,

C ‡ B2 is hold

For A:D ‡ B2 is connected

LINE_CALLSTATE

param1= x100, CONNECTEDCaller =A, Called =B1Connected
B1

For B1:

LINE_CALLSTATE

param1 = x100, HOLD Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE for call-1

Message Sequence Charts
456

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

param1 = x100, HOLD Caller = C, Called = B2 , Connected = C

LINE_CALLSTATE for call-2

param1 = x100, CONNECTED Caller = D, Called = B2 ,
Connected = D

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2,
Connected = B2

For D:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = D, Called = B2,
Connected = B2

For B1’:

LINE_CALLSTATE

param1 = x100, HOLD Caller = A, Called = B1, Connected = A

For AApplication issues lineDevSpecific(SLDST_JOIN) with the call
on B1 as survival call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

CONFERENCED Caller = A Called = C, Connected = C

CONFERENCED Caller = A Called = D, Connected = D

For B1

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

CONFERENCED Caller = B1 Called = D, Connected = D

For B2

Call-1 and call-2 will go IDLE

For C

Message Sequence Charts
457

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CONNECTED

CONFERENCED Caller = B1, Called = C, Connected = B1

CONFERENCED Caller = C Called = A, Connected = A

CONFERENCED Caller = C Called = D, Connected = D

For D

CONNECTED

CONFERENCED Caller = B1, Called = C, Connected = B1

CONFERENCED Caller = D Called = A, Connected = A

CONFERENCED Caller = D Called = C, Connected = C

For B1’

CONNECTED INACTIVE

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

CONFERENCED Caller = B1 Called = D, Connected = D

Join Calls From Different Lines to B1 with Conference

Expected eventsAction

For A:A,B1,C in conference where B1 is controller

D‡ B2 Connected

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = A Called = C, Connected = C

For B1:

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

For B2:

LINE_CALLSTATE for call-1

Message Sequence Charts
458

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

param1 = x100, CONNECTED Caller = D, Called = B2 ,
Connected = D

For C:

CONNECTED

CONFERENCED Caller = C, Called = A, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

For D:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = D, Called = B2,
Connected = B2

For B1’:

LINE_CALLSTATE

CONNECTED INACTIVE

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

For AApplication issues lineDevSpecific(SLDST_JOIN) with the call
on B1 as survival call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

CONFERENCED Caller = A Called = C, Connected = C

CONFERENCED Caller = A Called = D, Connected = D

For B1

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

CONFERENCED Caller = B1 Called = D, Connected = D

For B2

Call will go IDLE

For C

Message Sequence Charts
459

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CONNECTED

CONFERENCED Caller = B1, Called = C, Connected = B1

CONFERENCED Caller = C Called = A, Connected = A

CONFERENCED Caller = C Called = D, Connected = D

For D

CONNECTED

CONFERENCED Caller = B1, Called = C, Connected = B1

CONFERENCED Caller = D Called = A, Connected = A

CONFERENCED Caller = D Called = C, Connected = C

For B1’

CONNECTED INACTIVE

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

CONFERENCED Caller = B1 Called = D, Connected = D

Join Two Calls From Different Lines to B1 While B1 Is Not Monitored by TAPI

Expected eventsAction

A ‡ B1 is HOLD,

For A:C ‡ B2 is connected

LINE_CALLSTATE

param1= x100, CONNECTEDCaller =A, Called =B1Connected
B1

For B2:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2 ,
Connected = C

For C:

LINE_CALLSTATE

Message Sequence Charts
460

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

param1 = x100, CONNECTED Caller = C, Called = B2,
Connected = B2

For AUser issues join request from phone with the call on B1 as survival
call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

CONFERENCED Caller = A Called = C, Connected = C

For B2

Call will go IDLE

For C

CONNECTED

CONFERENCED Caller = C, Called = B2, Connected = B1 (or
A)

CONFERENCED Caller = C Called = A, Connected = A (or B1)

Join Two Calls From Different Lines to B2

Expected eventsAction

A ‡ B1 is HOLD,

For A:C ‡ B2 is connected

LINE_CALLSTATE

param1= x100, CONNECTEDCaller =A, Called =B1Connected
B1

For B1:

LINE_CALLSTATE

param1 = x100, HOLD Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2 ,
Connected = C

For C:

Message Sequence Charts
461

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2,
Connected = B2

For B1’:

LINE_CALLSTATE

param1 = x100, HOLD Caller = A, Called = B1, Connected = A

For AApplication issues lineDevSpecific(SLDST_JOIN) with the call
on B1 as survival call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

CONFERENCED Caller = A Called = C, Connected = C

For B1

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C ??

For B2

Call will go IDLE

For C

CONNECTED

CONFERENCED Caller = C, Called = B2, Connected = B1 (or
A)

CONFERENCED Caller = C Called = A, Connected = A (or B1)

For B1’

CONNECTED INACTIVE

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

Expected eventsAction

For A:A ‡ B1 is HOLD,

Message Sequence Charts
462

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B1 issues setup conference

C ‡ B2 is connected

LINE_CALLSTATE

param1= x100, CONNECTEDCaller =A, Called =B1Connected
B1

For B1:

Primary call

LINE_CALLSTATE

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

Consult call

DIALTONE

For B2:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2 ,
Connected = C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2,
Connected = B2

For B1’:

LINE_CALLSTATE

param1 = x100, HOLD Caller = A, Called = B1, Connected = A

For A:Application issues lineDevSpecific(SLDST_JOIN) with the call
on B2 as survival call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B2

CONFERENCED Caller = A Called = C, Connected = C

For B1

Message Sequence Charts
463

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Both calls will go IDLE

For B2

CONNECTED

CONFERENCED Caller = B1, Called = A, Connected = A

CONFERENCED Caller = C Called = B1, Connected = C

For C

CONNECTED

CONFERENCED Caller = C, Called = B2, Connected = B2 (or
A)

CONFERENCED Caller = C Called = A, Connected = A (or B2)

For B1’

Calls go IDLE

B1 Performs a Join Across Line Where B1 Is Already in a Conference Created by A

Expected eventsAction

For A:A, B1, C are in a conference created by A

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

For B1:

Conference – Caller = A, Called = B1, Connected = A

Connected

Conference – Caller = B1, Called = C, Connected = C

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

For A:

Message Sequence Charts
464

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B2 calls D, D answers

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

For B1:

Conference – Caller = A, Called = B1, Connected = A

OnHold

Conference – Caller = B1, Called = C, Connected = C

For B2:

Connected -Caller = B2, Called = D, Connected = D

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

Connected -Caller = B2, Called = D, Connected = B2

For A:B1 issues a lineDevSpecific(SLDST_JOIN) to join the calls on
B1 and B2.

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

Conference – Caller = A, Called = D, Connected = D

For B1:

Conference – Caller = A, Called = B1, Connected = B1

Conference – Caller = A, Called = B1, Connected = A

Connected

Conference – Caller = B1, Called = C, Connected = C

Conference – Caller = B1, Called = D, Connected = D

For B2:

Message Sequence Charts
465

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Call will go IDLE

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

Conference – Caller = C, Called = D, Connected = D

For D:

Conference – Caller = B1, Called = D, Connected = B1

Connected

Conference – Caller = D, Called = A, Connected = A

Conference – Caller = D, Called = C, Connected = C

B2 Performs a Join Across Line Where B1 Is Already in a Conference Created by A

Expected eventsAction

For A:A,B1,C are in a conference created by A

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

For B1:

Conference – Caller = A, Called = B1, Connected = A

Connected

Conference – Caller = B1, Called = C, Connected = C

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

For A:B2 calls D, D answers

Conference – Caller = A, Called = B1, Connected = B1

Message Sequence Charts
466

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Connected

Conference – Caller = A, Called = C, Connected = C

For B1:

Conference – Caller = A, Called = B1, Connected = A

OnHold

Conference – Caller = B1, Called = C, Connected = C

For B2:

Connected -Caller = B2, Called = D, Connected = D

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

For D:

Connected -Caller = B2, Called = D, Connected = B2

For A:B2 issues a lineDevSpecific(SLDST_JOIN) to join the calls on
B1 and B2.

Conference – Caller = A, Called = B1, Connected = B2

Connected

Conference – Caller = A, Called = C, Connected = C

Conference – Caller = A, Called = D, Connected = D

For B1:

Conference – Caller = A, Called = B1, Connected = A

Connected

Conference – Caller = B1, Called = C, Connected = C

Conference – Caller = B1, Called = D, Connected = D

For B2:

Call will go IDLE

For C:

Message Sequence Charts
467

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Conference – Caller = B2, Called = C, Connected = B2

Connected

Conference – Caller = C, Called = A, Connected = A

Conference – Caller = C, Called = D, Connected = D

For D:

Conference – Caller = B2, Called = D, Connected = B2

Connected

Conference – Caller = D, Called = A, Connected = A

Conference – Caller = D, Called = C, Connected = C

B1 Performs a Join Across Line Where B1 Is in One Conference and B2 Is in a Separate Conference

Expected eventsAction

For A (GCID-1):A,B1,C are in conference1

D, B2, E are in conference2

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

For B1 (GCID-1):

Conference – Caller = A, Called = B1, Connected = A

OnHold

Conference – Caller = B1, Called = C, Connected = C

For C (GCID-1):

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

For D (GCID-2):

Conference – Caller = D, Called = B2, Connected = B2

Connected

Message Sequence Charts
468

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Conference – Caller = D, Called = E, Connected = E

For B2 (GCID-2):

Conference – Caller = D, Called = B2, Connected = D

Connected

Conference – Caller = B2, Called = E, Connected = E

For E (GCID-2):

Conference – Caller = B2, Called = E, Connected = B2

Connected

Conference – Caller = E, Called = D, Connected = D

For A:B1 issues a lineDevSpecific(SLDST_JOIN) to join the calls on
B1 and B2.

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

Conference – Caller = A, Called = CFB-2, Connected = CFB-2

For B1:

Conference – Caller = A, Called = B1, Connected = A

Connected

Conference – Caller = B1, Called = C, Connected = C

Conference – Caller = B1, Called = CFB-2, Connected = CFB-2

For B2:

Call will go IDLE

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

Conference – Caller = C, Called = CFB-2, Connected = CFB-2

For D:

Message Sequence Charts
469

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Connected

Conference – Caller = D, Called = E, Connected = E

conference – Caller = D, Called = CFB-1, Connected = CFB-1

For E:

Connected

Conference – Caller = E, Called = D, Connected = D

Conference – Caller = E, Called = CFB-1, Connected = CFB-1

Logical Partitioning
Use cases related to Logical Partitioning feature are mentioned below:

Basic Call Scenario

Basic Call scenario ; Logical partitioning Enabled = true

Basic Call failure due to Logical partitioning Feature Policy.Description

A (VOIP) on one Geolocation

A calls B:

LineMakeCall on A

Dails B (DN)

Variant 1: B Geo-Location was not Configured;B(PSTN);Policy
Config : Interior to Interior

Variant 2: B (PSTN) on another GeoLocation

Test Setup

Variant 1: Call will be successful; Reason: LP_IGNORE.

Variant 2: A goes to Proceeding State and then On A there will
be a DISCONNECTED call state will be sent to application with
cause as LINEDISCONNECTMODE_UNKNOWN.

Expected Results

Redirect Scenario

Redirect scenario ; Logical partitioning Enabled = true

Redirect Call failure due to Logical partitioning Feature Policy.Description

Message Sequence Charts
470

Message Sequence Charts
Logical Partitioning

Redirect scenario ; Logical partitioning Enabled = true

Two Clusters (Cluster1 and Cluster2) configured with logical
partition policy that will restrict the VOIP calls from Cluster1 to
PSTN calls on Cluster2. (vice versa PSTN to VIOP)

A on Cluster1 (VOIP)

B on Cluster2 (VOIP)

C on Cluster2 (PSTN)

A calls B

B redirects the call to C

Test Setup

Operation fails with error code
LINEERR_OPERATION_FAIL_PARTITIONING_POLICY.

Error code is processed on Cluster2

Expected Results

For Forward Operation same behaviour will be observed.Variants

Transfer Call Scenario

Transfer Call scenario ; Logical partitioning Enabled = true

Transfer Call failure due to Logical partitioning Feature Policy.Description

A (VOIP) in one GeoLocation (GeoLoc 1)

B (VOIP) in another GeoLocation(GeoLoc 2)

C (PSTN)in same GeoLocation as B (GeoLoc 2)

A calls B

SetUpTransfer on B.

On Consult Call at B; Dials C.

Complete Transfer on B.

Test Setup

Operation fails with error code
"LINEERR_OPERATIONUNAVAIL".

Expected Results

For Operation Adhoc Conference same behaviour will be
observed.

Variants

Join Scenario

Join scenario; Logical partitioning Enabled = true

Join failure due to Logical partitioning Feature Policy.Description

Message Sequence Charts
471

Message Sequence Charts
Message Sequence Charts

Join scenario; Logical partitioning Enabled = true

A (VOIP) in one GeoLocation (GeoLoc 1)

B (VOIP) in another GeoLocation(GeoLoc 2)

C (VOIP)in same GeoLocation as B (GeoLoc 2)

D (PSTN) in same GeoLocation as B (GeoLoc 2)

B has Three Calls

1. B -> A

2. B -> C

3. B -> D

Variant 1: Join on B with B -> A as Primary Call.

Variant 2: Join on B with B -> D as Primary Call.

Variant 3: Join on B with B -> C as Primary Call.

Test Setup

Variant 1: A, B and C will be in conference.

Variant 2: B, C and D will be in conference.

Variant 3:Either A or D will be in conference with B and C.

Expected Results

Shared Line Scenario

CallPickUp scenario ; Logical partitioning Enabled = true

CallPickUp Failure due to Logical partitioning Feature Policy.Description

A (PSTN) on one Geolocation -GeoLoc1

B (VOIP) on one Geolocation -GeoLoc1

C (VOIP) on one Geolocation -GeoLoc2

A Dails B

B Parks the call

C does LineUnPark

Test Setup

Call will be successful on A and A' call will not be presentExpected Results

Shared line features like barge, cbarge, hold & remote resume
should be disabled for calls.

Variants

CallPark: Retrieve Scenario

CallPickUp scenario ; Logical partitioning Enabled = true

CallPickUp Failure due to Logical partitioning Feature Policy.Description

Message Sequence Charts
472

Message Sequence Charts
Message Sequence Charts

CallPickUp scenario ; Logical partitioning Enabled = true

A (PSTN) on one Geolocation -GeoLoc1

B (VOIP) on one Geolocation -GeoLoc1

C (VOIP) on one Geolocation -GeoLoc2

A Dails B

B Parks the call

C does LineUnPark

Test Setup

CallUpark Will fail with error code
"LINEERR_OPERATIONUNAVAIL".

Expected Results

Basic Call Scenario

Basic Call scenario ; Logical partitioning Enabled = true

Basic Call failure due to Logical partitioning Feature Policy.Description

A (VOIP) on one Geolocation

A calls B:

LineMakeCall on A

Dails B (DN)

Variant 1: B Geo-Location was not Configured;B(PSTN);Policy
Config: Interior to Interior

Variant 2: B (PSTN) on another GeoLocation

Test Setup

Variant 1: Call will be successful; Reason: LP_IGNORE.

Variant 2: A goes to Proceeding State and then On A there will
be a DISCONNECTED call state will be sent to application with
cause as LINEDISCONNECTMODE_UNKNOWN.

Expected Results

Manual Outbound Call
The following table describes the message sequences for Manual Outbound Call when party A is idle.

Message Sequence Charts
473

Message Sequence Charts
Manual Outbound Call

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEven

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

1. Party A goes off-hook

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALTONE

dwParam2 = UNAVAIL

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Dialtone,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

2. Party A dials Party B

Message Sequence Charts
474

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

3. Party B accepts call

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = B

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = ACTIVE

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Connected,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

4. Party B answers call

Message Sequence Charts
475

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallBackInstance = 0

dwParam1 = StartReception

dwParam2 = IP Address

dwParam3 = Port

CallStartReceptionEvent, DH =
A, CH = C1

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallBackInstance = 0

dwParam1 = StartTransmission

dwParam2 = IP Address

dwParam3 = Port

CallStartTransmissionEvent,
DH = A, CH = C1

LINE_DEVSPECIFIC events are sent only if the application has requested them by using lineDevSpecific().Note

Monitoring and Recording

Monitoring a Call
A (agent) and B (customer) get connected. BIB on A gets set to on.

