
Features Supported by Cisco Unified JTAPI

This chapter describes features supported by the Cisco Unified JTAPI specification.

• Account Lockout, on page 5
• Agent Greeting, on page 5
• AES 256 Algorithm IDs, on page 6
• Alternate Script Support, on page 7
• API for Exposing Built-In-Bridge Status, on page 7
• Arabic and Hebrew Language Support, on page 8
• Auto Updater for Linux, on page 8
• AutoAccept Support for CTI Ports and Route Points, on page 9
• Autoupdate of API, on page 10
• Barge and Privacy Event Notification, on page 12
• Call Control Discovery, on page 13
• Call Forward, on page 13
• Call Forward Override, on page 13
• Call Park, on page 14
• Call Pickup, on page 14
• Call Recording for SIP or TLS Authenticated Calls, on page 15
• Call Select Status, on page 15
• Calling Party Display Name, on page 15
• Calling Party IP Address, on page 16
• Calling Party IP Address, on page 16
• Calling Party Normalization, on page 17
• CallFwdAll Key Press Notification, on page 18
• CallSelect and UnSelect Event Notification, on page 18
• Certificate Download API Enhancement, on page 19
• Changes in DeviceType Name Handling, on page 19
• Cisco MediaTerminal, on page 20
• Cisco Unified Communications Manager Media Endpoint Model, on page 22
• Cisco Unified Communications Manager Server Failure, on page 24
• Cisco Unified IP 7931G Phone Interaction, on page 25
• Cisco Unified JTAPI Install Internationalization, on page 26
• Cisco VG248 and ATA 186 Analog Phone Gateways, on page 26
• CiscoJtapiExceptions, on page 27

Features Supported by Cisco Unified JTAPI
1

• CiscoProvAuthenticationInfoEv, on page 28
• CiscoRTPHandle Interface on Cisco RTP Events, on page 28
• Cisco Terminal Filter and ButtonPressedEvents, on page 29
• CiscoTermRegistrationfailed Event, on page 30
• Cius Persistency, on page 31
• Clear Calls, on page 32
• Click to Conference, on page 32
• Cluster Abstraction, on page 33
• Command Line Invocation, on page 34
• Component Updater, on page 34
• Conference, on page 34
• Conference and Join, on page 37
• Conference Chaining, on page 39
• Consult Without Media, on page 40
• CTI Ports, on page 40
• CTI RoutePoints, on page 40
• CTI Remote Device for JTAPI, on page 41
• CTI RD Call Forward, on page 44
• CTI Video Support, on page 45
• Default CTI IP Addressing for Devices, on page 46
• DeleteCall, on page 47
• Device Recovery, on page 47
• Device Recovery for Phones, on page 47
• Device State Server, on page 47
• Direct Transfer Across Lines, on page 49
• Directed Call Park, on page 54
• Directory Change Notification, on page 55
• Do Not Disturb, on page 55
• Do Not Disturb-Reject, on page 56
• Drop Any Party, on page 57
• Dynamic CTI Port Registration, on page 58
• E911 Teleworker, on page 60
• Enable or Disable Ringer, on page 60
• Encryption Enhancement, on page 61
• End to End Call Tracing, on page 61
• EnergyWise Deep Sleep Mode, on page 62
• Extension Mobility Cross Cluster, on page 64
• Extension Mobility Username Login, on page 65
• External Call Control, on page 65
• End to End Session ID for Calls, on page 66
• FIPS Compliance, on page 67
• Forced Authorization and Client Matter Codes, on page 69
• Forwarding on No Bandwidth and Unregistered DN, on page 71
• GetCallID in RTP Events, on page 72
• GetCallInfo, on page 72
• GetGlobalCallID, on page 72

Features Supported by Cisco Unified JTAPI
2

Features Supported by Cisco Unified JTAPI

• Hairpin Support, on page 73
• Half-Duplex Media Support, on page 73
• Hold Reversion, on page 74
• Hunt List, on page 75
• Hunt List Connected Number, on page 76
• Hunt Log Status, on page 76
• Intercom, on page 77
• Intercom Support for Extension Mobility, on page 79
• IPv6 Support, on page 80
• iSac Codec, on page 81
• Java Socket Connect Timeout, on page 81
• Join Across Lines, on page 82
• Join Across Lines (Only SCCP), on page 82
• Join Across Lines with Conference Enhancements (SCCP and SIP), on page 87
• JRE 1.2 and JRE 1.3 Support Removal, on page 88
• JTAPI Version Information, on page 89
• Locale Infrastructure Development, on page 89
• Logical Partitioning, on page 90
• Media Termination at Route Point, on page 90
• Media Termination Extensions, on page 93
• Message Waiting Indicator Enhancement, on page 93
• Modifying Calling Number, on page 94
• Multi-fork Recording using CUBE Media Proxy Server, on page 96
• Multilevel Precedence and Preemption Support, on page 96
• Multiple Calls Per DN, on page 96
• Native Queuing, on page 96
• Network Alerting, on page 98
• Network Events, on page 99
• New Error Code in CiscoTermRegistrationFailedEv, on page 99
• Noncontroller Adding of Parties to Conferences, on page 100
• Park DN Monitor, on page 100
• Park Monitoring and Assisted DPark Support, on page 100
• Park Reminder, on page 102
• Park Retrieval, on page 102
• Partition Support, on page 103
• Password Expiry, on page 106
• Persistent Connection, on page 106
• Play Zip Tone, on page 108
• Presentation Indicator for Calls, on page 109
• Privacy On Hold, on page 110
• Progress State Converted to Disconnect State, on page 111
• Q.Signaling (QSIG) Path Replacement, on page 111
• QoS Support, on page 111
• Quiet Clear, on page 113
• Receiving and Responding to Media Flow Events, on page 113
• Recording, on page 115

Features Supported by Cisco Unified JTAPI
3

Features Supported by Cisco Unified JTAPI

• Redirect, on page 118
• Redirect Set Original Called ID, on page 119
• Redirect to Device, on page 120
• Redundancy, on page 121
• Redundancy in CTI Managers, on page 121
• Ringback on SIP 183 for Transferred Calls, on page 124
• Routing, on page 124
• Secure Conferencing, on page 126
• Secure Real-Time Protocol Key Material, on page 127
• Secured Monitoring and Recording, on page 133
• SelectRoute Interface Enhancement, on page 134
• selectRoute() with Calling Search Space and Feature Priority, on page 135
• Set MessageWaiting, on page 135
• Shared Line Support, on page 136
• Silent Monitoring, on page 138
• Single Sign-On, on page 141
• Single Step Transfer, on page 142
• SIP 3XX Redirection, on page 143
• SIP Phone Support, on page 144
• SIP REFER or REPLACE, on page 147
• SIP Trunk Early Offer, on page 148
• Star (*) 50 Update, on page 151
• Super Provider (Disable Device Validation), on page 151
• Superprovider and Change Notification, on page 152
• Support for Cisco Unified IP Phone 6901, on page 154
• Support for Cisco Unified IP Phone 6900 Series, on page 155
• Support for 100+ Directory Numbers, on page 156
• Support for VMware, on page 157
• Swap or Cancel and Transfer or Conference Behavior, on page 158
• Terminal and Address Capability Settings, on page 159
• Terminal and Address Restrictions, on page 160
• SHA-512 Support for Digital Signatures, on page 164
• Transfer, on page 164
• Transfer and Conference Extensions, on page 167
• Transfer and DirectTransfer, on page 167
• Translation Pattern Support, on page 168
• Transport Layer Security (TLS), on page 169
• Unicode Support, on page 175
• Unrestricted Unified CM, on page 177
• URI Dialing, on page 178
• Version Format Change, on page 179
• Verification Involving PSTN Reachability, on page 179
• Video Capabilities and Multi-Media Information, on page 179
• Video On Hold Support, on page 183
• Voice MailBox Support, on page 183
• XSI Object Pass Through, on page 184

Features Supported by Cisco Unified JTAPI
4

Features Supported by Cisco Unified JTAPI

Account Lockout
The administrator can use the CUCM Admin Panel to configure options for the account lockout.

To configure account lockout options, an administrator can perform either of the following:

1. Click the Locked by Administrator checkbox in the user credential page.

2. Set the number of login attempts, which signifies the number of failed logins due to invalid credentials.

3. Set the maximum idle time (in days) and if the user does not login for that many days, the account is
locked.

In case of account lockout, JTAPI delivers detailed exceptions without any warning messages. JTAPI does
not allow applications to modify any of these values, it only reports the information.

Interface Changes

CiscoJtapiExceptions, on page 27

Message Sequences

There are no message sequences.

Backward Compatibility

This feature is backward compatible.

Agent Greeting
The Agent Greeting feature enables the JTAPI application to instruct the Cisco Unified Communications
Manager to automatically play a pre-recorded announcement following a successful media connection to the
agent device. The greeting helps to keep the agent sounding fresh as they do not have to repeat common
phrases on each call. Agent Greeting is audible for the agent and the customer.

Agent Greeting can be initiated from any phone with a Built-in-Bridge (BIB). A call is initiated from the BIB
to the DN specified in the request. Applications are responsible for answering this call and playing the media.

There are two types of calls:

• A basic call between the customer and agent.

• A secondary call, known as the Interactive Voice Response (IVR) call, which is created between an IVR
device and the BIB of the agent phone.

The application invokes the new Agent Greeting API on a call, which creates an IVR call. The application
then answers the call, and is responsible to play a recorded message.

The connection is not created for the agent on the IVR call, and as a result, the applications see the secondary
call only. The IVR call has only one connection to play the IVR message.

Regardless of whether or not the application observes the IVR device, the Agent Greeting media plays.
Observers on the agent receive an event to start the media. When the media finishes, the application must

Features Supported by Cisco Unified JTAPI
5

Features Supported by Cisco Unified JTAPI
Account Lockout

disconnect the IVR or CTI port that streams the media. When the second call is disconnected, an event is sent
to observers on the agent and receives an event to end the media.

This feature is available only on phones that have BIBs. The majority of Cisco Unified IP Phones have BIBs,
but the feature may not be available in various older or lower-end phone models. Administrators must enable
the BIB for the device and configure it using the Cisco Unified Communications Manager Admin panel.

Whenever a request to addMediaStream is made, JTAPI blocks the request until the IVR device answers the
call or CTI responds with a timeout error. Due to this, the JTAPI thread that invoked the
addMediaStreamRequest cannot answer its own call, because it is blocked waiting for the request to finish.

Applications intending to use this feature must ensure that one of the following is applicable:

• The IVR DN is configured to auto-answer incoming calls

• A separate JTAPI thread or application is set up to answer on the IVR DN

Interface changes

See CiscoTerminalConnection, CiscoFeatureReason, CiscoJtapiException, CiscoMediaStreamStartedEv,
CiscoMediaStreamEndedEv

Message Sequences

See Agent Greeting

Backward Compatibility

This feature is backward compatible.

• This is a new feature and has no impact on existing features.

• There are two new events for this feature, but they are only generated if the application observes the
addresses in which the feature is invoked.

• The odd call model for the IVR call, with only one connection, can have implications for applications
that look at the number of connections for any of their logic.

• Feature interaction is not supported on IVR calls.

For example, invoking features such as redirect and creating a conference from the IVR call are not
supported.

• The IVR call is intended to stream media. Applications invoke features on the IVR call at their own risk
and there are no event flows or call diagrams for any feature interaction on the IVR calls.

AES 256 Algorithm IDs
From release 10.5(2) CiscoUnified CommunicationsManager now supports the following encryption algorithm
IDs:

• CiscoMediaEncryptionAlgorithmType

• CiscoMediaEncryptionAlgorithmType.AES_128_COUNTER_80

• CiscoMediaEncryptionAlgorithmType.F8_128_COUNTER_32

Features Supported by Cisco Unified JTAPI
6

Features Supported by Cisco Unified JTAPI
AES 256 Algorithm IDs

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_177
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_178
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_179
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_180
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_181
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_182

• CiscoMediaEncryptionAlgorithmType.F8_128_COUNTER_80

• CiscoMediaEncryptionAlgorithmType.AEAD_128_COUNTER

• CiscoMediaEncryptionAlgorithmType.AEAD_256_COUNTER

The CiscoMediaEncryptionAlgorithmType.AEAD_128_COUNTER and
CiscoMediaEncryptionAlgorithmType.AEAD_256_COUNTER will be negotiated only for a secure call
between two SIP endpoints.

CTI ports can register with any of the above algorithms, but will negotiate on AES_128_COUNTER_80 for
secure calls.

From Release 12.5(1)SU5 onwards, CTI ports can register with any of the above algorithms for secure calls.
For more information, see "Stronger Cipher Suites on CTI Ports" section in Security Guide for Cisco Unified
Communications Manager.

Note

Alternate Script Support
Certain IP phone types support an alternate language script other than the default script that corresponds to
the phone-configurable locale. For example, the Japanese phone locale has two written scripts. Some phone
types support only the default Katakana script, while other phones types support both the default script and
the alternate Kanji script. Because applications can send text information to the phone for display purposes,
they need to know what alternate script a phone supports, if any.

The new getAltScript() method provides alternate script information for an observed device. Currently there
is only one known alternate script: Kanji for the Japanese locale.

JTAPI provides a new method for CiscoTerminal to provide alternate script information.

getAltScript()

Only one alternate script, Kanji for the Japanese locale, is currently
supported. An empty string return value indicates there is no
alternate script configured or the terminal does not support an
alternate script.

java.lang.String

Backward Compatibility

The alternate script feature does not impact JTAPI backward compatibility.

API for Exposing Built-In-Bridge Status
JTAPI exposes the API, CiscoTerminal.isBuiltInBridgeEnabled() to let applications know if the BIB capability
is enabled on the terminal or not. Accordingly, the return value is true or false.

This API throws MethodNotSupportedException if it is invoked on a CiscoMediaTerminal or a
CiscoRouteTerminal as these devices do not support a BIB.

Features Supported by Cisco Unified JTAPI
7

Features Supported by Cisco Unified JTAPI
Alternate Script Support

https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-maintenance-guides-list.html

This API throws InvalidStateException if invoked on a terminal that is not registered with the Cisco Unified
Communications Manager.

Interface Changes

See CiscoTerminal

Message Sequences

See API for Exposing Built-in-Bridge Status

Backward Compatibility

This change is backward compatible and does not affect the existing applications.

Arabic and Hebrew Language Support
This version of the Cisco Unified JTAPI supports the Arabic and Hebrew languages, which users may select
during installation and in the Cisco Unified JTAPI Preferences user interface.

Backward Compatibility

This feature is backward compatible.

Auto Updater for Linux
In order to support this feature for Linux based JTAPI client machines, auto updater feature has the following
changes in its interface. The interface required that applications provide component name, provider IP address,
user name and password. Applications do not need to specify an URL for downloading the component. This
is done to avoid the issue with updater application in case URL changes between various releases of Cisco
Unified Communications Manager Administration.

A new API called “Replace()” is part of the component interface. This facilitates replacing of old component
with a newly downloaded component. The following section defines the operation of updater after the new
interface changes. The new updater will:

• Use the same API signature as the old one.

• Create a file newjtapi.jar in the current folder of application which is the new version of the jar file.

• Copy the current jtapi.jar to a file by name component.temp in the classpath specified.

• Replace the current jar file with the new jar file. At the end of this operation, the current jar file becomes
the component.temp and new jar file becomes jtapi.jar. Applications can still use old component interface
which take URL either by specifying the URL themselves or by querying the URL through the new
interface provided on CiscoProvider. The API required to get the URL information is present in the
Interface summary for this feature. This operation is supported for both Unix and Windows.

Backward compatibility

This feature is not backward compatible.

Features Supported by Cisco Unified JTAPI
8

Features Supported by Cisco Unified JTAPI
Arabic and Hebrew Language Support

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_185

AutoAccept Support for CTI Ports and Route Points
This feature provides applications with the ability to enable or disable AutoAccept for the addresses on
CTIPorts and Route Points. When AutoAccept status changes for the address, Cisco Unified JTAPI provides
the event to inform the application for changes.

The maximum number of lines that are supported for route points equals 34.Note

The new interface setAutoAcceptStatus(), provided on the CiscoAddress object, allows the capability to set
AutoAccept to ON or OFF. Interface getAutoAcceptStatus(), also provided on the CiscoAddress object, allows
applications to query the current status of AutoAccept on the address.

When AutoAccept status changes for the address, applications get CiscoAddrAutoAcceptStatusChangedEv
on AddressObservers. This event includes the interface getTerminal(), which returns the terminal on which
the AutoAccept status gets changed, and the interface getAutoAcceptStatus(), which returns integers that
specify whether AutoAccept is ON or OFF. If an address observer is not added, the event does not get provided.

The following interfaces support AutoAccept on CTIPort and RoutePoint:

Cisco Address

• init

init getAutoAcceptStatus (javax.telephony.Terminal terminal)

Ciscoaddress.getAutoAccept(Terminal iterminal) returns an AutoAccept status of address on terminal.

• void

setAutoAcceptStatus (int autoAcceptStatus, javax.telephony.Terminal terminal)

This allows an application to enable AutoAccept for addresses on the CiscoMediaTerminal and or the
CiscoRouteTerminal.

CiscoAddrAutoAcceptStatusChangedEv

CiscoAddrAutoAcceptStatusChangedEv

Public interface: CiscoAddrAutoAcceptStatusChangedEv

Extends com.cisco.jtapi.exension.CiscoAddrEv

The CiscoAddrAutoAcceptStatusChangedEv event gets sent to applications whenever AutoAccept status for
the address on the terminal gets changed. If an address has multiple terminals, this event gets sent for the
address AutoAccept status on each individual terminal.

This event provides the following interface:

• init
getAutoAcceptStatus ()

CiscoAddrAutoAcceptStatusChangedEv.getAutoAcceptStatus returns the following value of AutoAccept
status of address on terminal CiscoAddress.AUTOACCEPT_OFF CiscoAddress.AUTOACCEPT_ON.

Features Supported by Cisco Unified JTAPI
9

Features Supported by Cisco Unified JTAPI
AutoAccept Support for CTI Ports and Route Points

• com.cisco.jtapi.extensions.CiscoTerminal
getTerminal ()

Returns the terminal at which this address AutoAccept status gets changed.

For details on the interface changes, see Cisco Unified JTAPI Extensions To view the message flow for
AutoAccept on CTIPort and RoutePoint, see Message Sequence Charts

Autoupdate of API
Be aware that when the Cisco Unified Communications Manager is upgraded to a higher version, the APIs
may or may not be compatible with the new Cisco Unified Communications Manager version. Ensure that
the APIs are upgraded to a compatible version, so the applications work as expected. Because the APIs are
installed locally on the client server, the upgrade must take place on multiple machines. In the case of fewer
client applications, you can easily do this by connecting to the Cisco Unified Communications Manager
Administration and downloading and installing the Cisco Unified Communications Manager compatible
plug-in.

For multiple client applications, this feature provides a facility by which an application at startup can identify
itself to a web server via an HTTP request and receives a response with the version of the required JTAPI
API.

The application compares the version that is available on the server to the local version in the application
classpath and determines whether an upgrade is necessary. This allows applications to refresh the jtapi.jar
component to match the Cisco Unified Communications Manager and provides a way to centrally deploy the
jtapi.jar to which applications can auto update.

The API that is required to perform this functionality gets packaged in the form of an updater.jar. The jtapi.jar
and updater.jar get packaged with the standard manifest, which can be used to compare versions.

This feature does not update JTAPI Preferences, JTAPITestTools, Updater.jar and javadoc components. If
applications require these components, install JTAPI from the Cisco Unified CommunicationsManager plug-in
pages. Auto Update supports JTAPI Release 2.0 and later.

Note

Refer to Cisco Unified JTAPI Installation for more information.

The following new or changed interfaces exist for autoupdate of APIs:

Class com.cisco.services.updater.ComponentUpdater

queryLocalComponentVersion (java.lang.String componentName,

java.lang.String path)

Throws an IOException, IllegalArgumentException.

Component

queryServerComponentVersion (java.lang.String componentName,

java.lang.String urlString)

Throws an IOException, IllegalArgumentException, and sends an HTTP query to the
server to determine the remote server installed components version.

Component

Interface com.cisco.services.updater.Component

Features Supported by Cisco Unified JTAPI
10

Features Supported by Cisco Unified JTAPI
Autoupdate of API

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter4.pdf#nameddest=unique_190

compareTo (Component otherComponent)int

fetchFromServer ()

Performs an HTTP fetch of the component from the server and writes to the local file
system with the file name temp.jar in the local directory.

Component

getBuildDescription ()

Returns the string 'Release' for a version of the form 'a.b(c.d) Release'.

java.lang.String

getBuildNumber ()

Returns 'd' for a version of the form a.b(c.d).

int

getLocation ()

The string form location of the component.

java.lang.String

getMajorVersion ()

Returns 'a' version for a version of the form a.b(c.d).

int

getMinorVersion ()

Returns 'b' version for a version of the form a.b(c.d).

int

getName ()

Returns the name of the component.

java.lang.String

getRevisionNumber ()

Returns 'c' for a version of the form a.b(c.d).

int

The Autoupdater feature in JTAPI also allows applications to download the latest version of JTAPI.JAR
directly from the Cisco Unified Communications Manager.

1. Updater creates a newjtapi.jar file in the current folder of the application, which represents the new version
of the jar file that was downloaded from the Cisco Unified Communications Manager.

2. Updater copies the current jtapi.jar to a file that is named component.temp in the classpath specified.

3. Updater replaces the current jtapi.jar file with the new jtapi.jar file.

At the end of this operation, the current jar file becomes component.temp and the new jar file becomes jtapi.jar.
This operation is supported for both Linux and Windows.

Example Usage of Autoupdater
Command Line : java com.cisco.services.updater.ComponentUpdater <server> <component name>
<login> <passwd>Component localComponent, downloadedComponent;
ComponentUpdater updater = new ComponentUpdater();
String localPath = updater.getLocalComponentPath(args[1]);
localComponent = updater.queryLocalComponentVersion("jtapi.jar", localPath);
localComponent.copyTo("component.temp");
String provString = args[0] + ";login = " + args[2] + ";passwd = " + args[3];

CiscoJtapiPeer peer = (CiscoJtapiPeer) (JtapiPeerFactory.getJtapiPeer(null));
CiscoJtapiProperties tempProp = ((CiscoJtapiPeerImpl) (peer)). getJtapiProperties();
tempProp.setLightWeightProvider(true);

Features Supported by Cisco Unified JTAPI
11

Features Supported by Cisco Unified JTAPI
Autoupdate of API

Provider provider = peer.getProvider(provString);
String url = ((CiscoProvider) (provider)).getJTAPIURL(); provider.shutdown();
Component serverComponent = updater.queryServerComponentVersion("jtapi.jar", url);

downloadedComponent = serverComponent.fetchFromServer();
int retVal = downloadedComponent.replaces(localComponent);

The “replaces” API will replace the existing JTAPI version with the new version.

The updater will only update the JTAPI.JAR file and not the other sample applications and Cisco JTAPI
documentation that are bundled with the JTAPI plug-in. To get these other components, applications must
download the plug-in from the Cisco Unified Communications Manager and install it.

Note

Barge and Privacy Event Notification
The Barge Feature provides the ability for shared addresses to barge into an established call of address on
another terminal. This feature gets activated when an address TerminalConnection is in the passive state and
CallCtlTerminalConnection is in the bridged state. This version of Cisco Unified JTAPI only supports feature
activation manually on application-controlled terminals (IP phones). For this release, you cannot activate the
feature through an API.

The Privacy feature provides the ability to enable or disable other shared addresses to barge into call. When
privacy is enabled, other shared addresses cannot barge into a call and vice versa. Privacy represents a terminals
property. IP phones have a “Privacy” softkey and pressing it enables or disables the privacy. Privacy can be
dynamically enabled or disabled for the active calls on the terminal. When privacy is on for the call, the
TerminalConnection for the call appearances on the shared address appear in the “InUse” state. If privacy
status changes during the CallProgress, CiscoTermConnPrivacyChangedEvent gets delivered to the application.

Two types of barge feature functionalities exist in Cisco Unified Communications Manager: one uses built-in
conference bridge called “Barge, ” while another uses shared conference bridge resources called “CBarge”.
From the application point of view, no interface changes exists between Barge and CBarge; however, some
behavioral changes, which are described in the message flow diagram in Message Sequence Charts occur.

Barge, CBarge, and Privacy have these interfaces:

Interface CiscoTerminalConnection.getPrivacyStatus()

booleangetPrivacyStatus()

This interface returns the privacy status of a call on the terminal.

Interface CiscoTermConnPrivacyChangedEv

javax.telephony.TerminalConnectiongetTerminalConnection()

A new reason code, CiscoCall.CAUSE_BARGE gets added to CiscoCall for barge events.

JTAPI provides CallCtiCause as CiscoCall.CAUSE_BARGE when a SharedLine TerminalConnection or
CallCtiTerminalConnection goes to an active or talking state as a result of barge. This cause code also gets
provided in CallCtiEvents for dropping temporary calls that are created during the barge operation.

This cause code is not provided for the CBarge scenario.

Features Supported by Cisco Unified JTAPI
12

Features Supported by Cisco Unified JTAPI
Barge and Privacy Event Notification

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

For details on these interfaces, see Cisco Unified JTAPI Extensions To view the message flow for barge,
CBarge, and privacy, see Message Sequence Charts.

Call Control Discovery
The Call Control Discovery (CCD) feature facilitates provisioning for inter-call agent communications. It
uses the Service Advertisement Framework (SAF) network service to advertise itself as a call control entity
and to discover other call control entities (Cisco Unified CommunicationsManagers or CMEs) on the network
so that it can dynamically adapt their routing behavior.

When a call is made between two devices on different clusters and the call is rejected with a cause code other
than unallocated , unassigned number and user busy, the CCD feature fails over the call to a PSTN network.
That is, the call is routed through a PSTN network instead of an IP network to reach the same destination.

JTAPI supports the SAF CCD feature. However, applications are not notified when a normal SAF call fails
over to a PSTN trunk.

JTAPI exposes a new reason CiscoFeatureReason.REASON_SAF_CCD_PSTN_FAILOVER for the new
connection created for the redirect or forward destination. This occurs when there is a redirect or forward
across the cluster through an SAF trunk and the call fails over to a PSTN trunk.

Interface Changes

See CiscoFeatureReason

Message Sequences

See Call Control Discovery

Backward Compatibility

This feature is backward compatible.

Call Forward
Cisco Unified JTAPI supports setting the Call Forward feature according to the JTAPI Specification. Cisco
Unified JTAPI implementation does not support all the forwarding characteristics but supports only the
FORWARD_ALL attribute for the Address. Applications can invoke setForwarding, getForwarding, and
cancelForwarding methods on a CallControlAddress object, but the CallControlForwarding instruction can
only be of type FORWARD_ALL.

Call Forward Override
This feature provides a mechanism to override the call forward all feature. If a user (CFA Initiator) sets CFA
to another user (CFA target), the CFA should be ignored if the CFA target calls the CFA initiator. This would
allow the CFA Target to reach the CFA Initiator for important calls.

The behavior of this CallManager feature is configurable via service parameter - CFADestinationOverride.

Features Supported by Cisco Unified JTAPI
13

Features Supported by Cisco Unified JTAPI
Call Control Discovery

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_178
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_192

Example: Alice has a phone with DN 1000 * Bob has a phone with DN 2000 * Daniel has a phone with DN
4000 * Alice does a CFA to 2000

CFA behavior * Bob calls Alice. Call goes to Alice and does not follow CFA back to himself. * Daniel calls
Alice. Call follows CFA to Bob. * Bob answers and transfers the call to Alice. Bob can do this because Alice
has her phone forwarded to Bob. There is no interface change to JTAPI layer with this feature. However
JTAPI applications could perceive a difference in behavior when CiscoAddress.setForward() API is invoked.
In scenario where CFA target calls the CFA initiator as described in example, call is not forwarded if feature
is enabled.

Backward Compatibility

JTAPI applications that were written for Release 5.0 should be backward compatible with Release 5.1. JTAPI
Client Upgrade Application does not require JTAPI Client upgrade to run or be backward compatible. JTAPI
Client upgrade is required only if new features are used.

Call Park
Cisco Unified JTAPI supports user interactions with Call Park and reports the appropriate events to the
applications. When a call is parked from an IP phone, the connection that belongs to the parking address
moves into Disconnected state, and the associated TerminalConnection moves into Dropped state. A new
connection in queued state for the park number gets created.

If an application is monitoring only the address that parked the call, all existing connections get Disconnected,
TerminalConnections get Dropped, and the call moves to Invalid state.

Call Pickup
Call Pickup enables devices to receive alerts within Call Pickup Groups and events, to act on these alerts by
invoking APIs that support variants of Call Pickup.

These APIs allow applications to gather information about existing Call Pickup groups, and register and
unregister for receiving pickup alerts for specific pickup groups.

JTAPI supports invoking Pickup, Group Pickup, Other Pickup, and Directed Call Pickup from applications.
In Cisco Unified Communications Manager releases prior to release 8.0(1), all these features except Other
Pickup were supported as observed events, but were not invoked.

Call Pickup is not supported on CTI route points.Note

Interface Changes

CiscoPickupGroup, CiscoAddress, CiscoTerminal, CiscoProvider, CiscoProviderCapabilities,
CiscoProvPickupCallAlertEv, ProviderPickupNotificationRegistrationClosedEv,
CiscoAddrPickupGroupChangedEv.

Message Sequences

Call Pickup

Features Supported by Cisco Unified JTAPI
14

Features Supported by Cisco Unified JTAPI
Call Park

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_195
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_196
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_197
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_198
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_199
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_200
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_201
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_202

Backward Compatibility

This feature is backward compatible.

Call Recording for SIP or TLS Authenticated Calls
Prior to 12.5(1) version, the phones which are authenticated (phone with Security profile having Device
Security Mode as Authenticated) were not allowed to make use of the Call Recording feature. Whereas,
Non–Secured phones or Secured/ Encrypted phones could use Call Recording feature with Non-Secured or
Secured recorders, respectively.With the release 12.5(1), Cisco Unified CM JTAPI interface has been enhanced
to allow recording in Authenticated Phones based on the value of the new service parameter Authenticated
Phone Recording.

The expectation is that the authenticated phones should also be allowed to make use of the Call Recording
feature. It depends on value set in the newly added service parameterAuthenticated Phone Recordingwhich
can be set to the following values:

• Allow Recording – Authenticated Phones can be allowed to record the calls.

• Do Not Allow Recording – Authenticated Phones cannot make use of Call Recording feature. This is
the default value for the service parameter. The behavior would be the same as that of the current behavior.

Backward Compatibility

This feature is backward compatible. JTAPI will support the current API’s.

Call Select Status
Cisco Unified JTAPI sends CiscoTermConnSelectChangedEv event whenever the call is selected either by
feature or by manually. Once application receives the event, application can use
TerminalConnection.getSelectStatus() to get proper call select status. There are three possible statuses by
calling TerminalConnection.getSelectStatus() as follows:

• CiscoTerminalConnection. CISCO_SELECTEDNONE: The select status means that the call is not
selected

• CiscoTerminalConnection. CISCO_SELECTEDLOCAL: The select status means that the call is selected
on the terminal connection

• CiscoTerminalConnection. CISCO_SELECTEDREMOTE: Passive TerminalConnection will get this
select status if the call is selected by it's shared line

Backward compatibility

This feature is not backward compatible.

Calling Party Display Name
The CiscoCall interface provides methods to get name displays of the calling party and the called party in a
call. Applications can use getCurrentCallingPartyDisplayName() to get the display name of the calling party.

Features Supported by Cisco Unified JTAPI
15

Features Supported by Cisco Unified JTAPI
Call Recording for SIP or TLS Authenticated Calls

JTAPI applications can use the following interface to get the display names of the calling party and the called
party.

{..
..
/**
*This interface returns the display name of the called party in the call.
*It returns null if display name is unknown.
*/
public String getCurrentCalledPartyDisplayName();

/**
*This interface returns the display name of the calling party.
*It returns null if display name is unknown.
*/
public String getCurrentCallingPartyDisplayName();
}

The address objects store the display name internally, and the name gets updated when currentCallingAddress
and currentCalledAddress are updated. NULL returns if the call is not in the active state and if currentCalling
and currentCalled addresses of the call are not initialized.

The system does not support Call.getCurrentCalledAddress() and call.getCurrentCallingAddress() for conference
calls. Also, the system does not support call.getCurrentCalledPartyDisplayName() and
call.getCurrentCallingPartyDisplayName() for a conference call.

Note

Calling Party IP Address
Extensions to CallCtlConnOfferedEv and RouteEvent provide a method for retrieving the IP address of the
calling party. This feature provides the calling party IP address to the destination side of basic calls, consultation
calls for transfer and conference, and basic redirect and forwarding. The system does not support other scenarios
and feature interactions, including those where the calling party changes. This feature only supports IP phones
as calling party devices, although IP address of other calling devices may also be provided. See
CiscoCallCtlConnOfferedEv and CiscoRouteEvent.

Backward compatibility

This feature is backward compatible.

Calling Party IP Address
The Calling Party IP Address enhancement provides the calling party IP address to the destination side of
basic calls, consultation calls for transfer and conference, and basic redirect and forwarding. Only calling
party IP phones are supported, although IP address of other calling devices may also be provided.

Other feature interactions are not supported including those during which the calling party changes.Note

Features Supported by Cisco Unified JTAPI
16

Features Supported by Cisco Unified JTAPI
Calling Party IP Address

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_204
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_205

New Cisco extensions to the CallCtlConnOfferedEv and RouteEvent classes are created and expose a method
to obtain the calling party IP address. The new extensions are CiscoCallCtlConnOfferedEv and
CiscoRouteEvent. An empty returned value indicates that the calling party IP address is not available.

Basic Call scenario

JTAPI application monitors party B

Party A is an IP phone

A calls B

IP Address of A available to JTAPI application monitoring B consultation transfer scenario

JTAPI application monitors party C

Party B is an IP phone

A talks to B

B initiates a consultation transfer call to C

IP Address of B is available to JTAPI application monitoring party C

Consultation conference scenario

JTAPI application monitors party C

Party B is an IP phone

A talks to B

B initiates a consultation conference call to C

IP Address of B is available to JTAPI application monitoring party C

Redirect scenario

JTAPI application monitors party B and party C

Party A is an IP phone

A calls B

IP Address of A is available to JTAPI application monitoring party B

Party A redirects B to party C

Calling IP address is not available to JTAPI application monitoring party B

Calling IP address of B is provided to JTAPI application monitoring party C

Backward compatibility

This feature is backward compatible. Application must invoke a new API to query IP address of a call.

Calling Party Normalization
Calling Party Normalization (CPN) is an enhancement. This feature provides the option to transform or
normalize the incoming call number and convert into the E.164 format, which includes the (country code,
state code, and number type). The number type field identifies the subscriber, national, international, or
unknown. The number type is not supported in conference scenarios.

Features Supported by Cisco Unified JTAPI
17

Features Supported by Cisco Unified JTAPI
Calling Party Normalization

Interface changes

This feature introduces a new method in CiscoCall that is getGlobalizedCallingParty() and a new method in
CiscoPartyInfo that is getNumberType(). See CiscoCall and CiscoPartyInfo for more information.

Message sequences

See Calling Party Normalization

Backward compatibility

This feature is backward compatible.

CallFwdAll Key Press Notification
This feature enables applications to know whether the call is a normal call or a temporary call, when the
CallFwdAll key is enabled.

JTAPI exposes this information through the API getCFwdAllKeyPressIndicator() which is exposed on the
CiscoCall interface. This API enables the application to know if the call is created due to pressing of CallFwdAll
softkey or not. The newly added getCFwdAllKeyPressIndicator()” could return following constants that are
also new:

• If it is pressed on a phone that is in on-hook state to set CallFwdAll, this API returns
CiscoCall.CFWD_ALL_SET.

• If it is pressed on a phone that is in on-hook state to clear the CallFwdAll, this API returns
CiscoCall.CFWD_ALL_CLEAR.

• If the call is made first and then the user presses CallFwdAll key when phone is in off-hook state, this
API returns CiscoCall.CFWD_ALL_NONE.

Interface changes

See CiscoCall

Message Sequences

See CallFwdAll Keys Press Notification

Backward Compatibility

This feature is backward compatible.

CallSelect and UnSelect Event Notification
You can select or unselect call on a phone for doing DirectTransfer or join or any other feature operation.
When a SharedLine user selects a call, the RemoteInUse shares line TerminalConection will go passive, and
CallCtlTermiCallConnection goes in InUse state. When call is unselected, CallCtlTerminalConnection goes
into a bridged state. An application cannot invoke any API on Passive/InUse TerminalConnection.
CallProcessing also performs a Select/UnSelect operation during features (such as transfer/conference)
operation. Applications will also perceive these events if the applications monitor RemoteInUse terminal.

Features Supported by Cisco Unified JTAPI
18

Features Supported by Cisco Unified JTAPI
CallFwdAll Key Press Notification

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_208
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_209
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_210

For example, if A and A' are SharedLine, and A selects the call, CallCtlTerminalConnection of A' goes into
a passive or InUse state. If A “UnSelects” the call, the CallCtlTerminalConneciton of A' goes into the passive
or bridged state.

To view the message flow for CallSelect or UnSelect, see Message Sequence Charts

Certificate Download API Enhancement
Currently Cisco Unified JTAPI certificate download API has some security issues, to solve the problem, Cisco
provides new certificate download APIs. New APIs require applications to specify a certificate pass phrase
and the certificate pass phrase is used to encrypt Java key store where client/server certificates are stored.

Old certificate download APIs are deprecated, however, it will still remain for some time to avoid backward
compatibility issue for applications. Cisco highly recommends to migrate the application to new APIs.

Cisco Unified JTAPI also provides new API deleteCertificate() and deleteSecurityPropertyForInstance() that
can be used by application to delete certificates already installed. To change pass phrase for certificate java
key store, the application must delete the old certificate by using this API and upload new certificate.

JTAPIPreferences UI security tab enhancement provides two new buttons, one for DeleteCertificate and
another for Update Certificate. DeleteCertificate button allows users to delete the certificate for required
username/instanceID. Update Certificate button allows users to upload the certificate from CAPF server. If
certificate update is successful, certificate update box is updated to show Updated; authorization string and
certificate pass phrase are cleared. If certificate update operation fails, certificate box continues to show status
Not Updated status unless certificate was previously updated. User/Applications must provide certificate pass
phrase every time they try to update certificate, Cisco Unified JTAPI does not save certificate pass phrase for
security reason in any circumstances. Applications own the responsibility to secure the pass phrase and provide
it through API when needed.

Backward Compatibility

This feature is backward compatible.

Changes in DeviceType Name Handling
Currently, TSP hardcodes the DeviceTypeName depending on the DeviceType. When a new device type is
added, we have to manually add the new device type name to the list of supported devices. Because CTI does
not fetch and store the device type name in its cache, TSP cannot get this info from CTI. TSP needs to update
the device type name when a new device type is added without any manual intervention.

In JTAPI, the changes have been made to ensure that QBE interface changes to handle the receive
devicetypename that is sent from CTI and is stored in the deviceInfo structure. It is not used anywhere in
JTAPI and will not be exposed to applications. Only the QBE interface changed as follows:

public DeviceRegisteredEvent (String ride, int deviceType, boolean
allowsRegistration, int deviceID, boolean loginAllowed, UnicodeString userID,
boolean controlled, int reasonInt, int registrationType, int unicodeEnabled,
int locale,

// added for deviceTypeName change
String devTypeName) {
public DeviceUnregisteredEvent (String deviceName, int deviceType, boolean
allowsRegistration, int deviceID, UnicodeString userID, boolean

Features Supported by Cisco Unified JTAPI
19

Features Supported by Cisco Unified JTAPI
Certificate Download API Enhancement

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

controllableBool, int reasonInt , int locale,
//added for devtypename support
String devTypeName) {

Cisco MediaTerminal
In JTAPI, the terminal object represents the logical endpoint for a call and is presumed to be able to receive
and transmit data (digital encoded voice samples, for example). Thus, terminals in JTAPI represent Cisco
Unified IPPhones. Even though gateways terminate media, terminals do not represent them. The
CiscoMediaTerminals in particular represent a special kind of endpoint for which applications take responsibility
for media termination.

The following four steps associate with using CiscoMediaTerminals:

• Provisioning

• Registration

• Adding Observers

• Accepting Calls

Provisioning
Ensure CiscoMediaTerminals, which are analogous to physical terminals, get provisioned accordingly in
Cisco Unified Communications Manager, even though they do not represent actual hardware IP phones or
gateways. Just as IP phones must be added to Cisco Unified Communications Manager database by using the
Device Wizard, CiscoMediaTerminals get added the same way, so Cisco Unified Communications Manager
can associate the application endpoint with a directory number and other call control properties such as call
forwarding. No device type called CiscoMediaTerminal exists in the DeviceWizard. Instead, Cisco Unified
Communications Manager has one or more device types that support application registration—each of these
types get exposed as a CiscoMediaTerminal through JTAPI. Currently, only the device type CTI port represents
a CiscoMediaTerminal in JTAPI.

This procedure lists the steps for provisioning a CTI port for use as an application-controlled endpoint.

1. Within the Cisco Unified Communications Manager configuration windows, add a CTI port device from
the Device-Phone window by using the Device Wizard. The CTI port device name specifies the name of
the corresponding CiscoMediaTerminal in JTAPI.

2. Add the new CTI port device, by using the User-Global Directory window, to the list of devices that the
application controls by using the User window.

For more information, refer to the Cisco Unified Communications Manager Administration Guide.

Registration
After a media termination device is properly provisioned in Cisco Unified Communications Manager, the
application may obtain a reference to the corresponding CiscoMediaTerminal object by using either the
Provider.getTerminal() method or CiscoProvider.getMediaTerminal() method. The two methods differ in that
the CiscoProvider.getMediaTerminal() method only returns CiscoMediaTerminals, whereas

Features Supported by Cisco Unified JTAPI
20

Features Supported by Cisco Unified JTAPI
Cisco MediaTerminal

Provider.getTerminal() will return any terminal object that is associated with the provider, including those
representing physical IP phones.

Use the CiscoMediaTerminal.register() method to notify Cisco Unified Communications Manager of the
intent to terminate RTP streams of certain payload types. The CiscoMediaTermina.register() method takes
an IP address, a port number, and an array of CiscoMediaCapability objects that indicate the types of codecs
that the application supports as well as codec-specific parameters.

The IP address and port indicate the address where the application can receive media streams. The following
sample code demonstrates how to register a CiscoMediaTerminal and bind it to a local address, port number
1234:

CiscoMediaTerminal registerTerminal (Provider provider, String terminalName) {
final int PORT_NUMBER = 1234;
try {
CiscoMediaTerminal terminal = provider.getTerminal (terminalName);
CiscoMediaCapability [] caps = new CiscoMediaCapability [1];
caps[0] = CiscoMediaCapability.G711_64K_30_MILLISECONDS;
terminal.register (InetAddress.getLocalHost (), PORT_NUMBER, caps);
}
catch (Exception e) {
return null;

}
}

For this sample code to work, ensure the specified provider is IN_SERVICE. Further, be aware that this code
uses the constant CiscoMediaCapability.G711_64K_30_MILLISECONDS. This actually represents a static
reference to a CiscoG711MediaCapability object that specifies a 30-millisecond maximum RTP packet size.
The CiscoMediaCapability class predefines this and other common media formats.

To specify a media payload that is not listed in the CiscoMediaCapability class, two options exist. If the
desired payload type is a simple variation of one of the existing subclasses of CiscoMediaCapability, you
only need to construct a new instance of the subclass. For instance, if an application can support G.711 payloads
with a 60-millisecond maximum RTP packet size, it can construct the CiscoG711MediaCapability object
directly; including specifying 60 milliseconds in the constructor.

Alternatively, if no existing subclass of CiscoMediaCapability that matches the desired payload type exists,
construct an instance of the CiscoMediaCapability class directly. The maximum packet size, for example,
30-milliseconds, represents the only other parameter that may be specified when a CiscoMediaCapability is
constructed.

The following code illustrates registering a custom payload capability:

CiscoMediaTerminal registerTerminal (Provider provider, String terminalName) {
final int PORT_NUMBER = 1234;
try {
CiscoMediaTerminal terminal = provider.getTerminal (terminalName);
CiscoMediaCapability [] caps = new CiscoMediaCapability [1];
caps[0] = new CiscoMediaCapability (
RTPPayload.G728,
30 // maximum packet size, in milliseconds
);

terminal.register (InetAddress.getLocalHost (), PORT_NUMBER, caps);
}
catch (Exception e) {
return null;

}
}

Features Supported by Cisco Unified JTAPI
21

Features Supported by Cisco Unified JTAPI
Registration

The payload type parameter that is used for constructing the CiscoMediaCapability object corresponds to the
payload field in the RTP header. The RTPPayload interface defines a number of well-known payload types
for this purpose.

Adding Observers
To receive events that indicate where and when to transmit and receive RTP data, place a
CiscoTerminalObserver on the CiscoMediaTerminal. The CiscoTerminalObserver extends the standard JTAPI
TerminalObserver interface without defining any new methods; it provides a marker interface that signals the
application interest in receiving RTP events.

Because this is a TerminalObserver, not a CallObserver, it must get added by using the Terminal.addObserver()
method, not the Terminal.addCallObserver() method.

Note

Additionally, add a CallControlCallObserver to the Address object that is associated with the
CiscoMediaTerminal. This guarantees that the application will get notified when calls are offered to the
CiscoMediaTerminal. Unlike regular IP phones, which automatically accept any offered call,
CiscoMediaTerminals accept, disconnect (reject), or redirect any call that is offered to it. Because the
CallCtlConnOfferedEv only gets presented to CallControlCallObservers that are placed on Address objects,
not Terminal objects, the application places its CallControlCallObserver in the correct place.

Be sure to implement the CallControlCallObserver interface, not just the CallObserver interface; the
CallCtlConnOfferedEv will not get delivered to observers that implement only the core CallObserver interface.

Note

Accepting Calls
When an inbound call arrives at the CiscoMediaTerminal address, it must be accepted by using the
CallControlConnection.accept() method before a terminal connection gets created. This process does not
apply for outbound calls —the connection will occur in the CallControlConnection.ESTABLISHED state as
soon as the call progresses beyond digit recognition. After the connection is accepted, answer the ringing
terminal connection to start media flow. Assuming that Cisco Unified Communications Manager can match
the capabilities that were registered with the capabilities of the calling endpoint, Cisco Unified Communications
Manager sends the Media Flow events, so the application can begin transmitting and receiving RTP data.

Cisco Unified Communications Manager Media Endpoint Model
Endpoints represent the entities within the Cisco Unified Communications Solutions platform that terminate
media, such as IP telephones and gateways. A call from one endpoint to another results in media flowing
between the two endpoints. All endpoints in the Cisco Unified Communications Solutions platform transmit
voice data by using real-time protocol (RTP). The Cisco Unified Communications Solutions telephones and
gateways, for example, include built-in RTP stacks. Applications may also act as endpoints in a Cisco Unified
Communications Solutions system; that is, they may terminate media. Because all Cisco Unified
Communications Solutions endpoints use RTP, applications also must be able to transmit and receive RTP
packets.

Features Supported by Cisco Unified JTAPI
22

Features Supported by Cisco Unified JTAPI
Adding Observers

Payload and Parameter Negotiation
In addition to bearer data and payload, each RTP packet contains a header that helps endpoints to determine
how to reassemble and decode a sequence of such packets into a media stream. RTP does not provide, however,
a means for endpoints to negotiate which payload type to use for a particular stream: for example, audio data
that is encoded by using the G.711 standard. Furthermore, RTP does not offer a means of negotiating unique
payload type parameters such as the sampling rate of the encoded data or the number of samples that are to
be transferred in each RTP packet. Instead, RTP usually gets used in conjunction with another protocol such
as H.323, which specifies its own method for endpoints to negotiate these parameters. All such negotiation
occurs prior to transmitting RTP packets between endpoints.

Cisco Unified Communications Manager, not the endpoints, has responsibility for selecting the payload and
encoding parameters for RTP streams. The following five steps that are involved in a typical bidirectional
audio telephone call apply:

• Initialization

• Payload Selection

• Receive Channel Allocation

• Starting Transmission and Reception

• Stopping Transmission and Reception

Initialization
Upon startup, each endpoint informs Cisco Unified Communications Manager of its media capabilities, that
is, G.711, G.723, G.729a, and so on. Startup for an IP phone, for example, occurs when the phone is first
turned on, or after it recontacts Cisco Unified Communications Manager after losing its former connection.
The endpoint cannot express a preference for one payload type versus another, but it can specify certain
parameters for each payload type, such as, packet size.

The capability list that the endpoint registers remains exclusive and immutable. If the endpoint specifies that
it can support both G.711 and G.723, it implicitly declares that it cannot support G.729a. Moreover, the
endpoint must disconnect from Cisco Unified Communications Manager and reinitialize to change the list of
capabilities that it supports.

JTAPI applications perform this step by registering a CiscoMediaTerminal with Cisco Unified Communications
Manager. The CiscoMediaTerminal.register() method allows applications to supply an array of media capability
objects for registration with Cisco Unified Communications Manager. This step informs Cisco Unified
Communications Manager that the application will act as the endpoint for all calls to or from a particular
directory number, as determined by the device configuration in the Cisco Unified Communications Manager
configuration.

Payload Selection
When a bidirectional media stream is about to be created between two endpoints, for instance, when a call is
answered at an endpoint, Cisco Unified CommunicationsManager selects an appropriate payload type (codec)
for the media stream. Cisco Unified Communications Manager compares the media capabilities of both
endpoints that are involved in the call and selects the appropriate common payload type and payload parameters
to use.

Features Supported by Cisco Unified JTAPI
23

Features Supported by Cisco Unified JTAPI
Payload and Parameter Negotiation

The basis for payload selection includes endpoint capabilities and location, although other criteria may get
added to this selection logic in the future. Endpoints do not get dynamically involved in selecting payload
types on a call-by-call basis.

Receive Channel Allocation
If Cisco Unified Communications Manager can find a common payload type for the RTP stream between the
two endpoints, it requests that each endpoint create a logical “receive channel”; that is, a unique IP address
and port at which the endpoint will receive RTP data for the call. Each endpoint returns an IP address and
port to Cisco Unified Communications Manager in response to this request.

Currently, only IP phones and gateways perform this step. Cisco Unified Communications Manager requires
JTAPI applications to specify a fixed IP address and port during initialization. Therefore, JTAPI applications
cannot terminate more than one media stream simultaneously for the same endpoint. Applications that want
to terminate multiple media streams must register multiple endpoints simultaneously.

If the endpoint does not respond to the open receive channel request quickly enough, Cisco Unified
Communications Manager disconnects the call. Because JTAPI applications always supply an IP address
when CiscoMediaTerminals are registered, calls to application-controlled endpoints do not get disconnected
for this reason. However, if Cisco Unified Communications Manager cannot find a common payload type
between the two endpoints that are involved in the call, Cisco Unified Communications Manager disconnects
the call.

