

Security Overview

Implementing security mechanisms in the Unified Communications Manager system prevents identity theft of the phones and the Unified Communications Manager server, data tampering, and call-signaling/media-stream tampering.

The Cisco IP telephony network establishes and maintains authenticated communication streams, digitally signs files before transferring the file to the phone, and encrypts media streams and call signaling between Cisco Unified IP Phones.

- Terms and Acronyms, on page 1
- System Requirements, on page 6
- Features List, on page 6
- Security Icons, on page 7
- Interactions and Restrictions, on page 8
- Best Practices, on page 13
- CTL Client, SSL, CAPF, and Security Token Installation, on page 15
- TLS and IPSec, on page 15
- Certificates, on page 16
- Authentication, Integrity, and Authorization, on page 20
- Encryption, on page 24
- NMAP Scan Operation, on page 30
- Set Up Authentication and Encryption, on page 30
- Where to Find More Information, on page 33

Terms and Acronyms

The definitions in the following table apply when you configure authentication, encryption, and other security features for your Cisco IP telephony network:

Table 1: Terminology

Term	Definition
Access Control List (ACL)	List that defines rights and permissions to access system functions and resources. See Method List.

I

Term	Definition
Authentication	Process that verifies the identity of the communicating entity.
Authorization	Process that specifies whether an authenticated user, service, or application has the necessary permissions to perform a requested action; in Unified Communications Manager, the security process that restricts certain trunk-side SIP requests to authorized users.
Authorization Header	A SIP user agent response to a challenge.
Certificate	A message that contains the certificate holder name, the public key, and the digital signature of the certificate authority that is issuing the certificate.
Certificate Authority (CA)	Trusted entity that issues certificates: Cisco or a third-party entity.
Certificate Authority Proxy Function (CAPF)	Process by which supported devices can request locally significant certificates by using Unified Communications Manager Administration.
Certificate Trust List (CTL)	A file, which is created either with the CLI command set utils cli or with the CTL Client and signed by the Cisco Site Administrator Security Token (security token), that contains a list of certificates for servers that the phone is to trust.
Challenge	In digest authentication, a request to a SIP user agent to authenticate its identity.
Cisco Site Administrator Security Token (security token; etoken)	A portable hardware security module that contains a private key and an X.509v3 certificate that the Cisco Certificate Authority signs; used for file authentication, it may be used to sign the CTL file.
	Hardware security tokens are required for only the CTL Client. The CLI command set utils ctl does not require hardware security tokens.
Device Authentication	Process that validates the identity of the device and ensures that the entity is what it claims to be before a connection is made.
Digest Authentication	A form of device authentication where an MD5 hash of a shared password (among other things) gets used to establish the identity of a SIP user agent.
Digest User	User name that is included in an authorization request that phones that are running SIP or SIP trunks send.

Term	Definition
Digital Signature	Value that is generated by hashing the message and then encrypting the message with the private key of the signer; the recipient decrypts the message and the hash with the signer public key, produces another hash with the same hash function, then compares the two hashes to ensure that the messages match and the content is intact.
DSP	Digital signaling processor.
DSP Farm	A network resource for IP telephony conferencing that is provided by DSPs on a H.323 or MGCP gateway.
Encryption	Process of translating data into ciphertext, which ensures the confidentiality of the information and that only the intended recipient can read the data. Requires an encryption algorithm and encryption key.
File Authentication	Process that validates digitally signed files that the phone downloads. The phone validates the signature to make sure that file tampering did not occur after the file creation.
Н.323	An internet standard that defines a common set of codecs, call setup and negotiating procedures, and basic data transport methods.
hash	A number, usually in hexadecimal, that is generated from a string of text by using a hash function, which creates a small digital "fingerprint" for the data.
Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS)	An IETF-defined protocol that ensures (at a minimum) the identity of the HTTPS server; by using encryption, ensures the confidentiality of the information that is exchanged between the Tomcat server and the browser client.
Image Authentication	Process whereby a phone validates the integrity and source of a binary image prior to loading it on the phone.
Integrity	Process that ensures that data tampering did not occur between entities.
IPSec	Transport that provides secure H.225, H.245, and RAS signaling channels for end-to-end security.
Locally Significant Certificate (LSC)	A digital X.509v3 certificate that CAPF issues; installed on the phone or JTAPI/TAPI/CTI application.

I

Term	Definition
Manufacture Installed Certificate (MIC)	A digital X.509v3 certificate that is signed by the Cisco Certificate Authority and installed in supported phones by Cisco Manufacturing; used as the authentication mechanism to CAPF when LSCs are installed in phones.
Man-in-the-Middle Attacks	Process that allows an attacker to observe and modify the information flow between Unified Communications Manager and the phone.
Multipoint Control Unit (MCU)	A flexible system to connect multiple H.323 endpoints and allow multiple users to participate in IP-based video conferences.
MD5	A hash function that is used with encryption.
Media Encryption	Process whereby the confidentiality of the media is protected with cryptographic procedures. Media encryption uses Secure Real-Time Protocol (SRTP) as defined in IETF RFC 3711.
Message/Data Tampering	Event when an attacker attempts to alter messages in transit, including ending a call prematurely.
Method List	Tool to restrict certain categories of messages that can come in on a SIP trunk during the authorization process; defines which SIP nonINVITE methods are allowed for a trunk-side application or device. Also method ACL.
Mixed Mode	Unified Communications Manager security mode that you configure to allow devices with secure/nonsecure profiles and RTP/ SRTP media to connect to Unified Communications Manager.
Nonce	A unique, random number that the server generates for each digest authentication request; used to generate an MD5 hash.
Nonsecure Mode	Unified Communications Manager security mode that you configure to allow devices with nonsecure profiles and RTP media to connect to Unified Communications Manager.
Nonsecure Call	Call in which at least one device is not authenticated or encrypted.
Nonsecure Device	Device that uses UDP or TCP signaling and nonsecure media.

Term	Definition
РКІ	Public key infrastructure, which comprises the set of elements that is needed for public key encryption, including secure public key distribution, certificates, and certificate authorities.
Public / Private key	Keys that are used in encryption. Public keys are widely available, but private keys are held by their respective owners. Asymmetrical encryption combines both types.
Replay Attack	Event when an attacker captures information that identifies a phone or proxy server and replays information while pretending to be the actual device; for example, by impersonating the proxy server private key.
RTP	Real-Time Transport Protocol
Simple Certificate Enrollment Protocol (SCEP)	A protocol that is used to communicate with a certificate authority that issues X.509 certificates.
Secure Call	Call in which all devices are authenticated, signaling is encrypted, and the media (voice stream) is encrypted.
Signaling Authentication	TLS process that validates that no tampering occurred to signaling packets during transmission.
Signaling Encryption	Process that uses cryptographic methods to protect the confidentiality of all signaling messages that are sent between the device and the Unified Communications Manager server.
SIP Realm	A string (name) that Unified Communications Manager uses to respond to a challenge.
SRTP	Secure Real-Time Transport Protocol that secures voice conversation in the network and provides protection against replay attacks.
SSL	A cryptographic protocol that secures data communications such as e-mail on the Internet; equivalent to TLS, its successor.
Transport Layer Security (TLS)	A cryptographic protocol that secures data communications such as e-mail on the Internet; functionally equivalent to SSL.
Trust List	Certificate list without digital signatures.

Term	Definition
Trust Store	A repository of X.509 certificates that an application, such as Unified Communications Manager, explicitly trusts.
X.509	An ITU-T cryptographic standard for importing PKI certificates, which includes certificate formats.

System Requirements

The following system requirements exist for authentication or encryption:

- The Administrator password can differ on every server in a cluster.
- The username and password that are used at the Cisco CTL client (to log in to the Unified Communications Manager server) must match the Unified Communications Manager Administration username and password (the username and password that are used to log in to Unified Communications Manager Administration).
- Before you configure voicemail ports for security, verify that you installed a version of Cisco Unity or Cisco Unity Connection system that supports this Unified Communications Manager release.

