

Configuring Ports and Port Channels

This chapter includes the following sections:

- Unified Ports on the Fabric Interconnect, page 1
- Physical and Backplane Ports, page 10
- Server Ports, page 13
- Uplink Ethernet Ports, page 15
- Appliance Ports, page 16
- FCoE Uplink Ports, page 21
- Unified Uplink Ports, page 23
- FCoE and Fibre Channel Storage Ports, page 24
- Uplink Ethernet Port Channels, page 26
- Appliance Port Channels, page 29
- Fibre Channel Port Channels, page 33
- FCoE Port Channels, page 38
- Unified Uplink Port Channel, page 39
- Event Detection and Action, page 40
- Adapter Port Channels, page 45

Unified Ports on the Fabric Interconnect

Unified ports are ports on the fabric interconnect that can be configured to carry either Ethernet or Fibre Channel traffic. These ports are not reserved. A Cisco UCS domain cannot use these ports until you configure them.

When you configure a port on a fabric interconnect, the administrative state is automatically set to enabled. If the port is connected to another device, this may cause traffic disruption. You can disable the port after configuring it.

Configurable beacon LEDs indicate which unified ports are configured for the selected port mode.

Port Modes

The port mode determines whether a unified port on the fabric interconnect is configured to carry Ethernet or Fibre Channel traffic. You configure the port mode in Cisco UCS Manager. However, the fabric interconnect does not automatically discover the port mode.

Changing the port mode deletes the existing port configuration and replaces it with a new logical port. Any objects associated with that port configuration, such as VLANs and VSANS, are also removed. There is no restriction on the number of times you can change the port mode for a unified port.

Port Types

The port type defines the type of traffic carried over a unified port connection.

By default, unified ports changed to Ethernet port mode are set to the Ethernet uplink port type. Unified ports changed to Fibre Channel port mode are set to the Fibre Channel uplink port type. You cannot unconfigure Fibre Channel ports.

Changing the port type does not require a reboot.

Ethernet Port Mode

When you set the port mode to Ethernet, you can configure the following port types:

- · Server ports
- · Ethernet uplink ports
- Ethernet port channel members
- FCoE ports
- Appliance ports
- Appliance port channel members
- SPAN destination ports
- SPAN source ports

Note For SPAN source ports, configure one of the port types and then configure the port as SPAN source.

Fibre Channel Port Mode

When you set the port mode to Fibre Channel, you can configure the following port types:

- · Fibre Channel uplink ports
- Fibre Channel port channel members
- Fibre Channel storage ports
- FCoE Uplink ports
- SPAN source ports

Note

e For SPAN source ports, configure one of the port types and then configure the port as SPAN source.

Cisco UCS Mini Scalability Ports

The Cisco UCS 6324 Fabric Interconnect contains a scalability port as well as four unified ports. The scalability port is a 40GB QSFP+ breakout port that, with proper cabling, can support four 1G or 10G SFP+ ports. A scalability port can be used as a licensed server port for supported Cisco UCS rack servers, as an appliance port, or as an FCoE port.

In the Cisco UCS Manager GUI, the scalability port is displayed as **Scalability Port 5** below the **Ethernet Ports** node. The individual breakout ports are displayed as **Port 1** through **Port 4**.

In the Cisco UCS Manager CLI, the scalability port is not displayed, but the individual breakout ports are displayed as **Br-Eth1/5/1** through **Br-Eth1/5/4**.

Configuring Scalability Ports

To configure ports, port channel members or SPAN members on the scalability port, scope into the scalability port first, then follow the steps for a standard unified port.

	Command or Action	Purpose
Step 1	UCS-A# scope eth-server	Enters Ethernet server mode.
Step 2	UCS-A /eth-server # scope fabric {a b}	Enters Ethernet server fabric mode for the specified fabric.
Step 3	UCS-A /eth-server/fabric # scope aggr-interface slot-num port-num	Enters ethernet server fabric aggregate interface mode for the scalability port.
Step 4	UCS-A /eth-server/fabric/aggr-interface # show interface	Displays the interfaces on the scalability port.
Step 5	UCS-A /eth-server/fabric/aggr-interface # create interface slot-num port-num	Creates an interface for the specified Ethernet server port.

	Command or Action	Purpose
Step 6	UCS-A /eth-server/fabric/aggr-interface # commit-buffer	Commits the transaction to the system configuration.

The following example shows how to create an interface for Ethernet server port 3 on the fabric A scalability port and commit the transaction:

```
UCS-A# scope eth-server
UCS-A /eth-server # scope fabric a
UCS-A /eth-server/fabric # scope aggr-interface 1 5
UCS-A /eth-server/fabric/aggr-interface # show interface
Interface:
Slot Id Aggr-Port ID Port Id Admin State Oper State
                                                   State Reason
                 -------
                            _____
       _____
                                        ----
                  5
                                       Up
     1
                     1 Enabled
     1
                  5
                          2 Enabled
                                        Up
     1
                  5
                         3 Enabled
                                       Admin Down Administratively Down
     1
                  5
                          4 Enabled
                                      Admin Down
                                                   Administratively Down
UCS-A /eth-server/fabric/aggr-interface # create interface 1 3
UCS-A /eth-server/fabric/aggr-interface* # commit-buffer
UCS-A /eth-server/fabric/aggr-interface #
```

Beacon LEDs for Unified Ports

Each port on the 6200 series fabric interconnect has a corresponding beacon LED. When the **Beacon LED** property is configured, the beacon LEDs illuminate, showing you which ports are configured in a given port mode.

You can configure the **Beacon LED** property to show you which ports are grouped in one port mode: either Ethernet or Fibre Channel. By default, the Beacon LED property is set to Off.

Note

For unified ports on the expansion module, you can reset the **Beacon LED** property to the default value of **Off** during expansion module reboot.

Guidelines for Configuring Unified Ports

Consider the following guidelines and restrictions when configuring unified ports:

Port Mode Placement

Because the Cisco UCS Manager GUI interface uses a slider to configure the port mode for unified ports, it automatically enforces the following restrictions which limits how port modes can be assigned to unified ports. When using the Cisco UCS Manager CLI interface, these restrictions are enforced when you commit the transaction to the system configuration. If the port mode configuration violates any of the following restrictions, the Cisco UCS Manager CLI displays an error:

• Ethernet ports must be grouped together in a block.

- Fibre Channel ports must be grouped together in a block.
- Alternating Ethernet and Fibre Channel ports is not supported.

Special Considerations for UCS Manager CLI Users

Because the Cisco UCS Manager CLI does not validate port mode changes until you commit the buffer to the system configuration, it is easy to violate the grouping restrictions if you attempt to commit the buffer before creating at least two new interfaces. To prevent errors, we recommend that you wait to commit your changes to the system configuration until you have created new interfaces for all of the unified ports changing from one port mode to another.

Commiting the buffer before configuring multiple interfaces will result in an error, but you do not need to start over. You can continue to configure unified ports until the configuration satisfies the aforementioned requirements.

Cautions and Guidelines for Configuring Unified Uplink Ports and Unified Storage Ports

The following are cautions and guidelines to follow while working with unified uplink ports and unified storage ports:

• In an unified uplink port, if you enable one component as a SPAN source, the other component will automatically become a SPAN source.

Note If you create or delete a SPAN source under the Ethernet uplink port, Cisco UCS Manager automatically creates or deletes a SPAN source under the FCoE uplink port. The same happens when you create a SPAN source on the FCOE uplink port.

- You must configure a non default native VLAN on FCoE and unified uplink ports. This VLAN is not used for any traffic. Cisco UCS Manager will reuse an existing fcoe-storage-native-vlan for this purpose. This fcoe-storage-native-vlan will be used as a native VLAN on FCoE and unified uplinks.
- In an unified uplink port, if you do not specify a non default VLAN for the Ethernet uplink port the
 fcoe-storage-native-vlan will be assigned as the native VLAN on the unified uplink port. If the Ethernet
 port has a non default native VLAN specified as native VLAN, this will be assigned as the native VLAN
 for unified uplink port.
- When you create or delete a member port under an Ethernet port channel, Cisco UCS Manager automatically creates or deletes the member port under FCoE port channel. The same happens when you create or delete a member port in FCoE port channel.
- When you configure an Ethernet port as a standalone port, such as server port, Ethernet uplink, FCoE uplink or FCoE storage and make it as a member port for an Ethernet or FCOE port channel, Cisco UCS Manager automatically makes this port as a member of both Ethernet and FCoE port channels.
- When you remove the membership for a member port from being a member of server uplink, Ethernet uplink, FCoE uplink or FCoE storage, Cisco UCS Manager deletes the corresponding members ports from Ethernet port channel and FCoE port channel and creates a new standalone port.

• For unified uplink ports and unified storage ports, when you create two interfaces, only one license is checked out. As long as either interface is enabled, the license remains checked out. The license will be released only if both the interfaces are disabled for a unified uplink port or a unified storage port.

Effect of Port Mode Changes on Data Traffic

Port mode changes can cause an interruption to the data traffic for the Cisco UCS domain. The length of the interruption and the traffic that is affected depend upon the configuration of the Cisco UCS domain and the module on which you made the port mode changes.

Impact of Port Mode Changes on the Fixed Module in a Cluster Configuration

A cluster configuration has two fabric interconnects. After you make port changes to the fixed module, the fabric interconnect reboots. The impact on the data traffic depends upon whether or not you have configured the server vNICs to failover to the other fabric interconnect when one fails.

If you change the port modes on the fixed modules of both fabric interconnects simultaneously, all data traffic through the fabric interconnects are interrupted for approximately eight minutes while the fabric interconnects reboot.

Impact of Port Mode Changes on the Fixed Module in a Standalone Configuration

A standalone configuration has only one fabric interconnect. After you make port changes to the fixed module, the fabric interconnect reboots. All data traffic through the fabric interconnect is interrupted for approximately eight minutes while the fabric interconnect reboots.

FC Links Rebalancing

The FC uplinks balance automatically when FC Port Channels are utilized. To create FC Port Channels, refer to Configuring a Fibre Channel Port Channel, on page 34.

