

CHAPTER 39

Troubleshooting

This chapter describes how to identify and resolve software problems related to the Cisco IOS software on the IE 3000 switch. Depending on the nature of the problem, you can use the command-line interface (CLI), the device manager, or Network Assistant to identify and solve problems.

Additional troubleshooting information, such as LED descriptions, is provided in the hardware installation guide.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the *Cisco IOS Commands Master List, Release 12.2* from the Cisco.com page under **Documentation > Cisco IOS Software > 12.2 Mainline > Command References**.

This chapter consists of these sections:

- Recovering from a Software Failure, page 39-2
- Recovering from a Lost or Forgotten Password, page 39-3
- Recovering from a Command Switch Failure, page 39-4
- Recovering from Lost Cluster Member Connectivity, page 39-7

Recovery procedures require that you have physical access to the switch.

- Preventing Autonegotiation Mismatches, page 39-7
- SFP Module Security and Identification, page 39-8
- Monitoring SFP Module Status, page 39-8
- Using Ping, page 39-8
- Using Layer 2 Traceroute, page 39-10
- Using IP Traceroute, page 39-11
- Using TDR, page 39-13
- Using Debug Commands, page 39-14
- Using the show platform forward Command, page 39-16
- Using the crashinfo Files, page 39-17
- Troubleshooting Tables, page 39-18

Recovering from a Software Failure

Switch software can be corrupted during an upgrade, by downloading the wrong file to the switch, and by deleting the image file. In all of these cases, the switch does not pass the power-on self-test (POST), and there is no connectivity.

This procedure uses the Xmodem Protocol to recover from a corrupt or wrong image file. There are many software packages that support the Xmodem Protocol, and this procedure is largely dependent on the emulation software that you are using.

This recovery procedure requires that you have physical access to the switch.

Step 1 From your PC, download the software image tar file (*image_filename.tar*) from Cisco.com.

The Cisco IOS image is stored as a bin file in a directory in the tar file. For information about locating the software image files on Cisco.com, see the release notes.

- **Step 2** Extract the bin file from the tar file.
 - If you are using Windows, use a zip program that can read a tar file. Use the zip program to navigate to and extract the bin file.
 - If you are using UNIX, follow these steps:
 - 1. Display the contents of the tar file by using the tar -tvf < image_filename.tar> UNIX command.

```
unix-1% tar -tvf image_filename.tar
```

2. Locate the bin file, and extract it by using the **tar -xvf** < *image_filename.tar*> < *image_filename.bin*> UNIX command.

```
unix-1% tar -xvf image\_filename.tar image\_filename.bin x ies-lanbase-mz.122-44.EX/ies-lanbase-mz.122-44.EX.bin, 2928176 bytes, 5720 tape blocks
```

3. Verify that the bin file was extracted by using the ls -1 < image_filename.bin > UNIX command.

```
unix-1% 1s -1 image_filename.bin
-rwxr-xr-x   1 bschuett eng   6365325 May 19 13:03
ies-lanbase-mz.122-44.EX/ies-lanbase-mz.122-44.EX.bin
```

- **Step 3** Connect your PC with terminal-emulation software supporting the Xmodem Protocol to the switch console port.
- **Step 4** Set the line speed on the emulation software to 9600 baud.
- **Step 5** Unplug the switch power cord.
- **Step 6** Press the **Express Setup** button and at the same time, reconnect the power cord to the switch.

You can release the **Express Setup** button a second or two after the LED above port 1 goes off. Several lines of information about the software appear along with instructions:

The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system, and finish loading the operating system software#

```
flash_init
load_helper
boot
```

Step 7 Initialize the flash file system:

```
switch: flash_init
```

- **Step 8** If you had set the console port speed to anything other than 9600, it has been reset to that particular speed. Change the emulation software line speed to match that of the switch console port.
- **Step 9** Load any helper files:

switch: load_helper

Step 10 Start the file transfer by using the Xmodem Protocol.

switch: copy xmodem: flash:image_filename.bin

- **Step 11** After the Xmodem request appears, use the appropriate command on the terminal-emulation software to start the transfer and to copy the software image into flash memory.
- **Step 12** Boot the newly downloaded Cisco IOS image.

switch:boot flash:image_filename.bin

- **Step 13** Use the **archive download-sw** privileged EXEC command to download the software image to the switch.
- **Step 14** Use the **reload** privileged EXEC command to restart the switch and to verify that the new software image is operating properly.
- **Step 15** Delete the flash: *image_filename.bin* file from the switch.

