
Cisco IMC Supervisor REST API Cookbook, Release 2.4
First Published: 2024-05-07

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2024–2024 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Preface ixP R E F A C E

Audience ix

Conventions ix

Documentation Feedback x

Obtaining Documentation and Submitting a Service Request xi

Related Documentation xi

New and Changed Information in Release 2.4(x.x) 1C H A P T E R 1

Overview 3C H A P T E R 2

Structure of an Example 3

How to Use the Examples 3

Examples 5C H A P T E R 3

Managing Firmware 5

Overview 5

Creating a Firmware Network Image 5

Updating Firmware Network Image 7

Finding Firmware Image 8

Creating a Firmware Local Image 10

Downloading Firmware Local Image 11

Deleting Firmware Image Profile 12

Running Firmware Upgrade 13

Reading Firmware Image by a Profile Name 14

Reading Firmware Image by Type 14

Reading Firmware Image by Platform 15

Cisco IMC Supervisor REST API Cookbook, Release 2.4
iii

Reading Download Status by Profile Name 15

Reading Firmware Upgrade Status by Profile Name 15

Reading Firmware Upgrade Status by IP Address 16

Creating a Host Image Profile 16

Applying a Host Image Profile 18

Creating a Cisco.Com Image Profile 18

Deleting a Host Image Mapping Profile 19

Downloading a Cisco.Com Image 20

Finding a Cisco.com Image 21

Reading Host Image Mapping Profile by a Profile Name 21

Modifying a Host Image Mapping Profile 22

Running a Host Image Upgrade 23

Downloading Firmware Image to an SD Card 24

Running Firmware Upgrade from SD Card 26

Reading Download Status by Server IP 27

Reading Download Status by Account Name 27

Managing Platform Tasks 27

Overview 27

Creating an Email Alert Rule 28

Reading an Email Alert Rule 29

Updating an Email Alert Rule 29

Deleting Email Alert Rules 30

Enabling an Email Alert Rule 31

Disabling an Email Alert Rule 32

Creating Schedules 32

Reading Schedules 33

Updating a Schedule 34

Deleting Schedules 35

Enabling Schedules 36

Disabling Schedules 37

Reading Schedules by Type 37

Reading Scheduled Discovery Tasks by Schedule Name 38

Reading Scheduled Discovery Tasks by Profile Name 38

Reading Scheduled Firmware Upgrade Tasks by Schedule Name 39

Cisco IMC Supervisor REST API Cookbook, Release 2.4
iv

Contents

Reading Scheduled Firmware Upgrade Tasks by Profile Name 39

Reading Scheduled Policy Tasks by Schedule Name 39

Reading Scheduled Policy Tasks by Policy Name 40

Reading Scheduled Profile Tasks by Schedule Name 40

Reading Scheduled Profile Tasks by Profile Name 41

Managing Policy and Profile Tasks 41

Overview 41

Creating Hardware Policy 41

Creating and Updating Policies through REST API 42

Updating Hardware Policy 43

Applying Policy on Servers 44

Deleting Policies 45

Reading Disk Group Policy 45

Reading FlexFlash Policy 46

Reading IPMI Over LAN Policy 47

Reading LDAP Policy 47

Reading Legacy Boot Order Policy 48

Reading Network Security Policy 49

Reading NTP Policy 50

Reading Password Expiration Policy 51

Reading Power Restore Policy 51

Reading Precision Boot Order Policy 52

Reading RAID Policy 53

Reading Serial Over LAN Policy 53

Reading SNMP Policy 54

Reading SSH Policy 55

Reading User Policy 56

Reading vMedia Policy 56

Reading Virtual KVM Policy 57

Reading VIC Adapter Policy 58

Creating Hardware Profile 59

Reading Hardware Profile 60

Updating Hardware Profile 60

Deriving a Hardware Profile 62

Cisco IMC Supervisor REST API Cookbook, Release 2.4
v

Contents

Deleting Hardware Profile 63

Applying Hardware Profile 64

Reading Hardware Policy Apply Status 65

Reading Hardware Profile Apply Status 65

Viewing Hardware Profiles Associated with a Server 66

Viewing Servers Associated with a Hardware Profile 67

Managing Server Tasks 67

Overview 67

Creating a Rack Group 68

Reading All Rack Groups 68

Updating a Rack Group 69

Deleting a Rack Group 70

Creating a Rack Account 71

Updating a Rack Account 72

Deleting a Rack Account 73

Running Server Inventory 74

Testing Server Connection 74

Assigning Rack Groups to Servers 75

Running Server Diagnostics 76

Reading Server Diagnostics Status by Server IP 76

Deleting Server Diagnostics Report 77

Adding Compute Tags 78

Deleting Compute Tags 78

Creating a Technical Support Log 79

Clearing Technical Support Logs 80

Reading Technical Support Logs by Server IP 81

Creating a Discovery Profile 82

Reading a Discovery Profile 84

Updating a Discovery Profile 84

Deleting a Discovery Profile 86

Running Server Discovery 87

Reading Discovered Devices 88

Importing Discovered Devices 88

Hard Reset Server 89

Cisco IMC Supervisor REST API Cookbook, Release 2.4
vi

Contents

Power Cycle Server 90

Power Off Server 90

Power On Server 91

Shutdown Server 92

Set Label on Server 93

Toggle Locator LED on Server 94

Reading Servers by Tag Name 95

Reading Servers by Tag Value 95

Reading Server Faults by DN 96

Reading Server Faults by IP Address 96

Reading Server Faults by Account Name 97

Reading Server Faults by Severity 97

Reading Server Faults by Fault Code 98

Reading Server Faults History by DN 98

Reading Server Faults History by IP Address 99

Reading Server Faults History by Account Name 99

Reading Server Faults History by Severity 100

Reading Server Faults History by Fault Code 100

Reading Servers by Product ID 100

Reading Servers by Account Name 101

Reading Servers by UUID 102

Reading Servers by Server IP 102

Reading Servers by Serial Number 103

Reading Servers by Rack Group 103

Reading Server Inventory by Account Name 104

Reading Server Inventory by Server IP 104

Reading Server Utilization by Account Name 104

Reading Server Utilization by Server IP 105

Reading Server Utilization History by Account Name 105

Reading Server Utilization History by Server IP 106

Reading Server Utilization History by Days 106

Reading Server Utilization History by Days for a Server using Account Name 106

Reading Server Utilization History by Days for a Server using Server IP 107

Mapping Host Image 107

Cisco IMC Supervisor REST API Cookbook, Release 2.4
vii

Contents

Unmapping Host Image 108

Deleting Host Image 109

Creating an HCL Profile 109

Modifying an HCL Profile 110

Setting HCL OS Tag on Servers or Rack Groups 111

Deleting HCL OS Tag on Servers or Rack Groups 113

Deleting HCL Profile 114

Reading HCL OS Tag by Server IP 115

Reading HCL OS Versions by Vendor Name 116

Reading HCL Report by Profile Name 116

Reading HCL Report by Rack Group 117

Reading HCL Report by Server IP 117

Managing Users and Groups 118

Overview 118

Creating a User Group 118

Updating a User Group 120

Deleting a User Group 121

Enabling All Users in a Group 122

Disabling All Users in a Group 123

Creating a User 123

Reading a User 125

Updating a User 126

Deleting a User 127

Enabling a User 128

Disabling a User 129

Updating a User Expiry Date 130

Updating a User Password 131

Cisco IMC Supervisor REST API Cookbook, Release 2.4
viii

Contents

Preface

This preface contains the following sections:

• Audience, on page ix
• Conventions, on page ix
• Documentation Feedback, on page x
• Obtaining Documentation and Submitting a Service Request, on page xi
• Related Documentation, on page xi

Audience
This guide is intended primarily for data center administrators who use Cisco IMC Supervisor and who have
responsibilities and expertise in server administration.

Conventions
IndicationText Type

GUI elements such as tab titles, area names, and field labels appear in this font.

Main titles such as window, dialog box, and wizard titles appear in this font.

GUI elements

Document titles appear in this font.Document titles

In a Text-based User Interface, text the system displays appears in this font.TUI elements

Terminal sessions and information that the system displays appear in this
font.

System output

CLI command keywords appear in this font.

Variables in a CLI command appear in this font.

CLI commands

Elements in square brackets are optional.[]

Required alternative keywords are grouped in braces and separated by vertical
bars.

{x | y | z}

Cisco IMC Supervisor REST API Cookbook, Release 2.4
ix

IndicationText Type

Optional alternative keywords are grouped in brackets and separated by vertical
bars.

[x | y | z]

A nonquoted set of characters. Do not use quotation marks around the string or
the string will include the quotation marks.

string

Nonprinting characters such as passwords are in angle brackets.< >

Default responses to system prompts are in square brackets.[]

An exclamation point (!) or a pound sign (#) at the beginning of a line of code
indicates a comment line.

!, #

Means reader take note. Notes contain helpful suggestions or references to material not covered in the
document.

Note

Means reader be careful. In this situation, you might perform an action that could result in equipment damage
or loss of data.

Caution

Means the following information will help you solve a problem. The tips information might not be
troubleshooting or even an action, but could be useful information, similar to a Timesaver.

Tip

Means the described action saves time. You can save time by performing the action described in the paragraph.Timesaver

IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work
on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard
practices for preventing accidents. Use the statement number provided at the end of each warning to locate
its translation in the translated safety warnings that accompanied this device.

SAVE THESE INSTRUCTIONS

Warning

Documentation Feedback
To provide technical feedback on this document, or to report an error or omission, please send your comments
to ucs-director-docfeedback@cisco.com. We appreciate your feedback.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
x

Preface
Documentation Feedback

mailto:ucs-director-docfeedback@cisco.com

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional information,
see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco
technical documentation.

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed
and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free
service and Cisco currently supports RSS version 2.0.

Related Documentation
Cisco IMC Supervisor Documentation Set

Following are the documents that are available for Cisco IMC Supervisor:

• Cisco IMC Supervisor Release Notes

• Cisco IMC Supervisor Installation and Upgrade on VMware Vsphere Guide

• Cisco IMC Supervisor Rack-Mount Servers Management Guide

• Cisco IMC Supervisor Shell Guide

• Cisco IMC Supervisor REST API Getting Started Guide

• Cisco IMC Supervisor REST API Cook Book

Other Documentation

For a complete list of all C-Series documentation, see theCisco UCS C-Series Servers Documentation Roadmap
available at the following URL: http://www.cisco.com/go/unifiedcomputing/c-series-doc.

TheCisco UCS C-Series Servers Documentation Roadmap includes links to documentation for Cisco Integrated
Management Controller.

Note

Cisco IMC Supervisor REST API Cookbook, Release 2.4
xi

Preface
Obtaining Documentation and Submitting a Service Request

http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html
http://www.cisco.com/go/unifiedcomputing/c-series-doc

Cisco IMC Supervisor REST API Cookbook, Release 2.4
xii

Preface
Related Documentation

C H A P T E R 1
New and Changed Information in Release 2.4(x.x)

The following table provides an overview of the significant changes to this guide made in versions 2.4(x.x).
The table does not provide an exhaustive list of all changes, or of all new features in this release.

Table 1: New and Modified APIs in Release 2.4(0.0)

Where DocumentedWhat is NewFeature

Finding Firmware Image, on page
8

Creating a Firmware Local Image,
on page 10

Downloading Firmware Local
Image, on page 11

This release introduces changes in
the APIs for the following:

You must activate your device
using the Activate Device action
under the Images-Local screen first
to find, create and download
firmware images from Cisco.com
to the local appliance

Managing Firmware

Cisco IMC Supervisor REST API Cookbook, Release 2.4
1

Cisco IMC Supervisor REST API Cookbook, Release 2.4
2

New and Changed Information in Release 2.4(x.x)

C H A P T E R 2
Overview

This chapter contains the following sections:

• Structure of an Example, on page 3
• How to Use the Examples, on page 3

Structure of an Example
Under a descriptive title, each example comprises the following sections:

Objective

When you would use the example.

Prerequisites

What conditions have to exist for the example to work.

REST URL

What is the REST URL to pass the REST API.

Components

Which objects and methods are used in the example, and what the input variables represent.

Sample Input XML

The input code sample.

Implementation

Notes on implementing the example, including what modifications might be necessary to implement it.

See Also

Related examples

How to Use the Examples
This document is a collection of examples-recipes, if you will-for using REST API, a server-side scripting
solution for use with Cisco IMC Supervisor. Like a cookbook, you can use this document in at least three
ways:

Cisco IMC Supervisor REST API Cookbook, Release 2.4
3

• You can follow the examples as written (substituting your own variables, of course) to complete tasks
without necessarily knowing everything about the steps you are following.

• You can use the examples as templates and adapt them to similar tasks in your work.

• You can study the examples to figure out “how things are done” in REST API and generalize to using
different methods for other tasks you need to script.

The examples are chosen to illustrate common use cases and are intended to facilitate all three of these modes
of use.

An API uses either HTTP POST or GET. In the following examples, all the READ APIs are GET and others
are POST.

Note

Cisco IMC Supervisor REST API Cookbook, Release 2.4
4

Overview
How to Use the Examples

C H A P T E R 3
Examples

This chapter contains the following sections:

• Managing Firmware, on page 5
• Managing Platform Tasks, on page 27
• Managing Policy and Profile Tasks, on page 41
• Managing Server Tasks, on page 67
• Managing Users and Groups, on page 118

Managing Firmware

Overview
The examples in this category consist of various firmware management tasks on Cisco IMC Supervisor. These
include firmware image management in network locations, downloading them from cisco.com and also
triggering a firmware upgrade operation on servers.

Creating a Firmware Network Image
Objective

Create a firmware image in a network location.

Prerequisites

The HUU Image must be available in a network location - NFS/CIFS/HTTP.

REST URL

/cloupia/api-v2/NetworkImage

Components

The parameters of the NETWORK_IMAGE_CREATE API are:

• String profileName—The unique name of the profile.

• String platform—The name of the platform.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
5

• String networkServerType—Network File System (NFS), Common Internet File System (CIFS) or
HTTP/S server types.

• String locationLink—A valid HTTP/HTTPS URL link for the image location.

• String networkPath—The network path.

• String sharePath—The network share path.

• String remoteFileName—A remote filename.

• String nwPathUserName—Optional. The network path user name.

• String nwPathPassword—Optional. The network path password.

• String mountOptions—Optional. The valid mount options.

• Boolean Configure Graceful—Optional. Choose to configure graceful timeout.

• String GracefulTimeout—The timeout in minutes.

• Boolean DoForceDown—Enable to forcefully shutdown the server after graceful timeout is expired.

Sample Input XML

<cuicOperationRequest>
<operationType>NETWORK_IMAGE_CREATE</operationType>
<payload>
<![CDATA[
<NetworkImage>
<profileName>sample</profileName>

<platform>C220 M4</platform>
<networkServerType>NFS</networkServerType>

<!-- Set this value only when networkServerType equals to HTTP -->
<locationLink></locationLink>

<!-- Set this value only when networkServerType not equals to HTTP -->
<networkPath>1.1.1.1</networkPath>
<!-- Set this value only when networkServerType not equals to HTTP -->
<sharePath>/var/www/test</sharePath>
<!-- Set this value only when networkServerType not equals to HTTP -->
<remoteFileName>sample_fileName</remoteFileName>
<nwPathUserName></nwPathUserName>
<nwPathPassword></nwPathPassword>
<!-- Set this value only when networkServerType equals to CIFS -->
<mountOptions></mountOptions>
<configureGraceful>true</configureGraceful>
<!-- Set this value only when configureGraceful not equals to false -->
<gracefulTimeOut>12</gracefulTimeOut>
<doForceDown>true</doForceDown>
</NetworkImage>
]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory and must be unique. Platform, Server Type (NFS/CIFS/HTTP) is mandatory.
Remote IP, Remote Share, Remote Filename are mandatory in case of NFS/CIFS. The HTTP Location
must be reachable from the system. Graceful Timeout is optional, to configure graceful timeout. Timeout

Cisco IMC Supervisor REST API Cookbook, Release 2.4
6

Examples
Creating a Firmware Network Image

(in mins), a graceful timeout period. Valid range is [0-60]. Force Shutdown Server, enable to forcefully
down the server after Graceful timeout is expired.

See Also

Updating Firmware Network Image, on page 7

Deleting Firmware Image Profile, on page 12

Updating Firmware Network Image
Objective

Update a firmware image in a network location.

Prerequisites

The HUU Image must be available in a network location - NFS/CIFS/HTTP.

REST URL

/cloupia/api-v2/NetworkImage

Components

The parameters of the NETWORK_IMAGE_UPDATE API are:

• String profileName—Unique name of the profile.

• boolean platform—The platform that manages a server.

• String networkServerType—Network File System (NFS), Common Internet File System (CIFS) or
HTTP/S server types.

• String locationLink—A valid HTTP/HTTPS URL link for the image location.

• String networkPath—The network path.

• String sharePath—The network share path.

• String remoteFileName—A remote filename.

• String nwPathUserName—Optional. The network path user name.

• String nwPathPasswprd—Optional. The network path password.

• String mountOptions—Optional. The valid mount options.

• Boolean Configure Graceful—Optional. Choose to configure graceful timeout.

• String GracefulTimeout—The timeout in minutes.

• Boolean DoForceDown—Enable to forcefully shutdown the server after graceful timeout is expired.

Sample Input XML

<cuicOperationRequest>
<operationType>NETWORK_IMAGE_UPDATE</operationType>
<payload>
<![CDATA[
<NetworkImage>
<profileName>sample</profileName>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
7

Examples
Updating Firmware Network Image

<platform>C220 M4</platform>

<networkServerType>NFS</networkServerType>

<!-- Set this value only when networkServerType equals to HTTP -->
<locationLink></locationLink>

<!-- Set this value only when networkServerType not equals to HTTP -->
<networkPath>1.1.1.1</networkPath>

<!-- Set this value only when networkServerType not equals to HTTP -->
<sharePath>/var/www/</sharePath>

<!-- Set this value only when networkServerType not equals to HTTP -->
<remoteFileName>sample_file</remoteFileName>

<nwPathUserName></nwPathUserName>

<nwPathPassword></nwPathPassword>

<!-- Set this value only when networkServerType equals to CIFS -->
<mountOptions></mountOptions>

<configureGraceful>true</configureGraceful>

<!-- Set this value only when configureGraceful not equals to false -->
<gracefulTimeOut>10</gracefulTimeOut>

<doForceDown>true</doForceDown>

</NetworkImage>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name cannot be modified. Platform, Server Type (NFS/CIFS/HTTP) are mandatory. Remote IP,
Remote Share, Remote Filename are mandatory in case of NFS/CIFS. The HTTP Location must be
reachable from the system. Graceful Timeout is optional, to configure graceful timeout. Timeout (in
mins), a graceful timeout period. Valid range is [0-60]. Force Shutdown Server, enable to forcefully
down the server after Graceful timeout is expired.

See Also

Creating a Firmware Network Image, on page 5

Deleting Firmware Image Profile, on page 12

Finding Firmware Image
Objective

Find a firmware image on cisco.com.

Prerequisites

The user must have a valid set of credentials to login to cisco.com and have access privileges for HUU
ISO images.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
8

Examples
Finding Firmware Image

The user must activate their device first using the Activate Device action under the Images – Local
screen.

Device Activation done once stays active for an hour. So, users must re-activate their device every one
hour once to access images from Cisco.com for security reasons.

Note

REST URL

/cloupia/api-v2/LocalImage

Components

The parameters of the LOCAL_IMAGE_FIND API are:

• String platform—The name of the platform.

• boolean enableProxy—Optional. Enable proxy configuration.

• String host—The host name for the proxy configuration.

• String port—Port for the proxy configuration.

• boolean enableProxyAuth—Optional. Enable proxy authentication.

• String proxyAuthUserName—Proxy username for the proxy authentication.

• String proxyAuthPassword—Password for the proxy username.

Sample Input XML

<cuicOperationRequest>
<operationType>LOCAL_IMAGE_FIND</operationType>
<payload>
<![CDATA[
<LocalImage>
<platform></platform>

<enableProxy>false</enableProxy>

<!-- Set this value only when enableProxy equals to true -->
<host></host>

<!-- Set this value only when enableProxy equals to true -->
<port>0</port>

<!-- Set this value only when enableProxy equals to true -->
<enableProxyAuth>false</enableProxyAuth>

<!-- Set this value only when enableProxyAuth equals to true -->
<proxyAuthUserName></proxyAuthUserName>

<!-- Set this value only when enableProxyAuth equals to true -->
<proxyAuthPassword></proxyAuthPassword>

</LocalImage>

]]>
</payload>
</cuicOperationRequest>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
9

Examples
Finding Firmware Image

Implementation

The platform of a server that is already added into the system is mandatory.

See Also

Creating a Firmware Local Image, on page 10

Creating a Firmware Local Image
Objective

Create a firmware image in a local location inside the appliance.

Prerequisites

The user must have a valid set of credentials to login to cisco.com and have access privileges for HUU
ISO Images. The HUU Image must be downloadable from cisco.com, and must be found using the
LocalImage API.

The user must activate their device first using the Activate Device action under the Images – Local
screen.

Device Activation done once stays active for an hour. So, users must re-activate their device every one
hour once to access images from Cisco.com for security reasons.

Note

REST URL

/cloupia/api-v2/LocalImage

Components

The parameters of the LOCAL_IMAGE_CREATE API are:

• String profileName—The unique name of the profile.

• String platform—The name of the platform.

