
Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a
(Catalyst 3850 Switches)
First Published: 2017-05-31

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

© 2017 Cisco Systems, Inc. All rights reserved.

C O N T E N T S

New and Changed Information 1C H A P T E R 1

New and Changed Feature Information 1

Provisioning 3P A R T I

Zero-Touch Provisioning 5C H A P T E R 2

Finding Feature Information 5

Information About Zero-Touch Provisioning 5

Zero-Touch Provisioning Overview 5

DHCP Server Configuration for Zero-Touch Provisioning 6

Sample Zero-Touch Provisioning Configurations 6

Sample DHCP Server Configuration on a Management Port 6

Sample DHCP Server Configuration on a Forwarding Port 7

Sample DHCP Server Configuration on a Linux Ubuntu Device 7

Sample Python Script on a TFTP Server 7

Zero-Touch Provisioning Boot Log 8

Additional References for Zero-Touch Provisioning 9

Feature Information for Zero-Touch Provisioning 10

iPXE 11C H A P T E R 3

Finding Feature Information 11

Information About iPXE 11

About iPXE 11

iPXE Overview 12

IPv6 iPXE Network Boot 14

IPv6 Address Assignment in ROMMON Mode 16

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
iii

iPXE-Supported DHCP Options 16

DHCPv6 Unique Identifiers 18

How to Configure iPXE 18

Configuring iPXE 18

Configuring Device Boot 19

Configuration Examples for iPXE 20

Example: iPXE Configuration 20

Sample iPXE Boot Logs 20

Sample DHCPv6 Server Configuration for iPXE 21

Troubleshooting Tips for iPXE 22

Additional References for iPXE 23

Feature Information for iPXE 24

Shells and Scripting 25P A R T I I

Guest Shell 27C H A P T E R 4

Finding Feature Information 27

Information About Guest Shell 27

Guest Shell Overview 27

Guest Shell Vs Guest Shell Lite 28

Guest Shell Security 28

Hardware Requirements for Guestshell 29

Guest Shell Storage Requirements 29

Accessing Guest Shell on a Device 29

Accessing Guest Shell Through the Management Port 30

IOx Overview 30

How to Enable Guest Shell 30

Managing IOx 30

Managing the Guest Shell 32

Enabling and Running the Guest Shell 33

Disabling and Destroying the Guest Shell 34

Accessing the Python Interpreter 34

Configuration Examples for Guest Shell 34

Example: Managing the Guest Shell 34

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
iv

Contents

Sample VirtualPortGroup Configuration 35

Example: Guest Shell Usage 36

Example: Guest Shell Networking Configuration 36

Sample DNS Configuration for Guest Shell 36

Example: Configuring Proxy Environment Variables 36

Example: Configuring Yum and PIP for Proxy Settings 37

Additional References for Guest Shell 37

Feature Information for Guest Shell 38

Python API 39C H A P T E R 5

Finding Feature Information 39

Using Python 39

Cisco Python Module 39

Cisco Python Module to Execute IOS CLI Commands 41

CLI Python Module 45C H A P T E R 6

Finding Feature Information 45

Information About CLI Python Module 45

About Python 45

Python Scripts Overview 45

Interactive Python Prompt 46

Python Script 46

Supported Python Versions 47

Updating the Cisco CLI Python Module 48

Additional References for the CLI Python Module 48

Feature Information for the CLI Python Module 49

EEM Python Module 51C H A P T E R 7

Finding Feature Information 51

Prerequisites for the EEM Python Module 51

Information About the EEM Python Module 51

Python Scripting in EEM 51

EEM Python Package 52

Python-Supported EEM Actions 52

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
v

Contents

EEM Variables 53

EEM CLI Library Command Extensions 53

How to Configure the EEM Python Policy 54

Registering a Python Policy 54

Running Python Scripts as Part of EEM Applet Actions 56

Adding a Python Script in an EEM Applet 57

Additional References EEM Python Module 59

Feature Information for EEM Python Module 60

Model-Driven Programmability 61P A R T I I I

Data Models 63C H A P T E R 8

Finding Feature Information 63

Restrictions for Data Models 63

Information About Data Models 63

Introduction to Data Models - Programmatic and Standards-Based Configuration 63

NETCONF 64

How to Configure Data Models 64

Configuring NETCONF 64

Configuring NETCONF Options 65

Configuring SNMP 65

Additional References for Data Models 67

Feature Information for Data Models 67

Operational Data Parser Polling 69C H A P T E R 9

Finding Feature Information 69

Information About Operational Data 69

Operational Data Overview 69

Operational Data Parsers and Corresponding YANG Models 70

How to Enable Operational Data Parser Polling 70

Enabling Operational Data Parser Polling Through a Programmable Interface 70

Enabling Operational Data Parser Polling Through the CLI 71

Additional References for Operational Data Parser Polling 72

Feature Information for Operational Data Parser Polling 73

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
vi

Contents

C H A P T E R 1
New and Changed Information

This chapter provides release-specific information about all features.

• New and Changed Feature Information, on page 1

New and Changed Feature Information
This table summarizes the new and changed features, the supported platforms, and links to features.

Table 1: New and Changed Feature Information

Release & PlatformDescriptionFeature

Provisioning

Cisco IOS XE Everest 16.5.1a

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9500 Series Switches

To address network provisioning
challenges, Cisco introduces a
Zero-Touch Provisioning model.
Zero-Touch Provisioning automates
the process of installing or
upgrading software images, and
installing configuration files on
Cisco devices that are deployed in
a network for the first time. It
reduces manual tasks required to
scale the network capacity.

Zero-Touch Provisioning

Shells and Scripting

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
1

Release & PlatformDescriptionFeature

Cisco IOS XE Everest 16.5.1a

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9500 Series Switches

Guestshell is a virtualized
Linux-based environment, designed
to run custom Linux applications,
including Python for automated
control and management of Cisco
devices. It also includes the
automated provisioning (Day zero)
of systems. This container shell
provides a secure environment,
decoupled from the host device, in
which users can install scripts or
software packages and run them.

Guest Shell

Cisco IOS XE Everest 16.5.1a

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9500 Series Switches

Python programmabililty supports
Python APIs.

Python APIs

Cisco IOS XE Everest 16.5.1a

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9500 Series Switches

Python Programmability provides a
Python module that allows users to
interact with IOS using CLIs.

Python CLI Module

Cisco IOS XE Everest 16.5.1a

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9500 Series Switches

Embedded Event Manager (EEM)
policies support Python scripts.
Python scripts can be executed as
part of EEM actions in EEM applets.

EEM Python Module

Model-Driven Programmability

Cisco IOS XE Denali 16.3.1

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

In Cisco IOS XE Everest 16.5.1a, this
feature was implemented on Cisco Catalyst
9300 Series Switches.

Cisco IOS XE supports the Yet
Another Next Generation (YANG)
data modeling language. YANG can
be used with the Network
Configuration Protocol (NETCONF)
to provide the desired solution of
automated and programmable
network operations.

Data Models

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
2

New and Changed Information
New and Changed Feature Information

http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3650/software/release/16-5/configuration_guide/prog/b_165_prog_3650_cg/guestshell.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3850/software/release/16-5/configuration_guide/prog/b_165_prog_3850_cg/Guest_shell.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9300/software/release/16-5/configuration_guide/prog/b_165_prog_9300_cg/guest_shell.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9500/software/release/16-5/configuration_guide/prog/b_165_prog_9500_cg/guest_shell.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3650/software/release/16-5/configuration_guide/prog/b_165_prog_3650_cg/python_api.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3850/software/release/16-5/configuration_guide/prog/b_165_prog_3850_cg/python_api.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9300/software/release/16-5/configuration_guide/prog/b_165_prog_9300_cg/python_api.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9500/software/release/16-5/configuration_guide/prog/b_165_prog_9500_cg/python_api.html

P A R T I
Provisioning

• Zero-Touch Provisioning, on page 5
• iPXE, on page 11

C H A P T E R 2
Zero-Touch Provisioning

To address network provisioning challenges, Cisco introduces a zero-touch provisioning model. This module
describes the Zero-Touch Provisioning feature.

The Zero-Touch Provisioning feature is enabled automatically; no configuration is required.Note

• Finding Feature Information, on page 5
• Information About Zero-Touch Provisioning, on page 5
• Sample Zero-Touch Provisioning Configurations, on page 6
• Additional References for Zero-Touch Provisioning, on page 9
• Feature Information for Zero-Touch Provisioning, on page 10

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Information About Zero-Touch Provisioning

Zero-Touch Provisioning Overview
To address network provisioning challenges, Cisco introduces a Zero-Touch Provisioning model. Zero-Touch
Provisioning automates the process of installing or upgrading software images, and installing configuration
files on Cisco devices that are deployed in a network for the first time. It reduces manual tasks required to
scale the network capacity.

When a device that supports Zero-Touch Provisioning boots up, and does not find the startup configuration
(during fresh install on Day Zero), the device enters the Zero-Touch Provisioning mode. The device locates

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
5

https://cfnng.cisco.com/

a Dynamic Host Control Protocol (DHCP) server, bootstraps itself with its interface IP address, gateway, and
Domain Name System (DNS) server IP address, and enables Guest Shell. The device then obtains the IP
address or URL of a TFTP server, and downloads the Python script to configure the device.

Guest Shell provides the environment for the Python script to run. Guest Shell executes the downloaded
Python script and configures the device for Day Zero.

After Day Zero provisioning is complete, Guest Shell remains enabled. For more information on Guest Shell,
see the following chapter:

In case Zero-Touch Provisioning fails, the device falls back to AutoInstall to load configuration files. For
more information, see Using AutoInstall and Setup.

Note

DHCP Server Configuration for Zero-Touch Provisioning
In Zero-Touch Provisioning, a DHCP server must be running on the same network as the new device that is
being provisioned. Zero-Touch Provisioning is supported on both management ports and in-band ports.

When the new device is switched on, it retrieves the IP address information of the TFTP server where the
Python script resides, and the folder path of the Python script from the DHCP server.

For more information on Python Scripts, see the following chapters:

The DHCP server responds to DHCP discovery events with the following options:

• Option 150—(Optional) Contains a list of IP addresses that points to the TFTP server on the management
network that hosts the Python scripts to be run.

• Option 67—Contains the Python script file path on the TFTP server.

After receiving these DHCP options, the device connects to the TFTP server, and downloads the Python script.
The device, at this point does not have any route to reach the TFTP server, so it uses the default route provided
by the DHCP server.

Sample Zero-Touch Provisioning Configurations

Sample DHCP Server Configuration on a Management Port
The following is a sample DHCP server configuration when connected via the management port on a device:

Device> enable
Device# configure terminal
Device(config)# ip dhcp excluded-address 10.1.1.1
Device(config)# ip dhcp excluded-address vrf Mgmt-vrf 10.1.1.1 10.1.1.10
Device(config)# ip dhcp pool pnp_device_pool
Device(config-dhcp)# vrf Mgmt-vrf
Device(config-dhcp)# network 10.1.1.0 255.255.255.0
Device(config-dhcp)# default-router 10.1.1.1
Device(config-dhcp)# option 150 ip 203.0.113.254
Device(config-dhcp)# option 67 ascii /sample_python_dir/python_script.py
Device(config-dhcp)# no ip dhcp client request tftp-server-address

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
6

Provisioning
DHCP Server Configuration for Zero-Touch Provisioning

http://www.cisco.com/c/en/us/td/docs/ios/12_2/configfun/configuration/guide/ffun_c/fcf002.html

Device(config-dhcp)# end

Sample DHCP Server Configuration on a Forwarding Port
The following is a sample DHCP server configuration when connected via the forwarding port on a device:

Device> enable
Device# configure terminal
Device(config)# ip dhcp excluded-address 10.1.1.1
Device(config)# ip dhcp pool pnp_device_pool
Device(config-dhcp)# network 10.1.1.0 255.255.255.0
Device(config-dhcp)# default-router 10.1.1.1
Device(config-dhcp)# option 150 ip 203.0.113.254
Device(config-dhcp)# option 67 ascii /sample_python_dir/python_script.py
Device(config-dhcp)# no ip dhcp client request tftp-server-address
Device(config-dhcp)# end

Sample DHCP Server Configuration on a Linux Ubuntu Device
The following sample DHCP server configuration displays that th server is either connected to the management
port or forwarding port on a device. The DHCP server is on a box that is running the Linux Ubuntu distribution.

root@ubuntu-server:/etc/dhcp# more dhcpd.conf
subnet 10.1.1.0 netmask 255.255.255.0 {
range 10.1.1.2 10.1.1.255;

host 3850 {
fixed-address 10.1.1.246 ;
hardware ethernet CC:D8:C1:85:6F:00;
option bootfile-name !<opt 67> " /python_dir/python_script.py";
option tftp-server-name !<opt 150> "203.0.113.254";

}
}

Once the DHCP server is running, boot a management-network connected device, and the rest of the
configuration is automatic.