Starting Transmission and Reception
After Cisco Unified Communications Manager receives channel information for both parties, it informs each
endpoint of the codec parameters that it selected for the RTP stream and the destination address for the other
endpoint. This information gets conveyed in two messages to each endpoint: a start transmission message and
a start reception message.

JTAPI applications receive the CiscoRTPOutputStartedEv and CiscoRTPInputStartedEv events that contain
all the codec parameters that are necessary for sending and receiving RTP data.

As a part of the QoS baselining effort in JTAPI, CiscoRTPOutputStartedEv provides the getPrecedenceValue()
API to applications. CTI presents this value, The DSCP for Audio Calls to JTAPI. Using this value, applications
can set the DSCP value for the media streams that they open.

Stopping Transmission and Reception
When the RTP stream must get interrupted because of a feature such as hold or disconnect, Cisco Unified
Communications Manager requests that each endpoint stop its transmission and reception of RTP data. Just
as when the media flow is started, the stop transmission and stop reception messages get sent separately.

JTAPI applications receive the CiscoRTPOutputStoppedEv and CiscoRTPInputStoppedEv.

Cisco Unified Communications Manager Server Failure
If a Cisco Unified Communications Manager server fails, the associated devices re-home to the next Cisco
Unified Communications Manager server in the group. The prioritized list of Cisco Unified Communications
Managers in the device pool information configuration for each device defines this process.

Features Supported by Cisco Unified JTAPI
24

Features Supported by Cisco Unified JTAPI
Receive Channel Allocation

Failure of a Cisco Unified Communications Manager server only results in a partial outage of devices in the
cluster. Those devices remain available following a successful Cisco Unified Communications Manager
failover and registration with a secondary Cisco Unified Communications Manager.

A device such as a Cisco Unified IPPhone 7960 fails over to a secondary Cisco Unified Communications
Manager server only when no active calls exist on that device. The failure of a Cisco Unified Communications
Manager server during a call results only in termination of observation of that device. The media path continues
to exist but without any further call control features.

Note

Cisco Unified JTAPI communicates this partial outage to applications by using CiscoAddrOutOfServiceEv
and CiscoTermOutOfServiceEv events. When the Cisco Unified Communications Manager fails over, the
device must successfully register to the secondary Cisco Unified CommunicationsManager before the device
is available to the JTAPI applications. Cisco Unified JTAPI will send the CiscoAddrInServiceEv and
CiscoTermInServiceEv events.

The Provider remains in service during this time. Devices on other Cisco Unified Communications Manager
servers remain available for call control. The events get sent on callbacks of the respective Address or Terminal
observer objects. CiscoAddrOutOfServiceEv and CiscoAddrInServiceEv events get sent to an object that is
implementing the AddressObserver and get added to an Address by using the addressChangedEvent() callback
object method. The CiscoTermOutOfServiceEv and CiscoTermInServiceEv events get sent to an object that
is implementing the TerminalObserver interface and get added to a Terminal that is using the
terminalChangedEvent() callback method.

If the devices are currently in a call, a CallObservationEnded message is sent on the CallObserver
callChangedEvent() callback, followed by the CiscoAddrOutOfServiceEv and CiscoTermOutOfServiceEv
messages.

Applications must monitor for and respond to the CiscoAddrOutOfServiceEv, CiscoTermOutOfServiceEv,
CiscoAddrInServiceEv, and CiscoTermInServiceEv events before the calling call control functions on the
address or terminal. Applications that do not support this action may encounter unexpected errors because
the applications do not know the exact state of the system.

Note

Cisco Unified IP 7931G Phone Interaction
You can configure Cisco Unified IP 7931G phones in two modes:

• NoRollOver

• RollOver (across the same DN or across different DNs)

When Cisco Unified IP 7931G phones are configured in NoRollOver mode, they operate like regular phones
that are running SCCP, and in this mode transfers or conferences cannot occur across the different addresses.
JTAPI will support controlling and monitoring of a 7931G phone when it is configured in NoRollOver mode.

In RollOver mode, Cisco Unified IP 7931G phones support transfer or conference across different addresses.
In this mode, JTAPI does not allow controlling andmonitoring of a CiscoUnified IP 7931G phone. Applications
see such terminal/addresses as restricted. If a Cisco Unified IP 7931G phone is in the control list of an
application user and the phone configuration changes from NoRollOver to RollOver mode, JTAPI sends a

Features Supported by Cisco Unified JTAPI
25

Features Supported by Cisco Unified JTAPI
Cisco Unified IP 7931G Phone Interaction

CiscoAddrRestrictedEv event for addresses on the Cisco Unified IP 7931G phone and sends a
CiscoTermRestrictedEv for terminals, with cause
CiscoRestrictedEv.CAUSE_UNSUPPORTED_DEVICE_CONFIGURATION.

However, if the phone configuration changes from RollOver to NoRollOver mode, JTAPI sends a
CiscoAddrActivatedEv event for addresses on the Cisco Unified IP 7931G phone and sends a
CiscoTermActivatedEv for terminals.

If a Cisco Unified IP 7931G phone that is configured in RollOver mode transfers or conferences to
JTAPI-controlled addresses, JTAPI applications do not recognize a common controller in the final and the
consult call. This would provide different behavior to the JTAPI application. Depending on how the JTAPI
application is processing information that is provided in events, applications may require changes to handle
JTAPI events for this transfer or conference scenario.

You can disable transfers and conferences across the line by configuring the Cisco Unified IP 7931G phone
to NoRollOver mode through the phone configuration window of Cisco Unified Communications Manager
Administration.

There are two new cause codes for the CiscoRestrictedEv interface. When the terminal or address is restricted
because a Cisco Unified IP 7931G phone is configured in RollOverMode, JTAPI sends CiscoAddrRestrictedEv
with cause CiscoRestrictedEv.UNSUPPORTED_DEVICE_CONFIGURATION. This release also introduces
a default cause code CAUSE_UNKNOWN, which applications should handle.

Backward Compatibility

This feature is backward compatible. You can disable this feature by configuring all Cisco Unified IP 7931G
phones in a cluster in NoRollOver mode or by not having any Cisco Unified IP 7931G phones in a Cisco
Unified Communications Manager cluster. If any phone in a Cisco Unified Communications Manager cluster
is configured with RollOver mode, it may cause changes to the behavior of JTAPI-controlled addresses and
terminals.

For more information, see CiscoRestrictedEv.

Cisco Unified JTAPI Install Internationalization
Cisco Unified JTAPI supports multiple languages for the JTAPI installation and user preference UI. When
JTAPI launches, you receive options for choosing languages for the installation. After choosing a language,
further installation instructions display in the chosen language. The first option always specifies English. If
certain phrases are missing in the locale language, the instructions default to English. See Cisco Unified JTAPI
Installation for more information.

Cisco VG248 and ATA 186 Analog Phone Gateways
Cisco Unified JTAPI supports control of analog phones that are connected to the Cisco VG248 and ATA 186
Analog Phone Gateways. By adding the Cisco VG248 and ATA 186 Analog Phone Gateways to the
user-controlled list, applications can control the devices.

Applications receive events for the devices in a way similar to other IP phones. Applications can also initiate
calls and invoke other features except answer Request through APIs. Make call works only when the device
goes physically off hook.

Features Supported by Cisco Unified JTAPI
26

Features Supported by Cisco Unified JTAPI
Cisco Unified JTAPI Install Internationalization

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_226
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter4.pdf#nameddest=unique_190
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter4.pdf#nameddest=unique_190

Applications cannot answer calls from APIs for the devices. If an application attempts to answer () on
TerminalConnection for the VG248 and ATA 186 Terminal, the system throws PlatformException with error
CiscoJtapiException.COMMAND_NOT_IMPLEMENTED_ON_DEVICE.To answer calls, youmustmanually
pick up the handset, and then you can invoke other call control features such as transfer, conference, blind
transfer, and park from the API.

CiscoJtapiExceptions
Cisco Unified JTAPI notifies the application of CTI-generated error codes. These codes return when an
exception or error occurs in the CTIManager. The CTI returned error code propagates to the application
separately. The application can extract the error code by invoking getErrorCode() method on the exception
object, can get CTI error code name by invoking getErrorName() method, and can get error description by
invoking method getErrorDescription().

Themethods getErrorName(int errorCode) and getErrorDescription (int errorCode) deprecate and get removed
in future releases. Cisco recommends that application users do not use these methods.

CiscoJtapiExceptions interface defines error codes in JTAPI.

When a PlatformException is thrown, it can be queried to get the error code, which can be compared to the
following.

Errors
Problem Error Message CTIERR_LOGIN_FAILED_PWD_EXPIRED_USER_CAN_RESET

Possible Cause This value is a static definition that identifies an error code as a login failure due to an
expired password. In addition, this error code lets the application know that the user can change their
password.

Solution Try resetting the password.

Problem Error Message CTIERR_LOGIN_FAILED_PWD_EXPIRED_USER_CANNOT_RESET

Possible Cause Explanation This value is a static definition that identifies an error code as a login failure
due to an expired password. In addition, this error code lets the application know that the user cannot
change their password, and that an administrator will have to reactivate the account.

Solution Contact the administrator to reactivate the account.

Problem Error Message CTIERR_LOGIN_FAILED_ACCOUNT_LOCKED

Possible Cause This value is a static definition that identifies an error code as a login failure due to the
user account being locked. This is a generic exception for the various types of account lockout. The
applications are not informed the reason for the account lockout.

Solution Contact the administrator to unlock the account.

Problem Error Message CTIERR_RECORDING_INVOCATION_TYPE_NOT_MATCHING

Possible Cause This error code is returned when an application invokes a stopRecording() request and
passes a method of recording other than the method that was specified when the recording was started.

Problem Error Message CTIERR_INVALID_REMOTE_DESTINATION_NUMBER

Possible Cause This error code is returned when an invalid remote destination number is enterred.

Features Supported by Cisco Unified JTAPI
27

Features Supported by Cisco Unified JTAPI
CiscoJtapiExceptions

Problem Error Message CTIERR_DUPLICATE_REMOTE_DESTINATION_NUMBER

Possible Cause This error code is returned when the same remote destination number is entered twice.

Problem Error Message CTIERR_REMOTEDESTINATION_LIMIT_EXCEEDED

Possible Cause This error code is returned when the number of remote destinations has exceeded the max
number limit.

Problem Error Message CTIERR_REMOTE_DEVICE_REQUEST_FAILED_ACTIVE_RD_NOT_SET

Possible Cause This error code is returned when the active remote destination is not set.

Problem Error Message CTIERR_ENDUSER_NOT_ASSOCIATED_WITH_DEVICE

Possible Cause This error code is returned when the enduser is not associated with the device.

Problem Error Message CTIERR_DEVICE_ALREADY_REGISTERED_NONEXTEND

Possible Cause This error code is returned when the device registration failed due to the device already
being registered in non-extend mode.

Problem Error Message CTIERR_MEDIA_ALREADY_TERMINATED_EXTEND

Possible Cause This error code is returned when the device registration failed due to the device already
being registered in extend mode.

Problem Error Message CTIERR_INVALID_REMOTE_DESTINATION_NAME

Possible Cause This error code is returned when an invalid remote destination name is entered.

CiscoProvAuthenticationInfoEv
CiscoProvAuthenticationInfoEv code returns to notify the application that the password is about to expire or
has already expired. The application should have Provider Observer onto the Provider object to receive this
event.

If the application invokes a connection and it fails because of an expired password, it will receive a
PlatformException with a newly defined error code. For more information, see CiscoJtapiExceptions, on page
27.

In the case of a failover, the application will not explicitly request a connection, and will not receive a
PlatformException. As the provider will already have an observer, it will deliver a
CiscoProvAuthenticationInfoEv to it with getDaysUntilPasswordExpiry() =
CiscoProvAuthenticationInfoEv.PASSWORD_EXPIRED.

CiscoRTPHandle Interface on Cisco RTP Events
The following interfaces are enhanced to allow applications to get a CiscoRTPHandle from the events:

• CiscoRTPInputStartedEv

• CiscoRTPInputStoppedEv

• CiscoRTPOutputStartedEv

• CiscoRTPOutputStoppedEv

Features Supported by Cisco Unified JTAPI
28

Features Supported by Cisco Unified JTAPI
CiscoProvAuthenticationInfoEv

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_231
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_232
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_233
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_234

CiscoRTPHandle represents the callID of the call in Cisco Unified Communications Manager and stays the
same as long as the call is active on the terminal. At any particular terminal/address, although the call and the
associated GCID can change, CiscoRTPHandle will remain constant.

Cisco Terminal Filter and ButtonPressedEvents
Prior to the JTAPI 2.0 release, Cisco Unified JTAPI applications did not have direct control over terminal
events. Applications can now receive button pressed events by setting the appropriate filter in the terminal
observer. Applications no longer need to add call observer to get RTP events.

When setButtonPressedEv gets enabled by using CiscoTermEvFilter, applications receive
CiscoTermButtonPressedEv when a digit gets pressed on the phone.

The following new or changed interfaces exist for CiscoTerminal Filter and ButtonPressedEvents:

CiscoTerminal

setFilter (CiscoTermEvFilter terminalEvFilter)

Allows an application to have more control over the events thatget delivered to the
TerminalObserver.

void

CiscoTermEvFilter

getButtonPressedEnabled()

Gets the enable or disable status of the button-pressed events for the terminal. The
default value specifies disabled.

boolean

getDeviceDataEnabled()

Gets the enable or disable status of the device data events for the terminal. The default
value specifies disabled.

boolean

getRTPEventsEnabled()

Gets the enable or disable status of the RTP events for the terminal. Thedefault value
specifies disabled.

boolean

setButtonPressedEnabled (boolean enabled)

Enables or disables the button pressed events for the terminal.

void

setDeviceDataEnabled (boolean enabled)

Enables or disables the device data status events for the terminal.

void

setRTPEventsEnabled (boolean enabled)

Enables or disables the RTP events for the terminal.

void

Features Supported by Cisco Unified JTAPI
29

Features Supported by Cisco Unified JTAPI
Cisco Terminal Filter and ButtonPressedEvents

CiscoTermButtonPressedEv

getButtonPressed ()int

For details on the interface changes, see Cisco Unified JTAPI Extensions To view the message flow for
CiscoTerminal Filter and ButtonPressedEvents, see Message Sequence Charts

CiscoTermRegistrationfailed Event
This event gets provided to the application when CiscoMediaTerminal or CiscoRouteTerminal registration
fails asynchronously. Usually when registration fails, the application gets a CiscoRegistrationFailedException;
however, it is possible that the registration request was successful, but the CTI rejected the registration. This
event is provided for the cases where the registration request is successful, but the registration gets rejected.
The application should have TerminalObserver to receive this event. Upon receipt of this event, the applications
should reregister with the new parameter, depending on the error code that is provided for this event.

The following list provides the errors that get returned and the actions to take, by the application, to resolve
them.

Errors
Problem Error Message CiscoTermRegistrationFailedEv.MEDIA_CAPABILITY_MISMATCH

Possible Cause Registration cannot get done because the terminal is already registered. Do the second
registration with the same media capability.

Solution Try re-registering with the same capability.

ProblemErrorMessageCiscoTermRegistrationFailedEv.MEDIA_ALREADY_TERMINATED_NONE

Possible Cause Registration cannot get done because the terminal is already registered with media
termination type 'none'.

Solution Try re-registering with media termination type 'none'.

Problem Error Message
CiscoTermRegistrationFailedEv.MEDIA_ALREADY_TERMINATED_STATIC

Possible Cause Registration cannot get done because the terminal is already registered with static media
termination. For static registration, the second registration is not allowed.

Solution Wait until the terminal UnRegisters.

Problem Error Message
CiscoTermRegistrationFailedEv.MEDIA_ALREADY_TERMINATED_DYNAMIC

Possible Cause Registration cannot get done because the terminal is already registered with dynamic
media termination.

Solution Try re-registering with dynamic media termination.

Problem Error Message CiscoTermRegistrationFailedEv.OWNER_NOT_ALIVE

Possible Cause When trying to register the terminal, registration gets in a race condition.

Solution Try re-registering the terminal.

Features Supported by Cisco Unified JTAPI
30

Features Supported by Cisco Unified JTAPI
CiscoTermRegistrationfailed Event

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

The following interface is defined for this event:
int getErrorCode () //

Returns the errorCode for this exception

No changes exist in the message flow.

Cius Persistency
Wireless devices introduced by Cisco, for example the Cisco Cius, have the capability to move betweenWiFi
networks and still retain their registration to a single CiscoUCM. However, due to the change in the network
the IP address of the device might undergo a change.To indicate this change in IP address of wireless devices
like Cius, Cisco JTAPI will expose a new interface to applications with the 9.0.1 release.

The new provider event - CiscoProvTerminalIPAddressChangedEv, will indicate that the IP address of the
terminal has changed. Applications may choose to ignore this new event if they do not plan to support a Cius
device.

On receiving this event, applications can query for the changed IP address of the terminal using the methods
exposed in the new event or on the CiscoTerminal. This interface will also expose the IP addressing mode of
the terminal, based on which IPv4/IPv6 address of the terminal can be queried.

Sample Code

public synchronized void providerChangedEvent(ProvEv[] eventList)
{
try
{
for (int i = 0; i < eventList.length; i++)
{
case (eventList[i].getID())){

switch:
CiscoProvTerminalIPAddressChangedEv.ID:

Terminal term = eventList[i]
.getTerminal();

int ipAddrMode = eventList[i].getIPAddressingMode();
InetAddr ipV4Addr = null;
InetAddr ipV6Addr = null;
if(ipAddrMode = CiscoTerminal.IP_ADDRESSING_MODE_IPv4)
{
ipV4Addr = eventList[i].getIPv4Address();

}
else if(ipAddrMode = CiscoTerminal.IP_ADDRESSING_MODE_IPv6)
{
ipV6Addr = eventList[i].getIPV6Address();

}
System.out.println(" TerminalName = " + term.getName() +

" ipAddressing Mode = " + ipAddrMode +
" IPv4 Address = " + ipV4Addr +
" IPv6 Address = " + ipV6Address);

}
}
catch (exception e)
{
…

}
}

Features Supported by Cisco Unified JTAPI
31

Features Supported by Cisco Unified JTAPI
Cius Persistency

Interface Changes

See CiscoProvTerminalIPAddressChangedEv for more information.

Message Sequences

See Cius Persistency.

Backward Compatibility

This feature is backward compatible.

Clear Calls
Cisco Unified JTAPI applications can clear phantom calls without dropping active calls. The CiscoAddress
provides a clearCallConnections message to allow applications to clear the calls when no active calls exist
on the Cisco Unified Communications Manager (formerly Cisco Unified Call Manager).

Click to Conference
Click to conference feature provides interfaces on SIP trunk for applications such as Instant Messenger (IM)
to add parties to a conference. Users can add other parties to a conference or remove parties by using such
applications. When click to conference is used to add a party to conference, a call is offered to the target
address. Only one connection for target address is created on this initial call. This call then gets added to
conference which results in a new callID for the call on the target address and connections for other addresses
in the call are created on the new call.

This section describes the interface changes in Cisco Unified JTAPI to handle the interactions when an address
is added to a conference by using click to conference feature.When click to conference feature is used, consult
call does not occur and Cisco Unified JTAPI applications do not receive CiscoConferenceStartEv or
CiscoConferenceEndEv.

The feature can be disabled by turning off the “ENABLE CLICK TO CONFERENCE” CallManager service
parameter.

Interface Changes

CiscoFeatureReason

Message Sequences

Click to Conference

Backward Compatibility

This feature is backward compatible. No change in Cisco Unified JTAPI applications when this feature is not
configured or used.

Features Supported by Cisco Unified JTAPI
32

Features Supported by Cisco Unified JTAPI
Clear Calls

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_238
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_239
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_178
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_241

Cluster Abstraction
The CTIManager provides a virtual representation of all the Cisco Unified Communications Managers in a
cluster. Cisco Unified JTAPI applications communicate with the CTIManager instead of with a specific Cisco
Unified Communications Managers. The CTIManager also maintains connection between Cisco Unified
Communications Managers in a cluster. This allows a provider to represent any devices in the cluster under
the CTIManager. Figure 1: Single-Box Configuration with JTAPI, Cisco Unified Communications Manager,
and CTIManager in One Box, on page 33 illustrates “Figure 1: Single-Box Configuration with JTAPI, Cisco
Unified Communications Manager, and CTIManager in One Box, on page 33.” Figure 2: Redundant Cisco
Unified Communications Manager and CTIManagers with JTAPI Deployed as a Separate Client, on page 33
illustrates “Figure 2: Redundant Cisco Unified Communications Manager and CTIManagers with JTAPI
Deployed as a Separate Client, on page 33.”

For more details about the cluster administration and device pool settings, refer to the Cisco Unified
Communications Manager help information.

Figure 1: Single-Box Configuration with JTAPI, Cisco Unified Communications Manager, and CTIManager in One Box

Figure 2: Redundant Cisco Unified Communications Manager and CTIManagers with JTAPI Deployed as a Separate Client

Features Supported by Cisco Unified JTAPI
33

Features Supported by Cisco Unified JTAPI
Cluster Abstraction

In previous releases of Cisco Unified CommunicationsManager, applications that are running on Cisco Unified
JTAPI could only control or monitor devices that are registered under a single Cisco Unified Communications
Manager. If a Cisco Unified Communications Manager server went down, the connection between the Cisco
Unified Communications Manager server and JTAPI would terminate and the Provider would shut down.

Note

Command Line Invocation
This mode helps to install JTAPI in systems that do not have GUI support (for example, a Linux account).
The entire installation procedure is guided by a character input based menu, where the user is asked to provide
a series of inputs, based on the install time conditions. This mode also provides all the other options provided
by the GUI based installer.

Component Updater
The Component Updater interface is enhanced to allow applications to specify the location of updater log.
Currently the updater log is created in the same directory as the application. This enhancement allows
applications to specify the trace location.

Interface Changes

See ComponentUpdater

Message Sequences

See ComponentUpdater Enhancement Use Cases

Backward Compatibility

This feature is backward compatible.

Conference
When you conference two calls together, JTAPI specifies that all the parties from one call be moved to the
other call. The call whose parties are moved away and that subsequently becomes invalid gets identified as
the “merged” or “consult” call. The call to which the merged parties move gets identified as the “final” call
hereafter. When parties move from the merged call to the final call, the application receives events that indicate
that all parties dropped from the merged call and events that indicate that the parties reappeared on the final
call.

To correlate the newly created connection objects with the old connection objects, use the
CiscoConection.getConnectionID() method to obtain CiscoConnectionID objects for all old connections and
all new connections.Matching connections will have identical CiscoConnectionID objects when you compare
them by using the CiscoConnectionID.equals() method.

Conference support exists for the following methods:

Features Supported by Cisco Unified JTAPI
34

Features Supported by Cisco Unified JTAPI
Command Line Invocation

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_243
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_244

• javax.telephony.callcontrol.CallControlCall.conference(Call)

• javax.telephony.callcontrol.CallControlCall.getConferenceController()

• javax.telephony.callcontrol.CallControlCall.getConferenceEnable()

• javax.telephony.callcontrol.CallControlCall.setConferenceController(TerminalConnection)

• javax.telephony.callcontrol.CallControlCall.setConferenceEnable(boolean)

As of Cisco Unified Communications Manager Release 8.6, Cisco TelePresence MCU conference bridges
are supported through JTAPI/TSP. From a JTAPI/TSP perspective, this conference bridge behaves in the
same way as other supported conference bridges.

Note

Cisco Extensions
Cisco Unified JTAPI implementation provides two extra events that signal the Start and End of Conference:
CiscoConferenceStartEv and CiscoConferenceEndEv. These events get sent when Conference initiates and
when it completes. They give handles to the final call, the merged conference (consult) call, and the two
controlling TerminalConnections (in HELD and TALKING state).

CiscoConferenceStartEv

This event gets sent when call1.conference(call2) is invoked or if the Conference button is pressed for the
second time on an IPphone. The ConferenceStartEv signifies the start of the merging process. A sequence of
merging events that are reflected by the Conference process in Cisco Unified Communications Manager
follows.

CiscoConferenceEndEv

This event gets sent at the end of the merge process after a ConferenceStartEv is sent. It signifies the completion
of the merge of the Consult (or Merged) call into the Final Conference Call. The Merged call specifies an
INVALID state, and an ObservationEndedEv gets sent for the call observer.

CiscoCall.setConferenceEnable()

The Cisco Unified JTAPI implementation uses the CiscoCall.setConferenceEnable() and the
CiscoCall.setTransferEnable() methods to control whether the consult call will be initiated via the conference
or the transfer feature. If none of the features is enabled explicitly, transfer gets used by default.

Conference Scenarios
The following scenarios describe the two typical types of conference that can be invoked.

Consult Conference; B as the Conference Controller

The following sequence of steps typically describes this scenario:

• A calls B (Call 1).

• B answers.

Features Supported by Cisco Unified JTAPI
35

Features Supported by Cisco Unified JTAPI
Cisco Extensions

• B Consults C (Call 2).

setConferenceEnable()

call2.consult(tc, C)

• C answers.

• B Completes Conference.

Call1.conference(Call2)

You must invoke the conference() method on the original call to complete a conference after a consultation.
Invoking conference in the consult call object throws an exception.

Note

Arbitrary Conference; B as the Conference Controller

The following sequence of steps typically describe this scenario:

• A calls B (Call 1).

• B answers.

• B places the call on hold.

• B calls C (Call 2).

• C answers.

• B Completes Conference.

Call1.conference(Call2) or

Call2.conference(Call1)

Conference Events
This table provides the sequence of Core, Call control, and Cisco Extension events when
Call1.Conference(Call2) is called:

Table 1: Sequence of Events

FieldsEventCallMeta Event Cause

consultCall = Call2finalCall =
Call1conference Controller =
TermConnB

CiscoConferenceStartEvCall1META_UNKNOWN

CallCtlTermConnTalkingEv BCall1META_CALL_MERGING

Features Supported by Cisco Unified JTAPI
36

Features Supported by Cisco Unified JTAPI
Conference Events

FieldsEventCallMeta Event Cause

ConnCreatedEv C
ConnConnectedEv C
CallCtlConnEstablishedEv C
TermConnCreatedEv C
TermConnActiveEv C
CallCtlTermConnTalkingEv C

Call1META_CALL_MERGING

TermConnDroppedEv B
CallCtlTermConnDroppedEvB
ConnDisconnectedEv B
CallCtlConnDisconnectedEv B

Call2META_CALL_MERGING

consultCall = Call2finalCall =
Call1conferenceController =
TermConnB

TermConnDroppedEv C
CallCtlTermConnDroppedEvC
ConnDisconnectedEv C
CallCtlConnDisconnectedEv C
CallInvalidEv C

Call2META_CALL_MERGING

CallObservationEndedEvCall2META_UNKNOWN

CiscoConferenceEndEvCall1META_UNKNOWN

Transfer and Conference Enhancement
All parties who are involved in the call transfer get sent CiscoTransferStartEv and CiscoTransferEndEv. All
parties who are involved in the call conference get sent CiscoConferenceStartEv and CiscoConferenceEndEv.
A call transfer still generates two events—the dropping of a connection to the first call and the creation of a
connection to the second call. Cisco Unified Communications ManagerRelease3.1 changed this order of
events. Connections first get created in the final call and then get dropped in the consult call.

In Cisco Unified CommunicationsManagerRelease3.0, not all parties who are involved in the transfer of calls
received these events

Note

Applications should not rely on the order of events between CiscoTransferStartEv and CiscoTransferEndEv
or between CiscoConferenceStartEv and CiscoConferenceEndEv for transferring and conferencing when
porting applications from Cisco Unified Communications ManagerRelease3.0 to 3.1.

Note

Conference and Join
The Conference Feature provides the ability to conference more than two people into a single call. Events at
CTI layer change, and Cisco Unified JTAPI gets enhanced to support the new CTI events.

Features Supported by Cisco Unified JTAPI
37

Features Supported by Cisco Unified JTAPI
Transfer and Conference Enhancement

Join Feature provides the ability to join multiple calls into one single conference call. This functionality now
supports multiple calls. Applications need to pass an array of calls to be conferenced together.

The following new or changed interfaces exist for conference and joining of multiple calls into one conference
call:

• The following interface allows Join to conference multiple calls into one conference call:
Call.Conference(Call[] otherCalls)

A precondition requires that all the otherCalls must have controller as one leg of
the call.

Note

• The following new or modified interfaces exist in CiscoConferenceStartEv:

• TerminalConnection getHeldConferenceController()—This interface proves useful only for the
arbitrary conferencing of two calls and returns only one of the held calls.

• TerminalConnection[] getHeldConferenceControllers()—This interface gets all of the held calls
when multiple calls are joined.

• TerminalConnection getTalkingConferenceController()—This interface returns the talking conference
controller; however, if no talking conference controller exists when all the calls that are being joined
into conference are held, this interface returns null.

• Call getConferencedCall()—This interface returns only one of the many calls that are going to join
into a conference and may not have any meaning for a join conference when more than two calls
exist.

• New interface in CiscoConferenceEnded event Boolean isSuccess():

This interface returns true or false depending on whether conference is successful or failed. Application
can use interface to find whether conference is successful. The following events get defined as conference
failure:

• If the application issues the request Call.conference(otherCalls[]), this conferencewould be considered
failed if one or more than one calls could join into conference. Applications can use the interface
getFailedCalls() to find the failed call.

• If no conference bridge is available and the conference could not complete at all, the application
can use getFailedCalls() to get a list of calls that could not join the conference.

• A party that was being conferenced dropped out before conference could complete.

• An interface on the CiscoConferenceEnded event (Call[] getFailedCalls()) gets all the calls that failed
to join the conference when the conference fails.

The following new or changed behaviors exist for Conference:

• No hold or unHold message such as applications see when an arbitrary conference occurs.

• An arbitrary conference does not require, as a precondition, that any calls be in a talking state; however,
all the otherCalls must have a controller as one leg of the call.

• Applications can conference two or more held calls into a conference call. In finalCall, the controller
automatically gets retrieved to a talking state.

Features Supported by Cisco Unified JTAPI
38

Features Supported by Cisco Unified JTAPI
Conference and Join

• Always include an active call in the request Call.Conference(otherCalls). If an active call is not included
in the conference request, the request fails.

• If no active call exists at the controller, the Call.Conference(otherCalls) request remains successful;
however, if one active call exists, it the request must include it.

• If the application does not have an active TerminalConnection that is passed as an argument, Call.consult()
throws a PreConditionException/InvalidArgumentException.

• If the controller does not have an active TerminalConnection, Call.Conference()/Call.Conference(Call[])
throws a PreconditionException/InvalidArgumentException.

For details on the interface changes, see Cisco Unified JTAPI Extensions To view the message flow for
conference and join, see Message Sequence Charts

Conference Chaining
The conference chaining feature lets applications join two separate conference calls together. JTAPI applications
see chained conference calls that are represented as two separate calls. When conference calls are chained,
JTAPI creates a new connection for the conference chain and provides the CiscoConferenceChainAddedEv
event on CallCtlCallObserver. When the conference chain is removed from the call, JTAPI disconnects the
conference chain connection and provides the CiscoConferenceChainRemovedEv event on CallCtlCallObserver.
From CiscoConferenceChainAdded/RemovedEv, applications can obtain CiscoConferenceChain, which
provides a link for all the conference chain connections.

The following figure shows parties A, B, and C in conference call GC1 and parties C, D, and E in conference
call GC2.

Figure 3: Calls Prior to Chaining

After the conference chain is created, the calls will look like the following figure.

Figure 4: Calls After Chaining

Applications may get all the participants of a chained conference from the CiscoChainedConference object,
which provides conference chain connections from all the conference calls that are chained together. By

Features Supported by Cisco Unified JTAPI
39

Features Supported by Cisco Unified JTAPI
Conference Chaining

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

browsing through the connections list, applications can get a list of all the chained conference calls; however,
applications must have at least one participant of each conference that is observed.

For any conference scenario that involves chaining conferences or adding parties to a chained conference call,
JTAPI will not provide ConferenceStarted/Ended event.

Note

For more information, see the following topics:

• CiscoCall (for the getConferenceChain() interface)

• CiscoConferenceChain

• CiscoConferenceChainAddedEv

• CiscoConferenceChainRemovedEv

Consult Without Media
Applications can inform Cisco Unified Communications Manager that a consultation call for a transfer is
being placed without establishing the media path. The system does not require establishing the media path
for the intermediate call, if the consultation call is being placed to determine whether an agent is available
before the actual transfer. The consultWithoutMedia method as defined in the CiscoConsultCall interface
creates a consultation call without establishing the media path.

The system allows only transferring of the consultation call; it does not allow the call to be in conference.Note

CTI Ports
CTI Ports that are registered by an application include a mechanism similar to phone devices. When the Cisco
Unified Communications Manager that is handling signaling for a CTIPort fails, the CTIManager recovers
its services according to the device pool administration for this device. On a CTIManager failure, Cisco Unified
JTAPI reregisters the CTI Port after it connects to the backup CTIManager. The CiscoAddrOutOfServiceEv
and CiscoTermOutOfServiceEv events and the corresponding in-service events get sent after recovery of the
CTI Port.

The application controls media streaming for these devices, and streaming continues even when the port is
out of service. The application has responsibility to ensure that new calls do not get presented to the device
until it is ready to accept them.

CTI RoutePoints
On a Cisco Unified Communications Manager server failure, the CTIManager recovers the device from the
Cisco Unified Communications Manager server group as defined in the device pool administration for the
CTI RoutePoint.When the primary Cisco Unified CommunicationsManager server recovers, the CTIManager

Features Supported by Cisco Unified JTAPI
40

Features Supported by Cisco Unified JTAPI
Consult Without Media

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_251
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_252
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_253

attempts to recover the device on its primary Cisco Unified CommunicationsManager. This re-homing happens
when no more calls exist on the device (similar to physical devices).

On a CTIManager failure, Cisco Unified JTAPI recovers the device on the backup CTIManager. The application
receives notification of the availability of a device with the CiscoAddrOutOfServiceEv and
CiscoAddrInServiceEv events.

CTI Remote Device for JTAPI
Changes in personal device preferences and an increasing number of mobile and remote workers necessitates
a more flexible Unified Communications solution that extends UC features with a Bring Your Own Device
philosophy. Extend and Connect addresses this change.

Extend and Connect is a feature that allows administrators to rapidly deploy Unified Communications (UC)
Computer Telephony Integration (CTI) applications which interoperate with any endpoint. Extend and Connect
lets users leverage the benefits of UC applications from any location using any device. This feature allows
interoperability between newer UC solutions and legacy systems, so customers can migrate over time as
existing hardware is deprecated.

For more information, please refer to theCisco Unified Communications Manager Features & Services guide.

Interface Changes

See CiscoRemoteDestinationInfo, CiscoProvTerminalRemoteDestinationChangedEv, CiscoProvider,
CiscoTerminalProtocol.

Message Sequences

See CTI Remote Device.

Backward Compatibility

This feature is backward compatible.

Play Announcement
Play Announcement allows a specified preconfigured announcement to be played or streamed to a remote
destination. Only announcements that are uploaded to the Cisco Unified Communications Manager can be
played. All announcement requirements and limitations are applicable to Play Announcement. As part of this
feature, new JTAPI APIs, events, and error codes are added.

Only CTI Remote Devices with a persistent call support play announcement. Play announcement is not
supported on IP phones or CTI ports. Cisco recommends that the persistent call plays an announcement when
answered. Announcements can be played on persistent calls even without customer calls. However, if there
are customer calls incoming to the remote device, announcements are played only when that call is not in a
connected state. Multiple announcements cannot be played at the same time. No features (transfer, conference,
hold) can be performed on the announcement call.

The following are required for the application to play the announcement: at least one remote destination must
be configured, the active remote destination must be set, and a persistent call must be created.

JTAPI supports a new API, CiscoCall.startAnnouncement(), which allows applications to start to play an
announcement. This API creates an announcement call. This newly created announcement call counts toward

Features Supported by Cisco Unified JTAPI
41

Features Supported by Cisco Unified JTAPI
CTI Remote Device for JTAPI

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_257
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_258
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_197
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_259
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_260

both the busy trigger and maximum calls limit. JTAPI APIs such as Provider.getCalls(),
Address.getConnections(), and Terminal.getTerminalConnections() return information for the announcement
call.

No new APIs are added to disconnect/drop the announcement calls. Use Existing Call.drop() and
Connection.disconnect() JTAPI APIs to disconnect the announcement calls. In addition to the APIs that
explicitly end the announcement call, the announcement call is also automatically disconnected after the
announcement is complete. Any state change in the announcement call stops the announcement, and also
disconnect the announcement call. For example, if there is an incoming customer call in ringing state and the
announcement is still being played, after the customer call is answered, the announcement call is disconnected.

As a part of this feature, new JTAPI events are introduced. The CiscoAnnouncementStartedEv is a new JTAPI
event that is delivered to applications, notifying applications when the play announcement starts. To notify
applications when the play announcement has ended, another new JTAPI event, the
CiscoAnnouncementEndedEv, is delivered to apps. If during any time, an error occurs during play
announcement, a new JTAPI event delivers that information to apps as well: CiscoAnnouncementErrorEv.

Some of the new JTAPI error codes that are introduced as part of this feature include:

• CiscoJtapiException.CTIERR_NO_PERSISTENT_CALL_EXISTS: This error codes indicates that no
persistent call exists.

• iscoJtapiException.CTIERR_ANNOUNCEMENT_ALREADY_IN_PROGRESS: This error code
indicates that there is already an announcement in progress.

• CiscoJtapiException.CTIERR_ERROR_PLAYING_ANNOUNCEMENT: This error code indicates that
there is an error in playing the announcement.

• CiscoJtapiException.CTIERR_PLAY_ANNOUNCEMENT_FAILED: This error code indicates that
play announcement failed.

Interface Changes

• CiscoAddress
• CiscoAnnouncementStartedEv
• CiscoAnnouncementEndedEv
• CiscoAnnouncementErrorEv
• CiscoFeatureReason

Message Sequences

See Play Announcement.

Backward Compatibility

This feature is backward compatible and existing applications are not affected by its introduction.

Verify Remote Destination Support
In Cisco Unified Communications Manager 10.0(1), the existing
CiscoRemoteTerminal.addRemoteDestionation(), CiscoRemoteTerminal.updateRemoteDestination(), and
CiscoRemoteTerminal.updateRemoteDestinationNumber() APIs are enhanced to allow validation of the
remote destination. As part of this feature, when an application attempts to add or update a remote destination
using JTAPI API, Cisco JTAPI validates the remote destination to determine whether the destination is
reachable. If the destination is not reachable, the add or update remote destination request returns an error of
CiscoJtapiException.CTIERR_EXTEND_AND_CONNECT_DESTINATION_NOT_REACHABLE. The

Features Supported by Cisco Unified JTAPI
42

Features Supported by Cisco Unified JTAPI
Verify Remote Destination Support

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_196
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_261
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_262
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_263
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_178
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_264

remote destination is then not updated in the database. A sucessful update is possible only if the remote
destination is reachable, and the database is then updated with the remote destination number. The verification
of the remote destination in the update applies only when the JTAPI API is invoked. Adding or updating the
remote destination information through the ccmadmin page does not result in the verification of the remote
destination. No new APIs are added as part of this feature. A new error is introduced.

Interface Changes

CiscoJtapiException

Message Sequences

Verify Remote Destination Support

Backward Compatibility

This feature is backward compatible and existing applications are not affected by this enhancement.

NuRD (Number Matching for Remote Destination) Support
Starting in Cisco Unified CommunicationsManager 10.0(1), the existing “Cisco Extend and Connect” feature
is enhanced to include number matching for remote destination support. When users make a direct call to a
number that is configured as a remote destination for CTI Remote Device (CTI RD), and if that remote
destination is active, the call is offered on the CTI Remote Device and extended to the remote destination.
From the application, the current called party is the CTI RD. If the active remote destination is not set, when
users call a remote destination number, the call will be a direct call between the caller and the remote destination.
The same situation applies to a call from a remote destination to an enterprise dial number. If the remote
destination is active, the CTI RD is initiating the call to the enterprise dial number. If the active remote
destination is not set, calls from a remote destination to an enterprise dial number are direct calls between the
remote destination and the enterprise dial number.

For those calls from and to a remote destination number, all existing features that are allowed on CTI RD are
available.

Interface Changes

There are no interface changes for this feature.

Usage Cases

Use Cases for NuRD (Number Matching for Remote Destination)

Backward Compatibility

This feature may change existing expected behavior in direct calls to and from remote destination numbers.
Applications that do not leverage this NuRD feature keep the clusterwide service parameter “Reroute Remote
Destination Calls to Enterprise Number” set to False. Enabling the parameter enables the NuRD features. This
parameter is set to False by default.

Features Supported by Cisco Unified JTAPI
43

Features Supported by Cisco Unified JTAPI
NuRD (Number Matching for Remote Destination) Support

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_179
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_265
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_266

Mobility Interaction Support
Starting in Cisco Unified CommunicationsManager 10.0(1), the existing “Cisco Extend and Connect” feature
is extended to include mobility interaction. Users can now specify remote destinations that are shared between
the CTI Remote Device (CTI RD) and the Remote Destination Profile (RDP). When both the CTI RD and
the RDP are configured for the same user, and if the application is active (active rd is set), CTI RDwill process
the call first and then offer the call to the RDP. If the application is not active, the RDP processes the call first
and does not offer the call to the CTI RD. When only CTI RD is configured for a user, the existing "Cisco
Extend and Connect" feature behavior with remote destinations remains unchanged. When only RDP is
configured for a user, there is no application support because the devices are not CTI controllable.

Interface Changes

There are no interface changes for this feature.

Usage Cases

Mobility Interaction Support

Backward Compatibility

This feature is backward compatible and existing applications are not affected by the enhancement.

CTI RD Call Forward
Beginning in Release 10.0(1), CTI RD Call Forward provides applications with the ability to control when
incoming calls are forwarded to all configured Remote Destinations on the CTI Remote Device, when no
active remote destination is set.

A new check box Route calls to all remote destinations when client is not connected, is added to the Cisco
Unified Communications Manager device page. The check box determines whether calls are routed to all
remote destinations when active remote destination is not set.

When the check box, Route calls to all remote destinations when client is not connected is enabled, and
Active Remote Destination is not set, the call is routed to all remote destinations. If this check box is disabled,
and Active Remote Destination is not set, the call will be disconnected with User_Busy error.

In scenarios where Active Remote Destination is set, the call will be always routed to the Active Remote
Destination even if the check box Route calls to all remote destinations when client is not connected is
selected.

Interface Changes

There are no interface changes for this feature.

Use Cases

CTI RD Call Forward

Backward Compatibility

Applications should enable the check boxRoute calls to all remote destinations when client is not connected
to maintain the old behavior.

Features Supported by Cisco Unified JTAPI
44

Features Supported by Cisco Unified JTAPI
Mobility Interaction Support

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_267
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_268

CTI Video Support
The CTI Video Support feature allows the JTAPI Application to detect the multimedia capabilities of Line
Devices; such as receiving video, sending video and both receiving and sending video. Cisco JTAPI provides
the applications with the ability to expose the video capabilities of a terminal through the enhancement CTI
Video Support. CTI applications can differentiate a video-enabled device from a non video-enabled device,
and, a video call from an audio only call.

Cisco JTAPI provides a new API, getCiscoMultiMediaCapabilityInfo() on the CiscoTerminal to expose the
multimedia capabilities of the device. Cisco JTAPI exposes the multimedia capabilities of the terminal after
the device is in registered state. The multimedia capabilities of the terminal include:

• video capability (either none or video enabled),

• telepresence interoperability (either none or telepresence interoperability enabled on the device), and,

• screen count (to know the number of screens available on device).

The multimedia capabilities are exposed on a new interface CiscoMultiMediaCapabilityInfo, which has the
following APIs to expose these capabilities.

• getVideoCapability(),

• getTelepresenceInfo(), and,

• getScreenCount().

The following APIs on the CiscoCall are used by the application to determine the calling party or called party
multimedia capability prior to media setup.

• getCallingTerminalMultiMediaCapabilityInfo()—of the calling party in a call

• getCalledTerminalMultiMediaCapabilityInfo()—of the called party in a call

When the video capability of the terminal changes, a new Cisco JTAPI event,
CiscoProvTerminalMultiMediaCapabilityChangedEv, notifies the application. This event is a JTAPI provider
event, and is delivered when the application adds a Provider Observer. The terminal must be in registered
state, to receive this event. Plugging in or plugging out the Cisco camera will not affect the video capability
status, therefore, the event will not be triggered. However, you can modify the video capability using the
Cisco UCM Administration Interface > Device Configuration page.

The initial video capability API on CiscoTerminal is not supported for CTI Route Points and CTI Ports;
however, they can receive the video information of the calling party.

Note

The following devices supports the CTI Video feature:

• 89xx (SIP only)

• 99xx

• E20

• EX60/90

Features Supported by Cisco Unified JTAPI
45

Features Supported by Cisco Unified JTAPI
CTI Video Support

• CTS 500

• CTS 500-32

• Jabber(CSF)

• CTI RoutePoint

• CTI Port

Interface Changes

See the following sections for interface changes:

• CiscoCall

• CiscoMultiMediaCapabilityInfo

• CiscoProvTerminalMultiMediaCapabilityChangedEv

• CiscoTerminal

Message Sequences

See CTI Video Support.

Backward Compatibility

This feature is backward compatible.

Default CTI IP Addressing for Devices
A new CTIManager service parameter, IP Addressing Mode for Devices, has been added that allows you
to configure the default CTI IP addressingmode for a device that does not have an associated CommonDevice
Configuration.

When an application invokes the CiscoTerminal.getIPAddressingMode() method for a device that does not
have a Common Device Configuration, JTAPI returns the value of the service parameter. The default setting
for the new service parameter is IPv4 and IPv6. JTAPI communicates the value via
CiscoTerminal.IP_ADDRESSING_MODE_IPV4_V6.

For an individual CTI device, if that device has an associated CommonDevice Configuration, the IP Addressing
Mode setting in the Common Device Configuration overrides the value of the IP Addressing Mode for
Devices service parameter.

Note

Features Supported by Cisco Unified JTAPI
46

Features Supported by Cisco Unified JTAPI
Default CTI IP Addressing for Devices

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_269
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_270
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_271

DeleteCall
DeleteCall interface provides applications with the ability to delete a call that was created by using the
createCall interface. This method accepts a call and throws an InvalidStateException if a provider is not in
service or if the call is not in the IDLE state. DeleteCall moves the call to the INVALID state.

The following interface gets added to CiscoProvider:

{ public void deleteCall(Call call) throws InvalidStateException;
}

Applications can use this interface to delete the call that was created by using createCall interface. This method
accepts a call and throws an InvalidStateException if the provider is not in service or if the call is not in the
IDLE state. DeleteCall moves the call to the INVALID state.

To successfully delete a call, the application creates the call by using createCall, and the call should be in the
IDLE state.

Device Recovery
Cisco Unified JTAPI supports automatic device recovery.

Device Recovery for Phones
For devices such as the Cisco Unified IPPhone 7960, the re-homing feature represents part of the device
firmware. On a primary Cisco Unified Communications Manager failure, the phone attempts to connect to
the backup Cisco Unified Communications Manager when it is no longer on a call. This transition gets
communicated to applications in the form of out-of-service and in-service events described in CTIManager
Failure, on page 123.

For virtual devices with no firmware such as CTI Ports and CTI RoutePoints, the CTIManager or Cisco
Unified JTAPI performs the failover.

Device State Server
The Device State server provides the cumulative state of all the addresses on a terminal. These events are
delivered as TerminalEvent. Applications need to add TerminalObserver to get these events.

The states follow:

• IDLE—If no calls exist on any of the addresses on the terminal, consider the DeviceState as IDLE, and
Cisco Unified JTAPI sends CiscoTermDeviceStateIdleEv to applications.

• ACTIVE—If any addresses on the terminal have an outgoing call (in CTI State Dialtone, Dialing,
Proceeding, Ringback, or Connected) or an incoming call (in CTI State Connected), the consider
DeviceState as ACTIVE, and Cisco Unified JTAPI sends CiscoTermDeviceStateActiveEv to the
application.

Features Supported by Cisco Unified JTAPI
47

Features Supported by Cisco Unified JTAPI
DeleteCall

• ALERTING—If address on the terminal has an outgoing call (in CTI State Dialtone, Dialing, Proceeding,
Ringback, or Connected) or an incoming call (in CTI State Connected) and at least one of the addresses
on the terminal has an unanswered incoming call (in CTI State Offering, Accepted, or Tinging), the
DeviceState is ALERTING, and Cisco Unified JTAPI sends CiscoTermDeviceStateAlertingEv to the
application.

• HELD—If all the calls on any of the address on the terminal are held (in CTI State OnHold), the
DeviceState is HELD and Cisco Unified JTAPI sends CiscoTermDeviceStateHeldEv to the application.

New Events

• CiscoTermDeviceDeviceStateIdleEv

• CiscoTermDeviceStateActiveEv

• CiscoTermDeviceStateAlertingEv

• CiscoTermDeviceStateHeldEv

New and Changed Interfaces

public int getDeviceState() returns the device state of the terminal.

The following new interfaces on CiscoTermEvFilter set and get the device state:

setDevideStateActiveEvFilter(boolean filterValue)

Enables and disables the CiscoTermDeviceStateActiveEv filter.The default value is
disable.

void

setDeviceStateAlertingEvFilter(boolean filterValue)

Enables and disables the CiscoTermDeviceAlertingEv filter.Thedefault value is disable.

void

setDeviceStateHeldEvFilter(boolean filterValue)

Enables and disables the CiscoTermDeviceHeldEv filter.Thedefault value is disable.

void

setDeviceStateIdleEvFilter(boolean filterValue)

Enables and disables the CiscoTermDeviceIdleEv filter. Thedefault value is disable.

void

getDeviceStateActiveEvFilter()

Gets the CiscoTermDeviceStateActiveEv filter status.

boolean

getDeviceStateAlertingEvFilter()

Gets the CiscoTermDeviceStateAlertingEv filter status.

boolean

getDeviceStateActiveEvFilter()

Gets the CiscoTermDeviceStateAlertingEv filter status.

boolean

getDeviceStateActiveEvFilter()

Gets the CiscoTermDeviceStateAlertingEv filter status.

boolean

Features Supported by Cisco Unified JTAPI
48

Features Supported by Cisco Unified JTAPI
Device State Server

For details on the interface changes, see Cisco Unified JTAPI Extensions

Direct Transfer Across Lines
The Direct Transfer Across Lines feature allows support for connected transfer across lines. It allows two
calls on different addresses of the same terminal to be transferred though the Transfer softkey on the phone
or by using the transfer() API that is provided by Cisco Unified JTAPI. When a transfer is performed across
lines, the JTAPI application behavior changes, as applications do not see a common controller address in final
and consult calls. There is no change in the API and the same events are delivered whether calls are transferred
on the same address (regular transfer) or across addresses (direct transfer across lines). This feature is supported
on all supported phones, including CTI port, SCCP devices and SIP devices.