• String availableImage—The available .iso image.

• boolean acceptLicense—Accept license agreement.

• boolean downloadNow—download the .iso image immediately after adding a profile.

• Boolean Configure Graceful—Optional. Choose to configure graceful timeout.

• String GracefulTimeout—The timeout in minutes.

• Boolean DoForceDown—Enable to forcefully shutdown the server after graceful timeout is expired.

Sample Input XML

<cuicOperationRequest>
<operationType>LOCAL_IMAGE_CREATE</operationType>
<payload>
<![CDATA[
<LocalImage>
<profileName>sample</profileName>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
10

Examples
Creating a Firmware Local Image

<platform>C220 M4</platform>

<availableImage>sampleImage.iso</availableImage>

<downloadNow>false</downloadNow>

<configureGraceful>true</configureGraceful>

<!-- Set this value only when configureGraceful not equals to false -->
<gracefulTimeOut>10</gracefulTimeOut>

<doForceDown>true</doForceDown>

</LocalImage>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory, must be unique. Platform is mandatory. The Platformmust be that of a server
already added into the system. Graceful Timeout is optional, to configure graceful timeout. Timeout (in
mins), a graceful timeout period. Valid range is [0-60]. Force Shutdown Server, enable to forcefully
down the server after Graceful timeout is expired.

See Also

Finding Firmware Image, on page 8

Downloading Firmware Local Image
Objective

Download an image from cisco.com for an already configured firmware image profile, into a local location
inside the appliance.

Prerequisites

The firmware image profile must be already configured.

The user must activate their device first using the Activate Device action under the Images – Local
screen.

Device Activation done once stays active for an hour. So, users must re-activate their device every one
hour once to access images from Cisco.com for security reasons.

Note

REST URL

/cloupia/api-v2/LocalImage

Components

The parameter of the LOCAL_IMAGE_DOWNLOAD API is:

• String profileName—The unique name of the profile.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
11

Examples
Downloading Firmware Local Image

Sample Input XML

<cuicOperationRequest>
<operationType>LOCAL_IMAGE_DOWNLOAD</operationType>
<payload>
<![CDATA[
<LocalImage>
<profileName></profileName>

</LocalImage>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory, must be a valid existing profile for a Local Image. The image should not be
already downloading.

See Also

Creating a Firmware Local Image, on page 10

Deleting Firmware Image Profile, on page 12

Deleting Firmware Image Profile
Objective

Delete one or more existing firmware image profiles.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFirmwareUpgradeConfig

Components

The parameters of the FIRMWARE_IMAGE_DELETE API are:

• String profileNames—The unique name of the profile.

Sample Input XML

<cuicOperationRequest>
<operationType>FIRMWARE_IMAGE_DELETE</operationType>
<payload>
<![CDATA[
<DeleteFirmwareImage>
<profileId></profileId>

</DeleteFirmwareImage>

]]>
</payload>
</cuicOperationRequest>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
12

Examples
Deleting Firmware Image Profile

Implementation

Profile name is mandatory and must be unique. IP address search criteria is mandatory, but CSV File
option is not supported through API.

See Also

Creating a Firmware Local Image, on page 10

Creating a Firmware Network Image, on page 5

Updating Firmware Network Image, on page 7

Running Firmware Upgrade
Objective

Run a firmware upgrade on one or more servers using an already configured firmware image profile.

Prerequisites

The firmware image profile must be already configured and must contain a valid HUU ISO Image.

REST URL

/cloupia/api-v2/RunFirmwareUpgrade

Components

The parameters of the RUN_FIRMWARE_UPGRADE API are:

• String profileName—The unique name of the profile.

• String platform—The server platform name.

• String imageVersion—The version of the image.

• String imagePath—The path of the image.

• String servers—Servers whose platform matches the one configured in the selected profile.

• boolean enableSchedule—Enable a schedule

• String associatedScheduleName—Name of the associate schedule.

Sample Input XML

<cuicOperationRequest>
<operationType>RUN_FIRMWARE_UPGRADE</operationType>
<payload>
<![CDATA[
<RunFirmwareUpgrade>
<profileName></profileName>

<servers></servers>

<enableSchedule>false</enableSchedule>

<!-- Set this value only when enableSchedule not equals to false -->
<associatedScheduleName></associatedScheduleName>

</RunFirmwareUpgrade>

]]>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
13

Examples
Running Firmware Upgrade

</payload>
</cuicOperationRequest>

Implementation

Profile name is mandatory, must be a valid existing profile. For a local profile, the image should not be
already downloading. The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the
format: {AccountName};{ServerIPAddress}. In case of schedule option, a valid schedule name must be
provided.

See Also

Reading Firmware Upgrade Status by Profile Name, on page 15

Reading Firmware Upgrade Status by IP Address, on page 16

Reading Firmware Image by a Profile Name
Objective

Get Firmware Image By Profile Name

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFirmwareUpgradeConfig/{CIMCFirmwareUpgradeConfigId}

Implementation

This task allows the user to query the firmware image details based on the profile name The
CIMCFirmwareUpgradeConfigId argument must be a valid profile name. If no argument is specified,
all firmware images configured in the system will be returned.

Reading Firmware Image by Type
Objective

Get firmware image by type.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFirmwareImageByType/{CIMCFirmwareImageByTypeId}

Implementation

This task allows the user to query the firmware image details based on the type of location - NETWORK
or LOCAL. The CIMCFirmwareImageByTypeId argument must be one of these values - NETWORK
or LOCAL. If no argument is specified, all firmware images configured in the system will be returned.

See Also

Reading Firmware Image by Platform, on page 15

Reading Firmware Image by a Profile Name, on page 14

Cisco IMC Supervisor REST API Cookbook, Release 2.4
14

Examples
Reading Firmware Image by a Profile Name

Reading Firmware Image by Platform
Objective

Get firmware image by platform.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFirmwareImageByPlatform/{CIMCFirmwareImageByPlatformId}

Implementation

This task allows the user to query the firmware image details based on the platform. The
CIMCFirmwareImageByPlatformId argument must be a valid platform name. If no argument is specified,
all firmware images configured in the system will be returned.

See Also

Reading Firmware Image by a Profile Name, on page 14

Reading Firmware Image by Type, on page 14

Reading Download Status by Profile Name
Objective

Image download status by profile name.

Prerequisites

None

REST URL

/cloupia/api-v2/LocalImageDownloadStatusByProfileName/{LocalImageDownloadStatusByProfileNameId

Implementation

This task allows the user to query the download status of a local firmware image based on the profile
name The LocalImageDownloadStatusByProfileNameId argument must be a valid profile name. If no
argument is specified, an empty set of results will be returned.

See Also

Downloading Firmware Local Image, on page 11

Reading Firmware Upgrade Status by Profile Name
Objective

Firmware upgrade status by profile name.

Prerequisites

None

Cisco IMC Supervisor REST API Cookbook, Release 2.4
15

Examples
Reading Firmware Image by Platform

REST URL

/cloupia/api-v2/CIMCFirmwareUpgradeStatusbyProfileName/{CIMCFirmwareUpgradeStatusbyProfileNameId}

Implementation

This task allows the user to query the firmware upgrade status of one or more servers based on the profile
name of the image. The CIMCFirmwareUpgradeStatusbyProfileNameId argument must be a valid profile
name. If no argument is specified, all firmware upgrade operations' status will be returned.

See Also

Running Firmware Upgrade, on page 13

Reading Firmware Upgrade Status by IP Address, on page 16

Reading Firmware Upgrade Status by IP Address
Objective

Firmware upgrade status by server IP address.

Prerequisites

None

REST URL

>/cloupia/api-v2/CIMCFirmwareUpgradeStatusbyServerIP/{CIMCFirmwareUpgradeStatusbyServerIPId}

Implementation

This task allows the user to query the firmware upgrade status of one or more servers based on the profile
name of the image. The CIMCFirmwareUpgradeStatusbyProfileNameId argument must be a valid profile
name. If no argument is specified, all firmware upgrade operations' status will be returned. The dots in
the IP address need to be substituted with an underscore.

See Also

Running Firmware Upgrade, on page 13

Reading Firmware Upgrade Status by Profile Name, on page 15

Creating a Host Image Profile
Objective

Create a Host Image in a Network Location.

Prerequisites

The Host Image must be present in the network location.

REST URL

/cloupia/api-v2/HostImageNetworkImage

Components

The parameters of the HostImageNetworkImage API are:

• String Profile Name—The unique name of the profile.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
16

Examples
Reading Firmware Upgrade Status by IP Address

• String Platform—The platform that manages the server.

• String Option Download Image From—The location from where the image must be downloaded
from.

• String Server—The IP address of the server.

• String File Path Name—The file path

• String File Type—The file type.

• String File Name—The name of the file.

• String User Name—The user name.

• String Password—The password

• Boolean Map After Download—Map the .iso image after download

• Boolean Delete All Images—Deletes all images on the server.

• Boolean Run Upgrade After Download—Run upgrade immediately after downloading the image.

Sample Input XML

<cuicOperationRequest>
<operationType>CREATE_HOST_IMAGE_PROFILE</operationType>
<payload>
<![CDATA[
<HostImageNetworkImage>
<profileName>sample</profileName>
<platform>EN120S M2</platform>
<option>FTP Server</option>
<server>100.10.10.10</server>
<pathFileName>/var/www/test</pathFileName>
<fileType>ISO</fileType>
<fileName>sample</fileName>
<!-- Set this value only when option not equals to any of {HTTP Server,HTTPS Server,}
-->
<username>admin</username>

<!-- Set this value only when option not equals to any of {HTTP Server,HTTPS Server,}
->
<password>YWRtaW4=</password>
<!-- Set this value only when fileType not equals to any of {CIMC,BIOS,} -->
<mapAfterDownload>true</mapAfterDownload>
<deleteAllImages>true</deleteAllImages>
<upgradeNow>true</upgradeNow>
</HostImageNetworkImage>
]]>
</payload>
</cuicOperationRequest>

Implementation

Profile is a mandatory field and it must be unique. Platform, Download Image From, Server IP Address,
File Path and File Name are also mandatory fields.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
17

Examples
Creating a Host Image Profile

Applying a Host Image Profile
Objective

Apply a host image profile on an E-Series server.

Prerequisites

One or more E -series servers must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/ApplyHostImageMap

Components

The parameters of the ApplyHostImageMap API are:

• String Server—The server on which the host image map must be applied

• String Profile Name—The unique name of the profile.

• Schedule Later—The option to apply the host image profile at a later point in time.

• Schedule Name—The name of the schedule.

Sample Input XML

<cuicOperationRequest>
<operationType>APPLY_HOST_IMAGE_PROFILE</operationType>
<payload>
<![CDATA[
<ApplyHostImageMap>
<serverIdKey>100.100.xx.xxx;100.2x.4x.xxx</serverIdKey>

<profileName>sample</profileName>

</ApplyHostImageMap>

]]>
</payload>
</cuicOperationRequest>

Implementation

ServerIdKey is comma(,) separated value. ServerIdKey is of the format:
{AccountName};{ServerIPAddress} and it is a mandatory field. Profile Name is mandatory field.

Creating a Cisco.Com Image Profile
Objective

This task allows the user to create a CCO Image Profile that stores the downloaded file (from cisco.com)
in a local location inside the appliance.

Prerequisites

The user must have a valid set of credentials to login to cisco.com and have access privileges for BIN,
SPA and ISO Images.

REST URL

/cloupia/api-v2/CIMCHIMCCOImage

Cisco IMC Supervisor REST API Cookbook, Release 2.4
18

Examples
Applying a Host Image Profile

Components

The parameters of the CIMCHIMCCOImage API are:

• String Profile Name—The unique name of the profile.

• String Platform—The platform that manages the server.

• Boolean Download Now—Download the image immediately after adding a profile.

• String Available Image—The available image.

• Boolean Map After Download—Map the .iso image after download

• Boolean Delete All Images—Deletes all images on the server.

• Boolean Run Upgrade After Download—Run upgrade immediately after downloading the image.

• String License Text—License text.

Sample Input XML

<cuicOperationRequest>
<operationType>CCO_IMAGE_CREATE</operationType>
<payload>
<![CDATA[
<CIMCHIMCCOImage>
<profileName>sample</profileName>
<platform>EN120S M2</platform>
<downloadNow>true</downloadNow>
<availableImage>sample.iso</availableImage>
<!-- Set this value only when fileType not equals to any of {CIMC,BIOS,} -->
<mapAfterDownload>true</mapAfterDownload>
<deleteAllImages>true</deleteAllImages>
<upgradeNow>true</upgradeNow>
<licenseText></licenseText>
</CIMCHIMCCOImage>
]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory, must be unique. Platform are mandatory. The platform must be that of a
server already added into the system.

Deleting a Host Image Mapping Profile
Objective

Delete one or more existing Host Image Mapping Profiles.

Prerequisites

None

REST URL

/cloupia/api-v2/DeleteHostImageProfile

Components

The parameter of the DeleteHostImageProfile API is:

Cisco IMC Supervisor REST API Cookbook, Release 2.4
19

Examples
Deleting a Host Image Mapping Profile

• String Profile Name—One or more firmware image profiles to delete.

Sample Input XML

<cuicOperationRequest>
<operationType>DELETE_HOST_IMAGE_PROFILE</operationType>
<payload>
<![CDATA[
<DeleteHostImageProfile>
<profileNames>sample_profile_name</profileNames>
</DeleteHostImageProfile>
]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of profile names, all of which must be of valid existing profiles.

Downloading a Cisco.Com Image
Objective

This task allows the user to download a CCO Image from cisco.com into a local location inside the
appliance.

Prerequisites

The CCO Image Profile must be already configured.

REST URL

/cloupia/api-v2/CIMCHIMCCOImage

Components

The parameter of the CIMCHIMCCOImage API is:

• String Profile Name—The unique name of the profile.

Sample Input XML

<cuicOperationRequest>
<operationType>CCO_IMAGE_DOWNLOAD</operationType>
<payload>
<![CDATA[
<CIMCHIMDownloadCCOImage>
<profileName>sampleCCOProfile</profileName>

</CIMCHIMDownloadCCOImage>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory, must be a valid existing profile for a Local Image. The image should not be
already downloading.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
20

Examples
Downloading a Cisco.Com Image

Finding a Cisco.com Image
Objective

This task allows the user to find a CCO Image (BIN,SPA or ISO Image) on cisco.com for only E-Series
server platforms.

Prerequisites

The user must have a valid set of credentials to login to cisco.com and have access privileges for BIN,
SPA and ISO Images.

REST URL

/cloupia/api-v2/CIMCHIMCCOImage

Components

The parameter of the CIMCHIMCCOImage API is:

• String Platform—The platform that manages the server.

Sample Input XML

<cuicOperationRequest>
<operationType>CCO_IMAGE_FIND</operationType>
<payload>
<![CDATA[
<CIMCHIMCCOImage>
<platform>EN120S M2</platform>
</CIMCHIMCCOImage>
]]>
</payload>
</cuicOperationRequest>

Implementation

Platform is mandatory field. The Platform must be that of a server already added into the system.

Reading Host Image Mapping Profile by a Profile Name
Objective

This task allows the user to query the Host Image Mapping details based on the profile name

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHostImageProfileConfig/{CIMCHostImageProfileConfigId}

Components

The parameters of the CIMCHostImageProfileConfig API are:

• String Profile Name—The unique name of the profile.

• String Platform—The platform that manages the server.

• String Option Download Image From—The location from where the image must be downloaded
from.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
21

Examples
Finding a Cisco.com Image

• String Server—The IP address of the server.

• String File Path Name—The file path

• String File Type—The file type.

• String File Name—The name of the file.

• String User Name—The user name.

• String Password—The password

• Boolean Map After Download—Map the .iso image after download

• Boolean Delete All Images—Deletes all images on the server.

• Boolean Run Upgrade After Download—Run upgrade immediately after downloading the image.

Implementation

The CIMCHostImageProfileConfigId argument must be a valid profile name. If no argument is specified,
all Host Image Mapping Profile configured in the system will be returned.

Modifying a Host Image Mapping Profile
Objective

Modify Host Image Profile using an image that is present on a network location

Prerequisites

The Host Image must be present in the network location.

REST URL

/cloupia/api-v2/HostImageNetworkUpdateImage

Components

The parameters of the HostImageNetworkUpdateImage API are:

• String Profile Name—The unique name of the profile.

• String Platform—The platform that manages the server.

• String Option Download Image From—The location from where the image must be downloaded
from.

• String Server—The IP address of the server.

• String File Path Name—The file path

• String File Type—The file type.

• String File Name—The name of the file.

• String User Name—The user name.

• String Password—The password

• Boolean Map After Download—Map the .iso image after download

Cisco IMC Supervisor REST API Cookbook, Release 2.4
22

Examples
Modifying a Host Image Mapping Profile

• Boolean Delete All Images—Deletes all images on the server.

• Boolean Run Upgrade After Download—Run upgrade immediately after downloading the image.

Sample Input XML

<cuicOperationRequest>
<operationType>MODIFY_HOST_IMAGE_PROFILE</operationType>
<payload>
<![CDATA[
<HostImageNetworkUpdateImage>
<profileName>sample</profileName>
<platform>EN120S M2</platform>
<option>FTP Server</option>
<server>10.10.10.10</server>
<pathFileName>/var/sample_path</pathFileName>
<fileType>ISO</fileType>
<fileName>huu.iso</fileName>
<!-- Set this value only when option not equals to any of {HTTP Server,HTTPS Server,}
-->
<username>admin</username>
<!-- Set this value only when option not equals to any of {HTTP Server,HTTPS Server,}
-->
<password>YWRtaW4=</password>
<!-- Set this value only when fileType not equals to any of {CIMC,BIOS,} -->
<mapAfterDownload>true</mapAfterDownload>
<deleteAllImages>true</deleteAllImages>
<upgradeNow>true</upgradeNow>
</HostImageNetworkUpdateImage>
]]>
</payload>
</cuicOperationRequest>

Implementation

Profile is a mandatory field and it must be unique. Platform, Download Image From, Server IP Address,
File Path and File Name are also mandatory fields.

See Also

Creating a Host Image Profile, on page 16

Deleting a Host Image Mapping Profile, on page 19

Running a Host Image Upgrade
Objective

Run a Host Image Upgrade on one or more servers using an already configured Host Image Profile.

Prerequisites

The Host Image Profile must be already configured and must contain a valid Host Image.

REST URL

/cloupia/api-v2/RunHostImageUpgrade

Components

The parameters of the RunHostImageUpgrade API are:

• String Profile Name—The unique name of the profile.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
23

Examples
Running a Host Image Upgrade

• String Platform—The platform that manages the server.

• String Image Version—The image version.

• String File Type—The file type.

• String Image Path—The path to the image.

• String Servers—The servers on which the firmware must be upgraded.

• Boolean Enable Schedule—The option to schedule the firmware upgrade to a later time.

• String Schedule Name—The name of the schedule.

Sample Input XML

<cuicOperationRequest>
<operationType>RUN_HOST_IMAGE_UPGRADE</operationType>
<payload>
<![CDATA[
<RunHostImageUpgrade>
<profileName>sample_profile</profileName>
<platform>EN120S M2</platform>
<imageVersion>CIMC_3.2.4.bin</imageVersion>
<fileType>CIMC</fileType>
<imagePath>10.105.219.218/opt/infra/uploads/external/downloads/dir1529291857206/CIMC_3.2.4.bin</imagePath>
<servers>10.65.183.87;10.65.183.87</servers>
<enableSchedule>false</enableSchedule>
<!-- Set this value only when enableSchedule not equals to false -->
<associatedScheduleName></associatedScheduleName>
</RunHostImageUpgrade>
]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory, must be a valid existing profile. The serverIdKey must consist of a
comma-separated list of Ids. Each Id is of the format: {AccountName};{ServerIPAddress}. In case of
schedule option, a valid schedule name must be provided.

See Also

Creating a Host Image Profile, on page 16

Applying a Host Image Profile, on page 18

Modifying a Host Image Mapping Profile, on page 22

Downloading Firmware Image to an SD Card
Objective

Download an ISO image to Micro SD cards or FlexFlash cards. You can also choose to initiate the
upgrade immediately after the image is downloaded.

Prerequisites

Rack accounts are created in the system.

Local and network image profiles are created in the system.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
24

Examples
Downloading Firmware Image to an SD Card

On Cisco UCS M4 servers, ensure that the FlexFlash controller is configured in the Util mode and not
the mirror mode. If the controller is configured in the mirror mode, you cannot download the ISO file to
the SD card. Use the FlexFlash policy to configure the controller in the Util mode.

REST URL

/cloupia/api-v2/CIMCSDImageDownloadConfig

Components

The parameters of the DOWNLOAD_IMAGE_SD API are:

• downloadFrom—Download image from either local or network location. (String, mandatory)

• localProfile—Select profile. Set this value only when downloadFrom parameter is not set to Network.
(String, mandatory)

• networkProfile—Select profile. Set this value only when downloadFrom parameter is not set to
Local. (String, mandatory)

• runUpgradeNow—Run upgrade after download. (boolean, optional)

• servers—Comma-separated list of server IDs. Each ID is of the format:
{AccountName};{ServerIPAddress}.Servers (String, mandatory)

Sample Input XML

<cuicOperationRequest>
<operationType>DOWNLOAD_IMAGE_SD</operationType>
<payload>
<![CDATA[
<CIMCSDImageDownloadConfig>
<downloadFrom>LOCAL</downloadFrom>

<!-- Set this value only when downloadFrom not equals to NETWORK -->
<localProfile>cco_c220_M4</localProfile>

<!-- Set this value only when downloadFrom not equals to LOCAL -->
<networkProfile></networkProfile>

<runUpgradeNow>false</runUpgradeNow>

<servers>10.10.10.10;10.11.111.111</servers>

</CIMCSDImageDownloadConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory, must have a valid existing profile for a Local Image or a network image.
The image should not be already downloading.