TAPI structuresTAPI messagesCTI messagesAction

Party C

Message Sequence Charts
476

Message Sequence Charts
Monitoring and Recording

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = C

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = ORIGIN

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = REASON,
CALLERID

dwParam2 = 0

dwParam3 = 0

NewCallEvent, CH = C3, GCH
= G2, Calling = C, Called = NP,
OrigCalled = NP, LR = NP,
State = Dialtone, Origin =
OutBound, Reason = Direct

C(supervisor) issues start
monitoring req with A’s
permanentLineID as input

Party CA’s BIB automatically answers

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = C

dwCalledID = A

dwConnectedID = A

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = ACTIVE

dwParam3 = 0

CallStateChangedEvent, CH =
C3, State = Connected, Cause =
CauseNoError, Reason =Direct,
Calling = C, Called = A,
OrigCalled = A, LR = NP

Party A

Message Sequence Charts
477

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-2)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_MONITOR_STARTED

dwParam2 = 0

dwParam3 = 0

MonitoringStartedEvent,

CH = C1

Party C

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = C

dwCalledID = A

dwConnectedID = A

dwRedirectionID = NP

dwRedirectingID = NP

DevSpecifc Data:

Type:
CallAttribute_SilentMonitorCall_
Target,

CI = C1,

DN = A’s DN,

Partition = A’s Partition,

DeviceName = A’s Name

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_ATTRIBUTE_
INFO

dwParam3 = 0

LineCallAttributeInfoEvent,

CH = C3, Type = 2
(MonitorCall_Target),

CI = C1,

Address = A’s DN, Partition =
A’s Partition, DeviceName =
A’s Name

Party A

Message Sequence Charts
478

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

DevSpecifc Data:

Type:
CallAttribute_SilentMonitorCall,

CI = C3

DN = C’s DN,

Partition = C’s Partition,

DeviceName = C’s Name

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_ATTRIBUTE_
INFO

dwParam3 = 0

LineCallAttributeInfoEvent,

CH = C1, Type = 1
(MonitorCall),

CI = C3

Address = C’s DN, Partition =
C’s Partition, DeviceName =
C’s Name

Party CC drops the call

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = IDLE

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C3, State = Idle, Cause =
CauseNoError, Reason =Direct,
Calling = C, Called = A,
OrigCalled = A, LR = NP

Party A

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_MONITOR_ENDED

dwParam2 =
DisconnectMode_Normal

dwParam3 = 0

MonitoringEndedEvent,

CH = C1

Message Sequence Charts
479

Message Sequence Charts
Message Sequence Charts

Automatic Recording
Recording type on A (agent phone) is configured as Automatic. D is configured as a Recorder Device.

TAPI structuresTAPI messagesCTI messagesAction

Party AA recieves a call from B, and A
answers the call

Recording session gets
established between the agent
phone and the recorder

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = ACTIVE

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Connected, Cause =
CauseNoError, Reason =Direct,
Calling = B, Called = A,
OrigCalled = A, LR = NP

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1 dwOrigin =
OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B
dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_RECORDING_
STARTED

dwParam2 = 0

dwParam3 = 0

RecordingStartedEvent,

CH = C1

Message Sequence Charts
480

Message Sequence Charts
Automatic Recording

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

DevSpecifc Data:

Type: App Controlled
Recording,

DN = D’s DN,

Partition = D’s Partition,

DeviceName = D’s Name

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_ATTRIBUTE_
INFO

dwParam3 = 0

LineCallAttributeInfoEvent

CH = C1, Type = 3 (Automatic
Recording), Address = D’s DN,
Partition = D’s Partition,
DeviceName = D’s Name

Application-Controlled Recording
A (C1) and B (C2) connect. Recording Type on A gets configured as ‘Application Based’. D gets configured
as a Recorder Device.

TAPI structuresTAPI messagesCTI messagesAction

Party AA issues start recording request

Recording session gets
established between the agent
phone and the recorder

Message Sequence Charts
481

Message Sequence Charts
Application-Controlled Recording

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1 dwOrigin =
OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B
dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_RECORDING_
STARTED

dwParam2 = 0

dwParam3 = 0

RecordingStartedEvent,

CH = C1

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

DevSpecifc Data:

Type: App Controlled
Recording,

DN = D’s DN,

Partition = D’s Partition,

DeviceName = D’s Name

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_ATTRIBUTE_
INFO

dwParam3 = 0

LineCallAttributeInfoEvent

CH = C1, Type = 4 (App
Controlled Recording), Address
= D’s DN, Partition = D’s
Partition, DeviceName = D’s
Name

Message Sequence Charts
482

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_RECORDING_
ENDED

dwParam2 =
DisconnectMode_Normal

dwParam3 = 0

RecordingEndedEvent,

CH = C1

A issues stopmonitoring request

NuRD (Number Matching for Remote Destination) Support

Park Monitoring
Use cases related to Park Monitoring feature are mentioned below:

Park Monitoring Feature Disabled

Setup:

The Park Monitoring message flag is disabled by default.

Cisco Unified IP phones (future version) running SIP: A(3000), B(3001)

All lines are monitered by TSP

Expected eventsAction

Application will not be notified about the New Parked call through
LINE_NEWCALL event as the park Monitoring flag is disabled.

1. A(3000) calls B(3001)

2. B(3001) receives the call and parks the call

Park Monitoring Feature Enabled

Setup:

Cisco Unified IP phones (future version) running SIP: A(3000), B(3001),C(3002)

All lines are monitered by TSP

Message Sequence Charts
483

Message Sequence Charts
NuRD (Number Matching for Remote Destination) Support

Expected eventsAction

Park Status Event on B:

At Step 3:

Application will be notified about the New Parked call through
LINE_NEWCALL event

At Step 3:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

Application does a LineGetCallInfo.

Scenario 1:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 2

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

1. A(3000) calls B(3001)

2. B(3001) receives the call and parks the call at 5555

Message Sequence Charts
484

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 3

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Scenario 2:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call at 5555

4. The Park Monitoring Reversion Timer expires while the call
is still parked.

Message Sequence Charts
485

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 5:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

At Step 6:

Application will receive the LINE_CALLSTATE event with the
Park Status = Forwarded

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

The reason code CtiReasonforwardedNoRetrievewill be updated
in the LINECALLINFO::dwDevSpecificData.ExtendedCallInfo.
dwExtendedCallReason = CtiReasonforwardedNoRetrieve.

Scenario 3:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. The Park Monitoring Forward No Retrieve destination
configured on B(3001) as C(3002)

3. A(3000) calls B(3001)

4. B(3001) receives the call and parks the call

5. The Park Monitoring Reversion Timer Expires while the call
is still parked.

1. The Park Monitoring Forward No Retrieve timer expires and
now the call is forwarded to the ParkMonitoring Forward No
Retrieve Destination C(3002).

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Message Sequence Charts
486

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Abandoned.

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

Application does a LineGetCallInfo.

Scenario 4:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. A(3000) hangs up the call.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 4

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Message Sequence Charts
487

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

At Step 5:

Application will receive the LINE_CALLSTATE event with the
Park Status = Retrieved.

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

Scenario 5:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. The Park Monitoring Reversion Timer Expires while the call
is still parked.

5. C(3002) retrieves the call

Application does a LineGetCallInfo.

hline: LH = 1

dwCallID: CallID

dwReason: LINECALLREASON_PARKED

dwRedirectingIDName: TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 5

dwCallerID: ParkDN = 5555

dwCallerName: ParkDNPartition = P1

dwcalled: ParkedParty = 3000

dwCalledIDName: ParkedPartyPartition = P1.

Message Sequence Charts
488

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 5:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

At Step 6:

Application will receive the LINE_CALLSTATE event with the
Park Status = Forwarded.

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

Application does a LineGetCallInfo.

Scenario 6:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. The Park Monitoring Forward No retrieve destination not
configured.

3. A(3000) calls B(3001)

4. B(3001) receives the call and parks the call

5. The Park Monitoring Reversion Timer Expires while the call
is still parked

6. The Park Monitoring Forward No Retrieve timer expires and
the call is forwarded to the Parkers line. LineCallInfo will contain the following:

hline: LH = 1

dwCallID: CallID

dwReason: LINECALLREASON_PARKED

dwRedirectingIDName: TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID: ParkDN = 5555

dwCallerName: ParkDNPartition = P1

dwcalled: ParkedParty = 3000

dwCalledIDName: ParkedPartyPartition = P1.

Message Sequence Charts
489

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B

At Step 5:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 6:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

At Step 7:

Application will receive the LINE_CALLSTATE event with the
Park Status = Forwarded.

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

Scenario 7:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. The Park Monitoring Forward No retrieve destination
configured as self(Parkers Line)

3. A(3000) calls B(3001)

4. B(3001) receives the call and parks the call

5. The Park Monitoring Reversion Timer Expires while the call
is still parked

6. The Park Monitoring Reversion Timer Expires while the call
is still parked

7. The Park Monitoring Forward No Retrieve timer expires and
the call is forwarded to the Parkers line.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline: LH = 1

dwCallID: CallID

dwReason: LINECALLREASON_PARKED

dwRedirectingIDName: TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID: ParkDN = 5555

dwCallerName: ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Parked Call Exists

Setup:

Cisco Unified IP phones (future version) running SIP: A(3000), B(3001).

B is not monitered by TSP.

Message Sequence Charts
490

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 4:

Application will be notified about the Parked call through
LINE_NEWCALL event.when ever cisco TSP recives the
LINE_PARK_STATUS event for already parked call.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 2

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Scenario 1:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. Now the Line B(3001) is monitered by TSP

Shared Line Scenario

Setup:

A(3000) ,D(3003) are Cisco Unified IP phones (future version) running SIP

B(3001) and B'(3001) are shared lines for Cisco Unified IP phones (future version) running SIP

C(3002) and C'(3002) are shared lines where C is a Cisco Unified IP phone (future version) running SIP and
C' is a Cisco Unified IP Phone 7900 Series running SIP .

For the shared lines the events will be delivered to the phone which parks the call .Events will not be delivered
to the other phone though the line is shared.

Message Sequence Charts
491

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

Scenario 1:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls B(3001)

3. B(3001) and B'(3001) starts ringing. B(3001) receives the
call and parks the call

4. Park Monitoring reversion timer expires while the call is still
parked.

5. D(3003) retrieves the call
At Step 5:

Application will receive the LINE_CALLSTATE event with the
Park Status = Retrieved

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

Application does a LineGetCallInfo.

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName :TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 5

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Message Sequence Charts
492

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event will be sent only to B not B'.

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 5:

Application receives the LINE_CALLSTATE event with the Park
Status = Reminder.

At Step 6:

Application receives the LINE_CALLSTATE event with the Park
Status = Forwarded.

Scenario 2:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. The Park Monitoring Forward No retrieve destination
configured as B(3001)

3. A(3000) calls B(3001)

4. B(3001) and B'(3001) starts ringing. B(3001)receives the call
and parks the call

5. The Park Monitoring Reversion Timer Expires while the call
is still parked.

6. The Park Monitoring Forward No Retrieve timer expires and
call is forwarded to B(3001).Both B(3001) and B'(3001) starts
ringing as they are shared lines.

Application receive the LINE_CALLSTATE event with callstate
IDLE.

Application does a LineGetCallInfo.

LineCallInfo contains the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Park Status Event on C'.

At Step 3:

Application is notified about the New Parked call through
LINE_NEWCALL event as the call is parked by the Normal TNP
phone.

Scenario 3:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls C(3002)

3. C(3002) and C'(3002) starts ringing. C'(3002) receives the
call and parks the call

4. D(3003) retrieves the call

Message Sequence Charts
493

Message Sequence Charts
Message Sequence Charts

Park Monitoring Feature Disabled

Setup:

The Park Monitoring message flag is Enabled using SLDST_SET_STATUS_MESSAGES request for line
B(3001).

A(3000), D(3003) is a Cisco Unified IP phones (future version)

Application invokes the Line_open () API on provider to monitor ParkDN

.

Expected eventsAction

Park Status Event on B:

At Step 3:

Application receives the LINE_NEW_CALL event for PARKDN.

At Step 3:

Application receives the LINE_PARK_STATUS event with the
Park Status = Parked.

At Step 4:

Application will receive the LINE_CALL_STATE event with the
Park Status = Reminder.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName :TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 3

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Scenario 1:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. The Park Monitoring Reversion Timer Expires while the call
is still parked.

Persistent Connection Use Cases
The following pre-conditions apply to all persistent call use cases, unless specified:

• The provider is in IN_SERVICE state.

• All addresses and terminals are already in service.

• Device A (CTI Remote Device - Name: "CTIRDtapi", Line A1 (dn: 881000))

Message Sequence Charts
494

Message Sequence Charts
Persistent Connection Use Cases

Remote destination 1 (Name: "rd", Number: "78000")

• Device B (IP Phone - Name: "SEP001319ACCA26", Line B1 (dn: 1000))

• Device C (IP Phone - Name: "SEP00156247EE60", Line C1 (dn: 2000))

• User1 has in its control list: Devices A, B and C. All devices and lines are observed.

Table 78: Call createPersistentCall() on an Address That Is Not Configured to a Remote Terminal Device, i.e. on an IP Phone

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

COMMAND_NOT_IMPLEMENTED_
ON_DEVICE.

Caught exception
com.cisco.jtapi.PlatformException: Internal
callprocessing error :Device does not
support the command

User1 invokes CiscoAddress.
createPersistentCall ("SEP00156247EE60",
"5000", "remote") on device C.

Table 79: Call createPersistentCall()on an Address That Is Configured to a Remote Terminal Device Where Active RD Is Not Set

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_REMOTE_DEVICE_REQUEST_
FAILED_ ACTIVE_RD_NOT_SET.

Caught exception
com.cisco.jtapi.PlatformException: The
active remote destination is not set.

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

Table 80: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD Is Set. Verify That Persistent Call Is
Connected

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("78000",
true) on device A.

Message Sequence Charts
495

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv

CTIRDjtapi

Call answered at remote destination, dn =
78000

((CiscoAddress.
getPersistentConnection("CTIRDjtapi")).
getCall()).isPersistentCall() = true.

User1 invokes CiscoAddress.
getPersistentConnection ("CTIRDjtapi")
and verify that the connection for the
persistent call is returned and uses that to
get the Call object and confirm it is for the
persistent call.

Provider.getCalls() = nullUser1 invokes Provider.getCalls()

Address.getConnections() on line A = nullUser1 invokes Address.getConnections()
on line A.

Terminal.getTerminalConnections() on
device A = null

User1 invokes Terminal.getTerminal
Connections() on device A.

Message Sequence Charts
496

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

Disconnect/drop the persistent call. User1
invokes either Call.drop() or
Connection.disconnect()

Table 81: Call createPersistentCall() on an Address Configured to a Remote Terminal Device Where a Persistent Call Already Exists

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

CTIERR_PERSISTENT_CALL_EXISTS.

Caught exception
com.cisco.jtapi.PlatformException:
Persistent Call exists.

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "6000",
"remote2") on device A.

Table 82: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD Is Set. Verify That Persistent Call Is
Connected and Then Have Remote Destination Hang Up

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"
CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination("78000", true)
on device A.

Message Sequence Charts
497

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv
CTIRDjtapi

Call answered at remote destination, dn =
78000

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

Remote destination with dn = 78000 hangs
up.

Table 83: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD = True. Verify That Persistent Call Is
Connected. Set Active RD = False and Verify That Persistent Call Is Dropped

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Message Sequence Charts
498

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"
CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminal
RemoteDestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination("78000", true)
on device A

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv
CTIRDjtapi

Call answered at remote destination, dn =
78000

Message Sequence Charts
499

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = false

CiscoProvTerminal
RemoteDestinationChangedEv

See persistent call gets dropped:

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination("78000",
false) on device A.

Table 84: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD = True. Verify That Persistent Call Is
Connected. Make Incoming Customer Call to Same Remote Terminal Device

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminal
RemoteDestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination("78000", true)
on device A.

Message Sequence Charts
500

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv
CTIRDjtapi

Call answered at remote destination, dn =
78000

Message Sequence Charts
501

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

CallingAddress = 1000,

CalledAddress = 8881000,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 8881000

GC2: CallActiveEv

GC2: ConnCreatedEv 1000

GC2: ConnConnectedEv 1000

GC2: CallCtlConnInitiatedEv 1000

GC2: TermConnCreatedEv
SEP001319ACCA26

GC2: TermConnActiveEv
SEP001319ACCA26

GC2: CallCtlTermConnTalkingEv
SEP001319ACCA26

GC2: CallCtlConnDialingEv 1000

GC2: CallCtlConnEstablishedEv 1000

GC2: ConnCreatedEv 8881000

GC2: ConnInProgressEv 8881000

GC2: CallCtlConnOfferedEv 8881000

GC2: ConnAlertingEv 8881000

GC2: CallCtlConnAlertingEv 8881000

GC2: TermConnCreatedEv CTIRDjtapi

GC2: TermConnRingingEv CTIRDjtapi

GC2: CallCtlTermConnRingingEv
CTIRDjtapi

Call.connect("SEP001319ACCA26",
"1000", "8881000")

GC2: ConnConnectedEv 8881000

GC2: CallCtlConnEstablishedEv 8881000

GC2: TermConnActiveEv CTIRDjtapi

GC2: CallCtlTermConnTalkingEv
CTIRDjtapi

Call is answered at device A

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = false.

CiscoProvTerminal
RemoteDestinationChangedEv

Both persistent call with GC1 and customer
call with GC2 are not dropped/disconnected
even though active rd = false.

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination("78000",
false) on device A.