Sample Python Script on a TFTP Server
The following is a sample Python script hosted on a TFTP server:

print "\n\n *** Sample ZTP Day0 Python Script *** \n\n"

Importing cli module
import cli

print "\n\n *** Executing show platform *** \n\n"
cli_command = "show platform"
cli.executep(cli_command)

print "\n\n *** Executing show version *** \n\n"
cli_command = "show version"
cli.executep(cli_command)

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
7

Provisioning
Sample DHCP Server Configuration on a Forwarding Port

print "\n\n *** Configuring a Loopback Interface *** \n\n"
cli.configurep(["interface loop 100", "ip address 10.10.10.10 255.255.255.255", "end"])

print "\n\n *** Executing show ip interface brief *** \n\n"
cli_command = "sh ip int brief"
cli.executep(cli_command)

print "\n\n *** ZTP Day0 Python Script Execution Complete *** \n\n"

Zero-Touch Provisioning Boot Log
The following sample Zero-Touch Provisioning boot log displays that Guest Shell is successfully enabled,
the Python script is downloaded to the Guest Shell, and the Guest Shell executes the downloaded Python
script and configures the device for Day Zero.

% failed to initialize nvram
! <This message indicates that the startup configuration
is absent on the device. This is the first indication that the Day Zero work flow is
going to start.>

This product contains cryptographic features and is subject to United
States and local country laws governing import, export, transfer and
use. Delivery of Cisco cryptographic products does not imply
third-party authority to import, export, distribute or use encryption.
Importers, exporters, distributors and users are responsible for
compliance with U.S. and local country laws. By using this product you
agree to comply with applicable laws and regulations. If you are unable
to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at:
http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to
export@cisco.com.

cisco ISR4451-X/K9 (2RU) processor with 7941237K/6147K bytes of memory.
Processor board ID FJC1950D091
4 Gigabit Ethernet interfaces
32768K bytes of non-volatile configuration memory.
16777216K bytes of physical memory.
7341807K bytes of flash memory at bootflash:.
0K bytes of WebUI ODM Files at webui:.

%INIT: waited 0 seconds for NVRAM to be available

--- System Configuration Dialog ---

Would you like to enter the initial configuration dialog? [yes/no]: %
!!<DO NOT TOUCH. This is Zero-Touch Provisioning>>
Generating 2048 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 1 seconds)
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
8

Provisioning
Zero-Touch Provisioning Boot Log

The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
Guestshell enabled successfully

*** Sample ZTP Day0 Python Script ***

*** Configuring a Loopback Interface ***

Line 1 SUCCESS: interface loop 100
Line 2 SUCCESS: ip address 10.10.10.10 255.255.255.255
Line 3 SUCCESS: end

*** Executing show ip interface brief ***

Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0/0 unassigned YES unset down down
GigabitEthernet0/0/1 unassigned YES unset down down
GigabitEthernet0/0/2 unassigned YES unset down down
GigabitEthernet0/0/3 192.168.1.246 YES DHCP up up
GigabitEthernet0 192.168.1.246 YES DHCP up up
Loopback100 10.10.10.10 YES TFTP up up

*** ZTP Day0 Python Script Execution Complete ***

Press RETURN to get started!

The Day Zero provisioning is complete, and the IOS prompt is accessible.

Additional References for Zero-Touch Provisioning
Related Documents

Document TitleRelated Topic

CLI Python Library

Guest Shell

iPXE

Programmability commands

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
9

Provisioning
Additional References for Zero-Touch Provisioning

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple
Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Feature Information for Zero-Touch Provisioning
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 2: Feature Information for Zero-Touch Provisioning

Feature InformationReleaseFeature Name

To address network provisioning challenges,
Cisco introduces a zero-touch provisioning
model.

In Cisco IOS XE Everest 16.5.1a, this feature
was implemented on the following platforms:

Zero-Touch Provisioning

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
10

Provisioning
Feature Information for Zero-Touch Provisioning

http://www.cisco.com/support
http://www.cisco.com/go/cfn

C H A P T E R 3
iPXE

iPXE is an enhanced version of the Pre-boot eXecution Environment (PXE), which is an open standard for
network booting. This module describes the iPXE feature and how to configure it.

• Finding Feature Information, on page 11
• Information About iPXE, on page 11
• How to Configure iPXE, on page 18
• Configuration Examples for iPXE, on page 20
• Troubleshooting Tips for iPXE, on page 22
• Additional References for iPXE, on page 23
• Feature Information for iPXE, on page 24

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Information About iPXE

About iPXE
iPXE is an enhanced version of the Pre-boot eXecution Environment (PXE), which is an open standard for
network booting.

iPXE netboot provides:

• IPv4 and IPv6 protocols

• FTP/HTTP/TFTP boot image download

• Embedded scripts into the image

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
11

https://cfnng.cisco.com/

• Stateless address auto-configuration (SLAAC) and stateful IP auto-configuration variants for Dynamic
Host Configuration Protocol Version 6 (DHCPv6), boot URI, and parameters for DHCPv6 options
depending on the IPv6 router advertisement.

Netboot Requirements

The following are the primary requirements for netbooting:

• DHCP server with proper configuration.

• Boot image available on the FTP/HTTP/TFTP server.

• Device configured to boot from a network-based source.

iPXE Overview
Network bootloaders support booting from a network-based source. The bootloaders boot an image located
on an HTTP, FTP, or TFTP server. A network boot source is detected automatically by using an iPXE-like
solution.

iPXE enables network boot for a device that is offline. The following are the three types of iPXE boot modes:

• iPXE Timeout—Configures a timeout in seconds for iPXE network boot by using the IPXE_TIMEOUT
rommon variable. When the timeout expires, device boot is activated.

• iPXE Forever—Boots through iPXE network boot. The device sends DHCP requests forever, when the
boot ipxe forever command is configured. This is an iPXE-only boot (which means that the bootloader
will not fall back to a device boot or a command prompt, because it will send DHCP requests forever
until it receives a valid DHCP response.)

• Device—Boots using the local device BOOT line configured on it. When device boot is configured, the
configured IPXE_TIMEOUT rommon variable is ignored. Device boot is the default boot mode.

Manual boot is another term used in this document. Manual boot is a flag that determines whether to do a
rommon reload or not. When the device is in rommon mode, you have to manually issue the boot command.

If manual boot is set to 1, the rommon or device prompt is activated. If manual boot is set to 0, the device is
reloaded; but rommon mode is not activated.

Note

The following section describes how an iPXE bootloader works:

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
12

Provisioning
iPXE Overview

Figure 1: iPXE Bootloader Workflow

1. Bootloader sends a DHCP request.

2. The DHCP response includes the IP address and boot file name. The boot file name indicates that the boot
image is to be retrieved from a TFTP server (tftp://server/filename), FTP server
(ftp://userid:password@server/filename), or an HTTP server (http://server/filename). Because the current
iPXE implementation works only via the management port (GigabitEthernet0/0), DHCP requests sent
through the front panel ports are not supported.

3. Bootloader downloads and boots the image from the network source.

4. If no DHCP response is received, the bootloader keeps sending DHCP requests forever or for a specified
period of time, based on the boot mode configured. When a timeout occurs, the bootloader reverts to a
device-based boot. The device sends DHCP requests forever only if the configured boot mode is
ipxe-forever. If the ipxe-timeout boot mode command is configured, DHCP requests are sent for the
specified amount of time, and when the timeout expires, device boot mode is activated.

When manual boot is disabled, the bootloader determines whether to execute a device boot or a network boot
based on the configured value of the iPXEROMMONvariable. Irrespective of whether manual boot is enabled
or disabled, the bootloader uses the BOOTMODE variable to determine whether to do a device boot or a
network boot. Manual boot means that the user has to manually type the boot manual switch command to
start the boot process. When manual boot is disabled, and when the device reloads, the boot process starts
automatically.

When iPXE is disabled, the contents of the existing BOOT variable are used to determine how to boot the
device. The BOOT variable may contain a network-based uniform resource identifier (URI) (for example,
http://, ftp://, tftp://), and a network boot is initiated; however DHCP is not used to get the network image
path. The device IP address is taken from the IP_ADDR variable. The BOOT variable may also contain a
device-based path, in which case, a device-based boot is initiated.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
13

Provisioning
iPXE Overview

To identify the device on a remote DHCP server for booting purposes, use the chassis serial number (available
in DHCP option 61), the Product ID (PID) (available in DHCP Option 60), or the device MAC Address. The
show inventory and show switch commands also display these values on the device.

The following is sample output from the show inventory command:
Device# show inventory

NAME:“c38xx Stack”, DESCR:“c38xx Stack”
PID:WS-3850-12X-48U-L, VID:V01 , SN: F0C1911V01A

NAME:“Switch 1”, DESCR:“WS-C3850-12X48U-L”
PID:WS-C3850-12X48U-L, VID:V01 , SN:F0C1911V01A

NAME:”Switch1 -Power Supply B”, DESCR:“Switch1 -Power Supply B”
PID:PWR-C1-1100WAC, VID:V01, SN:LIT1847146Q

The following rommon variables should be configured for iPXE:

• BOOTMODE = ipxe-forever | ipxe-timeout | device

• IPXE_TIMEOUT = seconds

IPv6 iPXE Network Boot
This illustration displays how IPv6 iPXE network boot works on a Cisco device:

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
14

Provisioning
IPv6 iPXE Network Boot

The four elements in the above illustration are described below:

• IPv6 Booting Device—The device that is booting through iPXE boot.

• Supporting Device—A Cisco device that is configured with an IPv6 address to generate Router
Advertisement (RA) messages.

In this illustration, the IPv6 booting device, the supporting device, and the DHCP
server are on the same subnet. However; if the supporting device and the DHCP
server are on different subnets, then there must be a relay agent in the network.

Note

• DHCP server—Any open source DHCP server.

• Web server—Any open source web server.

This section describes the IPv6 iPXE boot process:

1. The device sends a router solicitation Internet Control Message Protocol IPv6 (ICMPv6) type 133 packet
to the IPv6 device on the local subnet.

2. The IPv6 device on the local subnet replies with an RA, ICMPv6 type 134 packet. The device that sent
the router solicitation message, gets the default router and prefix information for Stateless Address
AutoConfiguration (SLAAC) address completion from the RA packet.

3. The device sends a DHCPv6 solicit message to the multicast group address of ff02::1:2 for all DHCP
agents.

The following sample displays the fields in a DHCPv6 solicit packet during iPXE boot:

DHCPv6
Message type: Solicit (1)
Transaction ID: 0x36f5f1
Client Identifier
Vendor Class
Identity Association for Non-Temporary Address
Option Request
User Class
Vendor-specific Information

The DHCPv6 solicit message contains the following information:

• DHCP Unique Identifier (DUID)—Identifies the client. iPXE supports DUID-EN. EN stands for
Enterprise Number, and this DUID is based on the vendor-assigned unique identifier.

• DHCPv6 Option 3

• DHCPv6 Option 6

• DHCPv6 Option 15

• DHCPv6 Option 16

• DHCPv6 Option 17

4. If the DHCPv6 server is configured, it responds with a DHCPv6 advertise packet that contains the 128
Bit IPv6 address, the boot file Uniform Resource Identifier (URI), the Domain Name System (DNS) server

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
15

Provisioning
IPv6 iPXE Network Boot

and domain search list, and the client and server IDs. The client ID contains the DUID of the client (In
this illustration, the IPv6 Booting Device), and the Server ID contains the DUID of the DHCPv6 server.

5. The client then sends a DHCPv6 request packet to the multicast group address ff02::1:2, requesting for
advertised parameters.

6. The server responds with a unicast DHCPv6 reply to the Link Local (FE80::) IPv6 address of the client.
The following sample displays the fields in a DHCPv6 reply packet:

DHCPv6
Message type: Reply (7)
Transaction ID: 0x790950
Identity Association for Non-Temporary Address
Client Identifier
Server Identifier
DNS recursive name server
Boot File URL
Domain Search List

7. The device then sends an HTTP GET request to the web server.

8. If the requested image is available at the specified path, the web server responds with an OK for the HTTP
GET request.

9. The TCP image transfer copies the image, and the device boots up.

IPv6 Address Assignment in ROMMON Mode
The DHCP client uses the following order-of-precedence to decide which IPv6 address to use in rommon
mode:

1. DHCP Server-assigned address

2. Stateless Address Auto-Configuration (SLAAC) address

3. Link-local address

4. Site-local address

The device uses the DHCP server-assigned address to boot an image. If the DHCPv6 server fails to assign an
address, the device tries to use the SLAAC address. If both the DHCP server-assigned address and the SLAAC
address are not available, the device uses the link-local address. However, the remote FTP/HTTP/TFTP servers
must be on the same local subnet as that of the device for the image copy to succeed.