See Also

Running Firmware Upgrade from SD Card, on page 26

Cisco IMC Supervisor REST API Cookbook, Release 2.4
25

Examples
Downloading Firmware Image to an SD Card

Running Firmware Upgrade from SD Card
Objective

Run a firmware upgrade on one or more servers using ISO images downloaded on Micro SD cards or
FlexFlash cards.

Prerequisites

The firmware image is downloaded.

REST URL

/cloupia/api-v2/CIMCSDRunFirmwareUpgrade

Components

The parameters of the RUN_UPGRADE_SD API are:

• Servers—Servers on which the firmware must be upgraded. (String, mandatory)

• enableSchedule—To schedule the firmware upgrade at a later point in time. (boolean, mandatory)

• String associatedScheduleName—Name of the associate schedule.

Sample Input XML

<cuicOperationRequest>
<operationType>RUN_UPGRADE_SD</operationType>
<payload>
<![CDATA[
<CIMCSDRunFirmwareUpgrade>
<servers>10.10.10.10;10.11.11.11</servers>

<enableSchedule>false</enableSchedule>

<!-- Set this value only when enableSchedule not equals to false -->
<associatedScheduleName></associatedScheduleName>

</CIMCSDRunFirmwareUpgrade>

]]>
</payload>
</cuicOperationRequest>

Implementation

• The serverIdKey must consist of a comma-separated list of IDs. Each ID is of the format:
{AccountName};{ServerIPAddress}.

• If you choose the schedule option, then you must provide a valid schedule name.

See Also

Downloading Firmware Image to an SD Card, on page 24

Reading Download Status by Server IP, on page 27

Reading Download Status by Account Name , on page 27

Cisco IMC Supervisor REST API Cookbook, Release 2.4
26

Examples
Running Firmware Upgrade from SD Card

Reading Download Status by Server IP
Objective

Get status on the download and upgrade process of an ISO image to Micro SD cards or FlexFlash cards
for specific servers using the IP address of the servers.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCSDImageDownloadStatusByServerIP/{CIMCSDImageDownloadStatusByServerIPId}

Implementation

The CIMCSDImageDownloadStatusByServerIPId argument must be a valid IP address of a server. If
no argument is specified, status of all image download/upgrade operations is returned.

The dots in the IP address must be substituted with an underscore.

See Also

Reading Download Status by Account Name , on page 27

Reading Download Status by Account Name
Objective

Get status on the download and upgrade process of an ISO image to Micro SD cards or FlexFlash cards
for specific servers using the account name of the servers.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCSDImageDownloadStatusByAccountName/{CIMCSDImageDownloadStatusByAccountNameId}

Implementation

The CIMCSDImageDownloadStatusByAccountNameId argument must be a valid account name of a
server. If no argument is specified, status for all image download and upgrade operations is returned.

See Also

Reading Download Status by Server IP, on page 27

Managing Platform Tasks

Overview
The examples in this category consists of managing email alert rules on Cisco IMC Supervisor.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
27

Examples
Reading Download Status by Server IP

Creating an Email Alert Rule
Objective

Create an email alert rule for notification of faults.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCEmailAlertRuleConfig

Components

The parameters of the EMAIL_ALERT_RULE_CREATE API are:

• String name—The name for the email alert.

• String alertLevel—The alert level.

• String serverGroups—Optional. The server groups for which email alerts are sent.

• String emailAddress—The email addresses of the intended recipients of the email alert.

• String severity—Fault severity levels for which email alerts will be sent.

• Boolean enabled—Optional. Enable email alerts to the configured email address.

Sample Input XML

<cuicOperationRequest>
<operationType>EMAIL_ALERT_RULE_CREATE</operationType>
<payload>
<![CDATA[
<CIMCEmailAlertRuleConfig>
<name></name>

<alertLevel>SYSTEM</alertLevel>

<!-- Set this value only when alertLevel not equals to SYSTEM -->
<serverGroups></serverGroups>

<emailAddress></emailAddress>

<severity>critical</severity>

<enabled>false</enabled>

</CIMCEmailAlertRuleConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Rule name is mandatory and must be unique. Email addresses are mandatory.

See Also

Reading an Email Alert Rule

Updating an Email Alert Rule

Cisco IMC Supervisor REST API Cookbook, Release 2.4
28

Examples
Creating an Email Alert Rule

Deleting Email Alert Rules

Reading an Email Alert Rule
Objective

Get details of email alert rules.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCEmailAlertRuleConfig/{CIMCEmailAlertRuleConfigId}

Implementation

The Id argument must be a valid Rule name. If no argument is specified, all email alert rules configured
in the system will be returned.

See Also

Creating an Email Alert Rule

Updating an Email Alert Rule

Deleting Email Alert Rules

Updating an Email Alert Rule
Objective

Update an existing email alert rule.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCEmailAlertRuleConfig

Components

The parameters of the EMAIL_ALERT_RULE_UPDATE API are:

• String emailAlertRule—The email alert rule.

• String alertLevel—The alert level.

• String serverGroups—Optional. The server groups to which email alerts are sent.

• String emailAddress—The email used to notify the group owner about the status of service requests
and request approvals if necessary.

• String severity—Fault severity levels for which email alerts will be sent.

• Boolean enabled—Optional. Enable email alerts to the configured email address.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
29

Examples
Reading an Email Alert Rule

Sample Input XML

<cuicOperationRequest>
<operationType>EMAIL_ALERT_RULE_UPDATE</operationType>
<payload>
<![CDATA[
<CIMCEmailAlertRuleConfig>
<name></name>

<alertLevel>SYSTEM</alertLevel>

<!-- Set this value only when alertLevel not equals to SYSTEM -->
<serverGroups></serverGroups>

<servers></servers>

<emailAddress></emailAddress>

<severity></severity>

<enabled>false</enabled>

</ModifyEmailAlertRuleConfig>

]]>
</payload>
</CIMCEmailAlertRuleConfig>

Implementation

Rule name cannot be modified.

See Also

Reading an Email Alert Rule

Creating an Email Alert Rule

Deleting Email Alert Rules

Deleting Email Alert Rules
Objective

Delete one or more existing Email Alert Rules.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCEmailAlertRuleConfig

Components

String emailAlertRules—The email alert rule.

Sample Input XML

<cuicOperationRequest>
<operationType>EMAIL_ALERT_RULE_DELETE</operationType>
<payload>
<![CDATA[
<EmailAlertRuleConfig>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
30

Examples
Deleting Email Alert Rules

<emailAlertRules></emailAlertRules>

</EmailAlertRuleConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of rule names, all of which must be of valid existing rules.

See Also

Reading an Email Alert Rule

Creating an Email Alert Rule

Updating an Email Alert Rule

Enabling an Email Alert Rule
Objective

This task allows the user to enable one or more existing Email Alert Rules.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCEmailAlertRuleConfig

Components

The parameters of the EMAIL_ALERT_RULE_ENABLE API are:

• String emailAlertRuleNames—The name for the email alert.

Sample Input XML

<cuicOperationRequest>
<operationType>EMAIL_ALERT_RULE_ENABLE</operationType>
<payload>
<![CDATA[
<CIMCEmailAlertRuleConfig>
<emailAlertRuleNames></emailAlertRuleNames>

</CIMCEmailAlertRuleConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of rule names, all of which must be valid existing rules.

See Also

Disabling Email Alert Rules

Cisco IMC Supervisor REST API Cookbook, Release 2.4
31

Examples
Enabling an Email Alert Rule

Disabling an Email Alert Rule
Objective

This task allows the user to disable one or more existing Email Alert Rules.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCEmailAlertRuleConfig

Components

The parameters of the EMAIL_ALERT_RULE_DISABLE API are:

• String emailAlertRuleNames—The names for the email alert.

Sample Input XML

<cuicOperationRequest>
<operationType>EMAIL_ALERT_RULE_DISABLE</operationType>
<payload>
<![CDATA[
<CIMCEmailAlertRuleConfig>
<emailAlertRuleNames></emailAlertRuleNames>

</CIMCEmailAlertRuleConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of rule names, all of which must be of valid existing rules.

See Also

Enabling Email Alert Rule

Creating Schedules
Objective

This task allows the user to create a new schedule.

Prerequisites

None

REST URL

/cloupia/api-v2/ImcsManageScheduleConfig

Components

The parameters of the SCHEDULE_CREATE API are:

• String scheduleName—Name of the schedule task.

• Boolean enableSchedule—Enable the tasks associated with the schedule.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
32

Examples
Disabling an Email Alert Rule

• String scheduleType—A one time or recurring schedule frequency.

• Long scheduleTime—Optional. A schedule time.

• String currentSystemTime—Optional. The system time.

• String daysSchedule—Optional. Number of days to set the schedule time.

• String hoursSchedule—Optional. Number of hours to set the schedule time.

• String minutesSchedule—Optional. Number of minutes to set the schedule time.

Sample Input XML

<cuicOperationRequest>
<operationType>SCHEDULE_CREATE</operationType>
<payload>
<![CDATA[
<ImcsManageScheduleConfig>
<scheduleName></scheduleName>
<enableSchedule>true</enableSchedule>
<scheduleType>One Time</scheduleType>
<!-- Set this value only when scheduleType not equals to Recurring -->
<!-- Accepts value from the list: date_time-->
<scheduleTime>1462353000000</scheduleTime>
<!-- Set this value only when scheduleType not equals to Recurring -->
<currentSystemTime></currentSystemTime>
<!-- Set this value only when scheduleType equals to Recurring -->
<daysSchedule>0</daysSchedule>
<!-- Set this value only when scheduleType equals to Recurring -->
<hoursSchedule>0</hoursSchedule>
<!-- Set this value only when scheduleType equals to Recurring -->
<minutesSchedule>5</minutesSchedule></ImcsManageScheduleConfig>]]>
</payload>
</cuicOperationRequest>

Implementation

Schedule Name is mandatory and must be unique. In case of a One-Time schedule, the date or time must
be a future date or time. In case of a Recurring schedule, both hours and minutes cannot be set to zero.

See Also

Reading Schedules, on page 33

Updating a Schedule, on page 34

Deleting Schedules, on page 35

Enabling Schedules, on page 36

Disabling Schedules, on page 37

Reading Schedules
Objective

This task allows the user to query the details of one or more existing schedules.

Prerequisites

None

Cisco IMC Supervisor REST API Cookbook, Release 2.4
33

Examples
Reading Schedules

REST URL

/cloupia/api-v2/ImcsManageScheduleConfig/{ImcsManageScheduleConfigId}

Implementation

The Id argument must be a valid schedule name. If no argument is specified, all schedules configured
in the system will be returned.

See Also

Creating Schedules, on page 32

Updating a Schedule, on page 34

Deleting Schedules, on page 35

Enabling Schedules, on page 36

Disabling Schedules, on page 37

Reading Schedules by Type, on page 37

Updating a Schedule
Objective

This task allows the user to update an existing schedule.

Prerequisites

None

REST URL

/cloupia/api-v2/ImcsManageScheduleConfig

Components

The parameters of the SCHEDULE_UPDATE API are:

• String scheduleName—Name of the schedule task.

• Boolean enableSchedule—Enable the tasks associated with the schedule.

• String scheduleType—A one time or recurring schedule frequency.

• Long scheduleTime—Optional. A schedule time.

• String currentSystemTime—Optional. The system time.

• String daysSchedule—Optional. Number of days to set the schedule time.

• String hoursSchedule—Optional. Number of hours to set the schedule time.

• String minutesSchedule—Optional. Number of hours to set the schedule time.

Sample Input XML

<cuicOperationRequest><operationType>SCHEDULE_UPDATE</operationType>
<payload>
<![CDATA[<ImcsManageScheduleConfig>
<scheduleName></scheduleName>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
34

Examples
Updating a Schedule

<enableSchedule>true</enableSchedule>
<scheduleType>One Time</scheduleType>
<!-- Set this value only when scheduleType not equals to Recurring -->
<!-- Accepts value from the list: date_time-->
<scheduleTime>1462354500000</scheduleTime>
<!-- Set this value only when scheduleType equals to Recurring -->
<daysSchedule>0</daysSchedule>
<!-- Set this value only when scheduleType equals to Recurring -->
<hoursSchedule>0</hoursSchedule>
<!-- Set this value only when scheduleType equals to Recurring -->
<minutesSchedule>5</minutesSchedule>
</ImcsManageScheduleConfig>]]></payload></cuicOperationRequest>

Implementation

Schedule Name is mandatory and must refer to an existing schedule and cannot be changed. In case of
a One-Time schedule, the date and time must be a future date and time. In case of a Recurring schedule,
both hours and minutes cannot be set to zero.

See Also

Creating Schedules, on page 32

Reading Schedules, on page 33

Deleting Schedules, on page 35

Enabling Schedules, on page 36

Disabling Schedules, on page 37

Deleting Schedules
Objective

This task allows the user to delete one or more existing schedules.

Prerequisites

None

REST URL

/cloupia/api-v2/ImcsManageScheduleConfig

Components

The parameters of the SCHEDULE_DELETE API are:

• String scheduleNames—Name of the schedule task.

Sample Input XML

<cuicOperationRequest>
<operationType>SCHEDULE_DELETE</operationType>
<payload>
<![CDATA[<ImcsManageSchedulesConfig>
<scheduleNames></scheduleNames></ImcsManageSchedulesConfig>]]>
</payload>
</cuicOperationRequest>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
35

Examples
Deleting Schedules

Implementation

Schedule Names must be a comma-separated string of one or more existing schedules.

See Also

Creating Schedules, on page 32

Reading Schedules, on page 33

Updating a Schedule, on page 34

Enabling Schedules, on page 36

Disabling Schedules, on page 37

Enabling Schedules
Objective

This task allows the user to enable one or more existing schedules.

Prerequisites

None

REST URL

/cloupia/api-v2/EnableSchedules

Components

The parameters of the SCHEDULE_ENABLE API are:

• String scheduleNames—Names of the schedule task.

Sample Input XML

<cuicOperationRequest>
<operationType>SCHEDULE_ENABLE</operationType>
<payload>
<![CDATA[<ImcsManageSchedulesConfig>
<scheduleNames></scheduleNames></ImcsManageSchedulesConfig>]]>
</payload>
</cuicOperationRequest>

Implementation

Schedule Names must be a comma-separated string of one or more existing schedules.

See Also

Creating Schedules, on page 32

Reading Schedules, on page 33

Updating a Schedule, on page 34

Deleting Schedules, on page 35

Disabling Schedules, on page 37

Cisco IMC Supervisor REST API Cookbook, Release 2.4
36

Examples
Enabling Schedules

Disabling Schedules
Objective

This task allows the user to disable one or more existing schedules.

Prerequisites

None

REST URL

/cloupia/api-v2/DisableSchedules

Components

The parameters of the SCHEDULE_DISABLE API are:

• String scheduleNames—Names of the schedule task.

Sample Input XML

<cuicOperationRequest>
<operationType>SCHEDULE_DISABLE</operationType>
<payload>
<![CDATA[<ImcsManageSchedulesConfig>
<scheduleNames></scheduleNames>
</ImcsManageSchedulesConfig>]]>
</payload>
</cuicOperationRequest>

Implementation

Schedule Names must be a comma-separated string of one or more existing schedules.

See Also

Creating Schedules, on page 32

Reading Schedules, on page 33

Updating a Schedule, on page 34

Deleting Schedules, on page 35

Enabling Schedules, on page 36

Reading Schedules by Type
Objective

This task allows the user to query the details of one or more existing schedules. The Id argument must
be one of the two Schedule Types - One Time or Recurring. If no argument is specified, all schedules
configured in the system will be returned.

Prerequisites

None

REST URL

/cloupia/api-v2/ScheduleByType/{ScheduleByTypeId}

Cisco IMC Supervisor REST API Cookbook, Release 2.4
37

Examples
Disabling Schedules

Implementation

The Id argument must be one of the two Schedule Types - One Time or Recurring. If no argument is
specified, all schedules configured in the system will be returned.

See Also

Creating Schedules, on page 32

Updating a Schedule, on page 34

Deleting Schedules, on page 35

Enabling Schedules, on page 36

Disabling Schedules, on page 37

Reading Scheduled Discovery Tasks by Schedule Name
Objective

This task allows the user to query the details of scheduled discovery tasks for a given schedule. The Id
argument must be a valid schedule name. If no argument is specified, all scheduled discovery tasks
configured in the system will be returned.

Prerequisites

None

REST URL

/cloupia/api-v2/DiscoveryScheduleTasksBySchedule/{DiscoveryScheduleTasksByScheduleId}

Implementation

The Id argument must be a valid schedule name. If no argument is specified, all scheduled discovery
tasks configured in the system will be returned.

See Also

Reading Scheduled Discovery Tasks by Profile Name , on page 38

Reading Scheduled Discovery Tasks by Profile Name
Objective

This task allows the user to query the details of scheduled discovery tasks for a given profile.

Prerequisites

None

REST URL

/cloupia/api-v2/DiscoveryScheduleTasksByProfile/{DiscoveryScheduleTasksByProfileId}

Implementation
The Id argument must be a valid profile name. If no argument is specified, all scheduled discovery tasks
configured in the system will be returned.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
38

Examples
Reading Scheduled Discovery Tasks by Schedule Name

See Also

Reading Scheduled Discovery Tasks by Schedule Name, on page 38

Reading Scheduled Firmware Upgrade Tasks by Schedule Name
Objective

This task allows the user to query the details of scheduled firmware upgrade tasks for a given schedule.

Prerequisites

None

REST URL

/cloupia/api-v2/FirmwareScheduleTasksBySchedule/{FirmwareScheduleTasksByScheduleId}

Implementation

The Id argument must be a valid Schedule name. If no argument is specified, all scheduled firmware
upgrade tasks configured in the system will be returned.

See Also

Reading Scheduled Firmware Upgrade Tasks by Profile Name , on page 39

Reading Scheduled Firmware Upgrade Tasks by Profile Name
Objective

This task allows the user to query the details of scheduled firmware upgrade tasks for a given profile.

Prerequisites

None

REST URL

/cloupia/api-v2/FirmwareScheduleTasksByProfile/{FirmwareScheduleTasksByProfileId}

Implementation

The Id argument must be a valid profile name. If no argument is specified, all scheduled firmware upgrade
tasks configured in the system will be returned.

See Also

Reading Scheduled Firmware Upgrade Tasks by Schedule Name , on page 39

Reading Scheduled Policy Tasks by Schedule Name
Objective

This task allows the user to query the details of scheduled policy tasks for a given schedule.

Prerequisites

None

Cisco IMC Supervisor REST API Cookbook, Release 2.4
39

Examples
Reading Scheduled Firmware Upgrade Tasks by Schedule Name

REST URL

/cloupia/api-v2/PolicyScheduleTasksByScheduleName/{PolicyScheduleTasksByScheduleNameId}

Implementation

The Id argument must be a valid schedule name. If no argument is specified, all scheduled policy tasks
configured in the system will be returned.

See Also

Reading Scheduled Policy Tasks by Policy Name , on page 40

Reading Scheduled Policy Tasks by Policy Name
Objective

This task allows the user to query the details of scheduled policy tasks for a given policy.

Prerequisites

None

REST URL

/cloupia/api-v2/PolicyScheduleTasksByPolicyName/{PolicyScheduleTasksByPolicyNameId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all scheduled policy tasks
configured in the system will be returned.

See Also

Reading Scheduled Policy Tasks by Schedule Name , on page 39

Reading Scheduled Profile Tasks by Schedule Name
Objective

This task allows the user to query the details of scheduled profile tasks for a given schedule.

Prerequisites

None

REST URL

/cloupia/api-v2/ProfileScheduleTasksByScheduleName/{ProfileScheduleTasksByScheduleNameId}

Implementation

The Id argument must be a valid schedule name. If no argument is specified, all scheduled profile tasks
configured in the system will be returned.

See Also

Reading Scheduled Profile Tasks by Profile Name , on page 41

Cisco IMC Supervisor REST API Cookbook, Release 2.4
40

Examples
Reading Scheduled Policy Tasks by Policy Name

Reading Scheduled Profile Tasks by Profile Name
Objective

This task allows the user to query the details of scheduled profile tasks for a given profile.

Prerequisites

None

REST URL

/cloupia/api-v2/ScheduledTasksByProfileName/{ScheduledTasksByProfileNameId}

Implementation

The Id argument must be a valid profile name. If no argument is specified, all scheduled policy tasks
configured in the system will be returned.

See Also

Reading Scheduled Profile Tasks by Schedule Name , on page 40

Managing Policy and Profile Tasks

Overview
The examples in this category consist of various policy and profile management tasks on Cisco IMC Supervisor.
These include creating, reading, updating, and deleting policies and profiles.

Creating Hardware Policy
Objective

This task allows the user to create a hardware policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHardwarePolicy

Components

The parameters of the HARDWARE_POLICY_CREATE API are:

• String policyName—The name of the policy.

• String policyType—The hardware policy type.

• String modular—The Cisco UCS C3260 modular dense storage rack server.

