Catalyst 2950 Desktop Switch Command Reference, 12.1(11)YJ
Cisco IOS Commands - t through z
Downloads: This chapterpdf (PDF - 355.0KB) The complete bookPDF (PDF - 4.74MB) | Feedback

2

Table Of Contents

udld (global configuration)

udld (interface configuration)

udld reset

upgrade binary

upgrade preserve

vlan (global configuration)

vlan (VLAN configuration)

vlan database

vmps reconfirm (global configuration)

vmps reconfirm (privileged EXEC)

vmps retry

vmps server

vtp (global configuration)

vtp (privileged EXEC)

vtp (VLAN configuration)

wrr-queue bandwidth

wrr-queue cos-map


2

udld (global configuration)

Use the udld global configuration command to enable aggressive or normal mode in the UniDirectional Link Detection (UDLD) and to set the configurable message timer. Use the no form of this command to disable aggressive or normal mode UDLD on all fiber-optic ports.

udld {aggressive | enable | message time message-timer-interval}

no udld {aggressive | enable | message time}

Syntax Description

aggressive

Enable UDLD in aggressive mode on all fiber-optic interfaces.

enable

Enable UDLD in normal mode on all fiber-optic interfaces.

message time message-timer-interval

Configure the period of time between UDLD probe messages on ports that are in the advertisement phase and are determined to be bidirectional. The range is from 7 to 90 seconds.


Defaults

UDLD is disabled on all fiber-optic interfaces.

The message timer is set at 60 seconds.

Command Modes

Global configuration

Command History

Release
Modification

12.0(5.2)WC(1)

This command was introduced.

12.1(6)EA2

The udld enable global configuration command was changed to udld (global configuration).


Usage Guidelines

Use the udld global configuration command to enable UDLD only on fiber-optic ports.

In normal mode, if UDLD is in the advertisement or in the detection phase and all the neighbor cache entries are aged out, UDLD restarts the link-up sequence to resynchronize with any potentially out-of-sync neighbors.

If you enable aggressive mode, when all the neighbors of a port have aged out either in the advertisement or in the detection phase, UDLD restarts the link-up sequence to resynchronize with any potentially out-of-sync neighbor. UDLD shuts down the port if, after the fast train of messages, the link state is still undetermined. Use aggressive mode on point-to-point links where no failure between two neighbors is allowed. In this situation, UDLD probe packets can be considered as a heart beat whose presence guarantees the health of the link. Conversely, the loss of the heart beat means that the link must be shut down if it is not possible to re-establish a bidirectional link.

If you change the message time between probe packets, you are making a trade-off between the detection speed and the CPU load. By decreasing the time, you can make the detection-response faster but increase the load on the CPU.

This command affects fiber-optic interfaces only. Use the udld interface configuration command to enable UDLD on other interface types.

Examples

This example shows how to enable UDLD on all fiber-optic interfaces:

Switch(config)# udld enable

You can verify your settings by entering the show udld privileged EXEC command.

Related Commands

Command
Description

show running-config

Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference for Release 12.1 > Cisco IOS File Management Commands > Configuration File Commands.

show udld

Displays the UDLD status for all ports or the specified port.

udld (interface configuration)

Enables UDLD on an individual interface or prevents a fiber-optic interface from being enabled by the udld global configuration command.

udld reset

Resets any interface shut down by UDLD and permits traffic to again pass through.


udld (interface configuration)

Use the udld interface configuration command to enable UniDirectional Link Detection (UDLD) on an individual interface or to prevent a fiber-optic interface from being enabled by the udld global configuration command. Use the no form of this command to return to the udld global configuration command setting or disable UDLD if entered on a nonfiber-optic port.

udld {aggressive | enable | disable}

no udld {aggressive | enable | disable}

Syntax Description

aggressive

Enable UDLD in aggressive mode on the specified interface.

disable

Disable UDLD on the specified interface. This keyword applies only to fiber-optic interfaces.

enable

Enable UDLD in normal mode on the specified interface.


Defaults

On fiber-optic interfaces, UDLD is not enabled, in aggressive mode, or disabled. For this reason, fiber-optic interfaces enable UDLD according to the state of the udld enable or udld aggressive global configuration command.

On nonfiber-optic interfaces, UDLD is disabled.

Command Modes

Interface configuration

Command History

Release
Modification

12.0(5.2)WC(1)

This command was introduced.

12.1(6)EA2

The aggressive keyword was added.


Usage Guidelines

UDLD is supported on fiber- and copper-based Ethernet ports.

A UDLD-capable port cannot detect a unidirectional link if it is connected to a UDLD-incapable port of another switch.

This setting overrides the global UDLD configuration on the switch.

In normal mode, if UDLD is in the advertisement or in the detection phase and all the neighbor cache entries are aged out, UDLD restarts the link-up sequence to resynchronize with any potentially out-of-sync neighbors.

If you enable aggressive mode, when all the neighbors of a port have aged out either in the advertisement or in the detection phase, UDLD restarts the link-up sequence to resynchronize with any potentially out-of-sync neighbor. UDLD shuts down the port if, after the fast train of messages, the link state is still undetermined. Use aggressive mode on point-to-point links where no failure between two neighbors is allowed. In this situation, UDLD probe packets can be considered as a heart beat whose presence guarantees the health of the link. Conversely, the loss of the heart beat means that the link must be shut down if it is not possible to re-establish a bidirectional link.

Use the no udld enable command on fiber-optic ports to return control of UDLD to the udld enable global configuration command or to disable UDLD on nonfiber-optic ports.

Use the udld aggressive command on fiber-optic ports to override the settings of the udld enable or udld aggressive global configuration command. Use the no form on fiber-optic ports to remove this setting and to return control of UDLD enabling to the udld global configuration command or to disable UDLD on nonfiber-optic ports.

The disable keyword is supported on fiber-optic ports only. Use the no form of this command to remove this setting and to return control of UDLD to the udld global configuration command.

If the switch software detects a GBIC module change and the interface changes from fiber optic to nonfiber optic or from nonfiber optic to fiber optic, all configurations are maintained.

Examples

This example shows how to enable UDLD on an interface:

Switch(config)# interface fastethernet0/2
Switch(config-if)# udld enable

This example shows how to disable UDLD on a fiber-optic interface despite the setting of the udld global configuration command:

Switch(config)# interface gigabitethernet0/2
Switch(config-if)# udld disable

You can verify your settings by entering the show running-config or show udld privileged EXEC command.

Related Commands

Command
Description

show running-config

Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference for Release 12.1 > Cisco IOS File Management Commands > Configuration File Commands.

show udld

Displays UDLD status for all ports or the specified port.

udld (global configuration)

Enables UDLD on all fiber-optic ports on the switch.

udld reset

Resets all interfaces shut down by UDLD and permits traffic to again pass through.


udld reset

Use the udld reset privileged EXEC command to reset all interfaces shut down by UniDirectional Link Detection (UDLD) and to permit traffic to again pass through. Other features, such as spanning tree, Port Aggregation Protocol (PAgP), and Dynamic Trunking Protocol (DTP), still have their normal effects, if enabled.

udld reset

Syntax Description

This command has no keywords or arguments.

Command Modes

Privileged EXEC

Command History

Release
Modification

12.0(5.2)WC(1)

This command was introduced.


Usage Guidelines

If the interface configuration is still enabled for UDLD, these ports begin to run UDLD again and might shut down for the same reason if the problem has not been corrected.