Message Sequence Charts
502

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

GC2: TermConnDroppedEv
SEP001319ACCA26

GC2: CallCtlTermConnDroppedEv
SEP001319ACCA26

GC2: ConnDisconnectedEv 1000

GC2: CallCtlConnDisconnectedEv 1000

GC2: TermConnDroppedEv CTIRDjtapi

GC2: CallCtlTermConnDroppedEv
CTIRDjtapi

GC2: ConnDisconnectedEv 8881000

GC2: CallCtlConnDisconnectedEv
8881000

GC2: CallInvalidEv

Since there are no active calls on device A
and active rd is now false, the persistent
call with GC1 is now
dropped/disconnected.

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

Customer call with GC2 is
disconnected/dropped. User1 invokes either
Call.drop() or Connection.disconnect() on
the call with GC2.

Table 85: Have a Persistent Call and Customer Call Connected. Invoke hold() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Message Sequence Charts
503

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke hold() on the persistent call with
GC1.

Table 86: Have a Persistent Call and Customer Call Connected. Invoke startRecording() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke startRecording() on the persistent
call with GC1.

Table 87: Have a Persistent Call and Customer Call Connected. Invoke stopRecording() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke stopRecording() on the persistent
call with GC1. Make sure Selective call
recording is enabled.

Table 88: Have a Persistent Call and Customer Call Connected. Invoke conference() on the Persistent Call Where Persistent Call Is Primary Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Message Sequence Charts
504

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke conference() where persistent call
with GC1 is the primary call and customer
call with GC2 is the secondary call (jtapi
internally calling join() for this).

Table 89: Have a Persistent Call and Customer Call Connected. Invoke conference() on the Persistent Call Where Persistent Call Is Secondary Which Should Be
Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke conference() where customer call
with GC2 is primary call and persistent call
with GC1 is secondary call (jtapi internally
calling join() for this).

Table 90: Have a Persistent Call and Customer Call Connected. Invoke park() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation not allowed.

Invoke park().

Message Sequence Charts
505

Message Sequence Charts
Message Sequence Charts

Table 91: Have a Persistent Call and Customer Call Connected. Invoke transfer() on the Persistent Call Where Pc Is Primary Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke transfer(Call) where persistent call
with GC1 is primary call and customer call
with GC2 is secondary.

Table 92: Have a Persistent Call and Customer Call Connected. Invoke transfer() on the Persistent Call Where Pc Is Primary to Another Dn Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke transfer(String address) where
persistent call with GC1 is primary call to
line C (dn = 2000).

Table 93: Have a Persistent Call and Customer Call Connected. Invoke transfer() on the Persistent Call Where Pc Is Secondary Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke transfer(Call) where customer call
with GC2 is primary call and persistent call
with GC1 is secondary.

Message Sequence Charts
506

Message Sequence Charts
Message Sequence Charts

Table 94: Have a Persistent Call and Customer Call Connected. Invoke consult() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Make consult call from device A to line C
(dn = 2000).

Table 95: Have a Persistent Call and Customer Call Connected. Invoke pickup() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation not allowed.

Invoke pickup("8881000") on device A.

Table 96: Have a Persistent Call and Customer Call Connected. Invoke otherPickup() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation not allowed.

Invoke otherPickup("8881000") on device
A.

Message Sequence Charts
507

Message Sequence Charts
Message Sequence Charts

Table 97: Have a Persistent Call and Customer Call Connected. Invoke redirect() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke redirect("2000") on the persistent
call.

Presentation Indication

Making a Call Through Translation Pattern
The following table describes the message sequences for the Presentation Indication scenario of making a call
through translation pattern. In the Translation Pattern admin pages, both the callerID/Name and
ConnectedID/Name get set to "Restricted".

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C1, GCH = G1,

Calling = A, Called = NP,
OrigCalled = NP, LR = NP,
State = Dialtone, Origin =
OutBound, Reason = Direct

Party A goes off-hook

Message Sequence Charts
508

Message Sequence Charts
Presentation Indication

TAPI structuresTAPI messagesCTI messagesAction

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALTONE

dwParam2 = UNAVAIL

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Dialtone, Cause =
CauseNoError, Reason =Direct,
Calling = A, Called = NP,
OrigCalled = NP, LR = NP

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Dialing, Cause =
CauseNoError, Reason =Direct,
Calling = A, Called = NP,
OrigCalled = NP, LR = NP

Party A dials Party B through
Translation pattern

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A
dwCallerIDName = A's Name

dwCalledID = B

dwCalledIDName = B’s name
dwConnectedID = NP

dwConnectedIDName = NP

dwRedirectionID = NP
dwRedirectionIDName = NP

dwRedirectionID = NP
dwRedirectionIDName = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =

PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Proceeding, Cause
= CauseNoError, Reason =
Direct, Calling = A,
CallingPartyPI = Allowed,
Called = B, CalledPartyPI =
Restricted, OrigCalled = B,
OrigCalledPI = restricted, LR =
NP

Party B accepts the call

Message Sequence Charts
509

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP

dwRedirectionID = NP

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Ringback, Cause =
CauseNoError, Reason =Direct,
Calling = A, CallingPI =
Allowed, Called = B, CalledPI
= Restricted, OrigCalled = B,
OrigCalledPI = Restricted, LR
= NP

Party B accepts the call

(continued)

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A
dwCallerIDName = A's Name

dwCalledID = B
dwCalledIDName = B’s Name

dwConnectedID = A,
dwConnectedIDName =

A's Name,

dwRedirectingID = NP

dwRedirectingIDName = NP

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = ACTIVE

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Connected, Cause =
CauseNoError, Reason =Direct,
Calling = A, CallingPI =
Allowed, Called = B, CalledPI
= Restricted, OrigCalled = B,
OrigCalledPI = Restricted, LR
= NP

Party B answers the call

Message Sequence Charts
510

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallBackInstance = 0

dwParam1 =

StartReception

dwParam2 = IP Address

dwParam3 = Port

CallStartReceptionEvent, DH =
A, CH = C1

No changeLINE_DEVSPECIFIC1

hDevice = hCall-1

dwCallBackInstance = 0

dwParam1 =

StartTransmission

dwParam2 = IP Address

dwParam3 = Port

CallStartTransmissionEvent,
DH = A, CH = C1

LINE_DEVSPECIFIC events only get sent if the application requested them by using lineDevSpecific().Note

Blind Transfer Through Translation Pattern
The following table describes the message sequences for the Presentation Indication scenario of Blind Transfer
through Translation Pattern. In this scenario, A calls via translation pattern B, B answers, and A and B are
connected.

TAPI structuresTAPI messagesCTI messagesAction

Party AParty B does a
lineBlindTranfser() to blind
transfer call from party A to
party C via translation pattern

Message Sequence Charts
511

Message Sequence Charts
Blind Transfer Through Translation Pattern

TAPI structuresTAPI messagesCTI messagesAction

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerIDFlags =
LINECALLPARTYID_

BLOCKED

dwCallerID = NP
dwCallerIDName = NP

dwCalledID = B
dwCalledIDName = B’s name

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP dwConnectedIDName =NP
dwRedirectingID = B

dwRedirectingIDName =

B’s name

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

LINE_CALLINFO, hDevice =
hCall-1, dwCallbackInstance =
0, dwParam1 =
CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

CallPartyInfoChangedEvent,
CH = C1, CallingChanged =
False, Calling = A,

CallingPartyPI = Restricted,
CalledChanged = True, Called
= C,

CalledPartyPI = Restricted,
OriginalCalled = NULL,
OriginalCalledPI = Restricted,

LR = NULL, Cause =
BlindTransfer

Party B

Message Sequence Charts
512

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerIDFlags =
LINECALLPARTYID_

BLOCKED

dwCallerID = NP
dwCallerIDName = NP

dwCalledID = B
dwCalledIDName = B’s name

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP dwConnectedIDName =NP
dwRedirectingID = B

dwRedirectingIDName =

B’s name

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = IDLE dwParam2
= 0

dwParam3 = 0

CallStateChangedEvent, CH =
C2,

State = Idle, Reason = Direct,

Calling = A, CallingPartyPI =
Restricted, Called = B,
CalledPartyPI = Restricted,
OriginalCalled = B,
OrigCalledPartyPI = Restricted,
LR = NULL

Party CParty B does a
lineBlindTranfser() to blind
transfer call from party A to
party C via translation pattern
(continued)

Message Sequence Charts
513

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = TRANSFER

dwCallerIDFlags =
LINECALLPARTYID_

BLOCKED

dwCallerID = NP
dwCallerIDName = NP

dwCalledID = NP
dwCalledIDName = NP

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP dwConnectedIDName =NP
dwRedirectingID = B

dwRedirectingIDName =

B's name

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

TSPI: LINE_APPNEWCALL
hDevice = C

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C3,

origin = Internal_Inbound,

Reason = BlindTransfer,

Calling = A,

CallingPartyPI = Restricted,

Called = C,

CalledPartyPI = Restricted,

OriginalCalled = B,
OrigCalledPartyPI = Restricted,

LR = B,

LastRedirectingPartyPI =

Restricted

Party AParty C is offering

Message Sequence Charts
514

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerIDFlags =
LINECALLPARTYID_

BLOCKED

dwCallerID = NP
dwCallerIDName = NP

dwCalledID = B
dwCalledIDName = B’s name

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP dwConnectedIDName =NP
dwRedirectingID = B

dwRedirectingIDName =

B’s name

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = RINGBACK
dwParam2 = 0

dwParam3 = 0

CallStateChangeEvent, CH =
C1,

State = Ringback, Reason =
Direct,

Calling = A,

CallingPartyPI = Restricted,

Called = C,

CalledPartyPI = Restricted,

OriginalCalled = B,
OrigCalledPartyPI = Restricted,

LR =B, LastRedirectingPartyPI
=

Restricted

Party CParty C is offering (continued)

Message Sequence Charts
515

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwCallerIDFlags =
LINECALLPARTYID_

BLOCKED dwCallerID = NP
dwCallerIDName = NP

dwCalledID = NP
dwCalledIDName = NP

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP dwConnectedIDName =NP
dwRedirectingID = B

dwRedirectingIDName =

B's name

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = OFFERING
dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C3,

State = Offering, Reason =
BlindTransfer, Calling = A,

CallingPartyPI = Restricted,

Called = C,

CalledPartyPI = Restricted,

OriginalCalled = B,

OrigCalledPartyPI = Restricted,

LR =B, LastRedirectingPartyPI
=

Restricted

Redirect Set Original Called (TxToVM)
The following table describes the message sequences for Redirece Set Original Called (TxToVM) feature
where A calls B, B answers, and A and B are connected.

Message Sequence Charts
516

Message Sequence Charts
Redirect Set Original Called (TxToVM)

Table 98: Message Sequences for Redirect Set Original Called (TxToVM)

TAPI structuresTAPI messagesCTI messagesAction

Party AParty B does lineDevSpecific
for REDIRECT_SET_
ORIG_CALLED with DestDN
= C's VMP and SetOrigCalled
= C

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = C

dwConnectedID = NULL

dwRedirectingID = NP

dwRedirectionID = NP

LINE_CALLINFO, hDevice =
hCall-1, dwCallbackInstance =
0, dwParam1 =
CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

CallPartyInfoChangedEvent,
CH = C1, CallingChanged =
False, Calling = A,
CalledChanged = True, Called
= C, OriginalCalled = NULL,
LR = NULL, Cause = Redirect

Party B

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NULL

dwRedirectingID = NULL

dwRedirectionID = NULL

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = IDLE dwParam2
= 0

dwParam3 = 0

CallStateChangedEvent,

CH = C2,

State = Idle,

reason = DIRECT,

Calling = A,

Called = B,

OriginalCalled = B,

LR = NULL

Party C's VMP

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = REDIRECT

dwCallerID = A

dwCalledID = C

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C's VMP

TSPI: LINE_APPNEWCALL

hDevice = C

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C3,

origin = Internal_Inbound,

reason = Redirect,

Calling = A,

Called = C,

OriginalCalled = C,

LR = B

Message Sequence Charts
517

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

Party AParty C is offering

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C's VMP

TSPI: LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangeEvent,

CH = C1,

State = Ringback,

Reason = Direct,

Calling = A,

Called = C,

OriginalCalled = C,

LR = B

Party C

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = C

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C

TSPI: LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = OFFERING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C3,

State = Offering,

Reason = Redirect,

Calling = A,

Called = C,

OriginalCalled = C,

LR = B

Refer and Replace Scenarios

In-Dialog Refer -Referrer in Cisco Unified Communications Manager Cluster
The following table describes the message sequences for the Refer and Replaces scenario of in-dialog refer
where referer is in Cisco Unified Communications Manager cluster.

Message Sequence Charts
518

Message Sequence Charts
Refer and Replace Scenarios

Table 99: Message Sequences for In-Dialog Refer -Referrer in Cisco Unified Communications

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

A-->B has a call in connected
state. The call party information
at B should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = A

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

A-->B has a call in connected
state. The call party information
at A should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

Referrer (A), Referee (B), and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

NewCallEvent should be
{calling = B, called = C, LRP =
A, origCalled = C, reason =
REFER}

LINECALLSTATE_OFFERING

TAPI CallInfo

dwCallerID = B

dwCalledID = C

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = “”

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_INTERNAL

A gets LINECALLSTATE_

UNKNOWN | CLDSMT_

CALL_WAITING_STATE

with extended reason = REFER

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

(A) initiates REFER (B) to (C)

Message Sequence Charts
519

Message Sequence Charts
Message Sequence Charts

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

LINECALLSTATE_CONNECTED

TAPI callInfo

dwCallerID = B

dwCalledID = C

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = B

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_INTERNAL

CallPartyInfoChangedEvent @
B with {calling = B, called = C,
LRP = A, origCalled = C,
reason = REFER}

TAPI callInfo

dwCallerID = B

dwCalledID = B

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = C

dwReason = DIRECT

dwOrigin = LINECALL

ORIGIN_INTERNAL

LINECALLSTATE_IDLEwith
extended REFER reason

C answers the call, and Refer is
successful

In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State
The following table describes the message sequences for the Refer and Replaces scenario of in-dialog refer
where ReferToTarget redirects the call in Offering state.

Table 100: Message Sequences for In-Dialog Refer Where ReferToTarget Redirects the Call In

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

A-->B has a call in connected
state. The call party information
at B should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = A

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

A-->B has a call in connected
state. The call party information
at A should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

Referrer (A), Referee (B), and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

Message Sequence Charts
520

Message Sequence Charts
In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

NewCallEvent should be
{calling = B, called = C, LRP =
A, origCalled = C, reason =
REFER}

LINECALLSTATE_OFFERING

TAPI callInfo

dwCallerID = B

dwCalledID = C

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = null

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_INTERNAL

B gets CPIC with (calling = B,
called = C, ocdpn = C, LRP =
A, reason = REFER, call state
= Ringback)

TAPI CallInfo

dwCallerID = B

dwCalledID = C

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = null

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

A gets LINECALLSTATE_

UNKNOWN | CLDSMT_

CALL_WAITING_STATE

with extended reason = REFER

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

(A) initiates REFER (B) to (C)

IDLE with reason = Redirect

TAPI
LINECALLSTATE_IDLE

D will get NewCallEvent with
reason = Redirect call info same
as B’s call info. (calling = B,
called = D, ocdpn = C, LRP =
C, reason = redirect)

Offering/accepted/connected

CallPartyInfoChangedEvent @
B with {calling = B, called = D,
LRP =C, origCalled = C, reason
= Redirect}

Callstate = connected

TAPI callInfo

dwCallerID = B

dwCalledID = B

dwRedirectingID = C

dwRedirectionID = D

dwConnectedID = D

dwReason = DIRECT

dwOrigin = LINECALL

ORIGIN_INTERNAL

LINECALLSTATE_IDLEwith
extended reason = REFER

(REFER considered as
successful when D answers)

C Redirects the call to D in
offering state, and D answers

In-Dialog Refer Where Refer Fails or Refer to Target Is Busy
The following table describes the message sequences for the Refer and Replaces scenario of in-dialog refer
fails or refer to target is busy.

Message Sequence Charts
521

Message Sequence Charts
In-Dialog Refer Where Refer Fails or Refer to Target Is Busy

Table 101: Message Sequences for In-Dialog Refer Where Refer Fails or Refer to Target Is Busy

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

A-->B has a call in connected
state. The call party information
at B should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = A

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

A-->B has a call in connected
state. The call party information
at A should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

Referrer (A), Referee (B,) and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

No changeA gets LINECALLSTATE_

UNKNOWN | CLDSMT_

CALL_WAITING_STATEwith
extended reason = REFER

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

(A) initiates REFER (B) to (C)

Message Sequence Charts
522

Message Sequence Charts
Message Sequence Charts

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

If B goes to ringback when call
is offered to C (C does not
answer finally) it should also
receive Connected Call State
and CPIC event

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = A

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

A gets
LINECALLSTATE_CONNECTED
with extended reason = REFER

(REFER considered as failed)

C is busy / C does not answer

Out-of-Dialog Refer
The following table describes the message sequences for the Refer and Replaces scenario of Out-of-Dialog
Refer.

Table 102: Message Sequences for Out-of-Dialog Refer

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

There is no preexisting call
between A and B.