If the first three addresses are not available, the device uses the automatically generated site-local address.

iPXE-Supported DHCP Options
iPXE boot supports the following DHCPv4 and DHCPv6 options in rommon mode.

• DHCP Option 77—User Class Option. This option is added to a DHCP Discover packet, and contains
the value equal to the string iPXE. This option helps to isolate iPXE DHCP clients looking for an image
to boot from a DHCP server.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
16

Provisioning
IPv6 Address Assignment in ROMMON Mode

The following is sample DHCPv4 configuration from the ISC DHCP Server that displays the use of
Option 77. The if condition in this sample implies that if Option 77 exists, and is equal to the string iPXE,
then advertise the Boot File URI for the image.

host Switch2 {
fixed-address 192.168.1.20 ;
hardware ethernet CC:D8:C1:85:6F:11 ;

#user-class = length of string + ASCII code for iPXE
if exists user-class and option user-class = 04:68:50:58:45 {

filename "http://192.168.1.146/test-image.bin"
}

}

• DHCPv6 Option 15—User Class Option. This option is the IPv6 User Class option in a DHCPv6 solicit
message. The following sample shows Option 15 defined in the ISC DHCP server:

option dhcp6.user-class code 15 = string ;

The following is a sample DHCP Server configuration that uses the DHCPv6 Option 15:

#Client-specific parameters
host switch1 {

#assigning a fixed IPv6 address
fixed-address6 2001:DB8::CAFE ;
#Client DUID in hexadecimal format contains: DUID-type"2" + "EN=9" + "Chassis

serial number"
host-identifier option dhcp6.client-id 00:02:00:00:00:09:46:4F:43:31:38:33:

31:58:31:41:53;
#User class 00:04:69:50:58:45 is len 4 + "iPXE"
if option dhcp6.user-class = 00:04:69:50:58:45 {

option dhcp6.bootfile-url
"http://[2001:DB8::461/platform-pxe/edi46/test-image.bin";

}
}

• DHCPv6 Option 16—Vendor Class Option. Contains the device product ID (PID). The PID can be
determined from the output of the show inventory command or from the MODEL_NUM rommon
variable. Option 16 is not a default option in the ISC DHCP Server and can be defined as follows:

option dhcp6.vendor-class-data code 16 = string;

The following sample configuration illustrates the use of DHCPv6 Option 16:

Source: dhcpd6ConfigPD

host host1-ipxe6-auto-host1 {
fixed-address6 2001:DB8::1234;
host-identifier option dhcp6.client-id 00:02:00:00:00:09:46:4F:
43:31:38:33:31:58:31:41:53;
if option dhcp6.vendor-class-data = 00:00:00:09:00:0E:57:53:2D:
43:33:38:35:30:2D:32:34:50:2D:4D {
option dhcp6.bootfile-url

"http://[2001:DB8::46]/platform-pxe/host1/17jan-polaris.bin";

The table below describes the significant fields shown in the display.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
17

Provisioning
iPXE-Supported DHCP Options

Table 3: Sample Output Field Descriptions

DescriptionField

DHCP Unique Identifier (DUID) to identify the
client.

dhcp6.client-id

DHCPv6 Option 15, the User Class optiondhcp6.user-class

DHCPv6 Option 16, the Vendor Class option that
contains the switch Product ID (PID).

dhcp6.vendor-class-data

DHCPv6 Option 3 to request for a non-temporary
address.

N/A

DHCPv6 Option 17, the Vendor-Specific option
that contains the reserved Enterprise ID 9 for Cisco
Systems.

N/A

DHCPv6 Option 6 to request for the Boot File URIdhcp6.bootfile-url

DHCPv6 Unique Identifiers
There are three types of DHCPv6 Identifiers (DUIDs) defined by RFC 3315; these are:

• DUID-LLT—DUID Link Layer address plus time, this is the link layer address of the network interface
connected to the DHCP device plus the time stamp at which it is generated.

• DUID-EN—EN stands for Enterprise Number, this DUID is based on vendor-assigned unique ID.

• DUID-LL—DUID formed using the Link Layer address of any network interface that is permanently
connected to the DHCP (client/server) device.

Cisco devices use the DUID-EN (DUID Type 2) to identify the DHCP client (that is the device in the DHCPv6
Solicit packet).

How to Configure iPXE

Configuring iPXE

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
18

Provisioning
DHCPv6 Unique Identifiers

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Configures the BOOTMODE rommon variable.Step 3 • boot ipxe forever switch number
• boot ipxe timeout seconds switch number • The forever keyword configures the

BOOTMODE rommon variable as
IPXE-FOREVER.

Example:
Device(config)# boot ipxe forever switch
2 • The timeout keyword configures the

BOOTMODE rommon variable as
IPXE-TIMEOUT.

Example:
Device(config)# boot ipxe timeout 30
switch 2

Boots an image from the specified location.boot system {switch switch-number | all}
{flash: | ftp: | http: | tftp:}

Step 4

• You can either use an IPv4 or an IPv6
address for the remote FTP/HTTP/TFTP
servers.

Example:
Device(config)# boot system switch 1
http://192.0.2.42/image-filename

• Youmust enter the IPv6 address inside the
square brackets (as per RFC 2732); if not
the device will not boot.

or
Device(config)# boot system switch 1
http://[2001:db8::1]/image-filename

Exits global configuration mode and returns to
privileged EXEC mode.

end

Example:

Step 5

Device(config)# end

Configuring Device Boot
You can either use the no boot ipxe or the default boot ipxe command to configure device boot.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Configures device boot. The default bot mode
is device boot.

Step 3 • no boot ipxe
• default boot ipxe

Enables default configuration on the device.Example:

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
19

Provisioning
Configuring Device Boot

PurposeCommand or Action
Device(config)# no boot ipxe

Example:
Device(config)# default boot ipxe

Exits global configuration mode and returns to
privileged EXEC mode.

end

Example:

Step 4

Device(config)# end

Configuration Examples for iPXE

Example: iPXE Configuration

The following example shows that iPXE is configured to send DHCP requests forever until the device
boots with an image:
Device# configure terminal
Device(config)# boot ipxe forever switch 2
Device(config)# end

The following example shows how to configure the boot mode to ipxe-timeout. The configured
timeout is 200 seconds. If an iPXE boot failure occurs after the configured timeout expires, the
configured device boot is activated. In this example, the configured device boot is
http://[2001:db8::1]/image-filename.
Device# configure terminal
Device(config)# boot ipxe timeout 200 switch 2
Device(config)# boot system http://[2001:db8::1]/image-filename
Device(config)# end

Sample iPXE Boot Logs

The following are sample boot logs from a device in rommon mode. Here, manual boot using the
ipxe-timeout command is configured:
switch: boot

pxemode:(ipxe-timeout) 60s timeout
00267.887 ipxe_get_booturl: Get URL from DHCP; timeout 60s
00267.953 ipxe_get_booturl: trying DHCPv6 (#1) for 10s
IPv4:

ip addr 192.168.1.246
netmask 255.255.255.0
gateway 192.168.1.46

IPv6:
link-local addr fe80::ced8:c1ff:fe85:6f00
site-local addr fec0::ced8:c1ff:fe85:6f00

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
20

Provisioning
Configuration Examples for iPXE

DHCP addr 2001:db8::cafe
router addr fe80::f29e:63ff:fe42:4756
SLAAC addr 2001:db8::ced8:c1ff:fe85:6f00 /64

Common:
macaddr cc:d8:c1:85:6f:00

dns 2001:db8::46
bootfile

http://[2001:DB8::461/platform-pxe/edi46/17jan-dev.bin--13103--2017-Feb28--13-54-50
domain cisco.com

00269.321 ipxe_get_booturl: got URL
(http://[2001:DB8::461/platform-pxe/edi46/17jan-dev.bin--13103--2017-Feb-28--13-54-50)
Reading full image into memory …...
Bundle Image
––-
Kernel Address : 0x5377a7e4
Kernel Size : 0x365e3c/3563068
Initramfs Address : 0x53ae0620
Initramfs Size : 0x13a76f0/20608752
Compression Format: mzip

Sample DHCPv6 Server Configuration for iPXE

The following is a sample DHCPv6 server configuration taken from an ISC DHCP Server for
reference. The lines preceded by the character #, are comments that explain the configuration that
follows.

Default-least-time 600;
max-lease-time-7200;
log-facility local7;

#Global configuration
#domain search list
option dhcp6.domain-search "cisco.com" ;
#User-defined options:new-name code new-code = definition ;
option dhcp6.user-class code 15 = string ;
option dhcp6.vendor-class-data code 16 = string;

subnet6 2001:db8::/64 {
#subnet range for clients requiring an address
range6 2001:db8:0000:0000::/64;

#DNS server options
option dhcp6.name-servers 2001:db8::46;

}
#Client-specific parameters
host switch1 {

#assigning a fixed IPv6 address
fixed-address6 2001:DB8::CAFE ;
#Client DUID in hexadecimal that contains: DUID-type "2" + "EN=9" + "Chassis serial

number"
host-identifier option dhcp6.client-id 00:02:00:00:00:09:46:4F:43:31:38:33:

31:58:31:41:53;
option dhcp6.bootfile-url "http://[2001:DB8::461/platform-pxe/edi46/test-image.bin";

}

For more information on DHCP server commands, see the ISC DHCP Server website.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
21

Provisioning
Sample DHCPv6 Server Configuration for iPXE

https://www.isc.org/support/

In this sample configuration, the dhcp6.client-id option identifies the switch, and it is followed by
the Enterprise Client DUID. The client DUID can be broken down for understanding as 00:02 +
00:00:00:09 + chassis serial number in hexadecimal format, where 2 refers to the Enterprise Client
DUID Type, 9 refers to the reserved code for Cisco’s Enterprise DUID, followed by the ASCII code
for the Chassis serial number in hexadecimal format. The chassis serial number for the switch in this
sample is FOC1831X1AS.

The Boot File URI is advertised to the switch only using the specified DUID.

The DHCPv6 Vendor Class Option 16 can also be used to identify the switch on the DHCP Server.
By default, this DHCP option is not supported by the ISC DHCP Server, and to define it as a
user-defined option, configure the following:

option dhcp6.vendor-class-data code 16 = string;

The following is a sample DHCP server configuration that identifies the switch based on the DHCPv6
Vendor Class Option 16 that is formed by using the switch Product ID:

Source: dhcp6ConfigPID

host edi-46-ipxe6-auto-edi46 {
fixed-address6 2001:DB8::1234;
host-identifier option dhcp6.client-id 00:02:00:00:00:09:
46:4F:43:31:38:33:31:58:31:58:31:41:53;
if option dhcp6.vendor-class-data = 00:00:00:09:00:0E:57:
53:2D:43:33:38:35:30:2D:32:34:50:2D:4C {

option dhcp6.bootfile-url "http://[2001:DB8::461/platform-pxe/edi46/17jan-dev.bin";
}

}

In this sample configuration, the dhcp6.vendor-class-data option refers to the DHCPv6 Option 16.
In the dhcp6.vendor-class-data, 00:00:00:09 is Cisco’s Enterprise DUID, 0E is the length of the PID,
and the rest is the PID in hexadecimal format. The PID can also be found from the output of the
show inventory command or from the CFG_MODEL_NUM rommon variable. The PID used in
this sample configuration is WS-C3850-24P-L.

DHCPv6 options and DUIDs in the server configuration must be specified in the hexadecimal format,
as per the ISC DHCP server guidelines.

Troubleshooting Tips for iPXE
This section provides troubleshooting tips.

• When iPXE boot is enabled on power up, the device first attempts to send a DHCPv6 Solicit message,
followed by a DHCPv4 Discover message. If boot mode is ipxe-forever the device keeps iterating
between the two forever.

• If the boot-mode is iPXE timeout, the device first sends a DHCPv6 Solicit message, and then a DHCPv4
Discover message, and the device falls back to device boot after the timeout expires.

• To interrupt iPXE boot, send a serial break to the console.

When using a UNIX telnet client, type CTRL-] and then send break. When you are using a different
TELNET client, or you are directly attached to a serial port, sending a break may be triggered by a
different keystroke or command.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
22

Provisioning
Troubleshooting Tips for iPXE

• If the DHCP server responds with an image, but the DNS server cannot resolve the hostname, enable
DNS debugs.

• To test the HTTP server connectivity, use HTTP copy to copy a small sample file from your HTTP server
to your device. For example, at the rommon prompt, enter copy http://192.168.1.1/test null: (the flash
is normally locked and you need to use the null device for testing) or http://[2001:db8::99]/test.

• When manual boot is enabled, and boot mode is ipxe-timeout, the device will not automatically boot on
power up. Issue the boot command in rommon mode. To automate the boot process on power up, disable
manual boot.