For the FC uplinks that are not members of the Port Channels (Individual ISLs), load balancing is done according to the FC uplinks balancing algorithm. For a vHBA of a host or service profile to choose an available FC uplink, when FC uplink trunking is disabled, the uplink and vHBA must belong to the same VSAN

For each vHBA, the algorithm searches for an FC uplink in the following order:

- 1 Least used FC uplink based on the number of vHBAs currently bound to the uplink.
- 2 If FC uplinks are equally balanced, then round robin is used.

This process continues for all the other vHBAs. The algorithm also considers other parameters such as pre-fip/fip adapters and number of flogis. You may not see the least-used component when there are less than six flogis.

After a port configuration or any other uplink state changes, if the traffic passing through the FC uplinks is no longer balanced, you can re-balance the traffic by resetting the vHBA(s) on each adapter and allow the load balancing algorithm to evaluate for the current state of the FC uplinks.

Configuring the Port Mode

<u>À</u> Caution

Changing the port mode can cause an interruption in data traffic because changes to the fixed module require a reboot of the fabric interconnect.

If the Cisco UCS domain has a cluster configuration that is set up for high availability and servers with service profiles that are configured for failover, traffic fails over to the other fabric interconnect and data traffic is not interrupted when the port mode is changed on the fixed module.

In the Cisco UCS Manager CLI, there are no new commands to support Unified Ports. Instead, you change the port mode by scoping to the mode for the desired port type and then creating a new interface. When you create a new interface for an already configured slot ID and port ID, UCS Manager deletes the previously configured interface and creates a new one. If a port mode change is required because you configure a port that previously operated in Ethernet port mode to a port type in Fibre Channel port mode, UCS Manager notes the change.

I

Expansions modules are not supported with Cisco UCS Mini.

	Command or Action	Purpose
Step 1	UCS-A# scope <i>port-type-mode</i>	Enters the specified port type mode for one of the following port types:
		eth-server
		For configuring server ports.
		eth-storage
		For configuring Ethernet storage ports and Ethernet storage port channels.
		eth-traffic-mon
		For configuring Ethernet SPAN ports.
		eth-uplink
		For configuring Ethernet uplink ports.
		fc-storage
		For configuring Fibre Channel storage ports.

	Command or Action	Purpose
		fc-traffic-mon
		For configuring Fibre Channel SPAN ports.
		fc-uplink
		For configuring Fibre Channel uplink ports and Fibre Channel uplink port channels.
Step 2	UCS-A /port-type-mode # scope fabric {a b}	Enters the specified port type mode for the specified fabric.
Step 3	UCS-A /port-type-mode/fabric	Creates an interface for the specified port type.
	# create interface <i>slot-id</i> <i>port-id</i>	If you are changing the port type from Ethernet port mode to Fibre Channel port mode, or vice-versa, the following warning appears:
		Warning: This operation will change the port mode (from
		Ethernet to FC or vice-versa). When committed, this
		change will require the module to restart.
Step 4	Create new interfaces for other ports belonging to the Ethernet or Fibre Channel port block.	There are several restrictions that govern how Ethernet and Fibre Channel ports can be arranged on a fixed or expansion module. Among other restrictions, it is required that you change ports in groups of two. Violating any of the restrictions outlined in the Guidelines for Configuring Unified Ports section will result in an error.
Step 5	UCS-A / <i>port-type-mode</i> /fabric/interface # commit-buffer	Commits the transaction to the system configuration.

Based on the module for which you configured the port modes, data traffic for the Cisco UCS domain is interrupted as follows:

• Fixed module—The fabric interconnect reboots. All data traffic through that fabric interconnect is interrupted. In a cluster configuration that provides high availability and includes servers with vNICs that are configured for failover, traffic fails over to the other fabric interconnect and no interruption occurs. Changing the port mode for both sides at once results in both fabric interconnects rebooting simultaneously and a complete loss of traffic until both fabric interconnects are brought back up.

It takes about 8 minutes for the fixed module to reboot.

• Expansion module—The module reboots. All data traffic through ports in that module is interrupted.

It takes about 1 minute for the expansion module to reboot.

The following example changes ports 3 and 4 on slot 1 from Ethernet uplink ports in Ethernet port mode to uplink Fibre Channel ports in Fibre Channel port mode:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # create interface 1 3
```

```
Warning: This operation will change the port mode (from Ethernet to FC or vice-versa).
When committed, this change will require the fixed module to restart.
UCS-A /fc-uplink/fabric/interface* # up
UCS-A /fc-uplink/fabric* #create interface 1 4
Warning: This operation will change the port mode (from Ethernet to FC or vice-versa).
When committed, this change will require the fixed module to restart.
UCS-A /fc-uplink/fabric/interface* #commit-buffer
```

Configuring the Beacon LEDs for Unified Ports

Complete the following task for each module for which you want to configure beacon LEDs.

Procedure

	Command or Action	Purpose		
Step 1	UCS-A# scope fabric-interconnect {a b}	Enters fabric interconnect mode for the specified fabric.		
Step 2	UCS-A /fabric # scope card <i>slot-id</i>	Enters card mode for the specified fixed or expansion module.		
Step 3	UCS-A /fabric/card # scope beacon-led	Enters beacon LED mode.		
Step 4	UCS-A /fabric/card/beacon-led # set admin-state {eth fc off}	Specifies which port mode is represented by illuminated beacon LED lights.		
		ethAll of the Unified Ports configured in Ethernet mode illuminate.fcAll of the Unified Ports configured in Fibre Channel mode illuminate.offBeacon LED lights for all ports on the module are turned off.		
Step 5	UCS-A /fabric/card/beacon-led # commit-buffer	Commits the transaction to the system configuration.		

The following example illuminates all of the beacon lights for Unified Ports in Ethernet port mode and commits the transaction:

```
UCS-A# scope fabric-interconnect a
UCS-A /fabric # scope card 1
UCS-A /fabric/card # scope beacon-led
UCS-A /fabric/card/beacon-led # set admin-state eth
UCS-A /fabric/card/beacon-led # commit-buffer
UCS-A /fabric/card/beacon-led #
```

Physical and Backplane Ports

Displaying Physical Port Statistics Obtained From the ASIC

Procedure

	Command or Action	Purpose		
Step 1	UCS-A /fabric-interconnect # connect nxos {a b}	Enters NX-OS mode for the fabric interconnect.		
Step 2	UCS-A(nxos)# show interface ethernet <i>slot/port</i>	Displays physical port statistics that are obtained from the ASIC.		

The following example shows how to display physical port statistics that are obtained from the ASIC:

```
UCS-A /fabric-interconnect # connect nxos a
UCS-A(nxos) # show interface ethernet 1/11
Ethernet1/11 is up
 Dedicated Interface
  Hardware: 40000 Ethernet, address: a46c.2ae3.0e1a (bia a46c.2ae3.0e1a)
  Description: S: Server
  MTU 1500 bytes, BW 40000000 Kbit, DLY 10 usec
  reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA
  Port mode is fex-fabric
  full-duplex, 40 Gb/s, media type is 40G
  Beacon is turned off
  Input flow-control is off, output flow-control is off
  Rate mode is dedicated
  Switchport monitor is off
  EtherType is 0x8100
  Last link flapped 01:25:42
  Last clearing of "show interface" counters never
  2 interface resets
  30 seconds input rate 22664 bits/sec, 2833 bytes/sec, 3 packets/sec
  30 seconds output rate 9512 bits/sec, 1189 bytes/sec, 1189 bytes/sec, 4 packets/sec
  Load-Interval #2: 5 minute (300 seconds)
    input rate 33.80 Kbps, 5 pps; output rate 1.23 Mbps, 71 pps
  RX
                           1744 multicast packets 12877 broadcast packets
    126057 unicast packets
    140693 input packets 28702696 bytes
    3351 jumbo packets 0 storm suppression bytes
    0 runts 0 giants 0 CRC 0 no buffer
    0 input error 0 short frame 0 overrun
                                             0 underrun 0 ignored
    0 watchdog 0 bad etype drop 0 bad proto drop 0 if down drop
    0 input with dribble 184 input discard
    0 Rx pause
  ТΧ
    919778 unicast packets 6991 multicast packets 29 broadcast packets
    926798 output packets 1237109219 bytes
    794275 jumbo packets
    0 output errors 0 collision 0 deferred 0 late collision
    0 lost carrier 0 no carrier 0 babble 0 output discard
    0 Tx pause
  Errors on Peer port (NIF):
  RX
    8300 toolong frames 8400 undersize frames 8500 fragment frames
```

8600 crcErr_not_stomped frames 8700 crcErr_stomped frames 8800 inRangeErr frames TX 8200 frames with error

Displaying Physical Ports on the Fabric Interconnect That Correspond to Physical Ports on BCM

Procedure

	Command or Action	Purpose
Step 1	UCS-A /fabric-interconnect # connect nxos {a b}	Enters NX-OS mode for the fabric interconnect.
Step 2	UCS-A(nxos)# show hardware internal bcm-usd info port-info grep interface_slot_id	Displays physical ports on a fabric interconnect that correspond to physical ports on BCM.

The following example shows how to display physical ports on a fabric interconnect that correspond to physical ports on BCM:

```
UCS-A /fabric-interconnect # connect nxos a
UCS-A(nxos)# show hardware internal bcm-usd info port-info | grep Eth 1/11
Eth1/11 0x1a00a000 41 xe-40 57 CR4 sw 4044 0 uta 2240 0 fd dis blk dis dis
ena 40G 40G up
```

Verifying Status of Backplane Ports

Procedure

	Command or Action	Purpose
Step 1	UCS-A /fabric-interconnect # connect nxos {a b}	Enters NX-OS mode for the fabric interconnect.
Step 2	UCS-A(nxos)# show interface br	Displays the configuration of the interface, including the speed and status of the backplane ports.

The following example shows how to verify the status of backplane ports for fabric interconnect A:

```
UCS-A /fabric-interconnect # connect nxos a UCS-A(nxos)# show interface br
```

1

Ethernet Interface	VLAN	Туре	Mode	Status	Reason	Speed	Port Ch #
Eth1/1	1	eth	access	down	SFP not inserted	40G(D)
Eth1/2	1	eth	access	down	SFP not inserted	40G(D)
Br-Eth1/3/1	1	eth	access	down	Administratively down	10G(D)
Br-Eth1/3/2	1	eth	access	down	Administratively down	10G(D)
Br-Eth1/3/3	1	eth	access	down	Administratively down	10G(D)
Br-Eth1/3/4	1	eth	access	down	Administratively down	10G(D)
Eth1/4	10.4.4	eth	access	down	SFP not inserted	40G (D)
Br-Etn1/5/1	4044	etn	trunk	down	Link not connected	10G (D)
Br=Eth1/5/2	4044	eth	trunk	down	Link not connected	10G (D)
Br = Eth1/5/4	4044	eth	trunk	down	Link not connected	10G (D)
Eth1/6	1	eth	access	down	SFP not inserted	40G (D)
Eth1/7	1	eth	access	down	SFP not inserted	40G (D)
Eth1/8	1	eth	access	down	SFP not inserted	40G (D)
Eth1/9	1	eth	access	down	SFP not inserted	40G (D)
Eth1/10	1	eth	access	down	SFP not inserted	40G (D)
Eth1/11	1	eth	fabric	up	none	40G (D)
Eth1/12	1	eth	access	down	SFP not inserted	40G (D)
Ethl/13	1	eth	access	down	SFP not inserted	40G (D)
止しD1/14 F+b1/15	1	eth	access	aown	SFP not inserted	40G (D	,
ELNI/15 E+b1/16	1	etn oth	access	down	SFP not inserted	40G (D)
Eth1/17	1	eth oth	access	down	SFP not inserted	40G (D)
Eth1/18	1	eth	access	down	SFP not inserted	40G (D)
Eth1/19	1	eth	access	down	SFP not inserted	40G (D)
Eth1/20	1	eth	access	down	SFP not inserted	40G (D)
Br-Eth1/21/1	1	eth	trunk	up	none	10G(D)
Br-Eth1/21/2	1	eth	trunk	up	none	10G(D)
Br-Eth1/21/3	1	eth	trunk	down	Link not connected	10G(D)
Br-Eth1/21/4	1	eth	trunk	up	none	10G(D)
Eth1/22	1	eth	access	down	SFP not inserted	40G(D)
Eth1/23	1	eth	access	down	SFP not inserted	40G (D)
Eth1/24	1	eth	access	down	SFP not inserted	40G (D)
Eth1/25	1	eth oth	access	down	SFP not inserted	40G (D)
EtH1/20 F+b1/27	1	eth oth	access	down	SFP not inserted	40G (D)
Eth1/28	1	eth	access	down	SFP not inserted	40G (D)
Eth1/29	1	eth	access	down	SFP not inserted	40G (D)
Eth1/30	1	eth	access	down	SFP not inserted	40G (D)
Eth1/31	1	eth	access	down	SFP not inserted	40G (D)
Eth1/32	1	eth	access	down	SFP not inserted	40G(D)
Port-channel	VLAN	 Туре	Mode	Status	Reason	Speed	Protoco
Interface							
Po1285	1	eth	vntag	up	none	a-10G(D) none
Po1286	1	eth	vntag	up	none	a-10G(D) none
Po1287	1	eth	vntag	up	none	a-10G(D) none
Po1288 Po1289	1	eth eth	vntag vntag	up up	none none	a-10G(D a-10G(D) none) none
Port VRF		Status	s IP Add	lress		Speed	MTU
mgmt0		down	10.197	.157.25	2		1500
Vothowset			Moda	Q+ - +		erood	
velnernet	VLAN	туре		status	ReaSON		
Veth691	4047	virt	trunk	down	nonParticipating	auto	
Veth692	4047	virt	trunk	up	none	auto	
Veth693	1	virt	trunk	down	nonParticipating	auto	
veth695	1	virt	trunk	up	none	auto	
vetno99	T	vırt	crunk	up	попе	auto	

Interface	Secondary	VLAN (Typ	pe)			Status	Reason		
Vlanl						down	Administ	ratively d	own
Ethernet Interface	VLAN	Туре 1	Mode S	Status	Reason			Speed	Port Ch #
Eth1/1/1	1	eth	vntag	up	none			10G(D) 1286
Eth1/1/2	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/3	1	eth	vntag	up	none			10G(D) 1286
Eth1/1/4	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/5	1	eth	vntag	up	none			10G(D) 1287
Eth1/1/6	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/7	1	eth	vntag	up	none			10G(D) 1287
Eth1/1/8	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/9	1	eth	vntag	up	none			10G(D) 1289
Eth1/1/10	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/11	1	eth	vntag	up	none			10G(D) 1289
Eth1/1/12	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/13	1	eth	vntag	up	none			10G(D) 1285
Eth1/1/14	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/15	1	eth	vntag	up	none			10G(D) 1285
Eth1/1/16	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/17	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/18	1	eth	vntag	up	none			10G(D) 1288
Eth1/1/19	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/20	1	eth	vntag	up	none			10G(D) 1288
Eth1/1/21	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/22	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/23	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/24	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/25	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/26	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/27	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/28	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/29	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/30	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/31	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/32	1	eth	access	down	Admini	strative	ly down	10G(D)
Eth1/1/33	4044	eth	trunk	up	none			1000(D)

Server Ports

I

Configuring a Server Port

	Command or Action	Purpose
Step 1	UCS-A# scope eth-server	Enters Ethernet server mode.
Step 2	UCS-A /eth-server # scope fabric {a b}	Enters Ethernet server fabric mode for the specified fabric.
Step 3	UCS-A /eth-server/fabric # create interface slot-num port-num	Creates an interface for the specified Ethernet server port.

	Command or Action	Purpose
Step 4	UCS-A /eth-server/fabric # commit-buffer	Commits the transaction to the system configuration.

The following example shows how to create an interface for Ethernet server port 4 on slot 1 of fabric B and commit the transaction:

```
UCS-A# scope eth-server
UCS-A /eth-server # scope fabric b
UCS-A /eth-server/fabric # create interface 1 4
UCS-A /eth-server/fabric* # commit-buffer
UCS-A /eth-server/fabric #
```

Unconfiguring a Server Port

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope eth-server	Enters Ethernet server mode.
Step 2	UCS-A /eth-server # scope fabric {a b}	Enters Ethernet server fabric mode for the specified fabric.
Step 3	UCS-A /eth-server/fabric # delete interface slot-num port-num	Deletes the interface for the specified Ethernet server port.
Step 4	UCS-A /eth-server/fabric # commit-buffer	Commits the transaction to the system configuration.

The following example unconfigures Ethernet server port 12 on slot 1 of fabric B and commits the transaction:

```
UCS-A# scope eth-server
UCS-A /eth-server # scope fabric b
UCS-A /eth-server/fabric # delete interface 1 12
UCS-A /eth-server/fabric* # commit-buffer
UCS-A /eth-server/fabric #
```

Uplink Ethernet Ports

Configuring an Uplink Ethernet Port

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope eth-uplink	Enters Ethernet uplink mode.
Step 2	UCS-A /eth-uplink # scope fabric a b}	Enters Ethernet uplink fabric mode for the specified fabric.
Step 3	UCS-A /eth-uplink/fabric # create interface slot-num port-num	Creates an interface for the specified Ethernet uplink port.
Step 4	UCS-A /eth-uplink/fabric # set speed {10gbps 1gbps}	(Optional) Sets the speed for the specified Ethernet uplink port.
Step 5	UCS-A /eth-uplink/fabric # commit-buffer	Commits the transaction to the system configuration.

The following example shows how to create an interface for Ethernet uplink port 3 on slot 2 of fabric B, set the speed to 10 gbps, and commit the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric b
UCS-A /eth-uplink/fabric # create interface 2 3
UCS-A /eth-uplink/fabric # set speed 10gbps
UCS-A /eth-uplink/fabric* # commit-buffer
UCS-A /eth-uplink/fabric #
```

Unconfiguring an Uplink Ethernet Port

Procedure

I

	Command or Action	Purpose
Step 1	UCS-A# scope eth-uplink	Enters Ethernet uplink mode.
Step 2	UCS-A /eth-uplink # scope fabric {a b}	Enters Ethernet uplink fabric mode for the specified fabric.
Step 3	UCS-A /eth-uplink/fabric # delete interface <i>slot-num port-num</i>	Deletes the interface for the specified Ethernet uplink port.

	Command or Action	Purpose
Step 4	UCS-A /eth-uplink/fabric # commit-buffer	Commits the transaction to the system configuration.