There is no preexisting call
between A and B.

Referrer (A), Referee (B), and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

Message Sequence Charts
523

Message Sequence Charts
Out-of-Dialog Refer

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

B should get NewCallEvent
with call info as {calling = A,
called = B, LRP = null,
origCalled = B, reason =
REFER}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = A

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_EXTERNAL

A initiates REFER B to (C)

Call state = connected (media
does not flow between A and B
when call goes to connected
state)

TAPI CallInfo (no change)

B answers

Message Sequence Charts
524

Message Sequence Charts
Message Sequence Charts

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

NewCallEvent should be
{calling = B, called = C, LRP =
A, origCalled = C, reason =
REFER} This info is exactly
same as though caller (A)
performed REDIRECT
operation (except the reason is
different here).

TAPI callInfo

dwCallerID = B

dwCalledID = C

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = B

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_INTERNAL

CallPartyInfoChangedEvent @
B with {calling = B, called = C,
LRP = A, origCalled = C,
reason = REFER}

TAPI callInfo

dwCallerID = B

dwCalledID = B

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = C

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_EXTERNAL

CiscoUnified Communications
Manager redirects the call to C

Invite with Replace for Confirmed Dialog
The following table describes the message sequences for the Refer and Replaces scenario of invite with replace
for confirmed dialog. Here, A, B, and C exist inside Cisco Unified Communications Manager. A confirmed
dialog occurs between A and B. C initiates Invite to A with replace B's dialog ID.

Table 103: Message Sequences for Invite with Replace for Confirmed Dialog

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

Call State = connected

Caller = A,

Called = B,

Connected = A,

Reason = direct,

gcid = GC1

Call State = connected,

Caller = A,

Called = B,

Connected = B,

Reason = direct,

gcid = GC1

Confirmed dialog occurs
between A and B

Message Sequence Charts
525

Message Sequence Charts
Invite with Replace for Confirmed Dialog

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

NewCall at C gcid = GC2,
reason = REPLACEs,

Call state = Dialing,

Caller = C,

Called = null,

Reason = REPLACEs

C Invites A by replacing B’s
dialog

CPIC changed

Caller = C,

Called = A,

ocdpn = A,

LRP = B,

Reason = REPLACEs

CallState = connected

TAPI callinfo

Caller = C,

Called = A,

Connected = A,

Redirecting = B,

Redirection = A, reason =
UNKNOWN with extended
REPLACEs,

callID = GC2

Call State = IDLE,

extended reason = REPLACEs

GCID Changed to GC2,

Reason = REPLACEs

CPIC Caller = C,

Called = A,

ocdpn = A,

LRP = B

Reason = REPLACEs

Callstate = connected

TAPI callinfo

caller = C,

called = B,

connected = C,

redirecting = B,

redirection = A, reason =
DIRECT with extended
REPLACEs,

callID = GC2

CiscoUnified Communications
Manager joins A and C in a call
and disconnects call leg @ B

Refer with Replace for All in Cluster
The following table describes the message sequences for the Refer and Replaces scenario of refer with replace
for all in cluster. Here, a confirmed dialog exists between A and B and A and C. A initiates Refer to C with
replace B’s dialog ID.

Message Sequence Charts
526

Message Sequence Charts
Refer with Replace for All in Cluster

Table 104: Message Sequences for Refer with Replace for All in Cluster

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

Call State = connected

Caller = A,

Called = C,

Connected = A,

Reason = direct,

gcid = GC1

Call State = connected

Caller = A,

Called = B,

Connected = A,

Reason = direct,

gcid = GC2

Call State = onhold,

GC1,

Caller = A,

Called = C,

Connected = C,

Reason = direct

CallState = connected,

GC2,

Caller = A,

Called = B,

Connected = B,

Reason = direct

Dialog between A and B and
dialog between A and C

CPIC Changed from CTI with
Caller = B,

Called = C,

Origcalled = C,

LRP = A,

Reason = TRANSFER

TAPI callinfo caller = B, called
= C, connected = B, redirecting
= A, redirection = C, reason =
direct with extended
TRANSFER. callId = GC1

GCID changed from

CTI reason = TRANSFER

CPIC Changed fromCTI Caller
= B,

Called = C,

Origcalled = C,

LRP = A,

Reason = TRANSFER

TAPI callinfo

Caller = B,

Called = B,

Connected = C,

Redirecting = A,

Redirection = C,

Reason = DIRECT with
extended reason TRANSFER.

CallId = GC1

From CTI (callState = IDLE
with reason = TRANSFER)

TAPI call state IDLE with
Reason = DIRECT with
extended reason TRANSFER

A completes Refer to C
replacing A->B’s dialog (B is
referred to target)

Message Sequence Charts
527

Message Sequence Charts
Message Sequence Charts

Refer with Replace for All in Cluster Replace Dialog Belongs to Another Station
The following table describes the message sequences for the Refer and Replaces scenario of refer with replace
for all in cluster, where replace dialog belongs to another station. In this scenario:

A is Referrer, D is Referee, and C is Refer-to-Target.

A confirmed dialog exists between A(d1) and B & C(d2) and D.

A initiates Refer to D on (d1) with Replaces (d2).

Table 105: Message Sequences for Refer with Replace for All in Cluster, Replace Dialog Belongs to Another Station

CallState/CallInfo

@Referree (D)

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@B

CallState/CallInfo

@Referrer (A)

Actions

Call State = connected

Caller = C,

Called = D,

Connected = C,

Reason = direct,

gcid = GC2

Call State = connected

Caller = C,

Called = D,

Connected = D,

Reason = direct,

gcid = GC2

Call State = connected

Caller = A,

Called = B,

Connected = A,

Reason = direct,

gcid = GC1

Call State = onhold,

Caller = A,

Called = B,

Connected = B,

Reason = direct,

gcid = GC1

Dialog between A and B
and dialog betweenC and
D

GCID changed from CTI
to GC1

CPIC Changed from CTI
with

Caller = B (referee),
Called = D,

Origcalled = D,

LRP = C, Reason =
REPLACEs

TAPI callinfo

caller = B,

called = D,

connected = B,

redirecting = C,

redirection = D,

reason = DIRECT with
extended REPLACEs,
callId = GC1

From CTI

(callState = IDLE with
reason = REPLACEs.)

TAPI call state IDLE
with reason = DIRECT
with extended reason =
REPLACEs

CPIC Changed fromCTI
Caller = B,

Called = C,

Origcalled = D,

LRP = C,

Reason = REPLACEs

TAPI callinfo

Caller = B,

Called = B,

Connected = D,

Redirecting = C,

Redirection = D,

Reason = DIRECT with
extended REPLACEs,
CallId = GC1

From CTI

(callState = IDLE with
reason = REFER)

TAPI call state IDLE
with reason = DIRECT
with extended reason =
REFER

A initiates Refer to D on
(d1) with Replaces (d2)

Message Sequence Charts
528

Message Sequence Charts
Refer with Replace for All in Cluster Replace Dialog Belongs to Another Station

Secure Conferencing

Conference with All Parties as Secure
The conference bridge includes security profile.MOH is not configured. A, B, and C get registered as Encrypted.

TAPI structuresTAPI messagesCTI messagesAction

Party AA calls B; B answers the call

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = B
dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = A

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CallStateChangedEvent, CH =
C1, GCH = G1, Calling = A,
Called = B, OrigCalled = B, LR
=NP, State = Connected, Origin
= OutBound, Reason = Direct

SecurityStaus =
NotAuthenticated

CtiCallSecurityStatusUpdate

LH = A, CH = C1

SecurityStaus = Encrypted

Party B

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T1

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = A
dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CallStateChangedEvent, CH =
C2, GCH = G1, Calling = A,
Called = B, OrigCalled = B, LR
=NP, State = Connected, Origin
= OutBound, Reason = Direct

SecurityStaus =
NotAuthenticated

CtiCallSecurityStatusUpdate

LH = B, CH = C2

SecurityStaus = Encrypted

Party BB does lineSetUpConference

Message Sequence Charts
529

Message Sequence Charts
Secure Conferencing

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T1

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = A
dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo =
NotAuthenticated

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate

LH = B, CH = C2

SecurityStaus =
NotAuthenticated

Party BB calls C; C answers the call

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T2

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = C

dwConnectedID = C
dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CallStateChangedEvent, CH =
C3, GCH = G2, Calling = A,
Called = B, OrigCalled = B, LR
=NP, State = Connected, Origin
= OutBound, Reason = Direct

SecurityStaus =
NotAuthenticated

CtiCallSecurityStatusUpdate

LH = B, CH = C3

SecurityStaus = Encrypted

Party C

Message Sequence Charts
530

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = B

dwCalledID = C

dwConnectedID = B
dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = C

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CallStateChangedEvent, CH =
C4, GCH = G2, Calling = B,
Called = C, OrigCalled = C, LR
=NP, State = Connected, Origin
= OutBound, Reason = Direct
SecurityStaus =
NotAuthenticated

CtiCallSecurityStatusUpdate

LH = C, CH = C4

SecurityStaus = Encrypted

Party BB completes conf

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate

LH = B, CH = C2

SecurityStaus = Encrypted

Hold or Resume in Secure Conference
Conference bridge includes security profile. MOH gets configured. A, B, and C represent secure phones and
exist in conference with overall call security status as secure.

TAPI structuresTAPI messagesCTI messagesAction

Party AA does lineHold

Message Sequence Charts
531

Message Sequence Charts
Hold or Resume in Secure Conference

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo =
NotAuthenticated

LINE_CALLDEVSPECIFIC

hDevice = A

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus =
NotAuthenticated

Party B

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo =
CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus =
NotAuthenticated

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = B, CH = C2,

SecurityStaus =
NotAuthenticated

Party C

Message Sequence Charts
532

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine =

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo =
NotAuthenticated

LINE_CALLDEVSPECIFIC

hDevice = C

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus =
NotAuthenticated

Party AA does lineResume

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = A

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus = Encrypted

Party B

Message Sequence Charts
533

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = B, CH = C2,

SecurityStaus = Encrypted

Party C

LINECALLINFO (hCall-1)

hLine =

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = C

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = C, CH = C4,

SecurityStaus = Encrypted

Secure Monitoring and Recording

Silent Monitoring
Set up:

User is in “Allow Monitoring” Group

BIB on B is set to ON

A, A1 – Customer Phones

Message Sequence Charts
534

Message Sequence Charts
Secure Monitoring and Recording

B, B1– Agent phones

C, C1 – Supervisor phones

All Lines are Opened with Ext Version – 0x000A0000

Expected resultAction

Silent Monitored Call is created in Non-Secure Mode

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B.

New call will be fired on C

Line_CallDevSpecific(dwparam1 =DevSpecificData, dwparam2
= CallAttributeInfo) will be fired to B and C

CallReason = LINECALLREASON_DIRECT

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C’s info.

CallAttributeType = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Not Authenticated

CallReason = LINECALLREASON_DIRECT

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

Extended Call Reason = “CtiReasonSilentMonitoring”

CallAttributeType = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

LineInitialize.

Device A,B and C is Non-Secure

LineOpen on A,B and C

A calls B;B answers the Call

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

LineGetCallInfo on B

LineGetCallInfo on C

Message Sequence Charts
535

Message Sequence Charts
Message Sequence Charts

Expected resultAction

CallReason = LINECALLREASON_UNKNOWNVaraint 1 : Monitor Customer, Agent and Supervisor Lines after
Monitoring Session is Started.

Start Monitoring Lines from Other Application or
Close Agent and Supervisor and Reopen the same.

Note

LineGetCallInfo on B

Message Sequence Charts
536

Message Sequence Charts
Message Sequence Charts

Basic Silent Monitoring Scenario in Secure Mode

Expected resultAction

Silent Monitored Call is created in Secure Mode

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B.

New call will be fired on C

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C

Line_CallDevSpecific(dwparam1 = DevSpecificData,

dwparam2 = SLDST_SRTP_INFO, dwParam3 =
MEDIA_ENCRYPT_KEYS_AVAILABLE) will be fired for the
call on C.

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Encrypted

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Encrypted

LineInitialize.

Device A,B and C is Secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

LineGetCallInfo on B

LineGetCallInfo on C

Message Sequence Charts
537

Message Sequence Charts
Basic Silent Monitoring Scenario in Secure Mode

Silent Monitoring Scenario on Non-Secure Call in Secure Mode

Expected resultAction

Monitoring Session will be started and the Media is setup in
Secure Mode

Events delivered will be same as use case 8.13.6.2.

Line_CallDevSpecific (dwparam1 =DevSpecifcData, dwparam2
= OverallSecurityStatus) will be fired to C.

SRTP info is not Available

security Indicator = MEDIA_NOT_ENCRYPTED

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Not Authenticated

SRTP info will be available

security Indicator = MEDIA_ENCRYPT_KEYS_AVAILABLE

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

Same Events as above

LineInitialize.

Device A is not Secure

Device B and C is Secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is non Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

LineGetCallInfo on B

LineGetCallInfo on C

Variant : A is Secure

Call on A is Hold and

Non-Secure MOH is Inserted

Message Sequence Charts
538

Message Sequence Charts
Silent Monitoring Scenario on Non-Secure Call in Secure Mode

Silent Monitoring Scenario on Non-Secure Call From Supervisor Which Is Secure

Expected resultAction

Call between B and C will be Non-Secure

No SRTP Events will be fired

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

security Indicator = MEDIA_NOT_ENCRYPTED

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

LineInitialize.

Device A and B is not Secure

Device C is Secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is non Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

LineGetCallInfo on C

Silent Monitoring Scenario on Secure Call From Supervisor Which Is Non-Secure

Expected resultAction

• New Call will be Fired on C.
• Call on C will go to Disconnected State
• Request fails with new Error Code
LINEERR_SECURITY_CAPABILITIES_MISMATCH.

Request fails as the Supervisor Security Capabilities
doesn’t meet or exceed the Security status of Agent
(B)

Note

LineInitialize.

Device A and B is Secure

Device C is Not Secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

Message Sequence Charts
539

Message Sequence Charts
Silent Monitoring Scenario on Non-Secure Call From Supervisor Which Is Secure

Transfer of Monitored Call From Supervisor to Other Supervisor

Expected resultAction

Call between B and C will be in Secure Mode

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C

SRTP info will be available

security Indicator = MEDIA_ENCRYPT_KEYS_AVAILABLE

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Encrypted

LINE_REPLY (dwRequestId, 0) is returned

CallSecurityStatus = Encrypted

LineInitialize.

Device A,B and C is Secure

Device C1 is not Secure

LineOpen on A,B,C and C1

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

LineGetCallInfo on C

lineDevSpecifc(CCiscoLineDevSpecificSetStatusMsgs) with
DevSpecificStatusMsgsFlag =
DEVSPECIFIC_SILENT_MONITORING_TERMINATED on
C

Message Sequence Charts
540

Message Sequence Charts
Transfer of Monitored Call From Supervisor to Other Supervisor

Expected resultAction

Transfer is successful andMonitoring Session will be Terminated.

Call on C1 will be Disconnected with new Cause Code.

Line_CallDevSpecific will be fired for B

dwparam1 = SLDSMT_MONITORING_ENDED,

dwparam2 = LINEDISCONNECTMODE_INCOMPATIBLE.

Line_DevSpecific (dwparam1 =
SLDSMT_MONITORING_TERMINATED, dwparam2 =
TransactionID – xxxx,

dwparam3 = LINEDISCONNECTMODE_INCOMPATIBLE)
will be fired for C.

Transfer is successful and Monitoring Session will not be
disturbed.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C1

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C1’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C1’s DN, Partition = C1’s Partition

Device Name = C1’s Device Name

Transaction ID = XXXX

Call Security Status = Encrypted

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Encrypted

C Transfers to C1

Variant : C1 is Secure

LineGetCallInfo on B

LineGetCallInfo on C1

Message Sequence Charts
541

Message Sequence Charts
Message Sequence Charts

Transfer of Call From One Customer to Other

Expected resultAction

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C

Call between B and C will be in Secure Mode

Line_CallDevSpecific(dwparam1 = DevSpecificData,

dwparam2 = SLDST_SRTP_INFO, dwParam3 =
MEDIA_ENCRYPT_KEYS_AVAILABLE) will be fired for the
call on C.

Transfer is successful and Monitoring Session isn’t disturbed.

Line_CallDevSpecific (dwparam1 =DevSpecifcData, dwparam2
= SLDST_SECURITY_STATUS_INFO) will be fired to B and
C.

SRTP info will not be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C1’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Not Authenticated

SRTP info will be available

Security Indicator = MEDIA_ENCRYPT_KEYS_AVAILABLE

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

LineInitialize.

Device A,B and C is Secure

Device A1 is not Secure

LineOpen on A,B,C and A1

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

A Transfers to A1

LineGetCallInfo on B

LineGetCallInfo on C

Message Sequence Charts
542

Message Sequence Charts
Transfer of Call From One Customer to Other

Park on Supervisor

Expected resultAction

Call between B and C is setup with Secure mode

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B.

Line_CallDevSpecific (dwparam1 =DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C.