If an observer is not added to either of the two addresses from which the direct transfer is being attempted
from the JTAPI API, then Cisco Unified JTAPI throws PlatformException with this error: Transfer controller
is not set and could not find a suitable TerminalConnection.

Usage Guidelines
The points below indicate how applications must use the Direct Transfer Across Lines feature:

• Applications must add Call Observer on the both the lines across which they try a direct transfer.

• Earlier, applications were recommended to check if both the calls have a common address and if that
address is on the same Terminal. For Direct Transaction Across Lines, it is not required to check this, if
the address is common between two calls across which direct transaction is invoked. It must be ensured
that both the calls should each have an address which exists in a common terminal.

• Cisco Unified JTAPI reports the same set of events, as it does currently, for transferring of a call on same
address. Applications are not required do anything with these calls after invoking Transfer() until receiving
CiscoTransferEndEv.

• As transfer is done across addresses, applications do not get a common controller in CiscoTransferStartEv
and should upgrade the application logic.

Event Flow Comparison and Sample Code
The following table provides details of the event flow.

Table 2: Event Flow Comparison and Sample Code for Transfer Invocation

Transfer Across LinesTransfer on Same Lines

Setup

Address A on Terminal T1

Address B1, B2 on Terminal T2

Address C on Terminal T3

Address A on Terminal T1

Address B1, B2 on Terminal T2

Address C on Terminal T3

Feature Invocation

Features Supported by Cisco Unified JTAPI
49

Features Supported by Cisco Unified JTAPI
Direct Transfer Across Lines

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187

Transfer Across LinesTransfer on Same Lines

A calls B1 [GC1 = GolbalCallID1]

GC1: Connection A->Conn1

GC1: Connection B1->Conn2

B2 calls C [GC2 = GolbalCallID2]

GG2: Connection B2->Conn3

GC2: Connection C->Conn4

GC1.transfer(GC2);

A calls B1 [GC1 = GolbalCallID1]

GC1: Connection A1-> Conn1

GC1: Connection B1->Conn2

B1 calls C [GC2 = GolbalCallID2]

GG2: Connection B1-> Conn3

GC2: Connection C->Conn4

GC1.transfer(GC2);

Events Delivered to Application (assuming all parties are observed)

Features Supported by Cisco Unified JTAPI
50

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

Transfer Across LinesTransfer on Same Lines

GC1:

CiscoTransferStartEv

[getTransferControllerAddress() returns B1]

ConnCreatedEv for C

ConnConnectedEv for C

CallCtlConnEstablishedEv for C

TermConnCreatedEv for T3(Address C)

ConnDisconnectedEv for B1

CallCtlConnDisconnectedEv for B1

TermConnDroppedEv for T2(Address B1)

CallCtlTermConnDroppedEv for T2(Address B1)

CiscoTransferEndEv

GC2:

CiscoTransferStartEv

[getTransferControllerAddress() returns B1]

TermConnDroppedEv for T2(Address B2)

CallCtlTermConnDroppedEv for T2(Addresss B2)

ConnDisconnectedEv for B2

CallCtlConnDisconnectedEv for B2

TermConnDroppedEv for T3(Address C)

ConnDisconnectedEv for C

CallCtlConnDisconnectedEv for C

CallCtlTermConnDroppedEv for T3(Address C)

CiscoTransferEndEv

CallInvalidEv

CallObservationEndedEv

GC2 - Disconnect events are for Address B2 on
Terminal T2

Note

GC1:

CiscoTransferStartEv

[getTransferControllerAddress() returns B1]

ConnCreatedEv for C

ConnConnectedEv for C

CallCtlConnEstablishedEv for C

TermConnCreatedEv for T3(Address C)

ConnDisconnectedEv for B1

CallCtlConnDisconnectedEv for B1

TermConnDroppedEv for T2(Address B1)

CallCtlTermConnDroppedEv for T2(Address B1)

CiscoTransferEndEv

GC2:

CiscoTransferStartEv

[getTransfeControllerAddress() returns B1]

TermConnDroppedEv for T2(Address B1)

CallCtlTermConnDroppedEv for T2(Addresss B1)

ConnDisconnectedEv for B1

CallCtlConnDisconnectedEv for B1

TermConnDroppedEv for T3(Address C)

ConnDisconnectedEv for C

CallCtlConnDisconnectedEv for C

CallCtlTermConnDroppedEv for T3(Address C)

CiscoTransferEndEv

CallInvalidEv

CallObservationEndedEv

GC2 - Disconnect events are for Address B1 on
Terminal T2

Note

In connected Transfer Across Lines scenario, apart from events mentioned, applications can see another
temporary call GC3 going active(CallActiveEv) and GC3 goes idle (CallInvalidEv) immediately after the
transfer is completed

Note

Features Supported by Cisco Unified JTAPI
51

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

Transfer on Same Lines Sample Code

Handle(CiscoCallEv event)
{
…..
…..
if (event instanceOf CiscoTransferStartEv)
{
CiscoTransferStartEv ev =
(CiscoTransferStartEv)event;

processTransfer(ev);
}

}
processTransfer(CiscoTransferStartEv ev){
CiscoAddress commonAddr =
ev.getTransferControllerAddress();

CiscoCall GC2 = ev.getTransferringCall();
CiscoCall GC1 = ev.getFinalCall();
CiscoConnection droppedConn1 =
findConnection(GC1, controllerAddr);

CiscoConnection droppedConn2 =
findConnection(GC2, controllerAddr);

//Additional App logic to clear connections.
}
Connection findConnection(CiscoCall GCx, CiscoAddress addr){
CiscoConnection[] conns = GCx.getConnections();
for (i = 0; i<conns.length; i++)
{
if conns[i]
.getAddress().equals(addr) {
return conns[i];

}
}

}

Application logic is based on common transferControllerAddress and works fine in this case, because
commonAddr is there in both final and consult call

Note

Transfer Across Lines Sample Code

Handle(CiscoCallEv event)
{
…..
…..
if (event instanceOf CiscoTransferStartEv)
{
CiscoTransferStartEv ev =
(CiscoTransferStartEv)event;

processTransfer(ev);
}

}
processTransfer(CiscoTransferStartEv ev){
String termName = ev.getControllerTerminalName();

CiscoCall GC2 = ev.getTransferringCall();
CiscoCall GC1 = ev.getFinalCall();
CiscoConnection droppedConn1 = findConnection(GC1, termName);

Features Supported by Cisco Unified JTAPI
52

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

CiscoConnection droppedConn2 = findConnection(GC2, termName);
//Additional App logic to clear connections.

}
Connection findConnection(CiscoCall GCx, String termName){
CiscoConnection[] conns = GCx.getConnections();
for (i = 0; i<conns.length; i++)
{
CiscoTerminalConnection[] termConns =
conns[i].getTerminalConnections();

for(j = 0; j<termConns.length; j++)
{
if(termConns[j].getTerminal().getName.equals(termName)

&& termConns[i].getState() ! =
TerminalConnection.PASSIVE)

{
return termConns[i].getConnection();

}
}

}
}

There is no common address for controllers in final and consult call, but the controller TerminalName is same
for both the controller Addreses. So, application should rely on CommonTerminalName to find out the
connections, terminal connections and controllers.

Note

Interface Changes

See CiscoTransferStartEv

Message Sequences

See Direct Transfer Across Lines Use Cases

Backward Compatibility

This feature is backward compatible. To provide backward compatibility for applications, a new permission
to devices that allow connected transfer across lines has been added, along with a new standard role and a
standard user group for this permission. Applications can control these devices only if this new role Standard
Supports Connected Xfer/Conf is associated to the application user. Applications will be able to control these
devices only if this new role "Standard CTI Allow Control of Phones supporting Connected Xfer/Conf" is
associated to the application user. So, by default these devices are listed as restricted, assuming that the
application uses JTAPI 7.1.2 or higher and only if application upgrades to handle this feature and associates
the new permission can it control these devices. If the application uses an older JTAPI client the devices are
not restricted but if the application tries to observe these devices (which supports this feature to be invoked
manually), JTAPI throws an exception and marks these devices as restricted from there on.

However, the application can invoke DirectTransfer Across Lines from existing JTAPI transfer() API on any
type of phone and there is no restriction on this behavior as applications are expected to issue this request
only if they support this feature. Also, a FarEnd point performing a Direct/Connected Transfer Across Lines
is uncontrolled and can cause problems to applications. This means that JTAPI always reports events for
Direct Transfer Across Lines for all the phones.

Be aware that any old JTAPI application will not have any BWC issues if it is run in an environment where
Direct Transfer Across Lines is not invoked (either on phones or through JTAPI API). However, applications
changes are required if this this feature is used in such a setup.

Features Supported by Cisco Unified JTAPI
53

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_279
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_280

Cisco assumes that two or more applications do not control or observe the same terminal or address
simultaneously. If they do, all instances of this application make changes to support this feature or coordinate
to avoid any problem. Otherwise, application behavior may be unforeseen. For example, if App1 and App2
are two applications controlling or observing the same terminal or address and App1makes changes to support
this feature then App2 is also expected make changes to support the feature. Else, invocation of this feature
by App1 on common devices can break App2.

As, the feature is designed to provide an enhanced user experience, Cisco strongly recommends that all Cisco
Unified JTAPI applications should evaluate and support this feature and upgrade if necessary with the code
logic to handle both the old and new behavior.

Directed Call Park
This feature allows the user to park a call by transferring the call to a user-selected park code.

Examples

A calls B; B transfers the call to a parked DN. On completion of the transfer, the A to B call is parked at the
specified parked DN. A will receive MOH (if configured). When C unparks the call (by dialing the prefix
code and park code), A and C connect.

If A calls the parked DN directly, A connects to the parked DN, and the systemmarks this parked DN as busy.
A stays connected to this parked DN until park reversion.

If C does not unpark the call at the parked DN, the call park reverses to the DN that parked the call (B), and
A and B connect again. B can again try to d-Park to another parked DN. When park reversion occurs, Cisco
Unified Communications Manager JTAPI passes a new reason code to the application.

CTI sends the parked number to Cisco Unified Communications Manager JTAPI in the form “Park Number:
(<Prefix Code>)<DPark DN>”. Cisco Unified Communications Manager JTAPI parses this and exposes both
Prefix Code and DPark DN to applications.

When a call is unparked, the parked party and unparking party both receive a CPIC event with the reason
given by CTI, and the parked party connects to the unparking party.

When party A calls a dPark DN and party B also calls the same dPark DN, the system can connect either A
or B to the dPark DN, and the other party is disconnected.

Cisco Unified Communications Manager JTAPI Support

Cisco Unified Communications Manager JTAPI supports this feature. When the system transfers a call to a
directed call park DN (dparked), the application sees a connection created for directed call park DN, and the
call control connection state is CallControlConnection.QUEUED. The system delivers CiscoTransferstart and
end events. An application can use the new interface on CiscoConnection to get the prefix code needed to
unpark the call.

Performance and Scalability

This feature provides the same performance impact as the existing transfer feature.

Features Supported by Cisco Unified JTAPI
54

Features Supported by Cisco Unified JTAPI
Directed Call Park

Directory Change Notification
Applications require notification asynchronously of device additions or deletions from the user control list
and device deletions from the Cisco Unified Communications Manager database. Applications also receive
notification about line changes to a device. This notification gets sent to Cisco Unified JTAPI and propagates
to applications with CiscoAddrCreatedEv, CiscoAddrRemovedEv, CiscoTermCreatedEv, and
CiscoTermRemovedEv on the AddressObserver and TerminalObservers, respectively.

Ensure that the device is registered for CTIPorts and CTIRoutePoints to receive the line change notification.Note

Do Not Disturb
Do-Not-Disturb (DND) gives phone users the ability to go into the DND state on the phone when they are
away from their phones or do not want to answer the incoming calls. The DND softkey enables and disables
this feature.

From the user windows, users can configure the following settings for DND:

• DND Option-Ringer off

• DND Incoming Call Alert-beep only/flash only/disable

• DND Timer-value between 0-120 minutes. It specifies a “period in minutes to remind the user that DND
is active”.

• DND status-on/off

The Application can only enable or disable the DND status.Note

• The Application can set the DND status by invoking a new interface on CiscoTerminal.

• JTAPI will also query the application about any change in the DND status when DND status is set by
phone, Cisco Unified Communications Manager Administration, or application.

• The application must enable the filter in CiscoTermEvFilter to receive the preceding notification.

• The application can also query for the DND status through a new interface on CiscoTerminal.

• The application can also query for the DND option through a new interface on CiscoTerminal.

This feature applies to phones and CTI ports. It does not apply to Route points.Note

In the case of emergency calls (made by a CER application) landing on an application that has DND enabled,
the system overrides the DND settings and presents the call to the application. A new parameter, FeaturePriority,
in the redirect() and selectRoute() APIs on CiscoCall, CiscoConnection, and CiscoRouteSession, respectively,

Features Supported by Cisco Unified JTAPI
55

Features Supported by Cisco Unified JTAPI
Directory Change Notification

makes this possible. The CER application that initiates the emergency call sets FeaturePriority as
FeaturePriority_Emergency. The application sets the feature priority only for emergency calls. In the case of
normal calls, applications either do not set the feature priority at all or set it to FeaturePriority_Normal.
Applications do not set FeaturePriority_Emergency in case of normal calls. When initiating feature calls such
as intercom, applications must specify FEATUREPRIORITY_URGENT.

The connect() API on CiscoCall does not support the FeaturePriority parameter.Note

The application receives an exception if it tries to perform a getDNDStatus(), setDNDStatus(), or
getDNDOption() before the device is in service.

A Post condition is added to DND to handle a DB update failure or device out-of-service situations if they
occur after the setDNDStatus() request is sent. If a DB update failure or device out-of-service condition occurs
after the setDNDStatus() request is sent, setDNDStatus() delivers a CiscoTermDNDStatusChangedEv to the
application. If this event is not received, a post-condition time-out occurs, and the following exception is
thrown: could not meet post conditions of setDNDStatus().

Backward Compatibility

This feature is backward compatible. Applications recognize new events if this feature is configured. You
can filter the new events through the TerminalEventFilter interface (CiscoTermEvFilter). By default, this
filter is disabled and the system does not deliver the new events.

For additional information, see the following topics:

• CiscoTerminal

• CiscoTermDNDStatusChangedEv

• CiscoTermEvFilter

• CiscoCall

• CiscoConnection

• CiscoRouteSession

• CiscoTermInServiceEv

Do Not Disturb-Reject
Do Not Disturb–Reject (DND–R) is an enhancement to the existing DND feature. Cisco Unified
Communications Manager and JTAPI previously supported only the Ringer off DND. The user can reject
calls with DND–Reject. You can set DND–R from the phone configuration window or the phone profile
configuration window in Cisco Unified Communications Manager Administration.

When DND–R is enabled, the call is not presented to the terminal that has Call Reject enabled. There is no
audible or visual indication of incoming calls on that end point. To enable DND–R, set the DND Status as
true and the DND option to Call Reject.

FeaturePriority overrides DND. It can have any of the following values:

• 1: Normal

Features Supported by Cisco Unified JTAPI
56

Features Supported by Cisco Unified JTAPI
Do Not Disturb-Reject

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_282
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_283
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_284
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_285
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_286

• 2: Urgent

• 3: Emergency

This release introduces FeaturePriority in connect() API on CiscoCall. FeaturePriority in selectRoute() and
redirect() API is already supported in prior releases. When feature priority as EMERGENCY is specified in
connect() API, and the destination terminal has DND–R enabled, the call still rings at the destination terminal
and overrides the DND–R settings.

When a terminal has DND–R enabled and receives an intercom call, DND–R settings are overridden and call
presents. This is because feature priority is always 2 (URGENT) for intercom calls.

In non- shared line scenario where A calls B and Terminal B has DND–R enabled, CallCtlConnFailedEv with
cause USER_BUSY is delivered on A. Users would see the same behavior if DND–R is enabled on all the
terminals that have shared DNs.

In the case of shared lines when at least one of the terminal does not have DND–R enabled and a call is placed
to the shared line, Cisco Unified JTAPI delivers TermConnPassiveEv and CallCtlTermConnInUseEv for the
terminals that have DND–R enabled (assuming the call was made with NORMAL feature priority).
TermConnPassiveEv and CallCtlTermConnBridgedEv is delivered if DND–R is disabled on the terminal
during a call.

A new event CiscoTermDNDOptionChangedEv will be sent to the terminal observer whenever the DND
option changes on the phone window or Common Phone Profile window in Cisco Unified Communications
Manager Administration.

Default DND option is Ringer–off and Route points do not support DND.

Interface Changes

CiscoTermDNDStatusChangedEv; CiscoCall; CiscoTermEvFilter

Message Sequences

DND-R

Backward Compatibility

This feature is backward compatible. Application will receive new events if this feature is configured. The
new events are filtered through TerminalEventFilter interface (CiscoTermEvFilter). By default filter is disabled
and the new events are not delivered.

Drop Any Party
This feature provides the capability to drop any participants from a conference call. Cisco Unified JTAPI
allows applications to drop participants from conference using the existing interface Connection.disconnect()
even if the application is not observing the address for the connection. Previously, applications could only
disconnect connections for which Address is an observed Address.

Feature behavior varies based on the settings for the Cisco Unified CommunicationsManager service parameter
Advanced Ad Hoc Conference Enabled. If this service parameter is set to False, applications can drop
connections for an unobserved address in a conference call only if the application observes the conference
controller's address. If this parameter is set to True, applications can drop connections without any restriction.

Features Supported by Cisco Unified JTAPI
57

Features Supported by Cisco Unified JTAPI
Drop Any Party

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_282
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_283
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_287

Cisco Unified JTAPI provides an interface on CiscoConnection to get an array of CiscoPartyInfo objects for
the connection. CiscoPartyInfo is used to disconnect participants from a conference using a new interface,
disconnect(), provided on CiscoConnection. A normal line has only one CiscoPartyInfo on its connection,
but a shared line has one CiscoPartyInfo for each line in the shared line. This enables applications to selectively
disconnect a shared line participant if more than one shared line participants are in the conference call. Since
shared line participants have only one connection, if the application uses the existing Connection.disconnect()
API, it drops all the shared line participants.

Cisco Unified JTAPI provides an interface setDropAnyPartyEnabled() on CiscoJtapiProperties to enable or
disable this feature and by default, it is enabled. Alternatively, applications can have the JTAPI ini parameter
dropAnyPartyEnabled = 0 in jtapi.ini file to disable Drop Any Party feature and dropAnyPartyEnable = 1 to
enable this feature. If dropAnyPartyEnable parameter is not present in jtapi.ini file, the feature is enabled by
default.

Cisco Unified JTAPI also provides an interface, isConferenceCall(), on CiscoCall to determine if a call is a
conference call. This simple method returns a Boolean.

Interface Changes

See CiscoCall and CiscoConnection

Message Sequences

See Drop Any Party Use Cases

Backward Compatibility

This feature is backward compatible.

Dynamic CTI Port Registration
This feature lets applications provide an IP address (ipAddress) and port number (portNumber) for each call
or whenever media is established. To use this feature, applicationsmust register the media terminal by supplying
media capabilities. When a call is answered at this media terminal, CiscoMediaOpenLogicalChannelEv is
sent to applications. This event gets sent whenever media is established. Applications must react to this event
and specify the IP address and port number where media gets established.

A CiscoMediaTerminal represents a special kind of CiscoTerminal that allows applications to terminate RTP
media streams. Unlike a CiscoTerminal, a CiscoMediaTerminal does not represent a physical telephony
endpoint, which is observable and controllable in a third-party manner. Instead, a CiscoMediaTerminal
represents a logical telephony endpoint, which may be associated with any application that terminates media.
Such applications include voice messaging systems, interactive voice response (IVR), and softphones.

Only CTIPorts appear as CiscoMediaTerminals through Cisco Unified JTAPI.Note

Terminating media comprises a two-step process. To terminate media for a particular terminal, an application
adds an observer that implements the CiscoTerminalObserver interface by using the Terminal.addObserver
method. Finally, the application registers its IP address and port number to which the terminal incoming RTP
streams get directed by using the CiscoMediaTerminal.register method.

Features Supported by Cisco Unified JTAPI
58

Features Supported by Cisco Unified JTAPI
Dynamic CTI Port Registration

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_284
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_288

To register the ipAddress and portNumber dynamically on a per-call basis, applications must register by only
providing capabilities that they support. Applications must react to CiscoMediaOpenLogicalChannelEv that
gets sent whenever media is established. If any features are performed before applications react to
CiscoMediaOpenLogicalChannelEv, the features may fail.

If the applications do not respond to this event during the time that is specified in the Media Exchange Timer
in the Cisco Unified Communications Manager Administration windows, the call may fail.

For details on the interface changes, see Cisco Unified JTAPI Extensions To view the message flow for
Dynamic CTIPort Registration Per Call, see Message Sequence Charts

The ChangeRTPDefaults interface is not supported on CiscoMediaTerminal.Note

The following new or changed interfaces exist for Dynamic CTIPort Registration Per Call:

Interface CiscoMediaOpenLogicalChannelEv Extends CiscoTermEv

getpacketSize()

Returns the packet size of the far end in milliseconds.

int

getPayLoadType()

Returns the payload format of the far end, one of the following constants:

int

getCiscoRTPHandle ()

Returns the CiscoTerminalConnection object on which applications must invoke the setRTPParams
request.

CiscoRTPHandle

Interface CiscoRTPHandle

getHandle()

Returns an integer representation of this object, currently the Cisco Unified Communications
Manager CallLeg ID.

int

CiscoProvider

getCall (CiscoRTPHandle rtpHandle)

Returns the call object with the rtpHandle that is associated with a specific terminal. If no
callobserver gets added to the terminal at the time when the applications receive CiscoRTPHandle
in CallOpenLogicalChannelEv, CiscoCall may be null.

CiscoCall

Features Supported by Cisco Unified JTAPI
59

Features Supported by Cisco Unified JTAPI
Dynamic CTI Port Registration

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

E911 Teleworker
The main purpose of this feature was intended to provide Location awareness for teleworkers and off premise
users so that they can make emergency calls from off premises. The API's can also be used by all applications
in a generic way as described below.

Primarily this feature adds two JTAPI API methods (selectRoute & redirect) that are overloaded to add an
additional XML parmater to the list of their exisiting parameters. Any application can use these overloaded
selectRoute() and redirect() methods to pass XML data to the call receiving side. The format of the XML data
that can be passed is seen below:

<data>
<item>

<type>contact</type>
<operation>append</operation>
<protocol>SIP</protocol>
<value>;+sip.instance = "<urn:uuid = *guid*>"</value>

</item>
</data>

When an application sends XML data using one of the above API, CTI parses the data and extracts the text
from the 'value' node in the XML and passes it on to CCM. CCM will then append this text to the outgoing
SIP Invite message 'contact:' header. Once the end points like the SIP trunk or the SIP phone receives it, they
can extract that data from the contact header and process it. Currently only SIP protocol's contact header field
data is the only one supported but this can be expanded to include others headers fields and other protocols
in future releases.

In the current release of CUCM only the following values for the XML nodes are supported: type: contact,
operation: append, protocol: SIP. The value node in the above xml format is the one that carries the required
application data to the end point.

The new parameter is a double byte array for overloaded selectRoute () Method to accommodate xml data
for each selected routes and single byte array for the redirect () method. The parameter takes either a XML
format String or a NULL value.

Interface Changes

CiscoRouteSession, CiscoConnection

Message Sequence

E911 Teleworker

Backward Compatibility

This is a new feature and will be backward compatible

Enable or Disable Ringer
The CiscoAddress extension allows applications to set the status of the ringer for all lines on a device. No
events generate when the ringer setting gets changed from the administration windows or anywhere else.

Features Supported by Cisco Unified JTAPI
60

Features Supported by Cisco Unified JTAPI
E911 Teleworker

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_285
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_284
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_290

Encryption Enhancement
Unified Communications Manager Release 10.0(1) adds support for public key encryption which is more
secure than the former symmetric key method. All JTAPI clients must be upgraded to the latest version bundled
with Unified Communications Manager Release 10.0(1) to leverage this security enhancement. The JTAPI
client is available under the “Applications-Plugins” menu from CCMAdministration.

The service parameter “Require Public key encryption” has been added. This parameter determines the
encryption method required by Unified Communications Manager when authenticating CTI applications.
When set to True, Unified Communications Manager requires CTI applications to authenticate using public
key encryption; available in JTAPI client version 10 or later. When set to False (default), Unified
Communications Manager allows CTI applications to authenticate by using either symmetric key or public
key encryption. CTI applications must upgrade JTAPI/TSP client plugins to version 10.0(1) or later to
authenticate when using public key encryption.

Although there are no interface changes for this enhancement, Cisco recommends that applications update
CiscoJTAPI libraries to take advantage of this security enhancement.

No changes are required in the application layer. Applications need to update the Cisco JTAPI to the 10.x
version to leverage the new security enhancement.

Note

Cisco recommends that applications upgrade their Cisco JTAPI versions and set this service parameter to
true. In future releases this service parameter will be deprecated.

Note

Interface Changes

There are no interface changes for this feature.

Message Sequences

See Encryption Enhancement.

Backward Compatibility

To maintain backward compatibility, a new CTI Manager service parameter is introduced:

“Require Public Key Encryption.”

End to End Call Tracing
This feature enables the application to track any call uniquely. JTAPI associates a uniqueID with every
Connection object. The same ID is exposed to the application through a new API getUniqueID(Terminal
term) on the interface CiscoConnection. This uniqueID is only available for connection of observed addresses.

When a connection is created, the application can receive the uniqueID and write it in the Call Details Record.
For Shared Line scenarios, each shared line has a uniqueID, which can be retrieved by passing the corresponding

Features Supported by Cisco Unified JTAPI
61

Features Supported by Cisco Unified JTAPI
Encryption Enhancement

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_292

Terminal to getUniqueID API. UniqueID may or may not be the same for different shared lines depending
on the scenario. The application can query the uniqueID corresponding to each shared line on receiving
TermConnActiveEv for that shared line Terminal.

Whenever the uniqueID changes, JTAPI delivers CiscoConnectionUniqueIDChangedEv to the call observer
of the application.

As of Release 8.0(1), there is no supporting use case where JTAPI delivers
CiscoConnectionUniqueIDChangedEv event to the application.

Note

Interface Changes

CiscoConnection, CiscoConnectionUniqueIDChangedEv.

Message Sequences

End to End Call Tracing

Backward Compatibility

This feature is backward compatible.

EnergyWise Deep Sleep Mode
This feature allows the phone to participate in an EnergyWise enabled system. The phone reports its power
usage to a EnergyWise compliant switch to allow the tracking and control of power within the customer
premise. The phone provides alternate reduced power modes including an extremely low, off mode. The Cisco
Unified Communications Manager administrator configures and exclusively manages the phones power state
through vendor specific configuration on the Cisco Unified CM Admin pages.

When the phone turns off power after negotiation with an EnergyWise switch, it unregisters from Cisco
Unified CM and enters Deep Sleep/PowerSavePlus mode. Phones automatically re-register back with the
Cisco Unified CM once the Deep Sleep mode configured PowerON time is reached.

However, you can press the ‘select’ key on the Cisco Unified IP Phones Series 9900 and 6900 while in Deep
Sleep/PowerSavePlus mode to wake up the phone, these phones automatically power on and re-register back
with the Cisco Unified CM. However, for Cisco Unified IP Phones 7900 Series phones, you can neither power
on nor re-register back with the Cisco Unified CM during Deep Sleep/PowerSavePlus mode unless the
‘PowerON’ time is reached. You can configure Deep Sleep mode on the Device page of the Cisco Unified
CM. Configure Deep Sleep mode for the phones at least 10 minutes before the actual power off time to allow
the information to synchronize between the switch and the phone.

The Power off idle timer enables only in the case when there is physical interaction on the phone. For example
if there is a call on the EnergyWise configured phone during the deep sleep time and the user tries to disconnect
the call from the application, then the power off idle timer defaults to 10 minutes but if the user disconnects
the call manually from the phone, then the power off idle timer takes the value configured on the Cisco Unified
CM device page.

When a terminal unregisters from Cisco Unified CM, JTAPI exposes CiscoProvTerminalUnRegisteredEV
event to application with a new reason “CiscoProvterminal
UnRegisteredEV.ENERGYWISE_POWER_SAVE_PLUS”.

Features Supported by Cisco Unified JTAPI
62

Features Supported by Cisco Unified JTAPI
EnergyWise Deep Sleep Mode

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_284
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_293
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_294

JTAPI sends CiscoTermOutOfServiceEv event to the application with the cause
“CiscoOutOfServiceEv.CAUSE_ENERGYWISE_POWER_SAVE_PLUS” when a terminal goes out of
service due to Deep Sleep mode configured.

JTAPI sends CiscoAddrOutOfServiceEv event to application with a new cause
“CiscoOutOfServiceEv.CAUSE_ENERGYWISE_POWER_SAVE_PLUS” when an address goes out of
service due to Deep Sleep mode configured.

Interface Changes

public interface CiscoProvTerminalUnRegisteredEv

When a terminal unregisters from the Cisco Unified CM because of Deep Sleep mode, JTAPI sends
CiscoProvTerminalUnregisteredEv to the application with the reason
“ENERGYWISE_POWER_SAVE_PLUS”.

Field Summary

ENERGYWISE_POWER_SAVE_PLUSpublic static final int

Reason Codes

ENERGYWISE_POWER_SAVE_PLUS

Sample Code:public class MyTermObserver implements ProviderObserver {

public void providerChangedEvent (ProvEv[] evlist) {
for(int i = 0; evlist ! = null && i < evlist.length; i++){

…
…
If (evlisth[i] instanceof CiscoProvTerminalUnregisteredEv){
CiscoProvTerminalUnregisteredEv ev = (CiscoProvTerminalUnregisteredEv)evlist[i];
if(ev.getReason() = =
CiscoProvTerminalUnregisteredEv.ENERGYWISE_POWER_SAVE_MODE){
System.out.println(“Terminal Unregistered from CUCM because of deep
with the reason as ENERGYWISE_POWER_SAVE_PLUS
”);
}

public interface CiscoOutOfServiceEv

When a terminal/address unregisters from the Cisco Unified CM because of deep sleep mode, Jtapi delivers
CiscoTermOutOfServiceEv and CiscoAddrOutOfServiceEv to the application with this new cause
“CAUSE_ENERGYWISE_POWER_SAVE_PLUS”.

Field Summary

CAUSE_ENERGYWISE_POWER_SAVE_PLUSpublic static final int

Cause Code

CAUSE_ENERGYWISE_POWER_SAVE_PLUS

Features Supported by Cisco Unified JTAPI
63

Features Supported by Cisco Unified JTAPI
EnergyWise Deep Sleep Mode

Message Sequences

Energywise Deep Sleep Mode

Backwards Compatibility

This feature is backward compatible.

Extension Mobility Cross Cluster
This feature allows users to log in to an IP phone registered to a cluster with user profiles configured with
another cluster. The Extension Mobility feature allows a user to log in to an IP phone to appear as user's desk
phone temporarily, subject to the administrative policy. After logging on to an IP phone, the user can receive
incoming calls normally routed to the user's desk phone and retain the personalized configuration, such as
speed dials, services links and other user-specific properties.

Currently, Extension Mobility service is limited to a single Cisco Unified Communications Manager (Cisco
Unified Communications Manager) cluster. A user provisioned in one cluster today cannot log in to an IP
phone of another cluster with the Extension Mobility feature, even though both clusters may belong to the
same enterprise. This limitation is overcome with the introduction of this new feature, which allows the user
provisioned in one cluster to log in to an IP phone of another cluster.

With the existing behavior, when a user logs in to a terminal with a user ID that matches the user ID used by
Cisco Unified Communications Manager JTAPI application, the terminal is treated as part of the control list
and application is able to add call observer on the terminal and/or address.

As part this feature support, Extension Mobility profiles can be added to the user's control list via the Cisco
Unified Communications Manager Admin pages. When a user uses Extension Mobily to log into a device
using a profile in the control list, JTAPI delivers CiscoAddrCreatedEv and CiscoTermCreatedEv, and
application can add call observer to control the terminal or address.

JTAPI exposes getCiscoCause () API on all provider events. For provider events associated with non-Extension
Mobility login or logout scenarios, the cause delivered will be CiscoProvEv.NORMAL. For provider events
associated with Extension Mobility login or logout scenario, the cause may be any of the below depending
on the type of Extension Mobility login or logout:

CiscoProvEv.CAUSE_EM_LOGIN CiscoProvEv.CAUSE_EM_LOGOUT
CiscoProvEv.CAUSE_EM_LOGIN_PROFILE_ADD CiscoProvEv.CAUSE_EM_LOGOUT_PROFILE_REMOVE

Interface changes explain more about each of these causes.

The following is a complete set of provider events that have API getCiscoCause():

CiscoAddrActivatedEvCiscoAddrActivatedOnTerminalEv
CiscoProvFeatureEv
CiscoProvTerminalCapabilityChangedEv
CiscoAddrRestrictedEv
CiscoTermActivatedEv
CiscoTermRestrictedEv
CiscoAddrCreatedEv
CiscoTermCreatedEv
CiscoAddrRemovedEv
CiscoTermRemovedEv

Features Supported by Cisco Unified JTAPI
64

Features Supported by Cisco Unified JTAPI
Extension Mobility Cross Cluster

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_295

CiscoAddrAddedToTerminalEv
CiscoAddrRemovedFromTerminalEv.

JTAPI exposes getLoginType () on CiscoTerminal to indicate if the terminal is part of the Home or Visiting
cluster when a user does an Extension Mobility login or logout. Accordingly, return value will be
CiscoTerminal.NO_LOGIN, CiscoTerminal.NATIVE_LOGIN or CiscoTerminal.VISITOR_LOGIN.

Home Cluster is the Cisco Unified Communications Manager cluster from which the traveling EMCC user
starts. This is the user's home cluster where the user profile resides.

Visiting Cluster is the Cisco Unified CommunicationsManager cluster which the traveling EMCC user visits.
This is also the cluster that owns the phone at which the user does Extension Mobility login.

Interface Changes

CiscoProvEv, CiscoTerminal

Message Sequences

Extension Mobility Cross Cluster

Backward Compatibility

This feature is backward compatible.

Extension Mobility Username Login
The Extension Mobility Login Username enables applications to get the Extension Mobility login username
from the API provided on CiscoTerminal.

Interface Changes

CiscoTerminal

Message Sequences

Extension Mobility Login Username

External Call Control
External Call Control enables Cisco Unified CallManager (Cisco Unified CommunicationsManager) to route
calls based on enterprise policies and presence-based routing rules of individual users. When call intercept is
enabled, Cisco Unified Communications Manager queries the designated web services hosting the enterprise
policies or user rules and routes the calls following the routing decisions returned.

Starting from Release 8.0(1), JTAPI supports wildcard routepoins, as well as translation patterns.

Interface Changes

CiscoCall, CiscoConnection, CiscoAddress

Features Supported by Cisco Unified JTAPI
65

Features Supported by Cisco Unified JTAPI
Extension Mobility Username Login

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_296
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_297
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_298
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_284
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_196

Message Sequences

External Call Control

Backward Compatibility

This feature is backward compatable. Existing applications will not be impacted by the changes for this feature.
There are, however, implications and limitations to applications regardingWildcard Routepoints as they exist
today, which are being addressed by adding a service parameter, described below. Applications that do not
use Wildcard Route Points will be completely unaffected by this development.

The first is that an application controlling wildcard routepoints used to get three JTAPI connections on a call.
One with the caller, the second with the dialed Directory Number and the third with the wildcard routepoint
that JTAPI is observing. The third connection has been removed with this feature.

The second backward compatability issue is with the various called party fields during aWildcard Routepoint
scenario. Before implementation of this feature, CiscoCall.getCalledAddress() and
CiscoCall.getCurrentCalledAddress() both returned the actual dialed Directory Number, and it was not possibl
eto retrieve the Wildcard Directory Number. After this fix, both CiscoCall.getCalledAddress() and
CiscoCall.getCurrentCalledAddress() return the Wildcard Directory Number, while
CiscoCall.getModifiedCalledAddress() returns the actual dialed Directory Number. This is a fix for an issue
that built an errorenous call model in JTAPI, but it may cause applications using this feature in this way to
break.

Both these issues have been addressed by adding a new service parameter at the CTI layer, known as Use
WildCard pattern in CTI Call Info. This service parameter is set to OFF by default and continues the existing
behavior. If an application wants to take advantage of the new information provided to it regarding Wildcard
Routepoints, the service parameter must be changed to ON. This service parameter applies only when wild
card Route Point is the called party. You must note that there are use cases for this feature that provide details
of the Wildcard Routepoint scenario with the service parameter set to both ON and OFF, but the use case
where it is set to OFF is currently not supported, shows the call flow as it exists today.

End to End Session ID for Calls
Cisco Unified Communications Manager generates a unique session identifier for each leg in a call. This
feature enables the application to track a call end to end uniquely with a Session ID.

Cisco JTAPI exposes the following new methods for applications to get unique session identifiers for each
connection in a call:

• CiscoConnection.getLocalUUID(TerminalConnection)
• CiscoConnection.getPeerUUID(TerminalConnection)

The methods accept a TerminalConnection object associated to that connection as a parameter, and return a
String representing the UUIDs of the local and peer participant in a given CiscoConnection respectively. If a
null object is passed as a parameter, the methods will return the UUID of the active TerminalConnection in
the CiscoConnection.

The SessionID is acquired by merging the localUUID and the peerUUID in the following format:
device=<localUUID>;remote=<peerUUID>;

The Session ID is generated within Cisco Unified Communication Manager for non-SIP devices. SIP devices
generate their own Session IDs and publish them in the SIP INVITEmessage to Cisco Unified Communication
Manager. This information is visible to the application through the respective interface.

Features Supported by Cisco Unified JTAPI
66

Features Supported by Cisco Unified JTAPI
End to End Session ID for Calls

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_299

The Local Universal Unique Identifer (localUUID) for a CiscoConnection in a CiscoCall is generated in the
peerUUID on the other side in the CiscoCall and vice versa.

This relation is assured for a basic two party call and is retained through the following features:

• Redirect

• Call Forward

• Transfer

• Hold/Resume

If the Cisco call is shared between multiple devices, the CiscoConnection.getPeerUUID(null) on the calling
side will return the UUID of any of the available terminals while the CiscoConnection on the called side is
in CiscoConnection.ALERTING state. Once the call is answered CiscoConnection.getPeerUUID(null) on the
calling side will return the uuid of the active TerminalConnection.

Interface Changes

CiscoConnection.

Message Sequences

End to End Session ID for Calls

Backward Compatibility

This feature is backward compatible.

FIPS Compliance
This feature allows Unified Communications Manager to operate in Federal Information Processing Standard
(FIPS) mode. FIPS specifies a minimum security level for cryptographic functions, limitations on how data
is stored, and which algorithms are allowed to be used to encrypt sensitive information. These strictly defined
requirements are important to government agencies, hospitals, and other customers who would be interested
in a higher level of security.

To enable FIPS Compliance, Unified Communications Manager applications must request this mode when
they download certificates with JTAPI and open a provider. When operating in FIPS, Unified Communications
Manager experiences minimal performance loss, but this loss should only be witnessed during the certificate
downloads and when you open a JTAPI provider. FIPS should not affect anything once the application is
running.

Starting from release 8.6(1), JTAPI can be configured as FIPS Compliant.

Important Notes

In FIPS, there are two distinct “cryptographic entities”: The JTAPI application and the CUCM server machine
(or cluster). The FIPS compliance of one does not, in any way, affect the other. Setting JTAPI to run in FIPS
compliance encrypts the client-side certificates with a FIPS-compliant algorithm, and connect using only
approved SSL/TLS algorithms. It will not make the CUCM server or cluster secure or FIPS compliant.

Features Supported by Cisco Unified JTAPI
67

Features Supported by Cisco Unified JTAPI
FIPS Compliance

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_284
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_300

Likewise, having the CUCMoperate in FIPSmode will not make JTAPI store certificates with FIPS-compliant
algorithms. They are distinct items, separated by a”cryptographic boundary.”

Also, even if JTAPI operates in FIPS-compliant mode, your application may not. Your applications must
handle cryptographic information and other sensitive data with special attention in order to be FIPS-compliant.

As mentioned earlier, applications that need to use FIPS compliance must not only explicitly request it, but
also download cryptographic libraries and modify their classpath variables to include them.

Until Unified Communications Manager release 12.5(1), JTAPI used RSA libraries for FIPS-compliant
operations. With release 12.5(1) and later, JTAPI on Windows uses RSA libraries, while on Linux it uses
CiscoJ libraries.

As of Unified CommunicationsManager release 14SU2, JTAPI usesBCFIPS libraries for all security-related
operations. If configured to operate in FIPs mode, JTAPI moves BCFIPS libraries to approved only mode to
enforce FIPS compliance.

The libraries are detailed below:

The RSA libraries are:

“jcmFIPS.jar” “cryptojcommon.jar”, “ cryptojce.jar” and “sslj.jar”, are FIPS-compliant libraries from RSA,
Inc.

The CiscoJ libraries are:

The CiscoJ libraries are “CiscoJCEProvider.jar”, “log4j-1.2.17.jar”, “slf4j-api-1.7.24.jar”,
“slf4j-log4j12-1.7.24.jar”, “slf4j-simple-1.7.24.jar”, “bcpkix-jdk15on-154.jar”, and “bcprov-jdk15on-154.jar”.

From release 12.5(1)SU5 on this train and up to 14SU1, “bcpkix-jdk15on.jar” and “bcprov-jdk15on.jar” are
used instead of “bcpkix-jdk15on-154.jar” and “bcprov-jdk15on-154.jar” respectively.

Note

The BCFIPS libraries are:

“bc-fips.jar”, “bcpkix-fips.jar”, “bctls-fips.jar”.

These libraries contain special implementations of several key cryptographic functions that replace the older
implementation in jtapi.jar.

In case your application contains a lib folder where third-party libraries are stored, your classpath should look
like the following.

• For the JTAPI plugin using RSA libraries (please refer above for library usage info as per the Unified
Communications Manager release):

./libs/jcmFIPS.jar;./libs/cryptojcommon.jar;./libs/cryptojce.jar;./libs/sslj.jar;./libs/jtapi.jar

• For the JTAPI plugin using CiscoJ libraries (please refer above for library usage info as per the Unified
Communications Manager release):

./libs/CiscoJCEProvider.jar;./libs/CiscoJUtils.jar;./libs/CiscoJCEJNI.so;./libs/libssl.so;

./libs/libssl.so.1.0.1;./libs/log4j-1.2.17.jar;./libs/libciscosafec.so;./libs/libciscosafec.so.4;

./libs/libciscosafec.so.4.0.1;./libs/libcrypto.so;./libs/libcrypto.so.1.0.1;

./libs/slf4j-api-1.7.24.jar;./libs/slf4j-log4j12-1.7.24.jar;./libs/slf4j-simple-1.7.24.jar;

./libs/bcpkix-jdk15on.jar;./libs/bcprov-jdk15on.jar;./libs/jtapi.jar

Features Supported by Cisco Unified JTAPI
68

Features Supported by Cisco Unified JTAPI
FIPS Compliance

• For the JTAPI plugin using BCFIPS libraries (please refer above for library usage info as per the Unified
Communications Manager release):

./libs/bc-fips.jar;./libs/bcpkix-fips.jar;./libs/bctls-fips.jar;./libs/jtapi.jar

Even with the classpath set this way, the JTAPI security code works the same way it does now unless the
application specifically requests to run in FIPS mode.

To request that JTAPI run in a FIPS-compliant mode, applicationsmust use some of the newmethods introduced
as part of this feature development and specify the new “fipsCompliant” parameter as True. For more
information, see the following “Interface Changes” section.

Interface Changes

CiscoJtapiPeerImpl, CiscoProvider, and CiscoJtapiProperties

Message Sequences

No impact.

Backward Compatibility

This feature is backward compatible. JTAPI, including secure providers, runs exactly as they do today, if the
application does not specify that theywish to run in FIPS-compliant mode. This choice is deliberate; applications
unaffected by FIPS compliance do not interact with FIPS compliance. No changes are required on the
applications’ part.

Applications that want to operate in a FIPS-compliant mode has to explicitly request it when downloading
certificates with JTAPI, and when opening a provider. In addition, applications are required to download
supplementary cryptographic libraries (jar files) from the CUCM server, andmodify their classpath accordingly
to include them before the jtapi.jar library.

Forced Authorization and Client Matter Codes
Forced Authorization Codes (FACs) force the user to enter a valid authorization code prior to extending calls
to specified classes of dialed numbers (DN), such as external, toll, or international calls. Authorization
information is written to the Cisco Unified Communications Manager CDR database.

ClientMatter Codes (CMCs) let the user enter a code before extending a call. Customers can use ClientMatter
Codes for assigning accounting or billing codes to calls that are placed, and Client Matter Code information
is written to the Cisco Unified Communications Manager CDR database.

Supported Interfaces
Cisco Unified JTAPI supports FAC and CMC in the following interfaces:

• Call.Connect()

• Call.Consult()

• Call.Transfer(String)

• Connection.redirect()

Features Supported by Cisco Unified JTAPI
69

Features Supported by Cisco Unified JTAPI
Forced Authorization and Client Matter Codes

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_301
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_197
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_302

• RouteSession.selectRoute()

Call.Connect() and Call.Consult()
When an application initiates a call with one of these interfaces to a DN that requires an FAC, CMC, or both
codes, CiscoToneChangedEv is delivered on a CallObserver that also contains which code or codes are required
for the DN. The getCiscoCause() interface returns CiscoCallEV.CAUSE_FAC_CMC for this even if it is
delivered because of FAC_CMC feature. The getTone() interface returns CiscoTone.ZIPZIP to indicate that
a ZIPZIP tone played.

Upon receiving the CiscoToneChangedEv, applications need to enter the appropriate code or codes by using
the connection.addToAddress interface with a # terminating string. Digits either can be entered one at a time
within the interdigit timer value (T302 timer) for each digit including the # terminating character, or all the
digits, including the # termination character, can be entered within the T302 timer value that is configured in
Cisco Unified Communications Manager Administration.

When FAC and CMC Are Both Required

For a DN that requires both codes, the first event is always applies for the FAC, and the second code applies
for the CMC, but the application can send both codes, separated by a pound sign (#), in the same request. The
second event remains optional, based on what the application sends in the first request.

The application can send both codes at the same time, but both codes must end with #. as shown in the following
example:

connection.addToAddress(“1234#678#”)

where 1234 represents the FAC and 678 specifies the CMC.

In this case, the application does not receive a second CiscoToneChanged.

The first CiscoToneChangesEv will have getWhichCodeRequired() =
CiscoToneChanged.FAC_CMC_REQUIRED, and getCause() = CiscoCallEv.CAUSE_FAC_CMC.

In response, one of the following cases can occur:

• The application sends FAC and CMC in the same connection.addToAddres(code1#code2#) request. In
this case, no second CiscoToneChangedEv gets sent to the application.

• The application sends only a FAC code in connection.addToAddress(code#1). In this case, the application
receives a second CiscoToneChangedEv with getWhichCodeRequired() =
CiscoToneChangedEv.CMC_REQUIRED.

• The application sends only part of the first code or the complete first code and incomplete second code
(if the code is not terminated with #, it remains is incomplete and the system waits for the T302 timer to
expire and tries to validate the code). If the code is incomplete, a second CiscoToneChangedEv tone gets
generated with getWhichCodeRequired() = CiscoToneChangedEv.CMC_REQUIRED and getCause()
= CiscoCallEv.CAUSE_FAC_CMC.

PostCondition Timer

The PostCondition timer resets each time that the connection.addToAddress interface is invoked to send code.
FAC and CMC must have the terminal # [for example, Connection.assToAddress(“1234#”), where 1234 is
the FAC]. The system waits for the T302 timer to expire, then extends the call if all codes have been entered.

Features Supported by Cisco Unified JTAPI
70

Features Supported by Cisco Unified JTAPI
Call.Connect() and Call.Consult()

If all codes have not been entered, the system plays reorder tone. In this case, the application could receive
PlatformException with postConditionTimeout even if the call is extended. To avoid this, the application
needs to increase the postcondition timeout by using JTAPI Preferences.

If the application uses call.connect() or call.consult() to initiate a call, but the FAC or CMC (including #) is
not entered from a Cisco Unified IP Phone within the postcondition timeout limit, the request could get a
platformException with postCondition timeout, but the call may actually get extended. To avoid this, the
application needs to increase the postcondition timeout by using JTAPI preferences.

Shared Lines

If the initiating party is a shared line, applications need to use setRequestController to set active
terminalConnection before passing additional digits by using the connection.addToAddress interface.

Invalid or Missing Codes

If a code is invalid or no code is entered before the T302 timer expires, the call gets rejected with callCtlCause
cause code as CiscoCallEv.CAUSE_FAC-CMC.

Call.transfer(String) and Connection.redirect()
Two additional string parameters (facCode, cmcCode) are added to these interfaces to support FAC and CMC.
The default value for these codes represent null values.

No CiscoToneChangedEv gets delivered for these requests for DNs that require codes. A call that is
conditionally redirected to a DN, a FAC, a CMC, or both, does not get rejected but remains connected if either
code is incorrect.

RouteSession.selectRoute()
Two additional arrays of string parameters (facCode, cmcCode) support FAC and CMC. For each routeselect
element, applications can specify the code for the DN. Applications need to specify null values for DNs that
do not require any codes. The default values for the codes are null values.

If one routeselected element does not contain the correct code, the next element in the arrays gets tried. If all
of them fail, reRouteEvent gets sent to the application.

The system does not support forwarding to a DN that requires an FAC or CMC code. The application can set
the forward number to these DNs by using the Address API, but calls forwarded to these numbers are rejected.

Note

Forwarding on No Bandwidth and Unregistered DN
This feature enhances the forwarding logic to handle the No Bandwidth & Unregistered DN cases:

• No Bandwidth: When a call cannot be delivered to a remote destination due to no bandwidth, the system
reroutes the call to the AARDestinationMask or voice mail. The user makes these configuration changes
from the directory number window of the Cisco Unified Communications Manager GUI.

Features Supported by Cisco Unified JTAPI
71

Features Supported by Cisco Unified JTAPI
Call.transfer(String) and Connection.redirect()

• Unregistered DN: When a call is placed to an unregistered DN, the system delivers the call to a DN that
is configured for Call Forward on No Answer (CFNA).

When a call is forwarded due to Call Forward No Bandwidth (CFNB) to another cluster destination over a
trunk/gateway that is using QSIG, call history might get lost. For example, if Phone A calls Phone B, which
is in a low bandwidth location, with CFNB set to forward calls to Phone C, which is in a different cluster, and
the QSIG protocol is used for this intercluster forwarding, then the original called party and the last redirecting
party might not get passed to the destination party.