Features List

Unified Communications Manager system uses a multilayered approach to call security, from the transport layer to the application layer.

Transport layer security includes TLS and IPSec for signaling authentication and encryption to control and prevent access to the voice domain. SRTP adds media authentication and encryption to secure privacy and confidentiality for voice conversation and other media.

The following table provides a summary of the authentication and encryption features that Unified Communications Manager can implement during an SCCP call session, depending on the features that are supported and configured.

Security Feature	Line Side	Trunk Side
Transport/Connection/Integrity	Secure TLS port	IPSec associations
Device Authentication	TLS certificate exchange w/Unified Communications Manager and/or CAPF	IPSec certificate exchange or preshared key
Signaling Authentication/Encryption	TLS Mode: authenticated or encrypted	IPSec [authentication header, encryption (ESP), or both]
Media Encryption	SRTP	SRTP

Table 2: SCCP Call Security Features

Security Feature	Line Side	Trunk Side
Authorization	Presence requests	Presence requests
Note Supported features on a device vary by device type.		

The following table provides a summary of the authentication and encryption features that Unified Communications Manager can implement during a SIP call session, depending on the features that are supported and configured.

Security Feature	Line Side	Trunk Side
Transport/Connection/Integrity	Secure TLS port	Secure TLS port
Device Authentication	TLS certificate exchange w/Unified Communications Manager and/or CAPF	IPSec certificate exchange or preshared key
Digest Authentication	Each SIP device uses unique digest user credentials.	SIP trunk user agents use unique digest credentials.
Signaling Authentication/Encryption	TLS Mode: authenticated or encrypted (except Cisco Unified IP Phones 7942/7962).	TLS Mode: authenticated or encrypted mode
Media Encryption	SRTP	SRTP
Authorization	Presence requests	Presence requests Method list
Note Supported features on a	device vary by device type.	1

Table 3: SIP Call Security Features

Security Icons

Unified Communications Manager provides security status for a call, according to security levels that are configured for the Unified Communications Manager server(s) and devices that are participating in the call.

Phones that support security icons display the call security level.

- The phone displays a shield icon for calls with a signaling security level of authenticated. A shield identifies a secured connection between Cisco IP devices, which means that the devices have authenticated or encrypted signaling.
- The phone displays a lock icon for calls with encrypted media, which means that the devices are using encrypted signaling and encrypted media.

Note

Some phone models display only the lock icon.

The security status of a call can change for point-to-point, intracluster, intercluster, and multihop calls. SCCP line, SIP line, and H.323 signaling support notification of call security status changes to participating endpoints. Refer to topics related to security icons and encryption for restrictions that are associated with security icons.

The audio and video portions of the call provide basis for the call security status. Consider the call secure only if both the audio and video portions are secure. The following table describes the rules that determine whether a security icon displays, and which icon appears.

Table 4: Security Icon Display Rules

Media and Device Types In the Call	Phones That Display Both Shield and Lock Icons	Phones That Display Only the Lock Icon	
Secure audio only	Lock	Lock	
Secure audio with unsecure video	Shield	None	
Secure audio with secure video	Lock	Lock	
Authenticated device with nonsecure audio only	Shield	None	
Authenticated device with nonsecure audio and video	Shield	None	
Unauthenticated device with nonsecure audio only	None	None	
Unauthenticated device with nonsecure audio and video	None	None	

Note

The "Override BFCP Application Encryption Status When Designating Call Security Status" service parameter displays the lock icon when parameter value is True and audio is secure. This condition ignores the security statuses of all other media channels. The default parameter value is False.

For conference and barge calls, the security icon displays the security status for the conference.

Interactions and Restrictions

This section contains interaction and restriction information.

See the related topics for information about interactions and restrictions that are associated with the secure conference feature.

Interactions

This section provides information on the Interaction of Cisco Security features with Unified Communications Manager applications.

Presence

To add presence group authorization for phones and trunks that are running SIP, configure presence groups to restrict presence requests to authorized users.

Note

Refer to the *Cisco Unified Communications Manager Features and Services Guide* for more information about configuring presence groups.

To allow presence requests on SIP trunks, configure Unified Communications Manager to accept presence requests on the SIP trunk and, if required, configure Unified Communications Manager to accept and authenticate incoming presence requests from the remote device or application.

SIP Trunk

To use SIP-initiated transfer features and other advanced transfer-related features on SIP trunks, such as Web Transfer and Click to Dial, configure the SIP Trunk Security Profile to accept incoming Out of Dialog REFER requests.

To provide support for event reporting (such as MWI support) and to reduce per-call MTP allocations (from a voice-messaging server, for example), configure the SIP Trunk Security Profile to accept Unsolicited Notification SIP requests.

To allow Unified Communications Manager to transfer an external call on a SIP trunk to an external device or party (in attended transfer, for example), configure the SIP Trunk Security Profile to accept SIP requests with replaces header in REFERS and INVITES.

Extension Mobility

For extension mobility, the SIP digest credentials change when a user logs in and out because different credentials are configured for different end users.

CTI

Unified Communications Manager Assistant supports a secure connection to CTI (transport layer security connection) when you configure a CAPF profile (one for each Unified Communications Manager Assistant node).

When multiple instances of a CTI/JTAPI/TAPI application are running, CTI TLS support requires you to configure a unique instanceID (IID) for every application instance to secure signaling and media communication streams between CTI Manager and JTAPI/TSP/CTI applications.

When the device security mode equals authenticated or encrypted, the Cisco Unity-CM TSP connects to Unified Communications Manager through the Unified Communications Manager TLS port. When the security mode equals nonsecure, the Cisco Unity TSP connects to Unified Communications Manager through the CTI Manager port.

Restrictions

This section describes restrictions that apply to Cisco security features.

Authentication and Encryption

Consider the following restrictions before you install and configure authentication and encryption features:

- Auto-registration does not work when you configure mixed mode.
- You cannot implement signaling or media encryption without device authentication. To install device
 authentication, enable the Cisco CTL Provider service and install and configure the Cisco CTL client.
- Cisco does not support Network Address Translation (NAT) with Unified Communications Manager if you configure mixed mode.

You can enable UDP in the firewall to allow media stream firewall traversal. Enabling UDP allows the media source on the trusted side of the firewall to open a bidirectional media flow through the firewall by sending the media packet through the firewall.

Tip Hardware DSP resources cannot initiate this type of connection and, therefore, must exist outside the firewall.

Signaling encryption does not support NAT traversal. Instead of using NAT, consider using LAN extension VPNs.

Barge and Encryption

The following restrictions apply to barge and encryption:

- Due to bandwidth requirements, Cisco IP Phones 7942 and 7962 do not support barge from an encrypted device on an active encrypted call. The barge attempt will fail. A tone plays on the initiator phone to indicate that the barge failed.
- Encrypted Cisco IP Phones that are running release 8.2 or earlier can only barge an active call as authenticated or nonsecure participants.
- If a caller barges a secure SCCP call, the system uses an internal tone-playing mechanism at the target device, and the status remains secure.
- If a caller barges a secure SIP call, the system provides tone-on-hold, and Unified Communications Manager classifies the call as nonsecure during the tone.

Note

Nonsecure or authenticated Cisco IP Phones that are running release 8.3 or later can barge encrypted calls. The security icon indicates the security status for the conference.

Wideband Codecs and Encryption

The following information applies for Cisco Unified IP Phones 7962 or 7942 that are configured for encryption and associated with a wideband codec region. This only applies to Cisco Unified IP Phones 7962 or 7942 that are configured for TLS/SRTP.

To establish an encrypted call, Unified Communications Manager ignores the wideband codec and chooses another supported codec from the codec list that the phone presents. If the other devices in the call are not configured for encryption, Unified Communications Manager may establish the authenticated/nonsecure call by using the wideband codec.