Examples

This example shows how to reset all interfaces that have been shut down by UDLD:

Switch# udld reset
1 ports shutdown by UDLD were reset.

You can verify your settings by entering the show udld privileged EXEC command.

Related Commands

Command
Description

show running-config

Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference for Release 12.1 > Cisco IOS File Management Commands > Configuration File Commands.

show udld

Displays UDLD status for all ports or the specified port.

udld (interface configuration)

Enables UDLD on an individual interface or prevents a fiber-optic interface from being enabled by the udld global configuration command.

udld (global configuration)

Enables UDLD on all fiber-optic ports on the switch.


upgrade binary

Use the upgrade binary controller configuration command to configure the behavior of a Long-Reach Ethernet (LRE) controller upgrade.

upgrade binary LRE binary [remote lre-interface]

no upgrade binary LRE binary [remote lre-interface]

Syntax Description

LRE binary

The LRE binary file name being applied.

remote lre-interface

(Optional) The LRE interface. If you do not specify the remote parameter for the customer premises equipment (CPE) end of the LRE link, the local or controller end of the LRE link is implied.


Command Modes

Controller configuration

Command History

Release
Modification

12.1(11)YJ

This command was introduced.


Usage Guidelines

This configuration command is normally not needed. The default behavior for an upgrade is for the system to select the binary version. Use this command when you need to specify a particular upgrade binary file for a local controller in an LRE switch or for a remote CPE device connected to the controller. If you use the command without parameters, the LRE binary is applied to the local controller when it is upgraded. If you specify the remote keyword and interface, the LRE binary is applied to the CPE device at the end of the remote LRE link at upgrade time.

Upgrade configurations given in the controller configuration mode take precedence over upgrade configurations given in the global configuration mode.

Examples

This example shows how to configures a Cisco 585 LRE CPE on LRE link 0/1 to use version 51.00.00.bin the next time LRE update runs.


Switch# configure t
Switch(config)# controller Lo 0
Switch(config-controller)# upgrade binary CISCO585-LRE_vdslsngl_51.00.00.bin remote lo 0/1
Switch(config-controller)#

Related Commands

Command
Description

upgrade preserve

Prevents an upgrade of the local CPE controller and all remote CPE devices connected to it.


upgrade preserve

Use the upgrade preserve controller configuration command to prevent an upgrade from taking place on a controller in a Long-Reach Ethernet (LRE) switch and on all the devices that remotely connect to it. This command does not affect other controllers in the switch and their connected devices. Use the no form of the command to allow upgrades on the devices.

upgrade preserve

no upgrade preserve

Syntax Description

This command has no keywords or arguments.

Command Modes

Controller configuration mode

Command History

Release
Modification

12.1(11)YJ

This command was introduced.


Usage Guidelines

Use the upgrade preserve command to cause LRE upgrade to not upgrade a controller and all the devices connected to it.

Examples

This example shows how to prevent the controller 0, and the CPE devices attached to it, from being upgraded.


Switch# configure t
Switch(config)# controller Lo 0
Switch(config-controller)# upgrade preserve
Switch(config-controller)#

Related Commands

Command
Description

controller LongReachEthernet

Entry for controller configuration mode.

upgrade binary

Configures upgrades on either end of an LRE link.


vlan (global configuration)

Use the vlan global configuration command to add a VLAN and enter the config-vlan mode. Use the no form of this command to delete the VLAN. Configuration information for normal-range VLANs (VLAN IDs 1 to 1005) is always saved in the VLAN database. When VLAN Trunking Protocol (VTP) mode is transparent, you can create extended-range VLANs (VLAN IDs greater than 1005), and the VTP mode and domain name and the VLAN configuration are saved in the switch running configuration file. You can save configurations in the switch startup configuration file by entering the copy running-config startup-config privileged EXEC command.

vlan vlan-id

no vlan vlan-id

Syntax Description

vlan-id

ID of the VLAN to be added and configured. For vlan-id, the range is 1 to 4094 when the enhanced software image (EI) is installed and 1 to 1005 when the standard software image (SI) is installed; do not enter leading zeros. You can enter a single VLAN ID, a series of VLAN IDs separated by commas, or a range of VLAN IDs separated by hyphens.


Defaults

This command has no default settings.

Command Modes

Global configuration

Command History

Release
Modification

12.1(9)EA1

This command was introduced.

12.1(11)EA1

The remote-span configuration command was added.


Usage Guidelines

You must use the vlan vlan-id global configuration command to add extended-range VLANs (VLAN IDs 1006 to 4094). Before configuring VLANs in the extended range, you must use the vtp transparent global configuration or VLAN configuration command to put the switch in VTP transparent mode. Extended-range VLANs are not learned by VTP and are not added to the VLAN database, but when VTP mode is transparent, VTP mode and domain name and all VLAN configurations are saved in the running configuration, and you can save them in the switch startup configuration file.

When you save the VLAN and VTP configurations in the startup configuration file and reboot the switch, the configuration is determined in these ways:

If both the VLAN database and the configuration file show the VTP mode as transparent and the VTP domain names match, the VLAN database is ignored. The VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.

If the VTP mode is server, or if the startup VTP mode or domain names do not match the VLAN database, the VTP mode and the VLAN configuration for the first 1005 VLANs use the VLAN database information.

If the image on the switch or the configuration file is earlier than IOS release 12.1(9)EA1, the switch reboots with information in the VLAN database.

If you try to create an extended-range VLAN when the switch is not in VTP transparent mode, the VLAN is rejected, and you receive an error message.

If you enter an invalid VLAN ID, you receive an error message and do not enter config-vlan mode.

Entering the vlan command with a VLAN ID enables config-vlan mode. When you enter the VLAN ID of an existing VLAN, you do not create a new VLAN, but you can modify VLAN parameters for that VLAN. The specified VLANs are added or modified when you exit the config-vlan mode. Only the shutdown command (for VLANs 1 to 1005) takes effect immediately.

These configuration commands are available in config-vlan mode. The no form of each command returns the characteristic to its default state.


Note Although all commands are visible, the only config-vlan command supported on extended-range VLANs is mtu mtu-size. For extended-range VLANs, all other characteristics must remain at the default state.


are are-number: defines the maximum number of all-routes explorer (ARE) hops for this VLAN. This keyword applies only to TrCRF VLANs. Valid values are from 0 to 13. The default is 7. If no value is entered, 0 is assumed to be the maximum.

backupcrf: specifies the backup CRF mode. This keyword applies only to TrCRF VLANs.

enable backup CRF mode for this VLAN.

disable backup CRF mode for this VLAN (the default).

bridge {bridge-number| type}: specifies the logical distributed source-routing bridge, the bridge that interconnects all logical rings having this VLAN as a parent VLAN in FDDI-NET, Token Ring-NET, and TrBRF VLANs. Valid bridge numbers are from 0 to 15. The default bridge number is 0 (no source-routing bridge) for FDDI-NET, TrBRF, and Token Ring-NET VLANs. The type keyword applies only to TrCRF VLANs and is one of these:

srb (source-route bridging)

srt (source-route transparent) bridging VLAN

exit: applies changes, increments the VLAN database revision number (VLANs 1 to 1005 only), and exits config-vlan mode.

media: defines the VLAN media type. See Table 2-23 for valid commands and syntax for different media types.