Recovering from a Lost or Forgotten Password

If you lose or forget your password, you can delete the switch password and set a new one.

Before you begin, make sure that:

- You have physical access to the switch.
- At least one switch port is enabled and is not connected to a device.

To delete the switch password and set a new one, follow these steps:

Step 1 Press the **Express Setup** button until the SETUP LED blinks green and the LED of an available switch downlink port blinks green.

If no switch downlink port is available for your PC or laptop connection, disconnect a device from one of the switch downlink ports. Press the **Express Setup** button again until the SETUP LED and the port LED blink green.

- **Step 2** Connect your PC or laptop to the port with the blinking green LED.
 - The SETUP LED and the switch downlink port LED stop blinking and stay solid green.
- Step 3 Press and hold the Express Setup button. Notice that the SETUP LED starts blinking green again. Continue holding the button until the SETUP LED turns solid green (approximately 5 seconds). Release the Express Setup button immediately.

This procedure deletes the password without affecting any other configuration settings. You can now access the switch without a password through the console port or by using the device manager.

Step 4 Enter a new password through the device manager by using the Express Setup window or through the command line interface by using the **enable secret** global configuration command.

Recovering from a Command Switch Failure

This section describes how to recover from a failed command switch. You can configure a redundant command switch group by using the Hot Standby Router Protocol (HSRP). For more information, see Chapter 7, "Clustering Switches." Also see the *Getting Started with Cisco Network Assistant*, available on Cisco.com.

HSRP is the preferred method for supplying redundancy to a cluster.

If you have not configured a standby command switch, and your command switch loses power or fails in some other way, management contact with the member switches is lost, and you must install a new command switch. However, connectivity between switches that are still connected is not affected, and the member switches forward packets as usual. You can manage the members as standalone switches through the console port, or, if they have IP addresses, through the other management interfaces.

You can prepare for a command switch failure by assigning an IP address to a member switch or another switch that is command-capable, making a note of the command-switch password, and cabling your cluster to provide redundant connectivity between the member switches and the replacement command switch. These sections describe two solutions for replacing a failed command switch:

- Replacing a Failed Command Switch with a Cluster Member, page 39-4
- Replacing a Failed Command Switch with Another Switch, page 39-6

These recovery procedures require that you have physical access to the switch.

For information on command-capable switches, see the release notes.

Replacing a Failed Command Switch with a Cluster Member

To replace a failed command switch with a command-capable member in the same cluster, follow these steps:

- **Step 1** Disconnect the command switch from the member switches, and physically remove it from the cluster.
- **Step 2** Insert the member switch in place of the failed command switch, and duplicate its connections to the cluster members.
- **Step 3** Start a CLI session on the new command switch.

You can access the CLI by using the console port or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, see the switch hardware installation guide.

Step 4 At the switch prompt, enter privileged EXEC mode:

Switch> enable
Switch#

- **Step 5** Enter the password of the *failed command switch*.
- **Step 6** Enter global configuration mode.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Step 7 Remove the member switch from the cluster.

Switch(config) # no cluster commander-address

Step 8 Return to privileged EXEC mode.

```
Switch(config)# end
Switch#
```

Step 9 Use the setup program to configure the switch IP information. This program prompts you for IP address information and passwords. From privileged EXEC mode, enter **setup**, and press **Return**.

```
Switch# setup

--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y

At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '[]'.

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system

Would you like to enter basic management setup? [yes/no]:
```

Step 10 Enter **Y** at the first prompt.

The prompts in the setup program vary depending on the member switch that you selected to be the command switch:

```
Continue with configuration dialog? [yes/no]: {f y} or Configuring global parameters:
```

If this prompt does not appear, enter **enable**, and press **Return**. Enter **setup**, and press **Return** to start the setup program.

Step 11 Respond to the questions in the setup program.

When prompted for the hostname, recall that on a command switch, the hostname is limited to 28 characters; on a member switch to 31 characters. Do not use -n, where n is a number, as the last characters in a hostname for any switch.

When prompted for the Telnet (virtual terminal) password, recall that it can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

- **Step 12** When prompted for the **enable secret** and **enable** passwords, enter the passwords of the *failed command switch* again.
- **Step 13** When prompted, make sure to enable the switch as the cluster command switch, and press **Return**.
- Step 14 When prompted, assign a name to the cluster, and press Return.

The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.