GetCallID in RTP Events
GetCallID provides an interface on RTP events to access any call information, such as calling party or called
party, so applications can link RTP events with the calls.

The callLegID that is received in the RTP events from CTIManager gets used to determine the ICCNCall on
the client side. This call passes on to the JTAPI layer, and the CiscoCall gets determined, from which
CiscoCallID is obtained. This information gets used to construct the RTP events that are delivered to the
application.

The following interface gets added to CiscoRTPInputStoppedEv, CiscoRTPInputStartedEv,
CiscoRTPOutputStoppedEv, and CiscoRTPOutputStartedEv:

{ public CiscoCallID getCallID();

}

GetCallInfo
GetCallInfo interface on address provides applications with the ability to query CallInfo on an address. A
query returns the CiscoAddressCallInfo object, which contains information about the number of active or
held calls, maximum number of active or held calls, and the call object for current calls on the address. This
interface also specifies what calls are at a specific address at a specific time.

Use the following interface to get information about calls that are present at the terminal:

{ public CiscoAddressCallInfo getAddressCallInfo(Terminal iterminal);}

GetGlobalCallID
GetGlobalCallID provides an interface on the CiscoCallID to get the nodeID and the Global Call ID (GCID)
of the call; this exposes the GCID information that is available in the internal call object.

The following methods get added to the CiscoCallID interface:

{ /**
* returns the callmanager nodeID of the call
*/

public int getCallManagerID();

Features Supported by Cisco Unified JTAPI
72

Features Supported by Cisco Unified JTAPI
GetCallID in RTP Events

/**
* returns the GlobalCallID of the call
*/

public int getGlobalCallID ();
}

}

Hairpin Support
A hairpin call happens when the call leaves one cluster to some other device across the gateway, then comes
back to a device in the same cluster. The GCID for the call coming back into the cluster would differ from
the GCID that originally initiated the call, even though both are in the same cluster. In previous releases, if
JTAPI controlled both parties, there were two connections: one for CiscoAddress.Internal and the other for
CiscoAddress.External.

JTAPI supports hairpin calls when an application monitors both ends of the hairpin call. Previously, only one
end of the hairpin call could be monitored because the address was represented only as a DN.

In the current release, if two addresses exist with the same DN but one is within the same cluster and the other
is across the gateway, JTAPI creates a separate address object for the external DN, and only one connection
is returned for an address, based on its type. This process avoids hairpin issues, as in previous releases when
the address was represented only as a DN and when an application retrieved connections for the address it
used to get two connections.

Since fixing these issues could have caused compatibility issues with previous releases, a generic solution for
these issues was developed in this release. Calls that involve an external party with the same DN as the
monitored local party are now properly supported; however, no new interface is added for this feature.

Backward Compatibility

This feature is not backward compatible.

Half-Duplex Media Support
Currently JTAPI media events CiscoRTPInputStarted, CiscoRTPOutputStarted, CiscoRTPInputStopped and
CiscoRTPOutputStopped do not indicate whether media is half duplex (receive only / transmit only) or full
duplex (both receive and transmit).

This enhancement adds the capability to provide this information in a JTAPI media event. JTAPI provides
an interface on the above media events to query whether media is half duplex or full duplex.

The half duplex media support feature does not impact JTAPI backward compatibility.

A new interface getMediaConnectionMode() is added to Cisco Unified JTAPI RTP events. This interface will
return the following values depending on the media:

• CiscoMediaConnectionMode.NONE

• CiscoMediaConnectionMode.RECEIVE_ONLY

• CiscoMediaConnectionMode.TRANSMIT_ONLY

Features Supported by Cisco Unified JTAPI
73

Features Supported by Cisco Unified JTAPI
Hairpin Support

• CiscoMediConnectionMode.TRANSMIT_AND_RECEIVE.

CiscoRTPInputStarted/StoppedEv should only return RECEIVE_ONLY and TRANSMIT_AND_RECEIVE.
The interface should not return NONE or TRANSMIT_ONLY. Ifthat happens, applications should ignore
the event or log an error.

CiscoRTPOutputStarted/StoppedEv should only returnTRANSMIT_ONLYandTRANSMIT_AND_RECEIVE.
The interface should not return values NONE or RECEIVE_ONLY. Ifthat happens, applications should ignore
the event or log an error.

CiscoMediaOpenLogicalChannedEv should only returnRECEIVE_ONLYandTRANSMIT_AND_RECEIVE.
The interface should not return values NONE or TRANSMIT_ONLY. Ifthat happens, applications should
ignore the event or log an error.

public interface CiscoRTPInputStartedEv

getMediaConnectionMode()

Returns CiscoMediaConnectionMode

int

public interface CiscoRTPOutputStartedEv

getMediaConnectionMode()

Returns CiscoMediaConnectionMode

int

public interface CiscoRTPInputStoppedEv

getMediaConnectionMode()

Returns CiscoMediaConnectionMode

int

public interface CiscoRTPOutputStoppedEv

getMediaConnectionMode()

Returns CiscoMediaConnectionMode

int

Hold Reversion
The Hold Reversion feature provides applications with a notification when Cisco Unified Communications
Manager notifies an address about the presence of a held call, when the call has been ONHOLD for a certain
amount of time. Applications receive this notification as the CiscoCallCtlTermConnHeldReversionEv call
control terminal connection event on their call observers on the particular address that has put the call ONHOLD.
This notification is provided only once for the applications for the held call.

The event is sent only to the terminal connection of the terminal where the call was put on hold. If the address
represents a shared line address, other terminal connections of the shared line address will not receive the
event.

To receive this event, applications must add a call observer to the address. The cause for this event will be
CAUSE_NORMAL. If the call observer is added after the hold reversion timer has expired and the notification

Features Supported by Cisco Unified JTAPI
74

Features Supported by Cisco Unified JTAPI
Hold Reversion

has already been sent to the phone, applications will receive CiscoCallCtlTermConnHeldReversionEv with
cause CAUSE_SNAPSHOT.

For more information, see CiscoCallCtlTermConnHeldReversionEv.

Hunt List
This feature enables the JTAPI application to observe addresses and terminals that are HuntList LineGroup
members. Calls can arrive at these addresses either by another address calling it directly or through HuntPilot.
When a call is made to HuntPilot, JTAPI creates a CiscoHuntConnection to represent HuntPilot and provides
a Call Model that gives applications the information that the call is routed through HuntPilot. When a call is
routed through HuntPilot and is connected to LineGroup Member, JTAPI call has three connections, two
regular connections for calling and called addresses, and one CiscoConnection to HuntPilot through which
that call was routed.

HuntPilot is not an observable address. The address representing Hunt Pilot is created when a call is made to
a Hunt Pilot and is removed when the call is over. Applications cannot receive the Hunt Pilot address from
the provider by using the getAddress() method.

In normal Hunt List calls, there are three connections, Calling, Hunt Pilot, and Hunt Member. When a call is
made to the Hunt Pilot Directory Number, the call is offered to one of its members depending on the algorithm.
The initial state of the call is Offering at the member. If members are not observed, the connection to Hunt
Pilot goes through the normal states as CallCtrlConnection or Connection. If members are observed, connection
to member goes to Offering state and the connection to Hunt Pilot goes to Established state. Applications
must use the states of the observed party to track the state of the call.

call.getCurrentCalledParty() for a call to Hunt Pilot returns an address of type CiscoAddress.HUNT_PILOT.
If the Hunt List member is the called address and is not observed by the application, connection to the member
is created only when the call is answered.

CiscoHuntConnection extends CallControlConnection and can get into states that a call control connection
could transition to expect for the network states.

Hunt pilots are represented by CiscoAddress objects and getType () would return CiscoAddress.HUNT_PILOT.

Only addresses returned for Cisocall.getCurrentCalledAddres () and CiscoCall.getCurrentCallingAddress ()
will have CiscoAddress.HUNT_PILOT type.

When calls to hunt pilot are involved in transfer or conference operations CiscoTransferStartEv,
CiscoTransferEndEv, CiscoConferenceStartEv and CicsoConferenceEndEv are not delivered. Applications
should use CiscoCallChangedEv to identify surviving call.

If consult calls or final call have CiscoHuntConnection, the application should not expect Transfer or Conference
start and end events.

When configured in broadcast mode, all Hunt List members ring simulatenously. In JTAPI, call connections
and terminal connections for Hunt List members are created only for members observed by the application.

Applications must enable this feature using the setHuntListFeatureEnabled (boolean) on CiscoJtapiProperties.
This feature is disabled by default and applications are encouraged to adapt to the above call model and enable
the feature using setHuntListFeatureEnabled () API. Observing a hunt list member without enabling the feature
using setHuntListFeatureEnabled () is not a supported configuration and if observed, results in inconsistent
call model and events. setHuntListFeatureEnabled() is introduced to enable applications that are currently
using unsupported call scenarios with Hunt List to migrate to a supported model without breaking the existing
functionality.

Features Supported by Cisco Unified JTAPI
75

Features Supported by Cisco Unified JTAPI
Hunt List

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_311

Applications can also enable this feature by adding, HuntListEnabled = 1, to jtapi.ini file and restarting the
application.

Interface Changes

CiscoHuntConnection, CiscoConnection, CiscoAddress, CiscoJtapiProperties

Message Sequences

Hunt List

Backward Compatibility

This feature is backward compatible.

Hunt List Connected Number
In Cisco Unified CM 9.0, the support for hunt pilots is enhanced to expose the connected number as the
modifiedCalledAddress in a call involving a hunt pilot.

With this enhancement, when a user calls a hunt pilot and the call is answered by the hunt member L1,
call.getModifiedAddress() returns the address of the member L1, whereas call.getCurrentCalledAddress()
returns the address of hunt pilot. Before the call is answered, both these values will return the address of hunt
pilot.

Interface Changes

There are no interface changes for this feature.

Message Sequences

See Hunt List Connected Number

Backward Compatibility

This feature is backward compatible. To enable this feature, a new Hunt Pilot configuration, "Display Line
Group Member DN as Connected Party" is introduced. Application may choose to enable or disable feature
based on their requirements. By default, this feature is disabled.

Hunt Log Status
With this feature, the Cisco JTAPI interface includes the ability of a terminal to sign in and sign out of the
hunt group through CTI applications. Previously, this functionality was only available from Cisco Unified
CM Administration interface.

Once a terminal is logged into a hunt group, it is able to receive calls which are offered on the line group
where the line of terminal is associated.

Cisco Terminal is enhanced with two new methods:

• CiscoTerminal.getHuntLogStatus()

Features Supported by Cisco Unified JTAPI
76

Features Supported by Cisco Unified JTAPI
Hunt List Connected Number

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_312
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_284
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_196
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_302
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_313
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_314

• CiscoTerminal.setHuntLogStatus()

These two new methods are used to get and set the value of huntLogStatus and the three new constants
CiscoTerminal.DEVICE_HUNT_LOGGED_IN, CiscoTerminal. DEVICE_HUNT_LOGGED_OUT and
CiscoTerminal. DEVICE_HUNT_NOT_APPLICABLE. The value is
CiscoTerminal.DEVICE_HUNT_LOGGED_IN by default for any terminal that has the ability to log in to
the hunt group.

A new interface, CiscoTermHuntLogStatusChangedEv, is introduced for applications to be notified with the
event CiscoTermHuntLogStatusChangedEv when the value of hunt log status is changed and the filter is set.

CiscoTermEvFilter is enhanced with two new methods: CiscoTermEvFilter.
setHuntLogStatusChangedEvFilter(boolean filterValue) and
CiscoTermEvFilter.getHuntLogStatusChangedEvFilter() to set and get the value of filter, if the application
wants to be notified by the event CiscoTermHuntLogStatusChangedEv the filter should be set to true. The
value of filter is false by default.

The above methods are invoked only on devices which have observers added on it and the terminal object is
in service.

Note

Interface Changes

CiscoTermHuntLogStatusChangedEv

CiscoTerminal

CiscoTermEvFilter

Message Sequences

Hunt Log Status for Phone Devices

Backward Compatibility

This feature is backward compatible.

Intercom
The Intercom feature allows one user to call another user and have the call answered automatically with
one-way media from the caller to the called party, regardless of whether the called party is busy or idle. The
called user can press the talk back softkey (unmarked key) on their phone display, or the called user can invoke
the join() JTAPI API, that is provided on TerminalConnection, to start talking to the caller. Only a specially
configured intercom address on the phone can initiate an intercom call. Cisco Unified JTAPI creates a new
type of address object named CiscoIntercomAddress for intercom addresses that are configured on the phone.
The application can get all the CiscoIntercomAddresses that are present in the provider domain by calling the
interface getIntercomAddresses () on CiscoProvider.

An intercom call can be initiated from the Cisco Unified JTAPI interface by calling the
CiscoIntercomAddress.ConnectIntercom () interface. The application provides an intercom target DN for this
interface. If the intercom target DN is preconfigured or preset by the application, the application can get the

Features Supported by Cisco Unified JTAPI
77

Features Supported by Cisco Unified JTAPI
Intercom

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_315
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_283
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_316

target DN by calling the CiscoIntercomAddress.getTargetDN() interface; otherwise, the application must
provide a valid intercom target for the call to be successful.

An intercom call is autoanswered at the intercom target; Cisco Unified JTAPI will move
TerminalConnection/CallCtlTerminalConnection at the intercom target to the Passive/Bridged state. The
application can invoke a join () interface on the TerminalConnection of the intercom target to initiate talk
back. If join () is successful, the TerminalConnection/CallCtlTerminalConnection of the intercom target will
move to an Active/Talking state. For an intercom call, Cisco Unified JTAPI only supports the following
interfaces:

• Call.drop ()

• Connection.disconnect ()

• CallCtlTerminalConnection.join ()

The application cannot perform any feature operations on an intercom call. Cisco Unified JTAPI will throw
an exception if the application invokes redirect, consult, transfer, conference, or park for a Connection on a
CiscoIntercomAddress. The application will also receive an exception if it tries to invoke setForwarding (),
getForwarding (), cancelForwarding (), unPark (), setRingerStatus (), setMessageWaiting (), getMessageWaiting
(), setAutoAcceptStatus (), or getAutoAcceptStatus () on CiscoIntercomAddress.

Applications can get the value of a configured intercom target DN and the label on a CiscoIntercomAddress
from the provided API. Cisco Unified JTAPI provides two types of APIs: one to return the default and another
to return the current value set for the intercom target. The default value is the intercom target DN and label
that are preconfigured through Cisco Unified Communications Manager Administration. The current value
is the interim target DN and label that the application sets. If the application has not set any value, the current
value remains the same as the default value. Applications can invoke the API setIntercomTarget () on
CiscoIntercomAddress to set the intercom target DN, label, and unicode label. Only one application can set
the intercom target, label, and unicode label for an intercom address. If two applications try to set the value,
the first succeeds, and the second receives an exception. When a intercom target DN and label changes, Cisco
Unified JTAPI provides a CiscoAddressIntercomInfoChangedEv to the AddressObserver that is added to
CiscoIntercomAddress. If the application has set an intercom target DN and label, and a JTAPI or CTI failover
or failback occurs, JTAPI or CTI will restore the previously set value of the intercom target DN, label, and
unicode label. If the JTAPI or CTI cannot restore the intercom target DN, label, or unicode label, Cisco Unified
JTAPI provides a CiscoAddrIntercomInfoRestorationFailedEv to the AddressObserver on
CiscoIntercomAddress. In the case of an application failure, or if for any reason the application goes down,
the target DN, label, and unicode label will reset to the default. JTAPI provides the interface resetIntercomTarget
() on the CiscoIntercomAddress to reset the intercom target.

Auto-answer always stays enabled for CiscoIntercomAddress. The application can invoke the method
getAutoAnswerEnabled () on CiscoAddress to get the auto-answer capability of an address.

For an intercom target that is connected with one-way media to the Intercom initiator, the device state would
be set to CiscoTermDeviceStateWhisper. This is a new device state for the terminal object. In this state, the
terminal can initiate a new call or receive a new incoming call. If the application enables a filter to receive
this device state, the application receives CiscoTermDeviceStateWhisperEv. The application can enable a
filter by calling setDeviceStateWhisperEvFilter() on CiscoTermEvFilter. The DeviceStates
DEVICESTATE_ACTIVE, DEVICESTATE_HELD, and DEVICESTATE_ALERTING all override
DEVICESTATE_WHISPER; if one call exists in active, held, or alerting state, and another in whisper, the
DeviceState will be DEVICESTATE_ACTIVE, DEVICESTATE_HELD, or DEVICESTATE_ALERTING,
respectively.

Features Supported by Cisco Unified JTAPI
78

Features Supported by Cisco Unified JTAPI
Intercom

The Cisco Unified JTAPI implements the javax.telephony.TerminalConnection interface join() to let the
intercom target talk back to the initiator. The system implements this interface for CiscoIntercomAddresses
only. If applications invoke this interface for regular shared lines in a passive or bridged state, JTAPI throws
a MethodNotImplimented exception.

Note

This feature is backward compatible if the application-controlled devices (terminals) do not have intercom
lines configured on them. Applications can disable the intercom feature by not having an intercom line
configured on the application-controlled devices (terminals).

Tip

For detailed information about these interface changes, see the following topics:

• CiscoHuntConnection

• CiscoAddrIntercomInfoRestorationFailedEv

• Related Documentation

• CiscoCall

• CiscoProvider

• CiscoTermEvFilter

• CiscoTerminal

• CiscoTerminalConnection

• CiscoTermDeviceStateWhisperEv

Intercom Support for Extension Mobility
In Release 6.0(1) of Cisco Unified CommunicationManager, support for intercom feature was added. Intercom
feature requires destination to be auto-answered with one-way audio; therefore, no shared addresses can be
configured for intercom. When user logs in by using Extension Mobility (EM) profile, it is possible to end
up with shared address for intercom; so, currently extension mobility is not supported with intercom. Due to
the wide use of extension mobility, this CIA is addressing the need to support intercom for extension mobility
while still maintaining the single destination nonsharable nature of intercom addresses.

This feature requires intercom addresses to be configured with default terminal, and allows configuring of
intercom address on EM profile. When EM user logs in to a terminal with EM profile that is configured with
an intercom address, intercom address is available only if default terminal of intercom address is same as
terminal where user has logged in. If an intercom address is configured on terminal but default terminal for
intercom address is not that terminal, intercom address does not appear on terminal. If this terminal is configured
in the control list of Cisco Unified JTAPI application, JTAPI does not create intercom address in the provider
domain. From Cisco Unified JTAPI point of view, there is no new interface or changes to support this feature.
However, this feature introduces some transitional scenarios where intercom functionality may not work on
intercom addresses. See the use cases.

Features Supported by Cisco Unified JTAPI
79

Features Supported by Cisco Unified JTAPI
Intercom Support for Extension Mobility

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_312
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_317
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_318
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_197
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_283
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_177
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_319

Backward Compatibility

This feature is backward compatible.

IPv6 Support
This feature provides support for IPv6 addresses and CiscoUnified JTAPI is enhanced to support IPv6
connectivity to CTIManager. It enables Cisco Unified JTAPI applications to see the IPv6 address as the calling
party address if the IPv6 support feature is enabled and if the Calling Party is using an IPv6-enabled phone.
This feature support the following functions:

• Cisco Unified JTAPI exposes new API canSupportIPv6() on the CiscoProviderCapabilities Interface to
indicate whether Cisco Unified Communications Manager configuration is supporting IPv6.

• Cisco Unified JTAPI closes the media or route terminal if there is mismatch between what has been
previously registered and what is currently configured. CiscoTermRegistrationFailedEv and the new
reason code IP_ADDRESSING_MODE_MISMATCH are then sent as per this scenario.

• The IPAddress capability of the Terminal is exposed byAPI getIPAddressingMode() on the CiscoTerminal
Interface. The IP Address capability is available on CiscoTerminal/CiscoMediaTerminal and
CiscoRouteTerminal.

• The IPv6 calling party IP address is provided through the Cisco extensions of CallCtlConnOfferedEv
and RouteEvent in an InetAddress object as well as the IPv4 address for IPv4-enabled devices.

The RTP Address in CiscoRTPOutputStartedEv and CiscoRTPInputStartedEv also has an IPv6 address in
case the observed device is an IPv6 device. That is, the API getLocalAddress() on CiscoRTPInputProperties
and the API getRemoteAddress() on CiscoRTPOutputProperties can now return an IPv6 format IP Address.
The API returns an InetAddress object, and applications can verify that it is an instance of Inet4Address or
Inet6Address to determine if it is an IPv4 or IPv6 format IP Address.

Applications must reset the devices after their IP Addressing Mode is changed, otherwise there might be
ambiguity in the expected results.

From Release 7.1, Cisco Unified JTAPI provides getIPAddressingMode() API on CiscoTerminal. The
getIPAddressingMode() API for CTI Ports and Route Points are also supported from this release.

Cisco Unified JTAPI extends the same API on CiscoTerminal and it returns the configured IP addressing
mode of the IP phone on the Cisco Unified Communications Manager Admin pages. If the user modifies the
IP Addressing mode from the Cisco Unified Communications Manager Admin pages after the device is
registered, the device must be reset. The updated value from Cisco Unified JTAPI is exposed only after the
IP phone is reset. If the configured IP Addressing mode supports both IPv4 and IPv6 addresses, the phone
may be registered with either of these addresses or with both. This depends on conditions such as network
type and Cisco Unified Communications Manager support for IPv6. So, if the IP Addressing mode mode
supports both IPv4 and IPv6 addresses, getIPAddressingMode() on CiscoTerminal returns
CiscoTerminal.IP_ADDRESSING_MODE_IPV4_V6.

Interface Changes

See CiscoTerminal

Message Sequences

See IPv6 Support and IPv6 Support

Features Supported by Cisco Unified JTAPI
80

Features Supported by Cisco Unified JTAPI
IPv6 Support

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_320
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_321

Backward Compatibility

This feature is backward compatible.

iSac Codec
This enhancement provides support for iSac codec and enables the application to register CiscoMediaTerminal
or CiscoRouteTerminal with iSac codec capability. For this codec, frame size and bit rate are variable and
determined dynamically. Applications do not set these values.

The bit rate and packetSize that are exposed on interface CiscoRTPInputProperties and
CiscoRTPOutputProperties will not be a constant for this codec, so application logic should not rely on these
values if codec (payloadType) is iSac.

Interface Changes

See CiscoIsacMediaCapability

Message Sequences

iSac Codec

Backward Compatibility

This feature is backward compatible.

Java Socket Connect Timeout
The Java Socket Connect Timeout enhancement enables the configuration of a timeout in seconds by using
the Cisco Unified JTAPI specification and prevents connection delays to the CTIManager when the primary
CTI Manager. The default is 15 seconds.

If the default of 15 seconds is unacceptable to the application, the default JAVA API of zero (0) sets the
behavior to the normal JAVA Socket Connect API.

The values range from 5 through 180 seconds. Zero defaults to Java behavior of the socket connect without
any time-out for connection.

Interface Changes

See CiscoJtapiProperties.

Message Sequences

See CiscoJtapiProperties.

Backward Compatibility

This feature is backward compatible.

Features Supported by Cisco Unified JTAPI
81

Features Supported by Cisco Unified JTAPI
iSac Codec

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_322
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_323
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_302
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_324

Join Across Lines
In this version, this feature allows applications to conference two calls that are on different addresses of the
same terminal. It will also let applications add participants to a conference using a noncontroller. Join across
lines is not supported on CTI-supported phones that run SIP.

You can disable join across lines feature by turning off Join Across Lines Policy service parameter, while
you can disable Conference Chaining and feature to allow noncontroller adding participant to conference by
disabling the “Advanced AdHoc Conference Enabled” and “Non-linear AdHoc Conference Linking Enabled”
service parameters.

Join Across Lines is supported only on phones that run SCCP.Note

Interface Changes

There are no interface changes for this feature. Applications can use the current conference interfaces to
conference calls on different addresses on the same terminal.

Backward Compatibility

This feature is backward compatible.

Join Across Lines (Only SCCP)
The Join Across Lines feature allows support for conference across lines. It allows two or more calls on
different addresses of the same terminal to be joined though the join softkey on the phone or conference()
API that JTAPI provides. The behavior to JTAPI applications change, as applications do not perceive a
common controller in final and consult calls.

There is no change in the API and the same events are delivered whether calls are conferenced on the same
address (regular conference) or across addresses (Join across lines).When join across lines feature is performed
CiscoConferenceStartEv/EndEv will be provided to all addresses on the controller terminal that have consult
or final calls that are being joined together into one conference.

In CiscoConferenceStartEv, the conferenceControllerAddress will always be the primary controller address.
Application can now set the controller via the setConferenceController() API. If application does not specify
this, then JTAPI itself would find a suitable controller for the conference. Cisco recommends that applications
set the controller address when Join Across Lines feature is invoked.

If observer is not added on the controller address, applications may see null values for either the talking or
held terminal connection values in the CiscoConferenceStartEv. Before this release, when application tried a
conference across lines, the request failed at the JTAPI layer itself. With this release, the conference() API
implementation enhances all requests to pass through after finding suitable terminal connections of the final
and consult calls. JTAPI relies on the common terminal of the addresses involved in the call to find suitable
terminal connections. Multiple conference across address is also supported when more than two calls need to
be joined. SIP devices in 5.1.2 release do not support this feature. JTAPI throws exception
(ILLEGAL_HANDLE) if this feature is requested on a SIP device.

There are no interface changes for this feature. Behavior changes with respect to events provided to applications.

Features Supported by Cisco Unified JTAPI
82

Features Supported by Cisco Unified JTAPI
Join Across Lines

Backward Compatibility

This feature is backward compatible, as there are no changes in the behavior of conference when this feature
is not enabled. You can enable or disable this feature on a per-device basis. If the Join Across Lines setting
on the device is set to Default, the system-wide CallManager service parameter Join Across Lines Policy
setting is used. If this feature is enabled and application does a join across lines, there is a difference in behavior
as stated.

JTAPI applications written for Release 5.1 should be backward compatible with JTAPI that was released with
Release 5.1.2. Consider a JTAPI client upgrade only if new features are used.

Join Across Lines or Connected Conference Across Lines
User experience is enhanced in this release by introducing Cisco Unified IP Phone models that fall outside
the purview of existing Join Across Lines service parameter. For these phones this feature is always enabled,
without any service parameter to turn it off. For a detailed feature description, information about interface
changes, and use cases, see Join Across Lines with Conference Enhancements (SCCP and SIP), on page 87.

Usage Guidelines
The points below indicate how applications must use the Direct Transfer Across Lines feature:

• Applications must add Call Observer on the both the lines across which they try join across lines or
connected conference.

• Earlier, applications were recommended to check if both the calls have a common address and if that
common address is on the same Terminal. For Join Across Lines, it is not required to check if the address
is comoomon between two calls across which direct conference is invoked. It must be ensured that both
the calls should each have an address that exists in common terminal.

• Cisco Unified JTAPI reports the same set of events, as it does currently, for conferencing of calls on the
same address. Applications are not required do anything with these calls after invoking Conference()
until receiving CiscoConferenceEndEv.

• As conference is done across addresses, applications do not get a common controller in
CiscoConferenceStartEv and should upgrade the application logic. See Event Flow Comparison and
Sample Code, on page 83 for details.

Event Flow Comparison and Sample Code
The following table provides details of the event flow also sample code.

Table 3: Event Flow Comparison and Sample Code for Conference Invocation

Join Across LinesJoin on Same Lines

Setup

Address A on Terminal T1

Address B1, B2 on Terminal T2

Address C on Terminal T3

Address A on Terminal T1

Address B1, B2 on Terminal T2

Address C on Terminal T3

Feature Invokation

Features Supported by Cisco Unified JTAPI
83

Features Supported by Cisco Unified JTAPI
Join Across Lines or Connected Conference Across Lines

Join Across LinesJoin on Same Lines

A calls B1[GC1 = GolbalCallID1]

GC1: Connection A1 Conn1

GC1: Connection B1 Conn2

B2 calls C[G = GolbalCallID2]

GG2: Connection B2 Conn3

GC2: Connection C Conn4

GC1.conference(GC2)

A calls B1[GC1 = GolbalCallID1]

GC1: Connection A1 Conn1

GC1: Connection B1 Conn2

B1 calls C[GC2 = GolbalCallID2]

GG2: Connection B1 Conn3

GC2: Connection C Conn4

GC1.conference(GC2)

Events Delivered to Application (assuming all parties are observed)

GC1:

CiscoConferenceStartEv

[getConferenceControllerAddress() returns B1]

ConnCreatedEv for C

ConnConnectedEv for C

CallCtlConnEstablishedEv for C

TermConnCreatedEv for T3(Address C)

CiscoConferenceEndEv

GC2:

CiscoConferenceStartEv

[getConferenceControllerAddress() returns B1]

TermConnDroppedEv for T2(Address B2)

CallCtlTermConnDroppedEv for T2(Addresss B2)

ConnDisconnectedEv for B2

CallCtlConnDisconnectedEv for B2

TermConnDroppedEv for T3(Address C)

ConnDisconnectedEv for C

CallCtlConnDisconnectedEv for C

CallCtlTermConnDroppedEv for T3(Address C)

CiscoConferenceEndEv

CallInvalidEv

CallObservationEndedEv

GC2 - Disconnect events are for Address B2 on
Terminal T2

Note

GC1:

CiscoConferenceStartEv

[getConferenceControllerAddress() returns B1]

ConnCreatedEv for C

ConnConnectedEv for C

CallCtlConnEstablishedEv for C

TermConnCreatedEv for T3(Address C)

CiscoConferenceEndEv

GC2:

CiscoConferenceStartEv

[getConferenceControllerAddress() returns B1]

TermConnDroppedEv for T2(Address B1)

CallCtlTermConnDroppedEv for T2(Addresss B1)

ConnDisconnectedEv for B1

CallCtlConnDisconnectedEv for B1

TermConnDroppedEv for T3(Address C)

ConnDisconnectedEv for C

CallCtlConnDisconnectedEv for C

CallCtlTermConnDroppedEv for T3(Address C)

CiscoConferenceEndEv

CallInvalidEv

CallObservationEndedEv

GC2 - Disconnect events are for Address B1 on
Terminal T2

Note

Features Supported by Cisco Unified JTAPI
84

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

Join Across LinesJoin on Same Lines

There is no common address for controllers in final
and consult call, but the controller TerminalName
is same for both the controller addresses. So,
application should rely on CommonTerminalName
to find out the connections, terminal connections
and controllers.

NoteApplication logic is based on common
transferControllerAddress and works fine in this
case, because commonAddr is present in both final
and consult call

Note

In connected Conference Across Lines scenario, apart from the events mentioned, applications can see another
temporary call GC3 going active(CallActiveEv) and GC3 goes idle (CallInvalidEv) immediately after the
conference is completed.

Note

Join on Same Lines Sample Application Code

Handle(CiscoCallEv event)
{
…..
…..
if (event instanceOf CiscoConferenceStartEv)
{
CiscoConferenceStartEv ev =
(CiscoConferenceStartEv)event;

processConference(ev);
}

}
processConference(CiscoConferenceStartEv ev){
CiscoAddress controllerAddr =
ev.getConferenceControllerAddress();

CiscoCall[] consultCalls = ev.getConferenedCalls();
CiscoCall GC1 = ev.getFinalCall();
CiscoConnection[] movedConns[] =
findConnections(consultCalls, controllerAddr);

//Additional App logic to clear connections.
}
Connection[] findConnections(CiscoCall[] calls, CiscoAddress addr){
ArrayList connList = new ArrayList();
for(x = 0; x < calls.length; x++)
{
CiscoConnection[] conns =
calls[x].getConnections();

for (i = 0; i<conns.length; i++)
{
if conns[i]
.getAddress().equals(addr) {
connList.add(conns[i]);

}
}

}
return connList.toArray(Connection[] conns);

}

Features Supported by Cisco Unified JTAPI
85

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

Join Across Lines Sample Application Code

Handle(CiscoCallEv event)
{
…..
…..
if (event instanceOf CiscoConferenceStartEv)
{
CiscoConferenceEv ev =
(CiscoConferenceStartEv)event;

processConference(ev);
}

}
processConference(CiscoConferenceStartEv ev){
String controllerTermName =
ev.getControllerTerminalName();

CiscoCall[] consultCalls = ev.getConferenedCalls();
CiscoCall GC1 = ev.getFinalCall();
CiscoConnection[] movedConns = findConnections(consultCalls,

controllerTermName);

//Additional App logic to clear connections.
}
Connection[] findConnections(CiscoCall calls, String termName){
ArrayList connList = new ArrayList();
for(x = 0; x < calls.length; x++)
{
CiscoConnection[] conns = calls[x].getConnections();
for (i = 0; i<conns.length; i++)
{
CiscoTerminalConnection[] termConns =
conns[i].getTerminalConnections();

for(j = 0; j<termConns.length; j++)
{
if(termConns[j].getTerminal().getName.equals(termName)

&& termConns[i].getState() ! =
TerminalConnection.PASSIVE)

{
connList.add(conns[i]);

}
}

}
}
return connList.toArray(Connection[] conns);

}

Interface Changes

See CiscoConferenceStartEv

Message Sequences

See Connected Conference or Join Across Lines Use Cases - New Phones Behavior

Backward Compatibility

This feature is backward compatible.

This feature cannot be turned off for certain devices and Cisco Unified JTAPI always reports events for Join
Across Lines for these phones. However, to provide backward compatibility for applications, a new permission
to allow controlling these devices and to allow connected conference across lines has been added. A new

Features Supported by Cisco Unified JTAPI
86

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_327
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_328

standard role Standard CTI Allow Control of Phones supporting Connected Xfer and conf and a standard user
group are also added. Applications can control these devices only if this new role is associated to the application
user, assuming that application is using JTAPI client 7.1.2 or higher. So, by default these devices are listed
as Restricted. The application must upgrade to handle this feature and associate the new permission to control
these devices. If the application uses an older JTAPI client the devices are not restricted but if the application
tries to observe these devices (which supports this feature to be invoked manually), JTAPI throws an exception
and marks these devices as restricted from there on.

Cisco assumes that two or more applications do not control or observe the same terminal or address
simultaneously. If they do, all instances of this application make changes to support this feature or coordinate
to avoid any problem. Otherwise, application behavior may be unforeseen. For example, if App1 and App2
are two applications controlling or observing the same terminal or address and App1makes changes to support
this feature then App2 is also expected make changes to support the feature. Else, invocation of this feature
by App1 on common devices can break App2.

As, the feature is designed to provide an enhanced user experience, Cisco strongly recommends that all Cisco
Unified JTAPI applications should evaluate and support this feature and upgrade if necessary with the code
logic to handle both the old and new behavior.

Join Across Lines with Conference Enhancements (SCCP and
SIP)

Join Across Lines feature supports on CTI-supported SIP phones and SCCP phones. The enhancements are:

• Applications can conference two calls in which each conference is on a different address but on the same
terminal.

• Add participants to a conference using a non-controller.

You can disable Join Across Lines by turning off the Join Across Lines Policy service parameter. Conference
Chaining and the feature that allows Non-Controller adding participant to conference can be disabled by
disabling the Advanced Ad Hoc Conference Enabled and Non-linear Ad Hoc Conference Linking Enabled
service parameters.

Note

The following behavior occurs when an application issues a conference request, but selected and active calls
are not part of the conference request. It also applies for user-selected calls that are not part of the conference
request, but become part of the resulting conference:

• The Active Call on a Terminal is always added to the resulting conference when conference is invoked
on a call on any address on that terminal. Consider that B1 and B2 addresses exist on the same terminal,
then:

• A --> B1- GC1

• C --> B1- GC2

• D --> B2- GC3 (active call)

The application invokes GC1.conference (GC2) and results in A-B1-C-D in a conference with GC1,
although the call with D was not part of the conference request.

Features Supported by Cisco Unified JTAPI
87

Features Supported by Cisco Unified JTAPI
Join Across Lines with Conference Enhancements (SCCP and SIP)

An active conference call on a terminal is added to the resulting conference when conference is invoked
on a call on any line on that terminal. In this case, the active conference call becomes the surviving final
call (provided the application-specified primary call is not a conference call).

In this example, the application specified primary call is cleared after the conference operation. It is
possible that the application-specified primary call may not join the resulting conference and in that case
the call is not cleared after the conference is complete.

• Consider that the B1 and B2 addresses on the same terminal and conf1 is a conference call with A-B1-C
in conference with B1 as the controller, then:

• B1 --> D – GC1 (on hold)

• conf1 – GC2 (active call)

• B2 --> E – GC3 (on hold)

Application invokes GC1.conference(GC2, GC3). This results in A-B1-C-D-E in conference with GC2
as the surviving call. Although application had specified GC1 to be the primary call, GC1 does not survive
after the conference.

The behavior also applies to regular conferencing with a common controller. Consider A, B, C, and D are
lines on different terminals, then:

• A --> B - GC1

• C --> - GC2

• D --> - GC3 (active call)

The application requests GC1.conference (GC2). This results in A-B-C-D in conference with GC1. Although
a direct call with Dwas not part of the conference request, D joins the conference.

Interface Changes

There are no interface changes. You can use the current interfaces to conference calls on different addresses
on the same terminal.

Message Sequences

Join Across Lines with Enhancements

Backward Compatibility

This feature is backward compatible.

JRE 1.2 and JRE 1.3 Support Removal
This release of the CiscoJTAPIClient supports only JRE 1.4. There are no interface changes; however, the
JRE 1.2 and 1.3 versions are no longer supported. This change is to support QoS, which is available only in
the JDK1.4 version (and above). Inaddition, jtapi.jar contains Cisco encryption files that depend on the JRE
1.3 version (and above). This provides a stronger password encryption algorithm when it is sent over TCP to
CTIManager. As part of this feature, JTAPI invokes the API provided by IMS (Identity Management System,
a Cisco Unified Communications Manager component) to encrypt a password before sending it.

Features Supported by Cisco Unified JTAPI
88

Features Supported by Cisco Unified JTAPI
JRE 1.2 and JRE 1.3 Support Removal

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_329

JRE 1.4 also enables Cisco Unified JTAPI to use additional JDK 1.4 APIs. Applications that use previous
versions of JRE must install JDK 1.4 to use Cisco Unified JTAPI.

There are no interface changes to JTAPI Applications, however JTAPI.jar contains RSA jsafe.jar (3.3) and
Apache log4j-1.2.8.jar files. If Applications are using any jar files that are not compatible with these versions
of jsafe.jar (Version 3.3) and log4j-1.2.8.jar, then JTAPI or the Application may not work, depending on
which one is in the classpath first

Note

As part of this migration, JTAPIPreferences and sample applications dependency on MS-JVM was also
removed. Two new configuration parameters were provided on the Advanced tab in the JTAPI Preferences
dialog box:

• JTAPI Post Condition Timeout

• Use Progress As Disconnected

Backward compatibility

This feature is not backward compatible.

JTAPI Version Information
In order to connect to Release 5.0 of Cisco Unified Communications Manager Administration, JTAPI clients
have to upgrade to the new version of JTAPI bundled with the Cisco Unified Communications Manager
Administration Release 5.0. JTAPI version is in the form of 3.0(X.Y), where X andY depend on the sub-release.
Applications cannot connect with prior release of JTAPI.

Locale Infrastructure Development
This feature removes currently supported languages for Cisco Unified JTAPI client install. Cisco Unified
JTAPI client install is only supported in English. It also adds the capability to dynamically update the locale
in JTAPI Preference application from the Cisco Unified Communications Manager server. JTAPI Preference
application will continue to support all the languages that are supported in prior releases. Support for adding
new languages and updating locale files is also added.

Before this release, the Cisco Unified JTAPI client install and JTAPI Preferences application were localized
during builds and did not add support for new languages or update locales for existing languages. The JTAPI
client locale updates were performed in Cisco Unified Communications Manager maintenance releases. This
feature adds capability to dynamically update locale file for JTAPI Preferences application, and JTAPI Client
install is installable only in English languages.

The JTAPI Client install needs the Cisco Unified Communications Manager TFTP server IPaddress. The
TFTP IP address is used for downloading locale files for the preferences application. If the TFTP IP address
is not entered or an incorrect IP address is entered, the preference application displays only in English language.
Further on, whenever new locale updates are available, JTAPI Preferences application will notify user about
available updates and update locale files.

Features Supported by Cisco Unified JTAPI
89

Features Supported by Cisco Unified JTAPI
JTAPI Version Information

Interface Changes

There are no interface changes.

Message Sequences

Locale Infrastructure Development Scenarios

Backward Compatibility

This feature is backward compatible from the JTAPI Application perspective, but from the JTAPI Client
install perspective, currently supported languages have been removed. In this regard, it is not backward
compatible.

Logical Partitioning
This feature enables administrators to configure geographic locations and restrict calls that pass through a
PSTN gateway to be connected directly to a VoIP phone or VoIP PSTN gateway in another geographic
location. This feature allows use of single line analog phones and remains compliant with the Telecom
Regulatory Authority of India (TRAI) regulation.

This feature can be turned off by using the Logical Partitioning Enabled service parameter, which is disabled
by default.

Interface Changes

See CiscoJtapiException

Message Sequences

See Logical Partitioning Feature Use Cases

Backward Compatibility

This feature is backward compatible.

Media Termination at Route Point
This feature enables multiple active calls at the route point, and applications can terminate media for all active
calls by specifying the IP address and port number for each call or whenever media is established.

To use this feature, applications must register the route point by supplying media capabilities. When a call
gets answered at this route point, CiscoMediaOpenLogicalChannelEv gets sent to the applications. This event
gets sent whenever media is established. Applications must react to this event and specify the IP address and
port number where they want to terminate media.

A CiscoRouteTerminal represents a special kind of CiscoTerminal that allows applications to terminate RTP
media streams. Unlike a CiscoTerminal, a CiscoRouteTerminal does not represent a physical telephony
endpoint, which is observable and controllable in a third-party manner. Instead, a CiscoRouteTerminal
represents a logical telephony endpoint, which may get associated with any application that intends to route
calls and also terminate media. Unlike CiscoMediaTerminal, CiscoRouteTerminal can have multiple active

Features Supported by Cisco Unified JTAPI
90

Features Supported by Cisco Unified JTAPI
Logical Partitioning

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_330
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_179
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_331

calls at the same time. Typically, CiscoRouteTerminals get used to place calls in queue until an agent is
available to service the caller.

Only RoutePoint Terminals appear as CiscoRouteTerminal through JTAPI.Note

Terminating media comprises a three-step process.

1. The application registers its media capabilities with this terminal by using the CiscoRouteTerminal.register
method.

2. An application adds an observer that implements CiscoTerminalObserver interface by using the
Terminal.addObserver method.

3. The application must add addCallObserver on CiscoRouteTerminal or on CiscoRouteAddress to receive
CiscoCall object from the provider by using CiscoRTPHandle.

Applications receive CiscoMediaOpenLogicalChannelEv for each call and must supply the IP address and
port number by using the setRTPParams method on CiscoRouteTerminal.

You must modify applications that are written for the CiscoJtapiClient 1.4(x) release or earlier to register with
CiscoRouteTerminal. NO_MEDIA_TERMINATION if the applications are not interested inmedia termination.

Multiple applications can register with the same route point as long as they are registered with the same media
capabilities and registrationType. All applications, if they have registered with
CiscoRouteTerminal.DYNAMIC_MEDIA_REGISTRATION and then add a terminal observer, receive
CiscoMediaOpenLogicalChannelEv, but only one application can invoke setRTPParams.

Applications that terminate media must use the CallControl package for answering and redirecting calls.
Applications that only route calls can use a routing package.

Note

Applications should be aware that, if any features are performed before reacting to
CiscoMediaOpenLogicalChannelEv, the features may fail. If applications do not respond to these events in
the time that is specified in the Media Exchange Timeout parameter in the Cisco Unified Communications
Manager Administration windows, the call may fail.

Note

The following new or changed interfaces exists for Media Termination at Route Point:

Interface CiscoRouteTerminal Extends CiscoTerminal

isRegistered()

If the CiscoMediaTerminal gets registered, this method returns true. Otherwise, it
specifies false.

boolean

isRegisteredByThisApp()

If the application issues a successful registration request, this method returns true and
remains true until the application unregisters the device. This remains valid even if the
device is out of service because of CTIManager failure.

boolean

Features Supported by Cisco Unified JTAPI
91

Features Supported by Cisco Unified JTAPI
Media Termination at Route Point

register (CiscoMediaCapability[] capabilities,
intregistrationType)

The CiscoRouteTerminal must exist in the CiscoTerminal.UNREGISTERED state, and
the provider must exist in the Provider.IN_SERVICE state.

void

setRTPParams (CiscoRTPHandle rtphandle, CiscoRTPParams
rtpParams)

Applications set the ipAddress and the RTP port number to dynamically stream media
for a call.

void

Unregister()

Ensure the CiscoRouteTerminal is registered, and the provider is in the
Provider.IN_SERVICE state.

void

Interface CiscoMediaOpenLogicalChannelEv Extends CiscoTermEv

getpacketSize ()

Returns the packet size of the far end in milliseconds.

int

getPayLoadType ()

Returns the payload format of the far end, one of the following constants:

int

getCiscoRTPHandle ()

Returns the CiscoTerminalConnection object on which applications must invoke the
setRTPParams request.

CiscoRTPHandle

Interface CiscoRTPHandle

getHandle()

Returns an integer representation of this object, currently the Cisco Unified
Communications Manager CallLeg ID.

int

CiscoProvider

getCall (CiscoRTPHandle rtpHandle)

Returns the call object with the rtpHandle that is associated with a specific terminal. If
no callobserver gets added to the terminal at the time when the applications receive
CiscoRTPHandle in CallOpenLogicalChannelEv, CiscoCall may register null.

CiscoCall

For details on these interfaces, see Cisco Unified JTAPI Extensions To view the message flow for media
termination at route point, see Message Sequence Charts

Features Supported by Cisco Unified JTAPI
92

Features Supported by Cisco Unified JTAPI
Media Termination at Route Point

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

Media Termination Extensions
The media termination feature allows applications to transmit and capture the bearer of a call, for example,
audio or video. This action sometimes gets referred to as “rendering and recording” or “sourcing and sinking”
media. It remains distinct from call control because media termination concerns the data that flows between
endpoints in a call, not the details of setting up or tearing down calls. For example, an automatic call distributor
(ACD) uses call control to route calls among available agents but does not terminate media. An interactive
voice response (IVR) application, on the other hand, uses call control to answer and disconnect calls and uses
media termination to play sound files to callers.

Although no telephony applications are solely interested in media termination, this feature always gets used
in combination with call control. JTAPI 1.2 primarily represents a call control specification and offers very
limited support for applications that require media termination. Because the Cisco Unified Communications
Solutions platform supports media termination to a much greater degree than JTAPI standard, the Cisco
Unified JTAPI implementation extends JTAPI to add full support for this feature.

In Cisco Unified JTAPI, software-based media termination occurs by using Computer Telephony Integration
(CTI) ports. They include one or more lines (dialable numbers) that can be used to originate or receive calls.
They however need a controlling application to provide the source and sink of the media. An application
registers its interest in the media termination port with the Cisco Unified Communications Manager. The
Cisco Unified Communications Manager then delivers all the events that relate this virtual device to the
application. InCisco Unified JTAPI, CTI ports get referred to as CiscoMediaTerminals. The following figure
shows the CTI port configuration. For details about administering and configuring a CTI port, refer to the
Cisco Unified Communications Manager Administration information.

Figure 5: CTI Port Diagram

To implement a softphone application (where the PC acts as the telephone set, for example), the Cisco Unified
JTAPI application would manage a CTI port.

Message Waiting Indicator Enhancement
The EnhancedMessageWaiting Indicator (MWI) feature enables applications to provide the followingmessage
counts to be displayed on phones that support the enhanced message waiting counts:

• Total number of new voice messages (includes normal and high priority messages)

• Total number of old voice messages (includes normal and high priority messages)

• Number of new high priority voice messages

• Number of old high priority voice messages

• Total number of new fax messages (includes normal and high priority messages)

• Total number of old fax messages (includes normal and high priority messages)

Features Supported by Cisco Unified JTAPI
93

Features Supported by Cisco Unified JTAPI
Media Termination Extensions

• Number of new high priority fax messages

• Number of old high priority fax messages

Two newAPIs are added as CiscoAddress JTAPI extensions to provide the enhancedMWImessage summary
information. Similar to the existing setMessageWaiting APIs, one of the APIs allows summary information
to be set up for the observed address. The other API allows message summary information to be set up on
any address that is reachable on the observed address, as defined by the configured calling search space of
the observed address.

These new APIs can also be used on phone types that do not support the enhanced message counts. If used
on non-supported phones, these APIs behave similar to the existing setMessageWaiting method, that is, only
the messaging waiting indicator lamp is turned on or off and counts are not displayed.

Interface Changes

See Related Documentation

Message Sequences

See Enhanced MWI Use Cases

Backward Compatibility

This feature is backward compatible. The existing setMessageWaiting APIs will not be modified. Applications
that do not want to use the new enhanced MWI feature can continue to use these APIs for setting the MWI
lamp.

Modifying Calling Number
This feature enables applications to modify the calling party DN in the select route API from the route point.
Applications may pass an array of modifying calling numbers in the selectRoute API and an array length of
modifying calling numbers may equal the length of the route that is selected. If no modifying calling number
element is present for a corresponding routeSelected index or if the element is null, then no modifying calling
number gets set for that route selected element.

Two new interfaces getModifiedCallingAddress () and getModifiedCalledAddress () are exposed on the call
object, which returns modified calling or called number. If no modification occurs, these interfaces may return
the same values as getCurrentCallingAddress () and getCurrentCalledAddress () interfaces. If an application
is only controlling the route point and modifies the calling number by using selectRoute API, it may not get
modified calling address in the getModifiedCallingAddress interface. If an application is controlling any
calling or called parties, it may get correct values after it receives call control events after the calling number
is modified.

A new interface, getRouteSelectedIndex (), gets exposed on the new class CiscoRouteUsedEvent, an extension
of RouteUsedEvent, which gives the index of the selected route. Applications need to cast the RouteUsedEvent
to the CiscoRouteUsedEvent to get access to this method.

Example

routeSelected[0] = 133555
routeSelected[1] = 144911
routeSelected[2] = 143911

Features Supported by Cisco Unified JTAPI
94

Features Supported by Cisco Unified JTAPI
Modifying Calling Number

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_318
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_334

routeSelected[3] = 5005

modifiedCallingNumber[0] = null
modifiedCallingNumber[1] = 9721234567
modifiedCallingNumber[2] = 9721234568
modifiedCallingNumber[3] = null

If routeSelected[0] or routeSelected[3] is selected for routing, the modifying calling number may not get
applied.

You can only use this feature after an administrator enables the modifying calling number check box in the
Cisco Unified Communications Manager Administration for a particular user, which by default is False. If it
is not configured, a RerouteEventwith the cause of RouteSession.CAUSE_PARAMETER_NOT_SUPPORTED
gets sent to the applications. The application that is modifying the calling number needs to be aware that
display name on the called party is affected, and subsequent feature interactions of the calling or called party
may result in inconsistent behavior.