• String policyDefinition—The policy definition.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
41

Examples
Reading Scheduled Profile Tasks by Profile Name

Sample Input XML

<cuicOperationRequest>
<operationType>HARDWARE_POLICY_CREATE</operationType>
<payload>
<![CDATA[
<CIMCHardwarePolicy>
<policyName></policyName>

<policyType>BIOS Policy</policyType>

<modular>false</modular>

<policyDefinition></policyDefinition>

</CIMCHardwarePolicy>

]]>
</payload>
</cuicOperationRequest>

Implementation

The hardware policy name must be unique, containing valid policy type and definition. Enable 'Cisco
UCS C3260' for modular, dense storage rack server with dual server nodes. The policy definition can
either be obtained from the management guide or can be obtained by exporting policy from an already
created one on the appliance.

See Also

Updating Hardware Policy, on page 43

Applying Policy on Servers, on page 44

Deleting Policies, on page 45

Creating and Updating Policies through REST API

Before you begin

A policy must be available in the Cisco IMC Supervisor appliance.

Step 1 From the menu bar, choose Policies > Manage Policies and Profiles.
Step 2 Choose the Hardware Policies tab.
Step 3 Select an existing policy and click Export.
Step 4 In the Export dialog box, copy the XML Encoded Format.
Step 5 Click Close.
Step 6 From the menu bar, choose Policies > API and Orchestration.
Step 7 In the left pane, select Policy and Profile Tasks.
Step 8 Double-click HARDWARE_POLICY_CREATE or HARDWARE_POLICY_UPDATE operation.
Step 9 Enter Policy Name and select the Policy Type to create a policy or modify the existing policy details.
Step 10 Check the Cisco UCS C3260 check box if you need to create a Cisco UCS C3260 Rack Server policy. For more

information about the various rack mount server policies and chassis policies see, Managing Cisco UCS C3260 Dense
Storage Rack Server in the Cisco IMC Supervisor Rack-Mount Servers Management Guide.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
42

Examples
Creating and Updating Policies through REST API

http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/Cisco-IMC-Sup/mgmt-guide/2-1/b_Cisco_IMC_Supervisor_Mgmt_Guide_2_1/b_Cisco_IMC_Supervisor_Mgmt_Guide_2_1_chapter_010001.html#About_C3260
http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/Cisco-IMC-Sup/mgmt-guide/2-1/b_Cisco_IMC_Supervisor_Mgmt_Guide_2_1/b_Cisco_IMC_Supervisor_Mgmt_Guide_2_1_chapter_010001.html#About_C3260
http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/Cisco-IMC-Sup/mgmt-guide/2-1/b_Cisco_IMC_Supervisor_Mgmt_Guide_2_1.html

Step 11 Paste the copied XML Encoded Format in the Policy Definition box.
Step 12 Click Generate XML.

The Sample XML box is filled with the XML code.
Step 13 Click Execute REST API.

The policy is now created.
Step 14 Click Close.

Updating Hardware Policy
Objective

This task allows the user to update existing hardware policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHardwarePolicy

Components

The parameters of the HARDWARE_POLICY_UPDATE API are:

• String policyName—The name of the policy.

• String policyType—The hardware policy type.

• String modular—The Cisco UCS C3260 modular dense storage rack server.

• String policyDefinition—The policy definition.

Sample Input XML

<cuicOperationRequest>
<operationType>HARDWARE_POLICY_UPDATE</operationType>
<payload>
<![CDATA[
<CIMCHardwarePolicy>
<policyName></policyName>

<policyType>BIOS Policy</policyType>

<modular>false</modular>

<policyDefinition></policyDefinition>

</CIMCHardwarePolicy>

]]>
</payload>
</cuicOperationRequest>

Implementation

The hardware profile name must be an existing one, containing comma separated list of valid policies.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
43

Examples
Updating Hardware Policy

See Also

Creating Hardware Policy, on page 41

Applying Policy on Servers, on page 44

Deleting Policies, on page 45

Applying Policy on Servers
Objective

This task allows the user to apply hardware policies on one more servers.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHardwarePolicy

Components

The parameters of the HARDWARE_POLICY_APPLY API are:

• String policyName—The name of the policy to apply.

• String servers—The servers to which you want to apply the policy.

• String chassis—The C3260 server to which you want to apply the policy.

• boolean enableSchedule—Enable a schedule.

• String associatedScheduleName—The associated schedule name.

Sample Input XML

<cuicOperationRequest>
<operationType>HARDWARE_POLICY_APPLY</operationType>
<payload>
<![CDATA[<CIMCHardwarePolicy>
<policyName></policyName>
<servers></servers>
<chassis></chassis>
<enableSchedule>false</enableSchedule> <!-- Set this value only when enableSchedule not
equals to
false -->
<associatedScheduleName></associatedScheduleName>
</CIMCHardwarePolicy>]]>
</payload>
</cuicOperationRequest>

Implementation

Selected policy must be a valid one. The servers argument must consist of a comma-separated list of
Id's. Each Id is in the format: {AccountName};{ServerIPAddress}. The chassis argument must consist
of a comma-separated list of Id's. Each Id is in the format: {AccountName};{ChassisAddress}.

See Also

Deleting Policies, on page 45

Cisco IMC Supervisor REST API Cookbook, Release 2.4
44

Examples
Applying Policy on Servers

Deleting Policies
Objective

This task allows the user to delete one or more existing policies.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHardwarePolicy

Components

The parameters of the HARDWARE_POLICY_DELETE API are:

• String policyNames—The name of the policy to delete.

Sample Input XML

<cuicOperationRequest>
<operationType>HARDWARE_POLICY_DELETE</operationType>
<payload>
<![CDATA[<CIMCHardwarePolicy>
<policyNames></policyNames>
</CIMCHardwarePolicy>]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of policies, all of which must be valid existing policies.

See Also

Applying Policy on Servers, on page 44

Reading Disk Group Policy
Objective

This task allows the user to query the details of Disk Group Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCDiskGroupPolicyConfig/{CIMCDiskGroupPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all Disk Group policies created
in the system will be returned.

See Also

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Cisco IMC Supervisor REST API Cookbook, Release 2.4
45

Examples
Deleting Policies

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading FlexFlash Policy
Objective

This task allows the user to query the details of FlexFlash Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFFlashPolicyConfig/{CIMCFFlashPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all FlexFlash policies created
in the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Cisco IMC Supervisor REST API Cookbook, Release 2.4
46

Examples
Reading FlexFlash Policy

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading IPMI Over LAN Policy
Objective

This task allows the user to query the details of IPMI Over LAN Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCIpmiPolicyConfig/{CIMCIpmiPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all IPMI Over LAN policies
created in the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading LDAP Policy
Objective

This task allows the user to query the details of LDAP Policy.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
47

Examples
Reading IPMI Over LAN Policy

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCLdapConfig/{CIMCLdapConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all LDAP policies created in
the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading Legacy Boot Order Policy
Objective

This task allows the user to query the details of Legacy Boot Order Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCBootOrderLegacyConfig/{CIMCBootOrderLegacyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all Legacy Boot Order policies
created in the system will be returned.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
48

Examples
Reading Legacy Boot Order Policy

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading Network Security Policy
Objective

This task allows the user to query the details of Network Security Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCNetworkSecurityPolicyConfig/{CIMCNetworkSecurityPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all Network Security policies
created in the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Cisco IMC Supervisor REST API Cookbook, Release 2.4
49

Examples
Reading Network Security Policy

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading NTP Policy
Objective

This task allows the user to query the details of NTP Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCNtpPolicyConfig/{CIMCNtpPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all NTP policies created in
the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Cisco IMC Supervisor REST API Cookbook, Release 2.4
50

Examples
Reading NTP Policy

Reading Password Expiration Policy
Objective

This task allows the user to query the details of Password Expiration Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCPasswordExpirationPolicyConfig/{CIMCPasswordExpirationPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all Password Expiration
policies created in the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading Power Restore Policy
Objective

This task allows the user to query the details of the power restore policy.

Prerequisites

None.

REST URL

/cloupia/api-v2/CIMCPowerRestorePolicyConfig/{CIMCPowerRestorePolicyConfigId}

Cisco IMC Supervisor REST API Cookbook, Release 2.4
51

Examples
Reading Password Expiration Policy

Components

The parameters of the CIMCPowerRestorePolicyConfig API are:

• String Policy Name—The unique name of the policy.

• String Value

• String Note

Implementation

The Id argument must be a valid policy name. If no argument is specified, all Power Restore policies
created in the system will be returned.

Reading Precision Boot Order Policy
Objective

This task allows the user to query the details of Boot Order Precision Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCBootOrderPrecisionConfig/{CIMCBootOrderPrecisionConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all Precision Boot Order
policies created in the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Cisco IMC Supervisor REST API Cookbook, Release 2.4
52

Examples
Reading Precision Boot Order Policy

Reading RAID Policy
Objective

This task allows the user to query the details of RAID Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCRaidPolicyConfig/{CIMCRaidPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all RAID policies created in
the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading Serial Over LAN Policy
Objective

This task allows the user to query the details of Serial Over LAN Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCSoLPolicyConfig/{CIMCSoLPolicyConfigId}

Cisco IMC Supervisor REST API Cookbook, Release 2.4
53

Examples
Reading RAID Policy

Implementation

The Id argument must be a valid policy name. If no argument is specified, all Serial Over LAN policies
created in the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading SNMP Policy
Objective

This task allows the user to query the details of SNMP Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCSNMPPolicyConfig/{CIMCSNMPPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all SNMP policies created in
the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Cisco IMC Supervisor REST API Cookbook, Release 2.4
54

Examples
Reading SNMP Policy

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading SSH Policy
Objective

This task allows the user to query the details of SSH Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCSshPolicyConfig/{CIMCSshPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all SSH policies created in
the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading User Policy, on page 56

Cisco IMC Supervisor REST API Cookbook, Release 2.4
55

Examples
Reading SSH Policy

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading User Policy
Objective

This task allows the user to query the details of User Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCUserPolicyConfig/{CIMCUsersConfigTableId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all User policies created in
the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Reading vMedia Policy
Objective

This task allows the user to query the details of vMedia Policy.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
56

Examples
Reading User Policy

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCVMediaPolicyConfig/{CIMCVMediaPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all vMedia policies created
in the system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading Virtual KVM Policy, on page 57

Reading Virtual KVM Policy
Objective

This task allows the user to query the details of vKVM Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCvKVMPolicyConfig/{CIMCvKVMPolicyConfigId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all vKVM policies created in
the system will be returned.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
57

Examples
Reading Virtual KVM Policy

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading VIC Adapter Policy, on page 58

Reading vMedia Policy, on page 56

Reading VIC Adapter Policy
Objective

This task allows the user to query the details of VIC Policy.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCVicPolicy/{CIMCVicPolicyId}

Implementation

The Id argument must be a valid policy name. If no argument is specified, all VIC policies created in the
system will be returned.

See Also

Reading Disk Group Policy, on page 45

Reading FlexFlash Policy, on page 46

Reading IPMI Over LAN Policy, on page 47

Reading LDAP Policy, on page 47

Reading Legacy Boot Order Policy, on page 48

Reading Network Security Policy, on page 49

Reading NTP Policy, on page 50

Cisco IMC Supervisor REST API Cookbook, Release 2.4
58

Examples
Reading VIC Adapter Policy

Reading Precision Boot Order Policy, on page 52

Reading RAID Policy, on page 53

Reading Serial Over LAN Policy, on page 53

Reading SNMP Policy, on page 54

Reading SSH Policy, on page 55

Reading User Policy, on page 56

Reading Virtual KVM Policy, on page 57

Reading vMedia Policy, on page 56

Creating Hardware Profile
Objective

This task allows the user to create a hardware profile.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHardwareProfile

Components

The parameters of the HARDWARE_PROFILE_CREATE API are:

• String profileName—The name of the profile.

• String policyIds—(Optional) The hardware policies created on the system.

• boolean modular—(Optional) Cisco UCS C3260 dense storage rack server.

• String nonmodularPolicies—If server is not a Cisco UCS C3260 dense storage rack server.

• String modular Policies—If server policy is for a Cisco UCS C3260 dense storage rack server.

• String targetPlatforms—The target platform of a server.

Sample Input XML

<cuicOperationRequest>
<operationType>HARDWARE_PROFILE_CREATE</operationType>
<payload>
<![CDATA[<CIMCHardwareProfile>
<profileName></profileName>

<modular>false</modular>

<!-- Set this value only when modular not equals to true -->
<nonmodularPolicies></nonmodularPolicies>

<!-- Set this value only when modular not equals to false -->
<modularPolicies></modularPolicies>

<!-- Set this value only when modular not equals to false -->
<targetPlatforms></targetPlatforms>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
59

Examples
Creating Hardware Profile

</CIMCHardwareProfile>

]]>
</payload>
</cuicOperationRequest>

Implementation

The hardware profile name must be unique, containing comma separated list of valid policies. Enable
'Cisco UCS C3260' for dense storage rack server with dual server nodes. The policies must already exist
in the appliance. The list of policies are specific to the selected server platform. The target platforms
must be comma separated list of servers/chassis in the same sequence in which policies are specified.

See Also

Reading Hardware Profile, on page 60

Updating Hardware Profile, on page 60

Deleting Hardware Profile, on page 63

Applying Hardware Profile, on page 64

Reading Hardware Profile
Objective

This task allows the user to query the details of Hardware Profiles.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHardwareProfile/{CIMCHardwareProfileId}

Implementation

The Id argument must be a valid profile name. If no argument is specified, all profiles created in the
system will be returned.

See Also

Creating Hardware Profile, on page 59

Updating Hardware Profile, on page 60

Deleting Hardware Profile, on page 63

Applying Hardware Profile, on page 64

Updating Hardware Profile
Objective

This task allows the user to update existing hardware profile.

Prerequisites

None

Cisco IMC Supervisor REST API Cookbook, Release 2.4
60

Examples
Reading Hardware Profile

REST URL

/cloupia/api-v2/CIMCHardwareProfile

Components

The parameters of the HARDWARE_PROFILE_UPDATE API are:

• String profileNames—The name of the profile.

• String policyIds—(Optional) The hardware policies created on the system.

• boolean modular—(Optional) Cisco UCS C3260 dense storage rack server.

• String nonmodularPolicies—If server is not a Cisco UCS C3260 dense storage rack server.

• String modular Policies—If server policy is for a Cisco UCS C3260 dense storage rack server.

• String targetPlatforms—The target platform of a server.

Sample Input XML

<cuicOperationRequest>
<operationType>HARDWARE_PROFILE_UPDATE</operationType>
<payload>
<![CDATA[
<CIMCHardwareProfile>
<profileName></profileName>

<modular>false</modular>

<!-- Set this value only when modular not equals to true -->
<nonmodularPolicies></nonmodularPolicies>

<!-- Set this value only when modular not equals to false -->
<modularPolicies></modularPolicies>

<!-- Set this value only when modular not equals to false -->
<targetPlatforms></targetPlatforms>

</CIMCHardwareProfile>

]]>
</payload>
</cuicOperationRequest>

Implementation

The hardware profile name must be an existing one, containing comma separated list of valid policies.
Enable 'Cisco UCS C3260' for dense storage rack server with dual server nodes. The list of policies
specified here will completely override any previous list of associated policies that was specified when
this profile was created. The target platforms must be comma separated list of servers/chassis in the same
sequence in which policies are specified.

See Also

Creating Hardware Profile, on page 59

Reading Hardware Profile, on page 60

Deleting Hardware Profile, on page 63

Applying Hardware Profile, on page 64

Cisco IMC Supervisor REST API Cookbook, Release 2.4
61

Examples
Updating Hardware Profile

Deriving a Hardware Profile
Objective

This task allows the user to derive a hardware profile.

Prerequisites

None.

REST URL

/cloupia/api-v2/CIMCDeriveHardwareProfile

Components

The parameters of the CIMCDeriveHardwareProfile API are:

• String Profile Name—The unique name of the profile.

• String Policy ID—The IDs of the profile.

• Boolean Modular—For Cisco UCS S3260.

• Boolean Manual—The server details entered manually.

• String Choose Server—The server list.

• String Server IP—The IP addresses of the server.

• String Chassis—The chassis details. Applicable only when modular option is enabled.

• Boolean Credential Policy—The option to use a credential policy.

• String Credential Policy—The credential policy to be used.

• String User Name—The user name.

• String Password—The password.

• String Protocol—The protocol to be used.

• Port—The port to be used.

• String Policy—The policy types.

Sample Input XML

<cuicOperationRequest>
<operationType>HARDWARE_PROFILE_DERIVE</operationType>
<payload>
<![CDATA[
<CIMCDeriveHardwareProfile>
<profileName>sample</profileName>
<modular>true</modular>
<manual>false</manual>
<!-- Set this value only when manual not equals to true -->
<chooseServer></chooseServer>
<!-- Set this value only when manual not equals to false -->
<server></server>
<!-- Set this value only when manual not equals to true -->
<chooseChassis></chooseChassis>
<!-- Set this value only when manual not equals to false -->
<credentialPolicy>false</credentialPolicy>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
62

Examples
Deriving a Hardware Profile

<!-- Set this value only when manual not equals to false -->
<policy></policy>
<!-- Set this value only when manual not equals to false -->
<username></username>
<!-- Set this value only when manual not equals to false -->
<password></password>
<!-- Set this value only when manual not equals to false -->
<protocol>https</protocol>
<!-- Set this value only when manual not equals to false -->
<port>443</port>
<policyTypes>BIOS Policy</policyTypes>
</CIMCDeriveHardwareProfile>
]]>
</payload>
</cuicOperationRequest>

Implementation

The hardware profile name must be unique, containing comma separated list of valid profiles. Enable
Modular for modular, dense storage rack server with dual server nodes. Enter Server Details Manually
- enable to manually input the server details. Choose Server - Choose the server from which the
configurations are to be retrieved. Choose Chassis - Choose the chassis from which the configurations
are to be retrieved. Choose Policies - Choose the policies to be created from the server.

Deleting Hardware Profile
Objective

This task allows the user to delete hardware profiles.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHardwareProfile

Components

The parameters of the HARDWARE_PROFILE_DELETE API are:

• String profileNames—The name of the profile.

Sample Input XML

<cuicOperationRequest>
<operationType>HARDWARE_PROFILE_DELETE</operationType>
<payload>
<![CDATA[<CIMCHardwareProfile>
<profileNames></profileNames></CIMCHardwareProfile>]]>
</payload>
</cuicOperationRequest>

Implementation

The hardware profiles name(s) must be existing ones.

See Also

Creating Hardware Profile, on page 59

Reading Hardware Profile, on page 60

Cisco IMC Supervisor REST API Cookbook, Release 2.4
63

Examples
Deleting Hardware Profile

Updating Hardware Profile, on page 60

Applying Hardware Profile, on page 64

Applying Hardware Profile
Objective

This task allows the user to apply hardware profile.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHardwareProfile

Components

The parameters of the HARDWARE_PROFILE_APPLY API are:

• String profileNames—The name of the profile to apply.

• String servers—The servers to which you want to apply the profile.

• String Chassis—The chassis groups to which you want to apply the profile.

• boolean enableSchedule—Enable a schedule.

• String associatedScheduleName—The associated schedule name.

Sample Input XML

<cuicOperationRequest>
<operationType>HARDWARE_PROFILE_APPLY</operationType>
<payload>
<![CDATA[
<CIMCHardwareProfile>
<profileName></profileName>

<servers></servers>

<chassis></chassis>

<enableSchedule>false</enableSchedule>

<!-- Set this value only when enableSchedule not equals to false -->
<associatedScheduleName></associatedScheduleName>

</CIMCHardwareProfile>

]]>
</payload>
</cuicOperationRequest>

Implementation

The servers argument must consist of a comma-separated list of Id's. Each Id is in the format:
{AccountName};{ServerIPAddress}. The ServerIPAddress must be a non CISCO C3260 UCS server.
The chassis argument must consist of a comma-separated list of Id's. Each Id is in the format:
{AccountName};{ChassisAddress}.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
64

Examples
Applying Hardware Profile

See Also

Creating Hardware Profile, on page 59

Reading Hardware Profile, on page 60

Updating Hardware Profile, on page 60

Deleting Hardware Profile, on page 63

Reading Hardware Policy Apply Status
Objective

This task allows the user to query the apply status details of hardware policies.

Prerequisites

None.

REST URL

/cloupia/api-v2/CIMCPolicyApplyStatusByPolicyName/{CIMCPolicyApplyStatusByPolicyNameId}

Components

The parameters of the CIMCPolicyApplyStatusByPolicyName API are:

• String Policy Name—The unique name of the profile.

• String Policy Type—The type of policy.

• String Server Address—The server address.

• String Host Name—The host name of the server.

• String Account Name—The name of the account.

• String Last Message—The last message on the server.

• Boolean Is Successful—The indication if the apply status is successful or not.

• String Last Policy Update—The indication of the last policy update on the servers.

Implementation

The ID argument must be a valid policy name. If no argument is specified, apply status of all policies
created in the system will be returned.

Reading Hardware Profile Apply Status
Objective

This task allows the user to query the apply status details of Hardware Profiles.

Prerequisites

None.

REST URL

/cloupia/api-v2/CIMCProfileApplyStatusByProfileName/{CIMCProfileApplyStatusByProfileNameId}

Cisco IMC Supervisor REST API Cookbook, Release 2.4
65

Examples
Reading Hardware Policy Apply Status

Components

The parameters of the CIMCProfileApplyStatusByProfileName API are:

• String Policy Name—The unique name of the profile.