Line_CallDevSpecific(dwparam1 = DevSpecificData,

dwparam2 = SLDST_SRTP_INFO, dwParam3 =
MEDIA_ENCRYPT_KEYS_AVAILABLE) will be fired for the
call on C.

Park Operation is successful and overCallSecurity Status is
degraded to Not-Authenticated

LINE_REPLY (dwRequestId, 0) is returned

UnPark operation is Successful and Monitoring session is
terminated.

Call on C1 is disconnected as C1doesn’t have Secure Capabilities.

Line_CallDevSpecific will be fired for B

dwparam1 = SLDSMT_MONITORING_ENDED dwparam2 =
LINEDISCONNECTMODE_INCOMPATIBLE

Line_DevSpecific (dwparam1 =
SLDSMT_MONITORING_TERMINATED, dwparam2 =
TransactionID – xxxx, dwparam3 =
LINEDISCONNECTMODE_INCOMPATIBLE) will be fired
for C.

Terminated Event is not Reported

LineInitialize

Device A,B and C is Secure

Device C1 non secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

C parks the call

lineDevSpecifc(CCiscoLineDevSpecificSetStatusMsgs) with
DevSpecificStatusMsgsFlag =
DEVSPECIFIC_SILENT_MONITORING_TERMINATED on
C

C1 Unparks the call

Varaint : if LineDevSpecific for receiving Terminated Event is
not set

Message Sequence Charts
543

Message Sequence Charts
Park on Supervisor

Silent Monitoring on Conferenced Call

Expected resultAction

Silent Monitoring Call between B and C is setup with Secure
mode.

Line_CallDevSpecific (dwparam1 =DevSpecifcData, dwparam2
= OverallSecurityStatus) will be fired to C.

Call Security Status = Not Authenticated

LineInitialize

Device A and B1 is not Secure

Device C and B is Secure

LineOpen on A,B,B1 and C

A, B and B1 are in Conference

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

Message Sequence Charts
544

Message Sequence Charts
Silent Monitoring on Conferenced Call

Conference on Monitored Call

Expected resultAction

LineInitialize.

Device A, B and C is not Secure

Device C1 is Secure

LineOpen on A,B,C and D

A calls B;B answers the Call

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

C creates conference with C1

LineGetCallInfo on B

LineGetCallInfo on C

LineGetCallInfo on C1

Message Sequence Charts
545

Message Sequence Charts
Conference on Monitored Call

Expected resultAction

Monitoring Request is successful and the Session is started

Conference is created with A , C and C1

Line_CallDevSpecific (dwparam1 =DevSpecifcData, dwparam2
= OverallSecurityStatus) will be fired to C1.

Call Security Status = Not Authenticated

SRTP info will not be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain CFB’s info.

CallAttributeTye = CallAttribute_SilentMonitorCall

Call Security Status = Not Authenticated

SRTP info will not be available

Security Indicator = MEDIA_NOT_ENCRYPT

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

SRTP info will not be available

Security Indicator = MEDIA_NOT_ENCRYPT

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

Message Sequence Charts
546

Message Sequence Charts
Message Sequence Charts

Conference on Monitored Call

Expected resultAction

Monitoring Request is successful and the Session is started

Monitoring Session is ended and C and C1will be in direct simple
call.

Line_CallDevSpecific will be fired for B.

dwparam1 = SLDSMT_MONITORING_ENDED,

dwparam2 = LINEDISCONNECTMODE_INCOMPATIBLE

Line_DevSpecific (dwparam1 =
SLDSMT_MONITORING_TERMINATED, dwparam2 =
TransactionID – xxxx,

Dwparam3 = LINEDISCONNECTMODE_INCOMPATIBLE)
will be fired for C

LineInitialize

Device A, B and C is Secure

Device C1 is not Secure

LineOpen on A,B,C and C1

A calls B;B answers the Call

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

lineDevSpecifc (CCiscoLineDevSpecificSetStatusMsgs) with
DevSpecificStatusMsgsFlag =
DEVSPECIFIC_SILENT_MONITORING_TERMINATED on
C

C creates and Completes conference with C1

Message Sequence Charts
547

Message Sequence Charts
Conference on Monitored Call

Supervisor Holds the Call

Expected resultAction

Monitoring session is started

Media will be stopped

Media is started.Call on C will be INACTIVE (RIU Call)

Monitoring session is Terminated.

Line_CallDevSpecific will be fired for B

dwparam1 = SLDSMT_MONITORING_ENDED,

dwparam2 = LINEDISCONNECTMODE_INCOMPATIBLE

Call on C1 will be Disconnected with new Cause Code
LINEDISCONNECTMODE_INCOMPATIBLE

Line_DevSpecific (dwparam1 =
SLDSMT_MONITORING_TERMINATED, dwparam2 =
TransactionID – xxxx,

dwparam3 = LINEDISCONNECTMODE_INCOMPATIBLE)
will be fired for C

LineInitialize

Device A, B and C is Secure

Device C1 is Secure

LineOpen on A,B,C and C1

C and C1 are shared lines

A calls B; B answers the Call

C issues LineDevSpecific (Start Monitoring) with A’s permanent
lineID, silent monitoring mode and NoTone as input

C holds the call

C1 resumes the call

Variant: C1 is not Secure and
DEVSPECIFIC_SILENT_MONITORING_TERMINATED filter
is enabled on C

Recording
Set up

User is in Allow Recording group

A is Customer Device

B is Agent

C is Recording Device

BIB on B is set to on.

Recording Type on B is Application Invoked

Message Sequence Charts
548

Message Sequence Charts
Supervisor Holds the Call

C is configured as the recording device for B

Basic Recording Scenario

Expected resultAction

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to on B

CallReason = LINECALLREASON_DIRECT

Devspecific part will contain the following

CallAttributeTye = ‘CallAttribute_RecordedCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = 0

Call Security Status = Not Authenticated

LineInitialize

Device A,B and C is not-Secure

LineOpen on A and B

A calls B;B answers the Call

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

LineGetCallInfo on B

CallReason = LINECALLREASON_UNKNOWNVariant 1 : Monitor the Customer and Agent Lines after the
Recording Session is Started.

LineGetCallInfo on B

Message Sequence Charts
549

Message Sequence Charts
Basic Recording Scenario

Basic Recording Scenario in Secure Mode

Expected resultAction

Recording session is started in secure mode

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired on B

SRTP info will be available (for A-B Call)

Devspecific part will contain the following:

CallAttributeTye = CallAttribute_RecordedCall

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = 0

Call Security Status = Encrypted

LineInitialize

Device A,B and C is Secure

LineOpen on A and B

A calls B;B answers the Call

A to B call is Secure

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

LineGetCallInfo on B

Message Sequence Charts
550

Message Sequence Charts
Basic Recording Scenario in Secure Mode

Recording Scenario on Non-Secure Call in Secure Mode

Expected resultAction

Recording session is started in secure mode

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B

SRTP Info is not available

Devspecific part will contain the following:

CallAttributeTye = CallAttribute_RecordedCall

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = 0

Call Security Status = Not Authenticated

LineInitialize

Device A is not Secure

Device B and C is Secure

LineOpen on A and B

A calls B;B answers the Call

A to B call is non Secure

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

LineGetCallInfo on B

Recording Scenario on Non-Secure Call Using Secure Recording Profile/Device

Expected resultAction

Recording Request will Fail with existing error code

LINEERR_OPERATIONFAILED

Recording Failed as the Recording Device Security
Capabilities doesn’t meet or exceed the Security status
of B

Note

LineInitialize

Device A and B is Secure

Device C is Not Secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is Secure

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

Message Sequence Charts
551

Message Sequence Charts
Recording Scenario on Non-Secure Call in Secure Mode

Recording Scenario When Agent Holds the Call

Expected resultAction

Recording Session is started

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B

Call between B and C will be Non-Secure

Media between B and C is ended

Line_CallDevSpecific (dwparam1 = RecordingEnded) will be
fired for B

Recording Session will be started

Media between B and C is started

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B

Recording Session will be started

LineInitialize

Device A and B is not Secure

Device C is Secure

LineOpen on A and B

A calls B;B answers the Call

A to B call is non Secure

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

LineHold on Call on B

B resumes the Call

Recording option – Automatic Call Recording EnabledNote

B Resumes the Call

Recording and Monitoring
This section describes Silent Monitoring and Recording on Agent Call in Secure Mode.

Message Sequence Charts
552

Message Sequence Charts
Recording Scenario When Agent Holds the Call

Both Silent Monitoring and Recording on Agent Call in Secure Mode

Expected resultAction

Message Sequence Charts
553

Message Sequence Charts
Both Silent Monitoring and Recording on Agent Call in Secure Mode

Expected resultAction

LineInitialize

Device A,B,C and D are Secure

D is configured as Recording Device on B

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

LineGetCallInfo on B

LineGetCallInfo on C

Silent Monitored Call is created in Secure Mode

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as
inputLine_CallDevSpecific (dwparam1 =MonitoringStarted) will
be fired for B.

New call will be fired on C

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C

Line_CallDevSpecific(dwparam1 = DevSpecificData,

dwparam2 = SLDST_SRTP_INFO, dwParam3 =
MEDIA_ENCRYPT_KEYS_AVAILABLE) will be fired for the
call on C

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Encrypted

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Encrypted

Message Sequence Charts
554

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Recording session is started in secure mode

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired on B

SRTP info will be available (SRTP info for the call Between B
and A)

Devspecific part will contain the following:

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

CallAttributeTye = CallAttribute_RecordedCall

Address = D’s DN, Partition = D’s Partition

Device Name = D’s Device Name

Transaction ID = 0

Call Security Status = Encrypted

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

LineGetCallInfo on B

Message Sequence Charts
555

Message Sequence Charts
Message Sequence Charts

Recording Silent Monitored Call on Supervisor

Expected resultAction

LineInitialize

Device A and B is not Secure

Device C and D is Secure

D is the Recording Device

D is configured as Recording on C

LineOpen on A, B and C

A calls B;B answers the Call

A to B call is non Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

LineGetCallInfo on B

LineGetCallInfo on C

C issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for B-C call

Message Sequence Charts
556

Message Sequence Charts
Recording Silent Monitored Call on Supervisor

Expected resultAction

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B

New call will be fired on C (Silent Monitoring call)

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C

SRTP info will not be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Unauthenticated

SRTP info will not be available

Security Indicator = MEDIA_NOT_ENCRYPT

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

Recording Session is started

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for C

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to C

Message Sequence Charts
557

Message Sequence Charts
Message Sequence Charts

Expected resultAction

SRTP info will not be available

Security Indicator = MEDIA_NOT_ENCRYPT

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallAttributeTye = ‘CallAttribute_RecordedCall’

Address = D’s DN, Partition = D’s Partition

Device Name = D’s Device Name

Transaction ID = 0

Call Security Status = Not Authenticated

LineGetCallInfo on C

Shared Lines-Initiating a New Call Manually
The following table describes the message sequences for Shared Lines-Initiating a new call manually where
Party A and Party A’ represent shared line appearances. Also, Party A and Party A’ are idle.

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct,

RIU = false

1. Party A goes off-hook

Message Sequence Charts
558

Message Sequence Charts
Shared Lines-Initiating a New Call Manually

TAPI structuresTAPI messagesCTI messagesAction

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALTONE

dwParam2 = UNAVAIL

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Dialtone,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

RIU = false

Party A’1. Party A goes off-hook

LINECALLINFO (hCall-2)

hLine = A’

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A’

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A’

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-2

dwParam3 = OWNER

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A’,

Called = NP,

OrigCalled = NP,

LR = NP, S

tate = Dialtone,

Origin = OutBound,

Reason = Direct,

RIU = true

No changeLINE_CALLSTATE

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = INACTIVE

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Dialtone,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

RIU = true

Message Sequence Charts
559

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

Party A2. Party A dials Party B

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

RIU = false

Party A’

NoneNoneNone

Party A3. Party B accepts call

No changeIgnoredCallPartyInfoChangedEvent,

CH = C1,

CallingChanged = False,

Calling = A,

CalledChanged = true,

Called = B,

Reason = Direct,

RIU = false

Message Sequence Charts
560

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =

CALLERID, CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP,

RIU = false

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP,

RIU = false

Party A’3. Party B accepts call
(continued)

No changeIgnoredCallPartyInfoChangedEvent,

CH = C1,

CallingChanged = False,

Calling = A’,

CalledChanged = true,

Called = B,

Reason = Direct,

RIU = true

Message Sequence Charts
561

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-2)

hLine = A’

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A’

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = INACTIVE

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 =

CALLERID, CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A’,

Called = B,

OrigCalled = B,

LR = NP,

RIU = true

No changeLINE_CALLSTATE

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = INACTIVE

dwParam3 = 0

CallStateChangedEvent,

CH = C1, State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A’, Called = B,

OrigCalled = B,

LR = NP, RIU = true

Party A4. Party B answers call

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = B

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = ACTIVE

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTEDID

dwParam2 = 0, dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Connected,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP,

RIU = false

Message Sequence Charts
562

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

Party A’

LINECALLINFO (hCall-2)

hLine = A’

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A’

dwCalledID = B

dwConnectedID = B

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = INACTIVE

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 = CONNECTEDID

dwParam2 = 0, dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Connected,

Cause = CauseNoError,

Reason = Direct,

Calling = A’,

Called = B,

OrigCalled = B,

LR = NP,

RIU = true

SRTP

Media Terminate by Application (Open Secure CTI Port or RP)
• Negotiate version

• Sends LineOpen with extension version as 0x8007000

• Send CciscoLineDevSpecificUserSetSRTPAlgorithmID

• Send CCiscoLineDevSpecificUserControlRTPStream

• Now, the CTI port or RP gets registered as secure port

• Make call from secure IP phone to the CTI port or RP port

• Answer the call from application

• SRTP indication gets reported as LineDevSpecific event

• SRTP key information get stored in LINECALLINFO::devSpecifc for retrieval

Media Terminate by TSP Wave Driver (Open Secure CTI Port)
• Negotiate version

• Sends LineOpen with extension version as 0x4007000

• Send CciscoLineDevSpecificUserSetSRTPAlgorithmID

• Send CciscoLineDevSpecificSendLineOpen

Message Sequence Charts
563

Message Sequence Charts
SRTP

• Now, the CTI port gets registered as secure port

• Make call from secure IP phone to the CTI port

• Answer the call from application

• SRTP indication gets reported as LineDevSpecific event

• SRTP key information get stored in LINECALLINFO::devSpecifc for retrieval

Support for Cisco IP Phone 6900 Series
Use cases related to Cisco Unified IP Phone 6900 Series support feature are mentioned below:

Monitoring Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode When User Is
Added to New User Group

Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 behavior when User is
added to new user Group.

Description

A -Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 Phone with Roll Over Mode

User is added to New User Group.

Application does Line Initialize

Test Setup

Lines on the Cisco Unified IP Phone 7931 will be enumerated.

Application would be able to Open Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 and it would be able to control and perform call operations on phone.

Expected Results

Monitoring Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode When User Is
Added to New User Group

Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 behavior when User is
added to new user Group.

Description

A -Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll Over Mode

Step 1: Application does Line Initialize

Step 2: User is added to New User Group.

Test Setup

Step 1: Lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 will not be
enumerated

Application will not be notified about the device A and it will not be able to monitor.

Step 2: Application will be receiving PHONE_CREATE and LINE_CREATE events for the Device
and lines on that Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode.

NowApplications would be able toMonitor and control Cisco Unified IP Phone 6900 Series/Cisco
Unified IP Phone 7931.

Expected Results

Message Sequence Charts
564

Message Sequence Charts
Support for Cisco IP Phone 6900 Series

Transfer Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
When User Is Added to New User Group

Testing Transfer scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931
when User is added to new user Group.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Variants: Application Opens only Line A on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931

Test Setup

Call on A will go to OnHold State.

New call will be created on Line B.

Application then has to complete Transfer using DTAL feature.

Variants: Applications would not be able to Complete Transfer from Application as the Line B is
not monitored.

Expected Results

Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
When User Is Added to New User Group

Testing Conference scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931
when User is added to New User Group.

Description

Message Sequence Charts
565

Message Sequence Charts
Message Sequence Charts

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D are two SCCP phones

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize

C calls A,A answers

SetupConference on A.

Test Setup

Call on A will go to OnHold State.

New call will be created on Line B.

Application then has to complete Conference using Join Across Lines feature.

Expected Results

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Transfer/Conference scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP
Phone 7931 when User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 2

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Test Setup

Call on A will go to OnHoldPendingTransfer/OnHoldPendingConference.

New Consult call will be created on Line A.

Application then has to complete Transfer using CompleteTransfer or DTAL feature.

Expected Results

Test the same Scenario with Conference

LineCompleteTransfer with Mode as Conference to complete Conference

Variants

Message Sequence Charts
566

Message Sequence Charts
Message Sequence Charts

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Transfer/Conference Scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP
Phone 7931 When User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -Roll Over to any Line

Max Number of Calls: 2

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Test Setup

Call on A will go to OnHoldPendingTransfer/OnHoldPendingConference.

New Consult call will be created on Line A.

Application then has to complete Transfer using CompleteTransfer or DTAL feature.