Media Resources and Encryption

Unified Communications Manager supports authenticated and encrypted calls between secure Cisco Unified IP Phones (SCCP or SIP), secure CTI devices/route points, secure Cisco MGCP IOS gateways, secure SIP trunks, secure H.323 gateways, secure conference bridges, and secure H.323/H.245/H.225 trunks where no media resources are used. Unified Communications Manager does not provide media encryption in the following cases:

- · Calls that involve transcoders
- · Call that involve media termination points

Note

MTP encryption is not supported only with the non-passthrough MTP.

Phone Support and Encryption

The following Cisco Unified IP Phones that are running SCCP support encryption: 6901, 6911, 6921, 6941, 6945, 6961,7906G, 7911G, 7921G, 7925G, 7925G-EX, 7926G, 7931G, 7941G, 7941G-GE, 7942G, 7945G, 7961G, 7961G-GE, 7962G, 7965G, 7970G, 7971G, 7975G, 8941, 8945, and 9961.

The following Cisco Unified IP Phones that are running SIP support encryption: 6901, 6911, 6921, 6941, 6945, 6961, 7811, 7821, 7841, 7861, 7832, 7906G, 7911G, 7941G, 7941G-GE, 7942G, 7961G, 7961G-GE, 7962G, 7965G, 7970G, 7971G, 7975G, 8811, 8821, 8821-EX, 8832, 8841, 8845, 8851, 8851NR, 8865, 8865NR, 8941, 8945, 8961, 9971, and 9971.

For more information, see the Cisco Unified IP Phone administration guides for Cisco Unified IP Phones that support encryption and this version of Cisco Unified Communications Manager.

Warning

To obtain the full benefit of security features, Cisco recommends that you upgrade Cisco IP Phones to firmware release 8.3 or later, which supports the encryption features in this Unified Communications Manager release. Encrypted phones that run earlier releases do not fully support these new features. These phones can participate in secure conference and barge calls only as authenticated or nonsecure participants.

Cisco IP Phones that are running on firmware release 8.3 with an earlier release of Unified Communications Manager will display their connection security status, not the conference security status, during a conference or barge call, and do not support secure conference features like conference list.

Phone Support and Encrypted Setup Files

Not all phones support encrypted configuration files. Some phones support encrypted configuration files but do not validate file signatures. All phones that support encrypted configuration files require firmware that is compatible with Unified Communications Manager Release 5.0 or later to receive full encrypted configuration files.

Security Icons and Encryption

The following restrictions apply to security icons and encryption:

- The encryption lock icon may not display on the phone when you perform tasks such as transferring or putting a call on hold; the status changes from encrypted to nonsecure if the media streams that are associated with these tasks, such as MOH, are not encrypted.
- Unified Communications Manager does not display the shield icon for calls that are transiting H.323 trunks.
- For calls that involve the PSTN, the security icon shows the security status for only the IP domain portion of the call.
- A SIP trunk will report encrypted or not-authenticated security status when using the TLS transport type. When SRTP is negotiated, the security status will get encrypted; otherwise it will remain not-authenticated. This will allow Unified Communications Manager call control to determine the overall security level of a call that involves a SIP trunk.

A SIP trunk will report authenticated status over the trunk if a party is authenticated during events such as a meet-me conference or a cbarge. (The SIP trunk will still be using TLS/SRTP.)

- For Secure Monitoring and Recording, a SIP trunk will utilize the existing Call Info header mechanism for transmitting the security icon status over the SIP trunk, as currently used by the SIP line. This enables the SIP trunk peer to monitor the overall security status of a call.
- Some phone models display only the lock icon, not the shield icon.

Cluster and Device Security Modes

Note Device security mode configures the security capability for a Cisco IP Phone or SIP trunk. Cluster security mode configures the security capability for your standalone server or a cluster.

When the cluster security mode equals nonsecure, the device security mode equals nonsecure in the phone configuration file. In these circumstances, the phone makes nonsecure connections with the SRST-enabled gateway and Unified Communications Manager, even if the device security mode specifies authenticated or encrypted. Security-related settings other than device security mode, such as the SRST Allowed check box, also get ignored. The security configuration does not get deleted in Unified Communications Manager Administration, but security does not get provided.

The phone attempts a secure connection to the SRST-enabled gateway only when the cluster security mode equals mixed, the device security mode in the phone configuration file is set to authenticated or encrypted, the SRST Allowed? check box is checked in the Trunk Configuration window, and a valid SRST certificate exists in the phone configuration file.

Digest Authentication and Encryption

Unified Communications Manager defines a SIP call as having two or more separate call legs. For a standard, two-party call between two SIP devices, two separate call legs exist: one leg between the originating SIP user agent and Unified Communications Manager (the originating call leg) and the other leg between Unified Communications Manager and destination SIP user agent (the terminating call leg). Each call leg represents a separate dialog. Because digest authentication is a point-to-point process, digest authentication on each call

leg stays independent of the other call legs. SRTP capabilities can change for each call leg, depending on the capabilities that are negotiated between the user agents.

Packet Capturing and Encryption

When SRTP encryption is implemented, third-party sniffing tools do not work. Authorized administrators with appropriate authentication can initiate packet capturing with a configuration change in Unified Communications Manager Administration (for devices that support packet capturing). See the *Troubleshooting Guide for Cisco Unified Communications Manager* that supports this release for information about configuring packet capturing in Unified Communications Manager.

Best Practices

Cisco strongly recommends the following best practices while configuring security:

- Always perform installation and configuration tasks in a secure lab environment before you deploy to a wide-scale network.
- Use IPSec for gateways and other application servers at remote locations.

Warning 🦷

The session encryption keys get transmitted in the clear if you fail to use IPSec.

• To prevent toll fraud, configure conference enhancements that are described in the *Cisco Unified Communications Manager System Guide*. Likewise, perform configuration tasks to restrict external transferring of calls. For information on how to perform this task, refer to the *Cisco Unified Communications Manager Features and Services Guide*.

Device Resets, Server and Cluster Reboots, and Service Restarts

This section describes when you need to reset the devices, to reboot the server/cluster, or to restart services in Cisco Unified Serviceability.

Consider the following guidelines:

- Reset a single device after you apply a different security profile in Cisco Unified Communications Manager Administration.
- Reset the devices if you perform phone-hardening tasks.
- Reset the devices after you change the cluster security mode from mixed to nonsecure mode (or vice versa).
- Restart all devices after you configure the Cisco CTL client or update the CTL file.
- Reset the devices after you update CAPF enterprise parameters.
- Restart the Cisco CTL Provider service after you update ports for the TLS connection.
- Restart the Cisco CallManager service after you change the cluster security mode from mixed to nonsecure mode (or vice versa).
- Restart the Cisco Certificate Authority Proxy Function service after you update associated CAPF service parameters.

- Restart all Cisco CallManager and Cisco TFTP services in Cisco Unified Serviceability after you configure the Cisco CTL Client or update the CTL file. Perform this task on all servers that run these services in the cluster.
- Restart all Cisco CallManager and Cisco TFTP services after you start or stop the CTL Provider service.
- Reset dependent devices after you configure secure SRST references.
- If you set the Smart Card service to Started and Automatic, reboot the PC where you installed the Cisco CTL client.
- Restart the Cisco IP Manager Assistant service, Cisco Web Dialer Web Service, and the Cisco Extended Functions service after you configure the security-related service parameters that are associated with the Application User CAPF Profile.

To restart the Cisco CallManager service, refer to Cisco Unified Serviceability Administration Guide.

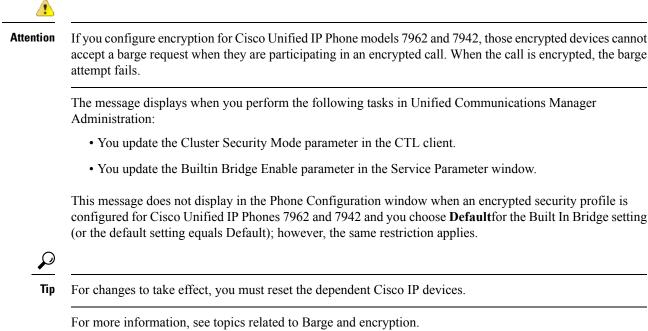
To reset a single device after you update the phone configuration, see topics related to applying the phone security profile.