The following new or changed interfaces exist for Modifying Calling Number:

CiscoRouteSession

selectRoute (java.lang.String[] routeSelected, intcallingSearchSpace,

String[] modifiedCallingNumber)

This interface allows applications to modify the calling party number to the routeSelected
address. If nomodifiedCallingNumber element exists for the corresponding routeSelected
element, the calling number does not get modified if a call gets routed to that particular
routeSelected element.

void

CiscoCall

getModifiedCalledAddress ()

This interface returns a modified called address for the call if an application modifies
the calling party by using the selectRoute API; however, this information may not be
accurate if an application is only controlling the route point that modifies the calling
number. If no modified calling number gets performed, this acts similar to the
getCurrentCalledAddress interface. Typically, this gets varied from
getCurrentCalledAddress when a feature gets invoked after modified calling number
modifications.

javax.telephony.Address

getModifiedCallingAddress ()

This interface returns a modified calling address for the call if an application modifies
the calling party by using the selectRoute API; however, this information may not be
accurate if an application is only controlling the route point that modifies the calling
number. If no modified calling number gets performed, this interface acts similar to the
getCurrentCallingAddress interface.

javax.telephony.Address

CiscoRouteUsedEvent

getRouteSelectedIndex()

This method returns an array index of the route to where the call gets routed.

int

Features Supported by Cisco Unified JTAPI
95

Features Supported by Cisco Unified JTAPI
Modifying Calling Number

For details on the interface changes, see Cisco Unified JTAPI Extensions To view the message flow for
Modifying Calling Number, see Message Sequence Charts.

Multi-fork Recording using CUBE Media Proxy Server
Prior to Cisco Unified Communications Manager, Release 12.5(1), the Unified Communications Manager
supported only single recorder for a call. With the Cisco Unified Communications Manager, Release 12.5(1),
the Unified Communications Manager supports Multi-forking for Call Recording feature.

The Unified Communications Manager is connected to CUBE Media Proxy server which is connected to
multiple recorders. The JTAPI interface is enhanced to get the details of multiple recorders in case of
Multi-Forking recording through CUBE Media Proxy server.

Backward Compatibility

This feature is backward compatible. JTAPI supports the current APIs.

Multilevel Precedence and Preemption Support
Cisco Unified Communications Manager enables the use of supplementary services by phones that are
configured forMultilevel Precedence and Preemption (MLPP). Cisco Unified CommunicationsManager does
this by maintaining the precedence level for calls.

JTAPI does not provide the precedence level of applications.Note

Multiple Calls Per DN
Multiple calls per DN represent the ability to support multiple calls on a line (DN) and the features operation
on these calls. Prior to CiscoUnified CommunicationsManagerRelease4.0(1), the system supported amaximum
of only two calls. Cisco JTAPI now supports multiple calls per line, which allows multiple calls on the same
line and feature operation on that line.

No interface or message flow changes occurred for Multiple Calls Per DN.

Native Queuing
It is very common in a Cisco Unified CM deployment that a hunt pilot has more calls distributed through the
call distribution feature than its hunt members can handle at any given time. Native Queuing feature holds
the calls in a queue until they are answered. When a hunt member is available, the call is removed from the
queue and offerred to the hunt member.

To enable this feature, the Cisco Unified CM administrator needs to enable the check box Queue Calls in
Queuing section of theHunt Pilot configuration page. Following settings are available under Native Queuing
feature configuration:

Features Supported by Cisco Unified JTAPI
96

Features Supported by Cisco Unified JTAPI
Multi-fork Recording using CUBE Media Proxy Server

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

• Maximum Number of Callers Allowed in Queue (1–100): This is the queue depth configuration and
reflects the maximum number calls that can be in the queue at any point of time.

• Destination When Queue is Full: User Configurable Destination number to which the calls are
forwarded when the Maximum Number of callers allowed in queue limit is reached.

• Disconnect: This option results in the call getting rejected and dropped when theMaximumNumber
of callers allowed in queue limit is reached.

• Maximum Wait Time in Queue (10–3600 seconds): User configurable Maximum wait time a call can
be in the queue.

• Destination When Maximum Wait Time is met: User Configurable destination DN to which the
call is forwarded when the maximum wait time in queue is reached.

• Disconnect: This option results in the call getting rejected and dropped when the the maximum
wait time in queue is reached.

• When There Are No Hunt Members Logged In or Registered: User configurable destination DN to
which the queue feature forwards the calls when none of the hunt members in the HuntPilot are registered
or logged in.

• Disconnect: This option results in the call getting rejected and dropped when there are no hunt
members available for the dialed hunt pilot.

• Destination:User Configurable destinationDN towhich the call is forwardedwhen no hunt members
available for the dialed hunt pilot.

If a caller calls a hunt pilot with all its members busy, a CiscoHuntConnection will be created temporarily.
Then, when this feature is enabled, the hunt connection will drop and a new connection will be created which
will have the address name same as that of the hunt pilot and the address type will be CiscoAddress.INTERNAL.
This new connection will be moved to CallControlConnection.QUEUED state and it will remain in this state
until the call gets dequeued or dropped.

Cisco JTAPI exposes the following new reasons:

• CiscoFeatureReason.REASON_QUEUING

• CiscoFeatureReason.REASON_DEQUEUING

• CiscoFeatureReason.REASON_DEQUEUING_TIMER_EXPIRED

• CiscoFeatureReason.REASON_DEQUEUING_AGENTS_BUSY

• CiscoFeatureReason.REASON_DEQUEUING_AGENTS_UNAVAILABLE

The above reasons indicate when a call gets enqueued and dequeued respectively because of the various
configurations on the Hunt Pilot.

Features Supported by Cisco Unified JTAPI
97

Features Supported by Cisco Unified JTAPI
Native Queuing

The behavior is different when conferencing a queued calls. If a caller which is in a queue conferences the
call with another party, then the queued connection is dropped and a new connection is created with the address
of the hunt pilot number and the address type is CiscoAddress.UNKNOWN, and it will be moved to
CallControlConnection.ESTABLISHED state.

If a call is removed from the queue, for example when an agent becomes free, the agent will be added to the
conference and a connection will be created for it. For the Hunt Pilot, JTAPI creates a normal connection
instead of a CiscoHuntConnection. This is a limitation of JTAPI in handling a conference with Hunt Pilot.

In a case where only the Hunt member is observed, there will be no issues and JTAPI will be able to handle
it.

Note

Interface Changes

See CiscoFeatureReason

Message Sequences

See Native Queuing.

Backward Compatibility

This feature is backward compatible. Check theQueue Calls checkbox in the Hunt Pilot Configuration window
to enable this feature. By default this feature is disabled.

Network Alerting
In earlier releases of CiscoJTAPI (CiscoJTAPI versions 1.4(x.y)), when a call was made to an address outside
of the cluster, CallCtlConnNetworkReachedEv and CallCtlConnNetworkAlertingEv events were delivered
to the farend address.

In later versions of Cisco Unified Communications Manager (4.0 and above) and Cisco Unified JTAPI (2.0),
these events were not delivered. In these versions CallCtlConnection for the farend address went to the
ESTABLISHED state from the OFFERED state. The previous versions of Cisco Unified JTAPI delivered
CallCtlConnOfferedEv, CallCtlConnEstablishedEv for the farend address when a call was made across a
gateway with “overlap sending” turned off. CallCtlConnNetworkReachedEv and
CallCtlConnNetworkAlertingEv events were not delivered to the application.

In Cisco Unified Communications Manager4.0 and 4.1, the “Allow overlap sending” flag on the route pattern
configured for the gateway or the “AllowNetworkEventsAfterOffered” parameter in jtapi.ini needed to be
turned on to receive network events.

In Cisco Unified Communications ManagerRelease 5.0, if the “Allow overlap sending” flag is enabled, an
application sees ConnCreatedEv, CallCtlConnNetworkReachedEv, CallCtlConnNetworkAlertingEv, and
CallCtlConnEstablishedEv for the farend address for calls across a gateway.

If the “Allow overlap sending” flag is not enabled, an application sees ConnCreatedEv, CallCtlConnOfferedEv,
CallCtlConnNetworkReachedEv, CallCtlConnNetworkAlertingEv, and CallCtlConnEstablishedEv for the
farend address for calls across a gateway.

Features Supported by Cisco Unified JTAPI
98

Features Supported by Cisco Unified JTAPI
Network Alerting

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_178
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_337

AllowNetworkEventsAfterOffered is not available in Cisco Unified Communications Manager Release5.0.
The above events are delivered regardless of the jtapi.ini parameter setting.

Note

Backward Compatibility

This feature is not backward compatible.

Network Events
In previous releases of Cisco Unified JTAPI, when a call is made to an address outside the cluster,
CallCtlConnNetworkReachedEv and CallCtlConnNetworkAlertingEv events are delivered for the far-end
address.

In Cisco Unified Communications Manager 4.0 and later, these events do not get delivered. In these versions
CallCtlConnection for the far-end address goes to the ESTABLISHED state from OFFERED state. The
application will receive CallCtlConnOfferedEv, CallCtlConnEstablishedEv for the far-end address. The
CallCtlConnNetworkReachedEv and CallCtlConnNetworkAlertingEv events do not get delivered to the
application. To receive network events, the “Allow overlap sending” flag on the route pattern that is configured
for the gateway must be turned on.

A new jtapi.ini parameter, AllowNetworkEventsAfterOffered, that is introduced allow the application to
control the delivery of these events. Applications that need the network events but cannot turn on this flag
can use this new jtapi.ini parameter to receive network events for outgoing calls.

To turn on the parameter, complete the following steps:

Step 1 Run jtprefs and select the required options. This creates jtapi.ini file in c:\winnt\java\lib, if Cisco Unified JTAPI is installed
in the default directory. If the jtapi.ini file already exists, you can update the file directly without running jtprefs.

Step 2 Add AllowNetworkEventsAfterOffered = 1 to the end of the file and save it.
Step 3 Repeat the preceding step every time Cisco Unified JTAPI is reinstalled.

When the AllowNetworkEventsAfterOffered flag is enabled, the application will receive CallCtlConnOfferedEv,
CallCtlConnNetworkReachedEv or CallCtlConnNetworkAlertingEv and CallCtlConnEstablishedEv for the far-end
address.

New Error Code in CiscoTermRegistrationFailedEv
This event is sent to application when TerminalRegistration fails for some reason. The return value of
getErrorCode() interface indicates the type of failure. On receiving this event, application should try to reregister
the Terminal. In this version a new return value is added to this interface.
CiscoTermRegistraionFailedEv.UNKNOWN is introduced in this version to handle unknown failures.

Features Supported by Cisco Unified JTAPI
99

Features Supported by Cisco Unified JTAPI
Network Events

Backward Compatibility

This feature is backward compatible.

Noncontroller Adding of Parties to Conferences
Any party in a conference can now add participants into the conference. In previous releases, only the conference
controller could add participants.

• CiscoConferenceStartEv contains an identifier for the requestor party.

• The method getConferenceControllerAddress returns the terminal connection of the requestor.

• The new method getOriginalConferenceControllerAddress() for CiscoConferenceStartEv returns the
terminal connection of the original controller.

Park DN Monitor
Cisco Unified JTAPI applications can register to receive events when calls are parked and unparked.
CiscoProvCallParkEv events will be delivered to provider observer when the application registers for this
feature. To successfully register for this feature, ensure that the “call park retrieval allowed” flag for the user
is turned on. You can access this flag with the user configuration on Cisco Unified Communications Manager
Administration. After registering for this feature, the application will receive CiscoProvCallParkEv events
whenever a call is parked or unparked from any device in the cluster.

The following new interfaces allow applications to register and unregister for this feature:

public interface CiscoProvider {
public void registerFeature (int featureID) throws

InvalidStateException, PrivilegeViolationException;
public void unregisterFeature (int featureID) throws

InvalidStateException;
}

The featureID is CiscoProvFeatureID.MONITOR_CALLPARK_DN.

Park Monitoring and Assisted DPark Support
This feature provides a new park reversion behavior to applications invoking park request. Currently, when
the park reversion timer expires, the call is reverted to the address of the parker. With the new behavior, the
call remains parked at the park DN, even as the Park Monitoring reversion timer expires.

This feature also enables status monitoring of the parked call at the address of the parker. After a call is parked
using the existing CiscoConnection.park() JTAPI API on newer phones or directly from the phone itself,
Cisco Unified JTAPI delivers a new event CiscoAddrParkStatusEv, which includes the current status of the
parked call. The application must then add AddressObserver on the address of the parker, and enable a filter
to receive this event. If application adds an observer after the call is parked, then the events are delivered with
CAUSE_SNAPSHOT. The park status in the new event can be one of the following:

• Parked—Indicates a call was parked by the user of the application.

Features Supported by Cisco Unified JTAPI
100

Features Supported by Cisco Unified JTAPI
Noncontroller Adding of Parties to Conferences

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_327
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_327

• Reminder—Indicates the park monitoring reversion timer for the parked call has expired.

• Retrieved—Indicates a previously parked call was retrieved.

• Abandoned—Indicates a previously parked call is disconnected while waiting to be retrieved.

• Forwarded: indicates the parked call has been forwarded to the configured Park Monitoring Forwarded
No Retrieve destination, as the Park Monitoring Forward-No-retrieve timer has expired.

When the cause is CAUSE_SNAPSHOT the park status can be either Parked or Reminder state only.

On the phone, these notifications are targeted, that is, only the device parking the call can see these notifications
(devices sharing line with the parker's device does not receive similar notifications). In Cisco Unified JTAPI,
getTerminal() interface on CiscoAddrParkStatusEv has been added tomanage this. This returns the terminal
on whose address, these notifications were received and this is the terminal that parked the call.

Cisco Unified JTAPI also provides the CiscoCallID to applications in this new event. Applications may use
this to retrieve the call object. However CiscoCallID.getCall() may return null value if the call does not exist
in the provider's domain at the time this event is received.

Cisco Unified JTAPI provides a new interface CiscoAddrEvFilter to control or filter the new event notifications
to applications. Applications may get or set the filter value through the APIs getCiscoAddrParkStatusEvFilter()
and setCiscoAddrParkStatusEvFilter() on the CiscoAddrEvFilter interface. Two newmethods, getFilter() and
setFilter(), have also been provided in the CiscoAddress to get and set the values of the filters in the
CiscoAddrEvFilter interface. Applications receive the new event notification CiscoAddrParkStatusEv only
if the filter is enabled and the setFilter() is invoked on CiscoAddress. By default, the filter value for
CiscoAddrParkStatusEvFilter is false to maintain backward compatibility.

When a call is parked, the Park monitoring reversion timer starts and then expires. After this, ParkMonitoring
Forward No Retrieve timer starts. When this timer expires, and the Forward No Retrieve destination is
configured, the call is forwarded to this destination. A newCiscoFeatureReason FORWARD_NO_RETRIEVE
is delivered in the connection events, when connections are created at the forwarded destination. If the Forward
No Retrieve destination is not configured, call is forwarded back to the parker's DN, with the same reason as
when park reversion occurs (CiscoFeatureReason.PARKREMINDER).

When application invokes CiscoAddress.getAddressCallInfo(Terminal term), the CiscAddressCallInfowhich
is returned is now enhanced to include number of parked calls. This returns the number of parked calls. Cisco
Unified IP Phone 7900 Series with SIP/SCCP returns zero value even if there are calls parked by this address.

This feature is applicable only when newer phones park the call. If Cisco Unified IP Phone 7900 Series with
SIP/ SCCP, parks the call, user continues to see the existing behavior. So, if a Cisco Unified IP Phone parks
the call and is sharing a line with a Cisco Unified IP Phone 7900 Series with SIP, the new Park Monitoring
enhancements can be seen. However, if the Cisco Unified IP Phone 7900 Series with SIP or SCCP invoked
park, the old Park behavior would be seen on all the phones, if application is monitoring any of these lines.

Users can set the Park Monitoring Reversion Timer to zero and set the Park Monitoring Forward No Retrieve
Destination to the existing Park Reversion Duration timer to get the old behavior on the Cisco Unified IP
Phone (provided the Forward No Retrieve destination is not configured) if the user so desires. However, the
event notification cannot be controlled.

On Cisco Unified Communications Manager Service Parameter pages, the timers mentioned above can be
configured. These would apply only for SIP versions of future models of Cisco Unified IP Phone .

Park Monitoring Reversion timer: This timer is started as soon as the call is parked. This is the amount of
time that a call remains parked before the user is reminded that there is a parked call. The range is 0-1200
seconds, with default value of 60 seconds.

Features Supported by Cisco Unified JTAPI
101

Features Supported by Cisco Unified JTAPI
Park Monitoring and Assisted DPark Support

Park Monitoring Periodic reversion timer: The frequency in which the user is reminded about the parked call.
The range is 0-1200 seconds, with default value of 30 seconds.

Park Monitoring Forward No Retrieve timer: This timer is started when the park monitoring reversion timer
expires. This is how long, in seconds, the park reminder notification plays before the parkee is redirected to
the parker's Park Monitoring Forward No Retrieve (FNR) destination. The range is 30-1200 seconds, with
default value of 300 seconds.

Park Monitoring Forward No Retrieve Destination is configurable on the line page in Cisco Unified
Communications Manager Line page settings.

Assisted DPark provides an alternative one step way to perform DPark operation on phones. When user
performs Assisted DPark from newer phones and application is monitoring the parked party, Cisco Unified
JTAPI provides reason CiscoFeatureReason.REASON_REFER in the connection events (ConnCreatedEv,
ConnInProgressEv and CallCtlConnQueuedEv) for DPark DN. Currently when DPark is done, application
gets connection events with CiscoFeatureReason.REASON_TRANSFER.

Interface Changes

See CiscoAddrParkStatusEv

Message Sequences

See Park Monitoring Support

Backward Compatibility

Park Monitoring enhancements and Assisted DPark support are backward compatible.

The new park reversion behavior improves the user experience to allow the parked call to be retrievable for
as long as possible. It also improves the usability of the park feature by allowing the user to monitor the status
of a parked call through the new event being delivered.

Applications can conditionally enable/disable filter to receive event via setCiscoAddrParkStatusEvFilter()
API on CiscoAddeEvFilter. By default this filter is disabled and therefore maintains backward compatibility.

If the application uses a JTAPI client older than 7.1.2, the devices are not restricted but if the application tries
to observe these devices (which supports this feature to be invoked manually), JTAPI throws an exception
and marks these devices as restricted from there on.

Park Reminder
When a parked call is not retrieved for a specified time, a reminder call returns to the address that parked the
call, and Park Number connection moves to the Disconnected state. The call reconnects and moves to the
Established state. A terminal connection in Talking state gets created for the address that parked the call.

Park Retrieval
When a call is parked from an IP phone, the park number displays on the phone. Any terminal can unpark the
call by dialing the park number. When a call is unparked, a new call gets created with connections to unparked
address. The CallControlConnection for the park number in the original call, which is in the Queued state,
moves to the Disconnected state.

Features Supported by Cisco Unified JTAPI
102

Features Supported by Cisco Unified JTAPI
Park Reminder

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_340
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_341

Partition Support
Prior to Cisco Unified Communications Manager Release 5.0, JTAPI did not support partitions. JTAPI
considered addresses with the same DN, but different partitions, as same address. It created only one Address
object for such cases because addresses are identified only by their DN and not by their partition information.

Beginning with Release 5.0, JTAPI supports addresses that have the same DN but belong to different partitions
and treats them as different addresses. Partition information of the addresses is exposed to applications through
the methods specified below. Applications that want to make use of this partition support feature must use
the API provided to them through JTAPI interfaces and use the address objects accordingly.

This feature is backward compatible. JTAPI supports the current APIs that are used to open and access address
objects.

In Cisco Unified Communications Manager Release 5.0, JTAPI is partition aware, and the following
configurations are supported.

• Addresses with the same DN, in the same partition, and in different devices get treated as shared lines.

• The system does not allow addresses with the same DN, in the same partition and in the same device.

• Addresses with the same DN, in different partitions, and in the same device get treated as different
addresses. Two address objects get created for this scenario, and the application can distinguish between
the two by calling the getPartition() API on the address objects.

• Addresses with the same DN, in different partitions, and in different devices get treated as different
addresses. Two address objects get created for this scenario and the application can distinguish between
the two by calling the getPartition() API on the address objects.

Partition support changes in JTAPI are confined to the address objects and do not affect any other functions
or classes of JTAPI. The following sections specify the interface changes.

CiscoAddress Interface

A new method is provided in this class with the following signature.

string getPartition ()

Returns the partition string of the address object. Applications need to use this method to get the partition
information. JTAPI uses this partition information to distinguish between addresses that have the same
DN but belong to different partitions and sends the partition information to open the specific addresses.

For example, a provider open returns two addresses, A(1000, P1) and B (1000, P2), where A and B denote
the address objects, 1000 denotes the DN of the address objects, and P1, P2 indicate the partitions to which
the addresses belong.

Features Supported by Cisco Unified JTAPI
103

Features Supported by Cisco Unified JTAPI
Partition Support

Figure 6: Provider Open Returns Two Addresses

When the user invokes A.getPartition (), P1 gets returned while B.getPartition () returns P2.

The provider.getAddresses() method returns multiple addresses in which the Address objects have the same
DN but different partition information. An Application can use this method to distinguish between twoAddress
objects that have the same DN but belong to different partitions.

CiscoProvider Interface

The CiscoProvider interface provides the following methods:

getAddress(String number)

Returns an array of Address objects that corresponds to the number and different
partitions.

Address[]

getAddress(String number, String partition)

Returns the Address object that has the same DN as the number parameter and belongs
to the same partition as specified by the partition parameter.

Address

If two addresses A(1000, P1) and B(1000, P2) exist, where A and B denote the address objects, 1000 denotes
the DN of the address objects, and P1, P2 indicate the partitions to which the addresses belong, when an
application calls provider.getAddress(“1000”), it gets two address objects, A and B.

Features Supported by Cisco Unified JTAPI
104

Features Supported by Cisco Unified JTAPI
Partition Support

Figure 7: provider.GetAddress() Returns Two Address Objects

When the application calls A.getPartition(), it returns P1, B.getPartition() returns P2, and so on. An Application
can distinguish between the two address objects that are using the getPartition method.

Consider the case where the application calls provider.getAddress(1000, P1). In this case, the application
specifically looks for the address object whose DN is 1000 and partition is P1. In this case, “A” gets returned
by the provider object.

Figure 8: Provider Calls a Specific Address and Partition

CiscoProvCallParkEv Event

CiscoProvCallParkEv provides the following methods in this interface.

string getParkingPartyPartition()

Returns the partition string of the parking party.

string getParkedPartyPartition()

Returns the partition string of the parked party.

string getParkPartyPartition()

Returns the partition string of the park DN.

For details on the interface changes, see Cisco Unified JTAPI Extensions To view the message sequences for
partitions support, see Message Sequence Charts

Features Supported by Cisco Unified JTAPI
105

Features Supported by Cisco Unified JTAPI
Partition Support

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

Password Expiry
The administrator can use the CUCM Admin Panel to configure options for login credentials. The password
expiry configuration allows the administrator to specify the following two parameters:

1. The time before the password expires (in days) and

2. The number of days before the end of the password expiry to alert the user to change the password.

If a password is expired, JTAPI delivers an exception to the application. In a situation where a password is
going to expire soon, JTAPI delivers a new event to the application. JTAPI does not allow applications to
modify any of these values, it only reports the information.

Interface Changes

CiscoProvAuthenticationInfoEv, on page 28; CiscoJtapiExceptions, on page 27

Message Sequences

There are no message sequences.

Backward Compatibility

This feature is backward compatible.

Persistent Connection
Persistent Connection is an extension Cisco Extend and Connect feature that was implemented in Unified
Communications Manager Release 9.1. A persistent call refers to a call between the Unified Communications
manager (CTI Remote Device) and a remote destination that stays up even after calls to it are dropped. JTAPI
APIs and error codes were added.

JTAPI supports a newAPI, CiscoAddress.createPersistentCall(), which allows applications to create persistent
calls. At least one remote destination must be configured and the active remote destination must be set. There
can be only one persistent call per remote device. Persistent calls cannot be created if there is already a call
on the remote device; otherwise, the application receives
CiscoJtapiException.OPERATION_NOT_AVAILABLE_IN_CURRENT_STATE. Furthermore, no feature
invocations are allowed on or involving persistent calls (park, hold, conference, and transfer).

Two new JTAPI APIs return information about the persistent call. The CiscoAddress.getPersistentConnection()
API returns the connection object that is associated to the persistent call. It returns null if no persistent call
exists. This API also allows you to check if an address has a persistent connection created on it and from there
you can get the call object. The other newly added API is CiscoCallisPersistentCall(), which returns true if
the call is a persistent call and false if the call is a normal call.

Existing JTAPI APIs such as Provider.getCalls(), Address.getConnections(), and
Terminal.getTerminalConnections() return only the information for normal calls and do not return anything
for the persistent call. Provider.getCalls() returns all the calls that are associated with the provider, excluding
the persistent calls. Address.getConnections() returns all the connection objects that are associated with this
address, excluding the connection for the persistent call. Terminal.getTerminalConnections() returns all the
terminal connection objects that are associated with this device, excluding the terminal connection for the

Features Supported by Cisco Unified JTAPI
106

Features Supported by Cisco Unified JTAPI
Password Expiry

persistent call. This functionality helps with backward compatibility so applications do not need to make any
changes to their current implementations.

No new APIs are added to disconnect the persistent calls. Existing Call.drop() and Connection.disconnect()
JTAPI APIs can be used to disconnect or drop the persistent calls. Persistent calls cannot be dropped if there
is an active call to the remote device. Persistent calls can also be dropped in any of the following scenarios:

• The call is dropped by the remote destination (the remote destination hangs up).

• The remote destination is no longer active. If there is an active call, as soon as that call is over, the
persistent call will drop.

After they are created, persistent calls remain connected until the maximum call duration timer expires in
which case the call will be cleared.

Some of the new JTAPI Error Codes introduced as part of this feature include the following:

• CiscoJtapiException.CTIERR_CREATE_PERSISTENT_CALL_FAILED: Indicates that there is an
issue with creating a persistent call.

• CiscoJtapiException.CTIERR_PERSISTENT_CALL_EXISTS: Indicates that a persistent call already
exists.

• CiscoJtapiException.CTIERR_OPERATION_NOT_ALLOWED_ON_PERSISTENT_CALL: Indicates
that the specified operation is not allowed on a persistent call.

• CiscoJtapiException.CTIERR_DISCONNECT_PERSISTENT_CALL_FAILED_CALL_ACTIVE:
Indicates that the request to disconnect the persistent call failed because there is an active customer call.
Only when there are no active calls can the persistent call be disconnected.

• CiscoJtapiException.CTIERR_PERSISTENT_CALL_BEING_SETUP: Indicates that the request failed
because a persistent call is already being set up.

Backward Compatibility

This feature is backward compatible and existing applications are not affected by this feature.

Interface CiscoAddress Changes

CiscoAddress is enhanced with the addition of newAPIs to create a persistent call and to retrieve the connection
object that is associated to the persistent call.

createPersistentCall (Terminal terminal, String callerIDNumber, String

callerIDName)

This interface creates a persistent call for this address and will return the call object for
the newly created call. Note that CiscoProvider and the address must be in IN_SERVICE
state, otherwise InvalidStateException will be thrown. This API cannot be invoked on
external addresses. Doing so will result inMethodNotSupportedException to be thrown.
If while trying to allocate a globalCallId for the persistent call and an error occurs,
ResourceUnavailableException will be thrown. All other errors encountered will result
in PlatformException to be thrown.

CiscoCall

getPersistentConnection (Terminal terminal)

This interface will return the connection object that is associated with the persistent call.
It returns null if there is no persistent call. This API cannot be invoked on external
addresses. Doing so will result in MethodNotSupportedException to be thrown.

Connection

Features Supported by Cisco Unified JTAPI
107

Features Supported by Cisco Unified JTAPI
Persistent Connection

Interface CiscoCall Changes

CiscoCall represents a call in the JTAPI model. This interface is enhanced with the addition of a new API.

isPersistentCall ()

This interface returns true if the call is a persistent call and false otherwise (if it is a
normal call).

boolean

Interface CiscoJtapiException Changes

CiscoJtapiException contains all of the error codes that can be delivered by JTAPI to applications. This
interface is enhanced with the addition of new error codes.

public static final int

• CTIERR_CREATE_PERSISTENT_CALL_FAILED= "Failed to create Persistent Call." (0x8CCC0132)
• CTIERR_PERSISTENT_CALL_EXISTS = "Persistent Call exists." (0x8CCC0133)
• CTIERR_OPERATION_NOT_ALLOWED_ON_PERSISTENT_CALL = "Operation is not allowed on
a Persistent Call." (0x8CCC0134)

• CTIERR_DISCONNECT_PERSISTENT_CALL_FAILED_CALL_ACTIVE = "Disconnect persistent
call failing, there are active calls." (0x8CCC0136)

• CTIERR_PERSISTENT_CALL_BEING_SETUP = "Persistent Call is being set up." (0x8CCC0139)

Play Zip Tone
The Play Zip Tone feature allows Cisco JTAPI application to play zip tones on active calls. The application
specifies the type and the direction of the tone.

Zip tones are played at local or remote end of the call. They are audible and played only for IP phones. These
tones are not played if the remote side is a trunk, conference or Cisco Media Terminal or Route Terminal.

The following tones can be played:

• CiscoTone.ZIPZIP

• CiscoTone.ZIP

• CiscoTone.CALLWAITINGTONE

Sample Code

Void playTone(TerminalConnection termConn, int tone, int direction){
If (termConn ! = null){

try {
((CiscoTerminalConnection)termConn).playTone(tone, direction);
} catch (Exception e){
System.out.println("Exception for playtone request " + e);
}

Interface Changes

See CiscoTerminalConnection, CiscoTone

Features Supported by Cisco Unified JTAPI
108

Features Supported by Cisco Unified JTAPI
Play Zip Tone

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_177
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_344

Message Sequences

See Play Zip Tone

Backward Compatibility

This feature is backward compatible.

Presentation Indicator for Calls
The presentation indicator (PI) on a call provides the application with the ability to hide or reveal
Calling/Called/CurrentCalling/CurrentCalled/LastRedirecting parties name and number to the end user. JTAPI
provides functions on CiscoCall to get PI value for the party. Use this PI info to present the parties information
to the end user. These functions return a value of true or false. A value of “True” indicates that presentation
in “Allowed, ” and a value of “False” indicates the presentation is “Restricted.”

For a conference call, the interfaces on CiscoCall do not return a correct value. Applications must iterate
through all the connections in the call to get the PI value that is associated with the address for which the
connection gets created. The interface that is provided on CiscoConnection is getAddressPI().

The following new interfaces exist on CiscoCall retrieve PI values.

CiscoCall

getCalledAddressPI()

Returns the PI that is associated with getCalledAddressPI. If it returns true, the
application displays the address name. If it returns false, the application must not display
the address name.

boolean

getCallingAddressPI()

Returns the PI that is associated with getCallingAddressPI. If it returns true, the
application displays the address name. If it returns false, the application must not display
the address name.

boolean

getCurrentCalledAddressPI()

Returns the PI that is associated with CurrentCalledAddressPI. If it returns true, the
application displays the address name. If it returns false, the application must not display
the address name.

boolean

getCurrentCalledDisplayNamePI()

Returns the PI that is associated with CurrentCalledDisplayNamePI. If it returns true,
the application displays the address name. If it returns false, the application must not
display the address name.

boolean

getCurrentCallingAddressPI()

Returns the PI that is associated with getCurrentCallingAddressPI. If it returns true, the
application displays the address name. If it returns false, the application must not display
the address name.

boolean

Features Supported by Cisco Unified JTAPI
109

Features Supported by Cisco Unified JTAPI
Presentation Indicator for Calls

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_345

getCurrentCallingDisplayNamePI()

Returns the PI that is associated with getCurrentCallingDisplayNamePI. If it returns
true, the application displays the address name. If it returns false, the application must
not display the address name.

boolean

getLastRedirectingAddressPI()

Returns the PI that is associated with getLastRedirectingAddressPI. If it returns true,
the application displays the address name. If it returns false, the application must not
display the address name.

boolean

The following interface on CiscoConnection retrieves the PI value for the address that is associated with the
connection:

CiscoConnection

getAddressPI()

Returns the PI that is associated with the address on which the connection gets created.
If it returns true, the application displays the address name. If it returns false, the
application must not display the address name.

boolean

No change exist in the message flow.

Privacy On Hold
This feature enhances the privacy of private held calls. When privacy is enabled, only the phone that placed
a call on hold can retrieve that call, and the calling name and number are not displayed.

The feature provides the ability for a shared address to determine whether other shared addresses may barge
into a call. When privacy is enabled, other shared address cannot barge into the call. Privacy is a terminals
property. On IP phones, a Privacy feature button allows the users to enable and disable the privacy feature.
Privacy can be dynamically enabled and disabled for the active calls on the terminal. When Privacy is on for
a call, the TerminalConnection state available to other shared addresses is set to In Use. If Privacy status is
changed during the CallProgress, CiscoTermConnPrivacyChangedEvent is delivered to the application.

In prior releases, if Privacy is enabled and the call is put on hold, all TerminalConnections were in
TermConnHeld state and any other shared Address terminalConnection could unhold the call. In Cisco Unified
Communications Manager 4.2, if the Enforce Privacy on Held Calls service parameter is enabled, and if
Privacy is enabled for a call, putting the call on hold does not change the terminalConnections of other shared
addresses and they remain in the In Use state.

Performance and Scalability

There is no performance impact with this feature because there is no additional traffic generated between
Cisco Unified JTAPI, applications, and Cisco Unified Communications Manager.

Features Supported by Cisco Unified JTAPI
110

Features Supported by Cisco Unified JTAPI
Privacy On Hold

Progress State Converted to Disconnect State
If an outbound call is initiated through the API to an unallocated directory number across the European PSTN,
the application will perceive the ConnFailedEv event with the cause as
CiscoCallEv.CAUSE_UNALLOCATEDNUMBER. For the US PSTN, the applicationmay not see any event.

To make the behavior consistent across the European and American PSTNs and also to address backward
compatibility issues, a new service parameter UseProgressAsDisconnectedDuringErrorEnabled was added
to the jtapi.ini file starting with JTAPI Version 1.4(3.21), which, when enabled (1 = enable; 0 = disable; the
default is disable), causes applications to perceive ConnFailedEv in both cases.

Q.Signaling (QSIG) Path Replacement
QSIG Path Replacement, a network feature, optimizes the real-time protocol (RTP) path when calls are
transferred or forwarded to other PBXs that are connected through QSIG trunks. When path replacement is
in progress, a small window of time exists when the feature requests from applications would be ignored and
JTAPI would throw an exception to the application.

The Global Call ID or the call is changed when the RTP path is optimized with a direct path between the
starting terminating PBXs. JTAPI provides new interfaces to monitor the call.

QoS Support
QoS support is enhanced in this release to enable QoS (DSCP marking) in both directions of the application
<--> CTIManager connectivity. In previous releases it was enabled in only one direction: CTIManager -->
application.

The DSCP (QoS) values for both directions of the link are set by the “DSCP IP CTIManager to Application”
value in the CTIManager service parameters. The default value is CS3(precedence 3) DSCP (011000).

The “DSCP value for Audio calls” service parameter is the recommended QoS value for audio calls. Thisvalue
is exposed to JTAPI applications.

You must perform one of the following setup procedures on the client machine for JTAPI QoS to work on
Windows platforms.

Step 1 If you are running Windows 2000, follow the steps in QoS Setup on Windows 2000, on page 112.
Step 2 If you are running Windows XP or Windows Server 2003, follow the steps in QoS Setup on Windows XP Server 2003,

on page 112.

What to do next

For more information on using the Registry Editor to set the Internet Protocol Type of Service bits, see the
topic “Setsockopt is unable to mark the Internet Protocol type of service bits in Internet Protocol packet header”
on the Microsoft technical support website.

These JTAPI interfaces support QoS:

Features Supported by Cisco Unified JTAPI
111

Features Supported by Cisco Unified JTAPI
Progress State Converted to Disconnect State

Provider Interface

getAppDSCPValue()

Returns the “DSCP IP for CTI applications” service parameter. This value specifies the
DSCP value that JTAPI sets on its link to CTI. Applications can get this value by
querying the provider object by using this API every time that they get a
ProviderInServiceEvent.

int

precedenceValue = 0x00

Stores the DSCP value that CTI provides.

private int

For details on these interfaces, see Cisco Unified JTAPI Extensions To view the message flow for QoS, see
Message Sequence Charts.

QoS Setup on Windows 2000
If you are running Windows 2000, follow these steps.

Step 1 Start the Registry Editor (Regedt32.exe).
Step 2 Go to key: HKEY_LOCAL_MACHINE on Local Machine\System\CurrentControlSet\Services\Tcpip\Parameters\
Step 3 On the Edit menu, click Add Value.
Step 4 In the Value name box, enter DisableUserTOSSetting.
Step 5 In the Data Type list, click REG_DWORD and then click OK.
Step 6 In the Data box, enter a value of 0 (zero) and then click OK.
Step 7 Quit Registry Editor and then restart the computer.

QoS Setup on Windows XP Server 2003
If you are running Windows XP or Windows Server 2003, follow these steps.

Step 1 Start Registry Editor (Regedt32.exe).
Step 2 Go to key: HKEY_LOCAL_MACHINE on Local Machine\System\CurrentControlSet\Services\Tcpip\Parameters\
Step 3 On the Edit menu, point to New, and then click DWORD Value.
Step 4 Enter DisableUserTOSSetting as the entry name, and then press ENTER.

When you add this entry, the value gets set to 0 (zero). Do not change the value.

Step 5 Quit Registry Editor and then restart the computer.

Features Supported by Cisco Unified JTAPI
112

Features Supported by Cisco Unified JTAPI
QoS Setup on Windows 2000

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

Quiet Clear
QuietClear occurs at the other end when two parties are on a call, and one address goes out of service because
of a network outage, the Cisco Unified Communications Manager goes down, the application controlling
CTIPort goes down, or CTIManager goes down. At this stage, the other end of the call can only drop the call
or disconnect the connection. It cannot perform any other callControl operations.

For the party that went out of service, applications will perceive ConnDisconnectedEv and/or
TermConnDroppedEv, and the other end of the call receives ConnFailedEv with CiscoCause of
CiscoCallEv.CAUSE_TEMPORARYFAILURE.

If applications try to invoke the following features during QuietClear mode, PlatformException with error
code of CiscoJtapiException.CTIERR_OPERATION_FAILER_QUIETCLEAR gets thrown:

• Consult transfer

• Consult conference

• Blind transfer

• Hold

• Unhold

Applications may only drop the call in this mode.Note

Receiving and Responding to Media Flow Events
Whenever a media stream must be created between two endpoints, Cisco Unified Communications Manager
issues start transmission and start reception events to both endpoints. In JTAPI, the CiscoRTPOutputStartedEv
and CiscoRTPInputStartedEv events represent the start transmission and start reception events. The
CiscoRTPOutputStartedEv.getRTPOutputProperties() method returns a CiscoRTPOutputProperties object,
from which the application can determine the destination address of its peer endpoint in the call, as well as
the other RTP properties for the stream such as payload type and packet size. Similarly, the
CiscoRTPInputStartedEv.getRTPInputProperties() method returns a CiscoRTPInputProperties object that
informs the application of the RTP characteristics for the inbound stream.

At any time while media is flowing, the current CiscoRTPOutputProperties and CiscoRTPInputProperties
also remain available from the CiscoMediaTerminal.getRTPOutputProperties() and
CiscoMediaTerminal.getRTPInputProperties() methods as well. These methods throw an exception if the
CiscoMediaTerminal is not currently supposed to transmit or receive media.

When Cisco Unified Communications Manager wants the application to stop sending or receiving media as
the result of a call disconnecting or being put on hold, for example, it sends the CiscoRTPOutputStoppedEv
and CiscoRTPInputStoppedEv events. These events mean that the current RTP media stream that exists
between the two endpoints should be torn down.

Features Supported by Cisco Unified JTAPI
113

Features Supported by Cisco Unified JTAPI
Quiet Clear

Inbound Call Media Flow Event Diagram
The following table illustrates the dialogue between Cisco Unified Communications Manager and a JTAPI
application when a call is presented to an application-controlled endpoint. The events in the left column
represent JTAPI events that are sent to the CallObserver of the application, and the requests in the right column
represent methods that the application invokes.

Table 4: Inbound Media Flow Event

Application RequestDirectionJTAPI Event

ÆCallActiveEv

ConnCreatedEv

ConnProceedingEv

CallCtlConnOfferingEv

CallControlConnection.accept ()¨

ÆCallCtlConnAlertingEv

TermConnCreatedEv

TermConnRingingEv

TerminalConnection.answer ()¨

ÆConnConnectedEv

CallCtlConnEstablishedEv

TermConnTalkingEv

CiscoRTPOutputStartedEv

CiscoRTPInputStartedEv

CallControlConnection.disconnect ()¨

ÆCiscoRTPOutputStoppedEv

CiscoRTPInputStoppedEv

TermConnDroppedEv

CallCtlConnDisconnectedEv

The table above shows JTAPI events for the local connection: that is, for the application endpoint.
TheactualJTAPI meta event stream contains events that describe the state of the calling party.

Note

Features Supported by Cisco Unified JTAPI
114

Features Supported by Cisco Unified JTAPI
Inbound Call Media Flow Event Diagram

Cisco Unified Communications Solutions RTP Implementation
The Cisco Unified Communications Solutions architecture puts a premium on performance, and thus Cisco
Unified Communications Solutions phones and gateways do not implement some of the features of RTP and
its often-associated real-time control protocol (RTCP). To ensure its compatibility, applications must consider
the following points:

• Because RTCP is not supported. Cisco Unified Communications Solutions endpoints will not send RTCP
messages, and they will ignore any such messages that are sent to them.

• Cisco Unified Communications Solutions endpoints do not currently make use of the synchronization
source (SSRC) field in the RTP header. Applications must not multiplex RTP streams by using the SSRC
field, or phones and gateways may not correctly decode and present the media.

Recording
Introduction

New regulations require organizations to archive contact interactions to meet compliance directives and
Contact Centers need to guarantee the quality of service their Agents provide. Cisco’s Recording feature
enables organizations to archive the conversation of two or more parties for review, analysis, and/or legal
compliance.

The recording feature lets applications record conversations on any observed address. Three recording
configurations are available:

• No recording
• Automatic recording:

The system initiates a recording session and streams media to the configured recording device whenever
a call goes to a connected state.

• Application-controlled recording:

If application-controlled recording is configured on an address, the application can start and stop recording.
The call must exist in the connected state before the application can start recording.

The ability to record calls was introduced in Unified CommunicationsManager Release 6.0 with phone-based
built-in bridge (BIB) recording. Cisco IP Phones were instructed to send copies of conversations to supervisors
and recorders. In Release 8.0, Encrypted media (sRTP) support was added and was expanded to have the
information sent to recorders (meta-data) in Release 8.6(2).With Release 9.0 selective user controlled recording
was added to the feature

In Unified Communications Manager Release 10.0(1), the recording feature is enhanced so that Dynamic
combinations of Cisco Gateways and IP Phone are instructed to send copies of conversations to recorders
based on call flows, participants, and media requirements. Also, recording Serviceability counters and alarms
have been added to help compliance officers ensure calls are recorded by monitoring the real-time status and
historical performance of the feature.

For internal calls within a cluster between end users, the media-forking device is the end user device involved
in the call that triggers the recording session. For an external call from a recording gateway, both the end user
device and the gateway involved in the call can be used as the media-forking device. Unified Communications

Features Supported by Cisco Unified JTAPI
115

Features Supported by Cisco Unified JTAPI
Cisco Unified Communications Solutions RTP Implementation

Manager enables the administrator to select one over the other as the preferred recording media source: "Phone
preferred" or "Gateway preferred", using the device's line configuration.

If the phone preferred recording media source is selected, the phone that triggers the recording is used to fork
the media for the recording session, provided that the phone is capable of media forking and phone's BIB is
enabled. If the phone is not capable of media forking or the phone's BIB is not enabled, and the gateway
involved in the call has the media forking capability and is enabled for recording, then the gateway is used to
fork the media for the recording session. If the gateway preferred recording media source is selected, the
gateway that is already in the media path will be used to fork the media for the recording session, provided
that the gateway is capable of media forking and is enabled for recording. If gateway is not capable of media
forking or is not enabled for recording, and the phone triggering the recording is capable of media forking
and the phone's BIB is enabled, then the phone is used to fork the media for the recording session. If none of
the recording resources is available, this recording request fails. Similar to the phone-based recording,
gateway-based recording is also triggered from the end-user's device or CTI/JTAPI application.

Virtual devices without BIB such as CTI Port, Route Point, and CTI Remote Device can only be set to
Gateway-Preferred.

Note

When a gateway is registered with the same cluster as the device that initiates a recording, it is called a "Single
Cluster" gateway recording. When a gateway is registered with a cluster that is different than where the
recording request is initiated, it is called an "Inter-Cluster" gateway recording. The cluster where the recording
initiates is a recording triggering cluster (Trigger) and the cluster where the recording gateway registers to
is a recording anchoring cluster (Anchor).

The inter-cluster recording is only supported by SIP trunks.Note

When there is any mid-call feature involved with the call being recorded, the recording resource may change
due to the feature interactions. In previous Unified CommunicationsManager releases, the recording sessions
started by a near-end party continues when the far-end party can hold or transfer the call while the near-end
party remains connected. The only time the recording session restarts is when the near-end party holds and
resumes the call. However, for Gateway-based Recording, Unified Communications Manager no longer
maintains this behavior. Instead of continuing the recording session when the connected party of the near-end
changes, the recording session is re-started by the near-end party. In JTAPI, this "Recording-Re-trigger"
behavior results in extraCiscoTermConnRecordingEndEv andCiscoTermConnRecordingStartEv events
sent to applications. With the new behavior, each recording session is a complete section of the conversion
between two unique parties. A near-end connected party change can be caused by mid-call features such as
call transfer, call redirect, conference, shared line hold/resume, etc. Therefore, from JTAPI application
perspective, there can be multiple RecordingStart/Stop events within a single call. This applies to both
Gateway-based recording and Phone/BIB-based recording.

In CiscoUnified CommunicationsManager Release 10.0(1), CTI is introducing support for Gateway Recording
(in addition to existing phone-based BIB Device Recording). CTI applications, using Cisco JTAPI, is able to
differentiate a recording call's recording type and media forking device/cluster info from existing JTAPI
interface and event; and a new JTAPI event is also introduced to identify recording failure as described below.
With this new Gateway Recording feature, either the gateway or the built-in bridge (BIB) can be used as the
recording resource based on the end user's preference and the availability.

The following interfaces extend TermConnEv and are delivered to callobserver. For shared lines, the system
delivers these events to call observers on the address or terminal of the talking terminal connections.

Features Supported by Cisco Unified JTAPI
116

Features Supported by Cisco Unified JTAPI
Recording

Applications receive no events if they have only the terminal whose connection is in the INUSE or BRIDGED
state.

CiscoTermConnRecordingStartEv
CiscoTermConnRecordingStartEv

Indicates the start of recording and is delivered to the call observer of the recording initiator. Auto
recording configuration or an application request can trigger recording.

CiscoTermConnRecordingEndEv
CiscoTermConnRecordingEndEv

Indicates the end of recording and is delivered to the recording initiator.

CiscoTermConnRecordingFailedEv
CiscoTermConnFailedEv

This interface is added for Cisco Unified Communications Manager Release 10.0(1) and indicates when
a call recording failed.

Exposing Recording Media Forking Info on CiscoRecorderInfo

Cisco JTAPI provides new APIs for Release 10.0(1): getMediaForkingDeviceType(),
getMediaForkingDeviceName(), getProtocolReferenceGUID(), and getMediaForkingClusterID() to expose
various call recording media forking information of a recording call to JTAPI application. These capabilities
are exposed on the existing interface of CiscoRecorderInfo, where applications can extract from
CiscoTerminalConnection and CiscoTermConnRecordingTargetInfoEv.

Exposing Recording Media Forking Device Type on CiscoCall

With Release 10.0(1), Cisco JTAPI introduces three new forking device types:

• CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_NONE
• CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE
• CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

Exposing Cluster ID on CiscoProvider

Cisco JTAPI provides API of CiscoProvider.getClusterID(), which returns the clusterID enterprise parameter
configured for the cluster. (Note that the cluster ID is an Enterprise parameter configurable from CUCM
admin page, and when this parameter is changed by administrator, the CTIManager service and CallManager
service would need to be restarted for it to take effect).

Secured Recording

With this enhancement a recording device can record a secure call if its device security capability is same as
or more than that of the agent. A recording request fails if the recording is attempted for an authenticated
device, or if the security capability of the recorder is non-secured and that of the agent is encrypted.

Backward Compatibility

This feature is not backward compatible and existing applications can be affected with the introduction of
this new feature. That is, when mid-call feature(s) is involved, there can be recording retrigger(s) with multiple
recording sessions within a single call, applications need to coordinate these recording sessions accordingly.
This new change of behavior applies to both Gateway-based recording as well as Phone/BIB-based recording.

Features Supported by Cisco Unified JTAPI
117

Features Supported by Cisco Unified JTAPI
Recording

For detailed information about these interface changes, see the following topics:

• CiscoJtapiException

• Related Documentation

• CiscoCall

• CiscoProvider

• CiscoProviderCapabilities

• CiscoProviderCapabilityChangedEv

• CiscoProviderObserver

• CiscoRecorderInfo

• CiscoTerminalConnection

• CiscoTermConnRecordingTargetInfoEv

Redirect
JTAPI 1.2 specifies that one of the preconditions of the CallControlConnection.redirect() method specifies
for the state of the connection to be in either the CallControlConnection.OFFERING or the
CallControlConnection.ALERTING state. Cisco Unified JTAPI also allows a connection in the
CallControlConnection.ESTABLISHED state to get redirected.

The redirect() method includes the following overloaded form in the CiscoConnection interface. It allows
applications to specify the behavior that is desired when a failure occurs while a call is redirected and specifying
the calling search space, or resetting the original called field.