• Use the net6-show command to display the current IPv6 parameters, including IPv6 addresses and the
default router in rommon mode

• Use the net-dhcp or the net6-dhcp commands based on your configuration, The net-dhcp command is
a test command for DHCPv4 and the net6-dhcp command is for DHCPv6.

• Use the dig command to resolve names.

• Enable HTTP debug logs to view the HTTP response code from the web server.

• If SLAAC addresses are not generated, there is no router that is providing IPv6 RAmessages. iPXE boot
for IPv6 can still work but only with link or site-local addresses.

For more information about iPXE commands, see the

• Catalust 3650 Command Reference

• Catalust 3850 Command Reference

Additional References for iPXE
Related Documents

Document TitleRelated Topic

Programmability commands

Standards and RFCs

TitleStandard/RFC

Dynamic Host Configuration Protocol for IPv6 (DHCPv6)RFC 3315

Uniform Resource Identifier (URI): Generic SyntaxRFC 3986

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
23

Provisioning
Additional References for iPXE

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple
Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Feature Information for iPXE
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 4: Feature Information for iPXE

Feature InformationReleaseFeature Name

Network Bootloaders support
booting from a device-based or
network-based source. A network
boot source must be detected
automatically by using an iPXE-like
solution.

iPXE

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
24

Provisioning
Feature Information for iPXE

http://www.cisco.com/support
http://www.cisco.com/go/cfn

P A R T II
Shells and Scripting

• Guest Shell, on page 27
• Python API, on page 39
• CLI Python Module, on page 45
• EEM Python Module, on page 51

C H A P T E R 4
Guest Shell

Guestshell is a virtualized Linux-based environment, designed to run custom Linux applications, including
Python for automated control and management of Cisco devices. It also includes the automated provisioning
(Day zero) of systems. This container shell provides a secure environment, decoupled from the host device,
in which users can install scripts or software packages and run them.

This module describes Guest Shell and how to enable it.

• Finding Feature Information, on page 27
• Information About Guest Shell, on page 27
• How to Enable Guest Shell, on page 30
• Configuration Examples for Guest Shell, on page 34
• Additional References for Guest Shell, on page 37
• Feature Information for Guest Shell, on page 38

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Information About Guest Shell

Guest Shell Overview
Guestshell is a virtualized Linux-based environment, designed to run custom Linux applications, including
Python for automated control and management of Cisco devices. Using Guest Shell, customers can also install,
update, and operate third-party Linux applications. It is bundled with the system image and can be installed
using the guestshell enable IOS command.

The Guest Shell environment is intended for tools, Linux utilities, and manageability rather than networking.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
27

https://cfnng.cisco.com/

Guest Shell shares the kernel with the host (Cisco switches and routers) system. Users can access the Linux
shell of Guest Shell and update scripts and software packages in the container rootfs. However, users within
the Guest Shell cannot modify the host file system and processes.

Guest Shell container is managed using IOx. IOx is Cisco's Application Hosting Infrastructure for Cisco IOS
XE devices. IOx enables hosting of applications and services developed by Cisco, partners, and third-party
developers in network edge devices, seamlessly across diverse and disparate hardware platforms.

This table provides information about the various Guest Shell capabilities and the supported platforms.

Table 5: Cisco Guest Shell Capabilities

Guest Shell (LXC Container)Guest Shell Lite (Limited LXC Container)

Cisco IOS XECisco IOS XEOperating System

Supported Platforms

CentOS 7Montavista CGE7Guest Shell Environment

Supported (Python V2.7.5)Supported (Python V2.7.11)Python 2.7

• Cisco Embedded Event
Manager

• Cisco IOS XE CLIs

• Cisco Embedded Event Manager

• Cisco IOS XE CLIs

• Ncclient

Custom Python Libraries

SSH, Yum install, and Python PIP
install

Busybox, SSH, and Python PIP installSupported Rootfs

Not supportedNot supportedGNU C Compiler

SupportedNot supportedRPM Install

x86MIPSArchitecture

Guest Shell Vs Guest Shell Lite
The Guest Shell container allows users to run their scripts and apps on the system. The Guest Shell container
on Intel x86 platforms will be a Linux container (LXC) with a CentOS 7.0 minimal rootfs. You can install
other Python libraries such as, Python Version 3.0 during runtime using the Yum utility in CentOS 7.0. You
can also install or update python packages using PIP.

The Guest Shell Lite container on MIPS platforms such as, Catalyst 3650 and Catalyst 3850 Series Switches
have the Montavista Carrier Grade Edition (CGE) 7.0 rootfs. You can only install or run scripts in Guest Shell
Lite. Yum install is not supported on these devices.

Guest Shell Security
Cisco provides security to ensure that users or apps in the Guest Shell do not compromise the host system.
Guest Shell is isolated from the host kernel, and it runs as an unprivileged container.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
28

Shells and Scripting
Guest Shell Vs Guest Shell Lite

Hardware Requirements for Guestshell
This section provides information about the hardware requirements for supported platforms.

Table 6: Guest Shell Support on Catalyst Switches

Virtual-service installed applications and Guest Shell container cannot co-exist.Note

Guest Shell Storage Requirements
On Catalyst 3650 and Catalyst 3850 Series Switches, Guest Shell can only be installed on the flash filesystem.
Bootflash of Catalyst 3850 Series Switches require 75MB free disk space for Guest Shell to install successfully.

On Cisco 4000 Series Integrated Services Routers, Guest Shell is installed on the Network Interface Module
(NIM)-Service Set Identifier (SSD) (hard disk), if available. If the hard disk drive is available, there is no
option to select bootflash to install Guest Shell. Cisco 4000 Series Integrated Services Routers require 1100
MB free hard disk (NIM-SSID) space for Guest Shell to install successfully.

During Guest Shell installation, if enough hard disk space is not available, an error message is displayed.

Bootflash or hard disk space can be used to store additional data by Guest Shell. On Cisco Catalyst 3850
Series Switches, Guest Shell has 18 MB of storage space available and on Cisco 4000 Series Integrated
Services Routers, Guest Shell has 800 MB of storage space available. Because Guest Shell accesses the
bootflash, it can use the entire space available.

Table 7: Resources Available to Guest Shell and Guest Shell Lite

Minimum/MaximumDefaultResource

1/100%1%

1% is not standard; 800
CPU units/ total system
CPU units.

Note

CPU

256/256 MB256 MBMemory

Accessing Guest Shell on a Device
Network administrators can use IOS commands to manage files and utilities in the Guest Shell.

During the Guest Shell installation, SSH access is setup with a key-based authentication. The access to the
Guest Shell is restricted to the user with the highest privilege (15) in IOS. This user is granted access into the
Linux container as the guestshell Linux user, who is a sudoer, and can perform all root operations. Commands
executed through the Guest Shell are executed with the same privilege that a user has when logged into the
IOS terminal.

At the Guest Shell prompt, you can execute standard Linux commands.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
29

Shells and Scripting
Hardware Requirements for Guestshell

Accessing Guest Shell Through the Management Port
By default, Guest Shell allows applications to access the management network. Users cannot change the
management VRF networking configurations from inside the Guest Shell.

For platforms without a management port, a VirtualPortGroup can be associated with Guest Shell in the IOS
configuration. For more information, see the Sample VirtualPortGroup Configuration section.

Note

IOx Overview
IOx is a Cisco-developed end-to-end application framework that provides application hosting capabilities for
different application types on Cisco network platforms. The Cisco Guest Shell, a special container deployment,
is one such application, that is useful in system deployment/use.

IOx facilitates the life-cycle management of app and data exchange by providing a set of services that helps
developers to package pre-built apps, and host them on a target device. IOx life-cycle management includes
distribution, deployment, hosting, starting, stopping (management), and monitoring of apps and data. IOx
services also include app distribution and management tools that help users discover and deploy apps to the
IOx framework.

App hosting provides the following features:

• Hides network heterogeneity.

• IOx application programming interfaces (APIs), remotely manage the life cycle of applications hosted
on a device.

• Centralized app life-cycle management.

• Cloud-based developer experience.

How to Enable Guest Shell

Managing IOx

Before you begin

IOx takes upto two minutes to start. CAF, IOXman, and Libirtd services must be running to enable Guest
Shell successfully.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
30

Shells and Scripting
Accessing Guest Shell Through the Management Port

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Configures IOx services.iox

Example:

Step 3

Device(config)# iox

Exits global configuration mode and returns to
privileged EXEC mode.

exit

Example:

Step 4

Device(config)# exit

Displays the status of the IOx serviceshow iox-service

Example:

Step 5

Device# show iox-service

Displays the list of app-hosting services enabled
on the device.

show app-hosting list

Example:

Step 6

Device# show app-hosting list

What to do next

The following is sample output from the show iox-service command on an ISR 4000 Series Router:
Device# show iox-service

Virtual Service Global State and Virtualization Limits:

Infrastructure version : 1.7
Total virtual services installed : 0
Total virtual services activated : 0

Machine types supported : KVM, LXC
Machine types disabled : none

Maximum VCPUs per virtual service : 6
Resource virtualization limits:
Name Quota Committed Available
--
system CPU (%) 75 0 75
memory (MB) 10240 0 10240
bootflash (MB) 1000 0 1000
harddisk (MB) 20000 0 18109
volume-group (MB) 190768 0 170288

IOx Infrastructure Summary:

IOx service (CAF) : Running
IOx service (HA) : Not Running
IOx service (IOxman) : Running
Libvirtd : Running

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
31

Shells and Scripting
Managing IOx

The following is truncated sample output from the show iox-service command on a Catalyst 3850 Series
Switch:

Device# show iox-service

IOx Infrastructure Summary:

IOx service (CAF) : Running
IOx service (HA) : Running
IOx service (IOxman) : Running
Libvirtd : Running

The following is sample output from the show app-hosting list command:

Device# show app-hosting list

App id State
--
guestshell RUNNING

Managing the Guest Shell
You can start the Guest Shell container in IOS through Guest Shell commands.

Before you begin

IOx must be configured and running for Guest Shell access to work. If IOx is not configured, a message to
configure IOx is displayed. Removing IOx removes access to the Guest Shell, but the rootfs remains unaffected.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enables the Guest Shell service.Step 2 • guestshell enable
• guestshell enable [VirtualPortGroup

port-number guest-ip ip-address gateway
or

Enables connectivity to the front panel ports.gateway-ip netmask netmask
[name-server ip-address]]

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
32

Shells and Scripting
Managing the Guest Shell

PurposeCommand or Action

• The guestshell enable
command without any
arguments uses the
management virtual routing and
forwarding (VRF) instance for
networking.

• When using VirtualPortGroups
(VPGs) for front panel
networking, the VPG must be
configured first.

• The guest IP address and the
gateway IP address must be in
the same subnet.

• Front panel ports are not
supported Cisco Catalyst 3650
Series Switches, Cisco Catalyst
3850 Series Switches, Cisco
Catalyst 9300 Series Switches,
and Cisco Catalyst 9500 Series
Switches.

NoteExample:
Device# guestshell enable

Example:
Device# guestshell enable
VirtualPortGroup 0 guest-ip 192.168.35.2

gateway 192.168.35.1 netmask
255.255.255.0 name-server 10.1.1.1

Executes or runs a Linux program in the Guest
Shell.

guestshell run linux-executable

Example:

Step 3

• Python Version 2.7.11 is pre-installed on
Catalyst 3650 and Catalyst 3850 Series

Device# guestshell run python

Switches, and Python Version 2.7.5 is
pre-installed on ISR 4000 Series Routers.

Starts a Bash shell to access the Guest Shell.guestshell run bash

Example:

Step 4

Device# guestshell run bash

Disables the Guest Shell service.guestshell disable

Example:

Step 5

Device# guestshell disable

Deactivates and uninstalls the Guest Shell
service.

guestshell destroy

Example:

Step 6

Device# guestshell destroy

Enabling and Running the Guest Shell
The guestshell enable command installs Guest Shell. This command is also used to reactivate Guest Shell,
if it is disabled.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
33

Shells and Scripting
Enabling and Running the Guest Shell

When Guest Shell is enabled and the system is reloaded, Guest Shell remains enabled.

IOx must be configured before the guestshell enable command is used.Note

The guestshell run bash command opens the Guest Shell bash prompt. Guest Shell must already be enabled
for this command to work.

If the following message is displayed on the console, it means that IOx is not enabled; check the output of
the show iox-service command to view the status of IOx.

The process for the command is not responding or is otherwise unavailable

Note

Disabling and Destroying the Guest Shell
The guestshell disable command shuts down and disables Guest Shell. When Guest Shell is disabled and the
system is reloaded, Guest Shell remains disabled.

The guestshell destroy command removes the rootfs from the flash filesystem. All files, data, installed Linux
applications and custom Python tools and utilities are deleted, and are not recoverable.