The following example unconfigures Ethernet uplink port 3 on slot 2 of fabric B and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric b
UCS-A /eth-uplink/fabric # delete interface 2 3
UCS-A /eth-uplink/fabric* # commit-buffer
UCS-A /eth-uplink/fabric #
```

Appliance Ports

Appliance ports are only used to connect fabric interconnects to directly attached NFS storage.

Note

When you create a new appliance VLAN, its IEEE VLAN ID is not added to the LAN Cloud. Therefore, appliance ports that are configured with the new VLAN remain down, by default, due to a pinning failure. To bring up these appliance ports, you have to configure a VLAN in the LAN Cloud with the same IEEE VLAN ID.

Cisco UCS Manager supports up to four appliance ports per fabric interconnect.

Configuring an Appliance Port

	Command or Action	Purpose
Step 1	UCS-A# scope eth-storage	Enters Ethernet storage mode.
Step 2	UCS-A /eth-storage # scope fabric {a b}	Enters Ethernet storage mode for the specified fabric.
Step 3	UCS-A /eth-storage/fabric # create interface slot-num port-num	Creates an interface for the specified appliance port.
Step 4	UCS-A /eth-storage/fabric/interface# set portmode {access trunk}	(Optional) Specifies whether the port mode is access or trunk. By default, the mode is set to trunk.

I

	Command or Action	Purpose		
		Note If traffic for the appliance port needs to traverse the uplink ports, you must also define each VLAN used by this port in the LAN cloud. For example, you need the traffic to traverse the uplink ports if the storage is also used by other servers, or if you want to ensure that traffic fails over to the secondary fabric interconnect if the storage controller for the primary fabric interconnect fails.		
Step 5	UCS-A /eth-storage/fabric/interface # set pingroupname pin-group name	(Optional) Specifies the appliance pin target to the specified fabric and port, or fabric and port channel.		
Step 6	UCS-A /eth-storage/fabric/interface # set prio sys-class-name	(Optional) Specifies the QoS class for the appliance port. By default, the priority is set to best-effort.		
		The sys-class-name argument can be one of the following class keywords:		
		• Fc —Use this priority for QoS policies that control vHBA traffic only.		
		• Platinum —Use this priority for QoS policies that control vNIC traffic only.		
		• Gold —Use this priority for QoS policies that control vNIC traffic only.		
		• Silver—Use this priority for QoS policies that control vNIC traffic only.		
		• Bronze —Use this priority for QoS policies that control vNIC traffic only.		
		• Best Effort —Do not use this priority. It is reserved for the Basic Ethernet traffic lane. If you assign this priority to a QoS policy and configure another system class as CoS 0, Cisco UCS Manager does not default to this system class. It defaults to the priority with CoS 0 for that traffic.		
Step 7	UCS-A /eth-storage/fabric/interface# set adminspeed {10gbps 1 gbps}	(Optional) Specifies the admin speed for the interface. By default, the admin speed is set to 10gbps.		
Step 8	UCS-A /eth-storage/fabric/interface # commit buffer	Commits the transaction to the system configuration.		

The following example creates an interface for an appliance port 2 on slot 3 of fabric B, sets the port mode to access, pins the appliance port to a pin group called pingroup1, sets the QoS class to fc, sets the admin speed to 10 gbps, and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric b
UCS-A /eth-storage/fabric # create interface 3 2
UCS-A /eth-storage/fabric* # set portmode access
UCS-A /eth-storage/fabric* # set pingroupname pingroup1
UCS-A /eth-storage/fabric* # set prio fc
UCS-A /eth-storage/fabric* # set adminspeed 10gbps
UCS-A /eth-storage/fabric* # commit-buffer
UCS-A /eth-storage/fabric #
```

What to Do Next

Assign a VLAN or target MAC address for the appliance port.

Assigning a Target MAC Address to an Appliance Port or Appliance Port Channel

The following procedure assigns a target MAC address to an appliance port. To assign a target MAC address to an appliance port channel, scope to the port channel instead of the interface.

P	ro	CE	ed	u	re
---	----	----	----	---	----

	Command or Action	Purpose	
Step 1	UCS-A# scope eth-storage	Enters Ethernet storage mode.	
Step 2	UCS-A /eth-storage # scope fabric {a b}	Enters Ethernet storage mode for the specified fabric.	
Step 3	UCS-A /eth-storage/fabric # scope interface <i>slot-id port-id</i>	Enters Ethernet interface mode for the specified interface. Note To assign a target MAC address to an appliance port channel, use the scope port-channel command instead of sco interface.	
Step 4	UCS-A /eth-storage/fabric/interface # create eth-target eth-target name	Specifies the name for the specified MAC addres target.	
Step 5	UCS-A /eth-storage/fabric/interface/eth-target # set mac-address mac-address	Specifies the MAC address in nn:nn:nn:nn:nn format.	

The following example assigns a target MAC address for an appliance device on port 3, slot 2 of fabric B and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage* # scope fabric b
UCS-A /eth-storage/fabric* # scope interface 2 3
UCS-A /eth-storage/fabric/interface* # create eth-target macname
UCS-A /eth-storage/fabric/interface* # set mac-address 01:23:45:67:89:ab
```

```
UCS-A /eth-storage/fabric/interface* # commit-buffer
UCS-A /eth-storage/fabric #
The following example assigns a target MAC address for appliance devices on port channel 13 of fabric B
and commits the transaction:
UCS-A# scope eth-storage
```

```
UCS-A /eth-storage* # scope fabric b
UCS-A /eth-storage/fabric* # scope port-channel 13
UCS-A /eth-storage/fabric/port-channel* # create eth-target macname
UCS-A /eth-storage/fabric/port-channel* # set mac-address 01:23:45:67:89:ab
UCS-A /eth-storage/fabric/port-channel* # commit-buffer
UCS-A /eth-storage/fabric #
```

Creating an Appliance Port

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope eth-storage	Enters Ethernet storage mode.
Step 2	UCS-A/eth-storage# create vlan vlan-name vlan-id	Creates a named VLAN, specifies the VLAN name and VLAN ID, and enters Ethernet storage VLAN mode
Step 3	UCS-A/eth-storage/vlan# set sharing primary	Saves the changes.
Step 4	UCS-A/eth-storage/vlan# commit buffer	Commits the transaction to the system configuration.
Step 5	UCS-A/eth-storage# create vlan vlan-name vlan-id	Creates a named VLAN, specifies the VLAN name and VLAN ID, and enters Ethernet storage VLAN mode.
Step 6	UCS-A/eth-storage/vlan# set sharing community	Associates the primary VLAN to the secondary VLAN that you are creating.
Step 7	UCS-A/eth-storage/vlan# set pubnwname primary vlan-name	Specifies the primary VLAN to be associated with this secondary VLAN.
Step 8	UCS-A/eth-storage/vlan# commit buffer	Commits the transaction to the system configuration.

The following example creates an appliance port:

```
UCS-A# scope eth-storage
UCS-A/eth-storage# create vlan PRI600 600
UCS-A/eth-storage/vlan* # set sharing primary
UCS-A/eth-storage/vlan* # commit-buffer
UCS-A/eth-storage # create vlan COM602 602
UCS-A/eth-storage/vlan* # set sharing isolated
UCS-A/eth-storage/vlan* # set pubnwname PRI600
UCS-A/eth-storage/vlan* # commit-buffer
```

Mapping an Appliance Port to a Community VLAN

Procedure

	Command or Action	Purpose	
Step 1	UCS-A# scope eth-storage	Enters Ethernet storage mode.	
Step 2	UCS-A/eth-storage# scope fabric $\{a b\}$	Enters Ethernet storage fabric interconnect mode for the specified fabric interconnect.	
Step 3	UCS-A/eth-storage/fabric# create interface slot-num port-num	Creates an interface for the specified Ethernet server port.	
Step 4	UCS-A/eth-storage/fabric/interface# exit	Exits from the interface.	
		Note Ensure you commit the transaction after associating with the VLAN.	
Step 5	UCS-A/eth-storage/fabric# exit	Exits from the fabric.	
Step 6	UCS-A/eth-storage# scope vlan vlan-name	Enters the specified VLAN.	
		Note Ensure community VLAN is created in the appliance cloud.	
Step 7	UCS-A/eth-storage/vlan# create member-port fabric slot-num port-num	Creates the member port for the specified fabric, assigns the slot number, and port number and enters member port configuration.	
Step 8	UCS-A/eth-storage/vlan/member-port# commit	Commits the transaction to the system configuration.	

The following example maps an appliance port to an community VLAN:

```
UCS-A# scope eth-storage
UCS-A/eth-storage# scope fabric a
UCS-A/eth-storage/fabric# create interface 1 22
UCS-A/eth-storage/fabric/interface*# exit
UCS-A/eth-storage/fabric*# exit
UCS-A/eth-storage*# scope vlan COM602
UCS-A/eth-storage/vlan*# create member-port a 1 22
UCS-A/eth-storage/vlan/member-port* commit
```

Unconfiguring an Appliance Port

	Command or Action	Purpose
Step 1	UCS-A # scope eth-storage	Enters Ethernet storage mode.

	Command or Action	Purpose	
Step 2	UCS-A /eth-storage # scope fabric {a b}	Enters Ethernet storage mode for the specified fabric.	
Step 3	UCS-A /eth-storage/fabric # delete eth-interface slot-num port-num	Deletes the interface for the specified appliance port.	
Step 4	UCS-A /eth-storage/fabric # commit-buffer	Commits the transaction to the system configuration.	

The following example unconfigures appliance port 3 on slot 2 of fabric B and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric b
UCS-A /eth-storage/fabric # delete eth-interface 2 3
UCS-A /eth-storage/fabric* # commit-buffer
UCS-A /eth-storage/fabric #
```

FCoE Uplink Ports

FCoE uplink ports are physical Ethernet interfaces between the fabric interconnects and the upstream Ethernet switch, used for carrying FCoE traffic. With this support the same physical Ethernet port can carry both Ethernet traffic and Fibre Channel traffic.

FCoE uplink ports connect to upstream Ethernet switches using the FCoE protocol for Fibre Channel traffic. This allows both the Fibre Channel traffic and Ethernet traffic to flow on the same physical Ethernet link.

Note

FCoE uplinks and unified uplinks enable the multi-hop FCoE feature, by extending the unified fabric up to the distribution layer switch.

You can configure the same Ethernet port as any of the following:

- FCoE uplink port—As an FCoE uplink port for only Fibre Channel traffic.
- Uplink port—As an Ethernet port for only Ethernet traffic.
- Unified uplink port—As a unified uplink port to carry both Ethernet and Fibre Channel traffic.

Configuring a FCoE Uplink Port

	Command or Action	Purpose
Step 1	UCS-A# scope fc-uplink	Enters FC Uplink mode.

	Command or Action	Purpose
Step 2	UCS-A /fc-uplink # scope fabric {a b}	Enters FC - Uplink mode for the specific fabric.
Step 3	UCS-A /fc-uplink/fabric # create fcoeinterface slot-numberport-number	Creates interface for the specified FCoE uplink port.
Step 4	UCS-A /fc-uplink/fabric/fabricinterface # commit-buffer	Commits the transaction to the system configuration.

The following example creates an interface for FCoE uplink port 1 on slot 8 of fabric A and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # create fcoeinterface 1 8
UCS-A /fc-uplink/fabric/fcoeinterface* # commit-buffer
UCS-A /fc-uplink/fabric/fcoeinterface #
```

Unconfiguring a FCoE Uplink Port

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope fc-uplink	Enters FC Uplink mode.
Step 2	UCS-A /fc-uplink # scope fabric {a b}	Enters FC - Uplink mode for the specific fabric.
Step 3	UCS-A /fc-uplink/fabric # delete fcoeinterface <i>slot-numberport-number</i>	Deletes the specified interface.
Step 4	UCS-A /fc-uplink/fabric/fabricinterface # commit-buffer	Commits the transaction to the system configuration.

The following example deletes the FCoE uplink interface on port 1 on slot 8 of fabric A and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # delete fcoeinterface 1 8
UCS-A /fc-uplink/fabric/fcoeinterface* # commit-buffer
UCS-A /fc-uplink/fabric/fcoeinterface #
```

Viewing FCoE Uplink Ports

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope fc-uplink	Enters FC Uplink mode.
Step 2	UCS-A /fc-uplink # scope fabric {a b}	Enters FC - Uplink mode for the specific fabric.
Step 3	UCS-A /fc-uplink/fabric # show fcoeinterface	Lists the available interfaces.