• String Policy Type—The type of policy.

• String Server Address—The server address.

• String Host Name—The host name of the server.

• String Account Name—The name of the account.

• String Last Message—The last message on the server.

• Boolean Is Successful—The indication if the apply status is successful or not.

• String Last Policy Update—The indication of the last policy update on the servers.

Implementation

The ID argument must be a valid policy name. If no argument is specified, apply status of all policies
created in the system will be returned.

Viewing Hardware Profiles Associated with a Server
Objective

This task allows the user to query the list of hardware profiles that are associated with a specific server.

Prerequisites

None.

REST URL

/cloupia/api-v2/AssociatedHardwareProfilesByServer

Components

The parameters of the AssociatedHardwareProfilesByServer API are:

• String Account Name—The name of the account.

Sample Input XML

<cuicOperationRequest>
<operationType>HARDWARE_PROFILES</operationType>
<payload>
<![CDATA[
<AssociatedHardwareProfilesByServer>
<servers>CIMC192;<ip_address of server></servers>

</AssociatedHardwareProfilesByServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The ID argument must be a valid rack server account name.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
66

Examples
Viewing Hardware Profiles Associated with a Server

Viewing Servers Associated with a Hardware Profile
Objective

This task allows the user to query the list of servers that are associated with a specific hardware profile.

Prerequisites

None.

REST URL

/cloupia/api-v2/AssociatedServersByPolicyName

Components

The parameters of the AssociatedServersByPolicyName API are:

• Boolean Modular—Cisco UCS S3260 server

• String Non-modular Hardware Policy—The name of the hardware policy that is for non-modular
servers.

• String Modular Hardware Policy—The name of the hardware policy that is for a modular server.

Sample Input XML

<cuicOperationRequest>
<operationType>SERVER_PROFILES</operationType>
<payload>
<![CDATA[
<AssociatedServersByPolicyName>
<modular>false</modular>

<!-- Set this value only when modular not equals to true -->
<nonmodularPolicies>CIMC52(BIOS Policy)</nonmodularPolicies>

<!-- Set this value only when modular not equals to false -->
<modularPolicies></modularPolicies>

</AssociatedServersByPolicyName>

]]>
</payload>
</cuicOperationRequest>

Implementation

Specifying a hardware policy is mandatory.

Managing Server Tasks

Overview
The examples in this category consist of various server management tasks, such as discovery of servers through
IP addresses, importing of discovered servers, power actions on servers and various methods to query server
data, inventory data, and fault data.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
67

Examples
Viewing Servers Associated with a Hardware Profile

Creating a Rack Group
Objective

Create a rack group to group servers logically in Cisco IMC Supervisor.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCRackGroup

Components

The parameters of the RACK_GROUP_CREATE API are:

• String groupName—The name of the group or the customer organization.

• String groupDescription—Optional. The description of the group or the customer organization, if
required.

Sample Input XML

<cuicOperationRequest>
<operationType>RACK_GROUP_CREATE</operationType>
<payload>
<![CDATA[
<CIMCRackGroup>
<groupName></groupName>

<description></description>

</CIMCRackGroup>

]]>
</payload>
</cuicOperationRequest>

Implementation

Group Name is mandatory and must be unique.

See Also

Reading All Rack Groups, on page 68

Updating a Rack Group, on page 69

Deleting a Rack Group, on page 70

Reading All Rack Groups
Objective

Get rack group details.

Prerequisites

None

Cisco IMC Supervisor REST API Cookbook, Release 2.4
68

Examples
Creating a Rack Group

REST URL

/cloupia/api-v2/CIMCRackGroup/{CIMCRackGroupId}

Components

None

Sample Input XML

<cuicOperationResponse><cuicOperationStatus>0</cuicOperationStatus>
<response><CIMCRackGroup><actionId>0</actionId><configEntryId>0</configEntryId>
<defaultGroup>true</defaultGroup><description>Default provided rack group</description>
<groupName>Default Group</groupName></CIMCRackGroup><CIMCRackGroup><actionId>0</actionId>
<configEntryId>0</configEntryId><defaultGroup>false</defaultGroup><description></description>
<groupName>colusa</groupName></CIMCRackGroup><CIMCRackGroup><actionId>0</actionId>
<configEntryId>0</configEntryId><defaultGroup>false</defaultGroup><description></description>
<groupName>eseries</groupName></CIMCRackGroup><CIMCRackGroup><actionId>0</actionId>
<configEntryId>0</configEntryId><defaultGroup>false</defaultGroup>
<description>Test Rack Group 1</description>
<groupName>TestGroup</groupName></CIMCRackGroup></response>
</cuicOperationResponse>

Implementation

The Id argument must be a valid Rack Group name. If no argument is specified, all Rack Groups
configured in the system will be returned.

See Also

Creating a Rack Group, on page 68

Updating a Rack Group, on page 69

Deleting a Rack Group, on page 70

Updating a Rack Group
Objective

Update an existing Rack Group.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCRackGroup

Components

The parameters of the RACK_GROUP_UPDATE API are:

• String groupName—The name of the group or the customer organization.

• String groupDescription—Optional. The description of the group or the customer organization, if
required.

Sample Input XML

<cuicOperationRequest>
<operationType>RACK_GROUP_UPDATE</operationType>
<payload>
<![CDATA[

Cisco IMC Supervisor REST API Cookbook, Release 2.4
69

Examples
Updating a Rack Group

<CIMCRackGroup>
<groupName></groupName>

<description></description>

</CIMCRackGroup>

]]>
</payload>
</cuicOperationRequest>

Implementation

Group name is mandatory and must be unique.

See Also

Creating a Rack Group, on page 68

Reading All Rack Groups, on page 68

Deleting a Rack Group, on page 70

Deleting a Rack Group
Objective

Delete one or more existing rack groups.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCRackGroup

Components

The parameters of the RACK_GROUP_DELETE API are:

• String groupName—The name of the group or the customer organization.

• String groupDescription—Optional. The description of the group or the customer organization, if
required.

Sample Input XML

<cuicOperationRequest>
<operationType>RACK_GROUP_DELETE</operationType>
<payload>
<![CDATA[
<CIMCRackGroup>
<groupNames></groupNames>

<deleteRackAccountsInGroup>false</deleteRackAccountsInGroup>

</CIMCRackGroup>

]]>
</payload>
</cuicOperationRequest>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
70

Examples
Deleting a Rack Group

Implementation

Comma separated list of group names, all of which must be of valid existing rack groups.

See Also

Creating a Rack Group, on page 68

Reading All Rack Groups, on page 68

Updating a Rack Group, on page 69

Creating a Rack Account
Objective

This task allows user to create a rack account.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCInfraAccount

Components

The parameters of the RACK_ACCOUNT_CREATE API are:

• String accountName—The account name.

• String server—Optional. The server name.

• String description—Optional. The description of the account.

• Boolean credentialPolicy—Optional. Create a credential policy.

• String policy—The policy name.

• String username—The server login name.

• String password—The server login password.

• String protocol—Optional. Port for the configuration.

• String port—The port number.

• Boolean acceptCertificate—Optional. The option to accept certificate.

• String rackGroup—The name of the rack group.

• String contact—Optional. The contact number.

• String location—Optional. The location address.

Sample Input XML

<cuicOperationRequest>
<operationType>RACK_ACCOUNT_CREATE</operationType>
<payload>
<![CDATA[<CIMCInfraAccount>
<accountName></accountName>
<server></server>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
71

Examples
Creating a Rack Account

<description></description>
<credentialPolicy>false</credentialPolicy>
<!-- Set this value only when credentialPolicy not equals to false -->
<policy></policy> <!-- Set this value only when credentialPolicy not equals to true
-->
<username></username> <!-- Set this value only when credentialPolicy not equals to true
-->

<password></password> <!-- Set this value only when credentialPolicy not equals to
true -->
<protocol>https</protocol> <!-- Set this value only when credentialPolicy not equals
to true -->
<port>443</port>
<rackGroup>apitest-ren</rackGroup>
<contact></contact>
<location></location>
</CIMCInfraAccount>]]>
</payload>
</cuicOperationRequest>

Implementation

Account name is mandatory and must be unique. ServerIP is mandatory. Username/Password are
mandatory.

See Also

Updating a Rack Account, on page 72

Deleting a Rack Account, on page 73

Updating a Rack Account
Objective

This task allows the user to update an existing rack account.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCInfraAccount

Components

The parameters of the RACK_ACCOUNT_UPDATE API are:

• String accountName—The account name.

• String server—Optional. The server name.

• String description—Optional. The description of the account.

• Boolean credentialPolicy—Optional. Create a credential policy.

• String policy—The policy name.

• String username—The server login name.

• String password—The server login password.

• String protocol—Optional. Port for the configuration.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
72

Examples
Updating a Rack Account

• String port—The port number.

• Boolean acceptCertificate—Optional. The option to accept certificate.

• String rackGroup—The name of the rack group.

• String contact—Optional. The contact number.

• String location—Optional. The location address.

Sample Input XML

<cuicOperationRequest><operationType>RACK_ACCOUNT_UPDATE</operationType><payload>
<![CDATA[<CIMCInfraAccount><accountName></accountName><server></server>
<description></description>
<credentialPolicy>false</credentialPolicy>
<!-- Set this value only when credentialPolicy not equals to false -->
<policy></policy> <!-- Set this value only when credentialPolicy not equals to true
-->
<username></username> <!-- Set this value only when credentialPolicy not equals to
true -->
<password></password> <!-- Set this value only when credentialPolicy not equals to
true -->
<protocol>https</protocol> <!-- Set this value only when credentialPolicy not equals
to true -->
<port>443</port><rackGroup>apitest-ren</rackGroup><contact></contact><location></location>
</CIMCInfraAccount>]]>
</payload>
</cuicOperationRequest>

Implementation

ServerIP cannot be changed.

See Also

Creating a Rack Account, on page 71

Deleting a Rack Account, on page 73

Deleting a Rack Account
Objective

This task allows user to delete one or more existing rack accounts.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCInfraAccount

Components

The parameters of the RACK_ACCOUNT_DELETE API are:

• String devices—The account to delete.

Sample Input XML

<cuicOperationRequest><operationType>RACK_ACCOUNT_DELETE</operationType>
<payload>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
73

Examples
Deleting a Rack Account

<![CDATA[<CIMCInfraAccount>
<devices></devices></CIMCInfraAccount>]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of account names, all of which must be valid existing rack accounts.

See Also

Creating a Rack Account, on page 71

Updating a Rack Account, on page 72

Running Server Inventory
Objective

This task allows user to run inventory on one or more servers.

Prerequisites

None

REST URL

/cloupia/api-v2/RunInventory

Components

The parameters of the RUN_INVENTORY API are:

• String inventoryLevel—Optional. The inventory on rack account or rack group.

• String serverGroups—The rack groups.

• String servers—Optional. The rack server.

Sample Input XML

<cuicOperationRequest><operationType>RUN_INVENTORY</operationType>
<payload>
<![CDATA[
<RunInventory>
<inventoryLevel>RACK GROUP</inventoryLevel>
<!-- Set this value only when inventoryLevel not equals to RACK ACCOUNT -->
<serverGroups></serverGroups>
<!-- Set this value only when inventoryLevel not equals to RACK GROUP -->
<servers></servers></RunInventory>]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of account names, all of which must be valid existing rack accounts or comma
separated list of rack groups, all of which must be valid existing rack groups.

Testing Server Connection
Objective

This task allows user to test connection to one or more servers.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
74

Examples
Running Server Inventory

Prerequisites

None

REST URL

/cloupia/api-v2/TestConnection

Components

The parameters of the TEST_CONNECTION API are:

• String devices—The rack account to test connection.

Sample Input XML

<cuicOperationRequest><operationType>TEST_CONNECTION</operationType>
<payload>
<![CDATA[<TestConnection><devices></devices></TestConnection>]]>
</payload>
</cuicOperationRequest>

Implementation

Account name is mandatory.

Assigning Rack Groups to Servers
Objective

This task allows user to assign rack group to one or more servers.

Prerequisites

None

REST URL

/cloupia/api-v2/AssignRackGroup

Components

The parameters of the ASSIGN_RACK_GROUP API are:

• String servers—The rack account to assign to a rack group.

• String serverGroup —The rack server group.

Sample Input XML

<cuicOperationRequest>
<operationType>ASSIGN_RACK_GROUP</operationType>
<payload><![CDATA[<AssignRackGroup><servers></servers>
<serverGroup></serverGroup></AssignRackGroup>]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of account names, all of which must be valid existing rack accounts. Rack group
is mandatory.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
75

Examples
Assigning Rack Groups to Servers

Running Server Diagnostics
Objective

This task allows user to run diagnostics on one or more servers.

Prerequisites

SCU image location and SCP User password are configured.

REST URL

/cloupia/api-v2/RunServerDiagnostics

Components

The parameters of the RUN_SERVER_DIAGNOSTICS API are:

• String selectProfile—The server profile.

• String diagLevel—The server or rack group to run diagnostics.

• String serverGroups—The rack server group.

• String servers—The rack server.

Sample Input XML

<cuicOperationRequest>
<operationType>RUN_SERVER_DIAGNOSTICS</operationType>
<payload>
<![CDATA[
<CIMCDiagnosticsRunConfig>
<selectProfile></selectProfile>

<servers></servers>

</CIMCDiagnosticsRunConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

The servers argument must consist of a comma-separated list of IDs. Each ID format is:
{AccountName};{ServerIPAddress}. The serverGroups argument must consist of comma separated
list of rack groups, all of which must be valid existing rack groups.

See Also

Running Server Diagnostics, on page 76

Deleting Server Diagnostics Report, on page 77

Reading Server Diagnostics Status by Server IP
Objective

This task allows the user to query the status of diagnostics being run on a server based on Server IP.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
76

Examples
Running Server Diagnostics

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCDiagnosticsStatusByServerIP/{CIMCDiagnosticsStatusByServerIPId}

Implementation

The CIMCDiagnosticsStatusByServerIPId argument must be a valid IP address. If no argument is
specified, an empty set of results will be returned. The dots in the IP address must be substituted with
an underscore.

See Also

Running Server Diagnostics, on page 76

Deleting Server Diagnostics Report, on page 77

Deleting Server Diagnostics Report
Objective

This task allows the user to delete diagnostics report of one or more servers based on Server IP.

Prerequisites

None

REST URL

/cloupia/api-v2/DeleteServerDiagnosticsReport

Components

The parameters of the DELETE_DIAGNOSTICS_REPORT API are:

• String serverIPs—The diagnostics report to delete.

Sample Input XML

<cuicOperationRequest>
<operationType>DELETE_DIAGNOSTICS_REPORT</operationType>
<payload>
<![CDATA[<CIMCDeleteDiagnosticsReportConfig>
<serverIPs></serverIPs></CIMCDeleteDiagnosticsReportConfig>]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIP argument must be a valid IP address.

See Also

Reading Server Diagnostics Status by Server IP, on page 76

Running Server Diagnostics, on page 76

Cisco IMC Supervisor REST API Cookbook, Release 2.4
77

Examples
Deleting Server Diagnostics Report

Adding Compute Tags
Objective

This task allows the user to add compute tag(s) to a rack server or chassis.

Prerequisites

None

REST URL

/cloupia/api-v2/ComputeTags

Components

The parameters of the COMPUTE_TAGS_DELETE API are:

• String (optional) physicalComputeType—The compute type.

• String rackServer—The rack server.

• String chassis—The chassis.

• String tags—The tag name.

Sample Input XML

<cuicOperationRequest>
<operationType>COMPUTE_TAGS_ADD</operationType>
<payload>
<![CDATA[
<ComputeTags>
<physicalComputeType>Rack Servers</physicalComputeType>

<!-- Set this value only when physicalComputeType equals to Rack Servers -->
<rackServer></rackServer>

<!-- Set this value only when physicalComputeType equals to Chassis -->
<chassis></chassis>

<tags></tags>

</ComputeTags>

]]>
</payload>
</cuicOperationRequest>

Implementation

Rack Server or Chassis is mandatory. Tag Names are mandatory. Tag names are key value pairs separated
with ';'. Example:- <TagName1>:<TagValue1>;<TagName2>:<TagValue2>

See Also

Deleting Compute Tags, on page 78

Deleting Compute Tags
Objective

This task allows the user to delete compute tag(s) from a rack server or chassis.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
78

Examples
Adding Compute Tags

Prerequisites

None

REST URL

/cloupia/api-v2/ComputeTags

Components

The parameters of the COMPUTE_TAGS_DELETE API are:

• String (optional) physicalComputeType—The compute type.

• String rackServer—The rack server.

• String chassis—The chassis.

• String tags—The tag name.

Sample Input XML

<cuicOperationRequest>
<operationType>COMPUTE_TAGS_DELETE</operationType>
<payload>
<![CDATA[
<ComputeTags>
<physicalComputeType>Rack Servers</physicalComputeType>

<!-- Set this value only when physicalComputeType equals to Rack Servers -->
<rackServer></rackServer>

<!-- Set this value only when physicalComputeType equals to Chassis -->
<chassis></chassis>

<tags></tags>

</ComputeTags>

]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of tag names, all of which must be valid existing server tags.

See Also

Adding Compute Tags, on page 78

Creating a Technical Support Log
Objective

This task allows the user to create tech support for a rack servers.

Prerequisites

None

REST URL

/cloupia/api-v2/CreateTechSupport

Cisco IMC Supervisor REST API Cookbook, Release 2.4
79

Examples
Creating a Technical Support Log

Components

The parameters of the CREATE_TECH_SUPPORT API are:

• String rackServers—The rack servers.

• String destination—List of the Destination Types and the Options.

• String option—The option to select network transfer type.

• String server—The IP address or account name of the server on which the support data file should
be stored.

• String pathFileName—The path and filename that must be used when exporting the file to the remote
server.

• String username—The username the system should use to log in to the remote server.

• String password—The password for the remote server username.

Sample Input XML

<cuicOperationRequest>
<operationType>CREATE_TECH_SUPPORT</operationType>
<payload>
<![CDATA[
<CreateTechSupport>
<rackServers></rackServers>
<destination>REMOTE</destination>
<!-- Set this value only when destination not equals to LOCAL -->
<option>SCP</option>
<!-- Set this value only when destination not equals to LOCAL -->
<server></server>
<!-- Set this value only when destination not equals to LOCAL -->
<pathFileName></pathFileName>
<!-- Set this value only when option not equals to TFTP -->
<username></username>
<!-- Set this value only when option not equals to TFTP -->
<password></password>
</CreateTechSupport>]]>
</payload>
</cuicOperationRequest>

Implementation

Rack servers are mandatory. Destination type is mandatory. If destination type is 'LOCAL' then no other
fields are required. If destination type is 'REMOTE' then the fields 'ServerIP/Host name' and 'Path and
File name' needs to be entered. The fields 'username' and 'password' are not required if 'Network Type'
is 'TFTP'.

See Also

Clearing Technical Support Logs, on page 80

Reading Technical Support Logs by Server IP, on page 81

Clearing Technical Support Logs
Objective

This task allows the user to clear entry for one or more existing technical support logs.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
80

Examples
Clearing Technical Support Logs

Prerequisites

None

REST URL

/cloupia/api-v2/ClearTechSupport

Components

The parameters of the CLEAR_TECH_SUPPORT API are:

• String techsupportFileName—The name of the technical support log file.

Sample Input XML

<cuicOperationRequest>
<operationType>CLEAR_TECH_SUPPORT</operationType>
<payload>
<![CDATA[
<ClearTechSupport><techSupportFileName></techSupportFileName></ClearTechSupport>]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of technical support names, all of which must be valid existing tech support log
names.

See Also

Creating a Technical Support Log, on page 79

Reading Technical Support Logs by Server IP, on page 81

Reading Technical Support Logs by Server IP
Objective

This task allows the user to query the technical support log details based on the IP address of a rack
server. The CIMCTechLogSupportStatusByServerIPId argument must be a valid IP address of a
server being managed by Cisco IMC Supervisor.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCTechLogSupportStatusByServerIP/{CIMCTechLogSupportStatusByServerIPId}

Implementation

TheCIMCTechLogSupportStatusByServerIPId argument must be a valid IP address of a server being
managed by Cisco IMC Supervisor. The dots in the IP address must be substituted with an underscore.

See Also

Creating a Technical Support Log, on page 79

Clearing Technical Support Logs, on page 80

Cisco IMC Supervisor REST API Cookbook, Release 2.4
81

Examples
Reading Technical Support Logs by Server IP

Creating a Discovery Profile
Objective

Create a discovery profile to use for discovering servers based on IP address and importing them.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCDeviceDiscoveryConfig

Components

The parameters of the DISCOVERY_PROFILE_CREATE API are:

• String profileName—The name of the profile.

• boolean isRange—Optional. The range

• String option—The option.

• String ipList—List of IP addresses.

• String startRange—Valid beginning IP address.

• String endRange—Valid last IP address.

• String networkAddress—The network IP address.

• String subnetMask—The range of subnet mask.

• String csvFile—Search by csv file.

• boolean credentialPolicy—Optional. Create a credential policy.

• String policy—Optional. The policy name.

• String username—The server login name.

• String password—The server login password.

• String protocol—Optional. HTTP or HTTPS protocol.

• int port—The port number.

• String description—Description of the account.

• String contact—The contact number.

• String location—The location address.

• String rackGroup—The name of the rack group.

