
Cisco Unified JTAPI Alarms and Services

The Cisco Unified JTAPI alarms and services consists of a set of classes and interfaces that expose the
additional functionality not readily exposed in JTAPI 1.2 specification but are available in Cisco Unified
CommunicationsManager. Developers can use the classes and interfaces to create new applications or modify
existing classes and interfaces to create new methods.

This chapter describes the alarms and services that are available for implementation in a Cisco Unified
Communications Manager.

For information about Cisco Unified JTAPI extensions, see Cisco Unified JTAPI Extensions

• Alarm Class Hierarchy, on page 2
• AlarmManager, on page 2
• AlarmWriter, on page 4
• DefaultAlarm, on page 6
• DefaultAlarmWriter, on page 8
• ParameterList, on page 12
• Alarm Interface Hierarchy, on page 14
• Alarm, on page 14
• AlarmWriter, on page 19
• Services Tracing Class Hierarchy, on page 21
• BaseTraceWriter, on page 21
• ConsoleTraceWriter, on page 25
• LogFileTraceWriter, on page 27
• OutputStreamTraceWriter, on page 33
• SyslogTraceWriter, on page 36
• TraceManagerFactory, on page 38
• Services Tracing Interface Hierarchy, on page 40
• Trace, on page 40
• ConditionalTrace, on page 47
• UnconditionalTrace, on page 48
• TraceManager, on page 49
• TraceModule, on page 53
• TraceWriter, on page 54
• TraceWriterManager, on page 57
• Tracing Implementation Class Hierarchy, on page 58
• TraceImpl, on page 59

Cisco Unified JTAPI Alarms and Services
1

cucm_b_cisco-unified-jtapi-developers-guide-1251_chapter6.pdf#nameddest=unique_185

• ConditionalTraceImpl, on page 61
• UnconditionalTraceImpl, on page 62
• TraceManagerImpl, on page 63
• TraceWriterManagerImpl, on page 67

Alarm Class Hierarchy
The following class hierarchy is contained in the com.cisco.services.alarm package.

java.lang.Object
com.cisco.services.alarm.AlarmManager, on page 2

com.cisco.services.alarm.DefaultAlarm, on page 6 (implements
com.cisco.services.alarm.Alarm)

com.cisco.services.alarm.DefaultAlarmWriter, on page 8 (implements
com.cisco.services.alarm.AlarmWriter, on page 19)

com.cisco.services.alarm.ParameterList, on page 12

AlarmManager
The AlarmManager is used to create Alarm objects. The AlarmManager is created with a facility and
AlarmService hostname and port. All alarms created by the factory will be associated with this facility. This
class also maintains a reference to a single AlarmWriter that can be used system wide. An application can
make use of this AlarmWriter. AlarmManager exposes a default implementation of an AlarmWriter.
Applications can override this with a user defined implementation of their own AlarmWriter.

Usage

AlarmManager AlarmManager = new AlarmManager(facilityName, alarmServiceHost, alarmServicePort,
debugTrace, errorTrace);

Alarms are created by the factory by supplying the alarmName (mnemonic), subfacility and severity Alarms
can be cached for use in different parts of the application. During a send alarm applications can specify the
variable parameters that offer specific information to the AlarmService.

Usage

Typically applications will maintain their own AlarmManager instance. Applications will also have to set a
debug and error trace to enable the alarm tracing to also be sent to the existing trace destinations.

Setup the manager and writer classes:

AlarmWriter alarmWriter = new DefaultAlarmWriter(port, alarmServiceHost);

AlarmManager alarmManager = new AlarmManager(“AA_IVR”, alarmWriter, debugTrace, errorTrace);

Generating the Alarms:

create an alarm for the subfacility and a default severity.

Alarm alarm = alarmManager.createAlarm(“HTTPSS”, Alarm.INFORMATIONAL);

alarm.send(“090T”) sends the alarm with the mnemonic

alarm.send(“090T”, “Port is stuck”, “CTIPort01”) or with a mnemonic and parameter

Cisco Unified JTAPI Alarms and Services
2

Cisco Unified JTAPI Alarms and Services
Alarm Class Hierarchy

Declaration

public class AlarmManager

java.lang.Object
|
+--com.cisco.services.alarm.AlarmManager

More than one parameter can be sent by specifying a ParameterListNote

Member summary

Constructors

AlarmManager(String, AlarmWriter, Trace, UnconditionalTrace),
on page 3

Create an instance of the AlarmManager for the facility.

Methods

createAlarm(String, int), on page 4

Creates an Alarm of required severity for the subFacility

Alarm

getAlarmWriter(), on page 4AlarmWriter

setAlarmWriter(AlarmWriter), on page 4

Allows applications to override the AlarmWriter to be used by
this AlarmManager, with a user defined AlarmWriter

void

Inherited member summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(), wait(),

wait()

Constructors

AlarmManager(String, AlarmWriter, Trace, UnconditionalTrace)

public AlarmManager(java.lang.String facility,
com.cisco.services.alarm.AlarmWriterwriter,
com.cisco.services.tracing.TracedebugTrace_,
com.cisco.services.tracing.UnconditionalTraceerrorTrace_)

Create an instance of the AlarmManager for the facility. Applications specify an AlarmWriter to be used by
this AlarmManager to send the Alarms to the AlarmService.

Cisco Unified JTAPI Alarms and Services
3

Cisco Unified JTAPI Alarms and Services
Declaration

Methods

createAlarm(String, int)

public com.cisco.services.alarm.Alarm createAlarm
(java.lang.String subfacility, intseverity)

Creates an Alarm of required severity for the subFacility

Returns:

an object implementing the alarm interface

getAlarmWriter()

public com.cisco.services.alarm.AlarmWriter getAlarmWriter()

Returns:

an AlarmWriter object

setAlarmWriter(AlarmWriter)

public void setAlarmWriter(com.cisco.services.alarm.AlarmWriter writer)

Allows applications to override the AlarmWriter to be used by this AlarmManager, with a user defined
AlarmWriter

AlarmWriter
An AlarmWriter receives alarm messages and transmits it to the receiving AlarmService on a TCP link. This
interface can be used to implement other AlarmWriters to be used with this implementation of
com.cisco.service.alarm A DefaultAlarmWriter is provided with this implementation and can be obtained
from the AlarmManager.

Declaration
public interface AlarmWriter

All Known Implementing Classes
DefaultAlarmWriter, on page 8

Member Summary
Member summary

Methods

close(), on page 5

close the AlarmWriter

void

Cisco Unified JTAPI Alarms and Services
4

Cisco Unified JTAPI Alarms and Services
Methods

Member summary

getDescription(), on page 5java.lang.String

getEnabled(), on page 5boolean

getName(), on page 5java.lang.String

send(String), on page 5

Send out the alarm message to the AlarmService.

void

setEnabled(boolean), on page 6

Enable or disable the AlarmWriter

void

Methods

close()

public void close()

close the AlarmWriter

getDescription()

public java.lang.String getDescription()

Returns:

the AlarmWriter description

getEnabled()

public boolean getEnabled()

Returns:

the current enabled or disabled state of the AlarmWriter

getName()

public java.lang.String getName()

Returns:

the AlarmWriter name

send(String)

public void send(java.lang.String alarmMessage)

Send out the alarm message to the AlarmService.

Parameters:

the - Alarm to be sent

Cisco Unified JTAPI Alarms and Services
5

Cisco Unified JTAPI Alarms and Services
Methods

setEnabled(boolean)

public void setEnabled(boolean enable)

Enable or disable the AlarmWriter

Parameters:

enable or disable the AlarmWriter

DefaultAlarm
An Implementation of the Alarm interface. The AlarmManager creates these Alarms when the createAlarm()
method is called.

Declaration

public class DefaultAlarm implements Alarm, on page 14

java.lang.Object
|
+--com.cisco.services.alarm.DefaultAlarm

All Implemented Interfaces
Alarm, on page 14

Member Summary
Member summary

Constructors

DefaultAlarm(String, String, int, AlarmWriter), on page 7

Methods

getFacility(), on page 7java.lang.String

getSeverity(), on page 7int

getSubFacility(), on page 7java.lang.String

send(String), on page 7

Send the alarm with the specified mnemonic

void

send(String, ParameterList), on page 8

Send the alarm with the specified name and list of parameters.

void

send(String, String, String), on page 8

Send the alarm with the specified name and parameter

void

Cisco Unified JTAPI Alarms and Services
6

Cisco Unified JTAPI Alarms and Services
DefaultAlarm

Inherited member summary

Fields inherited from interface Alarm, on page 14

ALERTS, on page 17, CRITICAL, on page 17, DEBUGGING, on page 17, EMERGENCIES, on page 17, ERROR, on page 17,
HIGHEST_LEVEL, on page 17, INFORMATIONAL, on page 18, LOWEST_LEVEL, on page 18, NOTIFICATION, on page
18, NO_SEVERITY, on page 18, UNKNOWN_MNEMONIC, on page 18, WARNING, on page 18

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(), wait(), wait()

Constructors

DefaultAlarm(String, String, int, AlarmWriter)

public DefaultAlarm(java.lang.String facility,
java.lang.StringsubFacility,
intseverity,
com.cisco.services.alarm.AlarmWriteralarmWriter)

Methods

getFacility()

public java.lang.String getFacility()

Specified By:

getFacility(), on page 18 in interface Alarm, on page 14

getSeverity()

public int getSeverity()

Specified By:

getSeverity(), on page 18 in interface Alarm, on page 14

getSubFacility()

public java.lang.String getSubFacility()

Specified By:

getSubFacility(), on page 19 in interface Alarm, on page 14

send(String)

public void send(java.lang.String mnemonic)

Send the alarm with the specified mnemonic

Specified By:

send(String), on page 19 in interface Alarm, on page 14

Cisco Unified JTAPI Alarms and Services
7

Cisco Unified JTAPI Alarms and Services
Constructors

send(String, ParameterList)

public void send(java.lang.String mnemonic,
com.cisco.services.alarm.ParameterListparamList)

Send the alarm with the specified name and list of parameters.

Specified By:

send(String, ParameterList), on page 19 in interface Alarm, on page 14

send(String, String, String)

public void send(java.lang.String mnemonic,
java.lang.StringparamName,
java.lang.StringparamValue)

Send the alarm with the specified name and parameter

Specified By:

send(String, String, String), on page 19 in interface Alarm, on page 14

DefaultAlarmWriter
DefaultAlarmWriter implementation of the AlarmWriter interface.

DefaultAlarmWriter maintains a queue of a fixed size to which the alarms are written. The sending of the
alarms to the alarm service takes place on a separate thread. The queue is fixed size.

Declaration
public class DefaultAlarmWriter implements AlarmWriter, on page 4

java.lang.Object
|
+--com.cisco.services.alarm.DefaultAlarmWriter

All Implemented Interfaces
AlarmWriter, on page 4

Member Summary
Member summary

Constructors

DefaultAlarmWriter(int, String), on page 9

Constructor for the DefaultAlarmWriter which takes the
AlarmService hostname, port and a queue size of fifty (50).

Cisco Unified JTAPI Alarms and Services
8

Cisco Unified JTAPI Alarms and Services
DefaultAlarmWriter

Member summary

DefaultAlarmWriter(int, String, int), on page 10

Constructor for the DefaultAlarmWriter which takes the
AlarmService hostname, port and queue size.

DefaultAlarmWriter(int, String, int, ConditionalTrace,
UnconditionalTrace), on page 10

Constructor for the DefaultAlarmWriter which takes the
AlarmService hostname, port and queue size.