Applications choose the desired behavior, by passing one of the following INT parameters in the overloaded
redirect method from the CiscoConnection interface:

• Redirect drop on failure—When a call is directed to a busy or an invalid destination, Cisco Unified
Communications Manager can either drop the call if the redirect fails or leave the call at the redirect
controller. The JTAPI application can then take corrective action, such as redirecting the call to another
destination. The option for the redirect mode parameter follows:

• CiscoConnection.REDIRECT_DROP_ON_FAILURE

• CiscoConnection.REDIRECT_NORMAL

• Calling Address search space—Redirect uses the calling search space parameter to indicate which
callingSearchSpace is used. Applications can either use the calling party search space or the redirect
controller search space. The parameter options for this scenario follow:

• CiscoConnection.CALLINGADDRESS_SEARCH_SPACE

• CiscoConnection.ADDRESS_SEARCH_SPACE

• Resetting original called—The called address option parameter gets used to reset the original called
fields. The options for this scenario follow:

• CiscoConnection.CALLED_ADDRESS_UNCHANGED

Features Supported by Cisco Unified JTAPI
118

Features Supported by Cisco Unified JTAPI
Redirect

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_179
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_318
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_197
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_198
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_356
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_357
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_358
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_177
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_359

• CiscoConnection.CALLED_ADDRESS_SET_TO_REDIRECT_DESTINATION. This option
affects the fields when the call arrives at the redirect destination.

For more information, refer to the com.cisco.jtapi.extensions.CiscoConnection documentation.

For the scenario where A Calls B, B redirects to C, and C (redirect destination) does not represent a provider
observed address, JTAPI would provide CallCtlConnAlertingEv for Cwith cause code Ev.CAUSE_NORMAL.
Prior to release 5.0, the cause code specified Ev.CAUSE_REDIRECT for the same scenario.

This change kept the behavior consistent for scenarios where C observed or did not observe the provider.

When C is observed, for the same scenario, CallCtlConnAlertingEv at C is provided with CAUSE_NORMAL
from releases prior to 5.0, and that behavior continues without change.

Note

Redirect Set Original Called ID
Cisco Unified JTAPI applications can specify the preferred original called party DN in the redirect request.
The Redirect Set Original Called ID feature lets applications redirect a call on a connection to another destination
while letting the applications set the OriginalCalledID to any value. This enables applications to transfer the
call directly to the voice mail of another. For example, if A calls B and B wants to transfer the call to CVoice
Mail, applications can specify in the enhanced redirect request C as the preferred original called party and
destination party as CVoice Mail profile. With this request, calls appear in C Voice Mail profile with the Cisco
Unified Communications Manager originalCalledParty field as C. Typical voice mail applications look for
originalCalledParty information to identify a user voice mailbox.

Any application that redirects a call to a party by modifying the original called party can take advantage of
this feature.

This feature also changes the lastRedirectedAddress to the preferredOriginalCalledParty that gets specified
in the redirect request.

Note

The following callControlConnection interface applies for Redirect Set Original Called ID:

Interface CiscoConnection Extends callControlConnection With Additional Cisco Unified

Communications Manager-Specific Capabilities

redirect (java.lang.String destinationAddress, intmode, int callingSearchSpace,
java.lang.String preferredOriginalCalledParty)

This method overloads the CallControlConnection.redirect() method.

javax.telephony.Connection

For details on the interface, see Cisco Unified JTAPI Extensions To view the message flow for Redirect Set
Original Called ID, see Message Sequence Charts

Features Supported by Cisco Unified JTAPI
119

Features Supported by Cisco Unified JTAPI
Redirect Set Original Called ID

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

Redirect to Device
With Release 11.5(1), the Redirect feature of Cisco Unified JTAPI is enhanced to allow you to redirect calls
to a specific device via the deviceName parameter. Even in shared line situations, the redirected call goes to
the target device only and not to other devices that share the phone line.

To support this feature, the following methods have been enhanced with a new deviceName field:

• CiscoConnection.redirect now includes a deviceName field, which allows you to target the redirect to a
specific device. If another device shares the same phone line, that device goes into remote-in-use state.
Cisco JTAPI delivers a TermConnPassiveEv and CallCtlTermConnInUseEv to the shared line devices.

• CiscoRouteSession.selectRoute also includes a deviceName field allowing the selectRoute() method to
take an array of destination device names. The order of device names corresponds to the order of route
selected. Once the route is selected, Cisco JTAPI attempts to redirect the call to the destination device.

Table 5: Method Structure

MethodInterface

redirect(String destinationAddress, int mode, int callingSearchSpace,
int calledAddressOption, String preferredOriginalcalledParty, String
facCode, String cmcCode, int featurePriority, byte[]
applicationXMLData, String deviceName)

CiscoConnection

selectRoute(String[] routeSelected, int[] callingSearchSpace, String[]
modifyingCallingNumber,String[] preferedOriginalCalledNumber, int[]
preferedOriginalCalledOption, String[] facCode, String[] cmcCode,int[]
featurePriority, byte[][] applicationXMLData, String[] deviceName)

CiscoRouteSession

Restrictions

The following restrictions apply:

• If an invalid deviceName is passed to the redirect method, the
REDIRECT_CALL_INVALID_DEVICE_NAME error gets thrown.

• The deviceName can be used to redirect calls within the cluster only. If the application attempts to redirect
a call across clusters with the deviceName completed, the
REDIRECT_CALL_INVALID_DEVICE_NAME gets thrown. To redirect calls across clusters, the
deviceName must be null, or the application must use other redirect methods.

• The deviceName must be associated to the directory number that the application passes to the redirect
method and not any other directory number. Otherwise, the
REDIRECT_CALL_INVALID_DEVICE_NAME error gets thrown

Backward Compatibility

There is no impact on backward compatibility as the above methods are overloaded.

Features Supported by Cisco Unified JTAPI
120

Features Supported by Cisco Unified JTAPI
Redirect to Device

Message Sequence Charts

Redirect to a Device

Redundancy
Configuration requires that devices are configured into device pools and are assigned static Cisco Unified
CommunicationsManager groups. Devices register with a particular Cisco Unified CommunicationsManager
server that handles call control signaling. When a server fails, the devices failover to the backup server in the
group. When the primary server comes back online, it waits until no active calls exist on the device, then
re-homes to the primary Cisco Unified Communications Manager server. Cisco Unified JTAPI informs the
applications of this transition by sending a temporary out-of-service message while registering to the backup
server.

Redundancy in CTI Managers
Cisco Unified JTAPI also offers transparent applications for redundancy via the CTI Manager. When the
primary CTIManager fails, Cisco Unified JTAPI automatically connects to the backup CTI Manager and
communicates the reconnection to applications. Instead of connecting to a single CiscoUnified Communications
Manager server, applications now connect to a set of CTIManagers. The applications supply the CTIManager
server names when they invoke JTAPI.

Cisco Unified JTAPI and the CTIManager maintain bidirectional heartbeat signals to detect a loss of
connectivity between them. The CTIManager detects when an application no longer runs and cleans up its
allocated resources. The following figure illustrates the“Logical Representation of JTAPI, CTIManager and
Cisco Unified Communications Manager in a cluster”

After Cisco Unified JTAPI successfully connects to the primary CTIManager, it alternately will attempt to
reconnect to the primary or backup CTIManager if the JTAPI connection to the CTIManager fails.

Note

Figure 9: Logical Representation of JTAPI, CTIManager and Cisco Unified Communications Manager in a Cluster

Invoking CTIManager Redundancy
When getProvider() method on the CiscoJtapiPeer is called during the application startup, Cisco Unified
JTAPI attempts a connection to the first CTIManager in the list and tries a connection to the next CTIManager

Features Supported by Cisco Unified JTAPI
121

Features Supported by Cisco Unified JTAPI
Redundancy

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_362

if connection attempt fails with the first. If all the CTIManagers in the list are not available or if connection
is refused by all CTIManagers, an exception gets sent to the application, and no further reconnection attempts
occur. After the first successful connection, Cisco Unified JTAPI alternatively attempts to connect to the
backup or primary CTIManager when a failure to CTIManager or connection to CTIManager is detected.

The list of redundant CTIManagers designates a comma-separated list that is passed into the
CiscoJtapiPeer.getProvider(String providerString) method as a String. The usage for the providerString follows:

• providerString = CTIManager;login = XXX;passwd = YYY;appinfo = ZZZ (Non-redundant feature)

• providerString = CTIManager1, CTIManager2;login = XXX, passwd =YYY;appinfo = ZZZ (Redundant
feature)

Because the appinfo parameter is optional, the application provides no specific appinfo parameter. Cisco
Unified JTAPI generates one from a JTAPI instance ID and the local host name.

Note

Additionally, the jtapi.ini file may define different CTIManager lists to support the CiscoJtapiPeer.getServices()
method. Cisco Unified JTAPI accepts the following definition:

CtiManagers = <CTIManager1>, <CTIManager2>;<CTIManager3>

where

<CTIManager1>, <CTIManager2> specifies a redundant group.

<CTIManager3> specifies a nonredundant group.

From Unified CM Release 14SU3 onwards, support has been added to allow an application to specify a
CTIManager as having least priority. Prior to this, all CTIManagers in a redundancy group have equal
weightage. JTAPI would attempt to failover to the next availabe CTIManager in the group, if connection is
lost or not established to the current server.

This feature support is added to aid Dedicated Instance (DI) deployments that are cloud managed. It has been
extended as a general usage API for all applications.

An application needs to invoke setLeastPriorityCtiServer exposed on the <CiscoProvider>.

Once a CTIManager is marked as least priority, JTAPI includes the configured CTIManager internally into
the redundancy group. JTAPI attempts a connection to this CTIManager only if no other CTIManager is
available.

Once connected to the least priority CTIManager, JTAPI would deliver a
CiscoProvConnToLeastPriorCtiServerEv on provider to indicate it is now connected to least priority
CTIMaanger.

JTAPI internally monitors availability or reachability to the other servers in the group.

Once one of the servers are available, JTAPI would deliver a CiscoProvPrimNwReachableEv on the Provider
observer to indicate one of the other servers are reachable now.

JTAPI would later attempt a failover based on the configured fallback initiation time as specified by application
via the API.

If no time is specified, it would default to 10 min, post which JTAPI would forcefully failover application to
the CTIManager which is available now.

Features Supported by Cisco Unified JTAPI
122

Features Supported by Cisco Unified JTAPI
Invoking CTIManager Redundancy

On successful fallback, JTAPI would deliver a CiscoProvFallbackToPrimNwCompltdEv on Provider to
indicate it is no longer connected to the least priority CTIManager server.

CTIManager Failure
When Cisco Unified JTAPI detects a loss of connection to a CTIManager, the application receives notification
of this loss in service. The following events get sent to the application on the appropriate Observers:

• A CallObservationEndedEv event gets sent to all call observers on an address, and calls in progress end.
The calls get physically connected, but the application observation of the call ends because Cisco Unified
JTAPI cannot send call state changes.

• A CiscoAddrOutOfServiceEv event gets sent to all addresses on a terminal and a
CiscoTermOutOfServiceEv event gets sent to the terminal.

• This process repeats for all terminals in the provider user-controlled list. (A CiscoAddrOutOfServiceEv
event gets sent only to the addresses that have an active AddressObserver, and a
CiscoTermOutOfServiceEv event gets sent only to terminals with an active TerminalObserver.)

• The provider gets set in the out-of-service state, and the ProvOutOfServiceEv event gets delivered on
any ProviderObserver callbacks present on the provider.

Cisco Unified JTAPI attempts a connection to the next CTIManager in the list, and the ProvInServiceEv gets
sent to the ProviderObserver. The devices that previously registered under the application control get reinstated
in the new CTIManager After the device is reinstated, CiscoAddrInServiceEv and CiscoTermInServiceEv
events get sent to the application via the respective observers. All previously added observers are maintained.
If any calls exist on the devices, a snapshot of the call gets sent to the respective call observers.

CTI ports that were previously registered are reregistered with the same media parameters. RouteAddress
callbacks are maintained as before, and these calls get recovered on the new CTIManager. No call snapshot,
however, gets delivered to the RouteAddresses.

If a least priority CTIManager was set, and an application fails over to it, JTAPI delivers a
CiscoProvConnToLeastPriorCtiServerEv on Provider.

Heartbeats
Cisco Unified JTAPI and the CTIManager maintain heartbeat signals to discover a failure in either the
CTIManager or JTAPI. The CTIManager server controls the heartbeat parameters in the bidirectional heartbeat.
Applications can request a desired server heartbeat interval when they are initializing Cisco Unified JTAPI,
but the CTIManager can override it.

Applications specify the desired heartbeat parameter by using DesiredServerHeartbeatInterval in the jtapi.ini
setting.

Cisco Unified JTAPI specifies the desired heartbeat interval for the client during initialization. The CTIManager
specifies the client side heartbeat interval to Cisco Unified JTAPI and specifies the interval at which the server
(CTIManager) will send heartbeats. A failure to receive heartbeat message for twice the server-specified
interval results in a client-initiated teardown of the connection. To minimize heartbeat traffic, any messages
from the client to the server or events from the server to the client substitute for a heartbeat.

Features Supported by Cisco Unified JTAPI
123

Features Supported by Cisco Unified JTAPI
CTIManager Failure

Ringback on SIP 183 for Transferred Calls
In Release 11.0(1), Cisco JTAPI has been updated with how it responds to SIP 183 messages when a call is
transferred over a gateway or trunk. When an established call gets transferred over a trunk and a SIP 183 is
received, Cisco JTAPI moves the call to CallControlConnection.NETWORK_ALERTING state. When the
call is answered, Cisco JTAPI moves the call state to CallControlConnection.ESTABLISHED.

A new Cisco CallManager service parameter, CTI Report Ringback on SIP 183 with SDP, has been added
to configure this feature. When this sevice parameter is set to True, the above behavior applies. This is the
default setting.

If an application needs to use the legacy behavior, you can set the service parameter to False. Under this
setting, if the call call is transferred over a gateway or trunk, CTI will use the
CallControlConnection.NETWORK_REACHED state to report that the other network has been reached, but
CTI will not report back that a connection has been established.

Routing
Routing in JTAPI requires the configuration of a CTI Route Point on the Cisco Unified Communications
Manager. Multiple calls can be queued to this Route Point, but only a single line can be configured on a CTI
Route Point device.

JTAPI implementation of adjunct Routing, as described in the call center package, includes the following
actions:

• Registering route callbacks on Route Addresses

• Creating appropriate handlers in response to the various routing events (routeSelect, routeEnd)

CTI Route Points represent devices that can process any number of incoming
calls simultaneously on the same line. You can route calls by using the methods
in the javax.telephony.callcenter package, or you can accept, redirect, or disconnect
calls by using the methods in the javax.telephony.callcontrol package. You can
configure each CTI Route Point with a maximum of 34 lines. To support more
than 34 lines, provision additional route points. For details on how to configure
and administer the CTI Route Point, refer to the Cisco Unified Communications
Manager Administration Guide.

Note

The following figure shows the CTI Route Point configuration.

Figure 10: CTI Route Points

Features Supported by Cisco Unified JTAPI
124

Features Supported by Cisco Unified JTAPI
Ringback on SIP 183 for Transferred Calls

Cisco Route Session Implementation
When a call comes in to the RouteAddress, the implementation starts a Route Session thread and sends the
application a RouteEvent. This thread in turn starts a timer thread to time the application response to a
RouteEvent with either a routeSelect() or an endRoute(). If the application responds with a routeSelect (String[]
selectedRoutes), JTAPI verifies that all preconditions are satisfied and then attempts to route the call to the
first destination that is specified in the array. If the destination is a valid and available number, the call gets
routed, and the application gets a RouteUsedEvent followed by a RouteEndEvent. Otherwise, if an error
occurs in routing (which may be caused by an invalid/busy/unavailable destination), the application gets a
ReRouteEvent. JTAPI starts the Timer Thread again before it sends the re-Route Event. Because Cisco Unified
Communications Manager does not support re-Routing, if the routing was unsuccessful, either the caller will
receive a busy tone, or the call will get dropped. The application can clean up all failure instances and/or send
JTAPI an endRoute to clean up the RouteSession. If the application does not respond with an endRoute(), the
JTAPI timer once again expires, and JTAPI cleans up the Route Session by sending the application a
RouteEndEvent().

If the routing timer expires before the application returns with a selectRoute() or an endRoute() method, the
Cisco Unified Communications Manager applies same treatment as when a call is made to an unregistered
phone (that is, play fast busy). If ForwardNoAnswer is configured on the Route Point, the call immediately
forwards to that number when the timer expires.

If the application cannot respond with a valid address to which to route the call, the application may choose
to call endRoute with an error. The JTAPI specification defines three errors in the RouteSession interface:
ERROR_RESOURCE_BUSY, ERROR_RESOURCE_OUT_OF_SERVICE, and ERROR_UNKNOWN. If
an endRoute is invoked on the RouteSession, the implementation currently accepts() the call at the
RouteAddress, so the caller may begin to receive ringback. If forwarding is configured for the Route Point,
the call gets forwarded when the Forwarding Timer expires.

Select Route Timer
Configure this timer via the JTAPI.ini configuration file that has a key called RouteSelectTimeout = 5000.
Use milliseconds as the unit. The default value for this timer specifies 5 seconds; however, depending on the
needs of the application, you can extend or decrease this timer to improve Route Session cleanup efficiency.
Ensure that this timer is not unreasonably large. Each Route Session as a thread represents a call to the Route
Point, and these Route Sessions should be cleaned up. Should an application expect significant delays between
receiving the Route Event and responding with a routeSelect/endRoute event, the application would want to
appropriately extend this timer.

Forwarding Timer
You can configure the timer for Forward on No Answer that is currently systemwide (that is, it applies to all
devices on Cisco Unified CommunicationsManager) via the Cisco Unified CommunicationsManager Service
Parameters configuration. The default value for this timer specifies 12 seconds. In future releases, a separate
timer for CTI Route Points might get included, so forwarding for the route point takes effect immediately
after JTAPI accepts the call (when the application calls an endRoute or if the routing timer expires).

Route Session Extension
CiscoRouteSession acts as a Cisco Extension to the JTAPI specification. Most importantly, this extension
exposes the underlying Call object to the Applications. CiscoRouteSession.getCall() returns CiscoCall, and

Features Supported by Cisco Unified JTAPI
125

Features Supported by Cisco Unified JTAPI
Cisco Route Session Implementation

this call exposes other Call Model Objects such as the associated Addresses, Connections, and so on. The
extension also defines additional errors for the application.

Caller Options Summary
In the absence of a callback, or if RouteSession.routeSelect() or endRoute() has not responded to a routeEvent,
the caller receives nothing until

• The application can disconnect() or reject() the connection on the Route Point, and, thereby, the caller
receives a busy tone.

• The application can accept the call, and the Forward No Answer, if configured, kicks in.

• The application can drop the call. The caller holds the receiver but does not know what happened.

With a callback, if the application chooses to call an endRoute(), after endRoute() returns, the caller receives
a ringback until

• The client calls a disconnect() that would drop the call.

• The client redirects() the call.

• The forward on no answer timer that is configured via the scm.ini will kick in and forward the call unless
the preceding two options have already kicked in.

• If no forwarding is configured for the Route Point, the caller continues to receives a ringback unless the
first two options kick in.

Fault Tolerance When Using Route Points
One way for an application that uses route points to deal with fault tolerance requires connecting two JTAPI
applications to two different Cisco Unified Communications Managers, each registering a different
RouteAddress. For example, Application1 manages RouteAddress1 by using Communications Manager1.
Application2manages RouteAddress2 by using CommunicationsManager2. In CiscoUnified Communications
Manager Administration, ensure the ForwardNoAnswer configuration for these CTI Route Points is
administered, so they point to each other. In this example, RouteAddress1 would have FNA = RouteAddess2,
and RouteAddress2 would have FNA = RouteAddress1. If Communications Manager1 goes down, calls
forward to RouteAddress2, so Application2 takes over. Furthermore, both applications could be configured
to reconnect to the proper Cisco Unified Communications Manager server when they receive a
ProviderShutdown event.

Secure Conferencing
This feature informs applications whether a call is secure, allowing for secure conference calls. When the
overall security status of the call changes, secure conferencing provides applications with a notification in the
form of an event on the call. Applications receive the overall call security status of the call in the
CiscoCallSecurityStatusChangedEv when the overall call security status changes. When a terminal goes to
the talking state, JTAPI provides the call security status information to the applications. Applications can
query the security status of the call by using a new interface on CiscoCall. The system makes the security
status information available to applications when the applications start monitoring an existing call.

Features Supported by Cisco Unified JTAPI
126

Features Supported by Cisco Unified JTAPI
Caller Options Summary

In shared address scenarios, the system also reports CiscoCallSecurityStatusChangedEv to the RIU parties.
The OverallCallSecurityStatusmatches the status reported on the active terminals. For example, in a three-party
conference with A (Encrypted), B (Encrypted), C (Authenticated), and C' (Authenticated), the system reports
CiscoCallSecurityStatusChangedEv with OverallCallSecurityStatus = Authenticated to C and C'. The system
delivers this event on a per-call basis.

SRTP key information will continue to be sent for encrypted parties whether or not the
OverallCallSecurityStatus is Encrypted. For example, in a three-party conference with A (Encrypted), B
(Encrypted), and C (non-secure), the OverallCallSecurityStatus of the conference call is NotAuthenticated.
However, the media that connects A, B, and the conference bridge continues to be encrypted because they
are encrypted parties. Thus, A and B receive SRTP keys despite the OverallCallSecurityStatus.

Backward Compatibility

This feature is backward compatible. The new parameter, EnableSecurityStatusChangedEv, in the jtapi.ini
file controls the new event CiscoCallSecurityStatusChangedEv that the secure conferencing feature generates.
Applications can turn on this parameter by adding the line “EnableSecurityStatusChangedEv = 1” to the
jtapi.ini file to receive this new event. By default, this parameter does not appear in the jtapi.ini file, so event
notification is disabled. The setCallSecurityStatusChangedEv() interface on
com.cisco.jtapi.extensions.CiscoJtapiProperties lets applications set this ini parameter programmatically.

For additional information, see CiscoCallSecurityStatusChangedEv.

Secure Real-Time Protocol Key Material
This feature provides the mechanism that is needed to deliver Secure Real-Time Protocol (SRTP) key material
of an encrypted media session between authenticated end points within Cisco Unified Communications
Manager based Enterprise systems. To receive this key material, the administrator must configure the TLS
Enabled and SRTP Enabled flags in the Cisco Unified Communications Manager Administrator windows
and a TLS link must be established between JTAPI and the CTIManager.

Key materials get exposed in CiscoRTPInputKeyEv and CiscoRTPOutputKeyEv. To get these events,
applications must enable rtpKeyEvenabled in CiscoTermEvFilter. By default, filters are disabled to maintain
backward compatibility. If filters are enabled, application always get CiscoRTPInputKeyEv and
CiscoRTPOutputKeyEv. A security indicator in these events indicates whether the media is encrypted and
whether keys are available.

CiscoRTPInputKeyEv contains key material of the input stream and CiscoRTPOutputKeyEv contains key
material of the output stream. Applications can use this key material to decrypt the packets and start monitoring
or recording themedia. Applicationsmust not store this keymaterial in a way that leaves the material vulnerable
to tampering, and applications must zero out or clear the entry for these keys when they go out of scope.

This key material contains

• Key Length

• Master Key

• Salt Length

• Master Salt

• AlgorithmID

• isMKIPresent

Features Supported by Cisco Unified JTAPI
127

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_374

• Key Derivation Rate

This enhancement also supports a secure media termination for CTIPorts and RoutePoints. To do this, the
application passes in supported encrypted algorithms in CTIPort and route point register requests. The
application gets an error if no TLS link and no SRTP Enabled flags exist. Whether media are encrypted or
not depends on whether the other end is interested in secure media and whether the algorithm is negotiated
successfully.

For mid-call monitoring, if the application comes up after a call is established between two end points, the
application must query Terminal.createSnapshot() and snapshot event CiscoTermSnapshotEv.
CiscoTermSnapshotCompletedEv gets sent, which indicates whether the current media between end points
is secure or not. Applications can query CiscoMediaCallSecurityIndicator to get a security indicator for a call;
however, this does not contain any key material in the event. If no calls exist on any of the lines on the terminal,
applications only get CiscoTermSnapshotCompletedEv. To maintain backward compatibility, these events
get generated only when an application enables the snapShotRTPEnabled filter in CiscoTermEvFilter.

CiscoRTPHandle gets added in all RTP events so that applications can correlate RTP events related to a single
call. For backward compatibility, no new events are generated when there is no secure media.

For more information on SRTP, see the Secure RTP Library API Documentation by David McGrew on
SourceForge.net.

The following sections describe the interface changes for SRTP key material.

Public Interface CiscoMediaEncryptionKeyInfo

getAlgorithmID()

This method returns the media encryption algorithm for the current stream.

int

getIsMKIPresent()

An MKI indicator that indicates whether MKI is present. Key management defines,
signals, and uses the MKI.

int

getKeyLength ()

This method returns the master key length.

int

getKey()

This method returns the master key for the stream.

byte[]

getSaltLength ()

This method returns the salt length.

int

getSalt()

This method returns the salt key for the stream.

byte[]

keyDerivationRate()

Indicates the SRTP key derivation rate for this session.

int

Features Supported by Cisco Unified JTAPI
128

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

CiscoMediaSecurityIndicator

MEDIA_ENCRYPTED_KEYS_AVAILABLE

Indicates that media terminated is secured and keys are available.

static int

MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

Indicates that media is terminated in secured mode, but keys are not available because
SRTP is not enabled in Cisco Unified Communications Manager Administration User
windows. This could be because either no TLS exists or no IPSec is configured for this
application.

static int

MEDIA_ENCRYPTED_USER_NOT_AUTHORIZED

Indicates that media is terminated in secured mode, but keys are not available because
user is not authorized to get the keys.

static int

MEDIA_NOT_ENCRYPTED

Indicates that media is not encrypted for this call.

static int

CiscoRTPInputKeyEv

getCiscoMediaEncryptionKeyInfo ()

Returns CiscoMediaEncryptionKeyInfo only if the provider is opened with TLS link
and if SRTP enabled option is set for the application in Cisco Unified Communications
Manager User Administration; otherwise, it returns null.

CiscoMedia EncryptionKeyInfo

getCiscoMediaSecurityIndicator()

Returns media security indicator, which is one of the following constants from the
CiscoMediaSecurityIndicator:

MEDIA_ENCRYPTED_KEYS_AVAILABLE

MEDIA_ENCRYPT_USER_NOT_AUTHORIZED

MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

MEDIA_NOT_ENCRYPTED

int

getCallID ()

Returns CiscoCallID object if CiscoCall is present when this event is sent. If no CiscoCall
is present, this method returns null.

CiscoCallID

getCiscoRTPHandle ()

Returns CiscoRTPHandle object. Applications can get a call reference by
usingCiscoProvider.getCall(CiscoRTPHandle). If no call observer exists, or if there
was no call observer when this event is delivered, CiscoProvider.getCall(
CiscoRTPHandle) may return null.

CiscoRTPHandle

Features Supported by Cisco Unified JTAPI
129

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

CiscoRTPOutputKeyEv

getCiscoMediaEncryptionKeyInfo ()

Returns CiscoMediaEncryptionKeyInfo only if the provider is opened with TLS link
and if the SRTP enabled option is set for the applicationin CiscoUnified Communications
Manager User Administration. Otherwise, it returns null.

CiscoMedia EncryptionKeyInfo

getCiscoMediaSecurityIndicator()

Returns media security indicator, which is one of the following constantsfrom
CiscoMediaSecurityIndicator:

MEDIA_ENCRYPTED_KEYS_AVAILABLE

MEDIA_ENCRYPT_USER_NOT_AUTHORIZED

MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

MEDIA_NOT_ENCRYPTED

int

getCallID ()

Returns CiscoCallID object if CiscoCall is present when this event is sent. If no CiscoCall
is present, this method returns null.

CiscoCallID

getCiscoRTPHandle ()

Returns CiscoRTPHandle object. Applications can get a call reference by
usingCiscoProvider.getCall(CiscoRTPHandle). If no call observer exists, or if there
was no call observer when this event is delivered, CiscoProvider.getCall(
CiscoRTPHandle) may return null.

CiscoRTPHandle

CiscoTermSnapshotEv

getMediaCallSecurityIndicator ()

Returns media security status for each active call on this device.

CiscoMediaCallMediaSecurity Indicator[]

CiscoTermSnapshotCompletedEv

This event has no methods.

CiscoMediaCallSecurityIndicator

getCiscoMediaSecurityIndicator()

Returns media security indicator, one of the following constants from
CiscoMediaSecurityIndicator:

MEDIA_ENCRYPTED_KEYS_AVAILABLE

MEDIA_ENCRYPT_USER_NOT_AUTHORIZED

MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

MEDIA_NOT_ENCRYPTED

int

Features Supported by Cisco Unified JTAPI
130

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

getCallID ()

Returns a CiscoCallID object if a CiscoCall is present when this event is sent. If no
CiscoCall is present, this method returns null.

CiscoCallID

getCiscoRTPHandle ()

Returns a CiscoRTPHandle object. Applications can get a call reference by using
CiscoProvider.getCall(CiscoRTPHandle). If no callobserver exists or if there was no
callobserver when this event is delivered, CiscoProvider.getCall(CiscoRTPHandle)
may return null.

CiscoRTPHandle

CiscoRTPInputStartedEv

getCiscoRTPHandle ()

Returns a CiscoRTPHandle object. Applications can get a call reference by
usingCiscoProvider.getCall(CiscoRTPHandle). If no call observer exists, or if there
was no call observer when this event is delivered,
CiscoProvider.getCall(CiscoRTPHandle) may return null.

CiscoRTPHandle

CiscoRTPInputStoppedEv

getCiscoRTPHandle ()

Returns a CiscoRTPHandle object. Applications can get call reference by
usingCiscoProvider.getCall(CiscoRTPHandle). If no call observer exists, or if there
was no call observer when this event is delivered,
CiscoProvider.getCall(CiscoRTPHandle) may return null.

CiscoRTPHandle

CiscoRTPOutputStartedEv

getCiscoRTPHandle ()

Returns a CiscoRTPHandle object. Applications can get a call reference by
usingCiscoProvider.getCall(CiscoRTPHandle). If no call observer exists, or if there
was no call observer when this event is delivered,
CiscoProvider.getCall(CiscoRTPHandle) may return null.

CiscoRTPHandle

CiscoRTPOutputStoppedEv

getCiscoRTPHandle ()

Returns CiscoRTPHandle object. Applications can get call reference
usingCiscoProvider.getCall(CiscoRTPHandle). If there is no call observer, or if there
was no call observer when this event is delivered,
thenCiscoProvider.getCall(CiscoRTPHandle) may return null.

CiscoRTPHandle

Features Supported by Cisco Unified JTAPI
131

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

CiscoTermEvFilter

getSnapshotEnabled ()

Returns the enable/status of CiscoTermSnapshotEv andCiscoTermSnapshotCompletedEv
for the terminal.

boolean

setSnapshotEnabled (boolean enabled)

Sets enable/disable status of CiscoTermSnapshotEv. If disabled, CiscoTermSnapshotEv
and CiscoTermSnapshotCompletedEv are not sent to applications.

void

getRTPKeyEvEnabled ()

Returns the enable/disable status of CiscoRTPInputKeyEv and CiscoRTPOutputKeyEv.

boolean

setRTPKeyEvEnabled (boolean enabled)

Sets enable/disable status for CiscoRTPInputKeyEv and CiscoRTPOutputKeyEv.

void

CiscoTerminal

createSnapshot () throws InvalidStateException

This method generates CiscoTermSnapshotEv, which contains security statusof current
active call on the terminal. To access this method, the terminal must be in
CiscoTerminal.IN_SERVICE state, and CiscoTermEvFilter.setSnapshotEnabled () must
be set to True.

void

CiscoMediaTerminal

register (CiscoMediaCapability[] capabilities, int[]supportedAlgorithms)

The CiscoMediaTerminal must be in the CiscoTerminal.UNREGISTERED state and
its provider must be in the Provider.IN_SERVICE state. Thisinterface provides dynamic
registration with secure media. Ifapplications do not invoke this method, the media gets
terminated in non-secure mode.

void

register (java.net.InetAddress address, int port, CiscoMediaCapability[]

capabilities, int[] algorithmIDs)

The CiscoMediaTerminal must be in the CiscoTerminal.UNREGISTERED state, and
its provider must be in the Provider.IN_SERVICE state. This interface provides static
registration with secure media. If applications do not register this interface, the media
remains non-secured. AlgorithmIDs indicate SRTP algorithms that this CTIPort supports.
AlgorithmIDs maybe only one of CiscoSupportedAlgorithms.

void

Features Supported by Cisco Unified JTAPI
132

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

CiscoRouteTerminal

register (CiscoMediaCapability)[] capabilities, int registrationType,

int[] algorithmIDs

The CiscoRouteTerminal must be in the CiscoTerminal.UNREGISTERED state, and
its provider must be in the Provider.IN_SERVICE state. By default, media gets
terminated in non-securemode. AlgorithmIDs indicate SRTP algorithms that this CTIPort
supports. AlgorithmIDs may be only one of CiscoSupportedAlgorithms.

void

CiscoSupportedAlgorithm Constants

AES_128_COUNTER

Secured Monitoring and Recording
This feature enables Cisco JTAPI to monitor and record secured calls. Monitoring and recording of calls was
introduced in Release 6.0 of the Cisco Unified Communications Manager, but it did not support secured
monitoring or recording of calls. For this release, the feature also supports secured calls.With this enhancement
a supervisor or recorder can monitor or record a secure call only if its device security capability is same as or
more than that of the agent. If the security capability of the monitor initiator's device is less than that of the
target, the request for monitor fails. Recording request fails if the recording is attempted for an authenticated
device, or if the security capability of the recorder is non-secured and that of the agent is Encrypted.

Cisco JTAPI throws a PriviledgeViolationExceptionwith CTIERR_SECURITY_CAPABILITY_MISMATCH,
when the monitoring request is rejected due to the supervisor not meeting the security capabilities of the agent.
A new API getTransactionID() is added to CiscoTermConnMonitorInitiatorInfoEv and
CiscoTermConnMonitorTargetInfoEv.

CiscoJTAPI delivers a new event CiscoAddrMonitoringTerminatedEv when the monitoring session is torn
down. This event is delivered to the Supervisor who had started the securedmonitoring session but had dropped
off from the monitoring call.

New APIs getCiscoAddrMonitoringTerminatedEvFilter() and setCiscoAddrMonitoringTerminatedEvFilter()
have been added to the interface CiscoAddrEvFilter for applications to get or set the filter value for the
CiscoAddrMonitoringTerminatedEv. By default, the filter is set to True and the event is delivered. To stop
receiving this event, applications must set this filter to False.

As before, When a monitoring call (call used by monitor initiator) is conferenced, the final call may not have
any connection to monitor target. When monitor initiator conferences another party to a monitoring call, both
parties can to listen to the audio between monitor target and caller.

Interface Changes

CiscoJtapiException, CiscoTermConnMonitorInitiatorInfoEv, CiscoTermConnMonitorTargetInfoEv,
CiscoAddrMonitorTerminatedEv, CiscoAddrEvFilter,

Message Sequences

Secured Monitoring Use Cases, Secured Recording

Features Supported by Cisco Unified JTAPI
133

Features Supported by Cisco Unified JTAPI
Secured Monitoring and Recording

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_179
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_375
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_376
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_377
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_378
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_379
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_380

Backward Compatibility

This feature is backward compatible.

SelectRoute Interface Enhancement
The SelectRoute interface gets enhanced to take the parameters PreferredOriginalCalledNumber and
PreferredOriginalCalledOption. This enables applications to reset the OriginalCalled value to a specified
PreferredOriginalCalledNumber when the call gets routed. This interface takes a list of
PreferredOriginalCalledNumber, PreferredOriginalCalledOption, and corresponds them to the RouteSelected
list. If the call gets routed to Route at index I in the RouteSelected list, the PreferredOriginalCalledNumber
and PreferredOriginalCalledOption at index I get used. Applications get the following behavior with different
values for these parameters.

Below x, point to the index where the call is being routed. For example, if the call gets routed to Route n, then
value of x will equal n. If a PreferredOriginalCalledOption at index x is invalid or out of range, JTAPI defaults
it to CiscoRouteSession.DONOT_RESET_ORIGINALCALLED, and if PreferredOriginalCalledOption is
null, all the routing gets done with option CiscoRouteSession.DONOT_RESET_ORIGINALCALLED.

Note

When PreferredOriginalCalledOption[x] Is Set to CiscoRouteSession.RESET_ORIGINALCALLED

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list contains O1, O2, …
On, if R1 is available, then call will be routed to R1, and OriginalCalledNumber will be set to O1; if R1
is busy and R2 is available, then call will be routed to R2, and OriginalCalledNumber will be set to O2
… and so on.

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list contains O1, O2, …
Om, and m < n, if R1 is available, the call will be routed to R1, and preferredOriginalCalled will be set
to O1; if R1 is busy and R2 is available, the call will be routed to R2, and OriginalCalledNumber will
be set to O2 and so on until m. From Route m+1, if Rm+1 is available, the call will be routed to Rm+1,
and OriginalCalledNumber will be set to Rm+1, and so on. Lastly, if Rn is available, the call gets routed
to Rn, and OriginalCalledNumber gets set to Rn".

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list is NULL, then if R1
is available, the call will be routed to R1, and OriginalCalledNumber will be set to R1; if R1 is busy and
R2 is available, the call will be routed to R2, and OriginalCalledNumber will be set to R2 … and so on.

When PreferredOriginalCalledOption[x] Is Set to CiscoRouteSession.DONOT_RESET_ORIGINALCALLED

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list contains O1, O2, ..
On, the call will be routed to one of the available routes, and the OriginalCalledNumber will remain
unchanged.

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list contains O1, O2, …
Om, and m < n, the call will be routed to one of the available routes, and the OriginalCalledNumber will
remain unchanged.

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list is NULL, the call
will be routed to one of the available routes and OriginalCalledNumber will remain unchanged.

Features Supported by Cisco Unified JTAPI
134

Features Supported by Cisco Unified JTAPI
SelectRoute Interface Enhancement

When OriginalCalled gets set to PreferredOriginalCalled, LastRedirectingParty number also gets reset to
PreferredOriginalCalled.

Note

The following new or changed interfaces exist for SelectRoute Interface Enhancement:

selectRoute (java.lang.String[] routeSelected, int callingSearchSpace,

java.lang.String[] preferredOriginalCalledNumber, int[]

preferredOriginalCalledOption)

Selects one or more possible destinations for routing a call.

int

PreferredOriginalCalledOption takes one of the following values:

DONOT REESET_ORIGINALCALLED

Optional parameter value for PreferredOriginalCalledOption that specifies not to reset
OriginalCalled.

static int

REESET_ORIGINALCALLED

Optional parameter value for PreferredOriginalCalledOption that resets OriginalCalled
to preferredOriginalCalledNumber.

static int

For details on the interface changes, see Cisco Unified JTAPI Extensions To view the message flow for
SelectRoute Interface Enhancement, see Message Sequence Charts.

selectRoute() with Calling Search Space and Feature Priority
The selectRoute() has feature priority and calling search space parameters as an array. This API provides the
flexibility of different feature priorities and calling search spaces for each route selected.

Interface Changes

CiscoRouteSession

Message Sequences

selectRoute() with Calling Search Space and Feature Priority

Backward Compatibility

This feature is backward compatible. The selectRoute() API remains functional and interoperates with the
overloaded selectRoute() API.

Set MessageWaiting
SetMessageWaiting provides a method for applications to set the message-waiting lamp or indicator for an
address. Invoke the method on an address that is in the same partition as the destination.

Features Supported by Cisco Unified JTAPI
135

Features Supported by Cisco Unified JTAPI
selectRoute() with Calling Search Space and Feature Priority

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_285
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_382

The following interface specifies whether the message waiting indicator should be activated or deactivated
for the address that the destination specifies. If enable is true, message waiting activates if not already
activated. If enable is false, message waiting deactivates if not already deactivated.

{
public void setMessageWaiting (java.lang.String destination, boolean enable)

throws javax.telephony.MethodNotSupportedException,
javax.telephony.InvalidStateException,
javax.telephony.PrivilegeViolationException

}

Shared Line Support
Shared line represents the same DN appearances on multiple terminals. CiscoJtapi provides support for Shared
Line, which provides applications with the ability to control shared DN terminals, hold a call on one shared
DN Terminal and unhold the same call from another shared DN Terminal, make calls between two shared
lines, initiate a call from one shared line terminal while another active call exists on another shared line terminal
with the same DN.

Share line provides the following interfaces:

• CiscoAddress.getInServiceAddrTerminals()—Returns an array of terminals for which the address is in
service.
Terminal {} getInServiceAddrTerminals();

• CiscoAddrOutOfService.getTerminal()—Returns the terminal that is going out of service.
Terminal getTerminal();

• CiscoAddrInService.getTerminal()—Returns the terminal that is going in service.
Terminal getTerminal();

• CiscoConnection.setRequestController(TerminalConnection tc)—Allows an application to select a
terminalConnection that is associated with a connection on which you can perform park, redirect, or
disconnect operations. You need to do this in a situation where more than one active TerminalConnection
exists in a SharedLine scenario.

• CiscoConnection.getRequestController()—Returns TerminalConnection that application sets as request
controller.

• CiscoAddrAddedToTerminalEv—Gets sent when the following conditions occur:

• A Terminal/Device gets added into the user controlList that contains a SharedDN, which sends the
event to the application. In other words, if user has an address in control list, and a new device gets
added with same address in control list, this event gets sent.

• An EM (extension mobility) user logs into the terminal with a profile that contains a SharedDN. In
this scenario, this event notifies that a new terminal is added to an already existing Address.

• A new SharedDN is added to a device in a user control list

Interface getTerminal() returns the terminal that gets added to the address.

Interface getAddress() returns the address on which a new terminal is added.

Features Supported by Cisco Unified JTAPI
136

Features Supported by Cisco Unified JTAPI
Shared Line Support

• CiscoAddrRemoveFromTerminalEv—Gets sent when the following conditions occur:

• A user removes a Terminal/Device from the user controlList that contains a SharedDN. In other
words, if a user has a shared address in a control list, and one of the devices with same address gets
removed, this event gets sent.

• An EM(extension mobility) user logs out from the terminal that had a profile that contains a
SharedDN. This event notifies applications that one of the terminals is removed from an existing
Address.

• A new SharedDN (SharedLine) is removed from a device in a control list.

Interface getTerminal() returns the terminal that gets removed from the address.

Interface getAddress() returns the address from where the terminal gets removed.

The following changed or new behaviors exist for a SharedLine:

• Behavior changes for CiscoAddress event include

• JTAPI applications will receive multiple CiscoAddrInServiceEv for shared line addresses.
Applications can use CiscoAddrInServiceEv.getTerminal() to get the terminal on which address
goes in service.

• JTAPI applications receive multiple CiscoAddrOutOfServiceEv for shared line addresses.
Applications can use CiscoAddrInServiceEv.getTerminal() to get terminal on which address goes
out of service.

• The address state goes in service when a first shared line goes in service; for example, when the
first CiscoAddressInServiceEv gets received.

• The address state goes out of service when the last shared line goes out of service; for example,
when the last CiscoAddressOutOfServiceEv gets received.

• For an incoming call, all the line appearances of a shared line ring. To applications, this gets presented
as one active call (callActiveEv), one Connection(ConnCreatedEv), and multiple
terminalConnection(TermConnCreatedEv one each for each shared line).

• Calls get presented to all terminals. When a call is in a ringing state, the state of the terminal connection
equals Ringing. When a the shared line answers, the terminalConnection state goes to an active state,
while other terminalConnections on the shared line go to a passive state, and
callControlTerminalConnection for all the shared lines at this point go into a bridged state. When a call
is put on hold, all the terminal connections go into an active state, and callControllTerminalConnection
goes to a held state. At this point, any terminal can retrieve the call. The retrieving terminal
terminalConnection remains in an active state, and callControlTerminalConnection goes to a talking
state while all other shared terminals terminalConnections go into a passive state. Simultaneously,
CallControlTerminalConnection changes from a held state to a bridged state.

• A shared line can make a call to another shared line of the same DN. In this scenario, the call includes
only one connection and multiple terminal connections.

• When a shared line makes a call to another shared line of the same DN, the post condition for this equals
only one connection.

• For a shared line connectionwith two active terminalConnections (such as barge), Connection.Disconnect()
does not result in disconnected connection.

Features Supported by Cisco Unified JTAPI
137

Features Supported by Cisco Unified JTAPI
Shared Line Support

If an application is monitoring only a SharedDN Connection with only a passive or bridged
TerminalConnection, invoking any API on the connection results in a PreConditionException.

• Similar to the previous scenario, if all the connections of a call monitored by an application have only a
Passive or Bridged TerminalConnection, all APIs on the call throw a PreConditionException (such as
Call.Drop()).

• If more than one active TerminalConnection exists on a shared line, Call.drop() does not return in
CallInValid in the following scenarios:

• A normal two-party call between A and B, where A represents a SharedLine with A' and A' barged
into the call

The application does not monitor A' and B. If the application issues a Call.drop(), the A’
TerminalConnection goes into a passive state, but the call does not go InValid.

• Similar to above, if A, A' , A" and B are in a Conference Call

The application monitors only A and A', and Call.drop() does not result in the call going InValid.
Only the A and A' terminal connections go passive.

• A, A', and B, B' represent a SharedLine address

A calls B, B answers, and A' and B' barge into the call. The application monitors only A and B. In
this scenario, Call.drop() results in a TerminalConnection of A and B going passive, but the call
does not go InValid.

• If a TerminalConnection is in a passive or bridged state or Passive/InUse state, all APIs on the
TerminalConnection() throw a PreConditionException. A TerminalConnection only allows an API
Terminal ConnectionJoin() (called Barge) in the passive or bridged state. TerminalConnection does not
currently support TerminalConnection Join().

• If more than one active or talking TerminalConnections exists in a connection, applications may have
to end one before issuing an API on the connection like Redirect(), Park(), Disconnect(). You can select
TerminalConnection by using API Connection.setRequestController (TerminalConnection tc).

• If a call gets held on SharedLine terminals and an application issues a Connection.Disconnect (), the
applications may set a particular TerminalConnection through API
Connection.setRequestController(TerminalConnection tc). If requestcontroller is not set, all
HeldTerminalConnections get dropped, and connection goes to a disconnected state. If only one
HeldConnection gets dropped, the call remains present on other SharedLines terminals. The call appearance
disappears from the dropping terminal, which disallows the terminal from barging into the call or
participating in feature operations on the call.

For details on the interface changes, see Cisco Unified JTAPI Extensions To view the message flow for shared
lines, see Message Sequence Charts

Silent Monitoring
This feature provides the ability to silently monitor calls using an IP Phone. The caller represents the end
point, which calls or receives a call from the monitor target. The monitor target is the party to monitor (in a
call centre, the agent), and the monitoring party is the monitor initiator (the supervisor).

Features Supported by Cisco Unified JTAPI
138

Features Supported by Cisco Unified JTAPI
Silent Monitoring

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_187
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

The recording feature lets applications record conversations on any observed address. Three recording
configurations are available:

The silent monitoring feature lets applications listen to a live conversation between two other parties. The
monitor initiator cannot talk to either the monitor target or the caller. The feature provides notification tones
when legal compliance is required.

Only an application request can initiate monitoring. The application must send a monitor request for each call
that it wants to monitor. The system can only monitor calls that are in a connected state. On the successful
completion of a monitor request, the audio stream between the monitor target and the caller streams to the
monitor initiator. The monitor target receive a tone:

• if the monitor target is configured to receive a tone, or

• if the application requests a tone when it starts the monitor

Applications can monitor calls if they belong to the Standard CTI Allow Call Monitor user group or can be
used outside of contact center. The system delivers monitoring-related events to all call observers.

“Monitor” is a reserved word that should not be configured as display names for any lines in the system. Other
reserved words are “Conference, ” “Park Number, ” “Barge, ” and “CBarge.”

When a monitoring session is established, the terminal observer on the monitoring initiator receives Cisco
RTP events. Although the media for a silent monitoring call flows only in one direction,
getMediaConnectionMode()would returnCiscoMediaConnectionMode.TRANSMIT_AND_RECEIVE instead
of CiscoMediaConnectionMode.RECEIVE_ONLY. Applications should expect to find the same behavior in
CiscoMediaOpenLogicalChannelEv if a CTIPort is used as the monitor initiator.

When a monitoring call (the call used by the monitor initiator) is conferenced, the final call does not have any
connection to the monitor target. When the monitor initiator conferences another party into a monitoring call,
both parties can listen to the audio between the monitor target and the caller.

The following interfaces extend TermConnEv and are delivered to the call observer. For shared lines, the
system delivers these events to call observers on the address or terminal of the talking terminal connections.
Applications receive no events if they have only the terminal whose connection is in the INUSE or BRIDGED
state.

CiscoTermConnMonitoringStartEv
CiscoTermConnMonitoringStartEv

Indicates the start of monitoring and is delivered to the call observer on the monitor target. Using
getMonitorType() on this event returns the monitor type.

CiscoTermConnMonitoringEndEv
CiscoTermConnMonitoringEndEv

Indicates the end of monitoring and is delivered to the call observer on the monitor target.

CiscoTermConnMonitorInitiatorInfoEv

Exposes monitor initiator information and is delivered to the call observer of the monitor target. This
interface has one method:CiscoMonitorInitiatorInfo getCiscoMonitorInitiatorInfo ()

Returns a CiscoMonitorInitiatorInfo that exposes the terminal name and address of the monitor initiator.

CiscoTermConnMonitorTargetInfoEv

Exposes monitor target information and is delivered to the call observer of monitor target. This interface
has one method:CiscoMonitorInitiatorInfo getCiscoMonitorTargetInfo()

Features Supported by Cisco Unified JTAPI
139

Features Supported by Cisco Unified JTAPI
Silent Monitoring

Returns a CiscoMonitorInitiatorInfo that exposes the terminal name and address of the monitor target.

Two new error codes notify applications about monitoring failures:

• CTIERR_PRIMARY_CALL_INVALID is returned by CiscoException.getErrorCode() for exceptions
that occur when a monitoring request fails due to the call going idle or getting transferred.

• CTIERR_PRIMARY_CALL_STATE_INVALID is returned when the monitoring request fails due to
the call transitioning to a different state where monitoring cannot be invoked.

This release introduces a new AddressType, MONITORING_TARGET. JTAPI creates a connection on an
address of this type for a monitoring target address; CiscoAddress.getType() returns this value.

Backward Compatibility

This feature is backward compatible. Applications will not see any new events unless this feature is configured
and used on one of the application-controlled addresses. The administrator can enable this feature by adding
Standard CTI Allow Call Monitor user groups.

For detailed information about these interface changes, see the following topics:

• CiscoJtapiException

• Related Documentation

• CiscoCall

• CiscoMediaTerminal

• CiscoMonitorTargetInfo

• CiscoMonitorInitiatorInfo

• CiscoProvider

• CiscoProviderCapabilities

• CiscoProviderCapabilityChangedEv

• CiscoRecorderInfo

• CiscoTerminalConnection

• CiscoTermConnMonitorInitiatorInfoEv

• CiscoTermConnMonitorTargetInfoEv

Secured Monitoring

With this enhancement a supervisor can monitor a secure call only if its device security capability is same as
or more than that of the agent. If the security capability of the monitor initiator's device is less than that of the
target, the request for monitor fails.