Reset Devices, Reboot Servers and Clusters, and Restart Services

This section describes when you need to reset the devices, to restart services in Cisco Unified Serviceability, or to reboot the server/cluster.

To reset all devices in a cluster, perform the following procedure:

Before you begin


Refer to the guidelines for device resets, server and cluster reboots, and service restarts before proceeding.

Procedure

Step 1	In Unified Communications Manager Administration, choose System > Cisco Unified CM.
	The Find/List window displays.
Step 2	Click Find . A list of configured Unified Communications Manager servers displays.
Step 3 Step 4 Step 5	Choose the Unified Communications Manager on which you want to reset devices. Click Reset . Perform Step 2, on page 14 and Step 4, on page 14 for each server in the cluster.

Media Encryption with Barge Setup

When you attempt to configure barge for Cisco Unified IP Phones 7962 and 7942 that are configured for encryption, the following message displays:

CTL Client, SSL, CAPF, and Security Token Installation

To obtain authentication support, you can use one of the following options:

- Install the Cisco CTL client, from Unified Communications Manager Administration. For the Cisco CTL client option, you must obtain at least two security tokens.
- 2. Use the CLI command set utils ctl, which does not require security tokens. For more information about this option, see the *Command Line Interface Guide for Cisco Unified Communications Solutions*.

Media and signaling encryption capabilities automatically install when you install Unified Communications Manager.

Unified Communications Manager automatically installs Secure Sockets Layer (SSL) for Unified Communications Manager virtual directories.

Cisco Certificate Authority Proxy Function (CAPF) installs automatically as a part of Unified Communications Manager Administration.

TLS and IPSec

Transport security handles the coding, packing, and sending of data. Unified Communications Manager provides the following secure transport protocols:

 Transport Layer Security (TLS) provides secure and reliable data transfer between two systems or devices, by using secure ports and certificate exchange. TLS secures and controls connections among Unified Communications Manager-controlled systems, devices, and processes to prevent access to the voice domain. Unified Communications Manager uses TLS to secure SCCP calls to phones that are running SCCP and SIP calls to phones or trunks that are running SIP. IP Security (IPSec) provides secure and reliable data transfer between Unified Communications Manager and gateways. IPSec implements signaling authentication and encryption to Cisco IOS MGCP and H.323 gateways.

You can add secure RTP (SRTP) to TLS and IPSec transport services for the next level of security on devices that support SRTP. SRTP authenticates and encrypts the media stream (voice packets) to ensure that voice conversations that originate at or terminate to Cisco Unified IP Phones and either TDM or analog voice gateway ports are protected from eavesdroppers who may have gained access to the voice domain. SRTP adds protection against replay attacks.

Cisco Unified Communications Manager 9.0 and later provides TLS/SRTP support for dual-mode smart phones. TLS establishes the same secure and reliable data transfer mode for mobile phones as for IP phones, and SRTP encrypts voice conversations.

Certificates

Certificates secure client and server identities. After root certificates are installed, certificates get added to the root trust stores to secure connections between users and hosts, including devices and application users.

Administrators can view the fingerprint of server certificates, regenerate self-signed certificates, and delete trust certificates at the Cisco Unified Communications Operating System GUI.

Administrators can also regenerate and view self-signed certificates at the command line interface (CLI).

For information on updating the CallManager trust store and managing certificates, refer to the *Cisco Unified Communications Operating System Administration Guide* that supports this Unified Communications Manager release.

Note

• Unified Communications Manager supports only PEM (.pem) and DER (.der) formatted certificates.

The maximum supported size of certificate for DER or PEM is 4096 bits.

Note

When you upload two certificates, ensure that they have same common name and same validity period but different serial numbers and signature algorithms.

For example, root CA with 27:20:41:0c:5b:08:69:80:42:62:4f:13:bd:16:06:6aserial number and SHA1 algorithm exists in Cisco Unified Communications Manager tomcat-trust. When you attempt to upload the certificate with 7b:35:33:71:0b:7c:08:b2:47:b3:aa:f9:5c:0d:ca:e4 serial number and SHA256 algorithm, the certificate management happens in the following way:

- 1. The validity of incoming certificate is verified.
- 2. The certificate with same common name is searched in the Tomcat trust folder.
- **3.** The serial numbers of the certificate existing in the Tomcat trust folder and the incoming certificate that you are uploading is checked. If the serial numbers are different, the validity start date of both the certificates is verified. If the validity start time stamp of incoming certificate is later than the validity start time stamp of the existing certificate, the existing certificate replaces the newer incoming certificate in the Tomcat trust folder. Else, the new incoming certificate is not uploaded.

Both SHA1 and SHA256 algorithms have same subject name or common name, which implies that they belong to the same entity. The Unified Communications Manager framework does not support both these algorithms on the Unified Communications Manager server simultaneously. Only one certificate that belongs to any entity is supported in a particular trust folder, irrespective of the signature algorithm.

Phone Certificate Types

Cisco uses the following certificate types in phones:

- Manufacture-installed certificate (MIC)—Cisco Manufacturing automatically installs this certificate in supported phone models. Manufacturer-installed certificates authenticate to Cisco Certificate Authority Proxy Function (CAPF) for LSC installation. You cannot overwrite or delete the manufacture-installed certificate.
- Locally significant certificate (LSC)—This certificate type installs on supported phones after you perform the necessary tasks that are associated with the Cisco Certificate Authority Proxy Function (CAPF). The LSC secures the connection between Unified Communications Manager and the phone after you configure the device security mode for authentication or encryption.

 \mathcal{P}

Tip Cisco recommends that you use manufacturer-installed certificates (MICs) for LSC installation only. Cisco supports LSCs to authenticate the TLS connection with Unified Communications Manager. Because MIC root certificates can be compromised, customers who configure phones to use MICs for TLS authentication or for any other purpose do so at their own risk. Cisco assumes no liability if MICs are compromised.

Cisco recommends upgrading Cisco Unified IP Phones 6900 series, 7900 series, 8900 series, and 9900 series to use LSCs for TLS connection to Unified Communications Manager and removing MIC root certificates from the CallManager trust store to avoid possible future compatibility issues. Be aware that some phone models that use MICs for TLS connection to Unified Communications Manager may not be able to register.

Administrators should remove the following MIC root certificates from the CallManager trust store:

CAP-RTP-001

CAP-RTP-002

Cisco_Manufacturing_CA

Cisco_Root_CA_2048

Cisco_Manufacturing_CA_SHA2

Cisco_Root_CA_M2

ACT2_SUDI_CA

MIC root certificates that stay in the CAPF trust store get used for certificate upgrades. For information on updating the CallManager trust store and managing certificates, refer to the *Cisco Unified Communications Operating System Administration Guide* that supports this release.

Server Certificate Types

Cisco uses the following self-signed (own) certificate types in Unified Communications Manager servers:

- HTTPS certificate (Tomcat)—A self-signed root certificate gets generated during the Unified Communications Manager installation for the HTTPS server. Cisco Unity Connection uses this certificate for SMTP and IMAP services.
- CallManager certificate—A self-signed root certificate automatically installs when you install Unified Communications Manager on the Unified Communications Manager server.
- CAPF certificate—The system copies this root certificate, which gets generated during Unified Communications Manager installation, to your server or to all servers in the cluster after you complete the Cisco CTL client configuration.
- IPSec certificate (ipsec_cert)—A self-signed root certificate gets generated during Unified Communications Manager installation for IPSec connections with MGCP and H.323 gateways.
- SRST-enabled gateway certificate—When you configure a secure SRST reference in Unified Communications Manager Administration, Unified Communications Manager retrieves the SRST-enabled gateway certificate from the gateway and stores it in the Unified Communications Manager database. After you reset the devices, the certificate gets added to the phone configuration file. Because the certificate is stored in the database, you cannot manage this certificate with the certificate management tool.
- TVS certificate—These are self-signed certificates that support the Trust Verification Service (TVS).