The following example displays the available FCoE uplink interfaces on fabric A:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # show fcoeinterface
FCoE Interface:
Slot Id
           Port Id Admin State Operational State Operational State Reason Li
                  Grace Prd
c State
______ _____
----- -----
        1
                   26 Enabled
                                                                                    Li
                                    Indeterminate
cense Ok
                       0
Fcoe Member Port:
Port-channel Slot Port Oper State
                                        State Reason
                                -----
     _____ _ ___
                           ____
1
                1 10 Sfp Not Present Unknown
1
                 1
                       3 Sfp Not Present Unknown

    1
    3 SIP NOT Fresent Unknown

    1
    4 Sfp Not Present Unknown

    1
    6 Sfp Not Present Unknown

    1
    8 Sfp Not Present Unknown

    1
    7 Sfp Not Present Unknown

1
1
1
2
UCS-A /fc-uplink/fabric #
```

Unified Uplink Ports

When you configure an Ethernet uplink and an FCoE uplink on the same physical Ethernet port, it is called a unified uplink port. You can individually enable or disable either the FCoE or Ethernet interfaces independently.

- Enabling or disabling the FCoE uplink results in the corresponding VFC being enabled or disabled.
- Enabling or disabling an Ethernet uplink results in the corresponding physical port being enabled or disabled.

If you disable an Ethernet uplink, it disables the underlying physical port in a unified uplink. Therefore, even when the FCoE uplink is enabled, the FCoE uplink also goes down. But if you disable an FCoE uplink, only the VFC goes down. If the Ethernet uplink is enabled, it can still function properly in the unified uplink port.

Configuring a Unified Uplink Port

To configure a unified uplink port, you will convert an existing FCoE uplink port as a unified port.

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope eth-uplink	Enters Ethernet uplink mode.
Step 2	UCS-A /eth-uplink # scope fabric {a b}	Enters Ethernet uplink fabric mode for the specified fabric.
Step 3	UCS-A /eth-uplink/fabric # create interface 15	Converts the FCoE uplink port as a unified port.
Step 4	UCS-A /eth-uplink/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

The following example creates a unified uplink port on an existing FCoE port:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric b
UCS-A /eth-uplink/fabric # create interface 1 5
UCS-A /eth-uplink/fabric/interface* # commit-buffer
UCS-A /eth-uplink/interface #
```

FCoE and Fibre Channel Storage Ports

Configuring a Fibre Channel Storage or FCoE Port

	Command or Action	Purpose
Step 1	UCS-A# scope fc-storage	Enters Fibre Channel storage mode.
Step 2	UCS-A /fc-storage # scope fabric {a b}	Enters Fibre Channel storage mode for the specified fabric.
Step 3	UCS-A /fc-storage/fabric # create interface {fc fcoe} slot-num port-num	Creates an interface for the specified Fibre Channel storage port.
Step 4	UCS-A /fc-storage/fabric # commit-buffer	Commits the transaction.

The following example creates an interface for Fibre Channel storage port 10 on slot 2 of fabric A and commits the transaction:

```
UCS-A# scope fc-storage
UCS-A /fc-storage # scope fabric a
UCS-A /fc-storage/fabric* # create interface fc 2 10
UCS-A /fc-storage/fabric # commit-buffer
```

What to Do Next

Assign a VSAN.

Unconfiguring a Fibre Channel Storage or FCoE Port

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope fc-storage	Enters Fibre Channel storage mode.
Step 2	UCS-A /fc-storage # scope fabric {a b}	Enters Fibre Channel storage mode for the specified fabric.
Step 3	UCS-A /fc-storage/fabric # delete interface {fc fcoe} slot-num port-num	Deletes the interface for the specified Fibre Channel or FCoE storage port.
Step 4	UCS-A /fc-storage/fabric # commit-buffer	Commits the transaction.

The following example unconfigures Fibre Channel storage port 10 on slot 2 of fabric A and commits the transaction:

```
UCS-A# scope fc-storage
UCS-A /fc-storage # scope fabric a
UCS-A /fc-storage/fabric* # delete interface fc 2 10
UCS-A /fc-storage/fabric # commit-buffer
```

Restoring a Fibre Channel Storage Port Back to an Uplink Fibre Channel Port

Procedure

I

	Command or Action	Purpose
Step 1	UCS-A# scope fc-uplink	Enters Fibre Channel uplink mode.
Step 2	UCS-A /fc-uplink # scope fabric {a b}	Enters Fibre Channel uplink mode for the specified fabric.
Step 3	UCS-A /fc-uplink/fabric # create interface slot-num port-num	Creates an interface for the specified Fibre Channel uplink port.
Step 4	UCS-A /fc-uplink/fabric # commit-buffer	Commits the transaction.

The following example creates an interface for Fibre Channel uplink port 10 on slot 2 of fabric A and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric* # create interface 2 10
UCS-A /fc-uplink/fabric # commit-buffer
```

Uplink Ethernet Port Channels

An uplink Ethernet port channel allows you to group several physical uplink Ethernet ports (link aggregation) to create one logical Ethernet link to provide fault-tolerance and high-speed connectivity. In Cisco UCS Manager, you create a port channel first and then add uplink Ethernet ports to the port channel. You can add up to 16 uplink Ethernet ports to a port channel.

C)

Important

The state of a configured port changes to unconfigured in the following scenarios:

- The port is deleted or removed from a port channel. The port channel can be of any type, such as, uplink or storage.
- A port channel is deleted.

Note Cisco UCS uses Link Aggregation Control Protocol (LACP), not Port Aggregation Protocol (PAgP), to group the uplink Ethernet ports into a port channel. If the ports on the upstream switch are not configured for LACP, the fabric interconnects treat all ports in an uplink Ethernet port channel as individual ports, and therefore forward packets.

Configuring an Uplink Ethernet Port Channel

	Command or Action	Purpose
Step 1	UCS-A# scope eth-uplink	Enters Ethernet uplink mode.
Step 2	UCS-A /eth-uplink # scope fabric {a b }	Enters Ethernet uplink fabric mode for the specified fabric.
Step 3	UCS-A /eth-uplink/fabric # create port-channel port-num	Creates a port channel on the specified Ethernet uplink port, and enters Ethernet uplink fabric port channel mode.

	Command or Action	Purpose
Step 4	UCS-A /eth-uplink/fabric/port-channel # {enable disable}	(Optional) Enables or disables the administrative state of the port channel. The port channel is disabled by default.
Step 5	UCS-A /eth-uplink/fabric/port-channel # set name port-chan-name	(Optional) Specifies the name for the port channel.
Step 6	UCS-A /eth-uplink/fabric/port-channel # set flow-control-policy policy-name	(Optional) Assigns the specified flow control policy to the port channel.
Step 7	UCS-A /eth-uplink/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

The following example creates a port channel on port 13 of fabric A, sets the name to portchan13a, enables the administrative state, assigns the flow control policy named flow-con-pol432 to the port channel, and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # create port-channel 13
UCS-A /eth-uplink/fabric/port-channel* # enable
UCS-A /eth-uplink/fabric/port-channel* # set name portchan13a
UCS-A /eth-uplink/fabric/port-channel* # set flow-control-policy flow-con-pol432
UCS-A /eth-uplink/fabric/port-channel* # commit-buffer
UCS-A /eth-uplink/fabric/port-channel #
```

Unconfiguring an Uplink Ethernet Port Channel

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope eth-uplink	Enters Ethernet uplink mode.
Step 2	UCS-A /eth-uplink # scope fabric {a b }	Enters Ethernet uplink fabric mode for the specified fabric.
Step 3	UCS-A /eth-uplink/fabric # delete port-channel port-num	Deletes the port channel on the specified Ethernet uplink port.
Step 4	UCS-A /eth-uplink/fabric # commit-buffer	Commits the transaction to the system configuration.

The following example unconfigures the port channel on port 13 of fabric A and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
```

```
UCS-A /eth-uplink/fabric # delete port-channel 13
UCS-A /eth-uplink/fabric* # commit-buffer
UCS-A /eth-uplink/fabric #
```

Adding a Member Port to an Uplink Ethernet Port Channel

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope eth-uplink	Enters Ethernet uplink mode.
Step 2	UCS-A /eth-uplink # scope fabric {a b }	Enters Ethernet uplink fabric mode for the specified fabric.
Step 3	UCS-A /eth-uplink/fabric # scope port-channel port-num	Enters Ethernet uplink fabric port channel mode for the specified port channel.
Step 4	UCS-A /eth-uplink/fabric/port-channel # create member-port slot-num port-num	Creates the specified member port from the port channel and enters Ethernet uplink fabric port channel member port mode.
Step 5	UCS-A /eth-uplink/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

The following example adds the member port on slot 1, port 7 to the port channel on port 13 of fabric A and commits the transaction.

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # scope port-channel 13
UCS-A /eth-uplink/fabric/port-channel # create member-port 1 7
UCS-A /eth-uplink/fabric/port-channel* # commit-buffer
UCS-A /eth-uplink/fabric/port-channel #
```

Deleting a Member Port from an Uplink Ethernet Port Channel

	Command or Action	Purpose
Step 1	UCS-A# scope eth-uplink	Enters Ethernet uplink mode.
Step 2	UCS-A /eth-uplink # scope fabric {a b }	Enters Ethernet uplink fabric mode for the specified fabric.
Step 3	UCS-A /eth-uplink/fabric # scope port-channel port-num	Enters Ethernet uplink fabric port channel mode for the specified port channel.