Note The switch supports only Ethernet ports. You configure only FDDI and Token Ring media-specific characteristics for VLAN Trunking Protocol (VTP) global advertisements to other switches. These VLANs are locally suspended.


ethernet is Ethernet media type (the default).

fddi is FDDI media type.

fd-net is FDDI network entity title (NET) media type.

tokenring is Token Ring media type if the VTP v2 mode is disabled, or TrCRF if the VTP version 2 (v) mode is enabled.

tr-net is Token Ring network entity title (NET) media type if the VTP v2 mode is disabled or TrBRF media type if the VTP v2 mode is enabled.

mtu mtu-size: specifies the maximum transmission unit (MTU) (packet size in bytes). Valid values are from 1500 to 18190. The default is 1500 bytes.

name vlan-name: names the VLAN with an ASCII string from 1 to 32 characters that must be unique within the administrative domain. The default is VLANxxxx where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number.

no: negates a command or returns it to the default setting.

parent parent-vlan-id: specifies the parent VLAN of an existing FDDI, Token Ring, or TrCRF VLAN. This parameter identifies the TrBRF to which a TrCRF belongs and is required when defining a TrCRF. Valid values are from 0 to 1005. The default parent VLAN ID is 0 (no parent VLAN) for FDDI and Token Ring VLANs. For both Token Ring and TrCRF VLANs, the parent VLAN ID must already exist in the database and be associated with a Token Ring-NET or TrBRF VLAN.

remote-span: adds the Remote SPAN (RSPAN) trait to the VLAN. When the RSPAN trait is added to an existing VLAN, the VLAN is first removed and then recreated with the RSPAN trait. Any access ports are deactivated until the RSPAN trait is removed. The new RSPAN VLAN is propagated via VTP for VLAN-IDs less than 1005. This command is available only if your switch is running the EI.

ring ring-number: defines the logical ring for an FDDI, Token Ring, or TrCRF VLAN. Valid values are from 1 to 4095. The default for Token Ring VLANs is 0. For FDDI VLANs, there is no default.

said said-value: specifies the security association identifier (SAID) as documented in IEEE 802.10. The value is an integer from 1 to 4294967294 that must be unique within the administrative domain. The default value is 100000 plus the VLAN ID number.

shutdown: shuts down VLAN switching on the VLAN. This command takes effect immediately. Other commands take effect when you exit config-vlan mode.

state: specifies the VLAN state:

active means the VLAN is operational (the default).

suspend means the VLAN is suspended. Suspended VLANs do not pass packets.

ste ste-number: defines the maximum number of spanning-tree explorer (STE) hops. This keyword applies only to TrCRF VLANs. Valid values are from 0 to 13. The default is 7.

stp type: defines the spanning-tree type for FDDI-NET, Token Ring-NET, or TrBRF VLANs. For FDDI-NET VLANs, the default STP type is ieee. For Token Ring-NET VLANs, the default STP type is ibm. For FDDI and Token Ring VLANs, the default is no type specified.

ieee for IEEE Ethernet STP running source-route transparent (SRT) bridging.

ibm for IBM STP running source-route bridging (SRB).

auto for STP running a combination of source-route transparent bridging (IEEE) and source-route bridging (IBM).

tb-vlan1 tb-vlan1-id and tb-vlan2 tb-vlan2-id: specifies the first and second VLAN to which this VLAN is translationally bridged. Translational VLANs translate FDDI or Token Ring to Ethernet, for example. Valid values are from 0 to 1005. If no value is specified, 0 (no transitional bridging) is assumed.

Table 2-23 Valid Commands and Syntax for Different Media Types 

Media Type
Valid Syntax

Ethernet

name vlan-name, media ethernet, state {suspend | active}, said said-value, mtu mtu-size, remote-span, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id

FDDI

name vlan-name, media fddi, state {suspend | active}, said said-value, mtu mtu-size, ring ring-number, parent parent-vlan-id, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id

FDDI-NET

name vlan-name, media fd-net, state {suspend | active}, said said-value, mtu  mtu-size, bridge bridge-number, stp type {ieee | ibm | auto}, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id

If VTP v2 mode is disabled, do not set the stp type to auto.

Token Ring

VTP v1 mode is enabled.

name vlan-name, media tokenring, state {suspend | active}, said said-value, mtu mtu-size, ring ring-number, parent parent-vlan-id, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id

Token Ring concentrator relay function (TrCRF)

VTP v2 mode is enabled.

name vlan-name, media tokenring, state {suspend | active}, said said-value, mtu mtu-size, ring ring-number, parent parent-vlan-id, bridge type {srb | srt}, are are-number, ste ste-number, backupcrf {enable | disable}, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id

Token Ring-NET

VTP v1 mode is enabled.

name vlan-name, media tr-net, state {suspend | active}, said said-value, mtu mtu-size, bridge bridge-number, stp type {ieee | ibm}, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id

Token Ring bridge relay function (TrBRF)

VTP v2 mode is enabled.

name vlan-name, media tr-net, state {suspend | active}, said said-value, mtu mtu-size, bridge bridge-number, stp type {ieee | ibm | auto}, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id


Table 2-24 describes the rules for configuring VLANs.

Table 2-24 VLAN Configuration Rules 

Configuration
Rule

VTP v2 mode is enabled, and you are configuring a TrCRF VLAN media type.

Specify a parent VLAN ID of a TrBRF that already exists in the database.

Specify a ring number. Do not leave this field blank.

Specify unique ring numbers when TrCRF VLANs have the same parent VLAN ID. Only one backup concentrator relay function (CRF) can be enabled.

VTP v2 mode is enabled, and you are configuring VLANs other than TrCRF media type.

Do not specify a backup CRF.

VTP v2 mode is enabled, and you are configuring a TrBRF VLAN media type.

Specify a bridge number. Do not leave this field blank.

VTP v1 mode is enabled.

No VLAN can have an STP type set to auto.

This rule applies to Ethernet, FDDI, FDDI-NET, Token Ring, and Token Ring-NET VLANs.

Add a VLAN that requires translational bridging (values are not set to zero).

The translational bridging VLAN IDs that are used must already exist in the database.

The translational bridging VLAN IDs that a configuration points to must also contain a pointer to the original VLAN in one of the translational bridging parameters (for example, Ethernet points to FDDI, and FDDI points to Ethernet).

The translational bridging VLAN IDs that a configuration points to must be different media types than the original VLAN (for example, Ethernet can point to Token Ring).

If both translational bridging VLAN IDs are configured, these VLANs must be different media types (for example, Ethernet can point to FDDI and Token Ring).


Examples

This example shows how to add an Ethernet VLAN with default media characteristics. The default includes a vlan-name of VLANxxx, where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number. The default media option is ethernet; the state option is active. The default said-value variable is 100000 plus the VLAN ID; the mtu-size variable is 1500; the stp-type option is ieee. When you enter the exit config-vlan configuration command, the VLAN is added if it did not already exist; otherwise, this command does nothing.

This example shows how to create a new VLAN with all default characteristics and enter config-vlan mode:

Switch(config)# vlan 200
Switch(config-vlan)# exit
Switch(config)#

This example shows how to create a new extended-range VLAN (when the EI is installed) with all the default characteristics, to enter config-vlan mode, and to save the new VLAN in the switch startup configuration file:

Switch(config)# vtp mode transparent
Switch(config)# vlan 2000
Switch(config-vlan)# end
Switch# copy running-config startup config

You can verify your setting by entering the show vlan privileged EXEC command.