- Phone-VPN-trust certificate—This category allows the system to import Cisco Unified IP Phone VPN certificates. These certificates get stored in the Midlet trust store.
- Phone Certificates trust store (Phone-trust)—Unified Communications Manager uses this certificate type to support HTTPs access on phones. You can upload certificates to the Phone-trust store by using the Cisco Unified Communications Operating System GUI. Certificates in the Phone-CTL-trust are downloaded to the phone though the CTL file mechanism to support secure web access (HTTPS) from Cisco Unified IP Phones. Phone-trust certificates stay on the server and phones can request them through TVS.

Unified Communications Manager imports the following certificate types to the CallManager trust store:

- Cisco Unity server or Cisco Unity Connection certificate—Cisco Unity and Cisco Unity Connection use this self-signed root certificate to sign the Cisco Unity SCCP and Cisco Unity Connection SCCP device certificates. For Cisco Unity, the Cisco Unity Telephony Integration Manager (UTIM) manages this certificate. For Cisco Unity Connection, Cisco Unity Connection Administration manages this certificate.
- Cisco Unity and Cisco Unity Connection SCCP device certificates—Cisco Unity and Cisco Unity Connection SCCP devices use this signed certificate to establish a TLS connection with Unified Communications Manager.
- The certificate name represents a hash of the certificate subject name, which is based on the voice-mail server name. Every device (or port) gets issued a certificate that is rooted at the root certificate.
- SIP Proxy server certificate—A SIP user agent that connects via a SIP trunk authenticates to Unified Communications Manager if the CallManager trust store contains the SIP user agent certificate and if the SIP user agent contains the Unified Communications Manager certificate in its trust store.

The following additional trust store exists:

- · Common trust store for Tomcat and web applications
- IPSec-trust
- CAPF-trust
- Userlicensing-trust
- TVS-trust
- Phone-SAST-trust
- Phone-CTL-trust

Support for Certificates from External CAs

Unified Communications Manager supports integration with third-party certificate authorities (CAs) by using a PKCS#10 certificate signing request (CSR) mechanism, which is accessible at the Cisco Unified Communications Operating System Certificate Manager GUI. Customers who currently use third-party CAs should use the CSR mechanism to issue certificates for Cisco CallManager, CAPF, IPSec, and Tomcat.

Note

When using Multi-server (SAN) CA-signed certificates, the Multi-server certificate is only applied to nodes in the cluster at the time the certificate is uploaded to the Publisher. Therefore, anytime a node is rebuilt or a new node is added to the cluster, it is necessary to generate a new Multi-server certificate and upload it to the cluster.

If you run your system in mixed mode, some endpoints may not accept CA certificates with a key size of 4096 or longer. To use CA certificates in mixed mode, choose one of the following options:

- Use certificates with a certificate key size less than 4096
- Use self-signed certificates

Note This release of Unified Communications Manager does not provide SCEP interface support.

Be sure to run the CTL client after you upload a third-party, CA-signed certificate to the platform to update the CTL file. After running the CTL client, restart the appropriate service(s) for the update; for example, restart Cisco CallManager and Cisco TFTP services when you update the Unified Communications Manager certificate, restart CAPF when you update the CAPF certificate, and so on.

Note

After uploading the Cisco CallManager or CAPF certificates, you might observe the phones reset automatically to update their ITL File.

For information on generating Certificate Signing Requests (CSRs) at the platform, refer to the Cisco Unified Communications Operating System Administration Guide that supports this Cisco Unified Communications Manager release.

Authentication, Integrity, and Authorization

Integrity and authentication protect against the following threats:

- TFTP file manipulation (integrity)
- Modification of call-processing signaling between the phone and Unified Communications Manager (authentication)
- Man-in-the-middle attacks (authentication), as defined in Table 1: Terminology, on page 1
- Phone and server identity theft (authentication)
- Replay attack (digest authentication)

Authorization specifies what an authenticated user, service, or application can do. You can implement multiple authentication and authorization methods in a single session.

Image Authentication

This process prevents tampering with the binary image, the firmware load, prior to loading it on the phone. Tampering with the image causes the phone to fail the authentication process and reject the image. Image authentication occurs through signed binary files that automatically install when you install Unified Communications Manager. Likewise, firmware updates that you download from the web also provide signed binary images.

Device Authentication

This process validates the identity of the communicating device and ensures that the entity is who it claims to be.

Device authentication occurs between the Unified Communications Manager server and supported Cisco Unified IP Phones, SIP trunks, or JTAPI/TAPI/CTI applications (when supported). An authenticated connection occurs between these entities only when each entity accepts the certificate of the other entity. Mutual authentication describes this process of mutual certificate exchange.

Device authentication relies on the creation of the Cisco CTL file (for authenticating Unified Communications Manager server node and applications), and the Certificate Authority Proxy Function (for authenticating phones and JTAPI/CTI applications).

Tip A SIP user agent that connects via a SIP trunk authenticates to Unified Communications Manager if the CallManager trust store contains the SIP user agent certificate and if the SIP user agent contains the Unified Communications Manager certificate in its trust store. For information on updating the CallManager trust store, refer to the *Cisco Unified Communications Operating System Administration Guide* that supports this Unified Communications Manager release.

File Authentication

This process validates digitally signed files that the phone downloads; for example, the configuration, ring list, locale, and CTL files. The phone validates the signature to verify that file tampering did not occur after the file creation. For a list of devices that are supported, see "Phone Model Support".

If you configure the cluster for mixed mode, the TFTP server signs static files, such as ring list, localized, default.cnf.xml, and ring list wav files, in .sgn format. The TFTP server signs files in <device name>.cnf.xml format every time that the TFTP server verifies that a data change occurred for the file.

The TFTP server writes the signed files to disk if caching is disabled. If the TFTP server verifies that a saved file has changed, the TFTP server re-signs the file. The new file on the disk overwrites the saved file that gets deleted. Before the phone can download the new file, the administrator must restart affected devices in Unified Communications Manager.

After the phone receives the files from the TFTP server, the phone verifies the integrity of the files by validating the signature on the file. For the phone to establish an authenticated connection, ensure that the following criteria are met:

- A certificate must exist in the phone.
- The CTL file must exist on the phone, and the Unified Communications Manager entry and certificate must exist in the file.

• You configured the device for authentication or encryption.

Signaling Authentication

This process, also known as signaling integrity, uses the TLS protocol to validate that no tampering occurred to signaling packets during transmission.

Signaling authentication relies on the creation of the Certificate Trust List (CTL) file.

Digest Authentication

This process for SIP trunks and phones allows Unified Communications Manager to challenge the identity of a device that is connecting to Unified Communications Manager. When challenged, the device presents its digest credentials, similar to a username and password, to Unified Communications Manager for verification. If the credentials that are presented match those that are configured in the database for that device, digest authentication succeeds, and Unified Communications Manager processes the SIP request.

Note

Be aware that the cluster security mode has no effect on digest authentication.

Note If you enable digest authentication for a device, the device requires a unique digest user ID and password to register.

You configure SIP digest credentials in the Unified Communications Manager database for a phone user or application user.

- For applications, you specify digest credentials in the Application User Configuration window.
- For phones that are running SIP, you specify the digest authentication credentials in the End User window. To associate the credentials with the phone after you configure the user, you choose a Digest User, the end user, in the Phone Configuration window. After you reset the phone, the credentials exist in the phone configuration file that the TFTP server offers to the phone. See topics related to encrypted phone configuration file setup to ensure digest credentials do not get sent in the clear in TFTP downloads.
- For challenges received on SIP trunks, you configure a SIP realm, which specifies the realm username (device or application user) and digest credentials.

When you enable digest authentication for an external phone or trunk that is running SIP and configure digest credentials, Unified Communications Manager calculates a credentials checksum that includes a hash of the username, password, and the realm. The system uses a nonce value, which is a random number, to calculate the MD5 hash. Unified Communications Manager encrypts the values and stores the username and the checksum in the database.