Methods

close(), on page 10

Shutdown the send thread and close the socket

void

getDescription(), on page 11java.lang.String

getEnabled(), on page 11boolean

getName(), on page 11java.lang.String

main(String[]), on page 11static void

send(String), on page 11

send the Alarm to the alarm service

void

setEnabled(boolean), on page 11

Applications can dynamically enable or disable the AlarmWriter

void

Inherited member summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(), wait(), wait()

Constructors

DefaultAlarmWriter(int, String)

public DefaultAlarmWriter(int port,
java.lang.StringalarmServiceName) throwsUnknownHostException

Constructor for the DefaultAlarmWriter which takes the AlarmService hostname, port and a queue size of
fifty (50). The AlarmService is listening on this port for Alarm messages.

Parameters:

port: port on which the alarm service is listening

alarmServiceName: The host name of the machine with the Alarm service

Cisco Unified JTAPI Alarms and Services
9

Cisco Unified JTAPI Alarms and Services
Constructors

Throws:

java.net.UnknownHostException

DefaultAlarmWriter(int, String, int)

public DefaultAlarmWriter(int port,
java.lang.StringalarmServiceName,
intqueueSize) throwsUnknownHostException

Constructor for the DefaultAlarmWriter which takes the AlarmService hostname, port and queue size. The
AlarmService is listening on this port for Alarm messages.

Parameters:

port—port on which the alarm service is listening

alarmServiceName—The host name of the machine with the Alarm service

queueSize - the size of the queue to be maintained in the alarm writer

Throws:

java.net.UnknownHostException

DefaultAlarmWriter(int, String, int, ConditionalTrace, UnconditionalTrace)

public DefaultAlarmWriter(int port,
java.lang.StringalarmServiceName,
intqueueSize,
com.cisco.services.tracing.ConditionalTracedebugTrace_,
com.cisco.services.tracing.UnconditionalTraceerrorTrace_) throwsUnknownHostException

Constructor for the DefaultAlarmWriter which takes the AlarmService hostname, port and queue size. The
AlarmService is listening on this port for Alarm messages.

Parameters:

port—port on which the alarm service is listening

alarmServiceName—The host name of the machine with the Alarm service

queueSize - the size of the queue to be maintained in the alarm writer

Throws:

java.net.UnknownHostException

Methods

close()

public void close()

Shutdown the send thread and close the socket

Specified By:

close in interface AlarmWriter, on page 4

Cisco Unified JTAPI Alarms and Services
10

Cisco Unified JTAPI Alarms and Services
Methods

getDescription()

public java.lang.String getDescription()

Specified By:

getDescription in interface AlarmWriter, on page 4

Returns:

a short description of the AlarmWriter

getEnabled()

public boolean getEnabled()

Specified By:

getEnabled in interface AlarmWriter, on page 4

Returns:

the enabled state of the AlarmWriter

getName()

public java.lang.String getName()

Specified By:

getName in interface AlarmWriter, on page 4

Returns:

the name of the AlarmWriter

main(String[])

public static void main(java.lang.String[] args)

send(String)

public void send(java.lang.String alarmMessage)

send the Alarm to the alarm service

Specified By:

send in interface AlarmWriter, on page 4

setEnabled(boolean)

public void setEnabled(boolean enable)

Applications can dynamically enable or disable the AlarmWriter

Specified By:

setEnabled in interface AlarmWriter, on page 4

Cisco Unified JTAPI Alarms and Services
11

Cisco Unified JTAPI Alarms and Services
Methods

ParameterList
ParameterList is a list of name value pairs that is used to send additional (and optional) user defined parameters
to the AlarmService. These parameters can contain the specifics of an Alarm.

As an example, a LowResourceAlarm can have a parameter that informs the service which particular resource
is low:

name = “CPUUsage”

value = “0.9”

These parameters are user definable but must, however, also be pre-defined in the AlarmService catalog.

Declaration

public class ParameterList

java.lang.Object
|
+--com.cisco.services.alarm.ParameterList

Member Summary
Member summary

Constructors

ParameterList(), on page 13

Default constructor for the ParameterList

ParameterList(String, String), on page 13

Constructor that takes a name value pair.

Methods

addParameter(String, String), on page 13

method used to add additional name value pairs (parameters) to
the list

void addParameter(String, String), on page 13

getParameterNames(), on page 13

Get the parameter names in the list

java.lang.String[]

getParameterValue(String), on page 13

get the value for a parameter

java.lang.String

removeAllParameters(), on page 14

remove all the parameters in the list

void

Cisco Unified JTAPI Alarms and Services
12

Cisco Unified JTAPI Alarms and Services
ParameterList

Member summary

removeParameter(String), on page 14

remove a particular parameter if it is in the list

void

toString(), on page 14java.lang.String

Inherited member summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Constructors

ParameterList()

public ParameterList()

Default constructor for the ParameterList

ParameterList(String, String)

public ParameterList(java.lang.String name,
java.lang.Stringvalue)

Constructor that takes a name value pair.

Methods

addParameter(String, String)

public void addParameter(java.lang.String name,
java.lang.Stringvalue)

method used to add additional name value pairs (parameters) to the list

getParameterNames()

public java.lang.String[] getParameterNames()

Get the parameter names in the list

Returns:

array of parameters

getParameterValue(String)

public java.lang.String getParameterValue(java.lang.String parameterName)

get the value for a parameter

Returns:

Cisco Unified JTAPI Alarms and Services
13

Cisco Unified JTAPI Alarms and Services
Constructors

value of a parameter

removeAllParameters()

public void removeAllParameters()

remove all the parameters in the list

removeParameter(String)

public void removeParameter(java.lang.String parameterName)

remove a particular parameter if it is in the list

toString()

public java.lang.String toString()

Overrides:

toString in class Object

Alarm Interface Hierarchy
The following interface hierarchy is contained in the com.cisco.services.alarm package.

com.cisco.services.alarm.Alarm, on page 14

com.cisco.services.alarm.AlarmWriter, on page 19

Alarm
The Alarm interface is used to define Alarms in. An Alarm has an XML representation that it must adhere to
in order to be recognized by the Alarm Service, with a DTD as shown below. An application can implement
this interface or use the AlarmFactory to generate Alarms of the correct format. The Alarm is the a specification
that needs to be sent to an AlarmService that will take some action based on the Alarm. Using this specification
the AlarmService will access definitions available in a catalog. This catalog is maintained by the user requiring
the Alarm function to effect the appropriate action for the Alarm. The severity specified the Alarm can over-ride
the severity associated with this Alarm in the catalog. If no severity is specified in the Alarm the catalog
severity is used.

Alarm severities are derived from Syslog and are defined as follows:

0 = EMERGENCIES System unusable

1 = ALERTS Immediate action needed

2 = CRITICAL Critical conditions

3 = ERROR Error conditions

4 = WARNING Warning conditions

5 = NOTIFICATION Normal but significant condition

Cisco Unified JTAPI Alarms and Services
14

Cisco Unified JTAPI Alarms and Services
Alarm Interface Hierarchy

6 = INFORMATIONAL Informational messages only

7 = DEBUGGING Debugging messages

Declaration
public interface Alarm

All Known Implementing Classes
DefaultAlarm, on page 6

Member Summary
Member summary

Fields

ALERTS, on page 17

The application will continue working on the tasks but all
functions may not be operational (one or more devices in the list
are not accessible but others in the list can be accessed)

Syslog severity level = 1

static int

CRITICAL, on page 17

A critical failure, the application cannot accomplish the tasks
required due to this failure, for example, the application cannot
open the database to read the device list

Syslog severity level = 2

static int

DEBUGGING, on page 17

Very detailed information regarding errors or processing status
that is only generated when DEBUG mode has been enabled

Syslog severity level = 7

static int

EMERGENCIES, on page 17

Emergency situation, a system shutdown is necessary

Syslog severity level = 0

static int

ERROR, on page 17

An error condition of some kind has occurred and the user needs
to understand the nature of that failure

Syslog severity level = 3

static int

Cisco Unified JTAPI Alarms and Services
15

Cisco Unified JTAPI Alarms and Services
Declaration

Member summary

HIGHEST_LEVEL, on page 17

The highest trace level, currently this is DEBUGGING with a
trace level of 7

static int

INFORMATIONAL, on page 18

Information of some form not relating to errors, warnings, audit,
or debug

Syslog severity level = 6

static int

LOWEST_LEVEL, on page 18

The lowest trace level, currently this is EMERGENCIES with a
trace level of 0

static int

NO_SEVERITY, on page 18

Applications can set this level to generate Alarms without a
severity.

static int

NOTIFICATION, on page 18

Notification denotes a normal but significant condition

Syslog severity level = 5

static int

UNKNOWN_MNEMONIC, on page 18

String used when a mnemonic is not specified during an Alarm
send

static java.lang.String

WARNING, on page 18

Warning that a problem of some form exists but is not keeping
the application from completing its tasks

Syslog severity level = 4

static int

Methods

getFacility(), on page 18java.lang.String

getSeverity(), on page 18int

getSubFacility(), on page 19java.lang.String

send(String), on page 19

send the Alarm with the specified mnemonic.

void

send(String, ParameterList), on page 19

send an Alarm with the specified mnemonic and supplied
parameter list

void

Cisco Unified JTAPI Alarms and Services
16

Cisco Unified JTAPI Alarms and Services
Member Summary

Member summary

send(String, String, String), on page 19

send an Alarm with the specified mnemonic and with one
parameter

void

Fields

ALERTS

public static final int ALERTS

The application will continue working on the tasks but all functions may not be operational (one or more
devices in the list are not accessible but others in the list can be accessed)

Syslog severity level = 1

CRITICAL

public static final int CRITICAL

A critical failure, the application cannot accomplish the tasks required due to this failure, for example, the
application cannot open the database to read the device list

Syslog severity level = 2

DEBUGGING

public static final int DEBUGGING

Very detailed information regarding errors or processing status that is only generated when DEBUG mode
has been enabled (Syslog severity level = 7).

EMERGENCIES

public static final int EMERGENCIES

Emergency situation, a system shutdown is necessary

Syslog severity level = 0

ERROR

public static final int ERROR

An error condition of some kind has occurred and the user needs to understand the nature of that failure

Syslog severity level = 3

HIGHEST_LEVEL

public static final int HIGHEST_LEVEL

The highest trace level, currently this is DEBUGGING with a trace level of 7

Cisco Unified JTAPI Alarms and Services
17

Cisco Unified JTAPI Alarms and Services
Fields

INFORMATIONAL

public static final int INFORMATIONAL

Information of some form not relating to errors, warnings, audit, or debug

Syslog severity level = 6

LOWEST_LEVEL

public static final int LOWEST_LEVEL

The lowest trace level, currently this is EMERGENCIES with a trace level of 0

NO_SEVERITY

public static final int NO_SEVERITY

Applications can set this level to generate Alarms without a severity. NOTE: This is only intended for cases
where an application wants the AlarmService to use the severity associated with the Alarm in the catalog

NOTIFICATION

public static final int NOTIFICATION

Notification denotes a normal but significant condition (Syslog severity level = 5).

UNKNOWN_MNEMONIC

public static final java.lang.String UNKNOWN_MNEMONIC

String used when a mnemonic is not specified during an Alarm send

WARNING

public static final int WARNING

Warning that a problem of some form exists but is not keeping the application from completing its tasks
(Syslog severity level = 4).

Methods

getFacility()

public java.lang.String getFacility()

Returns:

the facility name of this Alarm

getSeverity()

public int getSeverity()

Returns:

severity of the alarm, an integer in the range [0-7]

Cisco Unified JTAPI Alarms and Services
18

Cisco Unified JTAPI Alarms and Services
Methods

getSubFacility()

public java.lang.String getSubFacility()

Returns:

the subfacility of this Alarm

send(String)

public void send(java.lang.String mnemonic)

send the Alarm with the specified mnemonic. If a null or empty String is passed a mnemonic UNK is sent

send(String, ParameterList)

public void send(java.lang.String mnemonic,
com.cisco.services.alarm.ParameterListparameterList)

send an Alarm with the specified mnemonic and supplied parameter list

send(String, String, String)

public void send(java.lang.String mnemonic,
java.lang.StringparameterName,
java.lang.StringparameterValue)

send an Alarm with the specified mnemonic and with one parameter.