	Command or Action	Purpose
Step 4	UCS-A /eth-uplink/fabric/port-channel # delete member-port <i>slot-num port-num</i>	Deletes the specified member port from the port channel.
Step 5	UCS-A /eth-uplink/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

The following example deletes a member port from the port channel on port 13 of fabric A and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # scope port-channel 13
UCS-A /eth-uplink/fabric/port-channel # delete member-port 1 7
UCS-A /eth-uplink/fabric/port-channel* # commit-buffer
UCS-A /eth-uplink/fabric/port-channel #
```

Appliance Port Channels

An appliance port channel allows you to group several physical appliance ports to create one logical Ethernet storage link for the purpose of providing fault-tolerance and high-speed connectivity. In Cisco UCS Manager, you create a port channel first and then add appliance ports to the port channel. You can add up to eight appliance ports to a port channel.

Configuring an Appliance Port Channel

Procedure

I

	Command or Action	Purpose
Step 1	UCS-A# scope eth-storage	Enters Ethernet storage mode.
Step 2	UCS-A /eth-storage # scope fabric {a b }	Enters Ethernet storage fabric mode for the specified fabric.
Step 3	UCS-A /eth-storage/fabric # create port-channel port-num	Creates a port channel on the specified Ethernet storage port, and enters Ethernet storage fabric port channel mode.
Step 4	UCS-A /eth-storage/fabric/port-channel # {enable disable}	(Optional) Enables or disables the administrative state of the port channel. The port channel is disabled by default.
Step 5	UCS-A /eth-storage/fabric/port-channel # set name port-chan-name	(Optional) Specifies the name for the port channel.

	Command or Action	Purpose
Step 6	UCS-A /eth-storage/fabric/port-channel # set pingroupname pin-group name	(Optional) Specifies the appliance pin target to the specified fabric and port, or fabric and port channel.
Step 7	UCS-A /eth-storage/fabric/port-channel # set portmode {access trunk}	(Optional) Specifies whether the port mode is access or trunk. By default, the mode is set to trunk.
Step 8	UCS-A /eth-storage/fabric/port-channel # set prio sys-class-name	(Optional) Specifies the QoS class for the appliance port. By default, the priority is set to best-effort.
		The sys-class-name argument can be one of the following class keywords:
		• Fc —Use this priority for QoS policies that control vHBA traffic only.
		• Platinum —Use this priority for QoS policies that control vNIC traffic only.
		• Gold —Use this priority for QoS policies that control vNIC traffic only.
		• Silver—Use this priority for QoS policies that control vNIC traffic only.
		• Bronze —Use this priority for QoS policies that control vNIC traffic only.
		• Best Effort —Do not use this priority. It is reserved for the Basic Ethernet traffic lane. If you assign this priority to a QoS policy and configure another system class as CoS 0, Cisco UCS Manager does not default to this system class. It defaults to the priority with CoS 0 for that traffic.
Step 9	UCS-A /eth-storage/fabric/port-channel # set speed {1gbps 2gbps 4gbps 8gbps auto}	(Optional) Specifies the speed for the port channel.
Step 10	UCS-A /eth-storage/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

The following example creates a port channel on port 13 of fabric A and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # create port-channel 13
UCS-A /eth-storage/fabric/port-channel* # enable
UCS-A /eth-storage/fabric/port-channel* # set name portchan13a
```

```
UCS-A /eth-storage/fabric/port-channel* # set pingroupname pingroup1
UCS-A /eth-storage/fabric/port-channel* # set portmode access
UCS-A /eth-storage/fabric/port-channel* # set prio fc
UCS-A /eth-storage/fabric/port-channel* # set speed 2gbps
UCS-A /eth-storage/fabric/port-channel* # commit-buffer
UCS-A /eth-storage/fabric/port-channel #
```

Unconfiguring an Appliance Port Channel

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope eth-storage	Enters Ethernet storage mode.
Step 2	UCS-A /eth-storage # scope fabric {a b }	Enters Ethernet storage fabric mode for the specified fabric.
Step 3	UCS-A /eth-storage/fabric # delete port-channel port-num	Deletes the port channel from the specified Ethernet storage port.
Step 4	UCS-A /eth-storage/fabric # commit-buffer	Commits the transaction to the system configuration.

The following example unconfigures the port channel on port 13 of fabric A and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # delete port-channel 13
UCS-A /eth-storage/fabric* # commit-buffer
UCS-A /eth-storage/fabric #
```

Enabling or Disabling an Appliance Port Channel

Procedure

I

	Command or Action	Purpose
Step 1	UCS-A# scope eth-storage	Enters Ethernet storage mode.
Step 2	UCS-A /eth-storage # scope fabric {a b }	Enters Ethernet storage mode for the specified fabric.
Step 3	UCS-A /eth-storage/fabric # scope port-channel port-chan-name	Enters Ethernet storage port channel mode.
Step 4	UCS-A /eth-storage/fabric/port-channel # {enable disable }	Enables or disables the administrative state of the port channel. The port channel is disabled by default.

	Command or Action	Purpose
Step 5	UCS-A /eth-storage/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

The following example enables port channel 13 on fabric A and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # scope port-channel 13
UCS-A /eth-storage/fabric/port-channel* # enable
UCS-A /eth-storage/fabric/port-channel* # commit-buffer
UCS-A /eth-storage/fabric/port-channel #
```

Adding a Member Port to an Appliance Port Channel

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope eth-storage	Enters Ethernet storage mode.
Step 2	UCS-A /eth-storage # scope fabric {a b }	Enters Ethernet storage fabric mode for the specified fabric.
Step 3	UCS-A /eth-storage/fabric # scope port-channel port-num	Enters Ethernet storage fabric port channel mode for the specified port channel.
Step 4	UCS-A /eth-storage/fabric/port-channel # create member-port slot-num port-num	Creates the specified member port from the port channel and enters Ethernet storage fabric port channel member port mode.
Step 5	UCS-A /eth-storage/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

The following example adds the member port on slot 1, port 7 to the port channel on port 13 of fabric A and commits the transaction.

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # scope port-channel 13
UCS-A /eth-storage/fabric/port-channel # create member-port 1 7
UCS-A /eth-storage/fabric/port-channel* # commit-buffer
UCS-A /eth-storage/fabric/port-channel #
```

Deleting a Member Port from an Appliance Port Channel

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope eth-storage	Enters Ethernet storage mode.
Step 2	UCS-A /eth-storage # scope fabric {a b }	Enters Ethernet storage fabric mode for the specified fabric.
Step 3	UCS-A /eth-storage/fabric # scope port-channel port-num	Enters Ethernet storage fabric port channel mode for the specified port channel.
Step 4	UCS-A /eth-storage/fabric/port-channel # delete member-port slot-num port-num	Deletes the specified member port from the port channel.
Step 5	UCS-A /eth-storage/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

The following example deletes a member port from the port channel on port 13 of fabric A and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # scope port-channel 13
UCS-A /eth-storage/fabric/port-channel # delete member-port 1 7
UCS-A /eth-storage/fabric/port-channel* # commit-buffer
UCS-A /eth-storage/fabric/port-channel #
```

Fibre Channel Port Channels

A Fibre Channel port channel allows you to group several physical Fibre Channel ports (link aggregation) to create one logical Fibre Channel link to provide fault-tolerance and high-speed connectivity. In Cisco UCS Manager, you create a port channel first and then add Fibre Channel ports to the port channel.

Fibre Channel port channels are not compatible with non-Cisco technology.

You can create up to four Fibre Channel port channels in each Cisco UCS domain with Cisco UCS 6200 and 6300 Series fabric interconnects. Each Fibre Channel port channel can include a maximum of 16 uplink Fibre Channel ports.

You can create up to two Fibre Channel port channels in each Cisco UCS domain with Cisco UCS 6324 fabric interconnects. Each Fibre Channel port channel can include a maximum of four uplink Fibre Channel ports.

Ensure that the Fibre Channel port channel on the upstream NPIV switch is configured with its channel mode as **active**. If both the member port(s) and peer port(s) do not have the same channel mode configured, the port channel will not come up. When the channel mode is configured as **active**, the member ports initiate port channel protocol negotiation with the peer port(s) regardless of the channel group mode of the peer port. If

the peer port, while configured in a channel group, does not support the port channel protocol, or responds with a nonnegotiable status, it defaults to the On mode behavior. The **active** port channel mode allows automatic recovery without explicitly enabling and disabling the port channel member ports at either end.

This example shows how to configure channel mode as active:

switch(config)# int poll4
switch(config-if)# channel mode active

Configuring a Fibre Channel Port Channel

Note

If you are connecting two Fibre Channel port channels, the admin speed for both port channels must match for the link to operate. If the admin speed for one or both of the Fibre Channel port channels is set to auto, Cisco UCS adjusts the admin speed automatically.

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope fc-uplink	Enters Fibre Channel uplink mode.
Step 2	UCS-A /fc-uplink # scope fabric {a b }	Enters Fibre Channel uplink fabric mode for the specified fabric.
Step 3	UCS-A /fc-uplink/fabric # create port-channel port-num	Creates a port channel on the specified Fibre Channel uplink port, and enters Fibre Channel uplink fabric port channel mode.
Step 4	UCS-A /fc-uplink/fabric/port-channel # {enable disable}	(Optional) Enables or disables the administrative state of the port channel. The port channel is disabled by default.
Step 5	UCS-A /fc-uplink/fabric/port-channel # set name port-chan-name	(Optional) Specifies the name for the port channel.
Step 6	UCS-A /fc-uplink/fabric/port-channel # set speed {1gbps 2gbps 4gbps 8gbps auto}	(Optional) Specifies the speed for the port channel.
Step 7	UCS-A /fc-uplink/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

The following example creates port channel 13 on fabric A, sets the name to portchan13a, enables the administrative state, sets the speed to 2 Gbps, and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # create port-channel 13
UCS-A /fc-uplink/fabric/port-channel* # enable
UCS-A /fc-uplink/fabric/port-channel* # set name portchan13a
UCS-A /fc-uplink/fabric/port-channel* # set speed 2gbps
```

```
UCS-A /fc-uplink/fabric/port-channel* # commit-buffer
UCS-A /fc-uplink/fabric/port-channel #
```

Unconfiguring a Fibre Channel Port Channel

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope fc-uplink	Enters Fibre Channel uplink mode.
Step 2	UCS-A /fc-uplink # scope fabric {a b }	Enters Fibre Channel uplink fabric mode for the specified fabric.
Step 3	UCS-A /fc-uplink/fabric # delete port-channel port-num	Deletes the port channel on the specified Fibre Channel uplink port.
Step 4	UCS-A /fc-uplink/fabric # commit-buffer	Commits the transaction to the system configuration.

The following example unconfigures port channel 13 on fabric A and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # delete port-channel 13
UCS-A /fc-uplink/fabric* # commit-buffer
UCS-A /fc-uplink/fabric #
```

Adding Channel Mode Active To The Upstream NPIV Fibre Channel Port Channel

Procedure

I

	Command or Action	Purpose
Step 1	UCS-A# scope fc-uplink	Enters Fibre Channel uplink mode.
Step 2	UCS-A /fc-uplink # scope fabric {a b }	Enters Fibre Channel uplink fabric mode for the specified fabric.
Step 3	UCS-A /fc-uplink/fabric # create port-channel port-num	Creates a port channel on the specified Fibre Channel uplink port, and enters Fibre Channel uplink fabric port channel mode.
Step 4	UCS-A /fc-uplink/fabric/port-channel # {enable disable}	(Optional) Enables or disables the administrative state of the port channel. The port channel is disabled by default.