- **Step 15** After the initial configuration displays, verify that the addresses are correct.
- **Step 16** If the displayed information is correct, enter **Y**, and press **Return**.

If this information is not correct, enter **N**, press **Return**, and begin again at Step 9.

- **Step 17** Start your browser, and enter the IP address of the new command switch.
- **Step 18** From the Cluster menu, select **Add to Cluster** to display a list of candidate switches to add to the cluster.

Replacing a Failed Command Switch with Another Switch

To replace a failed command switch with a switch that is command-capable but not part of the cluster, follow these steps:

- **Step 1** Insert the new switch in place of the failed command switch, and duplicate its connections to the cluster members.
- **Step 2** Start a CLI session on the new command switch.

You can access the CLI by using the console port or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, see the switch hardware installation guide.

Step 3 At the switch prompt, enter privileged EXEC mode:

```
Switch> enable
Switch#
```

- **Step 4** Enter the password of the *failed command switch*.
- **Step 5** Use the setup program to configure the switch IP information.

This program prompts you for IP address information and passwords. From privileged EXEC mode, enter **setup**, and press **Return**.

```
Switch# setup

--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y

At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '[]'.

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system

Would you like to enter basic management setup? [yes/no]:
```

Step 6 Enter **Y** at the first prompt.

The prompts in the setup program vary depending on the switch you selected to be the command switch:

```
Continue with configuration dialog? [yes/no]: {\bf y} or
```

```
Configuring global parameters:
```

If this prompt does not appear, enter **enable**, and press **Return**. Enter **setup**, and press **Return** to start the setup program.

Step 7 Respond to the questions in the setup program.

When prompted for the hostname, recall that on a command switch, the hostname is limited to 28 characters. Do not use -n, where n is a number, as the last character in a hostname for any switch.

When prompted for the Telnet (virtual terminal) password, recall that it can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

- **Step 8** When prompted for the **enable secret** and **enable** passwords, enter the passwords of the *failed command switch* again.
- **Step 9** When prompted, make sure to enable the switch as the cluster command switch, and press **Return**.

- $\textbf{Step 10} \qquad \text{When prompted, assign a name to the cluster, and press } \textbf{Return}.$
 - The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.
- **Step 11** When the initial configuration displays, verify that the addresses are correct.
- Step 12 If the displayed information is correct, enter Y, and press Return.

 If this information is not correct, enter N, press Return, and begin again at Step 9.
- **Step 13** Start your browser, and enter the IP address of the new command switch.
- Step 14 From the Cluster menu, select Add to Cluster to display a list of candidate switches to add to the cluster.

Recovering from Lost Cluster Member Connectivity

Some configurations can prevent the command switch from maintaining contact with member switches. If you are unable to maintain management contact with a member, and the member switch is forwarding packets normally, check for these conflicts:

- A member switch (Catalyst 3750, Catalyst 3560, Catalyst 3550, Catalyst 3500 XL, Catalyst 2970, Catalyst 2960, Catalyst 2950, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switch) cannot connect to the command switch through a port that is defined as a network port.
- Catalyst 3500 XL, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 member switches must connect to the command switch through a port that belongs to the same management VLAN.
- A member switch (Catalyst 3750, Catalyst 3560, Catalyst 3550, Catalyst 2970, Catalyst 2960, Catalyst 2950, Catalyst 3500 XL, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switch) connected to the command switch through a secured port can lose connectivity if the port is disabled because of a security violation.

Preventing Autonegotiation Mismatches

The IEEE 802.3ab autonegotiation protocol manages the switch settings for speed (10 Mb/s, 100 Mb/s, and 1000 Mb/s, excluding SFP module ports) and duplex (half or full). There are situations when this protocol can incorrectly align these settings, reducing performance. A mismatch occurs under these circumstances:

- A manually set speed or duplex parameter is different from the manually set speed or duplex parameter on the connected port.
- A port is set to autonegotiate, and the connected port is set to full duplex with no autonegotiation.

To maximize switch performance and ensure a link, follow one of these guidelines when changing the settings for duplex and speed:

- Let both ports autonegotiate both speed and duplex.
- Manually set the speed and duplex parameters for the ports on both ends of the connection.

If a remote device does not autonegotiate, configure the duplex settings on the two ports to match. The speed parameter can adjust itself even if the connected port does not autonegotiate.