Accessing the Python Interpreter
Python can be used interactively or Python scripts can be run in the Guest Shell. Use the guestshell run
python command to launch the Python interpreter in Guest Shell and open the Python terminal.

The guestshell run command is the IOS equivalent of running Linux executables, and when running a Python
script from IOS, specify the absolute path. The following example shows how to specify the absolute path
for the command:

Guestshell run python /flash/sample_script.py parameter1 parameter2

Note

Configuration Examples for Guest Shell

Example: Managing the Guest Shell

The following example shows how to enable Guest Shell on a Catalyst 3850 Series Switch:

Device> enable
Device# guestshell enable

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
34

Shells and Scripting
Disabling and Destroying the Guest Shell

Management Interface will be selected if configured
Please wait for completion
Guestshell enabled successfully

Device# guestshell run python

Python 2.7.11 (default, Feb 21 2017, 03:39:40)
[GCC 5.3.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.

Device# guestshell run bash

[guestshell@guestshell ~]$

Device# guestshell disable

Guestshell disabled successfully

Device# guestshell destroy

Guestshell destroyed successfully

Sample VirtualPortGroup Configuration

When using the VirtualPortGroup interface for Guest Shell networking, the VirtualPortGroup interface
must have a static IP address configured. The front port interface must be connected to the Internet
and Network Address Translation (NAT) must be configured between the VirtualPortGroup and the
front panel port.

The following is a sample VirtualPortGroup configuration:

Device> enable
Device# configure terminal
Device(config)# interface VirtualPortGroup 0
Device(config-if)# ip address 192.168.35.1 255.255.255.0
Device(config-if)# ip nat inside
Device(config-if)# no mop enabled
Device(config-if)# no mop sysid
Device(config-if)# exit
Device(config)# interface GigabitEthernet 0/0/3
Device(config-if)# ip address 10.0.12.19 255.255.0.0
Device(config-if)# ip nat outside
Device(config-if)# negotiation auto
Device(config-if)# exit
Device(config)# ip route 0.0.0.0 0.0.0.0 10.0.0.1
Device(config)# ip route 10.0.0.0 255.0.0.0 10.0.0.1
!Port forwarding to use ports for SSH and so on.
Device(config)# ip nat inside source static tcp 192.168.35.2 7023 10.0.12.19 7023 extendable
Device(config)# ip nat outside source list NAT_ACL interface GigabitEthernet 0/0/3 overload
Device(config)# ip access-list standard NAT_ACL
Device(config-std-nacl)# permit 192.168.0.0 0.0.255.255
Device(config-std-nacl)# exit
Device(config)# exit
Device#

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
35

Shells and Scripting
Sample VirtualPortGroup Configuration

Example: Guest Shell Usage

Example: Guest Shell Networking Configuration
For Guest Shell networking, the following configurations are required.

• Configure Domain Name System (DNS)

• Configure proxy settings

• Configure YUM or PIP to use proxy settings

Sample DNS Configuration for Guest Shell

The following is a sample DNS configuration for Guest Shell:

[guestshell@guestshell ~]$ cat/etc/resolv.conf
nameserver 192.0.2.1

Other Options:
[guestshell@guestshell ~]$ cat/etc/resolv.conf
domain cisco.com
search cisco.com
nameserver 192.0.2.1
search cisco.com
nameserver 198.51.100.1
nameserver 172.16.0.6
domain cisco.com
nameserver 192.0.2.1
nameserver 172.16.0.6
nameserver 192.168.255.254

Example: Configuring Proxy Environment Variables

If your network is behind a proxy, configure proxy variables in Linux. If required, add these variables
to your environment.

The following example shows how to configure your proxy variables:

[guestshell@guestshell ~]$cat /bootflash/proxy_vars.sh
export http_proxy=http://proxy.example.com:80/
export https_proxy=http://proxy.example.com:80/
export ftp_proxy=http://proxy.example.com:80/
export no_proxy=example.com
export HTTP_PROXY=http://proxy.example.com:80/
export HTTPS_PROXY=http://proxy.example.com:80/
export FTP_PROXY=http://proxy.example.com:80/
guestshell ~] source /bootflash/proxy_vars.sh

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
36

Shells and Scripting
Example: Guest Shell Usage

Example: Configuring Yum and PIP for Proxy Settings

The following example shows how to use Yum for setting proxy environment variables:

cat /etc/yum.conf | grep proxy
[guestshell@guestshell~]$ cat/bootflash/yum.conf | grep proxy
proxy=http://proxy.example.com:80/

PIP install picks up environment variable used for proxy settings. Use sudo with -E option for PIP
installation. If the environment variables are not set, define them explicitly in PIP commands as
shown in following example:

sudo pip --proxy http://proxy.example.com:80/install requests
sudo pip install --trusted-bost pypi.example.com --index-url
http://pypi.example.com/simple requests

The following example shows how to use PIP install for Python:

Sudo -E pip install requests
[guestshell@guestshell ~]$ python
Python 2.17.11 (default, Feb 3 2017, 19:43:44)
[GCC 4.7.0] on linux2
Type "help", "copyright", "credits" or "license" for more information
>>>import requests

Additional References for Guest Shell
Related Documents

Document TitleRelated Topic

• CLI Python ModulePython module

Zero-Touch Provisioning

MIBs

MIBs LinkMIB

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco
MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
37

Shells and Scripting
Example: Configuring Yum and PIP for Proxy Settings

http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3850/software/release/16-5/configuration_guide/prog/b_165_prog_3850_cg/python_scripts_for_programmability.html
http://www.cisco.com/go/mibs

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple
Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Feature Information for Guest Shell
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 8: Feature Information for Guest Shell

Feature InformationReleaseFeature Name

Guest Shell is a secure container that is an
embedded Linux environment that allows
customers to develop and run Linux and
custom Python applications for automated
control and management of Cisco switches. It
also includes the automated provisioning (Day
zero) of systems. This container shell provides
a secure environment, decoupled from the host
device, in which users can install scripts or
software packages and run them.

In Cisco IOS XE Everest 16.5.1a, this feature
was implemented on the following platforms:

Guest Shell

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
38

Shells and Scripting
Feature Information for Guest Shell

http://www.cisco.com/support
http://www.cisco.com/go/cfn

C H A P T E R 5
Python API

Python programmabililty supports Python APIs.

• Finding Feature Information, on page 39
• Using Python, on page 39

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Using Python

Cisco Python Module
Cisco provides a Python module that provides access to run EXEC and configuration commands. You can
display the details of the Cisco Pythonmodule by entering the help() command. The help() command displays
the properties of the Cisco CLI module.

The following example displays information about the Cisco Python module:

Device# guestshell run python

Python 2.7.5 (default, Jun 17 2014, 18:11:42)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> >>> from cli import cli,clip,configure,configurep, execute, executep
>>> help(configure)
Help on function configure in module cli:

configure(configuration)
Apply a configuration (set of Cisco IOS CLI config-mode commands) to the device
and return a list of results.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
39

https://cfnng.cisco.com/

configuration = '''interface gigabitEthernet 0/0
no shutdown'''

push it through the Cisco IOS CLI.
try:
results = cli.configure(configuration)
print "Success!"
except CLIConfigurationError as e:
print "Failed configurations:"
for failure in e.failed:
print failure

Args:
configuration (str or iterable): Configuration commands, separated by newlines.

Returns:
list(ConfigResult): A list of results, one for each line.

Raises:
CLISyntaxError: If there is a syntax error in the configuration.

>>> help(configurep)
Help on function configurep in module cli:

configurep(configuration)
Apply a configuration (set of Cisco IOS CLI config-mode commands) to the device
and prints the result.

configuration = '''interface gigabitEthernet 0/0
no shutdown'''

push it through the Cisco IOS CLI.
configurep(configuration)

Args:
configuration (str or iterable): Configuration commands, separated by newlines.
>>> help(execute)
Help on function execute in module cli:

execute(command)
Execute Cisco IOS CLI exec-mode command and return the result.

command_output = execute("show version")

Args:
command (str): The exec-mode command to run.

Returns:
str: The output of the command.

Raises:
CLISyntaxError: If there is a syntax error in the command.

>>> help(executep)
Help on function executep in module cli:

executep(command)
Execute Cisco IOS CLI exec-mode command and print the result.

executep("show version")

Args:
command (str): The exec-mode command to run.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
40

Shells and Scripting
Cisco Python Module

>>> help(cli)
Help on function cli in module cli:

cli(command)
Execute Cisco IOS CLI command(s) and return the result.

A single command or a delimited batch of commands may be run. The
delimiter is a space and a semicolon, " ;". Configuration commands must be
in fully qualified form.

output = cli("show version")
output = cli("show version ; show ip interface brief")
output = cli("configure terminal ; interface gigabitEthernet 0/0 ; no shutdown")

Args:
command (str): The exec or config CLI command(s) to be run.

Returns:
string: CLI output for show commands and an empty string for

configuration commands.

Raises:
errors.cli_syntax_error: if the command is not valid.
errors.cli_exec_error: if the execution of command is not successful.

>>> help(clip)
Help on function clip in module cli:

clip(command)
Execute Cisco IOS CLI command(s) and print the result.

A single command or a delimited batch of commands may be run. The
delimiter is a space and a semicolon, " ;". Configuration commands must be
in fully qualified form.

clip("show version")
clip("show version ; show ip interface brief")
clip("configure terminal ; interface gigabitEthernet 0/0 ; no shutdown")

Args:
command (str): The exec or config CLI command(s) to be run.

Cisco Python Module to Execute IOS CLI Commands

Guest Shell must be enabled for Python to run. For more information, see the Guest Shell chapter.Note

The Python programming language uses six functions that can execute CLI commands. These functions are
available from the Python CLI module. To use these functions, execute the import cli command. The ip http
server command must be enabled for these functions to work.

Arguments for these functions are strings of CLI commands. To execute a CLI command through the Python
interpreter, enter the CLI command as an argument string of one of the following six functions:

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
41

Shells and Scripting
Cisco Python Module to Execute IOS CLI Commands

• cli.cli(command)—This function takes an IOS command as an argument, runs the command through
the IOS parser, and returns the resulting text. If this command is malformed, a Python exception is raised.
The following is sample output from the cli.cli(command) function:

>>> import cli
>>> cli.clip('configure terminal; interface loopback 10; ip address
10.10.10.10 255.255.255.255')
*Mar 13 18:39:48.518: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback10, changed
state to up
>>> cli.clip('show clock')
'\n*18:11:53.989 UTC Mon Mar 13 2017\n'
>>> output=cli.cli('show clock')
>>> print(output)
*18:12:04.705 UTC Mon Mar 13 2017

• cli.clip(command)—This function works exactly the same as the cli.cli(command) function, except
that it prints the resulting text to stdout rather than returning it. The following is sample output from the
cli.clip(command) function:

>>> cli
>>> cli.clip('configure terminal; interface loopback 11; ip address
10.11.11.11 255.255.255.255')
*Mar 13 18:42:35.954: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback11, changed
state to up
*Mar 13 18:42:35.954: %LINK-3-UPDOWN: Interface Loopback11, changed state to up
>>> cli.clip('show clock')
*18:13:35.313 UTC Mon Mar 13 2017
>>> output=cli.clip('show clock')
*18:19:26.824 UTC Mon Mar 13 2017
>>> print (output)
None

• cli.execute(command)—This function executes a single EXEC command and returns the output; however,
does not print the resulting text No semicolons or newlines are allowed as part of this command. Use a
Python list with a for-loop to execute this function more than once. The following is sample output from
the cli.execute(command)

function:

>>> cli.execute("show clock")
'15:11:20.816 UTC Thu Jun 8 2017'
>>>
>>> cli.execute('show clock'; 'show ip interface brief')
File "<stdin>", line 1
cli.execute('show clock'; 'show ip interface brief')

^
SyntaxError: invalid syntax
>>>

• cli.executep(command)—This function executes a single command and prints the resulting text to stdout
rather than returning it. The following is sample output from the cli.executep(command) function:

>>> cli.executep('show clock')

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
42

Shells and Scripting
Cisco Python Module to Execute IOS CLI Commands

*18:46:28.796 UTC Mon Mar 13 2017
>>> output=cli.executep('show clock')
*18:46:36.399 UTC Mon Mar 13 2017
>>> print(output)
None

• cli.configure(command)—This function configures the device with the configuration available in
commands. It returns a list of named tuples that contains the command and its result as shown below:
[Think: result = (bool(success), original_command, error_information)]

The command parameters can be in multiple lines and in the same format that is displayed in the output
of the show running-config command. The following is sample output from the cli.configure(command)
function:

>>>cli.configure(["interface GigabitEthernet1/0/7", "no shutdown",
"end"])
[ConfigResult(success=True, command='interface GigabitEthernet1/0/7',
line=1, output='', notes=None), ConfigResult(success=True, command='no shutdown',
line=2, output='', notes=None), ConfigResult(success=True, command='end',
line=3, output='', notes=None)]

• cli.configurep(command)—This function works exactly the same as the cli.configure(command)
function, except that it prints the resulting text to stdout rather than returning it. The following is sample
output from the cli.configurep(command) function:

>>> cli.configurep(["interface GigabitEthernet1/0/7", "no shutdown",
"end"])
Line 1 SUCCESS: interface GigabitEthernet1/0/7
Line 2 SUCCESS: no shut
Line 3 SUCCESS: end

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
43

Shells and Scripting
Cisco Python Module to Execute IOS CLI Commands

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
44

Shells and Scripting
Cisco Python Module to Execute IOS CLI Commands

C H A P T E R 6
CLI Python Module

Python Programmability provides a Python module that allows users to interact with IOS using CLIs.