Sample Input XML

<cuicOperationRequest>
<operationType>DISCOVERY_PROFILE_CREATE</operationType>
<payload>
<![CDATA[
<CIMCDeviceDiscoveryConfig>
<profileName></profileName>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
82

Examples
Creating a Discovery Profile

<option>IP</option>

<!-- Set this value only when option equals to IPLIST -->
<ipList></ipList>

<!-- Set this value only when option equals to IP -->
<startRange></startRange>

<!-- Set this value only when option equals to IP -->
<endRange></endRange>

<!-- Set this value only when option equals to SUBNET -->
<networkAddress></networkAddress>

<!-- Set this value only when option equals to SUBNET -->
<subnetMask></subnetMask>

<!-- Set this value only when option equals to CSV -->
<csvFile></csvFile>

<credentialPolicy>false</credentialPolicy>

<!-- Set this value only when credentialPolicy not equals to false -->
<policy></policy>

<!-- Set this value only when credentialPolicy not equals to true -->
<username></username>

<!-- Set this value only when credentialPolicy not equals to true -->
<password></password>

<!-- Set this value only when credentialPolicy not equals to true -->
<protocol>https</protocol>

<!-- Set this value only when credentialPolicy not equals to true -->
<port>443</port>

<!-- Set this value only when option not equals to CSV -->
<description></description>

<!-- Set this value only when option not equals to CSV -->
<contact></contact>

<!-- Set this value only when option not equals to CSV -->
<location></location>

<!-- Set this value only when option not equals to CSV -->
<rackGroup>Default Group</rackGroup>

</CIMCDeviceDiscoveryConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory, must be unique. IP Address Search Criteria is mandatory, but CSV File
option is not supported via API.

See Also

Updating a Discovery Profile, on page 84

Cisco IMC Supervisor REST API Cookbook, Release 2.4
83

Examples
Creating a Discovery Profile

Deleting a Discovery Profile, on page 86

Reading a Discovery Profile
Objective

Get discovery profiles details.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCDeviceDiscoveryConfig/{CIMCDeviceDiscoveryConfigId}

Implementation

The Id argument must be a valid profile name. If no argument is specified, all discovery profiles configured
in the system will be returned.

See Also

Creating a Discovery Profile, on page 82

Updating a Discovery Profile, on page 84

Deleting a Discovery Profile, on page 86

Updating a Discovery Profile
Objective

Update an existing discovery profile.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCDeviceDiscoveryConfig

Components

The parameters of the DISCOVERY_PROFILE_UPDATE API are:

• String profileName—The unique name of the profile.

• String option—The option.

• String ipList—List of IP addresses.

• String startRange—Valid beginning IP address.

• String endRange—Valid last IP address.

• String networkAddress—The network IP address.

• String subnetMask—The range of subnet mask.

• String csvFile—Search by csv file.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
84

Examples
Reading a Discovery Profile

• boolean credentialPolicy—Optional. Create a credential policy.

• boolean policy—Optional. The policy name.

• String username—The server login name.

• String password—The server login password.

• String protocol—Optional. HTTP or HTTPS protocol.

• int port—The port number.

• String description—Description of the account.

• String contact—The contact number.

• String location—The location address.

• String rackGroup—The name of the rack group.

Sample Input XML

<cuicOperationRequest>
<operationType>DISCOVERY_PROFILE_UPDATE</operationType>
<payload>
<![CDATA[
<CIMCDeviceDiscoveryConfig>
<profileName></profileName>

<option>IP</option>

<!-- Set this value only when option equals to IPLIST -->
<ipList></ipList>

<!-- Set this value only when option equals to IP -->
<startRange></startRange>

<!-- Set this value only when option equals to IP -->
<endRange></endRange>

<!-- Set this value only when option equals to SUBNET -->
<networkAddress></networkAddress>

<!-- Set this value only when option equals to SUBNET -->
<subnetMask></subnetMask>

<!-- Set this value only when option equals to CSV -->
<csvFile></csvFile>

<credentialPolicy>false</credentialPolicy>

<!-- Set this value only when credentialPolicy not equals to false -->
<policy></policy>

<!-- Set this value only when credentialPolicy not equals to true -->
<username></username>

<!-- Set this value only when credentialPolicy not equals to true -->
<password></password>

<!-- Set this value only when credentialPolicy not equals to true -->
<protocol>https</protocol>

<!-- Set this value only when credentialPolicy not equals to true -->

Cisco IMC Supervisor REST API Cookbook, Release 2.4
85

Examples
Updating a Discovery Profile

<port>443</port>
<!-- Set this value only when option not equals to CSV -->
<description></description>

<!-- Set this value only when option not equals to CSV -->
<contact></contact>

<!-- Set this value only when option not equals to CSV -->
<location></location>

<!-- Set this value only when option not equals to CSV -->
<rackGroup>Default Group</rackGroup>

</CIMCDeviceDiscoveryConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name cannot be modified.

See Also

Creating a Discovery Profile, on page 82

Deleting a Discovery Profile, on page 86

Deleting a Discovery Profile
Objective

Delete one or more existing discovery profiles.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCDeviceDiscoveryConfig

Components

The parameters of the DISCOVERY_PROFILE_DELETE API are:

• String profileNames—Optional. The name of the profile.

Sample Input XML

<cuicOperationRequest>
<operationType>DISCOVERY_PROFILE_DELETE</operationType>
<payload>
<![CDATA[
<CIMCDeviceDiscoveryConfig>
<profileNames></profileNames>

</CIMCDeviceDiscoveryConfig>

]]>
</payload>
</cuicOperationRequest>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
86

Examples
Deleting a Discovery Profile

Implementation

Comma separated list of profile names, all of which must be of valid existing profiles.

See Also

Creating a Discovery Profile, on page 82

Updating a Discovery Profile, on page 84

Reading a Discovery Profile, on page 84

Running Server Discovery
Objective

Run a Discovery operation to discovery servers based on IP addresses, using one or more configured
Discovery Profiles.

Prerequisites

Discovery Profile must be configured.

REST URL

/cloupia/api-v2/CIMCAutoDiscoveryConfig

Components

The parameters of the RUN_SERVER_DISCOVERY API are:

• String profileNames—The name of the profile.

• boolean enableSchedule—Enable a schedule.

• String associatedScheduleName—Name of the associate schedule.

Sample Input XML

<cuicOperationRequest>
<operationType>RUN_SERVER_DISCOVERY</operationType>
<payload>
<![CDATA[
<RunServerDiscovery>
<profileNames></profileNames>

<enableSchedule>false</enableSchedule>

<!-- Set this value only when enableSchedule not equals to false -->
<associatedScheduleName></associatedScheduleName>

</RunServerDiscovery>

]]>
</payload>
</cuicOperationRequest>

Implementation

Comma-separated list of valid profile names. In case of schedule option, a valid schedule name must be
provided.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
87

Examples
Running Server Discovery

See Also

Importing Discovered Devices, on page 88

Reading Discovered Devices
Objective

Get discovered device details.

Prerequisites

One or more servers must have been discovered using a discovery profile

REST URL

/cloupia/api-v2/CIMCDiscoveredDevice/{CIMCDiscoveredDeviceId}/State/{StateId}

Implementation
The CIMCDiscoveredDeviceId argument must be a valid profile name, andmust bemandatorily specified.
The StateId argument must be one of {All, Imported, NotImported}.

Importing Discovered Devices
Objective

Import one or more discovered devices.

Prerequisites

One or more servers must have been discovered using a Discovery Profile.

REST URL

/cloupia/api-v2/ImportRackServers

Components

The parameters of the IMPORT_SERVER API are:

• String devices—The discovered devices.

• String userPrefix—Optional. The prefix for the user.

Sample Input XML

<cuicOperationRequest>
<operationType>IMPORT_SERVER</operationType>
<payload>
<![CDATA[
<ImportRackServers>
<devices></devices>

<userPrefix></userPrefix>

</ImportRackServers>

]]>
</payload>
</cuicOperationRequest>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
88

Examples
Reading Discovered Devices

Implementation

Comma-separated list of one or more valid server IP addresses, which have been discovered. Group
name of an existing rack group.

See Also

Running Server Discovery, on page 87

Hard Reset Server
Objective

Hard reset one or more servers.

Prerequisites

One or more Servers must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/HardResetAction

Components

The parameters of the HARD_RESET_SERVER API are:

• String serverIdKey—The server Id key.

Sample Input XML

<cuicOperationRequest>
<operationType>HARD_RESET_SERVER</operationType>
<payload>
<![CDATA[
<HardResetServer>
<serverIdKey></serverIdKey>

</HardResetServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress }

See Also

Power Cycle Server, on page 90

Power On Server, on page 91

Power Off Server, on page 90

Shutdown Server, on page 92

Set Label on Server, on page 93

Toggle Locator LED on Server, on page 94

Cisco IMC Supervisor REST API Cookbook, Release 2.4
89

Examples
Hard Reset Server

Power Cycle Server
Objective

Power cycle one or more servers.

Prerequisites

One or more servers must be configured as rack accounts.

REST URL

/cloupia/api-v2/PowerCycleAction

Components

The parameters of the POWER_CYCLE_SERVER API are:

• String serverIdKey—The server Id key.

Sample Input XML

<cuicOperationRequest>
<operationType>POWER_CYCLE_SERVER</operationType>
<payload>
<![CDATA[
<PowerCycleServer>
<serverIdKey></serverIdKey>

</PowerCycleServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress }

See Also

Hard Reset Server, on page 89

Power On Server, on page 91

Power Off Server, on page 90

Shutdown Server, on page 92

Set Label on Server, on page 93

Toggle Locator LED on Server, on page 94

Power Off Server
Objective

Power Off one or more Servers.

Prerequisites

One or more Servers must be configured as Rack Accounts

Cisco IMC Supervisor REST API Cookbook, Release 2.4
90

Examples
Power Cycle Server

REST URL

/cloupia/api-v2/PowerOffAction

Components

The parameters of the POWER_OFF_SERVER API are:

• String serverIdKey—The server Id key.

Sample Input XML

<cuicOperationRequest>
<operationType>POWER_OFF_SERVER</operationType>
<payload>
<![CDATA[
<PowerOffServer>
<serverIdKey></serverIdKey>

</PowerOffServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress

See Also

Hard Reset Server, on page 89

Power Cycle Server, on page 90

Power On Server, on page 91

Shutdown Server, on page 92

Set Label on Server, on page 93

Toggle Locator LED on Server, on page 94

Power On Server
Objective

Power On server.

Context

Power On one or more servers.

Prerequisites

One or more servers must be configured as rack accounts.

REST URL

/cloupia/api-v2/PowerOnAction

Components

The parameters of the POWER_ON_SERVER API are:

Cisco IMC Supervisor REST API Cookbook, Release 2.4
91

Examples
Power On Server

• String serverIdKey—The server Id key.

Sample Input XML

<cuicOperationRequest>
<operationType>POWER_ON_SERVER</operationType>
<payload>
<![CDATA[
<PowerOnServer>
<serverIdKey></serverIdKey>

</PowerOnServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress}.

See Also

Hard Reset Server, on page 89

Power Cycle Server, on page 90

Power Off Server, on page 90

Shutdown Server, on page 92

Set Label on Server, on page 93

Toggle Locator LED on Server, on page 94

Shutdown Server
Objective

Shut down one or more servers.

Prerequisites

One or more Servers must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/ShutDownAction

Components

The parameters of the SHUT_DOWN_SERVER API are:

• String serverIdKey—The server Id key.

Sample Input XML

<cuicOperationRequest>
<operationType>SHUT_DOWN_SERVER</operationType>
<payload>
<![CDATA[
<ShutDownServer>
<serverIdKey></serverIdKey>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
92

Examples
Shutdown Server

</ShutDownServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress}.

See Also

Power Cycle Server, on page 90

Power On Server, on page 91

Power Off Server, on page 90

Hard Reset Server, on page 89

Set Label on Server, on page 93

Toggle Locator LED on Server, on page 94

Set Label on Server
Objective

Set label for one or more servers.

Prerequisites

One or more Servers must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/SetLabelAction

Components

The parameters of the SET_LABEL API are:

• String serverIdKey—The server Id key.

• String setLabel—The label name.

Sample Input XML

<cuicOperationRequest>
<operationType>SET_LABEL</operationType>
<payload>
<![CDATA[
<SetLabelServer>
<serverIdKey></serverIdKey>

<setLabel></setLabel>

</SetLabelServer>

]]>
</payload>
</cuicOperationRequest>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
93

Examples
Set Label on Server

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress}.

See Also

Power Cycle Server, on page 90

Power On Server, on page 91

Power Off Server, on page 90

Shutdown Server, on page 92

Hard Reset Server, on page 89

Toggle Locator LED on Server, on page 94

Toggle Locator LED on Server
Objective

Toggle Locator LED one or more Servers.

Prerequisites

One or more Servers must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/LocatorLedAction

Components

The parameters of the LOCATOR_LED API are:

• String serverIdKey—The server Id key.

• String locatorLed—The locator LED.

Sample Input XML

<cuicOperationRequest>
<operationType>LOCATOR_LED</operationType>
<payload>
<![CDATA[
<LocatorLedServer>
<serverIdKey></serverIdKey>

<locatorLed>ON</locatorLed>

</LocatorLedServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress}.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
94

Examples
Toggle Locator LED on Server

See Also

Power Cycle Server, on page 90

Power On Server, on page 91

Power Off Server, on page 90

Shutdown Server, on page 92

Set Label on Server, on page 93

Hard Reset Server, on page 89

Reading Servers by Tag Name
Objective

Get servers which are tagged with a specific name.

Prerequisites

One or more servers must be configured as Rack Accounts and be tagged.

REST URL

/cloupia/api-v2/ServersByTagName/{ServersByTagNameId}

Implementation

The ServersByTagValueId argument must be a valid tag value defined in the Tag Library.

See Also

Reading Servers by Account Name, on page 101

Reading Servers by Rack Group, on page 103

Reading Servers by Serial Number, on page 103

Reading Servers by Server IP, on page 102

Reading Servers by Tag Value, on page 95

Reading Servers by UUID, on page 102

Reading Servers by Product ID, on page 100

Reading Servers by Tag Value
Objective

Get Servers which are tagged with a specific value.

Prerequisites

One or more servers must be configured as Rack Accounts and be tagged.

REST URL

/cloupia/api-v2/ServersByTagValue/{ServersByTagValueId}

Cisco IMC Supervisor REST API Cookbook, Release 2.4
95

Examples
Reading Servers by Tag Name

Implementation

The ServersByTagValueId argument must be a valid tag value defined in the Tag Library.

See Also

Reading Servers by Tag Name, on page 95

Reading Servers by Account Name, on page 101

Reading Servers by Rack Group, on page 103

Reading Servers by Serial Number, on page 103

Reading Servers by Server IP, on page 102

Reading Servers by UUID, on page 102

Reading Servers by Product ID, on page 100

Reading Server Faults by DN
Objective

Get Server Faults by affected DN.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFaultsByDN/{CIMCFaultsByDNId}

Implementation

The CIMCFaultsByDNId argument must be a valid DN value. The RNs in the DN must be separated by
an underscore instead of a forward slash.

See Also

Reading Server Faults by Account Name, on page 97

Reading Server Faults by Fault Code, on page 98

Reading Server Faults by IP Address, on page 96

Reading Server Faults by Severity, on page 97

Reading Server Faults by IP Address
Objective

Get Faults of a specific server by its IP address.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFaultsByServerIP/{CIMCFaultsByServerIPId}

Cisco IMC Supervisor REST API Cookbook, Release 2.4
96

Examples
Reading Server Faults by DN

Implementation

The CIMCFaultsByServerIPId argument must be a valid IP Address. The dots in the IP address need to
be substituted with an underscore.

See Also

Reading Server Faults by DN, on page 96

Reading Server Faults by Fault Code, on page 98

Reading Server Faults by Account Name, on page 97

Reading Server Faults by Severity, on page 97

Reading Server Faults by Account Name
Objective

Get Faults of a specific server by its Account Name.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFaultsByAccountName/{CIMCFaultsByAccountNameId}

Implementation

The CIMCFaultsByAccountNameId argument must be a valid Account Name of a server being managed
by IMCS.

See Also

Reading Server Faults by DN, on page 96

Reading Server Faults by Fault Code, on page 98

Reading Server Faults by IP Address, on page 96

Reading Server Faults by Severity, on page 97

Reading Server Faults by Severity
Objective

Get Server Faults by Severity level.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFaultsBySeverity/{CIMCFaultsBySeverityId}

Implementation

The CIMCFaultsBySeverityId argument must be a valid Severity Level.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
97

Examples
Reading Server Faults by Account Name

See Also

Reading Server Faults by DN, on page 96

Reading Server Faults by Fault Code, on page 98

Reading Server Faults by IP Address, on page 96

Reading Server Faults by Account Name, on page 97

Reading Server Faults by Fault Code
Objective

Get Server Faults by Fault Code.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFaultsByCode/{CIMCFaultsByCodeId}

Implementation

The CIMCFaultsByCodeId argument must be a valid Fault Code.

See Also

Reading Server Faults by DN, on page 96

Reading Server Faults by Account Name, on page 97

Reading Server Faults by IP Address, on page 96

Reading Server Faults by Severity, on page 97

Reading Server Faults History by DN
Objective

Get Server Faults by affected DN.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFaultsHistoryByDN/{CIMCFaultsHistoryByDNId}

Implementation

The CIMCFaultsHistoryByDNId argument must be a valid DN value. The RNs in the DN must be
separated by an underscore instead of a forward slash.

See Also

Reading Server Faults History by Fault Code, on page 100

Reading Server Faults History by IP Address, on page 99

Reading Server Faults History by Severity, on page 100

Cisco IMC Supervisor REST API Cookbook, Release 2.4
98

Examples
Reading Server Faults by Fault Code

Reading Server Faults History by Account Name, on page 99

Reading Server Faults History by IP Address
Objective

Get Faults History of a specific server by its IP address.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFaultsHistoryByServerIP/{CIMCFaultsHistoryByServerIPId}

Implementation

The CIMCFaultsHistoryByServerIPId argument must be a valid IP address of a server being managed
by IMCS. The dots in the IP address need to be substituted with an underscore.

See Also

Reading Server Faults History by Fault Code, on page 100

Reading Server Faults History by DN, on page 98

Reading Server Faults History by Severity, on page 100

Reading Server Faults History by Account Name, on page 99

Reading Server Faults History by Account Name
Objective

Get Faults History of a specific server by its Account Name.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFaultsHistoryByAccountName/{CIMCFaultsHistoryByAccountNameId}

Implementation

The CIMCFaultsHistoryByAccountNameId argument must be a valid Account Name of a server being
managed by Cisco IMC Supervisor.

See Also

Reading Server Faults History by Fault Code, on page 100

Reading Server Faults History by DN, on page 98

Reading Server Faults History by Severity, on page 100

Reading Server Faults History by IP Address, on page 99

Cisco IMC Supervisor REST API Cookbook, Release 2.4
99

Examples
Reading Server Faults History by IP Address

Reading Server Faults History by Severity
Objective

Get Server Faults History by Severity level.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFaultsHistoryBySeverity/{CIMCFaultsHistoryBySeverityId}

Implementation

The CIMCFaultsHistoryBySeverityId argument must be a valid Severity Level.

See Also

Reading Server Faults History by Fault Code, on page 100

Reading Server Faults History by DN, on page 98

Reading Server Faults History by Account Name, on page 99

Reading Server Faults History by IP Address, on page 99

Reading Server Faults History by Fault Code
Objective

Get Server Faults History by Fault Code.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCFaultsHistoryByCode/{CIMCFaultsHistoryByCodeId}

Implementation

The CIMCFaultsHistoryByCodeId argument must be a valid Fault Code.

See Also

Reading Server Faults History by Severity, on page 100

Reading Server Faults History by DN, on page 98

Reading Server Faults History by Account Name, on page 99

Reading Server Faults History by IP Address, on page 99

Reading Servers by Product ID
Objective

Get Server By Product ID.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
100

Examples
Reading Server Faults History by Severity

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerByProductID/{CIMCServerByProductIDId}

Implementation

The CIMCServerByProductIDId argument must be a valid Product ID of a server being managed by
Cisco IMC Supervisor.

See Also

Reading Servers by Tag Name, on page 95

Reading Servers by Account Name, on page 101

Reading Servers by Rack Group, on page 103

Reading Servers by Serial Number, on page 103

Reading Servers by Server IP, on page 102

Reading Servers by UUID, on page 102

Reading Servers by Tag Value, on page 95

Reading Servers by Account Name
Objective

Get Servers By Account Name

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerByAccountName/{CIMCServerByAccountNameId}

Implementation

The CIMCServerByAccountNameId argumentmust be a valid Account Name of a server beingmanaged
by Cisco IMC Supervisor.

See Also

Reading Servers by Tag Name, on page 95

Reading Servers by Tag Value, on page 95

Reading Servers by Rack Group, on page 103

Reading Servers by Serial Number, on page 103

Reading Servers by Server IP, on page 102

Reading Servers by UUID, on page 102

Reading Servers by Product ID, on page 100

Cisco IMC Supervisor REST API Cookbook, Release 2.4
101

Examples
Reading Servers by Account Name

Reading Servers by UUID
Objective

Get Server By UUID

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerByUUID/{CIMCServerByUUIDId}

Implementation

The CIMCServerByUUIDId argument must be a valid UUID of a server being managed by Cisco IMC
Supervisor.