SFP Module Security and Identification

Cisco small form-factor pluggable (SFP) modules have a serial EEPROM that contains the module serial number, the vendor name and ID, a unique security code, and cyclic redundancy check (CRC). When an SFP module is inserted in the switch, the switch software reads the EEPROM to verify the serial number, vendor name and vendor ID, and recompute the security code and CRC. If the serial number, the vendor name or vendor ID, the security code, or CRC is invalid, the software generates a security error message and places the interface in an error-disabled state.

The security error message references the GBIC_SECURITY facility. The switch supports SFP modules and does not support GBIC modules. Although the error message text refers to GBIC interfaces and modules, the security messages actually refer to the SFP modules and module interfaces. For more information about error messages, see the system message guide for this release.

If you are using a non-Cisco SFP module, remove the SFP module from the switch, and replace it with a Cisco module. After inserting a Cisco SFP module, use the **errdisable recovery cause gbic-invalid** global configuration command to verify the port status, and enter a time interval for recovering from the error-disabled state. After the elapsed interval, the switch brings the interface out of the error-disabled state and retries the operation. For more information about the **errdisable recovery** command, see the command reference for this release.

If the module is identified as a Cisco SFP module, but the system is unable to read vendor-data information to verify its accuracy, an SFP module error message is generated. In this case, you should remove and re-insert the SFP module. If it continues to fail, the SFP module might be defective.

Monitoring SFP Module Status

You can check the physical or operational status of an SFP module by using the **show interfaces transceiver** privileged EXEC command. This command shows the operational status, such as the temperature and the current for an SFP module on a specific interface and the alarm status. You can also use the command to check the speed and the duplex settings on an SFP module. For more information, see the **show interfaces transceiver** command in the command reference for this release.

Using Ping

These sections contain this information:

- Understanding Ping, page 39-9
- Executing Ping, page 39-9

Understanding Ping

The switch supports IP ping, which you can use to test connectivity to remote hosts. Ping sends an echo request packet to an address and waits for a reply. Ping returns one of these responses:

- Normal response—The normal response (*hostname* is alive) occurs in 1 to 10 seconds, depending on network traffic.
- Destination does not respond—If the host does not respond, a no-answer message is returned.
- Unknown host—If the host does not exist, an *unknown host* message is returned.
- Destination unreachable—If the default gateway cannot reach the specified network, a *destination-unreachable* message is returned.
- Network or host unreachable—If there is no entry in the route table for the host or network, a *network or host unreachable* message is returned.

Executing Ping

Beginning in privileged EXEC mode, use this command to ping another device on the network from the switch:

Command	Purpose	
ping ip host address	Ping a remote host through IP or by supplying the hostname or network address.	

Though other protocol keywords are available with the **ping** command, they are not supported in this release.

This example shows how to ping an IP host:

```
Switch# ping 172.20.52.3
```

```
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echoes to 172.20.52.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
Switch#
```

Table 39-1 describes the possible ping character output.

Table 39-1 Ping Output Display Characters

Character	Description	
!	Each exclamation point means receipt of a reply.	
	Each period means the network server timed out while waiting for a reply.	
U	A destination unreachable error PDU was received.	
С	A congestion experienced packet was received.	
Ι	User interrupted test.	

Table 39-1 Ping Output Display Characters (continued)

Character	Description	
?	Unknown packet type.	
&	Packet lifetime exceeded.	

To end a ping session, enter the escape sequence (Ctrl-^ X by default). Simultaneously press and release the Ctrl, Shift, and 6 keys and then press the X key.

Using Layer 2 Traceroute

These sections contain this information:

- Understanding Layer 2 Traceroute, page 39-10
- Usage Guidelines, page 39-10
- Displaying the Physical Path, page 39-11

Understanding Layer 2 Traceroute

The Layer 2 traceroute feature allows the switch to identify the physical path that a packet takes from a source device to a destination device. Layer 2 traceroute supports only unicast source and destination MAC addresses. It finds the path by using the MAC address tables of the switches in the path. When the switch detects a device in the path that does not support Layer 2 traceroute, the switch continues to send Layer 2 trace queries and lets them time out.

The switch can only identify the path from the source device to the destination device. It cannot identify the path that a packet takes from source host to the source device or from the destination device to the destination host.