Related Commands

Command
Description

show running-config vlan

Displays all or a range of VLAN-related configurations on the switch.

show vlan

Displays the parameters for all configured VLANs or one VLAN (if the VLAN ID or name is specified) in the administrative domain.

vlan (VLAN configuration)

Configures normal-range VLANs in the VLAN database.


vlan (VLAN configuration)

Use the vlan VLAN configuration command to configure VLAN characteristics for a normal-range VLAN (VLAN IDs 1 to 1005) in the VLAN database. You access VLAN configuration mode by entering the vlan database privileged EXEC command. Use the no form of this command without additional parameters to delete a VLAN. Use the no form with parameters to change its configured characteristics.

vlan vlan-id [are are-number] [backupcrf {enable | disable}] [bridge bridge-number |
type {srb | srt}] [media {ethernet | fddi | fdi-net | tokenring | tr-net}] [mtu mtu-size]
[name vlan-name] [parent parent-vlan-id] [ring ring-number] [said said-value]
[state {suspend | active}] [ste ste-number] [stp type {ieee | ibm | auto}]
[tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]

no vlan vlan-id [are are-number] [backupcrf {enable | disable}] [bridge bridge-number |
type {srb | srt}] [media {ethernet | fddi | fdi-net | tokenring | tr-net}] [mtu mtu-size]
[name vlan-name] [parent parent-vlan-id] [ring ring-number] [said said-value]
[state {suspend | active}] [ste ste-number] [stp type {ieee | ibm | auto}]
[tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]

Extended-range VLANs (with VLAN IDs from 1006 to 4094) cannot be added or modified by using these commands. To add extended-range VLANs, use the vlan (global configuration) command to enter config-vlan mode.


Note The switch supports only Ethernet ports. You configure only FDDI and Token Ring media-specific characteristics for VLAN Trunking Protocol (VTP) global advertisements to other switches. These VLANs are locally suspended.


Syntax Description

vlan-id

ID of the configured VLAN. Valid IDs are from 1 to 1005 and must be unique within the administrative domain. Do not enter leading zeros.

are are-number

(Optional) Specify the maximum number of all-routes explorer (ARE) hops for this VLAN. This keyword applies only to TrCRF VLANs. Valid values are from 0 to 13. If no value is entered, 0 is assumed to be the maximum.

backupcrf {enable | disable}

(Optional) Specify the backup CRF mode. This keyword applies only to TrCRF VLANs.

enable backup CRF mode for this VLAN.

disable backup CRF mode for this VLAN.

bridge bridge-number|
type {srb | srt}

(Optional) Specify the logical distributed source-routing bridge, the bridge that interconnects all logical rings having this VLAN as a parent VLAN in FDDI-NET, Token Ring-NET, and TrBRF VLANs.

Valid bridge numbers are from 0 to 15.

The type keyword applies only to TrCRF VLANs and is one of these:

srb (source-route bridging)

srt (source-route transparent) bridging VLAN

media {ethernet | fddi | fd-net | tokenring | tr-net}

(Optional) Specify the VLAN media type. Table 2-25 lists the valid syntax for each media type.

ethernet is Ethernet media type (the default).

fddi is FDDI media type.

fd-net is FDDI network entity title (NET) media type.

tokenring is Token Ring media type if the VTP v2 mode is disabled, or TrCRF if the VTP v2 mode is enabled.

tr-net is Token Ring network entity title (NET) media type if the VTP v2 mode is disabled or TrBRF media type if the VTP v2 mode is enabled.

mtu mtu-size

(Optional) Specify the maximum transmission unit (MTU) (packet size in bytes). Valid values are from 1500 to 18190.

name vlan-name

(Optional) Specify the VLAN name, an ASCII string from 1 to 32 characters that must be unique within the administrative domain.

parent parent-vlan-id

(Optional) Specify the parent VLAN of an existing FDDI, Token Ring, or TrCRF VLAN. This parameter identifies the TrBRF to which a TrCRF belongs and is required when defining a TrCRF. Valid values are from 0 to 1005.

ring ring-number

(Optional) Specify the logical ring for an FDDI, Token Ring, or TrCRF VLAN. Valid values are from 1 to 4095.

said said-value

(Optional) Enter the security association identifier (SAID) as documented in IEEE 802.10. The value is an integer from 1 to 4294967294 that must be unique within the administrative domain.

state {suspend | active}

(Optional) Specify the VLAN state:

If active, the VLAN is operational.

If suspend, the VLAN is suspended. Suspended VLANs do not pass packets.

ste ste-number

(Optional) Specify the maximum number of spanning-tree explorer (STE) hops. This keyword applies only to TrCRF VLANs. Valid values are from 0 to 13.

stp type {ieee | ibm | auto}

(Optional) Specify the spanning-tree type for FDDI-NET, Token Ring-NET, or TrBRF VLAN.

ieee for IEEE Ethernet STP running source-route transparent (SRT) bridging.

ibm for IBM STP running source-route bridging (SRB).

auto for STP running a combination of source-route transparent bridging (IEEE) and source-route bridging (IBM).

tb-vlan1 tb-vlan1-id

and tb-vlan2 tb-vlan2-id

(Optional) Specify the first and second VLAN to which this VLAN is translationally bridged. Translational VLANs translate FDDI or Token Ring to Ethernet, for example. Valid values are from 0 to 1005. Zero is assumed if no value is specified.


Table 2-25 shows the valid syntax options for different media types.

Table 2-25 Valid Syntax for Different Media Types 

Media Type
Valid Syntax

Ethernet

vlan vlan-id [name vlan-name] media ethernet [state {suspend | active}]
[said said-value] [mtu mtu-size] [tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]

FDDI

vlan vlan-id [name vlan-name] media fddi [state {suspend | active}]
[said said-value] [mtu mtu-size] [ring ring-number] [parent parent-vlan-id] [tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]

FDDI-NET

vlan vlan-id [name vlan-name] media fd-net [state {suspend | active}]
[said said-value] [mtu mtu-size] [bridge bridge-number]
[stp type {ieee | ibm | auto}] [tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]

If VTP v2 mode is disabled, do not set the stp type to auto.

Token Ring

VTP v1 mode is enabled.

vlan vlan-id [name vlan-name] media tokenring [state {suspend | active}]
[said said-value] [mtu mtu-size] [ring ring-number] [parent parent-vlan-id]
[tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]

Token Ring concentrator relay function (TrCRF)

VTP v2 mode is enabled.

vlan vlan-id [name vlan-name] media tokenring [state {suspend | active}]
[said said-value] [mtu mtu-size] [ring ring-number] [parent parent-vlan-id]
[bridge type {srb | srt}] [are are-number] [ste ste-number]
[backupcrf {enable | disable}] [tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]

Token Ring-NET

VTP v1 mode is enabled.

vlan vlan-id [name vlan-name] media tr-net [state {suspend | active}]
[said said-value] [mtu mtu-size] [bridge bridge-number]
[stp type {ieee | ibm}] [tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]

Token Ring bridge relay function (TrBRF)

VTP v2 mode is enabled.

vlan vlan-id [name vlan-name] media tr-net [state {suspend | active}]
[said said-value] [mtu mtu-size] [bridge bridge-number]
[stp type {ieee | ibm | auto}] [tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]


Table 2-26 describes the rules for configuring VLANs.