To initiate a challenge, Unified Communications Manager uses a SIP 401 (Unauthorized) message, which includes the nonce and the realm in the header. You configure the nonce validity time in the SIP device security profile for the phone or trunk. The nonce validity time specifies the number of minutes that a nonce value stays valid. When the time interval expires, Unified Communications Manager rejects the external device and generates a new number.

Note

Unified Communications Manager acts as a user agent server (UAS) for SIP calls that are originated by line-side phones or devices that are reached through the SIP trunk, as a user agent client (UAC) for SIP calls that it originates to the SIP trunk, or a back-to-back user agent (B2BUA) for line-to-line or trunk-to-trunk connections. In most environments, Unified Communications Manager acts primarily as B2BUA connecting SCCP and SIP endpoints. (A SIP user agent represents a device or application that originates a SIP message.)

 ρ

Tip Digest authentication does not provide integrity or confidentiality. To ensure integrity and confidentiality for the device, configure the TLS protocol for the device, if the device supports TLS. If the device supports encryption, configure the device security mode as encrypted. If the device supports encrypted phone configuration files, configure encryption for the files.

Digest Authentication for Phones

When you enable digest authentication for a phone, Unified Communications Manager challenges all requests for phones that are running SIP except keepalive messages. Unified Communications Manager does not respond to challenges from line-side phones.

After receiving a response, Unified Communications Manager validates the checksum for the username that is stored in the database against the credentials in the response header.

Phones that are running SIP exist in the Unified Communications Manager realm, which is defined in Unified Communications Manager Administration at installation. You configure the SIP Realm for challenges to phones with the service parameter SIP Station Realm. Each digest user can have one set of digest credentials per realm.

Tip

If you enable digest authentication for an end user but do not configure the digest credentials, the phone will fail registration. If the cluster mode is nonsecure and you enable digest authentication and configure digest credentials, the digest credentials get sent to the phone, and Unified Communications Manager still initiates challenges.

Digest Authentication for Trunks

When you enable digest authentication for a trunk, Unified Communications Manager challenges SIP trunk requests from SIP devices and applications that connect through a SIP trunk. The system uses the Cluster ID enterprise parameter in the challenge message. SIP user agents that connect through the SIP trunk respond with the unique digest credentials that you configured for the device or application in Unified Communications Manager.

When Unified Communications Manager initiates a SIP trunk request, a SIP user agent that connects through the SIP trunk can challenge the identity of Unified Communications Manager. For these incoming challenges, you configure a SIP Realm to provide the requested credentials for the user. When Unified Communications Manager receives a SIP 401(Unauthorized) or SIP 407 (Proxy Authentication Required) message, Unified Communications Manager looks up the encrypted password for the realm that connects though the trunk and for the username that the challenge message specifies. Unified Communications Manager decrypts the password, calculates the digest, and presents it in the response message.

\mathcal{P}

Tip The realm represents the domain that connects through the SIP trunk, such as xyz.com, which helps to identify the source of the request.

To configure the SIP Realm, see topics related to digest authentication for SIP trunks. You must configure a SIP Realm and username and password in Unified Communications Manager for each SIP trunk user agent that can challenge Unified Communications Manager. Each user agent can have one set of digest credentials per realm.

Authorization

Unified Communications Manager uses the authorization process to restrict certain categories of messages from phones that are running SIP, from SIP trunks, and from SIP application requests on SIP trunks.

- For SIP INVITE messages and in-dialog messages, and for phones that are running SIP, Unified Communications Manager provides authorization through calling search spaces and partitions.
- For SIP SUBSCRIBE requests from phones, Unified Communications Manager provides authorization for user access to presence groups.
- For SIP trunks, Unified Communications Manager provides authorization of presence subscriptions and certain non-INVITE SIP messages; for example, out-of-dial REFER, unsolicited notification, and any SIP request with the replaces header. You specify authorization in the SIP Trunk Security Profile Configuration window when you check the allowed SIP requests in the window.

To enable authorization for SIP trunk applications, check the Enable Application Level Authorization and the Digest Authentication check box in the SIP Trunk Security Profile window; then, check the allowed SIP request check boxes in the Application User Configuration window.

If you enable both SIP trunk authorization and application level authorization, authorization occurs for the SIP trunk first and then for the SIP application user. For the trunk, Unified Communications Manager downloads the trunk Access Control List (ACL) information and caches it. The ACL information gets applied to the incoming SIP request. If the ACL does not allow the SIP request, the call fails with a 403 Forbidden message.

If the ACL allows the SIP request, Unified Communications Manager checks whether digest authentication is enabled in the SIP Trunk Security Profile. If digest authentication is not enabled and application-level authorization is not enabled, Unified Communications Manager processes the request. If digest authentication is enabled, Unified Communications Manager verifies that the authentication header exists in the incoming request and then uses digest authentication to identify the source application. If the header does not exist, Unified Communications Manager challenges the device with a 401 message.

Before an application-level ACL gets applied, Unified Communications Manager authenticates the SIP trunk user agent through digest authentication. Therefore, you must enable digest authentication in the SIP Trunk Security Profile before application-level authorization can occur.

Encryption

\mathcal{P}

Tip

Encryption capability installs automatically when you install Unified Communications Manager on a server.

This section describes the types of encryption that Unified Communications Manager supports:

Signaling Encryption

Signaling encryption ensures that all SIP and SCCP signaling messages that are sent between the device and the Unified Communications Manager server are encrypted.

Signaling encryption ensures that the information that pertains to the parties, DTMF digits that are entered by the parties, call status, media encryption keys, and so on, are protected against unintended or unauthorized access.

Cisco does not support Network Address Translation (NAT) with Unified Communications Manager if you configure the cluster for mixed mode; NAT does not work with signaling encryption.

You can enable UDP ALG in the firewall to allow media stream firewall traversal. Enabling the UDP ALG allows the media source on the trusted side of the firewall to open a bidirectional media flow through the firewall by sending the media packet through the firewall.

 \mathcal{O}

Tip Hardware DSP resources cannot initiate this type of connection and, therefore, must exist outside the firewall.

Signaling encryption does not support NAT traversal. Instead of using NAT, consider using LAN extension VPNs.

Media Encryption

Media encryption, which uses Secure Real-Time Protocol (SRTP), ensures that only the intended recipient can interpret the media streams between supported devices. Media encryption includes creating a media master key pair for the devices, delivering the keys to the devices, and securing the delivery of the keys while the keys are in transport. Unified Communications Manager supports SRTP primarily for IOS gateways and Unified Communications Manager H.323 trunks on gatekeeper-controlled and non-gatekeeper-controlled trunks as well as on SIP trunks.

Note

Cisco Unified Communications Manager handles media encryption keys differently for different devices and protocols. All phones that are running SCCP get their media encryption keys from Unified Communications Manager, which secures the media encryption key downloads to phones with TLS encrypted signaling channels. Phones that are running SIP generate and store their own media encryption keys. Media encryption keys that are derived by Unified Communications Manager system securely get sent via encrypted signaling paths to gateways over IPSec-protected links for H.323 and MGCP or encrypted TLS links for SCCP and SIP.

If the devices support SRTP, the system uses a SRTP connection. If at least one device does not support SRTP, the system uses an RTP connection. SRTP-to-RTP fallback may occur for transfers from a secure device to a non-secure device, transcoding, music on hold, and so on.

For most security-supported devices, authentication and signaling encryption serve as the minimum requirements for media encryption; that is, if the devices do not support signaling encryption and authentication, media encryption cannot occur. Cisco IOS gateways and trunks support media encryption without authentication. For Cisco IOS gateways and trunks, you must configure IPSec when you enable the SRTP capability (media encryption).

Warning

Before you configure SRTP or signaling encryption for gateways and trunks, Cisco strongly recommends that you configure IPSec because Cisco IOS MGCP gateways, H.323 gateways, and H.323/H.245/H.225 trunks rely on IPSec configuration to ensure that security-related information does not get sent in the clear. Unified Communications Manager does not verify that you configured IPSec correctly. If you do not configure IPSec correctly, security-related information may get exposed.