Usage Guidelines

These are the Layer 2 traceroute usage guidelines:

- Cisco Discovery Protocol (CDP) must be enabled on all the devices in the network. For Layer 2 traceroute to function properly, do not disable CDP.
 - For a list of switches that support Layer 2 traceroute, see the "Usage Guidelines" section on page 39-10. If any devices in the physical path are transparent to CDP, the switch cannot identify the path through these devices. For more information about enabling CDP, see Chapter 28, "Configuring CDP."
- A switch is reachable from another switch when you can test connectivity by using the **ping** privileged EXEC command. All switches in the physical path must be reachable from each other.
- The maximum number of hops identified in the path is ten.
- You can enter the **traceroute mac** or the **traceroute mac ip** privileged EXEC command on a switch that is not in the physical path from the source device to the destination device. All switches in the path must be reachable from this switch.

- The traceroute mac command output shows the Layer 2 path only when the specified source and
 destination MAC addresses belong to the same VLAN. If you specify source and destination MAC
 addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message
 appears.
- If you specify a multicast source or destination MAC address, the path is not identified, and an error message appears.
- If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong. If the VLAN is not specified, the path is not identified, and an error message appears.
- The **traceroute mac ip** command output shows the Layer 2 path when the specified source and destination IP addresses belong to the same subnet. When you specify the IP addresses, the switch uses the Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.
 - If an ARP entry exists for the specified IP address, the switch uses the associated MAC address and identifies the physical path.
 - If an ARP entry does not exist, the switch sends an ARP query and tries to resolve the IP address. If the IP address is not resolved, the path is not identified, and an error message appears.
- When multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port), the Layer 2 traceroute feature is not supported. When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.
- This feature is not supported in Token Ring VLANs.

Displaying the Physical Path

You can display physical path that a packet takes from a source device to a destination device by using one of these privileged EXEC commands:

- tracetroute mac [interface interface-id] {source-mac-address} [interface interface-id] {destination-mac-address} [vlan vlan-id] [detail]
- **tracetroute mac ip** {source-ip-address | source-hostname}{destination-hostname} [**detail**]

For more information, see the command reference for this release.

Using IP Traceroute

These sections contain this information:

- Understanding IP Traceroute, page 39-11
- Executing IP Traceroute, page 39-12

Understanding IP Traceroute

You can use IP traceroute to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic passes through on the way to the destination.

Your switches can participate as the source or destination of the **traceroute** privileged EXEC command and might or might not appear as a hop in the **traceroute** command output. If the switch is the destination of the traceroute, it is displayed as the final destination in the traceroute output. Intermediate switches do not show up in the traceroute output if they are only bridging the packet from one port to another within the same VLAN. However, if the intermediate switch is a multilayer switch that is routing a particular packet, this switch shows up as a hop in the traceroute output.

The **traceroute** privileged EXEC command uses the Time To Live (TTL) field in the IP header to cause routers and servers to generate specific return messages. Traceroute starts by sending a User Datagram Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value of 1 or 0, it drops the datagram and sends an Internet Control Message Protocol (ICMP) time-to-live-exceeded message to the sender. Traceroute finds the address of the first hop by examining the source address field of the ICMP time-to-live-exceeded message.

To identify the next hop, traceroute sends a UDP packet with a TTL value of 2. The first router decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL value of 1, discards the datagram, and returns the time-to-live-exceeded message to the source. This process continues until the TTL is incremented to a value large enough for the datagram to reach the destination host (or until the maximum TTL is reached).

To learn when a datagram reaches its destination, traceroute sets the UDP destination port number in the datagram to a very large value that the destination host is unlikely to be using. When a host receives a datagram destined to itself containing a destination port number that is unused locally, it sends an ICMP *port-unreachable* error to the source. Because all errors except port-unreachable errors come from intermediate hops, the receipt of a port-unreachable error means that this message was sent by the destination port.

Executing IP Traceroute

Beginning in privileged EXEC mode, follow this step to trace that the path packets take through the network:

Command	Purpose	
traceroute ip host	Trace the path that packets take through the network.	

Though other protocol keywords are available with the **traceroute** privileged EXEC command, they are not supported in this release.

This example shows how to perform a **traceroute** to an IP host:

Switch# traceroute ip 171.9.15.10

```
Type escape sequence to abort.

Tracing the route to 171.69.115.10

1 172.2.52.1 0 msec 0 msec 4 msec
2 172.2.1.203 12 msec 8 msec 0 msec
3 171.9.16.6 4 msec 0 msec 0 msec
4 171.9.4.5 0 msec 4 msec 0 msec
5 171.9.121.34 0 msec 4 msec 4 msec
6 171.9.15.9 120 msec 132 msec 128 msec
7 171.9.15.10 132 msec 128 msec 128 msec
Switch#
```

The display shows the hop count, the IP address of the router, and the round-trip time in milliseconds for each of the three probes that are sent.