AlarmWriter
An AlarmWriter receives alarm messages and transmits it to the receiving AlarmService on a TCP link. This
interface can be used to implement other AlarmWriters to be used with this implementation of
com.cisco.service.alarm A DefaultAlarmWriter is provided with this implementation and can be obtained
from the AlarmManager.

Declaration
public interface AlarmWriter

All Known Implementing Classes
DefaultAlarmWriter, on page 8

Member Summary
Member summary

Methods

close(), on page 5

close the AlarmWriter

void

Cisco Unified JTAPI Alarms and Services
19

Cisco Unified JTAPI Alarms and Services
AlarmWriter

Member summary

getDescription(), on page 5java.lang.String

getEnabled(), on page 5boolean

getName(), on page 5java.lang.String

send(String), on page 5

Send out the alarm message to the AlarmService.

void

setEnabled(boolean), on page 6

Enable or disable the AlarmWriter

void

Methods

close()

public void close()

close the AlarmWriter

getDescription()

public java.lang.String getDescription()

Returns:

the AlarmWriter description

getEnabled()

public boolean getEnabled()

Returns:

the current enabled or disabled state of the AlarmWriter

getName()

public java.lang.String getName()

Returns:

the AlarmWriter name

send(String)

public void send(java.lang.String alarmMessage)

Send out the alarm message to the AlarmService.

Parameters:

the Alarm to be sent

Cisco Unified JTAPI Alarms and Services
20

Cisco Unified JTAPI Alarms and Services
Methods

setEnabled(boolean)

public void setEnabled(boolean enable)

Enable or disable the AlarmWriter

Parameters:

enable or disable the AlarmWriter

Services Tracing Class Hierarchy
The following class hierarchy is contained in the com.cisco.services.tracing package.

java.lang.Object
com.cisco.services.tracing.BaseTraceWriter, on page 21 (implements

com.cisco.services.tracing.TraceWriter)
com.cisco.services.tracing.ConsoleTraceWriter, on page 25
com.cisco.services.tracing.LogFileTraceWriter, on page 27
com.cisco.services.tracing.OutputStreamTraceWriter, on page 33
com.cisco.services.tracing.SyslogTraceWriter, on page 36

com.cisco.services.tracing.TraceManagerFactory, on page 38

BaseTraceWriter
This abstract class is useful for supplying a default, non-printing TraceWriter to a TraceWriterManager This
class must be extended to provide the functionality to trace to different streams. The doPrintln() method must
be implemented by the extending class.

Declaration

public abstract class BaseTraceWriter implements TraceWriter, on page 54

java.lang.Object
|
+--com.cisco.services.tracing.BaseTraceWriter

All Implemented Interfaces
TraceWriter, on page 54

Direct Known Subclasses
ConsoleTraceWriter, on page 25, LogFileTraceWriter, on page 27, OutputStreamTraceWriter, on page 33,
SyslogTraceWriter, on page 36

Cisco Unified JTAPI Alarms and Services
21

Cisco Unified JTAPI Alarms and Services
Services Tracing Class Hierarchy

Member Summary
Member summary

Constructors

BaseTraceWriter(int[], String, String), on page 23

BaseTraceWriter with trace levels as passed in traceLevels in the
array falling outside the range Trace.LOWEST_LEVEL and
Trace.HIGHEST_LEVEl are ignored

protected

BaseTraceWriter(int, String, String), on page 23

BaseTraceWriter that traces all levels up to the maxTraceLevel
The trace level is maintained in the range
[Trace.HIGHEST_LEVEL, Trace.LOWEST_LEVEL]

protected

BaseTraceWriter(String, String), on page 23

BaseTraceWriter which only traces the lowest level i.e. severity
level, Trace.LOWEST_LEVEL messages

protected

Methods

close(), on page 23void

doClose(), on page 24protected void

doFlush(), on page 24protected void

doPrintln(String, int), on page 24

Must be implemented by the various TraceWriters extending
BaseTraceWriter to provide the specific tracing functionality

protected abstract void

flush(), on page 24void

getDescription(), on page 24java.lang.String

getEnabled(), on page 24boolean

getName(), on page 24java.lang.String

getTraceLevels(), on page 24int[]

println(String, int), on page 25void

setTraceLevels(int[]), on page 25void

toString(), on page 25java.lang.String

Inherited member summary

Methods inherited from class Object

clone() , equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Cisco Unified JTAPI Alarms and Services
22

Cisco Unified JTAPI Alarms and Services
Member Summary

Constructors

BaseTraceWriter(int[], String, String)

protected BaseTraceWriter(int[] traceLevels,
java.lang.Stringname,
java.lang.Stringdescription)

BaseTraceWriter with trace levels as passed in traceLevels in the array falling outside the range
Trace.LOWEST_LEVEL and Trace.HIGHEST_LEVEl are ignored

Parameters:

traceLevels - array of trace levels

See Also:

Trace, on page 40

BaseTraceWriter(int, String, String)

protected BaseTraceWriter(int maxTraceLevel,
java.lang.Stringname,
java.lang.Stringdescription)

BaseTraceWriter that traces all levels up to the maxTraceLevel The trace level is maintained in the range
[Trace.HIGHEST_LEVEL, Trace.LOWEST_LEVEL]

See Also:

Trace, on page 40

BaseTraceWriter(String, String)

protected BaseTraceWriter(java.lang.String name,
java.lang.Stringdescription)

BaseTraceWriter which only traces the lowest level i.e. severity level, Trace.LOWEST_LEVEL messages

See Also:

Trace, on page 40

Methods

close()

public final void close()

Description copied from interface:

com.cisco.services.tracing.TraceWriter

Releases any resources associated by this TraceWriter.

Specified By:

close in interface TraceWriter, on page 54

Cisco Unified JTAPI Alarms and Services
23

Cisco Unified JTAPI Alarms and Services
Constructors

doClose()

protected void doClose()

doFlush()

protected void doFlush()

doPrintln(String, int)

protected abstract void doPrintln(java.lang.String message,
intmessageNumber)

Must be implemented by the various TraceWriters extending BaseTraceWriter to provide the specific tracing
functionality

flush()

public final void flush()

Description copied from interface: com.cisco.services.tracing.TraceWriter

Forces output of any messages that have been printed using the println method

Specified By:

flush in interface TraceWriter, on page 54

getDescription()

public final java.lang.String getDescription()

Specified By:

getDescription in interface TraceWriter, on page 54

getEnabled()

public boolean getEnabled()

Description copied from interface: com.cisco.services.tracing.TraceWriter

Returns whether the println method will print anything or not. A closed TraceWriter will always return false
from this method.

Specified By:

getEnabled in interface TraceWriter, on page 54

getName()

public final java.lang.String getName()

Specified By:

getName in interface TraceWriter, on page 54

getTraceLevels()

public final int[] getTraceLevels()

Specified By:

Cisco Unified JTAPI Alarms and Services
24

Cisco Unified JTAPI Alarms and Services
Methods

getTraceLevels in interface TraceWriter, on page 54

println(String, int)

public final void println(java.lang.String message,
intseverity)

Description copied from interface: com.cisco.services.tracing.TraceWriter

Prints the specified string followed by a carriage return The concrete TraceWriter class will use the severity
to block out messages from a particular stream. Each trace writer has a notion of the highest level trace it
traces.

Specified By:

println in interface TraceWriter, on page 54

setTraceLevels(int[])

public final void setTraceLevels(int[] levels)

Description copied from interface: com.cisco.services.tracing.TraceWriter

set the trace levels that will be traced by this TraceWriter

Specified By:

setTraceLevels in interface TraceWriter, on page 54

toString()

public final java.lang.String toString()

Overrides:

toString in class Object

ConsoleTraceWriter
Supplies a console TraceWriter to trace to System.out.

See Also:

Trace, on page 40

Declaration

public final class ConsoleTraceWriter extends BaseTraceWriter

java.lang.Object
|
+--com.cisco.services.tracing.BaseTraceWriter
|
+--com.cisco.services.tracing.ConsoleTraceWriter

Cisco Unified JTAPI Alarms and Services
25

Cisco Unified JTAPI Alarms and Services
ConsoleTraceWriter

All Implemented Interfaces
TraceWriter, on page 54

Member Summary
Member summary

Constructors

ConsoleTraceWriter(), on page 26

Default constructor, traces all severity levels

ConsoleTraceWriter(int), on page 27

Constructor that sets the maximum level to be traced.

ConsoleTraceWriter(int[]), on page 27

Construct a ConsoleTraceWriter with an array of trace levels Only
traces with the severity in the tracelevel array are traced

Methods

doFlush(), on page 27protected void

doPrintln(String, int), on page 27protected void

main(String[]), on page 27static void

Inherited member summary

Methods inherited from class BaseTraceWriter, on page 21

close(), on page 23, doClose(), on page 24, flush(), on page 24, getDescription(), on page 24, getEnabled(), on page 24, getName(),
on page 24, getTraceLevels(), on page 24, println(String, int), on page 25, setTraceLevels(int[]), on page 25, toString(), on page
25

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Constructors

ConsoleTraceWriter()

public ConsoleTraceWriter()

Default constructor, traces all severity levels

Cisco Unified JTAPI Alarms and Services
26

Cisco Unified JTAPI Alarms and Services
All Implemented Interfaces

ConsoleTraceWriter(int)

public ConsoleTraceWriter(int maxTraceLevel)

Constructor that sets the maximum level to be traced.

See Also:

Trace, on page 40

ConsoleTraceWriter(int[])

public ConsoleTraceWriter(int[] traceLevels)

Construct a ConsoleTraceWriter with an array of trace levels Only traces with the severity in the tracelevel
array are traced

Parameters:

int - [] traceLevels

See Also:

Trace, on page 40

Methods

doFlush()

protected final void doFlush()

Overrides:

doFlush in class BaseTraceWriter, on page 21

doPrintln(String, int)

protected final void doPrintln(java.lang.String message,
intmessageNumber)

Description copied from class: com.cisco.services.tracing.BaseTraceWriter

Must be implemented by the various TraceWriters extending BaseTraceWriter to provide the specific tracing
functionality

Overrides:

doPrintln in class BaseTraceWriter, on page 21

main(String[])

public static void main(java.lang.String[] args)

LogFileTraceWriter
This class extends the BaseTraceWriter class to implement a TraceWriter that writes to a set of log files,
rotating among them as each becomes filled to a specified capacity and stores them in a specified directory.

Cisco Unified JTAPI Alarms and Services
27

Cisco Unified JTAPI Alarms and Services
Methods

Each of the log files is named according to a pattern controlled by three properties, CurrentFile, FileNameBase,
and FileExtension. The CurrentFile property determines which log file, by ordinal number, is being written
at present, the FileNameBase property determines the prefix of each log file name, and the FileExtension
property determines the suffix, e.g. “txt”. From these properties, log files are named FileNameBase
LeadingZeroPadding CurrentFile.FileExtension. The CurrentFile property takes on a value from 1 to the
value of the MaxFiles property. Note that the CurrentFile property, when converted to a String, is padded
with leading zeroes depending on the values of the MaxFiles and CurrentFile properties. An index file tracks
the index of the last file written. If the logFileWriter is recreated (for example if an application is restarted)
new files will continue from the last written index.