See Also

Reading Servers by Tag Name, on page 95

Reading Servers by Tag Value, on page 95

Reading Servers by Account Name, on page 101

Reading Servers by Rack Group, on page 103

Reading Servers by Serial Number, on page 103

Reading Servers by Server IP, on page 102

Reading Servers by Product ID, on page 100

Reading Servers by Server IP
Objective

Get Server By IP Address.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerByServerIP/{CIMCServerByServerIPId}

Implementation

The CIMCServerByServerIPId argument must be a valid IP address of a server being managed by Cisco
IMC Supervisor. The dots in the IP address need to be substituted with an underscore.

See Also

Reading Servers by Tag Name, on page 95

Reading Servers by Account Name, on page 101

Reading Servers by Rack Group, on page 103

Reading Servers by Serial Number, on page 103

Reading Servers by Server IP, on page 102

Cisco IMC Supervisor REST API Cookbook, Release 2.4
102

Examples
Reading Servers by UUID

Reading Servers by UUID, on page 102

Reading Servers by Product ID, on page 100

Reading Servers by Serial Number
Objective

Get Server By Serial Number.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerBySerialNum/{CIMCServerBySerialNumId}

Implementation

The CIMCServerBySerialNumId argument must be a valid serial number of a server being managed by
Cisco IMC Supervisor.

See Also

Reading Servers by Tag Name, on page 95

Reading Servers by Tag Value, on page 95

Reading Servers by Account Name, on page 101

Reading Servers by Rack Group, on page 103

Reading Servers by Server IP, on page 102

Reading Servers by Product ID, on page 100

Reading Servers by UUID, on page 102

Reading Servers by Rack Group
Objective

Get Server By Rack Group.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerByRackGroup/{CIMCServerByRackGroupId}

Implementation

TheCIMCServerByRackGroupId argumentmust be a valid RackGroup existing in Cisco IMCSupervisor.

See Also

Reading Servers by Tag Name, on page 95

Reading Servers by Tag Value, on page 95

Reading Servers by Account Name, on page 101

Cisco IMC Supervisor REST API Cookbook, Release 2.4
103

Examples
Reading Servers by Serial Number

Reading Servers by Server IP, on page 102

Reading Servers by Serial Number, on page 103

Reading Servers by Product ID, on page 100

Reading Servers by UUID, on page 102

Reading Server Inventory by Account Name
Objective

Get Server Inventory By Account Name.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerInventoryByAccountName/{CIMCServerInventoryByAccountNameId}

Implementation

The CIMCServerInventoryByAccountNameId argument must be a valid Account Name of a server being
managed by Cisco IMC Supervisor.

See Also

Reading Server Inventory by Server IP, on page 104

Reading Server Inventory by Server IP
Objective

Get server inventory by IP address.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerInventoryByServerIP/{CIMCServerInventoryByServerIPId}

Implementation

The CIMCServerInventoryByServerIPId argument must be a valid IP address of a server being managed
by Cisco IMC Supervisor. The dots in the IP address need to be substituted with an underscore.

See Also

Reading Server Inventory by Account Name, on page 104

Reading Server Utilization by Account Name
Objective

Get Server Utilization By Account Name

Cisco IMC Supervisor REST API Cookbook, Release 2.4
104

Examples
Reading Server Inventory by Account Name

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerUtilizationByAccountName/{CIMCServerUtilizationByAccountNameId}

Implementation

The CIMCServerUtilizationByAccountNameId argument must be a valid Account Name of a server
being managed by Cisco IMC Supervisor.

See Also

Reading Server Utilization by Server IP, on page 105

Reading Server Utilization by Server IP
Objective

Get Server Utilization By IP Address.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerUtilizationByServerIP/{CIMCServerUtilizationByServerIPId}

Implementation

The CIMCServerUtilizationByServerIPId argument must be a valid IP address of a server being managed
by Cisco IMC Supervisor. The dots in the IP address need to be substituted with an underscore.

See Also

Reading Server Utilization by Account Name, on page 104

Reading Server Utilization History by Account Name
Objective

Get Server Utilization History By Account Name.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerUtilizationHistoryByAccountName/{CIMCServerUtilizationHistoryByAccountNameId}

Implementation

The CIMCServerUtilizationHistoryByAccountNameId argument must be a valid Account Name of a
server being managed by Cisco IMC Supervisor.

See Also

Reading Server Utilization History by Server IP, on page 106

Cisco IMC Supervisor REST API Cookbook, Release 2.4
105

Examples
Reading Server Utilization by Server IP

Reading Server Utilization History by Server IP
Objective

Get Server Utilization History By IP Address.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerUtilizationHistoryByServerIP/{CIMCServerUtilizationHistoryByServerIPId}

Implementation

The CIMCServerUtilizationHistoryByServerIPId argument must be a valid IP address of a server being
managed by Cisco IMC Supervisor. The dots in the IP address need to be substituted with an underscore.

See Also

Reading Server Utilization History by Account Name, on page 105

Reading Server Utilization History by Days
Objective

This task allows the user to query the server utilization history based on the last N days. The
CIMCServerUtilizationHistoryByDaysId argument must be a number between 1 and 180.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerUtilizationHistoryByDays/{CIMCServerUtilizationHistoryByDaysId}

Implementation

The CIMCServerUtilizationHistoryByDaysId argument must be a number between 1 and 180.

See Also

Reading Server Utilization History by Account Name, on page 105

Reading Server Utilization History by Server IP, on page 106

Reading Server Utilization History by Days for a Server using Account Name
Objective

This task allows the user to query the server utilization history based on the last N days for a specific
server, based on account name. The CIMCServerUtilizationHistoryByDaysId argument must be a
number between 1 and 180. The AccountNameId argument must be a valid account name of a server
being managed by Cisco IMC Supervisor.

Prerequisites

None

Cisco IMC Supervisor REST API Cookbook, Release 2.4
106

Examples
Reading Server Utilization History by Server IP

REST URL

/cloupia/api-v2/CIMCServerUtilizationHistoryByDays/{CIMCServerUtilizationHistoryByDaysId}
/AccountName/{AccountNameId}

Implementation

The CIMCServerUtilizationHistoryByDaysId argument must be a number between 1 and 180. The
AccountNameId argument must be a valid account name of a server being managed by Cisco IMC
Supervisor.

See Also

Reading Server Utilization History by Days for a Server using Server IP, on page 107

Reading Server Utilization History by Days for a Server using Server IP
Objective

This task allows the user to query the server utilization history based on the last N days for a specific
server, based on server IP. The CIMCServerUtilizationHistoryByDaysId argument must be a number
between 1 and 180. The ServerIPId argument must be a valid IP address of a server being managed by
Cisco IMC Supervisor.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCServerUtilizationHistoryByDays/{CIMCServerUtilizationHistoryByDaysId}
/ServerIP/{ServerIPId}

Implementation

The CIMCServerUtilizationHistoryByDaysId argument must be a number between 1 and 180. The
ServerIPId argument must be a valid IP address of a server being managed by Cisco IMC Supervisor.
The dots in the IP address need to be substituted with an underscore.

See Also

Reading Server Utilization History by Days for a Server using Account Name, on page 106

Mapping Host Image
Objective

This task allows the user to apply a host image profile on the E-Series server configured in the system
which will download the image you entered in the selected servers.

Prerequisites

One or more E-series server must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/HostImageMap

Components

The parameters of the MAP_HOST_IMAGE API are:

Cisco IMC Supervisor REST API Cookbook, Release 2.4
107

Examples
Reading Server Utilization History by Days for a Server using Server IP

• String ServerIdKey—The server key.

• String imageName—The name of the image that you want to map.

Sample Input XML

<cuicOperationRequest>
<operationType>MAP_HOST_IMAGE</operationType>
<payload>
<![CDATA[
<HostImageMap>
<serverIdKey></serverIdKey>

<imageName></imageName>

</HostImageMap>

]]>
</payload>
</cuicOperationRequest>

Implementation

ServerIdKey format: {AccountName};{ServerIPAddress}.

Unmapping Host Image
Objective

This task allows the user to unmap an image on the E-Series server configured in the system.

Prerequisites

One or more E _series server must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/UnmapHostImageMap

Components

The parameters of the UNMAP_HOST_IMAGE API are:

• String ServerIdKey—The server key

Sample Input XML

<cuicOperationRequest>
<operationType>UNMAP_HOST_IMAGE</operationType>
<payload>
<![CDATA[
<UnmapHostImageMap>
<serverIdKey></serverIdKey>

</UnmapHostImageMap>

]]>
</payload>
</cuicOperationRequest>

Implementation

ServerIdKey format: {AccountName};{ServerIPAddress}.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
108

Examples
Unmapping Host Image

Deleting Host Image
Objective

This task allows you to delete an image on the E-Series Server configured in the system.

Prerequisites

One or more E _series server must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/DeleteHostImageMap

Components

The parameters of the DELETE_HOST_IMAGE API are:

• String ServerIdKey—The server key

• String imageNames—The image name that you want to delete.

Sample Input XML

<cuicOperationRequest>
<operationType>DELETE_HOST_IMAGE</operationType>
<payload>
<![CDATA[
<DeleteHostImageMap>
<serverIdKey></serverIdKey>

<imageNames></imageNames>

</DeleteHostImageMap>

]]>
</payload>
</cuicOperationRequest>

Implementation

ServerIdKey format: {AccountName};{ServerIPAddress} is a mandatory field. imageNames is a
mandatory field and can be comma (,) separated value.

Creating an HCL Profile
Objective

This task allows the user to create a Hardware Compatibility List (HCL) profile on selected rack server(s)
configured in the system.

Prerequisites

One or more Servers must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/CIMCManageHCLProfileConfig/{CIMCHCLReportByProfileNameId}

Components

The parameters of the HCL_PROFILE_CREATE API are:

• String profileName—Name of the profile.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
109

Examples
Deleting Host Image

• String server—The HCL server.

• String hclReportData—The HCL report data.

Sample Input XML

<cuicOperationRequest>
<operationType>HCL_PROFILE_CREATE</operationType>
<payload>
<![CDATA[
<CIMCManageHCLProfileConfig>
<profileName></profileName>

<server></server>

</CIMCManageHCLProfileConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

The Select Profile argument is mandatory and must be unique. The Server(s) argument must consist of
a comma-separated list of Ids. Each Id is of the format: {AccountName};{ServerIPAddress}.

See Also

• Setting HCL OS Tag on Servers or Rack Groups , on page 111

• Modifying an HCL Profile, on page 110

• Deleting HCL Profile , on page 114

• Deleting HCL OS Tag on Servers or Rack Groups, on page 113

• Reading HCL OS Tag by Server IP , on page 115

• Reading HCL OS Versions by Vendor Name, on page 116

• Reading HCL Report by Profile Name, on page 116

• Reading HCL Report by Rack Group, on page 117

• Reading HCL Report by Server IP, on page 117

Modifying an HCL Profile
Objective

This task allows the user to modify a Hardware Compatibility List (HCL) profile on selected rack server(s)
configured in the system.

Prerequisites

One or more servers must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/CIMCModifyHCLProfileConfig

Cisco IMC Supervisor REST API Cookbook, Release 2.4
110

Examples
Modifying an HCL Profile

Components

The parameters of the HCL_PROFILE_UPDATE API are:

• String profileName—Name of the profile.

• String server—The server.

Sample Input XML

<cuicOperationRequest>
<operationType>HCL_PROFILE_UPDATE</operationType>
<payload>
<![CDATA[
<CIMCModifyHCLProfileConfig>
<profileName></profileName>

<server></server>

</CIMCModifyHCLProfileConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

The Select Profile argument is mandatory and must be existing. The Server(s) argument must consist of
a comma-separated list of Ids. Each Id is of the format: {AccountName};{ServerIPAddress}.

See Also

• Creating an HCL Profile, on page 109

• Setting HCL OS Tag on Servers or Rack Groups , on page 111

• Deleting HCL Profile , on page 114

• Deleting HCL OS Tag on Servers or Rack Groups, on page 113

• Reading HCL OS Tag by Server IP , on page 115

• Reading HCL OS Versions by Vendor Name, on page 116

• Reading HCL Report by Profile Name, on page 116

• Reading HCL Report by Rack Group, on page 117

• Reading HCL Report by Server IP, on page 117

Setting HCL OS Tag on Servers or Rack Groups
Objective

This task allows you to perform a Set OS Tag action on rack servers or rack groups configured in the
system.

Prerequisites

One or more Servers must be configured as Rack Accounts.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
111

Examples
Setting HCL OS Tag on Servers or Rack Groups

REST URL

/cloupia/api-v2/SetHCLOSTag

Components

The parameters of the CREATE API are:

• String tagLevel—The tag level.

• String serverGroups—The rack group.

• String servers—The server.

• String os—A valid OS vendor name.

• String osVersion—A valid OS version name.

Sample Input XML

<cuicOperationRequest>
<payload>
<![CDATA[
<SetHCLOSTag>
<tagLevel>SERVERGROUP</tagLevel>

<!-- Set this value only when tagLevel not equals to SERVER -->
<serverGroups></serverGroups>

<!-- Set this value only when tagLevel not equals to SERVERGROUP -->
<servers></servers>

<os></os>

<osVersion></osVersion>

</SetHCLOSTag>

]]>
</payload>
</cuicOperationRequest>

Implementation

• Choose argument must either be Server or ServerGroup.

• The Server(s) argument must consist of a comma-separated list of Ids. Each Id is of the format:
{AccountName};{ServerIPAddress}.

• The Server Group(s) argument must consist of a comma-separated list of Rack Group names.

• The Operating System argument must be a valid OS vendor name.

• The Operating System Version argument must be a valid OS version name.

See Also

• Creating an HCL Profile, on page 109

• Modifying an HCL Profile, on page 110

• Deleting HCL Profile , on page 114

• Deleting HCL OS Tag on Servers or Rack Groups, on page 113

Cisco IMC Supervisor REST API Cookbook, Release 2.4
112

Examples
Setting HCL OS Tag on Servers or Rack Groups

• Reading HCL OS Tag by Server IP , on page 115

• Reading HCL OS Versions by Vendor Name, on page 116

• Reading HCL Report by Server IP, on page 117

• Reading HCL Report by Profile Name, on page 116

• Reading HCL Report by Rack Group, on page 117

Deleting HCL OS Tag on Servers or Rack Groups
Objective

This task allows the user to perform delete OS Tag action on rack servers or rack groups configured in
the system.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHCLTagByServerIP/{serverIP}

Components

The parameters of the HCL_TAG_DELETE API are:

• String tagLevel—The tag level.

• String serverGroups—The rack group.

• String servers—The server.

Sample Input XML

<cuicOperationRequest>
<operationType>HCL_TAG_DELETE</operationType>
<payload>
<![CDATA[
<DeleteHCLOSTag>
<tagLevel>SERVERGROUP</tagLevel>

<!-- Set this value only when tagLevel not equals to SERVER -->
<serverGroups></serverGroups>

<!-- Set this value only when tagLevel not equals to SERVERGROUP -->
<servers></servers>

</DeleteHCLOSTag>

]]>
</payload>
</cuicOperationRequest>

Implementation

• Choose argument must either be Server or ServerGroup.

• The Server(s) argument must consist of a comma-separated list of Ids. Each Id is of the format:
{AccountName};{ServerIPAddress}.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
113

Examples
Deleting HCL OS Tag on Servers or Rack Groups

• The Server Group(s) argument must consist of a comma-separated list of Rack Group names.

See Also

• Creating an HCL Profile, on page 109

• Setting HCL OS Tag on Servers or Rack Groups , on page 111

• Modifying an HCL Profile, on page 110

• Deleting HCL Profile , on page 114

• Reading HCL OS Tag by Server IP , on page 115

• Reading HCL OS Versions by Vendor Name, on page 116

• Reading HCL Report by Profile Name, on page 116

• Reading HCL Report by Rack Group, on page 117

• Reading HCL Report by Server IP, on page 117

Deleting HCL Profile
Objective

This task allows the user to delete a Hardware Compatibility List (HCL) profile configured in the system.

Prerequisites

None

REST URL

/cloupia/api-v2/DeleteHCLProfileConfig

Components

The parameters of the HCL_PROFILE_DELETE API are:

• String profileName—Name of the profile.

Sample Input XML

<cuicOperationRequest>
<operationType>HCL_PROFILE_DELETE</operationType>
<payload>
<![CDATA[
<DeleteHCLProfileConfig>
<profileName></profileName>

</DeleteHCLProfileConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

The Select Profile argument is mandatory and must be existing.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
114

Examples
Deleting HCL Profile

See Also

• Setting HCL OS Tag on Servers or Rack Groups , on page 111

• Creating an HCL Profile, on page 109

• Modifying an HCL Profile, on page 110

• Deleting HCL OS Tag on Servers or Rack Groups, on page 113

• Reading HCL OS Tag by Server IP , on page 115

• Reading HCL OS Versions by Vendor Name, on page 116

• Reading HCL Report by Profile Name, on page 116

• Reading HCL Report by Rack Group, on page 117

• Reading HCL Report by Server IP, on page 117

Reading HCL OS Tag by Server IP
Objective

This task allows the user to retrieve OS Tag based on the IP address of the server.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHCLTagByServerIP/{serverIP}

Implementation

The serverIP argument must be a valid IP address of a server being managed by Cisco IMC Supervisor.
The dots in the IP address need to be substituted with an underscore.

See Also

• Setting HCL OS Tag on Servers or Rack Groups , on page 111

• Creating an HCL Profile, on page 109

• Modifying an HCL Profile, on page 110

• Deleting HCL Profile , on page 114

• Deleting HCL OS Tag on Servers or Rack Groups, on page 113

• Reading HCL OS Versions by Vendor Name, on page 116

• Reading HCL Report by Profile Name, on page 116

• Reading HCL Report by Rack Group, on page 117

• Reading HCL Report by Server IP, on page 117

Cisco IMC Supervisor REST API Cookbook, Release 2.4
115

Examples
Reading HCL OS Tag by Server IP

Reading HCL OS Versions by Vendor Name
Objective

This task allows the user to retrieve OS Versions based on the Vendor Name provided as input.

Prerequisites

None

REST URL

/cloupia/api-v2/HCLOSVersionsByVendorName/{osVendor}

Implementation

The serverIP argument must be a valid IP Vendor Name available in Cisco IMC Supervisor.

See Also

• Setting HCL OS Tag on Servers or Rack Groups , on page 111

• Creating an HCL Profile, on page 109

• Modifying an HCL Profile, on page 110

• Deleting HCL Profile , on page 114

• Deleting HCL OS Tag on Servers or Rack Groups, on page 113

• Reading HCL OS Tag by Server IP , on page 115

• Reading HCL Report by Profile Name, on page 116

• Reading HCL Report by Rack Group, on page 117

• Reading HCL Report by Server IP, on page 117

Reading HCL Report by Profile Name
Objective

This task allows the user to retrieve HCL Report based on the Profile Name.

Prerequisites

None

REST URL

/cloupia/api-v2/CIMCHCLReportByProfileName/{CIMCHCLReportByProfileNameId}

Implementation

The CIMCHCLReportByProfileNameId argument must be a valid Profile Name.

See Also

• Setting HCL OS Tag on Servers or Rack Groups , on page 111

• Creating an HCL Profile, on page 109

• Modifying an HCL Profile, on page 110

Cisco IMC Supervisor REST API Cookbook, Release 2.4
116

Examples
Reading HCL OS Versions by Vendor Name

• Deleting HCL Profile , on page 114

• Deleting HCL OS Tag on Servers or Rack Groups, on page 113

• Reading HCL OS Tag by Server IP , on page 115

• Reading HCL OS Versions by Vendor Name, on page 116

• Reading HCL Report by Rack Group, on page 117

• Reading HCL Report by Server IP, on page 117

Reading HCL Report by Rack Group
Objective

This task allows the user to retrieve HCL Report based on the rack group name.

Prerequisites

One or more Servers must be configured as Rack Accounts.

REST URL

/cloupia/api-v2/CIMCServerHCLReportByRackGroup/{CIMCServerHCLReportByRackGroupId}

Implementation

The CIMCServerHCLReportByRackGroupId argument must be a valid Rack Group name managed by
Cisco IMC Supervisor. The dots in the IP address need to be substituted with an underscore.

See Also

• Setting HCL OS Tag on Servers or Rack Groups , on page 111

• Creating an HCL Profile, on page 109

• Modifying an HCL Profile, on page 110

• Deleting HCL Profile , on page 114

• Deleting HCL OS Tag on Servers or Rack Groups, on page 113

• Reading HCL OS Tag by Server IP , on page 115

• Reading HCL OS Versions by Vendor Name, on page 116

• Reading HCL Report by Profile Name, on page 116

• Reading HCL Report by Server IP, on page 117

Reading HCL Report by Server IP
Objective

This task allows the user to retrieve HCL Report based on the IP address of the server.

Prerequisites

One or more Servers must be configured as Rack Accounts.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
117

Examples
Reading HCL Report by Rack Group

REST URL

/cloupia/api-v2/CIMCServerHCLReportByServerIP/{CIMCServerHCLReportByServerIPId}

Implementation

The CIMCServerHCLReportByServerIPId argument must be a valid IP address of a server beingmanaged
by Cisco IMC Supervisor. The dots in the IP address need to be substituted with an underscore.