Table 39-2 Traceroute Output Display Characters

Character	Description
*	The probe timed out.
?	Unknown packet type.
A	Administratively unreachable. Usually, this output means that an access list is blocking traffic.
Н	Host unreachable.
N	Network unreachable.
P	Protocol unreachable.
Q	Source quench.
U	Port unreachable.

To end a trace in progress, enter the escape sequence (Ctrl-^ X by default). Simultaneously press and release the Ctrl, Shift, and 6 keys and then press the X key.

Using TDR

These sections contain this information:

- Understanding TDR, page 39-13
- Running TDR and Displaying the Results, page 39-14

Understanding TDR

You can use the Time Domain Reflector (TDR) feature to diagnose and resolve cabling problems. When running TDR, a local device sends a signal through a cable and compares the reflected signal to the initial signal.

TDR is supported only on 10/100 and 10/100/1000 copper Ethernet ports. It is not supported on SFP module ports.

TDR can detect these cabling problems:

- Open, broken, or cut twisted-pair wires—The wires are not connected to the wires from the remote
 device.
- Shorted twisted-pair wires—The wires are touching each other or the wires from the remote device.
 For example, a shorted twisted pair can occur if one wire of the twisted pair is soldered to the other wire.

If one of the twisted-pair wires is open, TDR can find the length at which the wire is open.

Use TDR to diagnose and resolve cabling problems in these situations:

- Replacing a switch
- Setting up a wiring closet
- Troubleshooting a connection between two devices when a link cannot be established or when it is not operating properly

Running TDR and Displaying the Results

To run TDR, enter the **test cable-diagnostics tdr interface** interface-id privileged EXEC command:

To display the results, enter the **show cable-diagnostics tdr interface** *interface-id* privileged EXEC command. For a description of the fields in the display, see the command reference for this release.

Using Debug Commands

These sections explains how you use **debug** commands to diagnose and resolve internetworking problems:

- Enabling Debugging on a Specific Feature, page 39-14
- Enabling All-System Diagnostics, page 39-15
- Redirecting Debug and Error Message Output, page 39-15

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use **debug** commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use **debug** commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased **debug** command processing overhead will affect system use.

For complete syntax and usage information for specific **debug** commands, see the command reference for this release.

Enabling Debugging on a Specific Feature

All **debug** commands are entered in privileged EXEC mode, and most **debug** commands take no arguments. For example, beginning in privileged EXEC mode, enter this command to enable the debugging for Switched Port Analyzer (SPAN):

Switch# debug span-session

The switch continues to generate output until you enter the **no** form of the command.

If you enable a **debug** command and no output appears, consider these possibilities:

- The switch might not be properly configured to generate the type of traffic you want to monitor. Use the **show running-config** command to check its configuration.
- Even if the switch is properly configured, it might not generate the type of traffic you want to monitor during the particular period that debugging is enabled. Depending on the feature you are debugging, you can use commands such as the TCP/IP ping command to generate network traffic.

To disable debugging of SPAN, enter this command in privileged EXEC mode:

Switch# no debug span-session

Alternately, in privileged EXEC mode, you can enter the **undebug** form of the command:

Switch# undebug span-session

To display the state of each debugging option, enter this command in privileged EXEC mode:

Switch# show debugging

Enabling All-System Diagnostics

Beginning in privileged EXEC mode, enter this command to enable all-system diagnostics:

Switch# debug all

Because debugging output takes priority over other network traffic, and because the **debug all** privileged EXEC command generates more output than any other **debug** command, it can severely diminish switch performance or even render it unusable. In virtually all cases, it is best to use more specific **debug** commands.

The **no debug all** privileged EXEC command disables all diagnostic output. Using the **no debug all** command is a convenient way to ensure that you have not accidentally left any **debug** commands enabled.

Redirecting Debug and Error Message Output

By default, the network server sends the output from **debug** commands and system error messages to the console. If you use this default, you can use a virtual terminal connection to monitor debug output instead of connecting to the console port.

Possible destinations include the console, virtual terminals, internal buffer, and UNIX hosts running a syslog server. The syslog format is compatible with 4.3 Berkeley Standard Distribution (BSD) UNIX and its derivatives.