	Command or Action	Purpose	
Step 5	UCS-A /fc-uplink/fabric/port-channel # set name port-chan-name	(Optional) Specifies the name for the port channel.	
Step 6	UCS-A /fc-uplink/fabric/port-channel # scope port-chan-name	(Optional) Specifies the name for the port channel.	
Step 7	UCS-A /fc-uplink/fabric/port-channel # channel mode {active}	(Optional) Configures the channel-mode active on the upstream NPIV switch.	
Step 8	UCS-A /fc-uplink/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.	

The following example enables channel mode to active:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # create port-channel 13
UCS-A /fc-uplink/fabric/port-channel* # enable
UCS-A /fc-uplink/fabric/port-channel* # set name portchan13a
UCS-A /fc-uplink/fabric/port-channel* # commit-buffer
UCS-A /fc-uplink/fabric/port-channel # exit
UCS-A /fc-uplink/fabric/ fort-channel # exit
UCS-A /fc-uplink/fabric/ # show port-channel database
portchan13a
Administrative channel mode is active
Operational channel mode is active
UCS-A /fc-uplink/fabric/ #
```

Enabling or Disabling a Fibre Channel Port Channel

	Command or Action	Purpose
Step 1	UCS-A# scope fc-uplink	Enters Fibre Channel uplink mode.
Step 2	UCS-A /fc-uplink # scope fabric {a b }	Enters Fibre Channel uplink mode for the specified fabric.
Step 3	UCS-A /fc-uplink/fabric # scope port-channel port-chan-name	Enters Fibre Channel uplink port channel mode.
Step 4	UCS-A /fc-uplink/fabric/port-channel # {enable disable }	Enables or disables the administrative state of the port channel. The port channel is disabled by default.

The following example enables port channel 13 on fabric A and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # scope port-channel 13
UCS-A /fc-uplink/fabric/port-channel* # enable
UCS-A /fc-uplink/fabric/port-channel* # commit-buffer
UCS-A /fc-uplink/fabric/port-channel #
```

Adding a Member Port to a Fibre Channel Port Channel

Procedure

	Command or Action	Purpose	
Step 1	UCS-A# scope fc-uplink	Enters Fibre Channel uplink mode.	
Step 2	UCS-A /fc-uplink # scope fabric {a b }	Enters Fibre Channel uplink fabric mode for the specified fabric.	
Step 3	UCS-A /fc-uplink/fabric # scope port-channel port-num	Enters Fibre Channel uplink fabric port channel mode for the specified port channel.	
Step 4	UCS-A /fc-uplink/fabric/port-channel # create member-port <i>slot-num port-num</i>	Creates the specified member port from the port channel and enters Fibre Channel uplink fabric port channel member port mode.	
Step 5	UCS-A /fc-uplink/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.	

The following example adds the member port on slot 1, port 7 to port channel 13 on fabric A and commits the transaction.

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # scope port-channel 13
UCS-A /fc-uplink/fabric # create member-port 1 7
UCS-A /fc-uplink/fabric/port-channel* # commit-buffer
UCS-A /fc-uplink/fabric/port-channel #
```

Deleting a Member Port from a Fibre Channel Port Channel

	Command or Action	Purpose
Step 1	UCS-A# scope fc-uplink	Enters Fibre Channel uplink mode.
Step 2	UCS-A /fc-uplink # scope fabric {a b}	Enters Fibre Channel uplink fabric mode for the specified fabric.

	Command or Action	Purpose
Step 3	UCS-A /fc-uplink/fabric # scope port-channel port-num	Enters Fibre Channel uplink fabric port channel mode for the specified port channel.
Step 4	UCS-A /fc-uplink/fabric/port-channel # delete member-port <i>slot-num port-num</i>	Deletes the specified member port from the port channel.
Step 5	UCS-A /fc-uplink/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

The following example deletes a member port from port channel 13 on fabric A and commits the transaction:

```
UCS-A# scope fc-uplink
```

```
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # scope port-channel 13
UCS-A /fc-uplink/fabric # delete member-port 1 7
UCS-A /fc-uplink/fabric/port-channel* # commit-buffer
UCS-A /fc-uplink/fabric/port-channel #
```

FCoE Port Channels

An FCoE port channel allows you to group several physical FCoE ports to create one logical FCoE port channel. At a physical level, the FCoE port channel carries FCoE traffic over an Ethernet port channel. So an FCoE port channel with a set of members is essentially an ethernet port channel with the same members. This Ethernet port channel is used as a physical transport for FCoE traffic.

For each FCoE port channel, Cisco UCS Manager creates a VFC internally and binds it to an Ethernet port channel. FCoE traffic received from the hosts is sent over the VFC the same way as the FCoE traffic is sent over Fibre Channel uplinks.

Configuring a FCoE Port Channel

	Command or Action	Purpose
Step 1	UCS-A# scope fc-uplink	Enters FC Uplink mode.
Step 2	UCS-A /fc-uplink # scope fabric {a b}	Enters FC - Uplink mode for the specific fabric.
Step 3	UCS-A /fc-uplink/fabric # create fcoe-port-channel number	Creates port channel for the specified FCoE uplink port.
Step 4	UCS-A /fc-uplink/fabric/fabricinterface # commit-buffer	Commits the transaction to the system configuration.

The following example creates an interface for FCoE uplink port 1 on slot 4 of fabric A and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # create fcoe-port-channel 4
UCS-A /fc-uplink/fabric/fcoe-port-channel* # commit-buffer
UCS-A /fc-uplink/fabric/fcoe-port-channel #
```

Adding a Member Port to a FCoE Uplink Port Channel

Procedure

	Command or Action	Purpose	
Step 1	UCS-A# scope fc-uplink	Enters Fibre Channel uplink mode.	
Step 2	UCS-A /fc-uplink # scope fabric {a b }	Enters Fibre Channel uplink fabric mode for the specified fabric.	
Step 3	UCS-A /fc-uplink/fabric # scope fcoe-port-channel <i>ID</i>	Enters FCoE uplink port channel mode for the specified port channel.	
Step 4	UCS-A /fc-uplink/fabric/fcoe-port-channel # create member-port slot-num port-num	Creates the specified member port from the port channel and enters FCoE uplink fabric port channel member port mode.	
		Note If the FCoE uplink port channel is a unified uplink port channel, you will get the following message:	
		Warning: if this is a unified port channel then member will be added to the ethernet port channel of the same id as well.	
Step 5	UCS-A /fc-uplink/fabric/fcoe-port-channel # commit-buffer	Commits the transaction to the system configuration.	

The following example adds the member port on slot 1, port 7 to FCoE port channel 13 on fabric A and commits the transaction.

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # scope fcoe-port-channel 13
UCS-A /fc-uplink/fabric # create member-port 1 7
UCS-A /fc-uplink/fabric/fcoe-port-channel* # commit-buffer
UCS-A /fc-uplink/fabric/fcoe-port-channel #
```

Unified Uplink Port Channel

When you create an Ethernet port channel and an FCoE port channel with the same ID, it is called a unified uplink port channel. When the unified port channel is created, a physical Ethernet port channel and a VFC

are created on the fabric interconnect with the specified members. The physical Ethernet port channel is used to carry both Ethernet and FCoE traffic. The VFC binds FCoE traffic to the Ethernet port channel.

The following rules will apply to the member port sets of the unified uplink port channel:

- The Ethernet port channel and FCoE port channel on the same ID, must have the same set of member ports.
- When you add a member port channel to the Ethernet port channel, Cisco UCS Manager adds the same port channel to FCoE port channel as well. Similarly, adding a member to the FCoE port channel adds the member port to the Ethernet port channel.
- When you delete a member port from one of the port channels, Cisco UCS Manager automatically deletes the member port from the other port channel.

If you disable an Ethernet uplink port channel, it disables the underlying physical port channel in a unified uplink port channel. Therefore, even when the FCoE uplink is enabled, the FCoE uplink port channel also goes down. If you disable an FCoE uplink port channel, only the VFC goes down. If the Ethernet uplink port channel is enabled, it can still function properly in the unified uplink port channel.

Configuring a Unified Uplink Port Channel

To configure a unified uplink port channel, you will convert an existing FCoE uplink port channel as a unified port channel.

	Command or Action	Purpose
Step 1	UCS-A# scope eth-uplink	Enters Ethernet uplink mode.
Step 2	UCS-A /eth-uplink # scope fabric {a b}	Enters Ethernet uplink fabric mode for the specified fabric.
Step 3	UCS-A /eth-uplink/fabric # create port-channel ID	Creates a port channel for the specified Ethernet uplink port.
Step 4	UCS-A /eth-uplink/fabric/port-channel # commit-buffer	Commits the transaction to the system configuration.

Procedure

The following example creates a unified uplink port channel on an existing FCoE port channel:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric b
UCS-A /eth-uplink/fabric # create port-channel 2
UCS-A /eth-uplink/fabric/port-channel* # commit-buffer
UCS-A /eth-uplink/fabric #
```

Event Detection and Action

Cisco UCS Manager uses the statistics collection policy to monitor and trigger an alarm when there are faults in the network interface ports connected from the I/O module (IOM) to the fabric interconnect.