Where the log files are stored is determined by the path, dirNameBase, useSameDir. If a path is not specified,
the current path is used as default. If a dirNameBase is not specified, it write log files in the path. Depending
upon whether useSameDir is true or false, files are written to the same directory or a new directory, each time
an instance of LogFileTraceWriter is created. In case new directories are being made each time, the directory
name will consist of the dirNameBase and a number, separated by an ’_’. The number is one more than the
greatest number associated with directories with the same dirNameBame in the path. While specifying the
path, you may use either a “/” or “\\”, but not “\”

The LogFileTraceWriter keeps track of how many bytes have been written to the current log file. When that
number growswithin approximately LogFileTraceWriter.ROLLOVER_THRESHOLDbytes, tracing continues
to the next file, which is either CurrentFile + 1 if CurrentFile is not equal to MaxFiles, or 1 if CurrentFile is
equal to MaxFiles.

All properties of this class are specified in the constructor; there is no way to change them dynamically.
Caveat: If two instances of LogFileTraceWriter are created with the same path and dirNameBase, and
useSameDir is true, they may write to the same file.

Note

Example

The following code instantiates a LogFileTraceWriter that will create log files called “MyLog01.log”
through “MyLog12.log”. Each file will grow to approximately 100K bytes in size before the next
file is created:

LogFileTraceWriter out = new LogFileTraceWriter (“MyLog”, “log”, 12, 100 * 1024); will create
a log file TraceWriter which will rotate traces to 12 files from Mylog01.log and Mylog12.log with
a file size of 100 KBytes. By default the tracing is set to the HIGHEST_LEVEL.

The following code constructs a LogFileTraceWriter which stores the log files in the path “c:/LogFiles”
in a sub directory, “Run”. The files will be named MyLogXX.log. The number of rotating files will
be 12 with a size of 100 KB. The same directory gets used for each instance of the application.

LogFileTraceWriter out = new LogFileTraceWriter (“c:/logFiles”, “Run”, “MyLog”, “log”, 12,
100*1024, true);

See Also

Trace, on page 40

Cisco Unified JTAPI Alarms and Services
28

Cisco Unified JTAPI Alarms and Services
LogFileTraceWriter

Declaration

public final class LogFileTraceWriter extends BaseTraceWriter, on page 21

java.lang.Object
|
+--com.cisco.services.tracing.BaseTraceWriter
|
+--com.cisco.services.tracing.LogFileTraceWriter

All Implemented Interfaces
TraceWriter, on page 54

Member Summary
Member summary

Fields

DEFAULT_FILE_NAME_BASE, on page 30static java.lang.String

DEFAULT_FILE_NAME_EXTENSION, on page 31static java.lang.String

DIR_BASE_NAME_NUM_SEPERATOR, on page 31static char

MIN_FILE_SIZE, on page 31static int

MIN_FILES, on page 31static int

ROLLOVER_THRESHOLD, on page 31static int

Constructors

LogFileTraceWriter(String, String, int, int), on page 31

Default constructor for LogFileTraceWriter that rotates among
an arbitrary number of files with tracing for all levels.

LogFileTraceWriter(String, String, String, String, int, int,
boolean), on page 31

Default constructor for LogFileTraceWriter that rotates among
an arbitrary number of files with tracing for all levels.

LogFileTraceWriter(String, String, String, String, int, int, int,
boolean), on page 31

Constructs a LogFileTraceWriter that rotates among an arbitrary
number of files storing them in a specified directory.

Methods

doClose(), on page 32

Closes this OutputStream.

protected void

Cisco Unified JTAPI Alarms and Services
29

Cisco Unified JTAPI Alarms and Services
Declaration

Member summary

doFlush(), on page 32protected void

doPrintln(String, int), on page 32protected void

getCurrentFile(), on page 32

Returns the CurrentFile property

int

getFileExtension(), on page 32

Returns the FileExtension property

java.lang.String

getFileNameBase(), on page 33

Returns the FileNameBase property

java.lang.String

getHeader(), on page 33

Get the header string that will be written at the beginning of each
log file.

java.lang.String

getMaxFiles(), on page 33

Returns the MaxFiles property

int

getMaxFileSize(), on page 33

Returns the MaxFileSize property

int

setHeader(String), on page 33

Set the constant header string that will be written at the beginning
of every file, trace writing continues from the next line after the
header is written.

void

Inherited member summary

Methods inherited from class BaseTraceWriter, on page 21

close(), on page 23, doClose(), on page 24, flush(), on page 24, getDescription(), on page 24, getEnabled(), on page 24, getName(),
on page 24, getTraceLevels(), on page 24, println(String, int), on page 25, setTraceLevels(int[]), on page 25, toString(), on page
25

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Fields

DEFAULT_FILE_NAME_BASE

public static final java.lang.String DEFAULT_FILE_NAME_BASE

Cisco Unified JTAPI Alarms and Services
30

Cisco Unified JTAPI Alarms and Services
Fields

DEFAULT_FILE_NAME_EXTENSION

public static final java.lang.String DEFAULT_FILE_NAME_EXTENSION

DIR_BASE_NAME_NUM_SEPERATOR

public static final char DIR_BASE_NAME_NUM_SEPERATOR

MIN_FILE_SIZE

public static final int MIN_FILE_SIZE

MIN_FILES

public static final int MIN_FILES

ROLLOVER_THRESHOLD

public static final int ROLLOVER_THRESHOLD

Constructors

LogFileTraceWriter(String, String, int, int)

public LogFileTraceWriter(java.lang.String fileNameBase,
java.lang.StringfileNameExtension,
intmaxFiles,
intmaxFileSize) throwsIOException

Default constructor for LogFileTraceWriter that rotates among an arbitrary number of files with tracing for
all levels. Since a path and Directory Base name is not specified, it writes the files to the current directory
without any sub directories.

Throws:

java.io.IOException

LogFileTraceWriter(String, String, String, String, int, int, boolean)

public LogFileTraceWriter(java.lang.String path,
java.lang.StringdirNameBase,
java.lang.StringfileNameBase,
java.lang.StringfileNameExtension,
intmaxFiles,
intmaxFileSize,
booleanuseSameDir) throwsIOException

Default constructor for LogFileTraceWriter that rotates among an arbitrary number of files with tracing for
all levels.

Throws:

java.io.IOException

LogFileTraceWriter(String, String, String, String, int, int, int, boolean)

public LogFileTraceWriter(java.lang.String path,
java.lang.StringdirNameBase,
java.lang.StringfileNameBase,

Cisco Unified JTAPI Alarms and Services
31

Cisco Unified JTAPI Alarms and Services
Constructors

java.lang.StringfileNameExtension,
intmaxFiles,
intmaxFileSize,
intmaxTraceLevel,
booleanuseSameDir) throwsIOException

Constructs a LogFileTraceWriter that rotates among an arbitrary number of files storing them in a specified
directory.

Throws:

java.io.IOException

Methods

doClose()

protected void doClose()

Closes this OutputStream. Any log file that is currently open will be closed as well.

Overrides:

doClose in class BaseTraceWriter, on page 21

doFlush()

protected void doFlush()

Overrides:

doFlush in class BaseTraceWriter, on page 21

doPrintln(String, int)

protected void doPrintln(java.lang.String message,
intmessageNumber)

Description copied from class: com.cisco.services.tracing.BaseTraceWriter

Must be implemented by the various TraceWriters extending BaseTraceWriter to provide the specific tracing
functionality

Overrides:

doPrintln in class BaseTraceWriter, on page 21

getCurrentFile()

public int getCurrentFile()

Returns:

the CurrentFile property

getFileExtension()

public java.lang.String getFileExtension()

Returns:

the FileExtension property

Cisco Unified JTAPI Alarms and Services
32

Cisco Unified JTAPI Alarms and Services
Methods

getFileNameBase()

public java.lang.String getFileNameBase()

Returns:

the FileNameBase property

getHeader()

public java.lang.String getHeader()

Get the header string that will be written at the beginning of each log file.

Returns:

the Header Property

getMaxFiles()

public int getMaxFiles()

Returns:

the MaxFiles property

getMaxFileSize()

public int getMaxFileSize()

Returns:

the MaxFileSize property

setHeader(String)

public void setHeader(java.lang.String header)

Set the constant header string that will be written at the beginning of every file, trace writing continues from
the next line after the header is written. If setHeader is called after a file output has started, it will take effect
from the next file to be written.

Usage:
tm = TraceManagerFactory.registerModule(this);
tw = newLogFileTraceWriter(“trace”, “log”, 10, 1024*1024);
tw.setHeader(header);
tm.getTraceWriterManager().addTraceWriter(tw);

OutputStreamTraceWriter
OutputStreamTraceWriter wraps an output stream in a TraceWriter. This simplifies adding custom tracing
classes that can co-exist with other TraceWriters.

Cisco Unified JTAPI Alarms and Services
33

Cisco Unified JTAPI Alarms and Services
OutputStreamTraceWriter

Declaration

public final class OutputStreamTraceWriter extends BaseTraceWriter, on page 21

java.lang.Object
|
+--com.cisco.services.tracing.BaseTraceWriter
|
+--com.cisco.services.tracing.OutputStreamTraceWriter

All Implemented Interfaces
TraceWriter, on page 54

Member Summary

Member summary

Constructors

OutputStreamTraceWriter(int, OutputStream), on page 35

Default constructor which is auto-flushing

OutputStreamTraceWriter(int, OutputStream, boolean), on page
35

Create an OutputStreamTraceWriter

Methods

doClose(), on page 35protected void

doFlush(), on page 35protected void

doPrintln(String, int), on page 35protected void

getOutputStream(), on page 36java.io.OutputStream

Inherited member summary

Methods inherited from class BaseTraceWriter, on page 21

close(), on page 23, doClose(), on page 24, flush(), on page 24, getDescription(), on page 24, getEnabled(), on page 24, getName(),
on page 24, getTraceLevels(), on page 24, println(String, int), on page 25, setTraceLevels(int[]), on page 25, toString(), on page
25

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Cisco Unified JTAPI Alarms and Services
34

Cisco Unified JTAPI Alarms and Services
Declaration

Constructors

OutputStreamTraceWriter(int, OutputStream)

public OutputStreamTraceWriter(int maxTraceLevel,
java.io.OutputStreamoutputStream)

Default constructor which is auto-flushing

See Also:

Trace, on page 40

OutputStreamTraceWriter(int, OutputStream, boolean)

public OutputStreamTraceWriter(int maxTraceLevel,
java.io.OutputStreamoutputStream,
booleanautoFlush)

Create an OutputStreamTraceWriter

See Also:

Trace, on page 40

Methods

doClose()

protected void doClose()

Overrides:

doClose in class BaseTraceWriter, on page 21

doFlush()

protected void doFlush()

Overrides:

doFlush in class BaseTraceWriter, on page 21

doPrintln(String, int)

protected void doPrintln(java.lang.String message, intmessageNumber)

Description copied from class: com.cisco.services.tracing.BaseTraceWriter

Must be implemented by the various TraceWriters extending BaseTraceWriter to provide the specific tracing
functionality

Overrides:

doPrintln in class BaseTraceWriter, on page 21

Cisco Unified JTAPI Alarms and Services
35

Cisco Unified JTAPI Alarms and Services
Constructors

getOutputStream()

public java.io.OutputStream getOutputStream()

Returns:

the output stream associated with the TraceWriter

SyslogTraceWriter
SyslogTraceWriter refines the BaseTraceWriter to allow tracing to syslog. Cisco syslog specification calls
for sending low level traces to a syslog collector in the form of UDP messages. No buffering is done in this
TraceWriter. The SyslogTraceWriter makes an exception to the println() method in that it places a ’\0’ instead
of a System specified line separator to terminate the message packet.