Table 2-26 VLAN Configuration Rules 

Configuration
Rule

VTP v2 mode is enabled, and you are configuring a TrCRF VLAN media type.

Specify a parent VLAN ID of a TrBRF that already exists in the database.

Specify a ring number. Do not leave this field blank.

Specify unique ring numbers when TrCRF VLANs have the same parent VLAN ID. Only one backup concentrator relay function (CRF) can be enabled.

VTP v2 mode is enabled, and you are configuring VLANs other than TrCRF media type.

Do not specify a backup CRF.

VTP v2 mode is enabled, and you are configuring a TrBRF VLAN media type.

Specify a bridge number. Do not leave this field blank.

VTP v1 mode is enabled.

No VLAN can have an STP type set to auto.

This rule applies to Ethernet, FDDI, FDDI-NET, Token Ring, and Token Ring-NET VLANs.

Add a VLAN that requires translational bridging (values are not set to zero).

The translational bridging VLAN IDs that are used must already exist in the database.

The translational bridging VLAN IDs that a configuration points to must also contain a pointer to the original VLAN in one of the translational bridging parameters (for example, Ethernet points to FDDI, and FDDI points to Ethernet).

The translational bridging VLAN IDs that a configuration points to must be different media types than the original VLAN (for example, Ethernet can point to Token Ring).

If both translational bridging VLAN IDs are configured, these VLANs must be different media types (for example, Ethernet can point to FDDI and Token Ring).


Defaults

The ARE value is 7.

Backup CRF is disabled.

The bridge number is 0 (no source-routing bridge) for FDDI-NET, TrBRF, and Token Ring-NET VLANs.

The media type is ethernet.

The default mtu size is 1500 bytes.

The vlan-name variable is VLANxxxx, where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number.

The parent VLAN ID is 0 (no parent VLAN) for FDDI and Token Ring VLANs. For TrCRF VLANs, you must specify a parent VLAN ID. For both Token Ring and TrCRF VLANs, the parent VLAN ID must already exist in the database and be associated with a Token Ring-NET or TrBRF VLAN.

The ring number for Token Ring VLANs is 0. For FDDI VLANs, there is no default.

The said value is 100000 plus the VLAN ID.

The state is active.

The STE value is 7.

The STP type is ieee for FDDI-NET and ibm for Token Ring-NET VLANs. For FDDI and Token Ring VLANs, the default is no type specified.

The tb-vlan1-id and tb-vlan2-id variables are zero (no translational bridging).

Command Modes

VLAN configuration

Command History

Release
Modification

12.0(5.2)WC(1)

This command was introduced.


Usage Guidelines

You can only use this command mode for configuring normal-range VLANs, that is, VLAN IDs 1 to 1005.


Note To configure extended-range VLANs (VLAN IDs 1006 to 4094), use the vlan global configuration command.


VLAN configuration is always saved in the VLAN database. If VTP mode is transparent, it is also saved in the switch running configuration, along with the VTP mode and domain name. You can then save it in the switch startup configuration file by using the copy running-config startup-config privileged EXEC command.

When you save VLAN and VTP configuration in the startup configuration file and reboot the switch, the configuration is determined in these ways:

If both the VLAN database and the configuration file show the VTP mode as transparent and the VTP domain names match, the VLAN database is ignored. The VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.

If the VTP mode is server, or if the startup VTP mode or domain names do not match the VLAN database, the VTP mode and the VLAN configuration for the first 1005 VLANs use VLAN database information.

If the image on the switch or the configuration file is earlier than IOS release 12.1(9)EA1, the switch reboots with information in the VLAN database.

The following are the results of using the no vlan commands:

When the no vlan vlan-id form is used, the VLAN is deleted. Deleting VLANs automatically resets to zero any other parent VLANs and translational bridging parameters that refer to the deleted VLAN.

When the no vlan vlan-id bridge form is used, the VLAN source-routing bridge number returns to the default (0). The vlan vlan-id bridge command is used only for FDDI-NET and Token Ring-NET VLANs and is ignored in other VLAN types.

When the no vlan vlan-id media form is used, the media type returns to the default (ethernet). Changing the VLAN media type (including the no form) resets the VLAN MTU to the default MTU for the type (unless the mtu keyword is also present in the command). It also resets the VLAN parent and translational bridging VLAN to the default (unless the parent, tb-vlan1, or tb-vlan2 are also present in the command).

When the no vlan vlan-id mtu form is used, the VLAN MTU returns to the default for the applicable VLAN media type. You can also modify the MTU using the media keyword.

When the no vlan vlan-id name vlan-name form is used, the VLAN name returns to the default name (VLANxxxx, where xxxx represent four numeric digits [including leading zeros] equal to the VLAN ID number).

When the no vlan vlan-id parent form is used, the parent VLAN returns to the default (0). The parent VLAN resets to the default if the parent VLAN is deleted or if the media keyword changes the VLAN type or the VLAN type of the parent VLAN.

When the no vlan vlan-id ring form is used, the VLAN logical ring number returns to the default (0).

When the no vlan vlan-id said form is used, the VLAN SAID returns to the default (100,000 plus the VLAN ID).

When the no vlan vlan-id state form is used, the VLAN state returns to the default (active).

When the no vlan vlan-id stp type form is used, the VLAN spanning-tree type returns to the default (ieee).

When the no vlan vlan-id tb-vlan1 or no vlan vlan-id tb-vlan2 form is used, the VLAN translational bridge VLAN (or VLANs, if applicable) returns to the default (0). Translational bridge VLANs must be a different VLAN type than the affected VLAN, and if two are specified, the two must be different VLAN types from each other. A translational bridge VLAN resets to the default if the translational bridge VLAN is deleted, if the media keyword changes the VLAN type, or if the media keyword changes the VLAN type of the corresponding translation bridge VLAN.

Examples

This example shows how to add an Ethernet VLAN with default media characteristics. The default includes a vlan-name of VLANxxx, where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number. The default media option is ethernet; the state option is active. The default said-value variable is 100000 plus the VLAN ID; the mtu-size variable is 1500; the stp-type option is ieee. When you enter the exit or apply vlan configuration command, the VLAN is added if it did not already exist; otherwise, this command does nothing.

Switch(vlan)# vlan 2
VLAN 2 added:
    Name: VLAN0002
Switch(vlan)# exit
APPLY completed.
Exiting....

This example shows how to modify an existing VLAN by changing its name and MTU size:

Switch(vlan)# no vlan name engineering mtu 1200

You can verify your settings by entering the show vlan privileged EXEC command.

Related Commands

Command
Description

show vlan

Displays the parameters for all configured VLANs or one VLAN (if the VLAN ID or name is specified) in the administrative domain.

vlan (global configuration)

Enters config-vlan mode for configuring normal-range and extended-range VLANs.


vlan database

Use the vlan database privileged EXEC command to enter VLAN configuration mode. From this mode, you can add, delete, and modify VLAN configurations for normal-range VLANs and globally propagate these changes by using the VLAN Trunking Protocol (VTP). Configuration information is saved in the VLAN database.

vlan database


Note VLAN configuration mode is only valid for VLAN IDs 1 to 1005.


Syntax Description

This command has no arguments or keywords.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release
Modification

12.0(5.2)WC(1)

This command was introduced.