Expected Results

Test the same Scenario with Conference

LineCompleteTransfer with Mode as Conference to complete Conference

Variants

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Transfer/Conference Scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP
Phone 7931 when User is added to New User Group and different Roll Over Mode.

Description

Message Sequence Charts
567

Message Sequence Charts
Message Sequence Charts

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode -Roll Over within same DN

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Test Setup

SetupTransfer Request will fail with error "LINEERR_CALLUNAVAIL".Expected Results

Test the same Scenario with SetupConferenceVariants

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Transfer/Conference Scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP
Phone 7931 when User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode -Roll Over within same DN

Max Number of Calls: 2

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Test Setup

Call on A will go to OnHoldPendingTransfer/Conference State.

New Consult call will be created on Line A.

Application then has to complete Transfer using CompleteTransfer or DTAL feature.

Expected Results

Test the same Scenario with SetupConferenceVariants

Message Sequence Charts
568

Message Sequence Charts
Message Sequence Charts

LineMakeCall Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode When User Is Added to New User Group

Testing LineMakeCall Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 when User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode -Roll Over within same DN" or "Roll Over to Any Line

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

LineMakeCall on A.

Test Setup

LineMakeCall Operation will fail with error "LINEERR_CALLUNAVAIL".

Roll Over Doesn't Happen to second line as the roll over is only for Outbound Calls.

Expected Results

LineUnPark Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
When User Is Added to New User Group

Testing LineUnPark Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 When User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode -Roll Over within same DN" or "Roll Over to Any Line

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

LineUnPark on A.(tires to retrieve the available Parked Call from Park DN)

Test Setup

Message Sequence Charts
569

Message Sequence Charts
Message Sequence Charts

LineUnPark Operation will fail with error "LINEERR_CALLUNAVAIL".

Roll Over Doesn't Happen to second line as the roll over is only for Outbound Calls.

Expected Results

EM Login/Logout Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode When User Is Added to New User Group

Testing EM Log In/Out Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 When User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

EM Profile is logged onto the Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

Test the Use Case from UseCase#1 to UseCase#10

Test Setup

Same as the Use Case tested.Expected Results

Manual Transfer Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode When User Is Added to New User Group

Testing Existing Call Events on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931
when User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -Roll Over to any Line

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

Step 1: From Phone C call A

Step 2: Answer the Call on A

Step 3: Press Transfer Button on Cisco Unified IP Phone 6900 Series and Dial D.

Step 4: Answer the Call on D

Step 5: Complete Transfer from Phone A

Variant: Monitor Phones after Transfer is completed from Phone.

Test Setup

Message Sequence Charts
570

Message Sequence Charts
Message Sequence Charts

Step 4:

Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

When consult call is created on the same Line; Call will be on
ONHOLDPENDINGTRANSFER state.

Note

Step 5:

Both the calls on A and B will go to IDLE state.

C and D will be in Simple Call.

Variant: Same as this Use Case

Expected Results

Manual Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 behavior When User is
added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

Step 1: From Phone C call A

Step 2: Answer the Call on A

Step 3: Press conference Button on Cisco Unified IP Phone 6900 Series and Dial D.

Step 4: Answer the Call on D

Step 5: Complete Conference from Phone

Variant: Monitor Phones after Conference is completed from Phone.

Test Setup

Message Sequence Charts
571

Message Sequence Charts
Message Sequence Charts

Step 4:

Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

When consult call is created on the same Line; Conference Model is created as today
on Non-Cisco Unified IP Phone 6900 Series.

Note

Step 5: A ,C and D will be in conference

Conference model will be created on Line A.

Variant: Same as this Use Case.

Expected Results

Manual Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 behavior When User is
added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

Step 1: From Phone C call A

Step 2: Answer the Call on A

Step 3: Press conference Button on Cisco Unified IP Phone 6900 Series Phone and Dial D.

Step 4: Answer the Call on D

Step 5: Complete Conference from Phone

Variant: Monitor Phones after Conference is completed from Phone.

Test Setup

Message Sequence Charts
572

Message Sequence Charts
Message Sequence Charts

Step 4:

Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

When consult call is created on the same Line; Conference Model is created as today
on Non-Cisco Unified IP Phone 6900 Series Phone.

Note

Step 5: A ,C and D will be in conference

Conference model will be created on Line A.

Variant: Same as this Use Case.

Expected Results

SetupConference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode When User Is Added to New User Group

Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 behavior When User is
added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger : 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

Step 1: SetupTransfer on A.

Step 2: Complete Conference From Phone.

Test Setup

Step 1:

Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

Step 5: A ,C and D will be in conference

Conference model will be created on Line A.

Expected Results

BWC on Cisco Unified IP Phone 7931 in Non Roll Over Mode When User Is Removed From New User Group

Testing Cisco Unified IP Phone 7931 Phone behavior in Non Roll Over Mode When User is
removed from New User Group.

Description

Message Sequence Charts
573

Message Sequence Charts
Message Sequence Charts

User is Removed from New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with
Non-Roll Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Non Roll Over Mode"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize

Test Setup

Lines on the Cisco Unified IP Phone 7931 will be enumerated.

Application would be able to Open Cisco Unified IP Phone 7931 with Non-Roll Over Mode and
it would be able to control and perform call operations on Phone.

Expected Results

Acquire Device on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode When
User Is Added to New User Group

Testing Behavior of Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 on Super
Provider when User is added to new user Group.

Description

A -Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll Over Mode

User is Added to New User Group.

Step 1: Application does Line Initialize

Step 2: LineDevSpecific to Acquire Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931.

Step 3: User is removed from New User Group.

Test Setup

Step 2: Application will be receiving PHONE_CREATE and LINE_CREATE events for the Device
and lines on that Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode.

Step 3: Application will be receiving LINE_REMOVE and PHONE_REMOVE for the Cisco
Unified IP Phone 7931 and Application will no longer be able to monitor or control that device.

Expected Results

Support for Cisco Unified IP Phone 6900 and 9900 Series Use
Cases

The use cases related to Support for Cisco Unified IP Phone 6900 and 9900 Series are provided below:

Message Sequence Charts
574

Message Sequence Charts
Support for Cisco Unified IP Phone 6900 and 9900 Series Use Cases

Check Max Calls Information

Events, Requests, and ResponsesAction

LineInitialize successful

MaxCalls = 4 in LineDevCaps:DevSpecific

Application calls LineInitialize

Application calls LineGetDevCaps, and checks Max Calls field.

Check Busy Trigger Information

.

Events, Requests, and ResponsesAction

LineInitialize successful

BusyTrigger = 2 in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks busy trigger field.

Check Line Instance

Events, Requests, and ResponsesAction

LineInitialize successful

LineInstanceNumber = 1 in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks line instance field.

Check Line Label

.

Events, Requests, and ResponsesAction

LineInitialize successful

LineLable = label_2000 in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks line label field.

Check Voice Mail Pilot

.

Events, Requests, and ResponsesAction

LineInitialize successful

VoiceMailPilot = 5000 in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks Voice Mail Pilot
field.

Check Registered IP Address of the Device or Line

.

Message Sequence Charts
575

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

LineInitialize successful

RegisteredIPv4Address & RegisteredIPv6Address available in
LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks IP address field.

PhoneInitialize successful

RegisteredIPv4Address & RegisteredIPv6Address available in
PhoneDevCaps:DevSpecific

Variance: Perform PhoneInitialize and check PhoneGetDevCpas
to check IP address field.

Check Consult Rollover Information of the Line

ConsultRollOver is true for the device

.

Events, Requests, and ResponsesAction

LineInitialize successful

ConsultRollOver flag is true in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks consult roll over
field.

PhoneInitialize successful

ConsultRollOver flag is true in PhoneDevCaps:DevSpecific.

Variance: Perform PhoneInitialize and check PhoneGetDevCpas
to check consult roll over field.

PhoneInitialize successful

ConsultRollOver flag is false in PhoneDevCaps:DevSpecific.

Variance: Phone does not support rollover

Perform PhoneInitialize and check PhoneGetDevCpas to check
consult roll over field.

Check JAL or DTAL Information of the Line

JAL or DTAL is true for the device.

Events, Requests, and ResponsesAction

LineInitialize successful

JoinAcrossLine and DirectTransferAcrossLine flag is true in
LineDevCaps:DevSpecific.

Application does LineInitialize

Application calls LineGetDevCaps, and checks JAT/DTAL field.

PhoneInitialize successful

JoinAcrossLine and DirectTransferAcrossLine flag is true in
PhoneDevCaps:DevSpecific.

Variance: Perform PhoneInitialize and check PhoneGetDevCpas
to check consult roll over field.

PhoneInitialize successful

JoinAcrossLine and DirectTransferAcrossLine flag is false in
PhoneDevCaps:DevSpecific.

Variance: Phone does not support jal/dtal

Perform PhoneInitialize and check PhoneGetDevCpas to check
JAT/DTAL field.

Message Sequence Charts
576

Message Sequence Charts
Message Sequence Charts

Handle Voice Mail Pilot Change

Voice Mail Pilot number is changed to 6000.

Events, Requests, and ResponsesAction

LineInitialize successful

VoiceMailPilot = 5000 in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks Voice Mail Pilot
field.

LineDevSpecific (SLDSMT_LINE_PROPERTY_CHANGED)
indicating Voice Mail Pilot is changed.

Voice Mail Pilot number is changed to 6000.

VoiceMailPilot = 6000 in LineDevCaps:DevSpecificApplication calls LineGetDevCaps, and checks Voice Mail Pilot
field.

Variance: also applies to Line Label

Check IP Address When Device Is Unregistered or Registered

It is assumed that phone uses static IP address and is already registered.

Events, Requests, and ResponsesAction

Initializesuccessful

RegisteredIPv4Address & RegisteredIPv6Address available in
LineDevCaps:DevSpecific, and RegisteredIPAddressMode is
IPAddress_IPv4_IPv6.

Application calls LineInitialize

Application calls LineGetDevCaps, and checks IP address field.

Phone or line goes out of service.

LineDevSpecific (SLDSMT_LINE_PROPERTY_CHANGED)
indicating registered IP address information is changed.

Reset device

The same RegisteredIPv4Address & RegisteredIPv6Address
available in LineDevCaps:DevSpecific, but
RegisteredIPAddressMode is IPAddress_Unknown.

Application calls LineGetDevCaps, and checks IP address field.

Phone or line back in service.

LineDevSpecific (SLDSMT_LINE_PROPERTY_CHANGED)
indicating registered IP address information is changed.

Device re-registered with CUCM.

The same RegisteredIPv4Address and RegisteredIPv6Address
available in LineDevCaps:DevSpecific, but
RegisteredIPAddressMode is set to IPAddress_IPv4_IPv6.

Application calls LineGetDevCaps, and checks IP address field.

LineDevSpecific (SLDSMT_LINE_PROPERTY_CHANGED)
indicating registered IP address is changed

New IPAddress will be in devSpecific when application queries
LineGetDevCap. .

Variance: Phone uses DHCP and new IP address is obtained for
registering.

Message Sequence Charts
577

Message Sequence Charts
Message Sequence Charts

Swap or Cancel
Use cases related to Swap or Cancel feature are mentioned below:

Connected Transfer

Device A, B, C where A is a Cisco Unified IP Phone (future version)..

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ C is on hold

A ‡ B is connected,

For A:

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-3 DIALTONE

A press transfer

Call-3 goes IDLEA picks "Active Calls"

Message Sequence Charts
578

Message Sequence Charts
Swap or Cancel

Expected eventsAction

For A:

Both calls go IDLE

For B1:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = B

A picks call (A‡C) and presses transfer to complete transfer

Connected Transfer on Phones with Shared Lines

Device A, B, C, A' where A and A' are sharedline.

Message Sequence Charts
579

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

A ‡ C is on hold

A ‡ B is connected,

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

For A':

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED_INACTIVE

Caller = A, Called = B Connected B

Message Sequence Charts
580

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A and A':

All calls go IDLE

For B1:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = B

User performs connected transfer on Cisco Unified IP phone
(future version)

Connected Transfer: Initiate From Phone, Complete From CTI

Device A, B, C .

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ C is on hold

A ‡ B is connected,

Message Sequence Charts
581

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A and A':

All calls go IDLE

For B1:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = B

Application sends either CompleteTransfer or DirectTransfer on
A

Consult Transfer: Resume Primary Call (Implicit Cancel)

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGTRANSFER

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ B

A setup consult transfers to C

And C answer

Message Sequence Charts
582

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A press resume to resume A‡ B call

Message Sequence Charts
583

Message Sequence Charts
Message Sequence Charts

Consult Transfer: Swap Calls

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGTRANSFER

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

A ‡B

A setup consult transfer to C

And C answer

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

For A:

The scenario will look exactly the same when resume primary
call.

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

A press Swap

Message Sequence Charts
584

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

For A:

Calls go IDLE

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = B

A press "Transfer" to complete transfer

Message Sequence Charts
585

Message Sequence Charts
Message Sequence Charts

Consult Transfer on Phone: Swap Calls; CTI Sends SetupTransfer on Connected Call

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGTRANSFER

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

A ‡ B

A setup consult transfer to C

And C answer

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

Message Sequence Charts
586

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

The scenario will look exactly the same when resume primary
call.

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

A press Swap

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

Request succeeds as phone cancels existing feature plan and allow
CTI request to go through.

Application calls LineSetupTransfer on A's connected call (A‡B)
to initiate transfer

Message Sequence Charts
587

Message Sequence Charts
Message Sequence Charts

Consult Transfer: Swap and Cancel

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGTRANSFER

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

A ‡ B

A setup consult transfer to C

And C answer

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

Message Sequence Charts
588

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

The scenario will look exactly the same when resume primary
call.

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A press Swap

No TSP event since it is handled during swap operationA presses Cancel

Message Sequence Charts
589

Message Sequence Charts
Message Sequence Charts

RoundTable Connected Conference

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ B

A puts call on hold

A creates new call to C, C answer

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGCONFENRENCE

Caller = A, Called = C Connected C

Call-3

DIALTONE

A presses "Conference"

Message Sequence Charts
590

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = A, called = C, connected = C

Call-3

IDLE

For B:

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = B, called = C, connected = C

For C:

For A:

CONNECTED

CONFERENCED

Caller = A, called = C, connected = C

CONFERENCED

Caller = C, called = B, connected = B

A picks active call (A‡ C) on phone UI, and presses "Conference"
to complete the conference

Message Sequence Charts
591

Message Sequence Charts
Message Sequence Charts

RoundTable Connected Conference: Cancel

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ B

A puts call on hold

A creates new call to C, C answers

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONFERENCED

Caller = A, Called = C Connected C

Call-3

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGCONFENRENCE

Caller = A, Called = C Connected C

Call-4

DIALTONE

A presses "Conference"

Message Sequence Charts
592

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

Call-3 / Call-4

IDLE

A picks "Active Calls"

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A presses Cancel softkey

Message Sequence Charts
593

Message Sequence Charts
Message Sequence Charts

Set Up Consult Conference From RT, Then Swap and Complete Conference From RT

Expected eventsAction

For A:

ONHOLDPENDINGCONF

CONFERENCED

Caller = A, called = B, connected = B

CONNECTED

Caller = A, called = C, connected = C

A ‡ B

A sets up conference to C, C answer

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

For A:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, HOLD

Caller = A, Called = C Connected C

A presses "Swap"

Message Sequence Charts
594

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = A, called = C, connected = C

For B:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = B, called = C, connected = C

For C:

For A:

CONNECTED

CONFERENCED

Caller = A, called = C, connected = C

CONFERENCED

Caller = C, called = B, connected = B

A presses "Conference" to complete conference

Set Up Consult Conference From RT, Then Swap and Cancel From Phone with Shared Line Scenario

A and A’ are shared lines..