Cisco JTAPI throws a PriviledgeViolationExceptionwith CTIERR_SECURITY_CAPABILITY_MISMATCH,
when the monitoring request is rejected due to the supervisor not meeting the security capabilities of the agent.
A new API getTransactionID() is added to CiscoTermConnMonitorInitiatorInfoEv and
CiscoTermConnMonitorTargetInfoEv.

Features Supported by Cisco Unified JTAPI
140

Features Supported by Cisco Unified JTAPI
Silent Monitoring

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_179
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_318
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_385
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_386
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_387
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_197
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_198
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_356
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_358
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_177
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_375
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_376

CiscoJTAPI delivers a new event CiscoAddrMonitoringTerminatedEv when the monitoring session is torn
down. This event is delivered to the Supervisor who had started the securedmonitoring session but had dropped
off from the monitoring call.

The APIs getCiscoAddrMonitoringTerminatedEvFilter() and setCiscoAddrMonitoringTerminatedEvFilter()
have been added to the interface CiscoAddrEvFilter for applications to get or set the filter value for the
CiscoAddrMonitoringTerminatedEv. By default, the filter is set to True and the event is delivered. To stop
receiving this event, applications must set this filter to False. As before, When a monitoring call (call used by
monitor initiator) is conferenced, the final call may not have any connection to monitor target. When monitor
initiator conferences another party to a monitoring call, both parties can to listen to the audio between monitor
target and caller.

Secured Monitoring Interface Changes

CiscoJtapiException, CiscoTermConnMonitorInitiatorInfoEv, CiscoTermConnMonitorTargetInfoEv,
CiscoAddrMonitorTerminatedEv, CiscoAddrEvFilter

Message Sequences

Secured Monitoring Use Cases, Secured Recording

Backward Compatibility

This feature is backward compatible.

Single Sign-On
The Single Sign-On feature allows Cisco JTAPI applications to use the single sign-on ticket to authenticate
instead of a user ID and password.

Applications fetch the service ticket for the OpenSSO server from the active directory and then pass the ticket
to Cisco JTAPI in the string used in the getProivder(String str) API. Applications can set the single sign-on
ticket as ssoticket = "ssotokenfromat".

Only end users can use this feature.

Applications using this feature need not specify the user ID and password in the getProvider string.

If an application is used by an end user and has the Standard CTI Secure Connection role enabled, then a user
ID is required in the provider string. No password is required.

This solution is designed around an active directory with a Kerberos environment to achieveWindows desktop
Single Sign-On. If an active directory with a Kerberos environment is unavailable, then an alternate equivalent
setup is available, which includes a KDC, an authentication server, and a domain controller.

Sample Code
String ssoticket = getSSOticket(); //application implementation
String providerString = cucmserver + ssoticket +";";
JtapiPeer peer = JtapiPeerFactory.getJtapiPeer (null);
try
{
Provider provider = peer.getProvider (providerString);

}
catch (Exception exp)
{
if (exp instanceof PlatformException)

Features Supported by Cisco Unified JTAPI
141

Features Supported by Cisco Unified JTAPI
Single Sign-On

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_179
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_375
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_376
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_377
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_378
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_379
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_380

{
switch (((CiscoJtapiException)exp).getErrorCode())
{
case CiscoJtapiException. CTIERR_SSO_DISABLED:
System.out.println("SSO feature not enabled on CUCM ");
break;

case CiscoJtapiException. CTIERR_SSO_AUTH_SERVER_DOWN:
System.out.println("server down");
break;

}
}
else
{
System.out.println("Exception = " + exp.toString());

}

}

SSO Cookie

JTAPI supports authentication using SSO Cookie from Release 10.0.1 and later. An SSO Cookie, once
generated, is valid for the entire session. The cookie can be reused during that session. SSOCookie is supported
only on a Secure Connection. Cisco JTAPI does not allow authentication using SSO Cookie over non-secure
connections.

Applicationsmust also provide the fully qualified name of the client and server certificates in the providerString.

The following new keywords are being introduced to be used in the provider string : ssocookie, cCert, sCert.

The providerString must be in the following format when using an SSO Cookie:

providerString = "ssocookie = <cookie>;cCert = <fully qualified client certificate>;sCert = <fully
qualified server certificate>;"

Interface Changes

See CiscoJtapiException

Message Sequences

See Single Sign-On

Backward Compatibility

This feature is backward compatible.

Single Step Transfer
This interface allows applications to transfer a call to an address. Cisco Unified JTAPI continues to support
this interface as defined in JTAPI 1.2 specification, but the events that are delivered to applications are changed
from the previous versions of Cisco Unified JTAPI.

In previous versions of Cisco Unified JTAPI, the original call goes to a held state, and a new call gets created
between the transfer controller and destination when applications use this interface. After successful completion
of transfer, both calls on transfer controller go to an IDLE state. If a transfer fails, the original call remains in
a held state, and applications retrieve the call. CiscoTransferStart and end events get delivered to the applications
at the start and completion of the transfer operation.

Features Supported by Cisco Unified JTAPI
142

Features Supported by Cisco Unified JTAPI
Single Step Transfer

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_179
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_388

Applications get the following changes:

• A new call does not get created.

• CiscoTransferStartEv and CiscoTransferEndEv do not get delivered to applications.

• The state of the original call is retained if the transfer operation fails.

The pre and post conditions of this interface did not change.

To view the message flow for Single Step Transfer, see Message Sequence Charts

SIP 3XX Redirection
The SIP Redirect server receives SIP requests and responds with 3xx(redirection) responses, which direct the
client to contact an alternate set of SIP addresses. This enhancement supports the CiscoUnified Communications
Manager Redirection (3xx) Call Control primitive in compliance with RFC 3261. The Cisco Unified
Communications Manager Redirection primitive processes SIP 3xx responses and does sequential hunting to
each contact address from the 3xx response. Cisco Unified Communications Manager Redirection primitive
also handles feature interactions that result from performing this operation. Cisco Unified JTAPI exposes new
reason codes in all CallEvs, which indicate when connection and terminalConnection are created and destroyed
as a result of this primitive.

LastRedirectAddress may change if feature interactions like JTAPI Redirect or CallForwardNoAnswer occur
when the Redirection primitive is hunting for a target. If the target does not answer and Cisco Unified
Communications Manager Redirect takes control of the call to send it to next target, lastRedirectAddress is
set to the party who originally sent the SIP 3xx response.

If a diversion header is present in the SIP 3xx response, the 3xx primitive uses the first value of the diversion
header for lastRedirectParty, and JTAPI applications will see the diversion header element as
lastRedirectAddress.

To maintain backward compatibility, JTAPI exposes the new API CiscoCallEv.getCiscoFeatureReason() in
the CiscoCallEv interface, which contains the reason as CM_REDIRECTION.

Applications should be aware that new feature-specific reason codes could be returned from this API, and
applications should provide default behavior for unrecognized reason codes.

Note

The following sections describe the interface changes for SIP 3XX Redirection.

Public Interface CiscoFeatureReason

REASON_CM_REDIRECTION

This reason indicates that event is a result of 3xx response from the CM_REDIRECTION
primitive in Cisco Unified Communications Manager.

static int

Features Supported by Cisco Unified JTAPI
143

Features Supported by Cisco Unified JTAPI
SIP 3XX Redirection

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

CiscoCallEv

getCiscoFeatureReason()

A feature specific reason for this event. Applications should make sure to handle
unrecognized reasons and provide default behavior as this interfacemay not be backward
compatible as new reasons might be added in the future.

int

SIP Phone Support
This release of Cisco Unified CommunicationsManager allows phones that run SIP to register and interoperate
with phones that run SCCP. The following sections describe the new interfaces introduced to support phones
that run SIP along with the limitations and differences in behavior with respect to phones that support SCCP.
Though not all existing features are supported on phones that run SIP, the general behavior in terms of JTAPI
events and interfaces for phones that run SIP are similar to that of a phone that runs SCCP.

JTAPI applications can only control Cisco Unified IP Phone 7900 Series that run SIP, which includes Cisco
Unified IP 7970 phones. Applications should not include Cisco Unified IP 7960, 7940, and other phones that
run the SIP protocol in their control list. JTAPI applications cannot control third-party phones that run SIP,
so third-party phones that run SIP should not be included in the control list.

In prior releases, JTAPI supported an initial feature set on phones that run SIP. In this release support is added
for the following functionality on phones that run SIP:

• Park for Phones that run SIP

• Unpark Phones that run SIP

The order of events for consult calls differs for phones that run SIP and SCCP phones. Consider the following
scenario:

Tip

1. Terminal A initiates a call to the shared line B/B'.
2. The shared line initiates a consult call to Terminal C.

If the shared line is a SIP device, the following call events occur:

• B (active) receives: OnHold -> Select -> NewCall

• B' (remote-in-use) receives: Select -> NewCall -> OnHold

However, if the shared line is a SCCP device, the call events are Select -> OnHold -> NewCall on both
terminals.

If the application is only monitoring, call.getConsultingTerminalConnection() may return null.

JTAPI supports the following features for phones that run SIP:

• Call.connect; offhook

• answer; disconnect; drop; hold, unhold

• consult; transfer; conference; redirect

Features Supported by Cisco Unified JTAPI
144

Features Supported by Cisco Unified JTAPI
SIP Phone Support

• playdtmf, deviceData

JTAPI supports the following events for phones that run SIP:

• CiscoTermDeviceStateEv, RTP events, inService, and OutOfService

• MediaTermConnDtmfEv (only out of band is supported), transfer start and end events, conference start
and end events, CiscoToneChangedEv, and CiscoTermConnPrivacyChangedEv

Behavior of phones that run SIP differ from that of phones that run SCCP in the following ways:

• Call Rejection—When a call is made to a phone that runs SIP, the phone can choose to reject the call.
In this case, applications perceive CallActive, ConnCreatedEv followed by ConnDisconnectedEv for the
address on the SIP terminal. This is similar to RP rejecting the call.

• Consult without media calls involving SIP phones should be transferred within 1.5 seconds after the call
is connected.

• For phones that run SIP, enbloc dialing is always used even if the user first goes off hook before dialing
digits. The phone waits until all the digits are collected before sending the digits to the Cisco Unified
Communications Manager . This means that CallCtlConnDialingEv is delivered only after enough digits
are pressed on the phone to match one of the configured dialing patterns.

• Applications should configure “out of band DTMF” on all devices to receive MediaTermConnDtmfEv.

Events for CTI ports, route points, and phones that run SCCP are not changed.

When a Cisco Unified IP Phone 7900 Series model that runs SIP using UDP as transport fails connectivity
with Cisco Unified Communications Manager , JTAPI applications receive the events
CiscoTermOutOfServiceEv and CiscoAddrOutOfServiceEv for the terminal and address defined for the phone.
Because of the inherent delay in UDP in detecting the connectivity loss, the Cisco Unified IP Phone 7900
Series that runs SIP may visually show as registered after applications have already been notified with the
out-of-service events.

If Cisco Unified IP Phone s 7960, 7940, and non-Cisco Unified IP Phone 7900 Series that run SIP are included
in the control list, exceptions are thrown when observers (both observer and call observers) are added to the
address or terminal and CiscoTermRestrictedEv is delivered to a provider observer. The cause for these events
would be CiscoRestrictedEv.CAUSE_UNSUPPORTED_PROTOCOL.

CiscoTerminal exposes new interface getProtocol() to indicate whether terminal is a phone that runs SCCP
or a phone that runs SIP. CiscoTerminalProtocol defines the values that are returned by getProtocol().

The following new interfaces that are defined on CiscoCall let applications get URL information for external
SIP entities.

Public Interface CiscoCall

getLastRedirectingPartyInfo()CiscoPartyInfo

getCurrentCallingPartyInfo()CiscoPartyInfo

getCurrentCalledPartyInfo()CiscoPartyInfo

getCalledPartyInfo()CiscoPartyInfo

Features Supported by Cisco Unified JTAPI
145

Features Supported by Cisco Unified JTAPI
SIP Phone Support

Public Interface CiscoPartyInfo

getUrlInfo()CiscoUrlInfo

getAddress()Address

getDisplayName()string

getUnicodeDisplayName()string

getAddressPI()boolean

getDisplayNamePI()boolean

getlocale()boolean

Public Interface CiscoUrlInfo

getUrlType()

Final int URL_TYPE_TEL

Final int URL_TYPE_SIP

Final int URL_TYPE_UNKNOWN

int

getHost()string

getUser()string

getPort()int

getTransportType()

Final int TRANSPORT_TYPE_UDP

Final int TRANSPORT_TYPE_TCP

int

Public Interface CiscoTerminal

getProtocol ()int

CiscoTerminalProtocol

PROTOCOL_NONE

Indicates an unrecognized or unknown protocol type

static int

PROTOCOL_SCCP

Indicates the device is using SCCP to communicate to Cisco Unified Communications
Manager

static int

Features Supported by Cisco Unified JTAPI
146

Features Supported by Cisco Unified JTAPI
SIP Phone Support

PROTOCOL_SIP

Indicates the device is using SIP to communicate to Cisco Unified Communications
Manager

static int

SIP REFER or REPLACE
REFER is a SIP method that is defined by RFC 3515. The REFERmethod indicates that the recipient (referee,
identified by the Request-URI) should contact a third party (referred to as the target) by using the contact
information that is provided in the request. This REFER method allows the party who is sending the REFER
(referrer) to be notified of the outcome of the referenced request.

Cisco Unified CommunicationsManager, being a Back-To-Back User Agent (B2BUA), processes both inside
and outside dialog inbound REFER on behalf of the Referee. As result of REFER, Cisco Unified
Communications Manager creates a call between the Referee and the Refer-to-Target. Ifthere is a previously
existing call between the Referrer and the Referee, the call at the Referrer gets dropped after REFER completes.

The REPLACES feature is the replacement of an existing SIP dialog with a new dialog. A SIP dialog is a call
between two SIP user agents; a Cisco Unified Communications Manager dialog is a half call (callleg). The
REPLACES feature is triggered either by REFER or by an INVITE. Cisco Unified CommunicationsManager
handles a REPLACES request on behalf of the recipient of the REPLACES header. The request is associated
with a new dialog and the requesting party is the party that wants to replace another party in the existing dialog
(call) identified in the REPLACES header. Cisco Unified Communications Manager disconnects the dialog
(call) identified in the REPLACES header and connects the requesting party.

JTAPI is enhanced to model Call events caused by the Cisco Unified Communications Manager REFER and
REPLACE features in the JTAPI call model. JTAPI provides applications with the capability to handle call
events caused by REFER and REPLACE features. JTAPI does not provide any interface for applications to
initiate REFER or REFER/INVITE with REPLACES requests; however, JTAPI can handle the call events
properly.

These two features are backward compatible. JTAPI provides events that are caused by REFER/REPLACE
with CAUSE_NORMAL. Applications can get feature-specific reasons from the new interface
CiscoCallEv.getCiscoFeatureReason().

This interface provides feature-specific reasons for current and new features, but this method will not remain
backward compatible in future releases. Applications using this interface must implement default handling
to avoid future backward-compatibility issues.

Note

The following sections describe the interface changes for SIP REFER/REPLACE.

CAUSE Provided for REFER/REPLACE

JTAPI provides CAUSE_NORMAL for events that caused by REFER/REPLACES. Applications should use
CiscoCallEv.getCiscoFeatureReason() to get the feature-specific reason.

Features Supported by Cisco Unified JTAPI
147

Features Supported by Cisco Unified JTAPI
SIP REFER or REPLACE

Interface Provided on CiscoCallEv

This interface provides CiscoFeatureReason in the JTAPI call event. Older features, such as transfer, continue
to receive the old CiscoCause that is provided by the previous interface, CiscoCallEv.getCiscoCause(). This
new interface provides REASON_TRANSFER for transfer.
com.cisco.jtapi.extensions
Interface CiscoCallEv

getCiscoFeatureReason()

This interface returns Cisco Unified Communications Manager Feature Reason.

int

Interface CiscoFeatureReason

JTAPI provides CiscoFeatureReason in Call events caused by features. CiscoFeatureReason is provided for
existing as well as new Cisco Unified Communications Manager features. For REFER and REPLACES
features, the reason would be REASON_REFER and REASON_REPLACES. This interface will provide new
reasons for any new features that may be introduced in the future, and is not backward compatible.

Applications using CiscoFeatureReason should expect to receive new reasons in later releases and must
implement default behavior to maintain the Application’s backward compatibility.

Applications that use CiscoFeatureReason should expect to receive new reasons in later releases and must
implement default behavior to maintain backward-compatibility.

Public Interface CiscoFeatureReason

REASON_REFER

Reason returned for events that are sent for REFER by Cisco Unified Communications
Manager.

static int

REASON_REPLACE

Reason returned for events that are sent for REPLACEbyCiscoUnified Communications
Manager.

static int

SIP Trunk Early Offer
The SIP Trunk Early Offer feature allows the SIP trunk to support early offer outbound calls. The SIP trunk
does not use a Media Termination Point (MTP) when the media capabilities and port information of the phone
is available.

If the media port information is not available, the Cisco Unified Communications Manager allocates an MTP
to provide an offer.

If the application enables this feature and makes a call that goes though a SIP trunk, the Cisco Unified
Communications Manager must have the IP address and the port information of the registered terminal even
before the media is established. This eliminates the need for MTP.

The following are the changes done from the JTAPI perspective:

• A new interface, CiscoBaseMediaTerminal, extends CiscoTerminal.

Features Supported by Cisco Unified JTAPI
148

Features Supported by Cisco Unified JTAPI
SIP Trunk Early Offer

• A new register() API has the following arguments:

• IP Address

• Port

• Media Capability

• Algorithm ID

• IP_V6 Address

• Addressing Mode

• Registration Type

Applications use register() API to register CiscoMediaTerminal and CiscoRouteTerminal with the following
registration types available in CiscoBaseMediaTerminal.

• CiscoBaseMediaTerminal.NO_MEDIA_REGISTRATION (applicable only for route points)

• CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION (for dynamic registration of CTI
ports and route points)

• CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT

• CiscoBaseMediaTerminal.STATIC_MEDIA_REGISTRATION (for static registration of CTI port)

• CiscoBaseMediaTerminal.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT

The applications use the register() APIs on CiscoRouteTerminal and CiscoMediaTerminal for route points
and CTI ports to specify the registration type.

Note

To enable this feature, select one of the following:

• CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT for
registration type to register a CTI port or a route point dynamically

• CiscoBaseMediaTermial.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT for
registration type to register a CTI port or a route point statically.

If an application has enabled this feature and initiated a call that goes through a SIP Trunk, CiscoJTAPI
delivers a new event CiscoMediaOpenIPPortEv. On recieving this event, applications query for the registration
type using the API getRegistrationType(), which is exposed on this interface, and do the following based on
the value returned.

• If return value is
CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT,
applications must set the RTP Parameters and open the port. At present, the applications set the RTP
parameters upon receiving CiscoMediaOpenLogicalChannelEv for dynamically registered
CiscoMediaTerminal and CiscoRouteTerminal.

• If return value is
CiscoBaseMediaTerminal.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT,

Features Supported by Cisco Unified JTAPI
149

Features Supported by Cisco Unified JTAPI
SIP Trunk Early Offer

applications must open the port. At present, most of the applcations open statically registered terminals
when they receive RTP events.

If an application tries to register a terminal, which is already registered with registration type as
CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT or
CiscoBaseMediaTerminal.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT, with a
different registration type, JTAPI throws a PlatformException with the error code as
CiscoJtapiException.CTIERR_MEDIA_ALREADY_TERMINATED_DYNAMIC_GETPORT_SUPPORT
or CiscoJtapiException.CTIERR_MEDIA_ALREADY_TERMINATED_STATIC_GETPORT_SUPPORT,
respectively.

A newAPI, isRTPRequired(), is also exposed on the interface CiscoMediaOpenLogicalChannelEv to indicate
if the applications must set the RTP parameters or not when they receive this event.

Applications must check the API when they recieve the CiscoMediaOpenLogicalChannelEv and set the RTP
Parameters only when the return value is true.

Early offer is not supported for IPv6 calls in release 8.5(1).Note

If an application registers a terminal with registration type as
CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT or
CiscoBaseMediaTerminal.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT and the IP
addressing mode as IPv6, the registration follows but this feature does not come into effect. The applications
do not receive the CiscoMediaOpenIPPortEv.

The application must close the ports when it receives media termination events or when a call is disconnected.

When IPv6 support is added, the application receives two CiscoMediaOpenIPPortEv, for dual mode devices,
one for IPv4 and the other for IPv6 addresses. When the call is answered, application closes the unused port
based on MediaIPAddressingType in CiscoMediaOpenLogicalChannelEv.

The service parameter, Fail Call Over SIP Trunk if MTP Allocation Fails, decides if the call must go through
as a delayed offer or not. If applications do not set the RTP parameters when they receive
CiscoMediaOpenIPPortEv for a dynamically registered terminal with get port support, this service parameter
decides if the call must go through as a delayed offer or not.

Interface Changes

See CiscoBaseMediaTerminal, CiscoMediaOpenIPPortEv, CiscoMediaOpenLogicalChannelEv,
CiscoJtapiException

Message Sequences

See SIP Trunk Early Offer

Backward Compatibilty

This feature is backward compatible.

This feature is applicable only when applications register the CiscoMediaTerminals and CiscoRouteTerminals
with registrationType as CiscoTerminal. DYNAMIC_MEDIA_REGISTRATION_GET_PORT or
CiscoBaseMediaTerminal. STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT.

Features Supported by Cisco Unified JTAPI
150

Features Supported by Cisco Unified JTAPI
SIP Trunk Early Offer

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_391
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_392
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_393
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_179
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_394

Star (*) 50 Update
The Star (*) 50 feature enables you to divert a call to original called party (value returned by
CiscoCall.getCalledAddress() method) and the called party (value returned by
CiscoCall.getCurrentCalledAddress() method) from phone UI. After pressing the iDivert softkey, a menu
displays that identifies the names of the original called party and the called party.

The user selects one of the two names and the call is redirected to the voice mailbox of the selected party.
With the legacy iDivert, the call is diverted to original called party voice mailbox by just pressing iDivert
softkey. Cisco Unified CommunicationsManager Administration introduced the following Service parameters
to configure this feature:

• iDivert Legacy Behavior—Determines whether the phone uses the legacy iDivert behavior when a user
presses the iDivert softkey or the enhanced *50 iDivert behavior. If the iDivert legacy service parameter
is set to true, the iDivert legacy behavior is adopted and vice versa.

• Allow QSIG during iDivert–Determines whether iDivert legacy is allowed in deployments that have
voice messaging integration over QSIG trunks and only used when the Use Legacy iDivert service
parameter is set to true.

• iDivert User Response timer–Determines the number of seconds that Cisco Unified Communications
Manager Administration waits for a response from the user before the iDivert screen is removed. If no
user action occurs by the time this timer expires, the screen is removed from the phone. If the Use Legacy
iDivert service parameter is set to true, Cisco Unified Communications Manager Administration ignores
this parameter.

There is no interface change at JTAPI layer for this feature. The behavior changes from JTAPI application
point of view means that Calls could either go to voice mail of OrigicalCalled Party or Called.

Backward Compatibility

This feature is backward compatible.

Super Provider (Disable Device Validation)
When a JTAPI application user is configured, the system administrator normally associates a certain set of
terminals (Cisco Unified IP Phones and devices) with this application user, who can control and monitor only
this set of terminals. The Super Provider feature gives applications the ability to control and monitor any
terminal in a Cisco Unified Communications Manager cluster.

The new createTerminal() new interface in CiscoProvider lets the application create a terminal by specifying
a terminalName. JTAPI does not provide the capability to get the terminalName through any interface. The
CiscoProvider.createTerminal(terminalName) returns the terminal. If the terminal already exists in the provider
domain, JTAPI returns the existing terminal.

A second new interface, CiscoProvider.deleteTerminal(), lets the application delete the CiscoTerminal objects
that are created by using the CiscoProvider.createTerminal() interface. If the terminal object does not exist
or the application did not create the terminal with the CiscoProvider.createTerminal() interface, JTAPI throws
exceptions.

JTAPI also provides a new interface on CiscoProviderCapabilities, canObserveAnyTerminal(), which can be
enabled for application users through Cisco Unified Communications Manager Administration user

Features Supported by Cisco Unified JTAPI
151

Features Supported by Cisco Unified JTAPI
Star (*) 50 Update

configuration. Applications can use this interface to determine whether they have sufficient capability to
invoke the createTerminal(terminalName) interface. If the application does not have sufficient capability and
this interface is invoked, JTAPI throws a PrivilegeViolationException. If the application provides a
terminalName that does not exist in the Cisco Unified Communications Manager cluster, JTAPI throws a
InvalidArgumentException.

Superprovider and Change Notification
Superprovider enhancements for JTAPI in this release consist primarily of the following changes.

When the “Superprovider privilege” gets disabled fromCiscoUnified CommunicationsManager Administration
after a provider opens, JTAPI gets notified through a CTI Change Notification Event and cleans up all the
devices that it has opened that are not in its control list.

JTAPI informs applications about the change using the “CiscoProviderCapabilityChangedEvent.” This new
event gets issued when the flag changes and indicates whether the flag has been enabled or disabled. When
a device that is not in the control list is opened in the Superprovider mode, then moved to the control list,
JTAPI moves the device into its control list.

• When a normal application receives a “CiscoProviderCapabilityChangedEvent”with the flag set, it means
the Superprovider privilege has been granted to it, and it can start acquiring devices not in its control list.

• When a Superprovider application receives a “CiscoProviderCapabilityChangedEvent” with the
Superprovider flag not set, it means that the Superprovider privilege has been removed for it. The following
sequence of events then occurs:

• Applications receive a Provider OOS event and all devices acquired/opened by it are closed.

• Applications receive a CiscoTermRemovedEv for all devices not in the control list that have been
acquired or opened.

• Applications receive a Provider inService event when JTAPI succeeds in reconnecting to CTI as a
normal user.

• Applications receive device and line information.

• Applications receive CiscoTermCreatedEv for all controlled devices that were open before the
provider went OOS.

• JTAPI notifies applications by using the “CiscoProviderCapabilityChangedEvent” when the “park DN
monitoring” flag is changed from Cisco Unified Communications Manager Administration.

• When an application receives this event with the flag set, it does a register feature for the controlling
park DN.

• When an application receives this event with the flag not set, JTAPI again informs applications by
using a “CiscoProviderCapabilityChangedEvent” and closes all the park DN addresses.

• JTAPI notifies applications by using the CiscoProviderCapabilityChangedEvent” when the “change
calling party number” flag is changed from Cisco Unified Communications Manager Administration.

• When an application receives this event with the flag set, it can change the calling party number.

• When an application receives this event with the flag not set, it cannot change the calling party
number.

Features Supported by Cisco Unified JTAPI
152

Features Supported by Cisco Unified JTAPI
Superprovider and Change Notification

Applications should not change the calling party number when this flag is disabled.

• When a device that is not in the control list is opened or acquired by Superprovider, and is then deleted
from Cisco Unified Communications Manager Administration, JTAPI closes the terminal object and
sends a CiscoTermRemovedEvent to the application for that device.

Interface Changes

As a part of the Superprovider and change notification enhancements, JTAPI exposes the following API to
applications. The JTAPI implementation for Superprovider and the handling of certain Provider capabilities
has changed as a result. Superprovider enhancements for JTAPI in this release consist of the JTAPI QBE
interface, changes in JTAPI behavior, and the new API which is exposed to applications.

JTAPI delivers CiscoProviderCapabilityChangedEv to the applications, with the following format. Applications
should be able to receive and process this new event from JTAPI.

public interface CiscoProviderCapabilityChangedEv {
public CiscoProviderCapabilities getCapability ();

}

CiscoProviderCapabilities have the following new methods for setting calling party modify privilege for the
provider:

public boolean canModifyCallingParty();
public void setCanModifyCallingParty(boolean value);

CiscoProviderCapabilityChangedEv is delivered to the applications with the appropriate flag values.

After this, the following sequence of events occurs:

• JTAPI sends provider OOS events to the application and device/line OOS to devices and lines in the
control list that are open.

• JTAPI then tries to reconnect to CTI.

• If reconnect succeeds, JTAPI sends a provider inService event and reopens all the devices in the
control list that were previously open.

• If reconnect does not succeed, JTAPI shuts down the provider and sends a ProviderClosedEvent.

• If Superprovider privilege is added, JTAPI sends a CiscoProviderCapabilityChangedEv to the applications
with the appropriate flag values.

• If the MonitorParkDN flag is enabled, JTAPI sends a CiscoProviderCapabilityChangedEv with the
monitor park DN flag set to true.

• If the MonitorParkDN flag is disabled, JTAPI sends a CiscoProviderCapabilityChangedEv with the
monitor park DN flag set to false.

JTAPI also closes all the park DN addresses and delivers a CiscoAddrRemovedEv to applications.

• When the ModifyCgPn flag is changed, JTAPI sets a flag in the provider object that is checked during
redirect scenarios, and applications are accordingly allowed or denied permission to change the calling
party.

JTAPI also delivers a CiscoProviderCapabilityChangedEv with the flag set to modify CgPn.

Features Supported by Cisco Unified JTAPI
153

Features Supported by Cisco Unified JTAPI
Superprovider and Change Notification

CiscoProvider Interface

hasSuperproviderChanged()

Tells the application whether the Superprovider privilege changed.

boolean

hasModifyCallingPartyChanged()

Tells the application whether the ModifyCgPn privilege changed.

boolean

hasMonitorParkDNChanged()

Tells the application whether the Park DN monitoring privilege changed.

boolean

Backward Compatibility

This feature is not backward compatible.

Support for Cisco Unified IP Phone 6901
Cisco Unified IP Phone 6901 is a new IP phone with keypad similar to other basic Cisco IP phones but this
phone does not have display, speaker phone, or head set jack. This phone supports only SCCP protocol.
Features such as Park, Unpark, Call Pickup, Group Call Pickup, Direct Transfer, Call Forward All, and Join
are not supported as softkeys are not provided for these features. These features are supported only fromCisco
Unified CommunicationManager. Cisco Unified IP Phone 6901 is a one line device and can support two calls
per line. So, features such as Join Across Lines and Direct Transfer Across Lines cannot be supported by
these devices.

One of the limitations of this phone is that to intiate or answer a call, the phone must be off-hook. If the phone
is on-hook and the user initiates or answers a call, JTAPI throws InvalidStateException to the application
with error code as CiscoJtapiException.OPERATION_NOT_AVAILABLE_IN_CURRENT_STATE.

Another limitation is that Cisco Unified IP Phone 6901 does not accept XSI objects from applications, but if
the application calls sendData() API for these phones, JTAPI throws an exception for the request to the
applicationwith the error code as CiscoJtapiException.COMMAND_NOT_IMPLEMENTED_ON_DEVICE.

Table 6: List of Supported or Unsupported Features on Cisco Unified IP Phone 6901

ScopeSupported/UnsupportedFeature

From application onlySupportedPark

From application onlySupportedUnPark

From application onlySupportedCallPickup

From phone and applicationSupportedHold/Retrieve

From phone and applicationSupportedDirectTransfer

UnsupportedsendData() API

As only one line can be configured on the
phone

UnsupportedJoinAcrossLines

Features Supported by Cisco Unified JTAPI
154

Features Supported by Cisco Unified JTAPI
Support for Cisco Unified IP Phone 6901

ScopeSupported/UnsupportedFeature

As only one line can be configured on the
phone

UnsupportedDirectTransferAcrossLines

From phone onlySupportedAutoBarge

BIB cannot be configured on the phoneUnsupportedRecording

From application only

If 6901device is a supervisor.
If it is an agent then
monitoring is not supported.

Note

SupportedMonitoring

SupportedHunt-list support

From phone and application.SupportedConference

From application only.SupportedCallForwardAll

From application only.SupportedRedirect

UnsupportedEM-Login

Intercom line cannot be configuredUnsupportedIntercom

Interface Changes

See CiscoJtapiException

Message Sequences

See Support for Cisco Unified IP Phone 6901

Backward Compatibility

This feature is backward compatible.

Support for Cisco Unified IP Phone 6900 Series
This feature allows Cisco Unified JTAPI applications to control terminals with rollover mode enabled. In
rollover mode, terminals are configured with multiple addresses with the same DN but in different partitions
or with different DNs. When rollover mode is enabled, consult calls can be created on the next available
address on the terminal. Cisco Unified IP Phone 6900 Series can be configured with rollover mode.

A new role Standard CTI Allow Control of phones supporting rollover mode has also been introduced to
allow applications to control terminals with rollover enabled. Applications that support this new behavior
where consult calls are created on a different address, must include this role to their application or end user.
If not, all terminals configured with rollover mode are restricted and exceptions are thrown to addObserver()
requests.

Features Supported by Cisco Unified JTAPI
155

Features Supported by Cisco Unified JTAPI
Support for Cisco Unified IP Phone 6900 Series

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_179
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_396

Applications that support this behavior are must add call observer on the terminal or add call observers on all
addresses on the terminal. Since consult call is created on the next available addresses, exceptions are thrown
to consult requests if call observers are not added to all addresses.

Join across lines must be enabled on Cisco Unified IP Phone 6900 Series to successfully complete conferences
from applications.

Cisco Unified Communications Manager Release 8.6, JTAPI supports multiple calls per line configuration
on Cisco Unified IP Phone 69xx series. Prior to Release 8.6, Cisco Unified IP Phone 69xx series supported
only one call per line, where Maximum Number of Calls/Busy Trigger defined for a line (MNC/BT) cannot
exceed 2/1. With multiple calls per line, Cisco Unified IP Phone 69xx series supports more than one call per
line, and MNC/BT is configured to values greater than 2/1.

Outbound Rollover Behavior for 69xx Phones

With MNC/BT configured as 2/1,

When a second call is initiated from a line, the new call will be created on (rollover to) the second line. Cisco
Unified Communications Manager Release 8.6 supports outbound rollover. If MNC is greater than 2, there
can be multiple calls on the line before the rollover occurs. For both Cisco Unified Communications Manager
Release 8.5 and 8.6, the outbound rollover occurs if MNC-1 calls are active on the line.

Outbound Rollover is supported only on the endpoints. Using the JTAPI application, you can make MNC
calls for a line; however, rollover will not happen at MNC-1, even if a second line exists).

Interface Changes

See CiscoProviderCapabilities and CiscoProviderCapabilityChangedEv

Message Sequences

See Support for Cisco Unified IP Phone 6900 Series

Backward Compatibility

This feature is backward compatible.

Support for 100+ Directory Numbers
This feature enables users to have more than 100 Directory Numbers associated with a Device (Phones, CTI
Ports and Route Points). JTAPI supports this feature and displays the corresponding addresses on the terminal
to the application.

Interface Changes

There are no interface changes.

Message Sequences

There are no message sequences.

Backward Compatibility

This feature is backward compatible.

Features Supported by Cisco Unified JTAPI
156

Features Supported by Cisco Unified JTAPI
Support for 100+ Directory Numbers

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_198
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_356
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_398

Support for VMware
From Cisco Unified Communications Manager Release 8.0(1), Cisco JTAPI can be used on VMware ESXi
version 4.0. The application can useWindows 2003 andWindows 2008 virtual machines on the above VMware
version to run Cisco JTAPI. For more information on the supported Java Virtual Machines, see the following
table.

Table 7: Supported JVM Versions for Cisco Unified Communications Manager

Unified CM
12.5

Unified CM
12.0

Unified CM
11.5

Unified CM
11.0

Unified CM
10.5

Unified CM
10.0

VersionOperating
System

Not supportedNot supportedNot supportedNot supportedNot supportedNot supportedAS 3.0Linux

SupportedNot supportedNot supportedNot supportedNot supportedNot supportedRHEL 7 (64
bit)

Linux

Not supportedNot supportedNot supportedNot supportedNot supportedNot supportedRHEL 3.7Linux

RH 5.5 Oracle
JVM 1.7.0.79

RH 5.5 Oracle
JVM 1.7.0.79

RH 5.5 Oracle
JVM 1.7.0.79

RH 5.5 Oracle
JVM 1.7.0.76

RH 5.5 Oracle
JVM 1.7.0.40

RH 5.5 Sun
JVM 1.6.0.29

RHEL (32 bit)Linux

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

RHEL 5.5 (64
bit)

Linux

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.7.0.40

RHEL 6 (64
bit)

Linux

Not supportedNot supportedNot supportedNot supportedNot supportedNot supported6.2 on Sparc
and x86

Solaris

Not supportedNot supportedOracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

Windows XP
2003, 2008
Server(32-bit)

Windows

Not supportedNot supportedOracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

Vista (32 bit)Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

Windows 7(32
and 64 bit)
2008 Server
R2(64 bit)

Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

Windows 8(32
and 64 bit)

Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

Windows
Server 2012
R1 (32 bit)

Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Not supportedWindows
8.1(32 and 64
bit)

Windows

Features Supported by Cisco Unified JTAPI
157

Features Supported by Cisco Unified JTAPI
Support for VMware

Unified CM
12.5

Unified CM
12.0

Unified CM
11.5

Unified CM
11.0

Unified CM
10.5

Unified CM
10.0

VersionOperating
System

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.7.40

Windows
Server 2012
R2 (64 bit)

Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Not supportedWindows
10(32 and 64
bit)

Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Not supportedNot supportedNot supportedWindows
Server 2016(64
bit)

Windows

Interface Changes

There are no interface changes.

Message Sequences

There are no message sequences.

Backward Compatibility

Not applicable.

Swap or Cancel and Transfer or Conference Behavior
This feature enables Cisco Unified JTAPI support for Swap and Cancel operations on supported IP phones.

When a Swap operation is invoked, it puts an active call on hold and retrieves the held call. When a Cancel
operation is invoked, it breaks the consulting relationship between primary and consulting calls. These
operations can only be invoked from supported phones. The Cisco Unified JTAPI interface does not allow
SWAP/CANCEL operations to be invoked from the application. Whenever a user presses the SWAP key on
a phone, JTAPI delivers CallCtlTermConnHeldEv and CallCtlTermConnTalkingEv for active and held calls
and indicates their state change with CiscoFeatureReason.REASON_NORMAL.

When a CANCEL operation is invoked and the relationship is broken between primary and consulting calls,
Cisco Unified JTAPI is still able to use the Direct Transfer or Join feature to complete the transfer or conference
operation. If the user presses the CANCEL key on phone after initiating a consult, the conference or transfer
is not completed. Pressing the CANCEL key on phone triggers a Cancel notification to the application; Cisco
Unified JTAPI sends CiscoCallFeatureCancelledEv to indicate the CANCEL operation.
CiscoCallFeatureCancelledEv.getConsultCall() returns the earlier created consult call.

When the CANCEL operation is performed during a connected transfer or conference, the following can
occur:

• The user presses the CANCEL key before selecting the Active Call softkey:

In this case, pressing the Transfer key creates a consultCall GC3, and pressing the CANCEL key triggers
CiscoCallFeatureCancelledEv on GC2 with GC3 as a consult call.

Features Supported by Cisco Unified JTAPI
158

Features Supported by Cisco Unified JTAPI
Swap or Cancel and Transfer or Conference Behavior

• The user presses the CANCEL key after pressing the Active Calls softkey but does this before selecting
the call on phone UI.

In this case, pressing the Active Calls softkey on the phone UI makes consultCall GC3 IDLE, but there
is no CANCEL notification, as other feature operations are possible. However, if the user presses
CANCEL, the CiscoCallConsultCancelEv with consult call as null, is trigerred.

• The user presses the Active Call softkey, selects a call and then presses CANCEL.

In this case, the selected call is returned as a consultCall with CiscoCallFeatureCancelledEv.

Interface Changes

See CiscoCallFeatureCancelledEv

Message Sequences

See Swap or Cancel and Transfer or Conference Behavior Change

Backward Compatibility

This feature is backward compatible.

For this release, the Swap or Cancel feature is enabled without a service parameter to turn it off. This means
that Cisco Unified JTAPI always supports or reports events for Swap or Cancel for phones which support this
feature.

However, to provide backward compatibility for applications, a new permission that enables control of these
devices and to enable SWAP or CANCEL operation has been added. A new standard role Standard Supports
Connected Xfer/Conf and a standard user group are added in the admin pages for this feature. Applications
can control these devices only if this new role is associated to the application user, assuming that the application
uses JTAPI client 7.1.2 or higher. So, by default these devices are listed as restricted and only if application
upgrades to handle this feature and associates the new permission can it control these devices. If the application
uses an older JTAPI client the devices are not restricted but if the application tries to observe these devices
(which supports this feature to be invoked manually) then JTAPI throws an exception and marks these devices
as restricted from there on.

Since, the feature is designed to provide an enhanced user experience, it is strongly recommended for all Cisco
Unified JTAPI applications to evaluate and support this feature and upgrade if necessary with the code logic
to handle the old behavior and the new behavior.

Terminal and Address Capability Settings
This feature introduces interfaces that expose different configuration settings of address and terminal. These
interfaces can be called even when the terminal or address is in out-of-service state. All interfaces return the
values that are configured while registering with Cisco Unified Communications Manager. If the terminal is
not registered, an InvalidStateException is returned. Application can get the voice mail pilot even if the
terminal is not registered.

All the other changes, except voice mail, require the terminal to be reset for the new values to take effect.
Interfaces return new values only after phones re-register after reset. Applications can use the interface
CiscoProvTerminalRegisteredEv to read the configuration of the terminal and address.

The following configurations are exposed on CiscoAddress:

Features Supported by Cisco Unified JTAPI
159

Features Supported by Cisco Unified JTAPI
Terminal and Address Capability Settings

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_399
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_400

• Max calls configured

• Busy Trigger

• Position of address on a terminal

• Voice mail pilot

• ASCII and Unicode labels

CiscoTerminal provides new interfaces to applications to get the following configurations of a terminal:

• IPV4 and IPV6 IP addresses

• Outbound Rollover configuration

Terminal and address capability feature introduces new interfaces to determine if the terminal is capable of
performing the following features:

• Consult call rollover

• Out bound call rollover

• Join across lines

• Direct transfer across lines

• Join on same line

• Direct transfer on same line

Interface Changes

See Related Documentation, CiscoAddrEvFilter, CiscoAddrVoiceMailPilotChangedEv, CiscoTerminal,
CiscoProvFeatureID, CiscoProvTerminalRegisteredEv, and CiscoProvTerminalUnRegisteredEv.

Message Sequences

See Terminal and Address Capability Settings Use Cases

Backward Compatibility

This feature is backward compatible.

Terminal and Address Restrictions
This enhancement restricts applications from controlling andmonitoring a certain set of terminals and addresses
when the administrator configures them as restricted in CiscoUnified CommunicationsManager Administration.

The administrator can configure a particular line on a device (address on a particular terminal) as restricted.
If a terminal is added into the restricted list in Cisco Unified Communications Manager Administration, all
addresses on that terminal are also marked as restricted in JTAPI. If an application comes up after the
configuration is completed, it can know whether a particular terminal or address is restricted from checking
the interface CiscoTerminal.isRestricted() and CiscoAddress.isRestricted(Terminal). For shared lines,

Features Supported by Cisco Unified JTAPI
160

Features Supported by Cisco Unified JTAPI
Terminal and Address Restrictions

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_318
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_378
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_401
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_402
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_403
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_404
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_405

applications can query the interface CiscoAddress.getRestrictedAddrTerminals(), which indicates whether
an address is restricted on any terminals.

If a line (address on a terminal) is added into the restricted list after an application comes up, the applications
will see CiscoAddrRestrictedEv. If the address has any observers, applications will see CiscoAddrOutOfService.
When a line is removed from the restricted list, applications will see CiscoAddrActivatedEv. If an address
has any observers, applications see CiscoAddrInServiceEv. Ifan application tries to add observers on an
address after it is restricted, a PlatformException gets thrown. However, if any observers are added before
the address is restricted, they will remain as is, but applications cannot get any events on these observers
unless the address is removed from the restricted list. Applications can also choose to remove observers from
an address.

If a device (terminal) is added to the restricted list after an application comes up, the application will see
CiscoTermRestrictedEv. If the terminal has any observers, the application will see CiscoTermOutOfService.
If a terminal is added to the restricted list, JTAPI also restricts all addresses that belong to that terminal and
applications will see CiscoAddrRestrictedEv. If a terminal is removed from the restricted list, applications
will see CiscoTermActivatedEv and CiscoAddrActivatedEv for the corresponding addresses. If an application
tries to add observers on a terminal after it is added to the restricted list, a PlatformException is thrown.
However, if observers are added before the terminal is restricted, they remain as is, but applications cannot
get any events on these observers unless the terminal is removed from the restricted list.

If a shared line is added to the restricted list after an application comes up, the application will see
CiscoAddrRestrictedOnTerminalEv. If any address observers exist on the address, the application will see
CiscoAddrOutOfServiceEv for that terminal. If all shared lines are added to the restricted list, when the last
one is added, applications will see CiscoAddrRestrictedEv. If a shared line is removed from the restricted list
after the application comes up, applications will see CiscoAddrActivatedOnTerminalEv. If any observers
exist on the address, the application will see CiscoAddrInServiceEv for that terminal. Ifall shared lines in the
control list are removed from the restricted list, applications will see CiscoAddrActivatedEv when the last
one is removed, and all addresses on terminals will receive InService events.

If all shared lines in the control list are marked as restricted, and an application tries to add observers, a
platform exception is thrown. If a few shared lines are in the restricted list, while others are not, when an
application adds an observer on the address. Only non-restricted lines go in service.

If any active calls are present when an address or terminal is added to the restricted list and reset, applications
will see connection and TerminalConnections get disconnected.

If no addresses or terminals are added to the restricted list, this feature is backward compatible with earlier
versions of JTAPI: no new events are delivered to applications.

The following sections describe the interface changes for address and terminal restrictions.

CiscoTerminal

isRestricted()

Indicates whether a terminal is restricted. If the terminal is restricted, all associated
addresses on this terminal are also restricted. Returns true if the terminal is restricted;
returns false if it is not restricted.

boolean

Features Supported by Cisco Unified JTAPI
161

Features Supported by Cisco Unified JTAPI
Terminal and Address Restrictions

CiscoAddress

getRestrictedAddrTerminals()

Returns an array of terminals on which this address is restricted. If none are restricted,
this method returns null.

In shared lines, a few lines on terminals may be restricted. This method returns all the
terminals on which this particular address is restricted. Applications cannot see any call
events for restricted lines. If a restricted line is involved in a call with any other control
device, an external connection gets created for the restricted line.

javax.telephony.Terminal[]

isRestricted(javax.telephony.Terminal terminal)

Returns true if any address on this terminal is restricted.

Returns false if no addresses on this terminal are restricted.

boolean

public interface CiscoRestrictedEv extends CiscoProvEv {
public static final int ID = com.cisco.jtapi.CiscoEventID.CiscoRestrictedEv;

/**
* The following define the cause codes for restricted events
*/

public final static int CAUSE_USER_RESTRICTED = 1;

public final static int CAUSE_UNSUPPORTED_PROTOCOL = 2;

}

This is the base class for restricted events and defines the cause codes for all restricted events.
CAUSE_USER_RESTRICTED indicates the terminal or address is marked as restricted.
CAUSE_UNSUPPORTED_PROTOCOL indicates that the device in the control list is using a protocol that
is not supported by Cisco Unified JTAPI. Existing Cisco Unified IP 7960 and 7940 phones that are running
SIP fall in this category.

CiscoAddrRestrictedEv

Public interface CiscoAddrRestrictedEv extends CiscoRestrictedEv. Applications will see this event when
a line or an associated device is designated as restricted from Cisco Unified Communications Manager
Administration. For restricted lines, the address goes out of service and does not come back in service until
it is activated again. If an address is restricted, addCallObserver and addObserver throws an exception. For
shared lines, if a few shared lines are restricted, and others are not, no exception is thrown, but restricted
shared lines do not receive any events. If all shared lines are restricted, an exception is thrown when adding
observers. If an address is restricted after adding observers, applications see CiscoAddrOutOfServiceEv, and
when the address is activated, the address goes in service.

CiscoAddrActivatedEv

Public interface CiscoAddrActivatedEv extends CiscoProvEv. Applications see this event whenever a line
or an associated device is in the control list and is removed from the restricted list in the Cisco Unified
Communications Manager Administration. If any observers exist on the address, applications see
CiscoAddrInServiceEv. If no observers exist, applications can try to add observers, and the address goes in
service.

Features Supported by Cisco Unified JTAPI
162

Features Supported by Cisco Unified JTAPI
Terminal and Address Restrictions

CiscoAddrRestrictedOnTerminalEv

Public interface CiscoAddrRestrictedOnTerminalEv extends CiscoRestrictedEv. If a user has a shared
address in the control list, and if one of the lines is added into the restricted list, this event is sent. Interface
getTerminal() returns the terminal on which the address is restricted. Interface getAddress() returns the address
that is restricted.

getAddress()javax.telephony.Address

getTerminal()javax.telephony.Terminal

CiscoAddrActivatedOnTerminal

Public interface CiscoAddrActivatedOnTerminalEv extends CiscoProvEv. When a shared line or a device
that has a shared line is removed from the restricted list, this event will be sent. The interface getTerminal()
returns the terminal that is being added to the address. The interface getAddress() returns the address on which
the new terminal is added.

getAddress()javax.telephony.Address

getTerminal()javax.telephony.Terminal

CiscoTermRestrictedEv

Public interface CiscoTermRestrictedEv extends CiscoRestrictedEv. Applications see this event when a
device is added into restricted list from Cisco Unified Communications Manager Administration after the
application launches. Applications cannot see events for restricted terminals or addresses on those terminals.
If a terminal is restricted when it is in InService state, applications get this event and terminal and corresponding
addresses move to the out-of-service state.

CiscoTermActivatedEv

Public interface CiscoTermActivatedEv extends CiscoRestrictedEv.

getTerminal()

Returns the terminal that is activated and is removed from the restricted list.

javax.telephony.Terminal

CiscoOutOfServiceEv

CAUSE_DEVICE_RESTRICTED

Indicates whether an event is sent because a device is restricted.

static int

CAUSE_LINE_RESTRICTED

Indicates whether an event is sent because a line is restricted.

static int

Features Supported by Cisco Unified JTAPI
163

Features Supported by Cisco Unified JTAPI
Terminal and Address Restrictions

CiscoCallEv

CAUSE_DEVICE_RESTRICTED

Indicates whether an event is sent because a device is restricted.

static int

CAUSE_LINE_RESTRICTED

Indicates whether an event is sent because a line is restricted.

static int

SHA-512 Support for Digital Signatures
From Release 11.5(1), Cisco Unified Communications Manager supports the SHA-512 algorithm for CTL,
ITL and TFTP configuration file encryption. The TFTP File Signature Algorithm enterprise parameter has
been added to allow administrators to select which encryption algorithmwill be used. By default, this enterprise
parameter is set to SHA-1, but you can reconfigure the parameter to SHA-512.