SIP trunks rely on TLS to ensure that security-related information does not get sent in the clear.

The following example demonstrates media encryption for SCCP and MGCP calls.

- 1. Device A and Device B, which support media encryption and authentication, register with Unified Communications Manager.
- 2. When Device A places a call to Device B, Unified Communications Manager requests two sets of media session master values from the key manager function.
- 3. Both devices receive the two sets: one set for the media stream, Device A—Device B, and the other set for the media stream, Device B-Device A.
- 4. Using the first set of master values, Device A derives the keys that encrypt and authenticate the media stream, Device A-Device B.
- 5. Using the second set of master values, Device A derives the keys that authenticate and decrypt the media stream, Device B-Device A.
- 6. Device B uses these sets in the inverse operational sequence.
- 7. After the devices receive the keys, the devices perform the required key derivation, and SRTP packet processing occurs.

Note

Phones that are running SIP and H.323 trunks/gateways generate their own cryptographic parameters and send them to Unified Communications Manager.

For media encryption with conference calls, refer to topics related to secure conference resources.

AES 256 Encryption Support for TLS and SIP SRTP

Cisco Collaboration Solutions use Transport Layer Security (TLS) and Secure Real-time Transport Protocol (SRTP) for signaling and media encryption. Currently, Advanced Encryption Standard (AES) with a 128-bit encryption key is used as the encryption cipher. AES also uses Hash-based Message Authentication Code Secure Hash Algorithm-1 (HMAC-SHA-1) as the authentication method. These algorithms cannot effectively scale to meet the required changing security and performance needs. To meet escalating security and performance requirements, the algorithms and protocols for encryption, authentication, digital signatures, and key exchange in Next-Generation Encryption (NGE) are developed. Also, AES 256 encryption support is provided instead of AES 128 for TLS and Session Initiation Protocol (SIP) SRTP that supports NGE.

With Unified Communications Manager Release 10.5(2), the AES 256 encryption support for TLS and SIP SRTP is enhanced to focus on AES 256 cipher support in signaling and media encryption. This feature is useful for the applications that run on Unified Communications Manager to initiate and support TLS 1.2

connections with the AES-256 based ciphers that conform to SHA-2 (Secure Hash Algorithm) standards and is Federal Information Processing Standards (FIPS) compliant.

This feature has the following requirements:

- The connection that the SIP trunk and SIP line initiates.
- The ciphers that Unified Communications Manager supports for SRTP calls over SIP line and SIP trunk.

Note

With this release, TLS 1.2 is supported on some interfaces like SIP, but is not supported on all interfaces. It is recommended that you leave TLS 1.0 and 1.1 enabled in your Collaboration deployment.

AES 256 and SHA-2 Support in TLS

The Transport Layer Security (TLS) protocol provides authentication, data integrity, and confidentiality for communications between two applications. TLS 1.2 is based on Secure Sockets Layer (SSL) protocol version 3.0, although the two protocols are not compatible with each other. TLS operates in a client/server mode where one side acts as a server and the other side acts as a client. SSL is positioned as a protocol layer between the Transmission Control Protocol (TCP) layer and the application to form a secure connection between clients and servers so that they can communicate securely over a network. To operate, TLS requires TCP as the reliable transport layer protocol.

In Unified Communications Manager Release 10.5(2), AES 256 and SHA-2 (Secure Hash Algorithm-2) support in TLS 1.2 is an enhancement to handle the connection that is initiated by the SIP Trunk and the SIP line. The supported ciphers, which are AES 256 and SHA-2 compliant, are listed as follows:

- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256—The cipher string is ECDH-RSA-AES128-GCM-SHA256.
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384—The cipher string is ECDH-RSA-AES256-GCM-SHA384.

where:

- TLS is Transport Layer Security
- ECDH is Elliptic curve Diffie–Hellman, which is an algorithm
- RSA is Rivest Shamir Adleman, which is an algorithm
- AES is Advanced Encryption Standards
- GCM is Galois/Counter Mode

In addition to the newly-supported ciphers, Unified Communications Manager Release 10.5(2) continues to support TLS_RSA_WITH_AES_128_CBC_SHA. The cipher string of this cipher is AES128-SHA.

• The Unified Communications Manager certificates are based on RSA.

- In Unified Communications Manager 10.5(2), Cisco Endpoints (phones) do not support the above mentioned new ciphers for TLS 1.2.
- With AES 256 and SHA-2 (Secure Hash Algorithm-2) support in TLS 1.2 enhancement in Unified Communications Manager 10.5(2), the default key size for Certificate Authority Proxy Function (CAPF) is increased to 2048 bits.

AES 256 Support in SRTP SIP Call Signaling

Secure Real-time Transport Protocol (SRTP) defines the methods of providing confidentiality and data integrity for both Real-time Transport Protocol (RTP) voice and video media and their corresponding Real-time Transport Control Protocol (RTCP) streams. SRTP implements this method through the use of encryption and message authentication headers. In SRTP, encryption applies to the payload of the RTP packet only, and not to the RTP header. However, message authentication applies to both the RTP header and the RTP payload. Also, SRTP indirectly provides protection against replay attacks because message authentication applies to the RTP sequence number within the header. SRTP uses Advanced Encryption Standards (AES) with a 128-bit encryption key as the encryption cipher. It also uses Hash-based Message Authentication Code Secure Hash Algorithm-1 (HMAC-SHA-1) as the authentication method.

Unified Communications Manager 10.5(2) supports crypto ciphers for the SRTP calls over SIP line and SIP trunk. These crypto ciphers are AEAD_AES_256_GCM and AEAD_AES_128_GCM, where AEAD is Authenticated-Encryption with Associated-Data, and GCM is Galois/Counter Mode. These ciphers are based on GCM. If these ciphers are present in the Session Description Protocol (SDP), they are treated with higher priority as compared to the AES 128 and SHA-1 based ciphers. Cisco Endpoints (phones) do not support these new ciphers that you add for Unified Communications Manager 10.5(2) for SRTP.

In addition to the newly supported ciphers, Unified Communications Manager 10.5(2) continues to support the following ciphers:

- AES_CM_128_HMAC_SHA1_80
- AES_CM_128_HMAC_SHA1_32
- F8_128_HMAC_SHA1_80

AES 256 encryption is supported in the following calls:

- SIP line to SIP line call signaling
- · SIP line to SIP trunk signaling
- · SIP trunk to SIP trunk signaling

Cisco Unified Communications Manager Requirements

- Support for TLS Version 1.2 on the SIP trunk and SIP line connections is available.
- Cipher support—TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (cipher string ECDHE-RSA-AES256-GCM-SHA384) and TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

(cipher string ECDHE-RSA-AES128-GCM-SHA256)—is available when the TLS 1.2 connection is made. These ciphers are based on GCM and conform to SHA-2 category.

• Unified Communications Manager initiates TLS1.2 with the TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 and TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 ciphers. If the peer does not support TLS1.2, then Unified Communications Manager will fall back to TLS 1.0 with the existing AES128-SHA cipher.

• The SRTP calls over SIP line and SIP trunk support the GCM-based AEAD_AES_256_GCM and AEAD_AES_128_GCM ciphers.

Interactions and Restrictions

- Unified Communications Manager requirements apply to SIP line and SIP trunk, and basic SIP to SIP calls only.
- The device types that are based on non-SIP protocols will continue to support the existing behavior with the TLS versions with the supported ciphers. Skinny Call Control Protocol (SCCP) also supports TLS 1.2 with the earlier supported ciphers.
- SIP to non-SIP calls will continue to use AES 128 and SHA-1 based ciphers.

Configuration File Encryption

Unified Communications Manager pushes confidential data such as digest credentials and administrator passwords to phones in configuration file downloads from the TFTP server.

Unified Communications Manager uses reversible encryption to secure these credentials in the database. To secure this data during the download process, Cisco recommends that you configure encrypted configuration files for all Cisco IP Phones that support this option. When this option is enabled, only the device configuration file gets encrypted for download.