Message Sequence Charts
595

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

ONHOLDPENDINGCONF

CONFERENCED

Caller = A, called = B, connected = B

CONNECTED

Caller = A, called = C, connected = C

For A'

CONNECTED INACTIVE

Caller = A, celled = B, connected = B

CONNECTED INACTIVE

Caller = A, celled = C, connected = C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ B

A sets up conference to C, C answers

For A:

The scenario looks the same when primary call resumes

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

A presses "Swap"

Message Sequence Charts
596

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected = C

A presses "Cancel"

For A'

Call-1

LINE_CALLSTATE

CONNECTED INACTIVE

Caller = A, Called = B Connected = B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected = C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

Message Sequence Charts
597

Message Sequence Charts
Message Sequence Charts

Set Up Consult Conference From RT: Resume Primary Call (Implicit Cancel)

Expected eventsAction

For A:

ONHOLDPENDINGCONF

CONFERENCED

Caller = A, called = B, connected = B

CONNECTED

Caller = A, called = C, connected = C

A ‡ B

A sets up conference to C, C answer

For A'

CONNECTED INACTIVE

Caller = A, celled = B, connected = B

CONNECTED INACTIVE

Caller = A, celled = C, connected = C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

Message Sequence Charts
598

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

A resumes A‡B call

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

User Is Removed From Standard Supports Connected Xfer/Conf Group

Expected eventsAction

RT PHONE/LINE is enumerated to APPUser is in Standard Supports Connected Xfer/Conf group

RT phone A is in user's control list

Application does LineInitialize

APP receives PHONE_REMOVE / LINE_REMOVERemove user from "Standard Supports Connected Xfer/Conf"
user group

User Is Removed From Standard Supports Connected Xfer/Conf Group

Expected eventsAction

RT PHONE/LINE is enumerated to APPUser is in Standard Supports Connected Xfer/Conf group

RT phone A is in user's control list

Application does LineInitialize

Message Sequence Charts
599

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

APP receives PHONE_REMOVE / LINE_REMOVERemove user from Standard Supports Connected Xfer/Conf user
group

User Is Removed From Standard Supports Connected Xfer/Conf Group While Line Is Open

Expected eventsAction

RT PHONE/LINE is enumerated to APPuser is in "Standard Supports Connected Xfer/Conf" group

RT phone A is in user's control list

Application does LineInitialize

SuccessfulApp sends LineOpen to open line on Cisco Unified IP phone
(future version) phone

TSP sends LINE_CLOSE

APP receives LINE_REMOVE

Remove user from Standard Supports ConnectedXfer/Conf group

User Is Added to Standard Supports Connected Xfer/Conf Group

Expected eventsAction

RT PHONE/LINE is not enumerated to APPuser is not in "Standard Supports Connected Xfer/Conf" group

RT phone A is in user's control list

Application does LineInitialize

APP receives PHONE_CREATE / LINE_CREATEAdd user to Standard Supports Connected Xfer/Conf group

Message Sequence Charts
600

Message Sequence Charts
Message Sequence Charts

Unrestricted Unified CM
Table 106: Application Tries Secure Connection to Unrestricted Unified CM During Upgrade

Events, requests and responsesAction

LineInitialize successful

All lines associated are enumerated.

OutOfService Events for all the Devices/Lines.

***TSP will internally try to Connect CTI in Secure mode.

As CTI is upgraded to Non-secure, the Connection Fails and
applications are not notified.

Application has to disable “Secure Connection to CTI Manager”
on the Security tab in TSP UI to setup connection to CTI/CUCM.

CUCM – Restricted UCM

TSP is configured to connect Secure

Application calls LineInitialize

*** Upgrade CUCM to Unrestricted Unified CM

CCM/CTI services restarted

Table 107: Application Tries Secure Connection to Unrestricted Unified CM After Upgrade

Events, requests and responsesAction

LineInitialize successful

All lines associated are enumerated.

LineShutDown successful

LineInitialize successful.

No lines are enumerated to application.

CUCM – Restricted UCM

TSP is configured to connect Secure

Application calls LineInitialize

Application calls LineShutdown

*** Upgrade CUCM to Unrestricted UCM

Application calls LineInitialize

Message Sequence Charts
601

Message Sequence Charts
Unrestricted Unified CM

Table 108: Registering Secure CTI Port with Unrestricted Unified CM CTI Manager

Events, requests and responsesAction

LineInitialize successful

All lines associated to end users are enumerated.

LineReply – with error -LINEERR_OPERATIONUNAVAIL

CUCM – Unrestricted UCM

Setup Non-Secure Connection

Application calls LineInitialize

Register CTI Port in Secure Mode

• LineOpen – with Ext – 80070000
• LineDevspecific –
CciscoLineDevSpecificUserSetSRTPAlgorithmID

Table 109: Registering Secure CTI Port with Unrestricted Unified CM CTI Manager

Events, requests and responsesAction

LineInitialize successful

All Lines Associated are Enumerated.

LineReply – success

LINE_CLOSE for the CTI Port

Setup:

• Node 1 – UnRestricted UCM
• Node 2 – Restricted UCM – Secure

CTI Port – Device Pool – with Node 1 as High Priority CM.

TSP is configured to connect to CTI Manager of Node 2.

Set up Secure Connection

Application calls LineInitialize

Register CTI Port in Secure Mode

• LineOpen – with Ext – 80070000
• LineDevspecific –
CciscoLineDevSpecificUserSetSRTPAlgorithmID

• LineDevSpecific
-CCiscoLineDevSpecificUserControlRTPStream

Message Sequence Charts
602

Message Sequence Charts
Message Sequence Charts

LineHold Enhancement
Prerequisites

Pre-conditions to all persistent call use cases, unless specified otherwise:

• Device A (IP Phone, Line A1 (dn: 1000))
• Device B (IP Phone, Line B1 (dn: 2000))
• The content id corresponding to VoH stream is contentID1
• User1 has in its control list: Devices A and B. All devices and lines are observed
• Provider is opened (lineInitializeEx successfully executed)
• All relevant lines are opened with Extension version 0x000D0000 and in service

Table 110: Basic Case - Hold with ContentID to Be Played

TAPI StructuresTAPI MessagesAction

CallInfo on A:

CallerID: 1000

CalledID: 2000

ConnectedID: 2000

At A:

LINE_CALLSTATE dwParam1 = 0x00000100

(CONNECTED)

At B:

LINE_CALLSTATE dwParam1 = 0x00000100

(CONNECTED)

Create Call:

LineMakeCall() on Line-A w ith DestAddress="DN
of B" and B answers the Call

At A:

LINE_CALLSTATE dwParam1 = 0x00000400

(LINECALLSTATE_ONHOLD)

Application issues CCiscoLineDevSpecificHoldEx
with ContentID = contentID1 on hCall1(call on A1)

*** Call will be placed on Hold and VoH stream
selected is played to B.

Whisper Coaching

Setup
Customer Phone – IP Phone A

Agent Phone – IP Phone B

Supervisor Phone – IP Phone C

Application monitoring all lines on all devices

New extension is negotiated when application opens lines

Application Initiates a Whisper Coaching Session
Service Parameter Setting: Observed Target = false, Observed Connected Parties = true

Message Sequence Charts
603

Message Sequence Charts
LineHold Enhancement

Table 111: Application Initiates a Whisper Coaching Session

Events, Requests, and ResponsesAction

At A:

CONNECTED

Calling = A, Called = B, Connected = B

At B:

CONNECTED

Calling = A, Called = B, Connected = A

A initiates call to B and B answers

At B:

LineDevSpecific(SLDST_START_CALL_MONITORING)

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

Media events are not received at B.Note

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

LineDevSpecific(SLDSMT_START_TRANSMISION)

LineDevSpecific(SLDSMT_START_RECEPTION)

C issues CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_LocalOnly

Application Updates the Monitoring Mode
Service Parameter Setting: Observed Target = true, Observed Connected Parties = false

Message Sequence Charts
604

Message Sequence Charts
Application Updates the Monitoring Mode

Table 112: Application Updates the Monitoring Mode (Silent to WhisperCoaching) and Then Updates the Monitoring Mode (WhisperCoaching to Silent)

Events, Requests, and ResponsesAction

At A:

CONNECTED

Calling = A, Called = B, Connected = B

At B:

CONNECTED

Calling = A, Called = B, Connected = A

A initiates call to B and B answers

At B:

LineDevSpecific(SLDST_START_CALL_MONITORING)

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_SilentMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

LineDevSpecific(SLDSMT_START_RECEPTION)

C issues CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Silent

tone = PlayToneDirection_RemoteOnly

Message Sequence Charts
605

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Whisper_Coaching,
PlayToneDirection_RemoteOnly)

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

LineDevSpecific(SLDSMT_START_TRANSMISION)

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Whisper_Coaching,
PlayToneDirection_RemoteOnly)

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

C issues CciscoLineDevSpecificMonitoringUpdateMode with:

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_BothLocalAndRemote

Message Sequence Charts
606

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Silent, PlayToneDirection_RemoteOnly)

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

LineDevSpecific(SLDSMT_STOP_TRANSMISION)

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Silent, PlayToneDirection_RemoteOnly)

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

C issues CciscoLineDevSpecificMonitoringUpdateMode with:

mode = MonitorMode_Silent

tone = PlayToneDirection_NoLocalOrRemote

Agent Holds the Customer Call with Whisper Coaching Then Agent S Shared Line Resumes the
Call

Additional Setup: Agent shared line IP Phone B

Message Sequence Charts
607

Message Sequence Charts
Agent Holds the Customer Call with Whisper Coaching Then Agent S Shared Line Resumes the Call

Table 113: Agent Holds the Customer Call with Whisper Coaching, Then Agent’s Shared Line Resumes the Call

Events, Requests, and ResponsesAction

At B:

ONHOLD

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At B’:

ONHOLD

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

LineDevSpecific(SLDSMT_STOP_TRANSMISION)

LineDevSpecific(SLDSMT_STOP_RECEPTION)

A initiates call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

B holds the call

At B:

CONNECTED

At B’:

CONNECTED, INACTIVE

At C:

LineDevSpecific(SLDSMT_START_TRANSMISION)

LineDevSpecific(SLDSMT_START_RECEPTION)

B resumes the call

Message Sequence Charts
608

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

CONNECTED, INACTIVE

LineDevSpecific(SLDSMT_MONITORING_ENDED)

At B’:

CONNECTED

At C:

IDLE

B holds the call

B resumes the call

Agent Transfers a Whisper Coaching Call Monitoring Call Goes Idle at the Supervisor
Additional Setup: IP Phone D

Table 114: Agent Transfers a Whisper Coaching Call, Monitoring Call Goes Idle at the Supervisor

Events, Requests, and ResponsesAction

At B:

ONHOLDPENDTRANSFER

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONNECTED

Calling = B, Called = D, Connected = D

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

A initiates call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

B setup transfer to D and D answers

Message Sequence Charts
609

Message Sequence Charts
Agent Transfers a Whisper Coaching Call Monitoring Call Goes Idle at the Supervisor

Events, Requests, and ResponsesAction

At B:

IDLE

IDLE

At C:

IDLE

B complete transfer to D

Application Updates the Monitoring Mode (WhisperCoaching to Silent)
Additional Setup: IP Phone D

Table 115: Application Updates the Monitoring Mode (WhisperCoaching to Silent) After the Agent Conferences the Whisper Coaching Call

Events, Requests, and ResponsesAction

At B:

CONFERENCE

Calling = A, Called = B, Connected = B

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONFERENCE

Calling = B, Called = D, Connected = D

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_SilentMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

A initiates Call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Silent

tone = PlayToneDirection_RemoteOnly

B setup conference to D and D answers

B complete conference to D

Message Sequence Charts
610

Message Sequence Charts
Application Updates the Monitoring Mode (WhisperCoaching to Silent)

Events, Requests, and ResponsesAction

At B:

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Silent, PlayToneDirection_RemoteOnly)

CONFERENCE

Calling = A, Called = B, Connected = B

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONFERENCE

Calling = B, Called = D, Connected = D

At C:

LineDevSpecific(SLDSMT_STOP_TRANSMISION)

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Silent, PlayToneDirection_RemoteOnly)

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

C issues a CciscoLineDevSpecificMonitoringUpdateMode with:

mode = MonitorMode_Silent

tone = PlayToneDirection_RemoteOnly

Message Sequence Charts
611

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

IDLE

IDLE

At C:

No change in callInfo and no additional events

B issues a lineRemoveFromConference to drop D.

Supervisor Holds/Resumes the Whisper Coaching Monitoring Session
Additional Setup: IP Phone D

Message Sequence Charts
612

Message Sequence Charts
Supervisor Holds/Resumes the Whisper Coaching Monitoring Session

Table 116: Supervisor Holds/Resumes the Whisper Coaching Monitoring Session

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

ONHOLD

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

LineDevSpecific(SLDSMT_STOP_TRANSMISION)

LineDevSpecific(SLDSMT_STOP_RECEPTION)

A initiates call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

C holds the call

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

LineDevSpecific(SLDSMT_START_TRANSMISION)

LineDevSpecific(SLDSMT_START_RECEPTION)

C resumes the call

Message Sequence Charts
613

Message Sequence Charts
Message Sequence Charts

Supervisor Transfers the Whisper Coaching Session to Another Supervisor
Additional Setup: Supervisor IP Phone D

Table 117: Supervisor Transfers the Whisper Coaching Session to Another Supervisor

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

ONHOLDPENDTRANSFER

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONNECTED

Calling = C, Called = D, Connected = D

At D:

CONNECTED

Calling = C, Called = D, Connected = C

A initiates call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

C setup transfers the call to D, D answers

Message Sequence Charts
614

Message Sequence Charts
Supervisor Transfers the Whisper Coaching Session to Another Supervisor

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = D, partition = D’s Partition, deviceName = D’s device

transactionID = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

IDLE

IDLE

At D:

CONNECTED

Calling = C, Called = D

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

C complete transfers the call

Supervisor Conferences the Whisper Coaching Session to Another Supervisor
Additional Setup: Supervisor IP Phone D

Message Sequence Charts
615

Message Sequence Charts
Supervisor Conferences the Whisper Coaching Session to Another Supervisor

Table 118: Supervisor Conferences the Whisper Coaching Session to Another Supervisor

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

CONFERENCE

ONHOLDPENDCONF

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONNECTED

Calling = C, Called = D, Connected = D

At D:

CONNECTED

Calling = C, Called = D, Connected = C

A initiates call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

C setup conferences the call to D and D answers

Message Sequence Charts
616

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = CFB, partition = CFB Partition,

deviceName = CFB device

transactionID = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

CONFERENCE

Calling = C, Called = B/B’s Name, Connected = CFB

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONNECTED

Calling = C, Called = D, Connected = D

At D:

CONFERENCE

Calling = C, Called = D, Connected = D

CONNECTED

CONNECTED

Calling = D, Called = CFB, Connected = CFB

C complete conferences the call

Message Sequence Charts
617

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = D, partition = D’s Partition, deviceName = D’s device

transactionID = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

IDLE

IDLE

IDLE

At D:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = B, partition = B’s Partition, deviceName = B’s device

transactionID = xxxx,

tone = PlayToneDirection_RemoteOnly

C drops the call

D issues a CciscoLineDevSpecificMonitoringUpdateModewith:

permLineId = B permLineId

mode = MonitorMode_Silent

tone = PlayToneDirection_RemoteOnly

Application Initiates a Whisper Coaching Session Second Application on a Different Client Opens
All Lines

Additional Setup: Supervisor IP Phone D

Message Sequence Charts
618

Message Sequence Charts
Application Initiates a Whisper Coaching Session Second Application on a Different Client Opens All Lines

Table 119: Application Initiates a Whisper Coaching Session, Second Application on a Different Client Opens All Lines

Events, Requests, and ResponsesAction

At B (Application 1):

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C (Application 1):

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

A initiates Call to B, B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

Message Sequence Charts
619

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B (Application 2):

CONNECTED

devSpecific

CallAttributeBitMask = TSPCallAttribute_WhisperMonitorCall

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C (Application 2):

CONNECTED

CallAttributeBitMask =
TSPCallAttribute_WhisperMonitorCall_Target

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

Second application opens all lines

Secure R & M with Whisper Coaching Supports
• Overall security status of the monitoring call either silent or whisper must be same. See Secure monitoring
use cases.

• Overall security status of the monitoring call must not change if monitor mode is updated either from
silent to whisper or vice versa.

Application Initiates a Secure Whisper Coaching Session
Additional Setup: All devices are secure

Message Sequence Charts
620

Message Sequence Charts
Secure R & M with Whisper Coaching Supports

Table 120: Application Initiates a Secure Whisper Coaching Session

Events, Requests, and ResponsesAction

At A:

CONNECTED

Calling = A, Called = B, Connected = B

At B:

CONNECTED

Calling = A, Called = B, Connected = A

A initiates call to B and B answers

Message Sequence Charts
621

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

LineDevSpecific(SLDST_START_CALL_MONITORING)

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CallSecurityStatus = OverallCallSecurityStatus_Encrypted

Media events are not received at B and SRTP keys are
not available.