Backward Compatibility

The SHA-512 algorithm is not supported prior to release 11.5(1). If an application is running a Cisco JTAPI
version that is prior to 11.5(1), that application must be using the SHA-1 algorithm in order to maintain a
secure connection.

Use Cases

SHA Support for Digital Signatures

Transfer
The transfer feature moves the participants of one call, the transferred call, to another call, the final call.
Moving participants in a call trasitions their associated connections to the DISCONNECTED state in the
transferred call and new connections for these participants getting created in the final call. Similarly, any
associated TerminalConnections transition into the DROPPED state in the transferred call and get created in
the final call. Cisco extensions by definition mark the start and the end of the events that relate to transfer.

You can correlate the newly created connection objects with the old connection objects by use of the
CiscoConnection.getConnectionID()method to obtain the CiscoConnectionID for the old and new connections.
Matching connections possess identical CiscoConnectionID objects when you compare them by using the
CiscoConnectionID.equals() method.

CiscoTransferStartEv
This event indicates that the transfer operation started, and the events that follow relate to this operation.
Specifically, Connections and TerminalConnections get both removed and added as a result of the transfer.

Applications may obtain the two calls that are involved in transfer-transferred call and final call and the transfer
controller information from this event. If the JTAPI application is not observing the transfer controller, the
transfer controller information does not get made available in this event.

Features Supported by Cisco Unified JTAPI
164

Features Supported by Cisco Unified JTAPI
SHA-512 Support for Digital Signatures

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_406

CiscoTransferEndEv
This event indicates that the transfer operation ended. After this event is received, the application can assume
that all involved parties transferred and that all Connections and TerminalConnections moved to the final call.

Transfer Scenarios
In the following scenarios, A, B, and C represent three parties that are involved in the transfer.

Consult Transfer; B Is the Transfer Controller

In a consult transfer, applications can redirect calls to a different address, and the transferrer can “consult”
with the transfer destination before redirecting.

• A calls B on call Call1.

• B answers and consults to C on call Call2.

• B transfers call Call2 to call Call1.

To do this type of transfer, use the following JTAPI methods:

• Call2.setTransferEnable(true) (This optional method means that transfer is enabled in the call object by
default.)

• Call2.consult(TermConnB, C)

• Call1.transfer(Call2)

During consult transfer, Call1.transfer(Call2) will transfer the call but not Call2.transfer(Call1).Note

The following table lists the core events that observers of A and B receive between the CiscoTransferStartEv
and the CiscoTransferEndEv.

Table 8: Core Events for Observers of A and B

FieldsEventCallMeta Event Cause

transferredCall = Call2 finalCall =
CalltransferController = TermConnB

CiscoTransferStartEvCall1META_UNKNOWN

TermConnDroppedEv B
CallCtlTermConnDroppedEv
B ConnDisconnectedEv B
CallCtlConnDisconnectedEv
B

Call1META_CALL_TRANSFERRING

Features Supported by Cisco Unified JTAPI
165

Features Supported by Cisco Unified JTAPI
CiscoTransferEndEv

FieldsEventCallMeta Event Cause

ConnCreatedEv C
ConnConnectedEv C
CallCtlConnEstablishedEv
C TermConnCreatedEv C
TermConnActiveEv C
CallCtlTermConnTalkingEv
C

Call1META_CALL_TRANSFERRING

TermConnDroppedEv B
CallCtlTermConnDroppedEv
B ConnDisconnectedEv B
CallCtlConnDisconnectedEv
B

Call2META_CALL_TRANSFERRING

TermConnDroppedEv C
CallCtlTermConnDroppedEv
C ConnDisconnectedEv C
CallCtlConnDisconnectedEv
CCallInvalidEv C

Call2META_CALL_TRANSFERRING

CallObservationEndedEvCall2META_UNKNOWN

transferredCall = Call2 FinalCall = Call1
transferController = TermConnB

CiscoTransferEndEvCall1META_UNKNOWN

Arbitrary Transfer; A Is the Transfer Controller

In an arbitrary transfer, one call can get transferred to another call, irrespective of how either call was created.
Unlike consult transfer, no need exists to first create one of the calls by using the consult method.

• A calls B on call Call1.
• A puts Call1 on hold.
• A calls C on call Call2.
• A transfers Call1 to Call2.

To do this type of transfer, use the following JTAPI methods:

• Call2.transfer(Call1) to transfer call Call1 to final call Call2, or
• Call1.transfer(Call2) to transfer call Call2 to final call Call1

Assuming Call1.transfer(Call2) was called, the following table lists the core events that observers on A and
C receive between CiscoTransferStartEv and CiscoTransferEndEv.

Table 9: Core Events for Observers of A and C

FieldsEventCallMeta Event Cause

transferredCall = Call2 finalCall = Call1
transferController = TermConnB

CiscoTransferStartEvCall1META_UNKNOWN

Features Supported by Cisco Unified JTAPI
166

Features Supported by Cisco Unified JTAPI
Transfer Scenarios

FieldsEventCallMeta Event Cause

TermConnDroppedEv B
CallCtlTermConnDroppedEv
B ConnDisconnectedEv B
CallCtlConnDisconnectedEv
B

Call1META_CALL_TRANSFERRING

ConnCreatedEv C
ConnConnectedEv C
CallCtlConnEstablishedEv
C TermConnCreatedEv C
TermConnActiveEv C
CallCtlTermConnTalkingEv
C

Call1META_CALL_TRANSFERRING

TermConnDroppedEv B
CallCtlTermConnDroppedEv
B ConnDisconnectedEv B
CallCtlConnDisconnectedEv
B

Call2META_CALL_TRANSFERRING

TermConnDroppedEv C
CallCtlTermConnDroppedEv
C ConnDisconnectedEv C
CallCtlConnDisconnectedEv
C CallInvalidEv C

Call2META_CALL_TRANSFERRING

Transfer and Conference Extensions
You may find that transfer and conference events are difficult to understand in JTAPI. This happens because,
when the participants are moved from one call to the other, JTAPI represents this action by deleting the parties
from one call and adding them to the other call. It may confuse you for an application to receive an indication
that a party dropped from the call when, in reality, it is in the process of being moved. The Cisco Unified
JTAPI implementation defines some extra events that make it easier for applications to deal with these
functions.

Transfer and DirectTransfer
The transfer feature provides the ability to transfer a call.

The direct transfer feature represents the ability to transfer any of the two calls that are present on the line, so
controller of the call drops out, and other two parties remain active on the call. This functionality gets supported
with one enhancement: this feature can be done in any state of the call and also can be redesigned to work
with new CTI events. The following enhancements apply to the transfer feature:

• The application can transfer two held calls.

• The application can have OneHeld and OneConnected call in any order.

Features Supported by Cisco Unified JTAPI
167

Features Supported by Cisco Unified JTAPI
Transfer and Conference Extensions

• The application can transfer any two calls that are present on the line.

The following changed or new interfaces exist for Transfer and DirectTransfer:

• CiscoTransferStarted. getTransferControllers()—This new interface, which is provided for SharedLine
scenarios, supports multiple terminalConnections if a SharedLine is a TransferController. When a
transferController is not a SharedLine, only a TerminalConnection occurs in the list. This method returns
null if the transfer controller is not being observed.

• CiscoTransferStarted. getTransferController()—This current interface, which behaves as it does for a
normal transfer, may exhibit a different behavior for SharedLines. When a transferController is a
SharedLine, multiple TerminalConnections exist. This method returns an ACTIVE TerminalConnection;
however, if the application is not observing the ACTIVE TerminalConnection, this method returns one
of the PASSIVE TerminalConnections.

• CiscoTransferEnded isSuccess()—This new interface, which is provided for the CiscoTransferEnded
event, returns true if the transfer operation succeeds and false if the transfer fails. Transfer failure may
result from the following events:

• The party dropped the call before CallProcessing could complete the transfer.

• CallProcessing cannot Complete the transfer.

The following changed or new behaviors exist for JTAPI Transfer:

• No Hold or UnHold messages occur with an arbitrary transfer.

• If a precondition for a transfer request has been modified, an application can issue transfer in any state
of the call.

• If an application does not have an active TerminalConnection that is passed as an argument, Call.consult()
throws a PreConditionException/InvalidArgumentException.

• If controller does not have any active TerminalConnection, Call.Transfer() throws a
PreconditionException/InvalidArgumentException.

To view the message flow for Transfer and DirectTransfer, see Message Sequence Charts

Translation Pattern Support
If a calling party transformation mask is configured for a translation pattern that is applied to a JTAPI
application-controlled Address, the application may recognize extra connections that are created and
disconnected when both the calling and called party are observed. A Connection is created for a transformed
calling party instead of the actual calling party and CiscoCall.getCurrentCallingParty() would return the
transformed calling party, when only the called party is observed. In general, JTAPI might not be able to
create the appropriate Connection in the Call, and might not be able to provide correct information for
currentCalling, currentCalled, calling, called, and lastRedirecting parties.

For example, consider a translation pattern X that is configured with a calling party transformation mask Y
and called party transformation mask B. If A calls X, the call goes to B. In this scenario:

• If the application is observing only B, JTAPI creates a Connection for Y and B, and
CiscoCall.getCurrentCallingParty() would return Address Y.

Features Supported by Cisco Unified JTAPI
168

Features Supported by Cisco Unified JTAPI
Translation Pattern Support

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_188

• If the application is observing both A and B, a Connection for A and B gets created, a Connection for Y
gets temporarily created and dropped, and CiscoCall.getCurrentCallingParty() would return Address Y.

Other inconsistencies in the calling information could occur if further features get performed on a basic call.
Cisco recommends that you not configure a calling party transformation mast for a translation pattern that
might get applied to JTAPI application-controlled addresses.

Transport Layer Security (TLS)
This feature lets JTAPI applications communicate with CTIManager through a secure connection. CTIManager
runs a TLS listener socket to accept connections from JTAPI. Establishing a TLS connection requires a client
certificate, which the server uses to authenticate the client, and a server certificate, which the client uses to
authenticate the server.

In the Cisco Unified Communications Manager environment, the server certificate exists in the form of CTL
on the TFTP server, and JTAPI downloads this certificate. The initial download of CTL is trusted and occurs
without verification, so Cisco strongly recommends performing this download in a secure environment. One
of the two System Administrator Security Tokens (SAST) that are present in the CTL file signs the CTL;
subsequent CTL downloads get verified with the SAST from the old CTL file.

JTAPI connects to CAPF by using the CAPF protocol to get the client certificate (LSC). You can authenticate
these certificates with the issuers certificate present in CTL.

CTI tracks the number of provider connections that are created per client certificate. Applications can create
only one provider by using a client certificate. If more than one instance of a provider is created, both providers
get disconnected from CTI and go out of service. JTAPI will retry the connection to CTI to bring the original
provider in service; however, if both instances of provider continue to exist, after a certain number of retries,
provider gets permanently shut down, and the client certificate is marked as compromised. Any further attempt
to create a provider by using this client certificate fails. Applications must contact the administrator to configure
a new instanceId and download a new client certificate to resume operation.

Each client certificate is associated with a unique instanceId configured in the Cisco Unified Communications
Manager database. Applications can provide an instanceId in providerString as an optional parameter to use
a unique certificate while creating a CiscoProvider.

Note

To run multiple instances of applications with TLS, ensure that the application user is configured in the Cisco
Unified Communications Manager database with multiple instanceIDs. Applications use these unique
instanceIDs to get unique client certificates for each instance.

The JTAPI preferences application provides a graphic user interface to configure the Security parameters and
update server/client certificates. Application users need to configure the TFTPServer IP address, CAPFServer
IP address, Username, InstanceID, and AuthorizationString parameters through the JTAPI preferences to
download/install certificates on the application server.

New interfaces are provided for JTAPI client applications on the client layer object. For example, a JTAPI
client interface is provided on the CTIClientProperties class.

This feature is backward compatible with previous releases as JTAPI Applications can still connect to
CTIManager on non-secure socket connections.

The following sections describe the interfacr changes for TLS support in JTAPI.

Features Supported by Cisco Unified JTAPI
169

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

CiscoJtapiPeer.getProvider()

public javax.telephony.Provider getProvider(java.lang.String providerString)
throws javax.telephony.ProviderUnavailableException

This modified interface takes a new optional parameter InstanceID. It returns an instance of a Provider object,
given a string argument that contains the desired service name.

Optional arguments may also be provided in this string, with the following format:
< service name > ; arg1 = val1; arg2 = val2; ...

Where < service name > is not optional, and each optional argument = value pair that follows is separated by
a semicolon. The keys for these arguments are implementation-specific, except for two standard-defined keys:

• login—Provides the login user name to the Provider.

• passwd—Provides a password to the Provider.

CiscoJtapiPeer in providerString expects a new optional argument:

• InstanceID—Provides InstanceID for Application Instance.

InstanceID is needed when two or more instances of an application want to connect to Provider (CTIManager)
through a TLS connection from the same client machine. Each instance of an application requires its own
unique X.509 certificate to establish a TLS connection. If JTAPI attempts to open more that one connection
with same username/instanceID, CTIManager rejects the TLS connection. If instanceID is not provided, JTAPI
randomly picks one of the instances of USER and, in that case, the connection may fail if a connection for
the selected Instance already exists.

If the argument is null, this method returns some default provider as determined by the JtapiPeer object. The
returned provider is in the Provider.OUT_OF_SERVICE state.

Post-conditions:

this.getProvider().getState() = Provider.OUT_OF_SERVICE

Specified by

getProvider in interface javax.telephony.JtapiPeer

Parameters

providerString The name of the desired service plus an optional argument.

Returns

An instance of the Provider object.

Throws

javax.telephony.ProviderUnavailableException

Indicates that a provider that corresponds to the given string is unavailable.

CiscoJtapiProperties

JTAPI provides an interface on CiscoJtapiProperties to enable or disable the security option and install the
client/server certificates that are required to establish a secure TLS socket connection.
com.cisco.jtapi.extensions
Interface CiscoJtapiProperties

getSecurityPropertyForInstance

Features Supported by Cisco Unified JTAPI
170

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

public java.util.Hashtable getSecurityPropertyForInstance()

This interface returns a Hash table with all the parameters set for User/InstanceID. The Hash table gets set
with the following “key–value” pairs:

VALUEKEY

userName“user”

InstanceIDstring “instanceID”

authCodestring “AuthCode”

capfServer IP-Addressstring “CAPF”

capfServer IP-Address portstring “CAPFPort”

tftpServer IP-Addressstring “TFTP”

tftpServer IP-Address portstring “TFTPPort”

certificate Pathstring “CertPath”

Boolean security option(true for enable/ false for disabled)string “securityOption”

Boolean certificate status(true for updated/ false for not updated)string “certificateStatus”

Returns—Hash table in the format described previously for the first user and instance.

getSecurityPropertyForInstance
public java.util.Hashtable getSecurityPropertyForInstance
(java.lang.String user, java.lang.String instanceID)

This interface returns a Hash table with all the parameters set for User/InstanceID. The Hash table is set with
the following “key–value” pairs:

VALUEKEY

userName“user”

InstanceIDstring “instanceID”

authCodestring “AuthCode”

capfServer IP-Addressstring “CAPF”

capfServer IP-Address portstring “CAPFPort”

tftpServer IP-Addressstring “TFTP”

tftpServer IP-Address portstring “TFTPPort”

certificate Pathstring “CertPath”

Boolean security option(true for enable/ false for disabled)string “securityOption”

Boolean certificate status(true for updated/ false for not updated)string “certificateStatus”

Features Supported by Cisco Unified JTAPI
171

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

Parameters:

user - UserName for which you want security parameters

instanceID - InstanceID for which you want security parameters

Returns—Hash table in preceding format.

setSecurityPropertyForInstance
public void setSecurityPropertyForInstance(java.lang.String user,
java.lang.String instanceID,

java.lang.String authCode,
java.lang.String tftp,
java.lang.String tftpPort,
java.lang.String capf,
java.lang.String capfPort,
java.lang.String certPath,
boolean securityOption)

You can use this interface to set security properties for the following parameters:

Parameters:

user—UserName for which the security parameter is being updated

instanceID—InstanceID for which the security parameter is being updated

authCode—Authorization string

capf—IP-Address of CAPF server

capfPort—IP-Address port number on which the CAPF server is running, as defined in a CallManager Service
parameter. If the value is null, the default value is 3804.

tftp—IP-Address of TFTP server

tftpPort—IP-Address port number on which the TFTP server is running. The Cisco Unified Communications
Manager TFTP server usually runs on port 69. If the value is null, the default value is 69.

certPath—Path where certificate needs to be installed

updateCertificate
public void updateCertificate(java.lang.String user,

java.lang.String instanceID,
java.lang.String authcode,
java.lang.String ccmTFTPAddress,
java.lang.String ccmTFTPPort,
java.lang.String ccmCAPFAddress,
java.lang.String ccmCAPFPort,
java.lang.String certificatePath)

This interface installs an X.509 client certificate for the USER instance in the certificate store by connecting
to the Cisco Unified Communications Manager Certificate Authority Proxy Function (CAPF) server. Italso
downloads the Certificate Trust List (CTL) from the Cisco Unified Communications Manager TFTP server.

If the user credentials are not valid, this method throws a PrivilegeViolationException. If the TFTP server or
CAPF server address is not correct, this method throws an InvalidArgumentException. Every instance of an
application requires a unique client certificate. If a multiple instanceID is configured in the Cisco Unified
Communications Manager database, applications can call this interface multiple times to install a client
certificate for every instance.

Pre-conditions—When calling this interface, an application should have network connectivity with the Cisco
Unified Communications Manager CAPF and TFTP servers.

Features Supported by Cisco Unified JTAPI
172

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

Post-conditions—This process installs client and server certificates on the JTAPI application machine.

Parameters:

user—Name of the CTI application user that is configured in the Cisco Unified Communications Manager
database

instanceID—Application instance ID that is configured in the Cisco Unified Communications Manager
database. Everyinstance of an application requires a unique ID.

authCode—Authorization string that is configured in the Cisco Unified Communications Manager database.
You can use the authCode only once for getting certificates.

ccmTFTPAddress—IP-Address of the Cisco Unified Communications Manager TFTP server.

ccmTFTPPort—IP-Address port number on which the Cisco Unified Communications Manager TFTP server
is running. The Cisco Unified Communications Manager TFTP server usually runs on port 69. Ifnull, the
default value is 69.

ccmCAPFAddress—IP address of the Cisco Unified Communications Manager CAPF server.

ccmCAPFPort—Port number on which the Cisco Unified Communications Manager CAPF server is running,
as defined in the Cisco Unified Communications Manager Service parameters. If the value is null, the default
value is 3804.

certificatePath—Directory path where the certificate needs to be installed

Throws:

InvalidArgumentException—This exception gets thrown for an invalid TFTP server or CAPF server address.

PrivilegeViolationException—This exception gets thrown for an invalid user, instanceID, or authCode.

IsCertificateUpdated
public boolean IsCertificateUpdated

(java.lang.String user, java.lang.String instanceID)

This interface provides information about whether client and server certificates are updated for a given
user/instanceID.

Parameters:

user—UserName as defined in the Cisco Unified Communications Manager Administration.

instanceID—InstanceID for the specified UserName.

Returns—True if certificates are already updated; false if certificates are not updated.

updateServerCertificate
public void updateServerCertificate(java.lang.String ccmTFTPAddress,

java.lang.String ccmTFTPPort,
java.lang.String ccmCAPFAddress,
java.lang.String ccmCAPFPort,
java.lang.String certificatePath)

This interface installs an X.509 server certificate that is given the certificate path. If the TFTP server address
is not correct, this method throws an InvalidArgumentException. Auto update applications should use this
interface to update the server certificate before invoking an HTTPS connection with Cisco Unified
Communications Manager.

Pre-conditions—When calling this interface, applications should have network connectivity with the TFTP
server.

Features Supported by Cisco Unified JTAPI
173

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

Post-conditions—This interface installs the server certificate on the JTAPI application machine.

Parameters:

ccmTFTPAddress—IP address of the Cisco CallManager TFTP server.

ccmTFTPPort—Port number on which the Cisco Unified Communications Manager TFTP server is running.

If null, the default value is 69.

certificatePath—Directory path for installing the certificate.

ccmCAPFAddress—IP address of the Cisco Unified Communications Manager CAPF server.

ccmCAPFPort—Port number on which the Cisco Unified Communications Manager CAPF server is running.

If the value is null, the default value is 3804.

Throws:

InvalidArgumentException—If the TFTP server address is invalid.

Interface Provided on JTAPI Preferences

The JTAPI Preferences dialog box includes a Security tab to let application users configure the username,
instanceId, authCode, TFTP IP address, TFTP port, CAPF IP server address, CAPF server port, and certificate
path, and enable secure connection.

• “CAPF server port” number defaults to 3804.

You can configure this value in the Cisco Unified Communications Manager Administration service
parameters window. The CAPF server port value entered through JTAPI Preferences should match the
one that is configured in Cisco Unified Communications Manager Administration.

• “TFTP server port” number defaults to 69.

Do not change this value unless you are advised to do so by the System Administrator.

• “Certificate Path” is where the application wants the sever and client certificates to be installed.

If this field is left blank, the certificates get installed in the ClassPath of JTAPI.jar.

• “Certificate update Status” provides information on whether a certificate has been updated or not.

• You must select “Enable Secure Connection” to enable a secure TLS connection to Cisco Unified
Communications Manager.

If “Enable Security Connection” is not selected, JTAPI makes a non-secure connection to CTI even if
the certificate is updated/installed.

• The “Enable Security Tracing” check box lets you enable or disable tracing for the certificate installation
operation.

If tracing is enabled, you can select three different levels, Error, Debug, or Detailed, from the drop-down
menu.

You can use the JTAPI Preference UI to configure a security profile for one or more than one
userName/instanceID pair. When application users revisit this window, and have previously configured
security profile for a userName/instanceID pair, the security profile automatically gets populated when the
user enters a username/instanceID and clicks on other edit box.

Features Supported by Cisco Unified JTAPI
174

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

The Trace Levels tab in the JTAPI Preferences UI is renamed as JTAPI Tracing. This highlights the fact that
the JTAPI Tracing tab only lets you change trace setting for the JTAPI layer. Tracing for the installation of
Security certificates must be enabled on the Security tab.

Unicode Support
Cisco Unified Communications Manager release 5.0 supports unicode display names on unicode-enabled IP
phones. You can configure ASCII names and unicode names for display names. JTAPI receives all names in
unicode and ASCII formats and provides two new interfaces, getCurrentCalledPartyUnicodeDisplayName
and getCurrentCallingPartyUnicodeDisplayName, toallow applications to get display names in unicode. Italso
provides the ability to get unicode display names during call progress.

JTAPI receives the encoding capability of application controlled IP phones in device registered and device
in service events from CTI, locale and language group information in device info response, and provides
interfaces to applications to get the locale, alternate script, and unicode capability of IP phones. CiscoTerminal
and CiscoTermInServiceEv interfaces are enhanced to provide this information for phones that are in the
application control list when the CiscoTerminal is in the inservice state.

JTAPI receives the alternate script information of all parties in the call and provides interfaces to applications
to get the language group of the current calling and current called party. Two interfaces,
getCurrentCallingPartyLanguageGroup and getCurrentCalledPartyLanguageGroup, are available on CiscoCall
to get this information. Applications also receive both ASCII and UCS-2 encoded unicode display names for
the current calling and called addresses.

Unicode support for JTAPI also includes:

• CiscoCall interface changes

• CiscoLocales interface changes

• CiscoTerminal / CiscoTerminalInServiceEv interface changes

Applications might need to reconfigure their username/password after upgrading to Release 5.0.

The following sections describe the interface changes for unicode support.

Interface CiscoCall Changes

The following newmethods on CiscoCall let applications get the unicode display names and the corresponding
locales.
/**
* This interface returns the unicode display name of the current called party
* in the call.
*/
public String getCurrentCalledPartyUnicodeDisplayName();

/**
* This interface returns the locale of the current called party unicode
* display name. CiscoLocales interface lists the supported locales.
*/
public int getCurrentCalledPartyUnicodeDisplayNamelocale();

/**
* This interface returns the unicode display name of the current calling party
* in the call.
*/

Features Supported by Cisco Unified JTAPI
175

Features Supported by Cisco Unified JTAPI
Unicode Support

public String getCurrentCallingPartyUnicodeDisplayName ();

/**
* This interface returns the locale of the current called party
* unicode display name
*/
public int getCurrentCallingPartyUnicodeDisplayNamelocale();

CiscoLocales

The CiscoLocales interface lists all the locales that Cisco Unified JTAPI supports.

For a list of all supported locales in the most recent release, see the man page for CiscoLocales.Note

public interface CiscoLocales
{
public static final int LOCALE_ENGLISH_UNITED_STATES;
public static final int LOCALE_FRENCH_FRANCE;
public static final int LOCALE_GERMAN_GERMANY;
public static final int LOCALE_RUSSIAN_RUSSIA ;
public static final int LOCALE_SPANISH_SPAIN ;
public static final int LOCALE_ITALIAN_ITALY ;
public static final int LOCALE_DUTCH_NETHERLAND ;
public static final int LOCALE_NORWEGIAN_NORWAY ;
public static final int LOCALE_PORTUGUESE_PORTUGAL;
public static final int LOCALE_SWEDISH_SWEDEN ;
public static final int LOCALE_DANISH_DENMARK
public static final int LOCALE_JAPANESE_JAPAN;
public static final int LOCALE_HUNGARIAN_HUNGARY ;
public static final int LOCALE_POLISH_POLAND ;
public static final int LOCALE_GREEK_GREECE ;
public static final int LOCALE_TRADITIONAL_CHINESE_CHINA;
public static final int LOCALE_SIMPLIFIED_CHINESE_CHINA;
public static final int LOCALE_KOREAN_KOREA;

}

CiscoTerminalInServiceEv Interface

getLocale()

This method returns the current locale information for this terminal.

int

getSupportedEncoding ()

This method returns true if this terminal supports unicode.

int

CiscoTerminal Interface

getLocale()

This method returns the current locale information for this terminal. The CiscoTerminal
must be in the CiscoTerminal.IN_SERVICE state to access this method.

int

getSupportedEncoding ()

This method returns the unicode capability of this Terminal. The CiscoTerminal must
be in the CiscoTerminal.IN_SERVICE state to access this method.

int

Features Supported by Cisco Unified JTAPI
176

Features Supported by Cisco Unified JTAPI
Unicode Support

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_414

The getSupportedEncoding () returns one of the following results that are defined in CiscoTerminal.
/**
* Indicates the <Code>CiscoTerminal.getSupportedEncoding ()</CODE>
* for this Terminal is UNKNOWN
*/
public final static int UNKNOWN_ENCODING = 0;
/**
* Indicates the <Code>CiscoTerminal.getSupportedEncoding ()</CODE>
* for this is NOT_APPLICABLE.
* This is valid for only CiscoMediaTerminals and RoutePoints
*/
public final static int NOT_APPLICABLE = 1;
/**
* Indicates the <Code>CiscoTerminal.getSupportedEncoding ()</CODE> for this
* Terminal is ASCII and this terminal supports only ASCII_ENCODING
*/
public final static int ASCII_ENCODING = 2;
/**
* Indicates the <Code>CiscoTerminal.getSupportedEncoding ()</CODE>
* for this Terminal is UCS2UNICODE_ENCODING
*/
public final static int UCS2UNICODE_ENCODING = 3;

Unrestricted Unified CM
Cisco Unified JTAPI provides support for Unrestricted Cisco Unified Communications Manager, where
encryption is disabled.

This feature was added in Cisco Unified Communications Manager 7.1(5) and is available in 8.5(1) or later
versions.

Upgrade from an unrestricted version to a restricted version is not supported.Note

Currently, the administrator is unable to create a new role with security groups and roles - ‘Standard CTI
Secure Connection’ and ‘Standard CTI AllowReception of SRTPKeyMaterial’ as these roles are not available
in unrestricted Cisco Unified Communications Manager.

In case of an upgrade from non-secure restricted Cisco Unified Communications Manager to unrestricted
Cisco Unified Communications Manager, all the security features are disabled and standard CTI secure roles
associated with the end user are removed. But, the custom administrative roles created with CTI secure
privileges are not disabled in the Cisco Unified Communications Manager database.

In such cases, the application connects to the unrestricted Cisco Unified Communications Manager as a
non-secure application as the CTIManager filters out the information about CTI secure roles.

Upgrading from a secure restricted Cisco Unified Communications Manager to an unrestricted Cisco Unified
Communications Manager is not supported. To do so, you should first set the security mode of the secure
restricted Cisco Unified Communications Manager to non-secure and then upgrade to unrestricted Cisco
Unified Communications Manager.

Also, after an upgrade, the secure JTAPI application will not be able to connect to upgraded Cisco Unified
Communications Manager version. To achieve this, the application must delete the existing certificates and
disable secure connections.

Features Supported by Cisco Unified JTAPI
177

Features Supported by Cisco Unified JTAPI
Unrestricted Unified CM

If the application tries to register to the CTI ports or route points as secure phones in unrestricted Cisco Unified
Communications Manager, the request fails and JTAPI throws CiscoRegistrationExceptionImpl with error
code as CiscoJtapiException.CTIERR_USER_NOT_AUTH_FOR_SECURITY. However, in some scenarios
the registration request may pass but is followed by CiscoTermRegistrationFailedEv with a new errorCode
CTI_SECURITY_NOT_ALLOWED.

Interface Changes

See CiscoTermRegistrationFailedEv

Message Sequences

See Unrestricted Unified CM

Backward Compatibility

This feature is backward compatible.

URI Dialing
Cisco Unified JTAPI provides CTI support for URI dialing using directory URIs. Cisco Unified JTAPI
differentiates between directory numbers and directory URIs by the presence of the@ symbol. If an@ symbol
is present, the address is a directory URI.

URI dialing is also supported for CTI Remote Devices. Remote destinations can be configured with directory
URIs as the remote destination number.

Interface Changes

The following interfaces support directory URI addresses as the dialed digits or destination address:

• Call.connect(Terminal origterm, Address origaddr, java.lang.String dialedDigits)

• CallControlCall.consult(TerminalConnection tc, java.lang.String dialedDigits)

• CallControlConnection.redirect(java.lang.String destinationAddress)

• CallControlCall.transfer(java.lang.String address)

• CallControlForwarding(java.lang.String destAddress)

Message Sequence

No effect on the message sequence

Backward Compatibility

No backward incompatible changes

Features Supported by Cisco Unified JTAPI
178

Features Supported by Cisco Unified JTAPI
URI Dialing

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_416
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_417

Version Format Change
In release 6.0, the Cisco Unified JTAPI version changed from a 4-digit format to a 5-digit format that is similar
to the format used by Cisco Unified Communications Manager. The JTAPI version will remain similar to the
Cisco Unified Communications Manager version. New interfaces let applications get the extended version
number. See CiscoJtapiVersion.

Backward Compatibility

This feature is backward compatible.

Verification Involving PSTN Reachability
The Verification Involving PSTN Reachability (VIPR) feature routes calls that are currently routed over
PSTN, over the internet. For a normal VIPR call, JTAPI supports a VIPR call but no notification is sent to
the application indicating that it is a VIPR call. Currently, VIPR calls are similar to Gateway or ICT calls.

When the quality of VIPR calls over an IP trunk drops below a certain threshold, the calls are automatically
routed through PSTN. JTAPI supports this fallback but does not report this to applications. Whenever VIPR
PSTN fallback happens, media is terminated and reestablished. Applications can view
CiscoRTPInputStoppedEv, CiscoRTPOutputStoppedEv followed by CiscoRTPInputStartedEv and
CiscoRTPOutputStartedEv indicating the same.

Interface Changes

There are no interface changes.

Message Sequences

See Verification Involving PSTN Reachability.

Backward Compatibility

This feature is backward compatible.

Video Capabilities and Multi-Media Information
In Cisco Unified Communications Manager 10.0(1), JTAPI is exposing video capabilities for supported
terminals and calls. Video capabilities for near and far-end terminals include whether they are video-enabled,
inter-operability with TelePresence, and the number of screens. Video attributes for calls will also be available
to JTAPI applications which would include IP/port address, codec, and other information. Using the provided
video terminal and call information, JTAPI applications will be able to better handle calls like routing incoming
video-capable calls to agents with video-enabled terminals.

Exposing Multimedia Capability on CiscoTerminal
Cisco JTAPI provides a new API, getCiscoMultiMediaCapabilityInfo() on CiscoTerminal to expose the
multimedia capabilities of the terminal.

Features Supported by Cisco Unified JTAPI
179

Features Supported by Cisco Unified JTAPI
Version Format Change

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_418
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_419

The Video Capabilities and Multi-Media Information application can determine:

• the video capability (either video disabled or video enabled) of the device,

• the number of screens on a SIP device (only), and

• if the device supports interoperability with telepresence devices.

These capabilities are exposed on a new interface CiscoMultiMediaCapabilityInfo, which will have the
following APIs to expose these capabilities:

• getVideoCapability(),

• getTelepresenceInfo(), and

• getScreenCount().

Exposing Changes in Multimedia Capability Via a New Provider Event
Any change in video capability of the terminal will be notified to the application by a new JTAPI event
(CiscoProvTerminalMultiMediaCapabilityChangedEv). Video capability can be changed only from the Admin
Device Configuration pages. Plugging in or out a Cisco Camera does not affect the video capability status,
hence the new event is not triggered in this case. This event is a JTAPI provider event, and will be delivered
only if the application has added provider observers. The terminal has to be in the registered state as a
pre-condition for receiving this event.

A change in Multimedia Capability through CiscoProvTerminalMultiMediaCapabilityChangedEv will not
be delivered to applications when the video capability of an SCCP Phone changes. In this case, the terminal
will unregister and register back; therefore the application needs to update the video capability after the
terminal is registered. See Scenario Three.

Note

Exposing Multimedia Capability on a CiscoCall
An application can detect if the far-end Party for an incoming call is video capable prior to media setup.
Consider a scenario where A calls B, the multimedia capabilities of the calling and called party will be exposed
on the CiscoCall on terminal B after the call is offered to terminal B. The Cisco JTAPI provides the
getCallingTerminalMultiMediaCapabilityInfo () and getCalledTerminalMultiMediaCapabilityInfo() APIs on
the CiscoCall to expose the multimedia capabilities of the calling and called party in a call.

The same APIs can be used to determine the multimedia capabilities for an outgoing call, but note that the
video capability will be known only after the call is answered. Consider a scenario where A calls B, B answers
the call, the multimedia capabilities of the calling and called party will be exposed on the CiscoCall on terminal
A after the call is answered by terminal B. The APIs getCallingTerminalMultiMediaCapabilityInfo() and
getCalledTerminalMultiMediaCapabilityInfo() return CiscoMultiMediaCapabilityInfo.

Exposing Multimedia Streams Information on CiscoTerminal
The new JTAPI terminal event CiscoMultiMediaStreamsInfoEv will be delivered to a terminal observer to
indicate multimedia streams information of a call. The multimedia streams information is exposed on the
interface CiscoMultiMediaProperties, via the API getProperties() on CiscoMultiMediaStreamsInfoEv. The

Features Supported by Cisco Unified JTAPI
180

Features Supported by Cisco Unified JTAPI
Exposing Changes in Multimedia Capability Via a New Provider Event

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_422

Cisco JTAPI provides the multimedia streams information of the terminal after a call is connected. A
MultiMedia Stream may include a video stream, a presentation stream, or both.

A video capable device is a device that can do any of the following:

• receive video (Video capability enabled in Admin Device Configuration pages and Cisco Camera not
plugged in)

• send video (Video capability enabled in Admin Device Configuration pages and Cisco Camera plugged
in)

• both send and receive video (Video capability enabled on Admin Device Configuration pages and Cisco
Camera plugged in)

The following table describes the video capabilities that is provided by Cisco JTAPI for currently supported
devices.

Dynamic Video
Capability Change

Supports Multimedia
Streams Information

Supports Multimedia
Capabilities on
CiscoCall

Support Initial
Device Multimedia
Capability on
CiscoTerminal

ProtocolPhone Model

YesNoYesYesSCCP8945

YesYesYesYesSIP8945

YesYesYesYesSIP9951/9971

N/AYesYesYesSIPEX60/90

N/ANoYesN/ASCCPCTIPort

N/ANoYesN/ASCCPCTIRoutePoint

N/AYesYesYesSIPCTS 500-32

N/AYesYesYesSIPJabber
(CSF/softphone
mode)

Supported Features (Within the Same Cluster)
JTAPI will provide video capability information for same cluster calls involved in the following features:

• Originating Call and Consult Call

• Redirect

• Call Forward

• Hold and Resume

• Hunt List

• Transfer

Features Supported by Cisco Unified JTAPI
181

Features Supported by Cisco Unified JTAPI
Supported Features (Within the Same Cluster)

• Super Provider

• Extension Mobility

Supported Features (Across Clusters)
JTAPI will provide video capability information for across-cluster calls involved in the following features:

• Originating Call and Consult Call

• Redirect

• Call Forward

• Hold and Resume

• Hunt List

• Super Provider

• Extension Mobility

Limitations
The following are the limitations of the Video Capabilities and Multi-Media Information feature:

• Outgoing call - Applications observing only calling party will have calling and called party multimedia
capabilities as UNKNOWN until the called party answers the call. Refer to Scenario Eleven.

• Shared Line - Incoming call - calling and called party multimedia capabilities only if at least one of the
terminal connections on the cisco call is not in passive state. Refer to Scenario Nine.

• Shared Line - Incoming Call - Called party multimedia capabilities will not have correct multimedia
capabilities when more than one terminal connection is in ringing state. Refer to Scenario Ten.

• MultiMedia Streams Information - Cisco JTAPI will not deliver CiscoMultiMediaStreamsInfoEv on a
CiscoTerminal which is a SCCP phone.

• Incoming Call - If an outbound call is initiated over SIP Trunk configured with Early Offer then the
called party will just respond back with the capabilities it was offered during the initial offer and not its
complete capabilities. Refer to Scenario Fifteen.

• Change in called party - In scenarios like Shared Lines or redirect, where the called party changes, the
application will be notified of the new called party capability only if they configure the called party with
unique display names.

• HuntList - Cisco JTAPI will not deliver correct multimedia capabilities for calls involving huntlist in
broadcast mode.

Interface Changes

See the following sections for interface changes:

• CiscoCall

• CiscoMasterKeyIndicator

Features Supported by Cisco Unified JTAPI
182

Features Supported by Cisco Unified JTAPI
Supported Features (Across Clusters)

cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_428
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_429
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_430
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_431
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_207
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_432

• CiscoMultiMediaCapabilityInfo

• CiscoMultiMediaConnectionMode

• CiscoMultiMediaEncryptionKeyInfo

• CiscoMultiMediaProperties

• CiscoMultiMediaStreamsInfoEv

• CiscoMultiMediaType

• CiscoProvTerminalMultiMediaCapabilityChangedEv

• CiscoRTPPayload

• CiscoRTPProperties

• CiscoTermEvFilter

• CiscoTerminal

Message Sequences

See Video Capabilities and Multi-Media Information.

Backward Compatibility

This feature is backward compatible.

Video On Hold Support
In Cisco Unified Communications Manager Release 10.01, existing CiscoTerminalConnection.hold() API is
enhanced to take an additional parameter - contentID. This enhancement was designed/developed for the
Remote Expert solution. This newly added contentID is a pass through from application (JTAPI) to CCM.
JTAPI will not process or manipulate this value. The contentID will reference a VoH stream to be played
when the call is placed on hold.

The VoH files are housed externally on a media sense server. To have video on hold capability, the video on
hold server must be configured in CCMAdmin. This server coincides to the media sense server which houses
all the VoH files.

Backward Compatibility

This feature is backward compatible and existing applications will not be affected by this enhancement.

Voice MailBox Support
This feature exposes voice mailbox numbers, which let Cisco Unified Communications Manager JTAPI
applications forward calls from a directory number to the correct voice mailbox.

Features Supported by Cisco Unified JTAPI
183

Features Supported by Cisco Unified JTAPI
Video On Hold Support

cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_269
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_433
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_434
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_435
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_436
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_437
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_270
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_438
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_439
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_283
cucm_b_cisco-unified-jtapi-developers-guide-15_chapter5.pdf#nameddest=unique_184
cucm_b_cisco-unified-jtapi-developers-guide-15_appendix1.pdf#nameddest=unique_440

The Cisco Unified CommunicationsManager Administrator can associate a voicemail profile for each directory
number. When the voicemail option is enabled for any forward setting, and if the corresponding forward is
enabled, the call rolls down to the voicemail pilot number that is associated with the voicemail profile.

The voicemail profile contains voicemail pilot number and voice mailbox mask fields. Voice mailbox mask
specifies themask that is used to format the voicemailbox number for auto-registered phones.When forwarding
a call to a voice messaging system from a directory line on an auto-registered phone, Cisco Unified
Communications Manager applies this mask to the number that is configured in the Voice Mail Box field for
that directory line.

For example, if you specify a mask of 972813XXXX, the voice mailbox number for directory number 7253
becomes 9728137253. If you do not enter a mask, the voice mailbox number matches the directory number
(7253 in this example).

Cisco Unified Communications Manager JTAPI Support

To support this feature, Cisco Unified Communications Manager JTAPI exposes voice mailbox numbers for
called party, lastRedirected party and originalCalled party. These voice mailbox fields are exposed on
CiscoPartyInfo, which is exposed on CiscoCall object. If voicemail is not configured for a party, then Cisco
Unified Communications Manager JTAPI will return empty Strings for voice mailbox fields.

In prior releases Cisco Unified Communications Manager JTAPI did not expose voice mailbox fields to
applications, so CiscoUnified CommunicationsManager JTAPI voicemailbox applications could not determine
whether a voice mailbox mask was configured for a voicemail profile, which could result in a voice mailbox
number that differs from the directory number.

Performance and Scalability

This feature does not increase the traffic from the Cisco Unified Communications Manager JTAPI layer to
the application layer. However, small performance impact could occur because of additional fields that are
passed over the network.

XSI Object Pass Through
Applications can pass XML objects through JTAPI and CTI interfaces to the phone. The XML object can
contain display updates, softkey update/enable/disable, and other types of updates on the phone that are
available through IP phone services features. This allows applications to access IP phone service capabilities
through JTAPI and CTI interfaces without maintaining independent connections to the phones.

CiscoTerminal Method
Applications can send an XSI object in the byte format to the Cisco Unified IPPhone through the CiscoTerminal
interface method. The system limits the payload to 2000 bytes of data with this interface.

CiscoTerminal must be in the <CODE>CiscoTerminal.REGISTERED</CODE> state; its provider must be
in the <CODE>Provider.IN_SERVICE</CODE> state. Successful response indicates that the data that was
pushed has arrived at the phone; however, the application cannot receive any XML, including the
CiscoIPPhoneResponse object from the push, back from the phone. If the application request is not successful,
a PlatformException is thrown. Any request with more than 2000 bytes of data is rejected.

public String sendData (String terminalData) throws InvalidStateException,MethodNotSupportedException;

Before the application can make use of this feature, it must add TerminalObserver on the terminal.

Features Supported by Cisco Unified JTAPI
184

Features Supported by Cisco Unified JTAPI
XSI Object Pass Through

Authentication and Mechanism
Sending an HTTP POST request to the phone web server, which requires the phone IP address, performs an
object push. The web server parses the request, authorizes the request through the HTTP that is returned to
the Cisco Unified CommunicationsManager, executes the request, and returns an XML response that indicates
the success or failure of the request to the application.

With XSI, the IP phone services object gets sent directly to the phone by the Skinny Client Control Protocol
(SCCP). The phone does not authenticate the request, because the JTAPI client is trusted and does not require
the phone IP address. For more information on actual XML contents, refer to the Cisco IPPhone Services
Application Development Notes.

Features Supported by Cisco Unified JTAPI
185

Features Supported by Cisco Unified JTAPI
Authentication and Mechanism

Features Supported by Cisco Unified JTAPI
186

Features Supported by Cisco Unified JTAPI
Authentication and Mechanism

	Features Supported by Cisco Unified JTAPI
	Account Lockout
	Agent Greeting
	AES 256 Algorithm IDs
	Alternate Script Support
	API for Exposing Built-In-Bridge Status
	Arabic and Hebrew Language Support
	Auto Updater for Linux
	AutoAccept Support for CTI Ports and Route Points
	Autoupdate of API
	Barge and Privacy Event Notification
	Call Control Discovery
	Call Forward
	Call Forward Override
	Call Park
	Call Pickup
	Call Recording for SIP or TLS Authenticated Calls
	Call Select Status
	Calling Party Display Name
	Calling Party IP Address
	Calling Party IP Address
	Calling Party Normalization
	CallFwdAll Key Press Notification
	CallSelect and UnSelect Event Notification
	Certificate Download API Enhancement
	Changes in DeviceType Name Handling
	Cisco MediaTerminal
	Provisioning
	Registration
	Adding Observers
	Accepting Calls

	Cisco Unified Communications Manager Media Endpoint Model
	Payload and Parameter Negotiation
	Initialization
	Payload Selection
	Receive Channel Allocation
	Starting Transmission and Reception
	Stopping Transmission and Reception

	Cisco Unified Communications Manager Server Failure
	Cisco Unified IP 7931G Phone Interaction
	Cisco Unified JTAPI Install Internationalization
	Cisco VG248 and ATA 186 Analog Phone Gateways
	CiscoJtapiExceptions
	Errors

	CiscoProvAuthenticationInfoEv
	CiscoRTPHandle Interface on Cisco RTP Events
	Cisco Terminal Filter and ButtonPressedEvents
	CiscoTermRegistrationfailed Event
	Errors

	Cius Persistency
	Clear Calls
	Click to Conference
	Cluster Abstraction
	Command Line Invocation
	Component Updater
	Conference
	Cisco Extensions
	Conference Scenarios
	Conference Events
	Transfer and Conference Enhancement

	Conference and Join
	Conference Chaining
	Consult Without Media
	CTI Ports
	CTI RoutePoints
	CTI Remote Device for JTAPI
	Play Announcement
	Verify Remote Destination Support
	NuRD (Number Matching for Remote Destination) Support
	Mobility Interaction Support

	CTI RD Call Forward
	CTI Video Support
	Default CTI IP Addressing for Devices
	DeleteCall
	Device Recovery
	Device Recovery for Phones
	Device State Server
	Direct Transfer Across Lines
	Usage Guidelines
	Event Flow Comparison and Sample Code

	Directed Call Park
	Directory Change Notification
	Do Not Disturb
	Do Not Disturb-Reject
	Drop Any Party
	Dynamic CTI Port Registration
	E911 Teleworker
	Enable or Disable Ringer
	Encryption Enhancement
	End to End Call Tracing
	EnergyWise Deep Sleep Mode
	Extension Mobility Cross Cluster
	Extension Mobility Username Login
	External Call Control
	End to End Session ID for Calls
	FIPS Compliance
	Forced Authorization and Client Matter Codes
	Supported Interfaces
	Call.Connect() and Call.Consult()
	Call.transfer(String) and Connection.redirect()
	RouteSession.selectRoute()

	Forwarding on No Bandwidth and Unregistered DN
	GetCallID in RTP Events
	GetCallInfo
	GetGlobalCallID
	Hairpin Support
	Half-Duplex Media Support
	Hold Reversion
	Hunt List
	Hunt List Connected Number
	Hunt Log Status
	Intercom
	Intercom Support for Extension Mobility
	IPv6 Support
	iSac Codec
	Java Socket Connect Timeout
	Join Across Lines
	Join Across Lines (Only SCCP)
	Join Across Lines or Connected Conference Across Lines
	Usage Guidelines
	Event Flow Comparison and Sample Code

	Join Across Lines with Conference Enhancements (SCCP and SIP)
	JRE 1.2 and JRE 1.3 Support Removal
	JTAPI Version Information
	Locale Infrastructure Development
	Logical Partitioning
	Media Termination at Route Point
	Media Termination Extensions
	Message Waiting Indicator Enhancement
	Modifying Calling Number
	Multi-fork Recording using CUBE Media Proxy Server
	Multilevel Precedence and Preemption Support
	Multiple Calls Per DN
	Native Queuing
	Network Alerting
	Network Events
	New Error Code in CiscoTermRegistrationFailedEv
	Noncontroller Adding of Parties to Conferences
	Park DN Monitor
	Park Monitoring and Assisted DPark Support
	Park Reminder
	Park Retrieval
	Partition Support
	Password Expiry
	Persistent Connection
	Play Zip Tone
	Presentation Indicator for Calls
	Privacy On Hold
	Progress State Converted to Disconnect State
	Q.Signaling (QSIG) Path Replacement
	QoS Support
	QoS Setup on Windows 2000
	QoS Setup on Windows XP Server 2003

	Quiet Clear
	Receiving and Responding to Media Flow Events
	Inbound Call Media Flow Event Diagram
	Cisco Unified Communications Solutions RTP Implementation

	Recording
	Redirect
	Redirect Set Original Called ID
	Redirect to Device
	Redundancy
	Redundancy in CTI Managers
	Invoking CTIManager Redundancy
	CTIManager Failure
	Heartbeats

	Ringback on SIP 183 for Transferred Calls
	Routing
	Cisco Route Session Implementation
	Select Route Timer
	Forwarding Timer
	Route Session Extension
	Caller Options Summary
	Fault Tolerance When Using Route Points

	Secure Conferencing
	Secure Real-Time Protocol Key Material
	Secured Monitoring and Recording
	SelectRoute Interface Enhancement
	selectRoute() with Calling Search Space and Feature Priority
	Set MessageWaiting
	Shared Line Support
	Silent Monitoring
	Single Sign-On
	Single Step Transfer
	SIP 3XX Redirection
	SIP Phone Support
	SIP REFER or REPLACE
	SIP Trunk Early Offer
	Star (*) 50 Update
	Super Provider (Disable Device Validation)
	Superprovider and Change Notification
	Support for Cisco Unified IP Phone 6901
	Support for Cisco Unified IP Phone 6900 Series
	Support for 100+ Directory Numbers
	Support for VMware
	Swap or Cancel and Transfer or Conference Behavior
	Terminal and Address Capability Settings
	Terminal and Address Restrictions
	SHA-512 Support for Digital Signatures
	Transfer
	CiscoTransferStartEv
	CiscoTransferEndEv
	Transfer Scenarios

	Transfer and Conference Extensions
	Transfer and DirectTransfer
	Translation Pattern Support
	Transport Layer Security (TLS)
	Unicode Support
	Unrestricted Unified CM
	URI Dialing
	Version Format Change
	Verification Involving PSTN Reachability
	Video Capabilities and Multi-Media Information
	Exposing Multimedia Capability on CiscoTerminal
	Exposing Changes in Multimedia Capability Via a New Provider Event
	Exposing Multimedia Capability on a CiscoCall
	Exposing Multimedia Streams Information on CiscoTerminal
	Supported Features (Within the Same Cluster)
	Supported Features (Across Clusters)
	Limitations

	Video On Hold Support
	Voice MailBox Support
	XSI Object Pass Through
	CiscoTerminal Method
	Authentication and Mechanism