In some circumstances, you may choose to download confidential data to phones in the clear; for example, to troubleshoot the phone or during auto-registration.

Unified Communications Manager encodes and stores encryption keys in the database. The TFTP server encrypts and decrypts configuration files by using symmetric encryption keys:

- If the phone has PKI capabilities, Unified Communications Manager can use the phone public key to encrypt the phone configuration file.
- If the phone does not have PKI capabilities, you must configure a unique symmetric key in Unified Communications Manager and in the phone.

You enable encrypted configuration file settings in the Phone Security Profile window in Unified Communications Manager Administration, which you then apply to a phone in the Phone Configuration window.

NMAP Scan Operation

You can run a Network Mapper (NMAP) scan program on any Windows or Linux platform to perform vulnerability scans. NMAP represents a free and open source utility for network exploration or security auditing.

Note NMAP DP scan can take up to 18 hours to complete.

Syntax

```
nmap -n -vv -sU -p <port_range> <ccm_ip_address>
```

where:

-n: No DNS resolution. Tells NMAP to never do reverse DNS resolution on the active IP addresses that it finds. Because DNS can be slow even with the NMAP built-in parallel stub resolver, this option can slash scanning times.

-v: Increases the verbosity level, which causes NMAP to print more information about the scan in progress. The system shows open ports as they are found and provides completion time estimates when NMAP estimates that a scan will take more than a few minutes. Use this option twice or more for even greater verbosity.

-sU: Specifies a UDP port scan.

-p: Specifies which ports to scan and overrides the default. Be aware that individual port numbers are acceptable, as are ranges that are separated by a hyphen (for example 1-1023).

ccm ip address: IP address of Cisco Unified Communications Manager

Set Up Authentication and Encryption

Important

This procedure applies to the CTL Client encryption option. You may also set up encryption by using the **utils ctl** CLI command set. For more information about this option, see the *Command Line Interface Guide* for Cisco Unified Communications Solutions.

The following procedure provides all the tasks that you must perform to implement authentication and encryption. See the related topics for chapter references which contain tasks that you must perform for the specified security feature.

- To implement authentication and encryption for a new install, refer to the following table.
- To add a node to a secure cluster, see *Installing Cisco Unified Communications Manager*, which describes how to add a node and how to configure security for the new node.

Procedure

Step 1 Activate the Cisco CTL Provider service in Cisco Unified Serviceability

I

	Be sure to activate the Cisco CTL Provider service on each Unified Communications Manager server in t cluster.					
	Тір	If you activated this service prior to a Unified Communications Manager upgrade, you do not need to activate the service again. The service automatically activates after the upgrade.				
Step 2		Activate the Cisco Certificate Authority Proxy service in Cisco Unified Serviceability to install, upgrade, troubleshoot, or delete locally significant certificates.				
	Activat	te the Cisco Certificate Authority Proxy service on the first node only.				
	Timesav	ver Performing this task before you install and configure the Cisco CTL client ensures that you do not have to update the CTL file to use CAPF.				
Step 3	If you o	If you do not want to use the default port settings, configure ports for the TLS connection.				
	Тір	If you configured these settings prior to a Unified Communications Manager upgrade, the settings migrate automatically during the upgrade.				
Step 4	If using the Cisco CTL client for encryption, obtain at least two security tokens and the passwords, hostnames/IP addresses, and port numbers for the servers that you will configure for the Cisco CTL client.					
	Note	You do not need hardware security tokens for the utils ctl CLI option.				
Step 5	Install the Cisco CTL client.					
	Тір	To update the Cisco CTL file after an upgrade to this Unified Communications Manager release, you must install the plug-in that is available in this Unified Communications Manager Administration release.				
Step 6	Config	Configure the Cisco CTL client.				
	Тір	If you created the Cisco CTL file prior to a Unified Communications Manager upgrade, the Cisco CTL file migrates automatically during the upgrade. To update the Cisco CTL file after an upgrade to this Unified Communications Manager release, you must install and configure the latest version of the Cisco CTL client.				
Step 7	Config	ure the phone security profiles.				
	Perform	n the following tasks when you configure the profiles:				
	a) Co	nfigure the device security mode.				
	Тір	The device security mode migrates automatically during the Unified Communications Manager upgrade. If you want to configure encryption for devices that only supported authentication in a prior release, you must choose a security profile for encryption in the Phone Configuration window.				
	b) Co	nfigure CAPF settings (for some phones that are running SCCP and SIP).				
	Ad	ditional CAPF settings display in the Phone Configuration window.				
	c) If you plan to use digest authentication for phones that are running SIP, check the Enable Digest Authentication check box.					
	d) To enable encrypted configuration files (for some phones that are running SCCP and SIP), check the Encrypted Confide check box.					
		exclude digest credentials in configuration file downloads, check the Exclude Digest Credential in nfiguration File check box.				

Step 8 Apply the phone security profiles to the phones.

Step 9 Configure CAPF to issue certificates to the phones.

- **Tip** If you performed certificate operations before the upgrade to this Unified Communications Manager release and CAPF ran on a subscriber server, you must copy the CAPF data to the publisher database server before you upgrade a cluster to this Unified Communications Manager release.
- **Caution** The CAPF data on the Unified Communications Manager subscriber server does not migrate to the Unified Communications Manager database, and a loss of data occurs, if you do not copy the data to the database. If a loss of data occurs, the locally significant certificates that you issued with the CAPF utility remain in the phones, but the CAPF utility for this release must reissue the certificates, which are no longer valid.

The following steps are optional:

- **Step 10** Verify that the locally significant certificates are installed on supported Cisco Unified IP Phones.
- **Step 11** Configure digest authentication for phones that are running SIP.
- **Step 12** Perform phone-hardening tasks.
 - **Tip** If you configured phone-hardening settings prior to a Unified Communications Manager upgrade, the device configuration settings migrate automatically during the upgrade.
- **Step 13** Configure conference bridge resources for security.
- **Step 14** Configure voice mail ports for security.

For more information, see the applicable Cisco Unity or Cisco Unity Connection integration guide for this Unified Communications Manager release.

- **Step 15** Configure security settings for SRST references.
 - **Tip** If you configured secure SRST references in a previous Unified Communications Manager release, the configuration automatically migrates during the Unified Communications Manager upgrade.
- **Step 16** Configure IPSec.

For more information, see Media and Signaling Authentication and Encryption Feature for Cisco IOS MGCP Gateways and Cisco Unified Communications Operating System Administration Guide

Step 17 Configure the SIP trunk security profile.

If you plan to use digest authentication, check the Enable Digest Authentication check box in the profile.

For trunk-level authorization, check the authorization check boxes for the allowed SIP requests.

If you want application-level authorization to occur after trunk-level authorization, check the Enable Application Level Authorization check box.

You cannot check application-level authorization unless digest authentication is checked.

- **Step 18** Apply the SIP trunk security profile to the trunk.
- **Step 19** Configure digest authentication for the trunk.
- **Step 20** If you checked the Enable Application Level Authorization check box in the SIP trunk security profile, configure the allowed SIP requests by checking the authorization check boxes in the Application User Configuration window.
- **Step 21** Reset all phones.

Step 22 Reboot all servers.

Where to Find More Information

Related Cisco Documentation

Refer to the following documents for further information about related Cisco IP telephony applications and products:

- Cisco Unified IP Phone Administration Guide for Cisco Unified Communications Manager.
- Cisco Unified Communications Operating System Administration Guide
- Media and Signaling Authentication and Encryption Feature for Cisco IOS MGCP Gateways
- Cisco Unified Communications Manager Integration Guide for Cisco Unity
- Cisco Unified Communications Manager Integration Guide for Cisco Unity Connection
- Cisco Unified Survivable Remote Site Telephony (SRST) Administration Guide that supports the SRST-enabled gateway.
- Disaster Recovery System Administration Guide
- Cisco Unified Communications Manager Bulk Administration Guide
- Troubleshooting Guide for Cisco Unified Communications Manager
- Cisco IP Phone Administration Guide that support your phone model

I