Declaration

public final class SyslogTraceWriter extends BaseTraceWriter, on page 21

java.lang.Object
|
+--com.cisco.services.tracing.BaseTraceWriter
|
+--com.cisco.services.tracing.SyslogTraceWriter

All Implemented Interfaces
TraceWriter, on page 54

Member Summary
Member summary

Constructors

SyslogTraceWriter(int, String), on page 37

Default SyslogTraceWriter with a max trace level of
INFORMATIONAL

SyslogTraceWriter(int, String, int), on page 37

SyslogTraceWriter with max trace level specified

SyslogTraceWriter(int, String, int[]), on page 37

SyslogTraceWriter which takes an array of trace levels.

Methods

doClose(), on page 38

Closes the socket

void

Cisco Unified JTAPI Alarms and Services
36

Cisco Unified JTAPI Alarms and Services
SyslogTraceWriter

Member summary

doPrintln(String, int), on page 38

The SyslogTraceWriter makes an exception to the println() method
in that it places a ’\0’ instead of a System specified line separator
to terminate the message packet.

protected void

main(String[]), on page 38static void

Inherited member summary

Methods inherited from class BaseTraceWriter, on page 21

close(), on page 23, doClose(), on page 24, flush(), on page 24, getDescription(), on page 24, getEnabled(), on page 24, getName(),
on page 24, getTraceLevels(), on page 24, println(String, int), on page 25, setTraceLevels(int[]), on page 25, toString(), on page
25

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Constructors

SyslogTraceWriter(int, String)

public SyslogTraceWriter(int port,
java.lang.Stringcollector)

Default SyslogTraceWriter with a max trace level of INFORMATIONAL

See Also:

Trace, on page 40

SyslogTraceWriter(int, String, int)

public SyslogTraceWriter(int port,
java.lang.Stringcollector,
intmaxTraceLevel)

SyslogTraceWriter with max trace level specified

See Also:

Trace, on page 40

SyslogTraceWriter(int, String, int[])

public SyslogTraceWriter(int port,
java.lang.Stringcollector,
int[]traceLevels)

SyslogTraceWriter which takes an array of trace levels.

Cisco Unified JTAPI Alarms and Services
37

Cisco Unified JTAPI Alarms and Services
Constructors

See Also:

Trace, on page 40

Methods

doClose()

public void doClose()

Closes the socket

Overrides:

doClose in class BaseTraceWriter, on page 21

doPrintln(String, int)

protected void doPrintln(java.lang.String message,
intmessageNumber)

The SyslogTraceWritermakes an exception to the println() method in that it places a ’\0’ instead of a System
specified line separator to terminate the message packet. The portion of the message after a ’\r’ or ’\n’ is
ignored

Overrides:

doPrintln in class BaseTraceWriter, on page 21

main(String[])

public static void main(java.lang.String[] args)

TraceManagerFactory
The TraceManagerFactory class is a class by which applications obtain a TraceManager object. The
TraceModule passed in the constructor is registered in a list. The list can be enumerated using the getModules()
method.

Declaration

public class TraceManagerFactory

java.lang.Object
|
+--com.cisco.services.tracing.TraceManagerFactory

Member Summary
Member summary

Methods

Cisco Unified JTAPI Alarms and Services
38

Cisco Unified JTAPI Alarms and Services
Methods

Member summary

getModules(), on page 39

Returns an enumeration of the TraceModules registered with this
factory.

static java.util.Enumeration

registerModule(TraceModule), on page 39

Returns an instance of a TraceManager object.

static TraceManager

registerModule(TraceModule, String[], TraceWriterManager),
on page 39

Returns an instance of a TraceManager object.

static TraceManager

registerModule(TraceModule, TraceWriterManager), on page 40

Returns an instance of a TraceManager object.

static TraceManager

Inherited member summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(), wait(), wait()

Methods

getModules()

public static java.util.Enumeration getModules()

Returns an enumeration of the TraceModules registered with this factory.

registerModule(TraceModule)

public static com.cisco.services.tracing.TraceManager
registerModule(com.cisco.services.tracing.TraceModule module)

Returns an instance of a TraceManager object. The contained TraceWriterManager will not have any default
TraceWriters.

registerModule(TraceModule, String[], TraceWriterManager)

public static com.cisco.services.tracing.TraceManager
registerModule(com.cisco.services.tracing.TraceModule module,
java.lang.String[]subFacilities,
com.cisco.services.tracing.TraceWriterManagertraceWriterManager)

Returns an instance of a TraceManager object. Trace output will be redirected to the TraceWriterManager
object specified.

Cisco Unified JTAPI Alarms and Services
39

Cisco Unified JTAPI Alarms and Services
Methods

registerModule(TraceModule, TraceWriterManager)

public static com.cisco.services.tracing.TraceManager
registerModule(com.cisco.services.tracing.TraceModule module,
com.cisco.services.tracing.TraceWriterManagertraceWriterManager)

Returns an instance of a TraceManager object. Trace output will be redirected to the TraceWriterManager
object specified.

Services Tracing Interface Hierarchy
The following interface hierarchy is contained in the com.cisco.services.tracing package.

com.cisco.services.tracing.Trace, on page 40
com.cisco.services.tracing.ConditionalTrace, on page 47

com.cisco.services.tracing.UnconditionalTrace, on page 48

com.cisco.services.tracing.TraceManager, on page 49

com.cisco.services.tracing.TraceModule, on page 53

com.cisco.services.tracing.TraceWriter, on page 54

com.cisco.services.tracing.TraceWriterManager, on page 57

Trace
The Trace interface defines the methods that allow application tracing. Trace also defines the standard trace
types as specified by Syslog Trace Logging.Syslog currently defines 8 levels of trace. The severity of the
message is indicated in the trace as a number ranging between [0-7] (0 and 7 included). Currently 7 is
HIGHEST_LEVEL and 0 is the LOWEST_LEVEL trace. All 8 levels are predefined here as static int types
for reference in tracing sub-system implementations.

The severities traced are as follows:

0 = EMERGENCIES System unusable

1 = ALERTS Immediate action needed

2 = CRITICAL Critical conditions

3 = ERROR Error conditions

4 = WARNING Warning conditions

5 = NOTIFICATION Normal but significant condition

6 = INFORMATIONAL Informational messages only

7 = DEBUGGING Debugging messages

Declaration
public interface Trace

Cisco Unified JTAPI Alarms and Services
40

Cisco Unified JTAPI Alarms and Services
Services Tracing Interface Hierarchy

All Known Subinterfaces
ConditionalTrace, on page 47UnconditionalTrace, on page 48

Member Summary
Member summary

Fields

ALERTS, on page 43

The application will continue working on the tasks but all
functions may not be operational (one or more devices in the list
are not accessible but others in the list can be accessed)

Syslog severity level = 1

static int

ALERTS_TRACE_NAME, on page 43

String descriptor for ALERTS trace level

static java.lang.String

CRITICAL, on page 17

A critical failure, the application cannot accomplish the tasks
required due to this failure, e.g.: the application cant open the
database to read the device list

Syslog severity level = 2

static int

CRITICAL_TRACE_NAME, on page 44

String descriptor for CRITICAL trace level

static java.lang.String

DEBUGGING, on page 44

Very detailed information regarding errors or processing status
that is only generated when DEBUG mode has been enabled

Syslog severity level = 7

static int

DEBUGGING_TRACE_NAME, on page 44

String descriptor for the DEBUGGING trace level

static java.lang.DEBUGGING_TRACE_NAME, on page 44String

EMERGENCIES, on page 44

Emergency situation, a system shutdown is necessary

Syslog severity level = 0

static int

EMERGENCIES_TRACE_NAME, on page 44

String descriptor for EMERGENCIES trace level

static java.lang.String

Cisco Unified JTAPI Alarms and Services
41

Cisco Unified JTAPI Alarms and Services
All Known Subinterfaces

Member summary

ERROR, on page 44

An error condition of some kind has occurred and the user needs
to understand the nature of that failure

Syslog severity level = 3

static int

ERROR_TRACE_NAME, on page 44

String descriptor for ERROR trace level

static java.lang.String

HIGHEST_LEVEL, on page 44

The highest trace level, currently this is DEBUGGING with a
trace level of 7

static int

INFORMATIONAL, on page 45

Information of some form not relating to errors, warnings, audit,
or debug

Syslog severity level = 6

static int

INFORMATIONAL_TRACE_NAME, on page 45

String descriptor for INFORMATIONAL trace level

static java.lang.String

LOWEST_LEVEL, on page 45

The lowest trace level, currently this is EMERGENCIES with a
trace level of 0

static int

NOTIFICATION, on page 45

Notification denotes a normal but significant condition

Syslog severity level = 5

static int

NOTIFICATION_TRACE_NAME, on page 45

String descriptor for NOTIFICATION trace level

static java.lang.String

WARNING, on page 45

Warning that a problem of some form exists but is not keeping
the application from completing its tasks

Syslog severity level = 4

static int

WARNING_TRACE_NAME, on page 45

String descriptor for WARNING trace level

static java.lang.String

Methods

getName(), on page 45

Returns the name of this Trace object.

java.lang.String

Cisco Unified JTAPI Alarms and Services
42

Cisco Unified JTAPI Alarms and Services
Member Summary

Member summary

getSubFacility(), on page 46

Returns the subFacility of trace

java.lang.String

getType(), on page 46

Returns the type of trace.

int

isEnabled(), on page 46

Returns the state of this Trace object.

boolean

println(Object), on page 46

Prints the string returned by the Object.toString() method and
terminates the line as defined by the system.

void

println(String), on page 46

Prints a message in the same format as Trace.print() and terminates
the line as defined by the system.

void

println(String, Object), on page 46

Prints the string returned by the Object.toString() method and
terminates the line as defined by the system.

void

println(String, String), on page 47

Prints a message in the same format as Trace.print() and terminates
the line as defined by the system.

void

setDefaultMnemonic(String), on page 47

Sets a default mnemonic for all messages printed out to this trace.

void

Fields

ALERTS

public static final int ALERTS

The application will continue working on the tasks but all functions may not be operational (one or more
devices in the list are not accessible but others in the list can be accessed)

Syslog severity level = 1

ALERTS_TRACE_NAME

public static final java.lang.String ALERTS_TRACE_NAME

String descriptor for ALERTS trace level

Cisco Unified JTAPI Alarms and Services
43

Cisco Unified JTAPI Alarms and Services
Fields

CRITICAL

public static final int CRITICAL

A critical failure, the application cannot accomplish the tasks required due to this failure, e.g.: the application
cant open the database to read the device list

Syslog severity level = 2

CRITICAL_TRACE_NAME

public static final java.lang.String CRITICAL_TRACE_NAME

String descriptor for CRITICAL trace level

DEBUGGING

public static final int DEBUGGING

Very detailed information regarding errors or processing status that is only generated when DEBUG mode
has been enabled

Syslog severity level = 7

DEBUGGING_TRACE_NAME

public static final java.lang.String DEBUGGING_TRACE_NAME

String descriptor for the DEBUGGING trace level

EMERGENCIES

public static final int EMERGENCIES

Emergency situation, a system shutdown is necessary

Syslog severity level = 0

EMERGENCIES_TRACE_NAME

public static final java.lang.String EMERGENCIES_TRACE_NAME

String descriptor for EMERGENCIES trace level

ERROR

public static final int ERROR

An error condition of some kind has occurred and the user needs to understand the nature of that failure

Syslog severity level = 3

ERROR_TRACE_NAME

public static final java.lang.String ERROR_TRACE_NAME

String descriptor for ERROR trace level

HIGHEST_LEVEL

public static final int HIGHEST_LEVEL

Cisco Unified JTAPI Alarms and Services
44

Cisco Unified JTAPI Alarms and Services
Fields

The highest trace level, currently this is DEBUGGING with a trace level of 7

INFORMATIONAL

public static final int INFORMATIONAL

Information of some form not relating to errors, warnings, audit, or debug

Syslog severity level = 6

INFORMATIONAL_TRACE_NAME

public static final java.lang.String INFORMATIONAL_TRACE_NAME

String descriptor for INFORMATIONAL trace level

LOWEST_LEVEL

public static final int LOWEST_LEVEL

The lowest trace level, currently this is EMERGENCIES with a trace level of 0

NOTIFICATION

public static final int NOTIFICATION

Notification denotes a normal but significant condition

Syslog severity level = 5

NOTIFICATION_TRACE_NAME

public static final java.lang.String NOTIFICATION_TRACE_NAME

String descriptor for NOTIFICATION trace level

WARNING

public static final int WARNING

Warning that a problem of some form exists but is not keeping the application from completing its tasks

Syslog severity level = 4

WARNING_TRACE_NAME

public static final java.lang.String WARNING_TRACE_NAME

String descriptor for WARNING trace level

Methods

getName()

public java.lang.String getName()

Returns:

the name of this Trace object

Cisco Unified JTAPI Alarms and Services
45

Cisco Unified JTAPI Alarms and Services
Methods

getSubFacility()

public java.lang.String getSubFacility()

Returns:

the trace subFacility type

getType()

public int getType()

Returns:

the type of trace as specified in Syslog. DEBUGGING, INFORMATIONAL, WARNING, etc.

isEnabled()

public boolean isEnabled()

Returns the state of this Trace object. By default, Trace objects are enabled, that is, println() method will
always trace. The state may not be changed through this interface, however, this object may implement
additional interfaces that allow the state to be changed.