Be aware that the debugging destination you use affects system overhead. Logging messages to the console produces very high overhead, whereas logging messages to a virtual terminal produces less overhead. Logging messages to a syslog server produces even less, and logging to an internal buffer produces the least overhead of any method.

For more information about system message logging, see Chapter 32, "Configuring System Message Logging."

Using the show platform forward Command

The output from the **show platform forward** privileged EXEC command provides some useful information about the forwarding results if a packet entering an interface is sent through the system. Depending upon the parameters entered about the packet, the output provides lookup table results and port maps used to calculate forwarding destinations, bitmaps, and egress information.

For more syntax and usage information for the **show platform forward** command, see the switch command reference for this release.

Most of the information in the output from the command is useful mainly for technical support personnel, who have access to detailed information about the switch application-specific integrated circuits (ASICs). However, packet forwarding information can also be helpful in troubleshooting.

This is an example of the output from the **show platform forward** command on port 1 in VLAN 5 when the packet entering that port is addressed to unknown MAC addresses. The packet should be flooded to all other ports in VLAN 5.

```
Switch# show platform forward gigabitethernet1/1 vlan 5 1.1.1 2.2.2 ip 13.1.1.1 13.2.2.2
udp 10 20
Global Port Number: 24, Asic Number: 5
Src Real Vlan Id:5, Mapped Vlan Id:5
Ingress:
                        Kev-Used
Lookup
                                                   Index-Hit A-Data
InptACL 40_0D020202_0D010101-00_40000014_000A0000
InptACL 40_0D020202_0D010101-00_40000014_000A0000 01FFA 03000000 L2Local 80_00050002_00020002-00_00000000_00000000 00C71 0000002B
Station Descriptor:02340000, DestIndex:0239, RewriteIndex:F005
Egress:Asic 2, switch 1
Output Packets:
Packet 1
                                                   Index-Hit A-Data
Lookup
                        Kev-Used
OutptACL 50_0D020202_0D010101-00_40000014_000A0000
                                                    01FFE 0300000
          Vlan
                   SrcMac
                                   DstMac
                                             Cos Dscpv
Gi1/1
        0005 0001.0001.0001 0002.0002.0002
Packet 2
                        Key-Used
Lookup
                                                    Index-Hit A-Data
OutptACL 50_0D020202_0D010101-00_40000014_000A0000
                                                  01FFE 0300000
                   SrcMac
                                   DstMac
        0005 0001.0001.0001 0002.0002.0002
Gi1/2
<output truncated>
_____
Packet 10
                                                    Index-Hit A-Data
Lookup
                        Kev-Used
OutptACL 50_0D020202_0D010101-00_40000014_000A0000
                                                    01FFE 03000000
```

Packet dropped due to failed DEJA_VU Check on Gi0/2

This is an example of the output when the packet coming in on port 1 in VLAN 5 is sent to an address already learned on the VLAN on another port. It should be forwarded from the port on which the address was learned.

```
Switch# show platform forward gigabitethernet1/1 vlan 5 1.1.1 0009.43a8.0145 ip 13.1.1.1
13.2.2.2 udp 10 20
Global Port Number: 24, Asic Number: 5
Src Real Vlan Id:5, Mapped Vlan Id:5
Ingress:
Lookup
                        Kev-Used
                                                  Index-Hit A-Data
InptACL 40_0D020202_0D010101-00_40000014_000A0000
                                                   01FFA 03000000
L2Local 80_00050009_43A80145-00_00000000_00000000
                                                   00086
                                                           02010197
Station Descriptor:F0050003, DestIndex:F005, RewriteIndex:0003
Egress: Asic 3, switch 1
Output Packets:
                        Key-Used
                                                  Index-Hit A-Data
OutptACL 50_0D020202_0D010101-00_40000014_000A0000
                                                   01FFE 03000000
Port.
               Vlan
                        SrcMac
                                       DstMac
                                                Cos Dscpv
             0005 0001.0001.0001 0009.43A8.0145
interface-id
```

Using the crashinfo Files

The crashinfo files save information that helps Cisco technical support representatives to debug problems that caused the Cisco IOS image to fail (crash). The switch writes the crash information to the console at the time of the failure. The switch creates two types of crashinfo files:

- Basic crashinfo file—The switch automatically creates this file the next time you boot up the Cisco IOS image after the failure.
- Extended crashinfo file—The switch automatically creates this file when the system is failing.

Basic crashinfo Files

The information in the basic file includes the Cisco IOS image name and version that failed, a list of the processor registers, and other switch-specific information. You can provide this information to the Cisco technical support representative by using the **show tech-support** privileged EXEC command.