• Finding Feature Information, on page 45
• Information About CLI Python Module, on page 45
• Updating the Cisco CLI Python Module, on page 48
• Additional References for the CLI Python Module, on page 48
• Feature Information for the CLI Python Module, on page 49

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Information About CLI Python Module

About Python
The Cisco IOS XE devices support Python Version 2.7 in both interactive and non-interactive (script) modes
within the Guest Shell. The Python scripting capability gives programmatic access to a device's CLI to perform
various tasks and Zero Touch Provisioning or Embedded Event Manager (EEM) actions.

Python Scripts Overview
Python run in a virtualized Linux-based environment, Guest Shell. For more information, see the Guest Shell
chapter. Cisco provides a Python module that allows user’s Python scripts to run IOS CLI commands on the
host device.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
45

https://cfnng.cisco.com/

Interactive Python Prompt
When you execute the guestshell run python command on a device, the interactive Python prompt is opened
inside the Guest Shell. The Python interactive mode allows users to execute Python functions from the Cisco
Python CLI module to configure the device.

The following example shows how to enable the interactive Python prompt:

Device# guestshell run python

Python 2.7.5 (default, Jun 17 2014, 18:11:42)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

Device#

Python Script
Python scripts can run in non-interactive mode by providing the Python script name as an argument in the
Python command. Python scripts must be accessible from within the Guest Shell. To access Python scripts
from the Guest Shell, save the scripts in bootflash/flash that is mounted within the Guest Shell.

The following sample Python script uses different CLI functions to configure and print show commands:
Device# more flash:sample_script.py

import sys
import cli

intf= sys.argv[1:]
intf = ''.join(intf[0])

print "\n\n *** Configuring interface %s with 'configurep' function *** \n\n" %intf
cli.configurep(["interface loopback55","ip address 10.55.55.55 255.255.255.0","no
shut","end"])

print "\n\n *** Configuring interface %s with 'configure' function *** \n\n"
cmd='interface %s,logging event link-status ,end' % intf
cli.configure(cmd.split(','))

print "\n\n *** Printing show cmd with 'executep' function *** \n\n"
cli.executep('show ip interface brief')

print "\n\n *** Printing show cmd with 'execute' function *** \n\n"
output= cli.execute('show run interface %s' %intf)
print (output)

print "\n\n *** Configuring interface %s with 'cli' function *** \n\n"
cli.cli('config terminal; interface %s; spanning-tree portfast edge default' %intf)

print "\n\n *** Printing show cmd with 'clip' function *** \n\n"
cli.clip('show run interface %s' %intf)

To run a Python script from the Guest Shell, execute the guestshell run python
/flash/script.py command
at the device prompt.
The following example shows how to run a Python script from the Guest Shell:

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
46

Shells and Scripting
Interactive Python Prompt

The following example shows how to run a Python script from the Guest Shell:

Device# guestshell run python /flash/sample_script.py loop55

*** Configuring interface loop55 with 'configurep' function ***

Line 1 SUCCESS: interface loopback55
Line 2 SUCCESS: ip address 10.55.55.55 255.255.255.0
Line 3 SUCCESS: no shut
Line 4 SUCCESS: end

*** Configuring interface %s with 'configure' function ***

*** Printing show cmd with 'executep' function ***

Interface IP-Address OK? Method Status Protocol
Vlan1 unassigned YES NVRAM administratively down down
GigabitEthernet0/0 192.0.2.1 YES NVRAM up up
GigabitEthernet1/0/1 unassigned YES unset down down
GigabitEthernet1/0/2 unassigned YES unset down down
GigabitEthernet1/0/3 unassigned YES unset down down

:
:
:

Te1/1/4 unassigned YES unset down down
Loopback55 10.55.55.55 YES TFTP up up
Loopback66 unassigned YES manual up up

*** Printing show cmd with 'execute' function ***

Building configuration...
Current configuration : 93 bytes
!
interface Loopback55
ip address 10.55.55.55 255.255.255.0
logging event link-status
end

*** Configuring interface %s with 'cli' function ***

*** Printing show cmd with 'clip' function ***

Building configuration...
Current configuration : 93 bytes
!
interface Loopback55
ip address 10.55.55.55 255.255.255.0
logging event link-status
end

Supported Python Versions
Guest Shell is pre-installed with Python Version 2.7. Guest Shell is a virtualized Linux-based environment,
designed to run custom Linux applications, including Python applications for automated control and

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
47

Shells and Scripting
Supported Python Versions

management of Cisco devices. Platforms withMontavista CGE7 support Python Version 2.7.11, and platforms
with CentOS 7 support Python Version 2.7.5.

The following table provides information about Python versions and the supported platforms:

Table 9: Python Version Support

PlatformPython Version

Platforms with CentOS 7 support the installation of Redhat Package Manager (RPM) from the open source
repository.

Updating the Cisco CLI Python Module
The Cisco CLI Python module and EEMmodule are pre-installed on devices. However, when you update the
Python version by using either Yum or prepackaged binaries, the Cisco-provided CLI module must also be
updated.

When you update to Python Version 3 on a device that already has Python Version 2, both versions of Python
exist on the device. Use one of the following IOS commands to run Python:

• The guestshell run python2 command enables Python Version 2.

• The guestshell run python3 command enables Python Version 3.

• The guestshell run python command enables Python Version 2.

Note

Use one of the following methods to update the Python version:

• Standalone tarball installation

• PIP install for the CLI module

Additional References for the CLI Python Module
Related Documents

Document TitleRelated Topic

Guest Shell

EEM Python Module

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
48

Shells and Scripting
Updating the Cisco CLI Python Module

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple
Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Feature Information for the CLI Python Module
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 10: Feature Information for the CLI Python Module

Feature InformationReleaseFeature Name

Python programmabilty provides a Python
module that allows users to interact with IOS
using CLIs.

CLI Python Module

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
49

Shells and Scripting
Feature Information for the CLI Python Module

http://www.cisco.com/support
http://www.cisco.com/go/cfn

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
50

Shells and Scripting
Feature Information for the CLI Python Module

C H A P T E R 7
EEM Python Module

Embedded Event Manager (EEM) policies support Python scripts. Python scripts can be executed as part of
EEM actions in EEM applets.

• Finding Feature Information, on page 51
• Prerequisites for the EEM Python Module, on page 51
• Information About the EEM Python Module, on page 51
• How to Configure the EEM Python Policy, on page 54
• Additional References EEM Python Module, on page 59
• Feature Information for EEM Python Module, on page 60

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Prerequisites for the EEM Python Module
Guest Shell must be working within the container. Guest Shell is not enabled by default. For more information
see the Guest Shell feature.

Information About the EEM Python Module

Python Scripting in EEM
Embedded Event Manager (EEM) policies support Python scripts. You can register Python scripts as EEM
policies, and execute the registered Python scripts when a corresponding event occurs. The EEMPython script
has the same event specification syntax as the EEM TCL policy.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
51

https://cfnng.cisco.com/

Configured EEM policies run within the Guest Shell. Guest Shell is a virtualized Linux-based environment,
designed to run custom Linux applications, including Python for automated control and management of Cisco
devices. The Guest Shell container provides a Python interpreter.

EEM Python Package
The EEM Python package can be imported to Python scripts for running EEM-specific extensions.

The EEM Python package is available only within the EEM Python script (The package can be registered
with EEM, and has the EEM event specification in the first line of the script.) and not in the standard Python
script (which is run using the Python script name).

Note

The Python package includes the following application programming interfaces (APIs):

• Action APIs—Perform EEM actions and have default parameters.

• CLI-execution APIs—Run IOS commands, and return the output. The following are the list of
CLI-execution APIs:

• eem_cli_open()

• eem_cli_exec()

• eem_cli_read()

• eem_cli_read_line()

• eem_cli_run()

• eem_cli_run_interactive()

• eem_cli_read_pattern()

• eem_cli_write()

• eem_cli_close()

• Environment variables-accessing APIs—Get the list of built-in or user-defined variables. The following
are the environment variables-accessing APIs:

• eem_event_reqinfo ()-Returns the built-in variables list.

• eem_user_variables()-Returns the current value of an argument.

Python-Supported EEM Actions
The Python package (is available only within the EEM script, and not available for the standard Python script)
supports the following EEM actions:

• Syslog message printing

• Send SNMP traps

• Reload the box

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
52

Shells and Scripting
EEM Python Package

• Switchover to the standby device

• Run a policy

• Track Object read

• Track Object Set

• Cisco Networking Services event generation

The EEM Python package exposes the interfaces for executing EEM actions. You can use the Python script
to call these actions, and they are forwarded from the Python package via Cisco Plug N Play (PnP) to the
action handler.

EEM Variables
An EEM policy can have the following types of variables:

• Event-specific built-in variables—A set of predefinied variables that are populated with details about
the event that triggered the policy. The eem_event_reqinfo () API returns the builtin variables list. These
variables can be stored in the local machine and used as local variables. Changes to local variables do
not reflect in builtin variables.

• User-defined variables—Variables that can be defined and used in policies. The value of these variables
can be referred in the Python script. While executing the script, ensure that the latest value of the variable
is available. The eem_user_variables() API returns the current value of the argument that is provided in
the API.

EEM CLI Library Command Extensions
The following CLI library commands are available within EEM for the Python script to work:

• eem_cli_close()—Closes the EXEC process and releases the VTY and the specified channel handler
connected to the command.

• eem_cli_exec—Writes the command to the specified channel handler to execute the command. Then
reads the output of the command from the channel and returns the output.

• eem_cli_open—Allocates a VTY, creates an EXEC CLI session, and connects the VTY to a channel
handler. Returns an array including the channel handler.

• eem_cli_read()—Reads the command output from the specified CLI channel handler until the pattern of
the device prompt occurs in the contents read. Returns all the contents read up to the match.

• eem_cli_read_line()—Reads one line of the command output from the specified CLI channel handler.
Returns the line read.

• eem_cli_read_pattern()—Reads the command output from the specified CLI channel handler until the
pattern that is to be matched occurs in the contents read. Returns all the contents read up to the match.

• eem_cli_run()—Iterates over the items in the clist and assumes that each one is a command to be executed
in the enable mode. On success, returns the output of all executed commands and on failure, returns
error.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
53

Shells and Scripting
EEM Variables

• eem_cli_run_interactive()—Provides a sublist to the clist which has three items. On success, returns the
output of all executed commands and on failure, returns the error. Also uses arrays when possible as a
way of making things easier to read later by keeping expect and reply separated.

• eem_cli_write()—Writes the command that is to be executed to the specified CLI channel handler. The
CLI channel handler executes the command.

How to Configure the EEM Python Policy
For the Python script to work, you must enable the Guest Shell. For more information, see the Guest Shell
chapter.

Registering a Python Policy

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Specifies a directory to use for storing user
library files or user-defined EEM policies.

event manager directory user policy path

Example:

Step 3

You must have a policy in the
specified path. For example, in this
step, the eem_script.py policy is
available in the flash:/user_library
folder or path.

NoteDevice(config)# event manager directory
user policy flash:/user_library

Registers a policy with EEM.event manager policy policy-filenameStep 4

Example: • The policy is parsed based on the file
extension. If the file extension is .py, the
policy is registered as Python policy.