Returns:

true if tracing is enabled, false otherwise

See Also

ConditionalTrace, on page 47

println(Object)

public void println(java.lang.Object object)

Prints the string returned by the Object.toString() method and terminates the line as defined by the system.

Parameters:

object - the object to be printed

println(String)

public void println(java.lang.String message)

Prints a message in the same format as Trace.print() and terminates the line as defined by the system.

Parameters:

message - the message to be printed

println(String, Object)

public void println(java.lang.String mnemonic,
java.lang.Objectobject)

Prints the string returned by the Object.toString() method and terminates the line as defined by the system.

Parameters:

object - the object to be printed

Cisco Unified JTAPI Alarms and Services
46

Cisco Unified JTAPI Alarms and Services
Methods

mnemonic - the mnemonic mapped to message to be printed

println(String, String)

public void println(java.lang.String mnemonic,
java.lang.Stringmessage)

Prints a message in the same format as Trace.print() and terminates the line as defined by the system.

Parameters:

message - the message to be printed

mnemonic - the mnemonic mapped to message to be printed

setDefaultMnemonic(String)

public void setDefaultMnemonic(java.lang.String mnemonic)

Sets a default mnemonic for all messages printed out to this trace.

Parameters:

mnemonic, - a mnemonic string

ConditionalTrace
The ConditionalTrace interface extends the Trace interface and defines the methods that allow enabling and
disabling of tracing for this particular condition.

Typically, applications obtain one ConditionalTrace object for each condition that they need to trace under
certain circumstances but not always (for example, AUDIT, INFO, and so on).

Declaration
public interface ConditionalTrace extends Trace, on page 40

All Superinterfaces
Trace, on page 40

Member Summary
Member summary

Methods

disable(), on page 48

Disables this condition for tracing.

void

enable(), on page 48

Enables this condition for tracing.

void

Cisco Unified JTAPI Alarms and Services
47

Cisco Unified JTAPI Alarms and Services
ConditionalTrace

Inherited member summary

Fields inherited from interface Trace, on page 40

ALERTS, on page 43, ALERTS_TRACE_NAME, on page 43, CRITICAL, on page 17, CRITICAL_TRACE_NAME, on page
44, DEBUGGING, on page 44, DEBUGGING_TRACE_NAME, on page 44, EMERGENCIES, on page 44,
EMERGENCIES_TRACE_NAME, on page 44, ERROR, on page 44, ERROR_TRACE_NAME, on page 44, HIGHEST_LEVEL,
on page 44, INFORMATIONAL, on page 45, INFORMATIONAL_TRACE_NAME, on page 45, LOWEST_LEVEL, on page
45, NOTIFICATION, on page 45, NOTIFICATION_TRACE_NAME, on page 45, WARNING, on page 45,
WARNING_TRACE_NAME, on page 45

Methods inherited from interface Trace, on page 40

getName(), on page 45, getSubFacility(), on page 46, getType(), on page 46, isEnabled(), on page 46, println(Object), on page
46, println(String), on page 46, println(String, Object), on page 46, println(String, String), on page 47, setDefaultMnemonic(String),
on page 47

Methods

disable()

public void disable()

Disables this condition for tracing.

enable()

public void enable()

Enables this condition for tracing.

UnconditionalTrace
The UnconditionalTrace interface extends the Trace interface. Note that because this object extends Trace,
its state is enabled by default and it may not be changed.

Typically, applications would obtain one UnconditionalTrace object per each condition that they need to trace
always under any circumstances (such as, ERROR, FATAL, and so on).

Declaration
public interface UnconditionalTrace extends Trace, on page 40

All Superinterfaces
Trace, on page 40

Cisco Unified JTAPI Alarms and Services
48

Cisco Unified JTAPI Alarms and Services
Methods

Member Summary
Inherited Member summary

Fields inherited from interface Trace, on page 40

ALERTS, on page 43, ALERTS_TRACE_NAME, on page 43, CRITICAL, on page 17, CRITICAL_TRACE_NAME, on page
44, DEBUGGING, on page 44, DEBUGGING_TRACE_NAME, on page 44, EMERGENCIES, on page 44,
EMERGENCIES_TRACE_NAME, on page 44, ERROR, on page 44, ERROR_TRACE_NAME, on page 44, HIGHEST_LEVEL,
on page 44, INFORMATIONAL, on page 45, INFORMATIONAL_TRACE_NAME, on page 45, LOWEST_LEVEL, on page
45, NOTIFICATION, on page 45, NOTIFICATION_TRACE_NAME, on page 45, WARNING, on page 45,
WARNING_TRACE_NAME, on page 45

Methods inherited from interface Trace, on page 40

getName(), on page 45, getSubFacility(), on page 46, getType(), on page 46, isEnabled(), on page 46, println(Object), on page
46, println(String), on page 46, println(String, Object), on page 46, println(String, String), on page 47, setDefaultMnemonic(String),
on page 47

TraceManager
The TraceManager interface defines the methods that allow applications trace management.

Typically, an application obtains only one TraceManager object. All Trace objects are created by default:
Predefined Trace in accordance with Syslog definitions are:

ConditionalTraces:INFORMATIONAL, DEBUGGING, NOTIFICATION, WARNING
UnconditionalTraces:ERROR, CRITICAL, ALERTS, EMERGENCIES

Facilities/Sub-Facilities:

• Facility—A code consisting of two or more uppercase letters that indicate the facility to which the
message refers. A facility can be a hardware device, a protocol, or a module of the system software.

• SubFacility—A code consisting of two or more uppercase letters that indicate the sub-facility to which
the message refers. A sub-facility can be a hardware device component, a protocol unit, or a sub-module
of the system software.

By default all 8 Conditional and UnConditional Traces are created for the Facility and 8 for each of the
subFacilities In order to use the DEBUGGING trace for the parent FACILITY, for example, the application
needs to use the getConditionalTrace(“DEBUGGING”) method of this object.

In order to use the DEBUGGING trace for the SUBFACILITY, for example, the application needs to use the
getConditionalTrace(SUBFACILITY + “_” + “DEBUGGING”) method of this object or use the
getConditionalTrace(SUBFACILITY, “DEBUGGING”) method.

Systemwide TraceWriterManager is set through the setTraceWriterManager method provided by this interface.

The Trace Manager object also allows the application to enable or disable tracing for all trace through the
enableAll() and disableAll() methods.

Cisco Unified JTAPI Alarms and Services
49

Cisco Unified JTAPI Alarms and Services
Member Summary

Declaration
public interface TraceManager

Member Summary
Member summary

Methods

addSubFacilities(String[]), on page 51

Sets a set of subFacilities for this TraceManager/Facility.

void

addSubFacility(String), on page 51

Adds a single subFacility for this TraceManager/Facility.

void

disableAll(), on page 51

Disables tracing for all Trace objects managed by this
TraceManager.

void

disableTimeStamp(), on page 52

Disables prefixing a time stamp for every message printed by this
TraceManager.

void

enableAll(), on page 52

Enables tracing for all Trace objects managed by this
TraceManager.

void

enableTimeStamp(), on page 52

Enables prefixing a time stamp for every message printed by this
TraceManager.

void

getConditionalTrace(int), on page 52

Creates a new ConditionalTrace object or obtains an existing
ConditionalTrace object for this condition.

ConditionalTrace

getConditionalTrace(String, int), on page 52

Creates a new ConditionalTrace object or obtains an existing
ConditionalTrace object for this condition and subFacility

ConditionalTrace

getName(), on page 52

Returns the Facility name for this TraceManager.

java.lang.String

getSubFacilities(), on page 52

Returns the subFacility names for this TraceManager/Facility.

java.lang.String[]

Cisco Unified JTAPI Alarms and Services
50

Cisco Unified JTAPI Alarms and Services
Declaration

Member summary

getTraces(), on page 52

Returns an enumeration of the Trace objects managed by this
TraceManager.

java.util.Enumeration

getTraceWriterManager(), on page 52

Returns the TraceWriter used by this TraceManager.

TraceWriterManager

getUnconditionalTrace(int), on page 52

Creates a new UnconditionalTrace object or obtains an existing
UnconditionalTrace object for this condition.

UnconditionalTrace

getUnconditionalTrace(String, int), on page 53

Creates a new UnconditionalTrace object or obtains an existing
UnconditionalTrace object for this condition and subFacility

UnconditionalTrace

removeTrace(Trace), on page 53

Removes a Trace object given an object.

void

setSubFacilities(String[]), on page 53

Sets a set of subFacilities for this TraceManager/Facility.

void

setSubFacility(String), on page 53

Adds a single subFacility for this TraceManager/Facility.

void

setTraceWriterManager(TraceWriterManager), on page 53

Sets the TraceWriter to be used by this TraceManager.

void

Methods

addSubFacilities(String[])

public void addSubFacilities(java.lang.String[] names)

Sets a set of subFacilities for this TraceManager/Facility.

addSubFacility(String)

public void addSubFacility(java.lang.String name)

Adds a single subFacility for this TraceManager/Facility.

disableAll()

public void disableAll()

Disables tracing for all Trace objects managed by this TraceManager.

Cisco Unified JTAPI Alarms and Services
51

Cisco Unified JTAPI Alarms and Services
Methods

disableTimeStamp()

public void disableTimeStamp()

Disables prefixing a time stamp for every message printed by this TraceManager.

enableAll()

public void enableAll()

Enables tracing for all Trace objects managed by this TraceManager.

enableTimeStamp()

public void enableTimeStamp()

Enables prefixing a time stamp for every message printed by this TraceManager.

getConditionalTrace(int)

public com.cisco.services.tracing.ConditionalTrace
getConditionalTrace(int severity)

Creates a new ConditionalTrace object or obtains an existing ConditionalTrace object for this condition.

getConditionalTrace(String, int)

public com.cisco.services.tracing.ConditionalTrace
getConditionalTrace(java.lang.String subFacility,
intseverity)

Creates a new ConditionalTrace object or obtains an existing ConditionalTrace object for this condition and
subFacility

getName()

public java.lang.String getName()

Returns the Facility name for this TraceManager.

getSubFacilities()

public java.lang.String[] getSubFacilities()

Returns the subFacility names for this TraceManager/Facility.

getTraces()

public java.util.Enumeration getTraces()

Returns an enumeration of the Trace objects managed by this TraceManager.

getTraceWriterManager()

public com.cisco.services.tracing.TraceWriterManager getTraceWriterManager()

Returns the TraceWriter used by this TraceManager.

getUnconditionalTrace(int)

public com.cisco.services.tracing.UnconditionalTrace getUnconditionalTrace(int severity)

Cisco Unified JTAPI Alarms and Services
52

Cisco Unified JTAPI Alarms and Services
Methods

Creates a new UnconditionalTrace object or obtains an existing UnconditionalTrace object for this condition.

getUnconditionalTrace(String, int)

public com.cisco.services.tracing.UnconditionalTrace
getUnconditionalTrace(java.lang.String subFacility,
intseverity)

Creates a new UnconditionalTrace object or obtains an existing UnconditionalTrace object for this condition
and subFacility

removeTrace(Trace)

public void removeTrace(com.cisco.services.tracing.Trace tc)

Removes a Trace object given an object.

setSubFacilities(String[])

public void setSubFacilities(java.lang.String[] names)

Deprecated and replaced with TraceManager.addSubFacilities method

Sets a set of subFacilities for this TraceManager/Facility.

setSubFacility(String)

public void setSubFacility(java.lang.String name)

Deprecated and replaced with TraceManager.addSubFacility method

Adds a single subFacility for this TraceManager/Facility.

setTraceWriterManager(TraceWriterManager)

public void setTraceWriterManager(com.cisco.services.tracing.TraceWriterManager twm)

Sets the TraceWriter to be used by this TraceManager.