Usage Guidelines

You can use the VLAN database configuration commands to configure VLANs 1 to 1005. To configure extended-range VLANs (VLAN IDs 1006 to 4094) (when the enhanced software image (EI) is installed), use the vlan (global configuration) command to enter config-vlan mode. You can also configure VLAN IDs 1 to 1005 by using the vlan global configuration command.

To return to the privileged EXEC mode from the VLAN configuration mode, enter the exit command.


Note This command mode is different from other modes because it is session-oriented. When you add, delete, or modify VLAN parameters, the changes are not applied until you exit the session by entering the apply or exit command. When the changes are applied, the VTP configuration version is incremented. You can also not apply the changes to the VTP database by entering abort.


Once you are in VLAN configuration mode, you can access the VLAN database and make changes by using these commands:

vlan: accesses subcommands to add, delete, or modify values associated with a single VLAN. For more information, see the vlan (VLAN configuration) command.

vtp: accesses subcommands to perform VTP administrative functions. For more information, see the vtp (VLAN configuration) command.

When you have modified VLAN or VTP parameters, you can use these editing buffer manipulation commands:

abort: exits the mode without applying the changes. The VLAN configuration that was running before you entered VLAN configuration mode continues to be used.

apply: applies current changes to the VLAN database, increments the database configuration revision number, propagates it throughout the administrative domain, and remains in VLAN configuration mode.


Note You cannot use this command when the switch is in VTP client mode.


exit: applies all configuration changes to the VLAN database, increments the database configuration number, propagates it throughout the administrative domain, and returns to privileged EXEC mode.

no: negates a command or set its defaults; valid values are vlan and vtp.

reset: abandons proposed changes to the VLAN database, resets the proposed database to the implemented VLAN database on the switch, and remains in VLAN configuration mode.

show: displays VLAN database information.

show changes [vlan-id]: displays the differences between the VLAN database on the switch and the proposed VLAN database for all normal-range VLAN IDs (1 to 1005) or the specified VLAN ID (1 to 1005).

show current [vlan-id]: displays the VLAN database on the switch or on a selected VLAN (1 to 1005).

show proposed [vlan-id]: displays the proposed VLAN database or a selected VLAN (1 to 1005) from the proposed database. The proposed VLAN database is not the running configuration until you use the exit or apply VLAN configuration command.

You can verify that VLAN database changes have been made or aborted by using the show vlan privileged EXEC command. This output is different from the show VLAN database configuration command output.

Examples

This example shows how to enter the VLAN configuration mode from the privileged EXEC mode and to display VLAN database information:

Switch# vlan database
Switch(vlan)# show
Name: default
    Media Type: Ethernet
    VLAN 802.10 Id: 100001
    State: Operational
    MTU: 1500
    Translational Bridged VLAN: 1002
    Translational Bridged VLAN: 1003

Name: VLAN0002
    Media Type: Ethernet
    VLAN 802.10 Id: 100002
    State: Operational
    MTU: 1500

Name: fddi-default
    Media Type: FDDI
    VLAN 802.10 Id: 101002
    State: Operational
    MTU: 1500
    Bridge Type: SRB
    Ring Number: 0
    Translational Bridged VLAN: 1
    Translational Bridged VLAN: 1003

<output truncated>

This is an example of output from the show changes command:

Switch(vlan)# show changes

DELETED:
Name: VLAN0004
    Media Type: Ethernet
    VLAN 802.10 Id: 100004
    State: Operational
    MTU: 1500

DELETED:
Name: VLAN0006
    Media Type: Ethernet
    VLAN 802.10 Id: 100006
    State: Operational
    MTU: 1500

MODIFIED:
Current State: Operational
    Modified State: Suspended 

This example shows how to display the differences between VLAN 7 in the current database and the proposed database.

Switch(vlan)# show changes 7

MODIFIED:
Current State: Operational
    Modified State: Suspended 

This is an example of output from the show current 20 command. It displays only VLAN 20 of the current database.

Switch(vlan)# show current 20
Name: VLAN0020
    Media Type: Ethernet
    VLAN 802.10 Id: 100020
    State: Operational
    MTU: 1500 

Related Commands

Command
Description

show vlan

Displays the parameters for all configured VLANs in the administrative domain.

shutdown vlan

Shuts down (suspends) local traffic on the specified VLAN.

vlan (global configuration)

Enters config-vlan mode for configuring normal-range and extended-range VLANs.


vmps reconfirm (global configuration)

Use the vmps reconfirm global configuration command to change the reconfirmation interval for the VLAN Query Protocol (VQP) client.

vmps reconfirm interval

Syntax Description

interval

Reconfirmation interval for VQP client queries to the VLAN Membership Policy Server (VMPS) to reconfirm dynamic VLAN assignments. The interval range is from 1 to 120 minutes.


Defaults

The default reconfirmation interval is 60 minutes.

Command Modes

Global configuration

Command History

Release
Modification

12.1(6)EA2

This command was introduced.


Examples

This example shows how to set the VQP client to reconfirm dynamic VLAN entries every 20 minutes:

Switch(config)# vmps reconfirm 20

You can verify your settings by entering the show vmps privileged EXEC command and examining information in the Reconfirm Interval row.

Related Commands

Command
Description

show vmps

Displays VQP and VMPS information.

vmps reconfirm (privileged EXEC)

Sends VQP queries to reconfirm all dynamic VLAN assignments with the VMPS.


vmps reconfirm (privileged EXEC)

Use the vmps reconfirm privileged EXEC command to immediately send VLAN Query Protocol (VQP) queries to reconfirm all dynamic VLAN assignments with the VLAN Membership Policy Server (VMPS).

vmps reconfirm

Syntax Description

This command has no arguments or keywords.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release
Modification

12.1(6)EA2

This command was introduced.


Examples

This example shows how to send VQP queries to the VMPS:

Switch# vmps reconfirm

You can verify your settings by entering the show vmps privileged EXEC command and examining the VMPS Action row of the Reconfirmation Status section. The show vmps command shows the result of the last time the assignments were reconfirmed either as a result of the reconfirmation timer expired or because the vmps reconfirm command was entered.

Related Commands

Command
Description

show vmps

Displays VQP and VMPS information.

vmps reconfirm (global configuration)

Changes the reconfirmation interval for the VLAN Query Protocol (VQP) client.


vmps retry

Use the vmps retry global configuration command to configure the per-server retry count for the VLAN Query Protocol (VQP) client.

vmps retry count

Syntax Description

count

Number of attempts to contact the VLAN Membership Policy Server (VMPS) by the client before querying the next server in the list. The retry range is from 1 to 10.


Defaults

The default retry count is 3.

Command Modes

Global configuration

Command History

Release
Modification

12.1(6)EA2

This command was introduced.


Examples

This example shows how to set the retry count to 7:

Switch(config)# vmps retry 7

You can verify your settings by entering the show vmps privileged EXEC command and examining information in the Server Retry Count row.

Related Commands

Command
Description

show vmps

Displays VQP and VMPS information.


vmps server

Use the vmps server global configuration command to configure the primary VLAN Membership Policy Server (VMPS) and up to three secondary servers. Use the no form of this command to remove a VMPS server.

vmps server ipaddress [primary]

no vmps server [ipaddress]

Syntax Description

ipaddress

IP address or host name of the primary or secondary VMPS servers. If you specify a host name, the Domain Name System (DNS) server must be configured.

primary

(Optional) Determines whether primary or secondary VMPS servers are being configured.


Defaults

No primary or secondary VMPS servers are defined.