Device(config)# event manager policy
eem_script.py

• EEM schedules and runs policies on the
basis of an event specification that is
contained within the policy itself. When
the event manager policy command is
invoked, EEM examines the policy and
registers it to be run when the specified
event occurs.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
54

Shells and Scripting
How to Configure the EEM Python Policy

PurposeCommand or Action

Exits global configuration mode and returns to
privileged EXEC mode.

exit

Example:

Step 5

Device(config)# exit

Displays the registered EEM policies.show event manager policy registered

Example:

Step 6

Device# show event manager policy
registered

Displays EEM events that have been triggered.show event manager history events

Example:

Step 7

Device# show event manager history events

Example

The following is sample output from the show event manager policy registered command:
Device# show event manager policy registered

No. Class Type Event Type Trap Time Registered Name
1 script user multiple Off Tue Aug 2 22:12:15 2016 multi_1.py
1: syslog: pattern {COUNTER}
2: none: policyname {multi_1.py} sync {yes}
trigger delay 10.000
correlate event 1 or event 2
attribute tag 1 occurs 1
nice 0 queue-priority normal maxrun 100.000 scheduler rp_primary Secu none

2 script user multiple Off Tue Aug 2 22:12:20 2016 multi_2.py
1: syslog: pattern {COUNTER}
2: none: policyname {multi_2.py} sync {yes}
trigger
correlate event 1 or event 2
nice 0 queue-priority normal maxrun 100.000 scheduler rp_primary Secu none

3 script user multiple Off Tue Aug 2 22:13:31 2016 multi.tcl
1: syslog: pattern {COUNTER}
2: none: policyname {multi.tcl} sync {yes}
trigger
correlate event 1 or event 2
attribute tag 1 occurs 1
nice 0 queue-priority normal maxrun 100.000 scheduler rp_primary Secu none

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
55

Shells and Scripting
Registering a Python Policy

Running Python Scripts as Part of EEM Applet Actions

Python Script: eem_script.py

An EEM applet can include a Python script with an action command. In this example, an user is
trying to run a standard Python script as part of the EEM action, however; EEM Python package is
not available in the standard Python script. The standard Python script in IOS has a package named
from cli import cli,clip and this package can be used to execute IOS commands.

import sys
from cli import cli,clip,execute,executep,configure,configurep

intf= sys.argv[1:]
intf = ''.join(intf[0])

print ('This script is going to unshut interface %s and then print show ip interface
brief'%intf)

if intf == 'loopback55':
configurep(["interface loopback55","no shutdown","end"])
else :
cmd='int %s,no shut ,end' % intf
configurep(cmd.split(','))

executep('show ip interface brief')

This following is sample output from the guestshell run python command.
Device# guestshell run python /flash/eem_script.py loop55

This script is going to unshut interface loop55 and then print show ip interface brief
Line 1 SUCCESS: int loop55
Line 2 SUCCESS: no shut
Line 3 SUCCESS: end
Interface IP-Address OK? Method Status Protocol
Vlan1 unassigned YES NVRAM administratively down down
GigabitEthernet0/0 5.30.15.37 YES NVRAM up up
GigabitEthernet1/0/1 unassigned YES unset down down
GigabitEthernet1/0/2 unassigned YES unset down down
GigabitEthernet1/0/3 unassigned YES unset down down
GigabitEthernet1/0/4 unassigned YES unset up up
GigabitEthernet1/0/5 unassigned YES unset down down
GigabitEthernet1/0/6 unassigned YES unset down down
GigabitEthernet1/0/7 unassigned YES unset down down
GigabitEthernet1/0/8 unassigned YES unset down down
GigabitEthernet1/0/9 unassigned YES unset down down
GigabitEthernet1/0/10 unassigned YES unset down down
GigabitEthernet1/0/11 unassigned YES unset down down
GigabitEthernet1/0/12 unassigned YES unset down down
GigabitEthernet1/0/13 unassigned YES unset down down
GigabitEthernet1/0/14 unassigned YES unset down down
GigabitEthernet1/0/15 unassigned YES unset down down
GigabitEthernet1/0/16 unassigned YES unset down down
GigabitEthernet1/0/17 unassigned YES unset down down
GigabitEthernet1/0/18 unassigned YES unset down down
GigabitEthernet1/0/19 unassigned YES unset down down
GigabitEthernet1/0/20 unassigned YES unset down down
GigabitEthernet1/0/21 unassigned YES unset down down
GigabitEthernet1/0/22 unassigned YES unset down down

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
56

Shells and Scripting
Running Python Scripts as Part of EEM Applet Actions

GigabitEthernet1/0/23 unassigned YES unset up up
GigabitEthernet1/0/24 unassigned YES unset down down
GigabitEthernet1/1/1 unassigned YES unset down down
GigabitEthernet1/1/2 unassigned YES unset down down
GigabitEthernet1/1/3 unassigned YES unset down down
GigabitEthernet1/1/4 unassigned YES unset down down
Te1/1/1 unassigned YES unset down down
Te1/1/2 unassigned YES unset down down
Te1/1/3 unassigned YES unset down down
Te1/1/4 unassigned YES unset down down
Loopback55 10.55.55.55 YES manual up up

Device#
Jun 7 12:51:20.549: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback55,
changed state to up
Jun 7 12:51:20.549: %LINK-3-UPDOWN: Interface Loopback55, changed state to up

The following is a sample script for printing messages to the syslog. This script must be stored in a
file, copied to the file system on the device, and registered using the event manager policy file.

::cisco::eem::event_register_syslog tag "1" pattern COUNTER maxrun 200

import eem
import time

eem.action_syslog("SAMPLE SYSLOG MESSAGE","6","TEST")

The following is sample script to print EEM environment variables. This script must be stored in a
file, copied to the file system on the device, and registered using the event manager policy file.

::cisco::eem::event_register_syslog tag "1" pattern COUNTER maxrun 200

import eem
import time

c = eem.env_reqinfo()

print "EEM Environment Variables"
for k,v in c.iteritems():

print "KEY : " + k + str(" ---> ") + v

print "Built in Variables"
for i,j in a.iteritems() :

print "KEY : " + i + str(" ---> ") + j

Adding a Python Script in an EEM Applet

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
57

Shells and Scripting
Adding a Python Script in an EEM Applet

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Registers an applet with the Embedded Event
Manager (EEM) and enters applet configuration
mode.

event manager applet applet-name

Example:
Device(config)# event manager applet
interface_Shutdown

Step 3

Specifies a regular expression to perform the
syslog message pattern match.

event [tag event-tag] syslog pattern
regular-expression

Example:

Step 4

Device(config-applet)# event syslog
pattern "Interface Loopback55,
changed state to administratively down"

Specifies the IOS command to be executed
when an EEM applet is triggered.

action label cli command cli-string

Example:

Step 5

Device(config-applet)# action 0.0 cli
command "en"

Specifies the action to be specified with the
pattern keyword.

action label cli command cli-string [pattern
pattern-string]

Step 6

Example: • Specify a regular expression pattern string
that will match the next solicited prompt.Device(config-applet)# action 1.0 cli

command "guestshell run python3
/bootflash/eem_script.py loop55"

Exits applet configuration mode and returns to
privileged EXEC mode.

end

Example:

Step 7

Device(config-applet)# end

Displays EEM policies that are executing.show event manager policy active

Example:

Step 8

Device# show event manager policy active

Displays the EEM events that have been
triggered.

show event manager history events

Example:

Step 9

Device# show event manager history events

What to do next

The following example shows how to trigger the Python script configured in the task:
Device(config)# interface loopback 55
Device(config-if)# shutdown
Device(config-if)# end
Device#

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
58

Shells and Scripting
Adding a Python Script in an EEM Applet

Mar 13 10:53:22.358 EDT: %SYS-5-CONFIG_I: Configured from console by console
Mar 13 10:53:24.156 EDT: %LINK-5-CHANGED: Line protocol on Interface Loopback55, changed
state to down
Mar 13 10:53:27.319 EDT: %LINK-3-UPDOWN: Interface Loopback55, changed state to
administratively down
Enter configuration commands, one per line. End with CNTL/Z.
Mar 13 10:53:35.38 EDT: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback55, changed
state to up
*Mar 13 10:53:35.39 EDT %LINK-3-UPDOWN: Interface Loopback55, changed state to up
+++ 10:54:33 edi37(default) exec +++
show ip interface br
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0/0 unassigned YES unset down down
GigabitEthernet0/0/1 unassigned YES unset down down
GigabitEthernet0/0/2 10.1.1.31 YES DHCP up up
GigabitEthernet0/0/3 unassigned YES unset down down
GigabitEthernet0 192.0.2.1 YES manual up up
Loopback55 198.51.100.1 YES manual up up
Loopback66 172.16.0.1 YES manual up up
Loopback77 192.168.0.1 YES manual up up
Loopback88 203.0.113.1 YES manual up up

Additional References EEM Python Module
Related Documents

Document TitleRelated Topic

Embedded Event Manager Configuration GuideEEM configuration

Embedded Event Manager Command ReferenceEEM commands

Guest Shell configuration

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple
Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
59

Shells and Scripting
Additional References EEM Python Module

http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-3s/eem-xe-3s-book.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/command/eem-cr-book.html
http://www.cisco.com/support

Feature Information for EEM Python Module
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 11: Feature Information for EEM Python Module

Feature InformationReleaseFeature Name

This feature supports Python scripts as EEM
policies.

No new commands were introduced.

Cisco IOS XE Everest
16.5.1b

EEM Python Module

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
60

Shells and Scripting
Feature Information for EEM Python Module

http://www.cisco.com/go/cfn

P A R T III
Model-Driven Programmability

• Data Models, on page 63
• Operational Data Parser Polling, on page 69

C H A P T E R 8
Data Models

• Finding Feature Information, on page 63
• Restrictions for Data Models , on page 63
• Information About Data Models, on page 63
• How to Configure Data Models, on page 64
• Additional References for Data Models, on page 67
• Feature Information for Data Models, on page 67

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not
required.

Restrictions for Data Models
The NETCONF feature is not supported on a device running dual IOSd configuration or software redundancy.

Information About Data Models

Introduction to Data Models - Programmatic and Standards-Based
Configuration

The traditional way of managing network devices is by using Command Line Interfaces (CLIs) for
configurational (configuration commands) and operational data (show commands). For network management,
Simple Network Management Protocol (SNMP) is widely used, especially for exchanging management
information between various network devices. Although CLIs and SNMP are heavily used, they have several

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
63

http://www.cisco.com/go/cfn

restrictions. CLIs are highly proprietary, and human intervention is required to understand and interpret their
text-based specification. SNMP does not distinguish between configurational and operational data.

The solution lies in adopting a programmatic and standards-based way of writing configurations to any network
device, replacing the process of manual configuration. Network devices running on Cisco IOS XE support
the automation of configuration for multiple devices across the network using data models. Data models are
developed in a standard, industry-defined language, that can define configuration and state information of a
network.

Cisco IOS XE supports the Yet Another Next Generation (YANG) data modeling language. YANG can be
used with the Network Configuration Protocol (NETCONF) to provide the desired solution of automated and
programmable network operations. NETCONF (RFC 6241) is an XML-based protocol that client applications
use to request information from and make configuration changes to the device. YANG is primarily used to
model the configuration and state data used by NETCONF operations.

In Cisco IOS XE, model-based interfaces interoperate with existing device CLI, Syslog, and SNMP interfaces.
These interfaces are optionally exposed northbound from network devices. YANG is used to model each
protocol based on RFC 6020.

To access Cisco YANGmodels in a developer-friendly way, please clone theGitHub repository, and navigate
to the vendor/cisco subdirectory. Models for various releases of IOS-XE, IOS-XR, and NX-OS platforms are
available here.

Note

NETCONF
NETCONF provides a simpler mechanism to install, manipulate, and delete the configuration of network
devices.

It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the
protocol messages.

NETCONF uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate communication between
a client and a server. The client can be a script or application typically running as part of a network manager.
The server is typically a network device (switch or router). It uses Secure Shell (SSH) as the transport layer
across network devices.

NETCONF also supports capability discovery and model downloads. Supported models are discovered using
the ietf-netconf-monitoring model. Revision dates for each model are shown in the capabilities response.
Data models are available for optional download from a device using the get-schema rpc. You can use these
YANG models to understand or export the data model.

For more details, refer RFC 6241.

How to Configure Data Models

Configuring NETCONF

Before you begin

You must configure NETCONF-YANG as follows.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
64

Model-Driven Programmability
NETCONF

https://github.com/YangModels/yang
https://github.com/YangModels/yang/tree/master/vendor/cisco

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Enables the NETCONF interface on your
network device.

netconf-yang

Example:

Step 3

After the initial enablement through
the CLI, network devices can be
managed subsequently through a
model based interface. The complete
activation of model-based interface
processes may require up to 90
seconds.

NoteDevice (config)# netconf-yang

Exits global configuration mode.exit

Example:

Step 4

Device (config)# exit

Configuring NETCONF Options

Configuring SNMP
Enable the SNMP Server in IOS to enable NETCONF to access SNMP MIB data using YANG models
generated from supportedMIBs, and to enable supported SNMP traps in IOS to receiveNETCONF notifications
from the supported traps.

Perform the following steps:

Procedure

Step 1 Enable SNMP features in IOS.

Example:
configure terminal
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
65

Model-Driven Programmability
Configuring NETCONF Options

logging snmp-trap informational
logging snmp-trap debugging
!
snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp authentication linkdown linkup snmp-server enable traps syslog
snmp-server manager
exit

Step 2 After NETCONF-YANG starts, enable SNMP Trap support by sending the following RPC <edit-config>
message to the NETCONF-YANG port.