The error statistics for the network interface ports is called NiErrStats and consists of the following errors:

NiErrStats Error Name	Description
frameTx	Collects the TX_FRM_ERROR counter values.
tooLong	Collects the RX_TOOLONG counter values.
tooShort	Collects the sum of RX_UNDERSIZE and RX_FRAGMENT counter values.
Cre	Collects the sum of RX_CRERR_NOT_STOMPED and RX_CRCERR_STOMPED counter values.
inRange	Collects the RX_INRANGEERR counter values.

Note

The network interface port statistics is collected only from active ports and the information is sent to Cisco UCS Manager.

Policy-Based Port Error Handling

If Cisco UCS Manager detects any errors on active NI ports, and if the error-disable feature is enabled, Cisco UCS Manager automatically disables the respective FI port that is connected to the NI port that had errors. When a FI port is error disabled, it is effectively shut down and no traffic is sent or received on that port.

The error-disable function serves two purposes:

- It lets you know which FI port is error-disabled and that the connected NI Port has errors.
- It eliminates the possibility that this port can cause other ports, which are connected to the same Chassis/FEX, to fail. Such a failure can occur when the NI port has errors, which can ultimately cause serious network issues. The error-disable function helps prevent these situations.

Creating Threshold Definition

	Command or Action	Purpose
Step 1	UCS-A # scope eth-server	Enters Ethernet storage mode.
Step 2	UCS-A/eth-server # scope stats-threshold-policy default	Enters statistics threshold policy mode.
Step 3	UCSA/eth-server/stats-threshold-policy # create class class-name	Creates the specified statistics threshold policy class and

٦

	Command or Action	Purpose
		enters the organization statistics threshold policy class mode. To see a list of the available class name keywords, enter the create class ? command in organization threshold policy mode.
Step 4	UCS-A/eth-server/stats-threshold-policy/class # create property property-name	Creates the specified statistics threshold policy class property and enters the organization statistics threshold policy class property mode. To see a list of the available property name keywords, enter the create property ? command in organization threshold policy class mode.
Step 5	UCS-A/eth-server/stats-threshold-policy/class/property # set normal-value value	Specifies the normal value for the class property. The <i>value</i> format can vary depending on the class property being configured. To see the required format, enter the set normal-value ? command in organization statistics threshold policy class property mode.
Step 6	UCS-A/eth-server/stats-threshold-policy/class/property # create threshold-value {above-normal below-normal} {cleared condition critical info major minor warning}	Creates the specified threshold value for the class property and enters the organization statistics threshold policy class property threshold value mode.
Step 7	UCS-A/eth-server/stats-threshold-policy/class/property/threshold-value # set {deescalating escalating} value	Specifies the deescalating and escalating class property threshold value. The <i>value</i> format can vary depending on the class property threshold value being configured. To see the required format, enter the set deescalating ? or set escalating ? command in the organization statistics

	Command or Action	Purpose
		threshold policy class property threshold value mode.
Step 8	UCS-A/eth-server/stats-threshold-policy/class/property/threshold-value # commit-buffer	Commits the transaction to the system configuration.

The following example shows how to create a threshold definition:

```
UCS-A # scope eth-server
UCS-A /eth-server # scope stats-threshold-policy default
UCS-A /eth-server/stats-threshold-policy/class* # create property crc-delta
UCS-A /eth-server/stats-threshold-policy/class/property* # set normal-value 0
UCS-A /eth-server/stats-threshold-policy/class/property* # create threshold-value above-normal
major
UCS-A /eth-server/stats-threshold-policy/class/property/threshold-value* # set escalating
5
UCS-A /eth-server/stats-threshold-policy/class/property/threshold-value* # set deescalating
3
UCS-A /eth-server/stats-threshold-policy/class/property/threshold-value* # commit-buffer
```

Configuring Error Disable on a Fabric Interconnect Port

Pı	'OC	ed	ur	e
----	-----	----	----	---

	Command or Action	Purpose
Step 1	UCS-A # scope eth-server	Enters Ethernet storage mode.
Step 2	UCS-A/eth-server # scope stats-threshold-policy default	Enters statistics threshold policy mode.
Step 3	UCSA/eth-server/stats-threshold-policy # scope class class-name	Enters the organization statistics threshold policy class mode for the specified statistics threshold policy class.
Step 4	UCS-A/eth-server/stats-threshold-policy/class # scope property property-name	Enters the organization statistics threshold policy class property mode for the specified statistics threshold policy class property.
Step 5	UCS-A/eth-server/stats-threshold-policy/class/property # set error-disable-fi-port {yes no}	Specifies the error disable state for the class property. Use the no option to disable error disable for the class property.
Step 6	UCS-A/eth-server/stats-threshold-policy/class/property* # commit-buffer	Commits the transaction to the system configuration.

Cisco UCS Manager CLI Configuration Guide for Cisco UCS Mini, Release 3.0

The following example shows how to enable error disable on an FI port:

```
UCS-A # scope eth-server
UCS-A /eth-server # scope stats-threshold-policy default
UCS-A /eth-server/stats-threshold-policy # scope class ni-ether-error-stats
UCS-A /eth-server/stats-threshold-policy/class # scope property crc-delta
UCS-A /eth-server/stats-threshold-policy/class/property # set error-disable-fi-port yes
UCS-A /eth-server/stats-threshold-policy/class/property* # commit-buffer
```

Configuring Auto Recovery on a Fabric Interconnect Port

Procedure

	Command or Action	Purpose
Step 1	UCS-A # scope eth-server	Enters Ethernet storage mode.
Step 2	UCS-A/eth-server # scope stats-threshold-policy default	Enters statistics threshold policy mode.
Step 3	UCSA/eth-server/stats-threshold-policy # scope class class-name	Enters the organization statistics threshold policy class mode for the specified statistics threshold policy class.
Step 4	UCS-A/eth-server/stats-threshold-policy/class # scope property property-name	Enters the organization statistics threshold policy class property mode for the specified statistics threshold policy class property.
Step 5	UCS-A/eth-server/stats-threshold-policy/class/property # set auto-recovery {enabled disabled}	Specifies the auto recovery state for the class property. Use the disabled option to disable auto recovery for the class property.
Step 6	UCS-A/eth-server/stats-threshold-policy/class/property* # set auto-recovery-time <i>time</i>	Specifies the time in minutes after which the port is automatically re-enabled. The auto recovery time can range from 0 minutes to 4294967295 minutes.
Step 7	UCS-A/eth-server/stats-threshold-policy/class/property* # commit-buffer	Commits the transaction to the system configuration.

The following example shows how to configure auto recovery on an FI port:

```
UCS-A # scope eth-server
UCS-A /eth-server # scope stats-threshold-policy default
UCS-A /eth-server/stats-threshold-policy # scope class ni-ether-error-stats
UCS-A /eth-server/stats-threshold-policy/class # scope property crc-delta
UCS-A /eth-server/stats-threshold-policy/class/property # set auto-recovery enabled
UCS-A /eth-server/stats-threshold-policy/class/property* # set auto-recovery-time 5
```

UCS-A /eth-server/stats-threshold-policy/class/property* # commit-buffer

Viewing the Network Interface Port Error Counters

	Command or Action	Purpose
Step 1	UCS-A # scope chassis chassis-num	Enters chassis mode for the specified chassis.
Step 2	UCS-A/chassis # scope iom {a b}	Enters chassis IOM mode for the specified IOM.
Step 3	UCS-A/chassis/iom # scope port-group fabric	Enters the network interface port.
Step 4	UCS-A/chassis/iom/port-group # scope fabric-if fabric-if number	Enters the specified network interface port number.
Step 5	UCS-A/chassis/iom/port-group/fabric-if # show stats	Displays the error counters for the network interface port.

Procedure

The following example shows how to display the statistics for the network interface ports:

```
UCS-A # scope chassis 1
UCS-A/chassis # scope iom a
UCS-A/chassis/iom # scope port-group fabric
UCS-A/chassis/iom/port-group/fabric-if 1
UCS-A/chassis/iom/port-group/fabric-if # show stats
NI Ether Error Stats:
Time Collected: 2014-08-20T15:37:24:688
Monitored Object: sys/chassis-1/slot-1/fabric/port-1/ni-err-stats
Suspect: Yes
Crc (errors): 5000
Frame Tx (errors): 0
Too Long (errors): 0
Too Short (errors): 0
In Range (errors): 0
Thresholded: 0
```

Adapter Port Channels

An adapter port channel groups into one logical link all the physical links going from a Cisco UCS Virtual Interface Card (VIC) into an I/O.

Adapter port channels are created and managed internally by Cisco UCS Manager when it detects that the correct hardware is present. Adapter port channels cannot be configured manually. Adapter port channels are viewable using the Cisco UCS Manager GUI or the Cisco UCS Manager CLI.

Viewing Adapter Port Channels

Procedure

	Command or Action	Purpose
Step 1	UCS-A# scope chassis chassis-num	Enters chassis mode for the specified chassis.
Step 2	UCS-A /chassis # scope iom {a b}	Enters chassis IOM mode for the specified IOM.
Step 3	UCS-A /chassis/iom # scope port group	Enters port group mode for the specified port group.
Step 4	UCS-A /chassis/iom/port group # show host-port-channel [detail expand]	Displays the adapter port channels on the specified chassis.

This following example shows how to display information on host port channels within a port group mode:

```
UCS-A # scope chassis 1
UCS-A /chassis # scope iom a
UCS-A /chassis/iom # scope port group
UCS-A /chassis/iom/port group # show host-port-channel
Host Port channel:
 Port Channel Id Fabric ID Oper State
                                      State Reason
   _____
            1289 B
                         Up
            1290 B
                         Up
            1306 B
                         Up
            1307 B
                         Up
             1309 B
                         Up
            1315 B
                         Up
```

UCS-A /chassis/iom/port group #