Command Modes

Global configuration

Command History

Release
Modification

12.1(6)EA2

This command was introduced.


Usage Guidelines

The first server entered is automatically selected as the primary server whether or not the primary keyword is entered. The first server address can be overridden by using primary in a subsequent command.

If a member switch in a cluster configuration does not have an IP address, the cluster does not use the VMPS server configured for that member switch. Instead, the cluster uses the VMPS server on the command switch, and the command switch proxies the VMPS requests. The VMPS server treats the cluster as a single switch and uses the IP address of the command switch to respond to requests.

When using the no form without specifying the ipaddress, all configured servers are deleted. If you delete all servers when dynamic-access ports are present, the switch cannot forward packets from new sources on these ports because it cannot query the VMPS.

Examples

This example shows how to configure the server with IP address 191.10.49.20 as the primary VMPS server. The servers with IP addresses 191.10.49.21 and 191.10.49.22 are configured as secondary servers.

Switch(config)# vmps server 191.10.49.20 primary
Switch(config)# vmps server 191.10.49.21
Switch(config)# vmps server 191.10.49.22

This example shows how to delete the server with IP address 191.10.49.21:

Switch(config)# no vmps server 191.10.49.21

You can verify your settings by entering the show vmps privileged EXEC command and examining information in the VMPS Domain Server row.

Related Commands

Command
Description

show vmps

Displays VQP and VMPS information.


vtp (global configuration)

Use the vtp global configuration command to set or modify the VLAN Trunking Protocol (VTP) configuration characteristics. Use the no form of this command to remove the settings or to return to the default settings.

vtp {domain domain-name | file filename | interface name | mode {client | server | transparent} | password password | pruning | version number}

no vtp {file | interface | mode | password | pruning | version}

Syntax Description

domain domain-name

Specify the VTP domain name, an ASCII string from 1 to 32 characters that identifies the VTP administrative domain for the switch. The domain name is case sensitive.

file filename

Specify the IOS file system file where the VTP VLAN configuration is stored.

interface name

Specify the name of the interface providing the VTP ID updated for this device.

mode

Specify the VTP device mode as client, server, or transparent.

client

Place the switch in VTP client mode. A switch in VTP client mode is enabled for VTP, and can send advertisements, but does not have enough nonvolatile storage to store VLAN configurations. You cannot configure VLANs on the switch. When a VTP client starts up, it does not send VTP advertisements until it receives advertisements to initialize its VLAN database.

server

Place the switch in VTP server mode. A switch in VTP server mode is enabled for VTP and sends advertisements. You can configure VLANs on the switch. The switch can recover all the VLAN information in the current VTP database from nonvolatile storage after reboot.

transparent

Place the switch in VTP transparent mode. A switch in VTP transparent mode is disabled for VTP, does not send advertisements or learn from advertisements sent by other devices, and cannot affect VLAN configurations on other devices in the network. The switch receives VTP advertisements and forwards them on all trunk ports except the one on which the advertisement was received.

When VTP mode is transparent, the mode and domain name are saved in the switch running configuration file, and you can save them in the switch startup configuration file by entering the copy running-config startup config privileged EXEC command.

password password

Set the administrative domain password for the generation of the 16-byte secret value used in MD5 digest calculation to be sent in VTP advertisements and to validate received VTP advertisements. The password can be an ASCII string from 1 to 32 characters. The password is case sensitive.

pruning

Enable VTP pruning on the switch.

version number

Set VTP version to version 1 or version 2.


Defaults

The default filename is flash:vlan.dat.

The default mode is server mode.

No domain name or password is defined.

No password is configured.

Pruning is disabled.

The default version is version 1.

Command Modes

Global configuration

Command History

Release
Modification

12.0(5.2)WC(1)

This command was introduced.

12.1(6)EA2

The if-id keyword was added.

12.1(9)EA1

The domain and mode keywords were added. The if-id keyword was replaced by the interface keyword.

12.1(11)EA1

The password, pruning, and version keywords were added.


Usage Guidelines

When you save VTP mode and domain name and VLAN configurations in the switch startup configuration file and reboot the switch, the VTP and VLAN configurations are determined by these conditions:

If both the VLAN database and the configuration file show the VTP mode as transparent and the VTP domain names match, the VLAN database is ignored. The VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.

If the startup VTP mode is server mode, or the startup VTP mode or domain names do not match the VLAN database, VTP mode and VLAN configuration for the first 1005 VLANs are determined by VLAN database information, and VLANs greater than 1005 are configured from the switch configuration file.

If the image on the switch or the configuration file is earlier than IOS Release 12.1(9)EA1, the switch reboots using the information in the VLAN database.

The vtp file filename cannot be used to load a new database; it renames only the file in which the existing database is stored.

Follow these guidelines when configuring a VTP domain name:

The switch is in the no-management-domain state until you configure a domain name. While in the no-management-domain state, the switch does not send any VTP advertisements even if changes occur to the local VLAN configuration. The switch leaves the no-management-domain state after it receives the first VTP summary packet on any port that is trunking or after you configure a domain name by using the vtp domain command. If the switch receives its domain from a summary packet, it resets its configuration revision number to 0. After the switch leaves the no-management-domain state, it can not be configured to re-enter it until you clear the nonvolatile RAM (NVRAM) and reload the software.

Domain names are case-sensitive.

After you configure a domain name, it cannot be removed. You can only reassign it to a different domain.

Follow these guidelines when setting VTP mode:

The no vtp mode command returns the switch to VTP server mode.

The vtp mode server command is the same as no vtp mode except that it does not return an error if the switch is not in client or transparent mode.

If the receiving switch is in client mode, the client switch changes its configuration to duplicate the configuration of the server. If you have switches in client mode, be sure to make all VTP or VLAN configuration changes on a switch in server mode. If the receiving switch is in server mode or transparent mode, the switch configuration is not changed.

Switches in transparent mode do not participate in VTP. If you make VTP or VLAN configuration changes on a switch in transparent mode, the changes are not propagated to other switches in the network.

If you change the VTP or VLAN configuration on a switch that is in server mode, that change is propagated to all the switches in the same VTP domain.

The vtp mode transparent command disables VTP from the domain but does not remove the domain from the switch.

The VTP mode must be transparent for you to add extended-range VLANs or for VTP and VLAN information to be saved in the running configuration file.

If extended-range VLANs are configured on the switch and you attempt to set the VTP mode to server or client, you receive an error message, and the configuration is not allowed.

VTP can be set to either server or client mode only when dynamic VLAN creation is disabled.

Follow these guidelines when setting a VTP password:

Passwords are case sensitive. Passwords should match on all switches in the same domain.

When you use the no vtp password form of the command, the switch returns to the no-password state.

Follow these guidelines when setting VTP pruning:

VTP pruning removes information about each pruning-eligible VLAN from VTP updates if there are no stations belonging to that VLAN.

If you enable pruning on the VTP server, it is enabled for the entire management domain for VLAN IDs 1 to 1005.

Only VLANs in the pruning-eligible list can be pruned.

Pruning is supported with VTP version 1 and version 2.

Follow these guidelines when setting the VTP version:

Toggling the version 2 (v2) mode state modifies parameters of certain default VLANs.

Each VTP switch automatically detects the capabilities of all the other VTP devices. To use version 2, all VTP switches in the network must support version 2; otherwise, you must configure them to operate in VTP version 1 mode.