Note

At C:

LineDevSpecific (dwparam1 = DevSpecificData,

dwparam2 = SLDST_SRTP_INFO, dwParam3 =
MEDIA_ENCRYPT_KEYS_AVAILABLE)

SRTP keys are available

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CallSecurityStatus = OverallCallSecurityStatus_Encrypted

LineDevSpecific(SLDSMT_START_TRANSMISION)

LineDevSpecific(SLDSMT_START_RECEPTION)

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_LocalOnly

Application Updates the Monitoring Mode on an Agent Call That Is on Hold
The application updates the monitoring mode on an agent call that is on hold as follows:

1. A initiates Call to B and B answers

2. C issues a CciscoLineDevSpecificStartCallMonitoring with:

Message Sequence Charts
622

Message Sequence Charts
Application Updates the Monitoring Mode on an Agent Call That Is on Hold

• permLineId = B permLineId

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

3. B puts the call on hold

4. C issues CciscoLineDevSpecificMonitoringUpdateMode with:

• mode = MonitorMode_Silent

• tone = PlayToneDirection_RemoteOnly

5. LINE_REPLY returns LINEERR_INVALCALLSTATE

Application Initiates Whisper Coaching Where the Agent Is a SIP Device with Older Firmware
Version That Does Not Support Media Mixing

The application initiates Whisper Coaching where the agent is a SIP device with older firmware version that
does not support media mixing as follows:

1. A initiates Call to B and B answers

2. C issues a CciscoLineDevSpecificStartCallMonitoring with:

• permLineId = B permLineId

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

3. LINE_REPLY returns LINEERR_RESOURCEUNAVAIL

Application Updates the Monitoring Mode Where the Agent Is a SIP Device with Older Firmware
Version That Does Not Support Media Mixing

The application updates the monitoring mode where the agent is a SIP device with older firmware version
that does not support media mixing as follows:

1. A initiates Call to Band B answers

2. C issues a CciscoLineDevSpecificStartCallMonitoring with:

• permLineId = B permLineId

• mode = MonitorMode_Silent

• tone = PlayToneDirection_RemoteOnly

3. C issues a CciscoLineDevSpecificMonitoringUpdateMode with:

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

Message Sequence Charts
623

Message Sequence Charts
Application Initiates Whisper Coaching Where the Agent Is a SIP Device with Older Firmware Version That Does Not Support Media Mixing

4. LINE_REPLY returns LINEERR_RESOURCEUNAVAIL

Application Updates the Monitoring Mode on a Monitoring Call at the Supervisor That Is in a
Conference

The application updates the monitoring mode on a monitoring call at the supervisor that is in a conference as
follows:

1. A initiates Call to Band B answers

2. C issues a CciscoLineDevSpecificStartCallMonitoring with:

• permLineId = B permLineId

• mode = MonitorMode_Silent

• tone = PlayToneDirection_RemoteOnly

3. C setups or completes the call to D and D answers.

4. C issues a CciscoLineDevSpecificMonitoringUpdateMode with:

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

5. LINE_REPLY returns LINEERR_OPERATIONUNAVAIL

Application Initiates Whisper Coaching on an Agent That Is Already Playing an Agent Greeting
The application initiates Whisper Coaching on a agent that already is playing an agent greeting as follows:

1. A initiates Call to Band B answers

2. B issues a CCiscoLineDevSpecificStartSendMediaToBIBRequest with:

• DN = IVR DN

• timeout = 30

3. C issues a CciscoLineDevSpecificStartCallMonitoring with:

• permLineId = B permLineId

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

4. LINE_REPLY returns LINEERR_RESOURCEUNAVAIL

Application Initiates Agent Greeting on a Call That Already Has a Whisper Coaching Session
The application initiates Agent Greeting on a call that already has a Whisper Coaching session as follows:

1. A initiates Call to Band B answers

2. C issues a CciscoLineDevSpecificStartCallMonitoring with:

Message Sequence Charts
624

Message Sequence Charts
Application Updates the Monitoring Mode on a Monitoring Call at the Supervisor That Is in a Conference

• permLineId = B permLineId

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

3. B issues a CCiscoLineDevSpecificStartSendMediaToBIBRequest with:

• DN = IVR DN

• timeout = 30

4. LINE_REPLY returns LINEERR_RESOURCEUNAVAIL

Message Sequence Charts
625

Message Sequence Charts
Message Sequence Charts

Message Sequence Charts
626

Message Sequence Charts
Message Sequence Charts

	Message Sequence Charts
	Abbreviations
	3XX
	Agent Greeting
	Configuration
	Procedure

	Agent Zip Tone
	Configuration
	Application Issues the Play Tone Request on a CTI Port with PlayToneDirection -Local/Remote
	Configuration

	Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent (Shared Line). PlayToneDirection -Local
	Configuration

	Conference Scenario: PlayToneDirection -local.
	Configuration

	Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent Agent Puts the Call on Hold. PlayToneDirection -Remote
	Configuration

	Announcement Call
	Blind Transfer
	Call Control Discovery
	Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2 with PSTN Failover Rule Not Set
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A(1900) and B(1901) on Cluster 1 B Redirects to Phone C(1000) on Cluster2 with PSTN Failover Rule Set
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on Cluster 2 with PSTN Failover Rule
	Configuration
	Procedure

	Call Initiated From TAPI From Phone A and B on Cluster 1 B Sets Up Conference to Phone C(1000) on Cluster 2 with PSTN Failover Rule
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster 2 Over SAF Trunk
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Redirects to Phone C(1000) on Cluster 2 Over SAF Trunk
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on Cluster 2 Over SAF Trunk
	Configuration
	Procedure

	CallFwdAll Notification
	Application Pressed CFwdAll on TAPI Monitored Device
	TAPI Monitored Device Goes Off Hook
	Application Monitors Off Hook Device
	Application Monitors Device After User Presses CFwdAll
	User Presses CFwdAll Softkey After Device Is Off Hook
	User Presses CFwdAll Softkey on a Multiline Device
	User Presses CFwdAll on a Multiline Device by Selecting a Line
	Shared Line Scenario on Pressing CFwdAll Softkey
	Cancellation of CFwdAll

	Calling Party IP Address
	Basic Call
	Consultation Transfer
	Consultation Conference
	Redirect

	Calling Party Normalization
	Incoming Call From PSTN to End Point
	Incoming Call From National PSTN to CTI-Observed End Point
	Incoming Call From International PSTN to CTI-Observed End Point
	Outgoing Call From CTI-Observed End Point to PSTN Number
	Outgoing Call From CTI-Observed End Point to National PSTN Number
	Outgoing Call From CTI-Observed End Point to International PSTN Number

	Call PickUp
	Registering CallPickUpGroup for Notification
	Configuration
	UnRegistering CallPickUpGroup for Notification
	Re-Registering CallPickUpGroup for Notification
	Registering/UnRegistering CallPickUpGroup for Notification with Invalid Information
	CallPickUp After Enabling Auto Call Pickup Enabled
	CallPickUp with Auto Call Pickup Enabled Disabled
	CallPickUp with Multiple Calls Available
	CallPickupGroup Changed for a Device on AdminPage
	CallPickUpGroup Partition or DN Information Updated
	CallPickUpGroup Is Deleted

	Call Queuing
	FailOver or FailBack Scenario
	GroupCallPickup
	Configuration

	OtherCallPickup
	Configuration

	DirectCallPickup
	CallPickup (Negative Use Case)
	Configuration

	GroupCallPickup with SuperSet Call PickupDN
	Configuration

	Group or Direct CallPickup with Invalid DN

	CCMEncryption Enhancements
	CIUS Session Persistency
	Notify the Line Application and Expose the Changed IP Address
	Notify the Phone Application and Expose the Changed IP Address

	Click to Conference
	Drop Party by Using Click-2-Conference
	Drop Entire Conference by Using Click-2-Conference Feature

	Conference Enhancements
	Noncontroller Adding Parties to Conferences
	Chaining Two Ad Hoc Conferences Using Join

	CTI Remote Device
	CTI RD Call Forwarding
	Video Capabilities and Multimedia Information
	Direct Transfer Across Lines
	Do Not Disturb-Reject
	Application Enables DND-R on a Phone
	Normal Feature Priority
	Feature Priority - Emergency

	Drop Any Party
	Early Offer
	Application Dynamically Registers CTI Port with Early Offer Support
	Configuration
	Application Dynamically Registers CTI Port Without Early Offer Support
	Configuration

	Application Dynamically Registers IPV6 CTI Port with Early Offer Support
	Configuration

	Mutiple Applications Dynamically Register CTI Port/RP
	Configuration

	Multiple Applications Dynamically Register CTI Port/RP with Early Offer Support
	Configuration

	Application Statically Registers CTI Port with Early Offer Support and Then Disable the Early Offer Support
	Configuration

	Application Statically Registers CTI Port with Out Early Offer Support and Then Enables Early Offer Support
	Configuration

	Application Registers CTI Port with Legacy Wave Driver and Enables Early Offer Support
	Configuration

	Application Registers CTI Port with New Cisco Wave Driver and Enables Early Offer Support
	Configuration

	Mutiple Applications Statically Register CTI Port
	Configuration

	End-To-End Call Trace
	Direct Call Scenario: Variation 1
	Direct Call Scenario: Variation 2
	Consult Transfer Scenario: Variation 1
	Consult Transfer Scenario: Variation 2
	Blind Transfer Scenario
	Redirect Scenario
	Shared Line Scenario
	Shared Line Scenario with Barge
	Call Park Scenario: Variation 1
	Call Park Scenario: Variation 2
	3-Party Conference Call Scenario
	Three-Party Conference Drop Down to Two-Party Call Scenario
	Conference Chaining Scenario Using Join
	Transfer Call Scenario via QSIP Without Path Replacement
	Transfer Call Scenario via QSIP with Path Replacement
	Hunt List Scenario
	Call Pickup Scenario: Variation 1
	Call Pickup Scenario: Variation 2

	EnergyWise Deep Sleep Mode Use Cases
	Verify EnergyWisePowerSavePlus Reason Code in LINEDEVSTATE Message
	Verify EnergyWisePowerSavePlus Reason Code in PhoneState Suspend
	Verify Reason EnergyWisePowerSavePlus Reason Code in LineDevstate/Phone State Message
	Verify Call Manager Failure Reason Code in LineDevstate/Phone State Message
	Verify DeviceUnregister Reason Code in LineDevstate/Phone State Event
	Verify CTILinkFailure Reason Code in LineDevstate/Phone State Message

	Extension Mobility Cross Cluster
	TAPI Application Does LineInitializeEx and EMCC User Logs Into a Device
	TAPI Application Does LineInitializeEx and EMCCUser Logs Out of a Device
	Application Does PhoneInitializeEx and EMCC User Logs In to a Device
	TAPI Application Does PhoneInitializeEx and EMCC User Logs Out of a Device
	EMCC User Logs in to a Device From Cluster 2 (Visiting Cluster)
	EMCC User Logs Out of a Device From Cluster 2 (Visiting Cluster)
	EMCC User Logs In to a Device with LineH Configured
	EMCC User Logs Out of a Device with LineH Configured
	EMCC User Logs In to a DeviceH Configured for Multiple Lines (LineH)
	EMCC User Logs In to a Device with LineH Configured and Administrator Removes the Device From Application Control List
	EMCC User Logs In and Out of a Device with LineH Configured and Administrator Removes the Device From Application Control List
	EMCC User Logs in to a Device with LineH Configured and EM_Profile Not Included in Application Control List
	EMCC User Logs In to a DeviceV and EM_Profile Is Removed by Administrator From Application Control List
	EMCC User Logs In to a Device Then Application Does Provider Open
	EMCC User Logs In to a DeviceV in Visiting Cluster and Administrator Adds the EM_Profile to Application Control List

	Extension Mobility Memory Optimization Option
	Common Configuration
	Use Cases

	External Call Control
	Basic Call Initiated From TAPI with External Call Control on Translation Pattern and CEPM Returns Reject
	Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Divert with Modified Calling and Called Parties
	Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Continue with Modified Calling and Called Parties
	Conference Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Continue with Modified Calling and Called Parties in the Consult Call
	Call Is Redirected to a Hunt List of Chaperones and Chaperone Enables Call Recording and Conferences in the Called Party

	Forced Authorization and Client Matter Code Scenarios
	Manual Call to a Destination That Requires an FAC
	Manual Call to a Destination That Requires Both FAC and CMC
	lineMakeCall to a Destination That Requires an FAC
	lineMakeCall to a Destination That Requires Both FAC and CMC
	Timeout Waiting for FAC or Invalid FAC

	Gateway Recording
	Hunt List
	Basic Hunt List Call
	Hunt List Call Moved to Next Member
	Hunt List Calls FWNA and FWNA Is Not Configured on HuntPilot
	Hunt List Call FWNA with FWNA to B
	Hunt List Call Dropped When Hunt List Is Busy and FWB Is Not Configured
	Hunt List Call Is Forwarded When Hunt List Is Busy and FWB Is Configured to B
	HuntList Call Redirected When in ACCEPT State
	Hunt List Call Redirected When in Connected State
	Hunt List Call Member Is CTI or RP Port
	Hunt List Call Moved to Different Line Group Members and Answered by CTI Port
	Hunt List Call Is Redirected to Another Hunt List
	Hunt List Call Is Consult Transferred to Another Line
	Hunt List Call Direct Transferred to Another Line
	Hunt List Call Is Conferenced to Another Line
	Hunt List Call Is Joined to Another Line
	Hunt List Call Is Conferenced to Another Hunt List After LG11 Answers
	Hunt List Call Conferenced to the Same Hunt List and Completes Conference Before Hunt List Agent Answers
	Hunt List Basic Call with SharedLine
	Hunt List Basic Call with DND-R Configured on LG1
	Hunt List Call Put in Conference via Join Operation
	Hunt List Call Is Picked Up From Pickup Group -G-Pickup Auto Pick Pp Is Enabled
	Hunt List Call Is Picked Up From Pickup Group When LG1 Is in Pickup Group 1 -Auto Pickup Disabled
	Hunt List Call Is Picked Up From Pickup Group When HP2 Is in Pickup Group 2 -Auto Pick Up Enabled
	Conferenced Hunt List Call Becomes Two-Party Call
	Hunt List Broadcast Scenario (Broadcast Option Is Configured on HP1)
	Hunt List Call Is Involved in c-Barge Conference
	Hunt List Feature Interact with Four-Party Conference

	Hunt Pilot Connected Number Feature
	Caller Consult Transfer Call to Another Hunt List

	Intercom
	Application Invoking Speeddial
	Agent Invokes Talkback
	Change the SpeedDial

	IPv6 Use Cases
	Join Across Lines
	Logical Partitioning
	Manual Outbound Call
	Monitoring and Recording
	Monitoring a Call
	Automatic Recording
	Application-Controlled Recording

	NuRD (Number Matching for Remote Destination) Support
	Park Monitoring
	Persistent Connection Use Cases
	Presentation Indication
	Making a Call Through Translation Pattern
	Blind Transfer Through Translation Pattern

	Redirect Set Original Called (TxToVM)
	Refer and Replace Scenarios
	In-Dialog Refer -Referrer in Cisco Unified Communications Manager Cluster
	In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State
	In-Dialog Refer Where Refer Fails or Refer to Target Is Busy
	Out-of-Dialog Refer
	Invite with Replace for Confirmed Dialog
	Refer with Replace for All in Cluster
	Refer with Replace for All in Cluster Replace Dialog Belongs to Another Station

	Secure Conferencing
	Conference with All Parties as Secure
	Hold or Resume in Secure Conference

	Secure Monitoring and Recording
	Silent Monitoring
	Basic Silent Monitoring Scenario in Secure Mode
	Silent Monitoring Scenario on Non-Secure Call in Secure Mode
	Silent Monitoring Scenario on Non-Secure Call From Supervisor Which Is Secure
	Silent Monitoring Scenario on Secure Call From Supervisor Which Is Non-Secure
	Transfer of Monitored Call From Supervisor to Other Supervisor
	Transfer of Call From One Customer to Other
	Park on Supervisor
	Silent Monitoring on Conferenced Call
	Conference on Monitored Call
	Conference on Monitored Call
	Supervisor Holds the Call
	Recording
	Basic Recording Scenario
	Basic Recording Scenario in Secure Mode
	Recording Scenario on Non-Secure Call in Secure Mode
	Recording Scenario on Non-Secure Call Using Secure Recording Profile/Device
	Recording Scenario When Agent Holds the Call
	Recording and Monitoring
	Both Silent Monitoring and Recording on Agent Call in Secure Mode
	Recording Silent Monitored Call on Supervisor

	Shared Lines-Initiating a New Call Manually
	SRTP
	Media Terminate by Application (Open Secure CTI Port or RP)
	Media Terminate by TSP Wave Driver (Open Secure CTI Port)

	Support for Cisco IP Phone 6900 Series
	Support for Cisco Unified IP Phone 6900 and 9900 Series Use Cases
	Swap or Cancel
	Unrestricted Unified CM
	LineHold Enhancement
	Whisper Coaching
	Setup
	Application Initiates a Whisper Coaching Session
	Application Updates the Monitoring Mode
	Agent Holds the Customer Call with Whisper Coaching Then Agent S Shared Line Resumes the Call
	Agent Transfers a Whisper Coaching Call Monitoring Call Goes Idle at the Supervisor
	Application Updates the Monitoring Mode (WhisperCoaching to Silent)
	Supervisor Holds/Resumes the Whisper Coaching Monitoring Session
	Supervisor Transfers the Whisper Coaching Session to Another Supervisor
	Supervisor Conferences the Whisper Coaching Session to Another Supervisor
	Application Initiates a Whisper Coaching Session Second Application on a Different Client Opens All Lines
	Secure R & M with Whisper Coaching Supports
	Application Initiates a Secure Whisper Coaching Session
	Application Updates the Monitoring Mode on an Agent Call That Is on Hold
	Application Initiates Whisper Coaching Where the Agent Is a SIP Device with Older Firmware Version That Does Not Support Media Mixing
	Application Updates the Monitoring Mode Where the Agent Is a SIP Device with Older Firmware Version That Does Not Support Media Mixing
	Application Updates the Monitoring Mode on a Monitoring Call at the Supervisor That Is in a Conference
	Application Initiates Whisper Coaching on an Agent That Is Already Playing an Agent Greeting
	Application Initiates Agent Greeting on a Call That Already Has a Whisper Coaching Session