Basic crashinfo files are kept in this directory on the flash file system:

flash:/crashinfo/.

The filenames are crashinfo $_n$ where n is a sequence number.

Each new crashinfo file that is created uses a sequence number that is larger than any previously existing sequence number, so the file with the largest sequence number describes the most recent failure. Version numbers are used instead of a timestamp because the switches do not include a real-time clock. You cannot change the name of the file that the system will use when it creates the file. However, after the file is created, you can use the **rename** privileged EXEC command to rename it, but the contents of the renamed file will not be displayed by the **show tech-support** privileged EXEC command. You can delete crashinfo files by using the **delete** privileged EXEC command.

You can display the most recent basic crashinfo file (that is, the file with the highest sequence number at the end of its filename) by entering the **show tech-support** privileged EXEC command. You also can access the file by using any command that can copy or display files, such as the **more** or the **copy** privileged EXEC command.

Extended crashinfo Files

The switch creates the extended crashinfo file when the system is failing. The information in the extended file includes additional information that can help determine the cause of the switch failure. You provide this information to the Cisco technical support representative by manually accessing the file and using the **more** or the **copy** privileged EXEC command.

Extended crashinfo files are kept in this directory on the flash file system:

flash:/crashinfo_ext/.

The filenames are crashinfo_ext $_n$ where n is a sequence number.

You can configure the switch to not create the extended creashinfo file by using the **no exception crashinfo** global configuration command.

Troubleshooting Tables

These tables are a condensed version of troubleshooting documents on Cisco.com.

• "Troubleshooting CPU Utilization" on page -18

Troubleshooting CPU Utilization

This section lists some possible symptoms that could be caused by the CPU being too busy and shows how to verify a CPU utilization problem. Table 39-3 lists the primary types of CPU utilization problems that you can identify. It gives possible causes and corrective action with links to the *Troubleshooting High CPU Utilization* document on Cisco.com.

Possible Symptoms of High CPU Utilization

Note that excessive CPU utilization might result in these symptoms, but the symptoms could also result from other causes.

- Spanning tree topology changes
- EtherChannel links brought down due to loss of communication
- Failure to respond to management requests (ICMP ping, SNMP timeouts, slow Telnet or SSH sessions)
- UDLD flapping
- IP SLAs failures because of SLAs responses beyond an acceptable threshold
- DHCP or IEEE 802.1x failures if the switch does not forward or respond to requests

Layer 3 switches:

• Dropped packets or increased latency for packets routed in software

- BGP or OSPF routing topology changes
- HSRP flapping

Verifying the Problem and Cause

To determine if high CPU utilization is a problem, enter the **show processes cpu sorted** privileged EXEC command. Note the underlined information in the first line of the output example.

```
Switch# show processes cpu sorted

CPU utilization for five seconds: 8%/0%; one minute: 7%; five minutes: 8%

PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process

309 42289103 752750 56180 1.75% 1.20% 1.22% 0 RIP Timers

140 8820183 4942081 1784 0.63% 0.37% 0.30% 0 HRPC gos request

100 3427318 16150534 212 0.47% 0.14% 0.11% 0 HRPC pm-counters

192 3093252 14081112 219 0.31% 0.14% 0.11% 0 Spanning Tree

143 8 37 216 0.15% 0.01% 0.00% 0 Exec

...

<output truncated>
```

This example shows normal CPU utilization. The output shows that utilization for the last 5 seconds is 8%/0%, which has this meaning:

- The total CPU utilization is 8 percent, including both time running Cisco IOS processes and time spent handling interrupts
- The time spent handling interrupts is zero percent.

Table 39-3 Troubleshooting CPU Utilization Problems

Type of Problem	Cause	Corrective Action
Interrupt percentage value is almost as high as total CPU utilization value.	The CPU is receiving too many packets from the network.	Determine the source of the network packet. Stop the flow, or change the switch configuration. See the section on "Analyzing Network Traffic."
Total CPU utilization is greater than 50% with minimal time spent on interrupts.	One or more Cisco IOS process is consuming too much CPU time. This is usually triggered by an event that activated the process.	Identify the unusual event, and troubleshoot the root cause. See the section on "Debugging Active Processes."

For complete information about CPU utilization and how to troubleshoot utilization problems, see the *Troubleshooting High CPU Utilization* document on Cisco.com.

Troubleshooting Tables