TraceModule
The TraceModule interface serves two purposes. First, it allows applications to discover the TraceManager
object used by other packages that they use. Second, applications that register with the TraceManagerFactory
must identify themselves by implementing this interface.

Declaration
public interface TraceModule

All Known Subinterfaces
com.cisco.jtapi.extensions.CiscoJtapiPeer

Cisco Unified JTAPI Alarms and Services
53

Cisco Unified JTAPI Alarms and Services
TraceModule

Member Summary
Member summary

Methods

getTraceManager(), on page 54

Returns the TraceManager that an object is using for tracing.

TraceManager

getTraceModuleName(), on page 54

Returns the module name.

java.lang.String

Methods

getTraceManager()

public com.cisco.services.tracing.TraceManager getTraceManager()

Returns the TraceManager that an object is using for tracing.

getTraceModuleName()

public java.lang.String getTraceModuleName()

Returns the module name.

TraceWriter
The TraceWriter interface abstracts the details of trace message output. The TraceWriter uses its enabled
method to advertise whether or not the print and println methods will have any effect. Users of TraceWriter
should use the value returned by the getEnabled method as an indication of whether they should invoke the
print and println methods at all.

Declaration
public interface TraceWriter

All Known Subinterfaces
TraceWriterManager, on page 57

All Known Implementing Classes
BaseTraceWriter, on page 21

Cisco Unified JTAPI Alarms and Services
54

Cisco Unified JTAPI Alarms and Services
Member Summary

Member Summary
Member summary

Methods

close(), on page 55

Releases any resources associated by this TraceWriter .

void

flush(), on page 55 Forces output of any messages that have been
printed using the println method

void

getDescription(), on page 55java.lang.String

getEnabled(), on page 56

Returns whether the println method will print anything or not.

boolean

getName(), on page 56java.lang.String

getTraceLevels(), on page 56int[]

println(String, int), on page 56

Prints the specified string followed by a carriage return The
concrete TraceWriter class will use the severity to block out
messages from a particular stream.

void

setTraceLevels(int[]), on page 56

set the trace levels that will be traced by this TraceWriter

void

Methods

close()

public void close()

Releases any resources associated by this TraceWriter.

flush()

public void flush()

Forces output of any messages that have been printed using the println method

getDescription()

public java.lang.String getDescription()

Returns:

a short description of this TraceWriter

Cisco Unified JTAPI Alarms and Services
55

Cisco Unified JTAPI Alarms and Services
Member Summary

getEnabled()

public boolean getEnabled()

Returns whether the println method will print anything or not. A closed TraceWriterwill always return false
from this method.

Returns:

true if this TraceWriter is enabled, false if not

getName()

public java.lang.String getName()

Returns:

the name of this TraceWriter

getTraceLevels()

public int[] getTraceLevels()

Returns:

the array of trace levels that will be traced by this TraceWriter

println(String, int)

public void println(java.lang.String message,
intseverity)

Prints the specified string followed by a carriage return The concrete TraceWriter class will use the severity
to block out messages from a particular stream. Each trace writer has a notion of the highest level trace it
traces

Parameters:

message - the string to print

severity - of the trace.

See Also

Trace, on page 40

setTraceLevels(int[])

public void setTraceLevels(int[] levels)

set the trace levels that will be traced by this TraceWriter

Parameters:

int[] - levels

See Also

Trace, on page 40

Cisco Unified JTAPI Alarms and Services
56

Cisco Unified JTAPI Alarms and Services
Methods

TraceWriterManager
TraceWriterManager contains the list of TraceWriter objects that are used to implement the tracing. The list
is populated at startup from the switches in a .ini file. A LogFileTraceWriter, a ConsoleTraceWriter, and a
SyslogTraceWriter are available. Users can override the existing TraceWriters by setting a user implemented
TraceWriter[] or adding to the existing TraceWriters. This makes it possible to add other TraceWriters that
can function along with existing trace writers.

Declaration
public interface TraceWriterManager extends TraceWriter, on page 54

All Superinterfaces
TraceWriter, on page 54

Member Summary
Member summary

Methods

addTraceWriter(TraceWriter), on page 58

Add another TraceWriter to the array

void

getTraceWriters(), on page 58TraceWriter[]

removeTraceWriter(TraceWriter), on page 58

Remove the TraceWriter from the array in the manager

void

setTraceWriters(TraceWriter[]), on page 58

Implementations can use this method to override or enhance the
provided TraceWriters

void

Inherited member summary

Methods inherited from interface TraceWriter, on page 54

close(), on page 55, flush(), on page 55, getDescription(), on page 55, getEnabled(), on page 56, getName(), on page 56,
getTraceLevels(), on page 56, println(String, int), on page 56, setTraceLevels(int[]), on page 56

Cisco Unified JTAPI Alarms and Services
57

Cisco Unified JTAPI Alarms and Services
TraceWriterManager

Methods

addTraceWriter(TraceWriter)

public voidaddTraceWriter(com.cisco.services.tracing.TraceWriter traceWriter)

Add another TraceWriter to the array

Parameters:

TraceWriter - to be added to the list

getTraceWriters()

public com.cisco.services.tracing.TraceWriter[] getTraceWriters()

Returns:

the array of TraceWriters in the manager

removeTraceWriter(TraceWriter)

public voidremoveTraceWriter(com.cisco.services.tracing.TraceWriter traceWriter)

Remove the TraceWriter from the array in the manager

setTraceWriters(TraceWriter[])

public voidsetTraceWriters(com.cisco.services.tracing.TraceWriter[] traceWriters)

Implementations can use this method to override or enhance the provided TraceWriters

Parameters:

set - the array of TraceWriters.

Tracing Implementation Class Hierarchy
The following tracing implementation class hierarchy is contained in the
com.cisco.services.tracing.implementation package.

java.lang.Object
com.cisco.services.tracing.implementation.TraceImpl, on page 59 (implements

com.cisco.services.tracing.Trace)
com.cisco.services.tracing.implementation.ConditionalTraceImpl, on page 61 (implements

com.cisco.services.tracing.ConditionalTrace)
com.cisco.services.tracing.implementation.UnconditionalTraceImpl, on page 62 (implements

com.cisco.services.tracing.UnconditionalTrace)
com.cisco.services.tracing.implementation.TraceManagerImpl, on page 63 (implements

com.cisco.services.tracing.TraceManager)
com.cisco.services.tracing.implementation.TraceWriterManagerImpl, on page 67 (implements

com.cisco.services.tracing.TraceWriterManager)

Cisco Unified JTAPI Alarms and Services
58

Cisco Unified JTAPI Alarms and Services
Methods

TraceImpl

Declaration
public abstract class TraceImpl

extends java.lang.Object

implements Trace

All Implemented Interfaces
Trace, on page 40

Methods

println

public final void println(java.lang.String message)

Description copied from interface: Trace

Prints a message in the same format as Trace.print() and terminates the line as defined by the system.

Specified by:

println in interface Trace

Parameters:

message - the message to be printed

println

public final void println(java.lang.String mnemonic, java.lang.String message)

Description copied from interface: Trace

Prints a message in the same format as Trace.print() and terminates the line as defined by the system.

Specified by:

println in interface Trace

Parameters:

mnemonic - the mnemonic mapped to message to be printed

message - the message to be printed

println

public final void println(java.lang.Object object)

Description copied from interface: Trace

Cisco Unified JTAPI Alarms and Services
59

Cisco Unified JTAPI Alarms and Services
TraceImpl

Prints the string returned by the Object.toString() method and terminates the line as defined by the system.

Specified by:

println in interface Trace

Parameters:

object - the object to be printed

println

public final void println(java.lang.String mnemonic, java.lang.Object object)

Description copied from interface: Trace

Prints the string returned by the Object.toString() method and terminates the line as defined by the system.

Specified by:

println in interface Trace

Parameters:

mnemonic - the mnemonic mapped to message to be printed

object - the object to be printed

getName

public final java.lang.String getName()

Description copied from interface: Trace

Returns the name of this Trace object.

Specified by:

getName in interface Trace

Returns:

the name of this Trace object

setDefaultMnemonic

public final void setDefaultMnemonic(java.lang.String mnemonic)

Description copied from interface: Trace

Sets a default mnemonic for all messages printed out to this trace.

Specified by:

setDefaultMnemonic in interface Trace

Parameters:

mnemonic - a mnemonic string

getType

public int getType()

Cisco Unified JTAPI Alarms and Services
60

Cisco Unified JTAPI Alarms and Services
Methods

Description copied from interface: Trace

Returns the type of trace.

Specified by:

getType in interface Trace

Returns:

the trace severity as specified in Syslog. DEBUGGING, INFORMATIONAL, WARNING, etc.

getSubFacility

public java.lang.String getSubFacility()

Description copied from interface: Trace

Returns the subFacility of trace

Specified by:

getSubFacility in interface Trace

Returns:

the trace subFacility type

Inherited Methods
isEnabled

ConditionalTraceImpl

Declaration
public final class ConditionalTraceImpl

extends TraceImpl

implements ConditionalTrace

All Implemented Interfaces
ConditionalTrace, Trace

Methods

enable

public void enable()

Description copied from interface: ConditionalTrace

Cisco Unified JTAPI Alarms and Services
61

Cisco Unified JTAPI Alarms and Services
Inherited Methods

Enables this condition for tracing.

Specified by:

enable in interface ConditionalTrace

disable

public void disable()

Description copied from interface: ConditionalTrace

Disables this condition for tracing.

Specified by:

disable in interface ConditionalTrace

isEnabled

public boolean isEnabled()

Description copied from interface: Trace

Returns the state of this Trace object. By default, Trace objects are enabled, that is, println() method will
always trace. The state may not be changed through this interface, however, this object may implement
additional interfaces that allow the state to be changed.

Specified by:

isEnabled in interface Trace

Returns:

true if tracing is enabled, false otherwise

See Also:

ConditionalTrace

Inherited Methods
Inherited methods from class java.lang.Object are: clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait.

UnconditionalTraceImpl

Declaration
public final class UnconditionalTraceImpl

extends TraceImpl

implements UnconditionalTrace

Cisco Unified JTAPI Alarms and Services
62

Cisco Unified JTAPI Alarms and Services
Inherited Methods

All Implemented Interfaces
Trace, UnconditionalTrace

Methods

isEnabled

public boolean isEnabled()

Description copied from interface: Trace

Returns the state of this Trace object. By default, Trace objects are enabled, that is, println() method will
always trace. The state may not be changed through this interface, however, this object may implement
additional interfaces that allow the state to be changed.