Example:
<?xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
<edit-config>
<target>
<running/>

</target>
<config>
<netconf-yang xmlns="http://cisco.com/yang/cisco-self-mgmt">
<cisco-ia xmlns="http://cisco.com/yang/cisco-ia">
<snmp-trap-control>
<trap-list>
<trap-oid>1.3.6.1.4.1.9.9.41.2.0.1</trap-oid>

</trap-list>
<trap-list>
<trap-oid>1.3.6.1.6.3.1.1.5.3</trap-oid>

</trap-list>
<trap-list>
<trap-oid>1.3.6.1.6.3.1.1.5.4</trap-oid>

</trap-list>
</snmp-trap-control>

</cisco-ia>
</netconf-yang>

</config>
</edit-config>

</rpc>

Step 3 Send the following RPC message to the NETCONF-YANG port to save the running configuration to the
startup configuration.

Example:
<?xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
<cisco-ia:save-config xmlns:cisco-ia="http://cisco.com/yang/cisco-ia"/>

</rpc>

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
66

Model-Driven Programmability
Configuring SNMP

Additional References for Data Models
Related Documents

Document TitleRelated Topic

To access Cisco YANG models in a developer-friendly way,
please clone the GitHub repository, and navigate to the
vendor/cisco subdirectory. Models for various releases of
IOS-XE, IOS-XR, and NX-OS platforms are available here.

YANG data models for various release of
IOS-XE, IOS-XR, and NX-OS platforms

Standards and RFCs

TitleStandard/RFC

YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF)

RFC 6020

Network Configuration Protocol (NETCONF)RFC 6241

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources,
including documentation and tools for troubleshooting and resolving
technical issues with Cisco products and technologies.

To receive security and technical information about your products,
you can subscribe to various services, such as the Product Alert Tool
(accessed from Field Notices), the Cisco Technical Services
Newsletter, and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a
Cisco.com user ID and password.

Feature Information for Data Models
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
67

Model-Driven Programmability
Additional References for Data Models

https://github.com/YangModels/yang
https://github.com/YangModels/yang/tree/master/vendor/cisco
http://www.cisco.com/support
http://www.cisco.com/go/cfn

Table 12: Feature Information for Programmability: Data Models

Feature InformationReleaseFeature Name

The Data Models feature facilitates a
programmatic and standards-based way of
writing configurations and reading operational
data from network devices.

The following command was introduced:
netconf-yang.

Cisco IOS XE Denali 16.3.1Data Models

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
68

Model-Driven Programmability
Feature Information for Data Models

C H A P T E R 9
Operational Data Parser Polling

YANG data models enables you to read operational state data from devices.

• Finding Feature Information, on page 69
• Information About Operational Data, on page 69
• How to Enable Operational Data Parser Polling, on page 70
• Additional References for Operational Data Parser Polling, on page 72
• Feature Information for Operational Data Parser Polling, on page 73

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Information About Operational Data

Operational Data Overview
You can use YANG data models to read operational state data from a device. The operational data allows you
to determine the current state and behavior of a device, similar to IOS show commands.

You can perform NETCONF GET operations to retrieve read-only operational state data from a system. You
must enable NETCONF, activate data parsers (where applicable), and then retrieve the data through an
appropriate YANG model.

TheHow to Configure Operational Data section provides information on configuring operational data through
a programmable interface and the CLI.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
69

https://cfnng.cisco.com/

Operational Data Parsers and Corresponding YANG Models
There are two types of operational data parsers; one that is always on, and the other that must be configured
to poll operational data at regular intervals. For the first type of operational data parser, no configuration is
required. Data is always fetched from the device during a NETCONF GET request. These data parsers do not
have a polling-interval, and operational data is updated as soon as a change occurs.

The second type of operational data parsers must be activated either via the CLI or a NETCONF message
(For more information, see the How to Enable Operational Data Parser Polling section.). The operational
data for these types of parsers is polled at regular polling intervals and this information is retrieved during a
NETCONF GET request.

The following table lists the data parsers that must be activated, and the corresponding YANG model where
the operational data is stored.

Table 13: Operational Data Parsers to be Activated and Corresponding Yang Models

YANG Model to Access Operational DataOperational Data Parser Name

Cisco-IOS-XE-bgp-oper.yangBGP

Cisco-IOS-XE-bfd-oper.yangBFD

ietf-diffserv-target.yangDiffServ

Cisco-IOS-XE-flow-monitor-oper.yangFlowMonitor

ietf-routing.yangIPRoute

Cisco-IOS-XE-mpls-fwd-oper.yangMPLSLForwarding

Cisco-IOS-XE-mpls-ldp.yangMPLSLDPNeighbor

common-mpls-static.yangMPLSStaticBinding

ietf-ospf.yangOSPF

Cisco-IOS-XE-platform-software-oper.yangPlatformSoftware

How to Enable Operational Data Parser Polling

Enabling Operational Data Parser Polling Through a Programmable Interface
Perform this task to enable operational data parser polling through a programmable interface:

1. After enabling NETCONF-YANG, send an <edit-config> remote procedure call (RPC) using
cisco-odm.yang (available in the GitHub Repository) to enable operational data polling.When the polling
is enabled, all operational data parsers are activated by default. The default polling-interval of each parser
is 120 seconds (120000 milliseconds). The polling interval decides the frequency at which the parser
obtains the operational data and updates the corresponding YANG model in the datastore.

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
70

Model-Driven Programmability
Operational Data Parsers and Corresponding YANG Models

https://github.com/YangModels/yang

2. After operational data polling is enabled, send a <get> RPC to obtain the operational data. Use the
parser-to-YANGmodel mapping to determine which operational YANGmodel should be used to retrieve
the operational data. The following RPC reply fetches access control list (ACL) operational data using
Cisco-IOS-XE-acl-oper.yang:

CORRESPONDING RPC REPLY:
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

<data>
<access-lists xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-acl-oper">

<access-list>
<access-control-list-name>TEST</access-control-list-name>
<access-list-entries>

<access-list-entry>
<rule-name>10</rule-name>
<access-list-entries-oper-data>
<match-counter>100</match-counter>

</access-list-entry>
<access-list-entry>

<rule-name>20</rule-name>
<access-list-entries-oper-data>
<match-counter>122</match-counter>

</access-list-entry>
</access-list-entries>

</access-list>
</access-lists>

</data>
</rpc-reply>

For more information, see the cisco-odm.yang model in the GitHub repository.Note

Enabling Operational Data Parser Polling Through the CLI
After enabling NETCONF-YANG, perform this task to enable operational data parser polling and to adjust
the polling interval.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Enables operational data polling.netconf-yang cisco-odm polling-enable

Example:

Step 3

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
71

Model-Driven Programmability
Enabling Operational Data Parser Polling Through the CLI

https://github.com/YangModels/yang

PurposeCommand or Action
Device(config)# netconf-yang cisco-odm
polling-enable

Enables the specified action, and enters
ODM-action configuration mode.

netconf-yang cisco-odm actions action-name

Example:

Step 4

• Specify the operational data parser name
to retrieve operational data.

Device(config)# netconf-yang cisco-odm
actions OSPF

Configures the data parser in poll mode.mode poll

Example:

Step 5

Device(config-odm-action)# mode poll

Changes the default parser-polling interval.polling-interval secondsStep 6

Example: • To stop the parser from polling data,
configure the mode none command.Device(config-odm-action)#

polling-interval 1000

Exits ODM-action configuration mode and
returns to privileged EXEC mode.

end

Example:

Step 7

Device(config-odm-action)# end

What to do next

After enabling operational data polling, send a <get> RPC to obtain operational data from the device.

Additional References for Operational Data Parser Polling
Related Documents

Document TitleRelated Topic

To access Cisco YANG models in a developer-friendly way,
please clone the GitHub repository, and navigate to the
vendor/cisco subdirectory.

YANG data models for Cisco IOS XE

MIBs

MIBs LinkMIB

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco
MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
72

Model-Driven Programmability
Additional References for Operational Data Parser Polling

https://github.com/YangModels/yang
https://github.com/YangModels/yang/tree/master/vendor/cisco
http://www.cisco.com/go/mibs

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple
Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Feature Information for Operational Data Parser Polling
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 14: Feature Information for Operational Data Parser Polling

Feature InformationReleaseFeature Name

YANG data models, enables you to read
operational state data from a device. In Cisco
IOS XE Everest 16.5.1a, this feature was
implemented on the following platforms:

Cisco IOS XE Everest
16.5.1a

Operational Data Parser
Polling

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
73

Model-Driven Programmability
Feature Information for Operational Data Parser Polling

http://www.cisco.com/support
http://www.cisco.com/go/cfn

Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
74

Model-Driven Programmability
Feature Information for Operational Data Parser Polling

	Programmability Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches)
	Contents
	New and Changed Information
	New and Changed Feature Information

	Provisioning
	Zero-Touch Provisioning
	Finding Feature Information
	Information About Zero-Touch Provisioning
	Zero-Touch Provisioning Overview
	DHCP Server Configuration for Zero-Touch Provisioning

	Sample Zero-Touch Provisioning Configurations
	Sample DHCP Server Configuration on a Management Port
	Sample DHCP Server Configuration on a Forwarding Port
	Sample DHCP Server Configuration on a Linux Ubuntu Device
	Sample Python Script on a TFTP Server
	Zero-Touch Provisioning Boot Log

	Additional References for Zero-Touch Provisioning
	Feature Information for Zero-Touch Provisioning

	iPXE
	Finding Feature Information
	Information About iPXE
	About iPXE
	iPXE Overview
	IPv6 iPXE Network Boot
	IPv6 Address Assignment in ROMMON Mode
	iPXE-Supported DHCP Options
	DHCPv6 Unique Identifiers

	How to Configure iPXE
	Configuring iPXE
	Configuring Device Boot

	Configuration Examples for iPXE
	Example: iPXE Configuration
	Sample iPXE Boot Logs
	Sample DHCPv6 Server Configuration for iPXE

	Troubleshooting Tips for iPXE
	Additional References for iPXE
	Feature Information for iPXE

	Shells and Scripting
	Guest Shell
	Finding Feature Information
	Information About Guest Shell
	Guest Shell Overview
	Guest Shell Vs Guest Shell Lite
	Guest Shell Security
	Hardware Requirements for Guestshell
	Guest Shell Storage Requirements
	Accessing Guest Shell on a Device
	Accessing Guest Shell Through the Management Port

	IOx Overview

	How to Enable Guest Shell
	Managing IOx
	Managing the Guest Shell
	Enabling and Running the Guest Shell
	Disabling and Destroying the Guest Shell

	Accessing the Python Interpreter

	Configuration Examples for Guest Shell
	Example: Managing the Guest Shell
	Sample VirtualPortGroup Configuration
	Example: Guest Shell Usage
	Example: Guest Shell Networking Configuration
	Sample DNS Configuration for Guest Shell
	Example: Configuring Proxy Environment Variables
	Example: Configuring Yum and PIP for Proxy Settings

	Additional References for Guest Shell
	Feature Information for Guest Shell

	Python API
	Finding Feature Information
	Using Python
	Cisco Python Module
	Cisco Python Module to Execute IOS CLI Commands

	CLI Python Module
	Finding Feature Information
	Information About CLI Python Module
	About Python
	Python Scripts Overview
	Interactive Python Prompt
	Python Script

	Supported Python Versions

	Updating the Cisco CLI Python Module
	Additional References for the CLI Python Module
	Feature Information for the CLI Python Module

	EEM Python Module
	Finding Feature Information
	Prerequisites for the EEM Python Module
	Information About the EEM Python Module
	Python Scripting in EEM
	EEM Python Package
	Python-Supported EEM Actions
	EEM Variables
	EEM CLI Library Command Extensions

	How to Configure the EEM Python Policy
	Registering a Python Policy
	Running Python Scripts as Part of EEM Applet Actions
	Adding a Python Script in an EEM Applet

	Additional References EEM Python Module
	Feature Information for EEM Python Module

	Model-Driven Programmability
	Data Models
	Finding Feature Information
	Restrictions for Data Models
	Information About Data Models
	Introduction to Data Models - Programmatic and Standards-Based Configuration
	NETCONF

	How to Configure Data Models
	Configuring NETCONF
	Configuring NETCONF Options
	Configuring SNMP

	Additional References for Data Models
	Feature Information for Data Models

	Operational Data Parser Polling
	Finding Feature Information
	Information About Operational Data
	Operational Data Overview
	Operational Data Parsers and Corresponding YANG Models

	How to Enable Operational Data Parser Polling
	Enabling Operational Data Parser Polling Through a Programmable Interface
	Enabling Operational Data Parser Polling Through the CLI

	Additional References for Operational Data Parser Polling
	Feature Information for Operational Data Parser Polling