See Also

• Setting HCL OS Tag on Servers or Rack Groups , on page 111

• Creating an HCL Profile, on page 109

• Modifying an HCL Profile, on page 110

• Deleting HCL Profile , on page 114

• Deleting HCL OS Tag on Servers or Rack Groups, on page 113

• Reading HCL OS Tag by Server IP , on page 115

• Reading HCL OS Versions by Vendor Name, on page 116

• Reading HCL Report by Profile Name, on page 116

• Reading HCL Report by Rack Group, on page 117

Managing Users and Groups

Overview
The examples in this category consists of managing users and user groups to access Cisco IMC Supervisor.

Creating a User Group
Objective

Create a group of users in Cisco IMC Supervisor. This task allows a user to create a new group, which
denotes a related set of users.

Prerequisites

None

REST URL

/cloupia/api-v2/group

Components

The parameters of the CREATE API are:

• String groupName—The name of the group or the customer organization.

• String groupDescription—Optional. The description of the group or the customer organization, if
required.

Cisco IMC Supervisor REST API Cookbook, Release 2.4
118

Examples
Managing Users and Groups

• String parentGroup—Optional. The name of the parent group.

• String groupCode—Optional. A shorter name or code name for the group.

• String groupContact—The contact name for the group.

• String firstName—Optional. The first name of the group owner.

• String lastName—Optional. The last name of the group owner.

• String phone—Optional. The phone number of the group owner.

• String address—Optional. The address of the group owner.

• String groupSharePolicyId—Optional. The ID of group share policy for the users in this group.

• Boolean allowPrivateUsers—Optional. The option that allows creating users with exclusive access
to their resources.

Sample Input XML

<cuicOperationRequest>
<payload>
<![CDATA[
<AddGroupConfig>
<groupName></groupName>

<groupDescription></groupDescription>

<parentGroup></parentGroup>

<groupCode></groupCode>

<groupContact></groupContact>

<firstName></firstName>

<lastName></lastName>

<phone></phone>

<address></address>

<groupSharePolicyId>0</groupSharePolicyId>

<allowPrivateUsers>false</allowPrivateUsers>

</AddGroupConfig>
]]>
</payload>
</cuicOperationRequest>

Implementation

The user group name is mandatory and must be unique. Contact Email is mandatory.

See Also

Updating a User Group , on page 120

Deleting a User Group, on page 121

Enabling All Users in a Group, on page 122

Cisco IMC Supervisor REST API Cookbook, Release 2.4
119

Examples
Creating a User Group

Disabling All Users in a Group, on page 123

Updating a User Group
Objective

This task allows a user to update an existing group, which denotes a related set of users.

Prerequisites

None

REST URL

/cloupia/api-v2/group

Components

The parameters of the UPDATE API are:

• String groupId—The id of the group or the customer organization.

• String groupDescription—Optional. The description of the group or the customer organization, if
required.

• String parentGroup—Optional. The name of the parent group.

• String groupCode—Optional. A shorter name or code name for the group.

• String costCenter—Optional. The cost centr for the group.

• String groupContact—The contact name for the group.

• String firstName—Optional. The first name of the group owner.

• String lastName—Optional. The last name of the group owner.

• String phone—Optional. The phone number of the group owner.

• String address—Optional. The address of the group owner.

• String groupSharePolicyId—Optional. The ID of group share policy for the users in this group.

• Boolean allowPrivateUsers—Optional. The option that allows creating users with exclusive access
to their resources.

Sample Input XML

<cuicOperationRequest>
<payload>
<![CDATA[
<ModifyGroupConfig>
<groupId></groupId>

<groupDescription></groupDescription>

<parentGroup></parentGroup>

<groupCode></groupCode>

<costCenter></costCenter>

<groupContact></groupContact>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
120

Examples
Updating a User Group

<firstName></firstName>

<lastName></lastName>

<phone></phone>

<address></address>

<groupSharePolicyId>0</groupSharePolicyId>

<allowPrivateUsers>false</allowPrivateUsers>

</ModifyGroupConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Name cannot be modified. The groupId tag is mandatory and must include the numeric ID of a valid
existing group. Contact Email is mandatory.

See Also

Creating a User Group, on page 118

Deleting a User Group, on page 121

Enabling All Users in a Group, on page 122

Disabling All Users in a Group, on page 123

Deleting a User Group
Objective

This task allows a user to delete an existing group, which denotes a related set of users.

Prerequisites

None

REST URL

/cloupia/api-v2/group

Components

The parameters of the DELETE_USER API are:

String groupName—The name of the group or the customer organization.

Sample Input XML

<cuicOperationRequest>
<operationType>DELETE_GROUP</operationType>
<payload>
<![CDATA[
<DeleteGroupConfig>
<groupID></groupID>
</DeleteGroupConfig>
]]>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
121

Examples
Deleting a User Group

</payload>
</cuicOperationRequest>

Implementation

The groupId tag is mandatory and must include the numeric ID of a valid existing group.

See Also

Creating a User Group, on page 118

Updating a User Group , on page 120

Enabling All Users in a Group, on page 122

Disabling All Users in a Group, on page 123

Enabling All Users in a Group
Objective

This task allows a user to enable all users which are assigned to a group.

Prerequisites

None

REST URL

/cloupia/api-v2/group

Components

The parameter of the ENABLE_ALL_USERS_IN_GROUP API is:

String groupName—The name of the group or the customer organization.

Sample Input XML

<cuicOperationRequest>
<operationType>ENABLE_ALL_USERS_IN_GROUP</operationType>
<payload>
<![CDATA[
<EnableAllUsersInGroupConfig>
<groupID></groupID>

</EnableAllUsersInGroupConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

The groupId tag is mandatory and must include the numeric ID of a valid existing group.

See Also

Creating a User Group, on page 118

Updating a User Group , on page 120

Deleting a User Group, on page 121

Disabling All Users in a Group, on page 123

Cisco IMC Supervisor REST API Cookbook, Release 2.4
122

Examples
Enabling All Users in a Group

Disabling All Users in a Group
Objective

This task allows a user to disable all users which are assigned to a Group.

Prerequisites

None

REST URL

/cloupia/api-v2/group

Components

The parameter of the DISABLE_ALL_USERS_IN_GROUP API is:

String groupName—The name of the group or the customer organization.

Sample Input XML

<cuicOperationRequest>
<operationType>DISABLE_ALL_USERS_IN_GROUP</operationType>
<payload>
<![CDATA[
<DisableAllUsersInGroupConfig>
<groupID></groupID>

</DisableAllUsersInGroupConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

The groupId tag is mandatory and must include the numeric ID of a valid existing group.

See Also

Creating a User Group, on page 118

Deleting a User Group, on page 121

Updating a User Group , on page 120

Enabling All Users in a Group, on page 122

Creating a User
Objective

This task allows the user to create a new user.

Prerequisites

None

REST URL

/cloupia/api-v2/user

Cisco IMC Supervisor REST API Cookbook, Release 2.4
123

Examples
Disabling All Users in a Group

Components

The parameters of the CREATE API are:

• String userType—The type of user.

• String userGroup—Optional. The group of the user.

• String mspOrganization—Optional. MSP organization user.

• String loginName—The login name for the user.

• String password—The password for the user.

• String confirmPassword—Repeat the password from the previous field.

• String userContactEmail—The email address.

• String firstName—Optional. The first name of the group owner.

• String lastName—Optional. The last name of the group owner.

• String phone—Optional. The phone number of the group owner.

• String address—Optional. The address of the group owner.

Sample Input XML

<cuicOperationRequest>
<payload>
<![CDATA[
<AddUserConfig>
<userType>GroupAdmin</userType>

<!-- Accepts value from the list: userGroupByType-->
<userGroup>1</userGroup>

<mspOrganization></mspOrganization>

<loginName></loginName>

<!-- Accepts value from the list: password-->
<password></password>

<!-- Accepts value from the list: password-->
<confirmPassword></confirmPassword>

<userContactEmail></userContactEmail>

<firstName></firstName>

<lastName></lastName>

<phone></phone>

<address></address>

<!-- Accepts value from the list: locale-->
<locale>en_US</locale>

</AddUserConfig>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
124

Examples
Creating a User

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must be unique. Password and Confirm Password are mandatory and the
values must match. User Contact Email is mandatory. User Type is mandatory and must be an existing
valid User Role. User Group Id is required only if the User Type is set to 'Group Admin', and it must
denote the numeric Id of an existing User Group.

See Also

Reading a User, on page 125

Updating a User , on page 126

Deleting a User, on page 127

Enabling a User, on page 128

Disabling a User, on page 129

Updating a User Expiry Date, on page 130

Updating a User Password, on page 131

Reading a User
Objective

This task allows the user to query the details of an existing user. The userId argument must be a valid
login name of a user. If no argument is specified, no results will be returned.

Prerequisites

None

REST URL

/cloupia/api-v2/user/{userId}

Implementation

The userId argument must be a valid login name of a user. If no argument is specified, no results will be
returned.

See Also

Creating a User, on page 123

Updating a User , on page 126

Deleting a User, on page 127

Enabling a User, on page 128

Disabling a User, on page 129

Updating a User Expiry Date, on page 130

Updating a User Password, on page 131

Cisco IMC Supervisor REST API Cookbook, Release 2.4
125

Examples
Reading a User

Updating a User
Objective

This task allows to update an existing user.

Prerequisites

None

REST URL

/cloupia/api-v2/user

Components

The parameters of the UPDATE USER API are:

• String loginName—The login name for the user.

• String userType—The type of user.

• String userGroup—Optional. The group of the user.

• String mspOrganization—Optional. MSP organization user.

• String userContactEmail—The email address.

• String firstName—Optional. The first name of the group owner.

• String lastName—Optional. The last name of the group owner.

• String phone—Optional. The phone number of the group owner.

• String address—Optional. The address of the group owner.

Sample Input XML

<cuicOperationRequest>
<operationType>UPDATE_USER</operationType>
<payload>
<![CDATA[
<ModifyUserConfig>
<loginName></loginName>

<userType>GroupAdmin</userType>

<userGroup>1</userGroup>

<mspOrganization></mspOrganization>

<userContactEmail></userContactEmail>

<firstName></firstName>

<lastName></lastName>

<phone></phone>

<address></address>

<!-- Accepts value from the list: locale-->
<locale>en_US</locale>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
126

Examples
Updating a User

</ModifyUserConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must denote an existing valid user. It cannot be changed. User Contact
Email is mandatory. User Type is mandatory and must be an existing valid User Role. User Group Id is
required only if the User Type is set to 'Group Admin', and it must denote the numeric Id of an existing
User Group.

See Also

Creating a User, on page 123

Reading a User, on page 125

Deleting a User, on page 127

Enabling a User, on page 128

Disabling a User, on page 129

Updating a User Expiry Date, on page 130

Updating a User Password, on page 131

Deleting a User
Objective

This task allows to delete an existing User.

Prerequisites

None

REST URL

/cloupia/api-v2/user

Components

The parameters of the DELETE_USER API are:

String loginName—The login name for the user.

Sample Input XML

<cuicOperationRequest>
<operationType>DELETE_USER</operationType>
<payload>
<![CDATA[
<DeleteUserConfig>
<loginName></loginName>

</DeleteUserConfig>

]]>
</payload>
</cuicOperationRequest>

Cisco IMC Supervisor REST API Cookbook, Release 2.4
127

Examples
Deleting a User

Implementation

Login Name is mandatory and must denote an existing valid user.

See Also

Creating a User, on page 123

Reading a User, on page 125

Updating a User , on page 126

Enabling a User, on page 128

Disabling a User, on page 129

Updating a User Expiry Date, on page 130

Updating a User Password, on page 131

Enabling a User
Objective

This task allows to enable an existing user whose account has been disabled.

Prerequisites

None

REST URL

/cloupia/api-v2/user

Components

The parameter of the ENABLE_USER API is:

String loginName—The login name for the user.

Sample Input XML

<cuicOperationRequest>
<operationType>ENABLE_USER</operationType>
<payload>
<![CDATA[
<EnableUserConfig>
<loginName></loginName>

</EnableUserConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must denote an existing valid user.

See Also

Creating a User, on page 123

Reading a User, on page 125

Updating a User , on page 126

Cisco IMC Supervisor REST API Cookbook, Release 2.4
128

Examples
Enabling a User

Deleting a User, on page 127

Disabling a User, on page 129

Updating a User Expiry Date, on page 130

Updating a User Password, on page 131

Disabling a User
Objective

This task allows to disable an existing User whose account has been enabled.

Prerequisites

None

REST URL

/cloupia/api-v2/user

Components

The parameter of the DISABLE_USER API is:

String loginName—The login name for the user.

Sample Input XML

<cuicOperationRequest>
<operationType>DISABLE_USER</operationType>
<payload>
<![CDATA[
<DisableUserConfig>
<loginName></loginName>

</DisableUserConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must denote an existing valid user.

See Also

Creating a User, on page 123

Reading a User, on page 125

Updating a User , on page 126

Deleting a User, on page 127

Enabling a User, on page 128

Updating a User Expiry Date, on page 130

Updating a User Password, on page 131

Cisco IMC Supervisor REST API Cookbook, Release 2.4
129

Examples
Disabling a User

Updating a User Expiry Date
Objective

This task allows to update the expiry date of an existing user.

Prerequisites

None

REST URL

/cloupia/api-v2/user

Components

The parameters of the DISABLE_DATE API are:

• String loginName—The login name for the user.

• Long userExpiryDate—The expiry date set for the user.

Sample Input XML

<cuicOperationRequest>
<operationType>DISABLE_DATE</operationType>
<payload>
<![CDATA[
<ConfigureUserExpiryDateConfig>
<loginName></loginName>

<!-- Accepts value from the list: date_time-->
<userExpiryDate>1460449200000</userExpiryDate>

</ConfigureUserExpiryDateConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must denote an existing valid User. Expiry Date is mandatory and must
be represented in a numeric form denoting the timestamp of the expiry date/time.

See Also

Creating a User, on page 123

Reading a User, on page 125

Updating a User , on page 126

Deleting a User, on page 127

Enabling a User, on page 128

Disabling a User, on page 129

Updating a User Password, on page 131

Cisco IMC Supervisor REST API Cookbook, Release 2.4
130

Examples
Updating a User Expiry Date

Updating a User Password
Objective

This task allows to update an existing user password.

Prerequisites

None

REST URL

/cloupia/api-v2/user

Components

The parameters of the UPDATE_USER_PASSWORD API are:

• String loginName—The login name for the user.

• String password—The password for the user.

• String confirmPassword—Repeat the password from the previous field.

Sample Input XML

<cuicOperationRequest>
<operationType>UPDATE_USER_PASSWORD</operationType>
<payload>
<![CDATA[
<AddUserConfig>
<loginName></loginName>

<!-- Accepts value from the list: password-->
<password></password>

<!-- Accepts value from the list: password-->
<confirmPassword></confirmPassword>

</AddUserConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must denote an existing valid User. Password and Confirm Password are
mandatory and values must match.

See Also

Creating a User, on page 123

Reading a User, on page 125

Updating a User , on page 126

Deleting a User, on page 127

Enabling a User, on page 128

Disabling a User, on page 129

Cisco IMC Supervisor REST API Cookbook, Release 2.4
131

Examples
Updating a User Password

Updating a User Expiry Date, on page 130

Cisco IMC Supervisor REST API Cookbook, Release 2.4
132

Examples
Updating a User Password

	Cisco IMC Supervisor REST API Cookbook, Release 2.4
	Contents
	Preface
	Audience
	Conventions
	Documentation Feedback
	Obtaining Documentation and Submitting a Service Request
	Related Documentation

	New and Changed Information in Release 2.4(x.x)
	Overview
	Structure of an Example
	How to Use the Examples

	Examples
	Managing Firmware
	Overview
	Creating a Firmware Network Image
	Updating Firmware Network Image
	Finding Firmware Image
	Creating a Firmware Local Image
	Downloading Firmware Local Image
	Deleting Firmware Image Profile
	Running Firmware Upgrade
	Reading Firmware Image by a Profile Name
	Reading Firmware Image by Type
	Reading Firmware Image by Platform
	Reading Download Status by Profile Name
	Reading Firmware Upgrade Status by Profile Name
	Reading Firmware Upgrade Status by IP Address
	Creating a Host Image Profile
	Applying a Host Image Profile
	Creating a Cisco.Com Image Profile
	Deleting a Host Image Mapping Profile
	Downloading a Cisco.Com Image
	Finding a Cisco.com Image
	Reading Host Image Mapping Profile by a Profile Name
	Modifying a Host Image Mapping Profile
	Running a Host Image Upgrade
	Downloading Firmware Image to an SD Card
	Running Firmware Upgrade from SD Card
	Reading Download Status by Server IP
	Reading Download Status by Account Name

	Managing Platform Tasks
	Overview
	Creating an Email Alert Rule
	Reading an Email Alert Rule
	Updating an Email Alert Rule
	Deleting Email Alert Rules
	Enabling an Email Alert Rule
	Disabling an Email Alert Rule
	Creating Schedules
	Reading Schedules
	Updating a Schedule
	Deleting Schedules
	Enabling Schedules
	Disabling Schedules
	Reading Schedules by Type
	Reading Scheduled Discovery Tasks by Schedule Name
	Reading Scheduled Discovery Tasks by Profile Name
	Reading Scheduled Firmware Upgrade Tasks by Schedule Name
	Reading Scheduled Firmware Upgrade Tasks by Profile Name
	Reading Scheduled Policy Tasks by Schedule Name
	Reading Scheduled Policy Tasks by Policy Name
	Reading Scheduled Profile Tasks by Schedule Name
	Reading Scheduled Profile Tasks by Profile Name

	Managing Policy and Profile Tasks
	Overview
	Creating Hardware Policy
	Creating and Updating Policies through REST API
	Updating Hardware Policy
	Applying Policy on Servers
	Deleting Policies
	Reading Disk Group Policy
	Reading FlexFlash Policy
	Reading IPMI Over LAN Policy
	Reading LDAP Policy
	Reading Legacy Boot Order Policy
	Reading Network Security Policy
	Reading NTP Policy
	Reading Password Expiration Policy
	Reading Power Restore Policy
	Reading Precision Boot Order Policy
	Reading RAID Policy
	Reading Serial Over LAN Policy
	Reading SNMP Policy
	Reading SSH Policy
	Reading User Policy
	Reading vMedia Policy
	Reading Virtual KVM Policy
	Reading VIC Adapter Policy
	Creating Hardware Profile
	Reading Hardware Profile
	Updating Hardware Profile
	Deriving a Hardware Profile
	Deleting Hardware Profile
	Applying Hardware Profile
	Reading Hardware Policy Apply Status
	Reading Hardware Profile Apply Status
	Viewing Hardware Profiles Associated with a Server
	Viewing Servers Associated with a Hardware Profile

	Managing Server Tasks
	Overview
	Creating a Rack Group
	Reading All Rack Groups
	Updating a Rack Group
	Deleting a Rack Group
	Creating a Rack Account
	Updating a Rack Account
	Deleting a Rack Account
	Running Server Inventory
	Testing Server Connection
	Assigning Rack Groups to Servers
	Running Server Diagnostics
	Reading Server Diagnostics Status by Server IP
	Deleting Server Diagnostics Report
	Adding Compute Tags
	Deleting Compute Tags
	Creating a Technical Support Log
	Clearing Technical Support Logs
	Reading Technical Support Logs by Server IP
	Creating a Discovery Profile
	Reading a Discovery Profile
	Updating a Discovery Profile
	Deleting a Discovery Profile
	Running Server Discovery
	Reading Discovered Devices
	Importing Discovered Devices
	Hard Reset Server
	Power Cycle Server
	Power Off Server
	Power On Server
	Shutdown Server
	Set Label on Server
	Toggle Locator LED on Server
	Reading Servers by Tag Name
	Reading Servers by Tag Value
	Reading Server Faults by DN
	Reading Server Faults by IP Address
	Reading Server Faults by Account Name
	Reading Server Faults by Severity
	Reading Server Faults by Fault Code
	Reading Server Faults History by DN
	Reading Server Faults History by IP Address
	Reading Server Faults History by Account Name
	Reading Server Faults History by Severity
	Reading Server Faults History by Fault Code
	Reading Servers by Product ID
	Reading Servers by Account Name
	Reading Servers by UUID
	Reading Servers by Server IP
	Reading Servers by Serial Number
	Reading Servers by Rack Group
	Reading Server Inventory by Account Name
	Reading Server Inventory by Server IP
	Reading Server Utilization by Account Name
	Reading Server Utilization by Server IP
	Reading Server Utilization History by Account Name
	Reading Server Utilization History by Server IP
	Reading Server Utilization History by Days
	Reading Server Utilization History by Days for a Server using Account Name
	Reading Server Utilization History by Days for a Server using Server IP
	Mapping Host Image
	Unmapping Host Image
	Deleting Host Image
	Creating an HCL Profile
	Modifying an HCL Profile
	Setting HCL OS Tag on Servers or Rack Groups
	Deleting HCL OS Tag on Servers or Rack Groups
	Deleting HCL Profile
	Reading HCL OS Tag by Server IP
	Reading HCL OS Versions by Vendor Name
	Reading HCL Report by Profile Name
	Reading HCL Report by Rack Group
	Reading HCL Report by Server IP

	Managing Users and Groups
	Overview
	Creating a User Group
	Updating a User Group
	Deleting a User Group
	Enabling All Users in a Group
	Disabling All Users in a Group
	Creating a User
	Reading a User
	Updating a User
	Deleting a User
	Enabling a User
	Disabling a User
	Updating a User Expiry Date
	Updating a User Password