Specified by:

isEnabled in interface Trace

Returns:

true if tracing is enabled, false otherwise

See Also:

ConditionalTrace

Inherited Methods
Inherited methods from class java.lang.Object are: clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait.

TraceManagerImpl
The TraceManagerImpl class implements the TraceManager interface.

Declaration
public class TraceManagerImpl extends java.lang.Object

java.lang.Object

|

+--com.cisco.services.tracing.implementation.TraceManagerImpl

All Implemented Interfaces
TraceManager, on page 49

Cisco Unified JTAPI Alarms and Services
63

Cisco Unified JTAPI Alarms and Services
All Implemented Interfaces

Constructors
public TraceManagerImpl(java.lang.StringmoduleName, java.lang.String[]subFacilities,
TraceWriterManagertraceWriterManager)

public TraceManagerImpl(java.lang.StringmoduleName, TraceWriterManagertraceWriterManager)

Methods

getConditionalTrace

public ConditionalTrace getConditionalTrace(intseverity)

Description copied from interface: TraceManager

Creates a new ConditionalTrace object or obtains an existing ConditionalTrace object for this condition.

Specified by:

getConditionalTrace in interface TraceManager

getConditionalTrace

public ConditionalTrace getConditionalTrace(java.lang.StringsubFacility,
intseverity)

Description copied from interface: TraceManager

Creates a new ConditionalTrace object or obtains an existing ConditionalTrace object for this condition and
subFacility

Specified by:

getConditionalTrace in interface TraceManager

getUnconditionalTrace

public UnconditionalTrace getUnconditionalTrace(intseverity)

Description copied from interface: TraceManager

Creates a new UnconditionalTrace object or obtains an existing UnconditionalTrace object for this condition.

Specified by:

getUnconditionalTrace in interface TraceManager

getUnconditionalTrace

public UnconditionalTrace getUnconditionalTrace(java.lang.StringsubFacility,
intseverity)

Description copied from interface: TraceManager

Creates a new UnconditionalTrace object or obtains an existing UnconditionalTrace object for this condition
and subFacility

Specified by:

getUnconditionalTrace in interface TraceManager

Cisco Unified JTAPI Alarms and Services
64

Cisco Unified JTAPI Alarms and Services
Constructors

getTraceWriterManager

public TraceWriterManager getTraceWriterManager()

Description copied from interface: TraceManager

Returns the TraceWriter used by this TraceManager.

Specified by:

getTraceWriterManager in interface TraceManager

setTraceWriterManager

public void setTraceWriterManager(TraceWriterManagerout)

Description copied from interface: TraceManager

Sets the TraceWriter to be used by this TraceManager.

Specified by:

setTraceWriterManager in interface TraceManager

removeTrace

public void removeTrace(Tracetc)

Description copied from interface: TraceManager

Removes a Trace object given an object.

Specified by:

removeTrace in interface TraceManager

getTraces

public java.util.Enumeration getTraces()

Description copied from interface: TraceManager

Returns an enumeration of the Trace objects managed by this TraceManager.

Specified by:

getTraces in interface TraceManager

enableAll

public void enableAll()

Description copied from interface: TraceManager

Enables tracing for all Trace objects managed by this TraceManager.

Specified by:

enableAll in interface TraceManager

disableAll

public void disableAll()

Description copied from interface: TraceManager

Cisco Unified JTAPI Alarms and Services
65

Cisco Unified JTAPI Alarms and Services
Methods

Disables tracing for all Trace objects managed by this TraceManager.

Specified by:

disableAll in interface TraceManager

getName

public java.lang.String getName()

Description copied from interface: TraceManager

Returns the Facility name for this TraceManager.

Specified by:

getName in interface TraceManager

enableTimeStamp

public void enableTimeStamp()

Description copied from interface: TraceManager

Enables prefixing a time stamp for every message printed by this TraceManager.

Specified by:

enableTimeStamp in interface TraceManager

disableTimeStamp

public void disableTimeStamp()

Description copied from interface: TraceManager

Disables prefixing a time stamp for every message printed by this TraceManager.

Specified by:

disableTimeStamp in interface TraceManager

getSubFacilities

public java.lang.String[] getSubFacilities()

Returns the subFacility names for this TraceManager/Facility.

Specified by:

getSubFacilities in interface TraceManager

addSubFacilities

public void addSubFacilities(java.lang.String[]names)

Adds subFacilities for this TraceManager/Facility.

Specified by:

addSubFacilities in interface TraceManager

Cisco Unified JTAPI Alarms and Services
66

Cisco Unified JTAPI Alarms and Services
Methods

addSubFacility

public void addSubFacility(java.lang.Stringname)

Adds a subFacility for this TraceManager/Facility.

Specified by:

addSubFacility in interface TraceManager

Deprecated

getSubFacilities(java.lang.String[]names)

Replaced by addSubFacilties(String[]).

setSubFacility(java.lang.Stringname)

Replaced by addSubFacility(String).

Inherited Methods
Inherited methods from class java.lang.Object are: clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait.

TraceWriterManagerImpl
TraceWriterManager contains the list of TraceWriter objects that are used to implement the tracing. The list
is populated at startup from the switches in a .ini file. A LogFileTraceWriter, a ConsoleTraceWriter, and a
SyslogTraceWriter are available. Users can override the existing TraceWriters by setting a user implemented
TraceWriter[] or adding to the existing TraceWriters. This makes it possible to add other traceWriters that
can function along with exisiting trace writers.

Methods inherited from class java.lang.Object are clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait.

Note

Declaration
public class TraceWriterManagerImpl extends java.lang.Object implements TraceWriterManager

java.lang.Object

com.cisco.services.tracing.implementation.TraceWriterManagerImpl

All Implemented Interfaces
TraceWriter, TraceWriterManager

Cisco Unified JTAPI Alarms and Services
67

Cisco Unified JTAPI Alarms and Services
Deprecated

Constructors

TraceWriterManagerImpl

public TraceWriterManagerImpl()

Creates a TraceWriterManagerImpl with a zero length TraceWriter array .

Methods

setTraceWriters

public void setTraceWriters(TraceWriter[]traceWriters)

Overrides the existing TraceWriters with a new user supplied set .

Specified by:

setTraceWriters in interface TraceWriterManager

Parameters:

traceWriters - An array of TraceWriters.

getTraceWriters

public TraceWriter[] getTraceWriters()

Returns the array of TraceWriters currently in use .

Specified by:

getTraceWriters in interface TraceWriterManager

Returns:

The array of TraceWriters in the manager.

addTraceWriter

public void addTraceWriter(TraceWritertw)

Add this TraceWriter to the array of trace writers

Specified by:

addTraceWriter in interface TraceWriterManager

Parameters:

tw - TraceWriter to be added to the list

removeTraceWriter

public void removeTraceWriter(TraceWritertw)

Remove the Tracewriter from the array of trace writers.

Specified by:

removeTraceWriter in interface TraceWriterManager

Cisco Unified JTAPI Alarms and Services
68

Cisco Unified JTAPI Alarms and Services
Constructors

println

public void println(java.lang.Stringmessage, intseverity)

All traces invoke this method. A trace supplies its severity along with the message. Traces below the threshold
severity of the TraceWriter are allowed. Eg. If the Threshhold severity is set to INFORMATIONAL (level =
6) DEBUG traces will not be passed by the TraceWriter. The severity level is set in the constructor of the
TraceWriter

Specified by:

println in interface TraceWriter

Parameters:

message - The string to print

severity - The severity of the trace.

See Also:

Trace

Flush

public void flush()

Description copied from interface: TraceWriter

Forces output of any messages that have been printed using the println method

Specified by:

flush in interface TraceWriter

close

public void close()

Description copied from interface: TraceWriter

Releases any resources associated by this TraceWriter.

Specified by:

close in interface TraceWriter

getEnabled

public boolean getEnabled()

Returns true if any one of the underlying TraceWriter is enabled, else returns false.

Specified by:

getEnabled in interface TraceWriter

Returns:

True if this TraceWriter is enabled, false if not.

getName

public java.lang.String getName()

Cisco Unified JTAPI Alarms and Services
69

Cisco Unified JTAPI Alarms and Services
Methods

Specified by:

getName in interface TraceWriter

Returns:

The name of this TraceWriter.

getDescription

public java.lang.String getDescription()

Specified by:

getDescription in interface TraceWriter

Returns:

A short description of this TraceWriter.

setTraceLevels

public void setTraceLevels(int[]levels)

The TraceWriterManager does nothing for this method .

Specified by:

setTraceLevels in interface TraceWriter

Parameters:

Levels - Array of trace levels.

See Also:

Trace

getTraceLevels

public int[] getTraceLevels()

The TraceWriterManager returns a null, as the traceLevel is maintained at the individual TraceWriter .

Specified by:

getTraceLevels in interface TraceWriter

Returns:

null

Cisco Unified JTAPI Alarms and Services
70

Cisco Unified JTAPI Alarms and Services
Methods

	Cisco Unified JTAPI Alarms and Services
	Alarm Class Hierarchy
	AlarmManager
	Declaration
	Constructors
	Methods

	AlarmWriter
	Declaration
	All Known Implementing Classes
	Member Summary
	Methods

	DefaultAlarm
	Declaration
	All Implemented Interfaces
	Member Summary
	Constructors
	Methods

	DefaultAlarmWriter
	Declaration
	All Implemented Interfaces
	Member Summary
	Constructors
	Methods

	ParameterList
	Declaration
	Member Summary
	Constructors
	Methods

	Alarm Interface Hierarchy
	Alarm
	Declaration
	All Known Implementing Classes
	Member Summary
	Fields
	Methods

	AlarmWriter
	Declaration
	All Known Implementing Classes
	Member Summary
	Methods

	Services Tracing Class Hierarchy
	BaseTraceWriter
	Declaration
	All Implemented Interfaces
	Direct Known Subclasses
	Member Summary
	Constructors
	Methods

	ConsoleTraceWriter
	Declaration
	All Implemented Interfaces
	Member Summary
	Constructors
	Methods

	LogFileTraceWriter
	Declaration
	All Implemented Interfaces
	Member Summary
	Fields
	Constructors
	Methods

	OutputStreamTraceWriter
	Declaration
	All Implemented Interfaces
	Member Summary

	Constructors
	Methods

	SyslogTraceWriter
	Declaration
	All Implemented Interfaces
	Member Summary
	Constructors
	Methods

	TraceManagerFactory
	Declaration
	Member Summary
	Methods

	Services Tracing Interface Hierarchy
	Trace
	Declaration
	All Known Subinterfaces
	Member Summary
	Fields
	Methods

	ConditionalTrace
	Declaration
	All Superinterfaces
	Member Summary
	Methods

	UnconditionalTrace
	Declaration
	All Superinterfaces
	Member Summary

	TraceManager
	Declaration
	Member Summary
	Methods

	TraceModule
	Declaration
	All Known Subinterfaces
	Member Summary
	Methods

	TraceWriter
	Declaration
	All Known Subinterfaces
	All Known Implementing Classes
	Member Summary
	Methods

	TraceWriterManager
	Declaration
	All Superinterfaces
	Member Summary
	Methods

	Tracing Implementation Class Hierarchy
	TraceImpl
	Declaration
	All Implemented Interfaces
	Methods
	Inherited Methods

	ConditionalTraceImpl
	Declaration
	All Implemented Interfaces
	Methods
	Inherited Methods

	UnconditionalTraceImpl
	Declaration
	All Implemented Interfaces
	Methods
	Inherited Methods

	TraceManagerImpl
	Declaration
	All Implemented Interfaces
	Constructors
	Methods
	Deprecated
	Inherited Methods

	TraceWriterManagerImpl
	Declaration
	All Implemented Interfaces
	Constructors
	Methods