If all switches in a domain are VTP version 2-capable, you need only to configure version 2 on one switch; the version number is then propagated to the other version-2 capable switches in the VTP domain.

If you are using VTP in a Token Ring environment, VTP version 2 must be enabled.

If you are configuring a Token Ring bridge relay function (TrBRF) or Token Ring concentrator relay function (TrCRF) VLAN media type, you must use version 2.

If you are configuring a Token Ring or Token Ring-NET VLAN media type, you must use version 1.

You cannot save password, pruning, and version configurations in the switch configuration file.

Examples

This example shows how to rename the filename for VTP configuration storage to vtpfilename:

Switch(config)# vtp file vtpfilename

This example shows how to clear the device storage filename:

Switch(config)# no vtp file vtpconfig
Clearing device storage filename.

This example shows how to specify the name of the interface providing the VTP updater ID for this device:

Switch(config)# vtp interface fastethernet

This example shows how to set the administrative domain for the switch:

Switch(config)# vtp domain OurDomainName

This example shows how to place the switch in VTP transparent mode:

Switch(config)# vtp mode transparent

This example shows how to configure the VTP domain password:

Switch(config)# vtp password ThisIsOurDomain'sPassword

This example shows how to enable pruning in the VLAN database:

Switch(config)# vtp pruning
Pruning switched ON

This example shows how to enable version 2 mode in the VLAN database:

Switch(config)# vtp version 2

You can verify your settings by entering the show vtp status privileged EXEC command.

Related Commands

Command
Description

show vtp status

Displays the VTP statistics for the switch and general information about the VTP management domain status.

vtp (VLAN configuration)

Configures most VTP characteristics.


vtp (privileged EXEC)

Use the vtp privileged EXEC command to configure the VLAN Trunking Protocol (VTP) password, pruning, and version. Use the no form of this command to return to the default settings.

vtp {password password | pruning | version number}

no vtp {password | pruning | version}


Note Beginning with release 12.1(11)EA1, these keywords are available in the vtp global configuration command. This command will become obsolete in a future release.


Syntax Description

password password

Set the administrative domain password for the generation of the 16-byte secret value used in MD5 digest calculation to be sent in VTP advertisements and to validate received VTP advertisements. The password can be an ASCII string from 1 to 32 characters. The password is case sensitive.

pruning

Enable VTP pruning on the switch.

version number

Set VTP version to version 1 or version 2.


Defaults

No password is configured.

Pruning is disabled.

The default version is version 1.

Command Modes

Privileged EXEC

Command History

Release
Modification

12.1(9)EA1

This command was introduced.


Usage Guidelines

Passwords are case sensitive. Passwords should match on all switches in the same domain.

When you use the no vtp password form of the command, the switch returns to the no-password state.

VTP pruning removes information about each pruning-eligible VLAN from VTP updates if there are no stations belonging to that VLAN.

If you enable pruning on the VTP server, it is enabled for the entire management domain for VLAN IDs 1 to 1005.

Only VLANs in the pruning-eligible list can be pruned.

Pruning is supported with VTP version 1 and version 2.

Toggling the version 2 (v2) mode state modifies parameters of certain default VLANs.

Each VTP switch automatically detects the capabilities of all the other VTP devices. To use version 2, all VTP switches in the network must support version 2; otherwise, you must configure them to operate in VTP version 1 mode.

If all switches in a domain are VTP version 2-capable, you need only to configure version 2 on one switch; the version number is then propagated to the other version-2 capable switches in the VTP domain.

If you are using VTP in a Token Ring environment, VTP version 2 must be enabled.

If you are configuring a Token Ring bridge relay function (TrBRF) or Token Ring concentrator relay function (TrCRF) VLAN media type, you must use version 2.

If you are configuring a Token Ring or Token Ring-NET VLAN media type, you must use version 1.

You cannot save password, pruning, and version configuration in the switch configuration file.

Examples

This example shows how to configure the VTP domain password:

Switch# vtp password ThisIsOurDomain'sPassword

This example shows how to enable pruning in the VLAN database:

Switch# vtp pruning
Pruning switched ON

This example shows how to enable version 2 mode in the VLAN database:

Switch# vtp version 2

You can verify your setting by entering the show vtp status privileged EXEC command.

Related Commands

Command
Description

show vtp status

Displays the VTP statistics for the switch and general information about the VTP management domain status.

switchport trunk pruning

Configures the VLAN pruning-eligible list for ports in trunking mode.

vtp (global configuration)

Configures the VTP filename, interface, domain-name, and mode, which can be saved in the switch configuration file.

vtp (VLAN configuration)

Configures all VTP characteristics but cannot be saved to the switch configuration file.


vtp (VLAN configuration)

Use the vtp VLAN configuration command to configure VLAN Trunking Protocol (VTP) characteristics. You access VLAN configuration mode by entering the vlan database privileged EXEC command. Use the no form of this command to return to the default settings, disable the characteristic, or remove the password.

vtp {domain domain-name | password password | pruning | v2-mode | {server | client | transparent}}

no vtp {client | password | pruning | transparent | v2-mode}


Note VTP configuration in VLAN configuration mode is saved in the VLAN database when applied.


Syntax Description

domain domain-name

Set the VTP domain name by entering an ASCII string from 1 to 32 characters that identifies the VTP administrative domain for the switch. The domain name is case sensitive.

password password

Set the administrative domain password for the generation of the 16-byte secret value used in MD5 digest calculation to be sent in VTP advertisements and to validate received VTP advertisements. The password can be an ASCII string from 1 to 32 characters. The password is case sensitive.

pruning

Enable pruning in the VTP administrative domain. VTP pruning causes information about each pruning-eligible VLAN to be removed from VTP updates if there are no stations belonging to that VLAN.

v2-mode

Enable VLAN Trunking Protocol (VTP) version 2 in the administrative domains.

client

Place the switch in VTP client mode. A switch in VTP client mode is enabled for VTP, can send advertisements, but does not have enough nonvolatile storage to store VLAN configurations. You cannot configure VLANs on it. When a VTP client starts up, it does not send VTP advertisements until it receives advertisements to initialize its VLAN database.

server

Place the switch in VTP server mode. A switch in VTP server mode is enabled for VTP and sends advertisements. You can configure VLANs on it. The switch can recover all the VLAN information in the current VTP database from nonvolatile storage after reboot.

transparent

Place the switch in VTP transparent mode. A switch in VTP transparent mode is disabled for VTP, does not send advertisements or learn from advertisements sent by other devices, and cannot affect VLAN configurations on other devices in the network. The switch receives VTP advertisements and forwards them on all trunk ports except the one on which the advertisement was received.


Defaults

The default mode is server mode.

No domain name is defined.

No password is configured.

Pruning is disabled.

VTP version 2 (v2 mode) is disabled.

Command Modes

VLAN configuration

Command History

Release
Modification

12.0(5.2)WC(1)

This command was introduced.


Usage Guidelines

If VTP mode is transparent, the mode and domain name are saved in the switch running configuration file, and you can save the configuration in the switch startup configuration file by using the copy running-config startup-config privileged EXEC command.

Follow these guidelines when setting VTP mode:

The no vtp client and no vtp transparent forms of the command return the switch to VTP server mode.

The vtp server command is the same as no vtp client or no vtp transparent except that it does not return an error if the switch is not in client or transparent mode.

If the receiving switch is in client mode, the client switch changes its configuration to duplicate the configuration of the server. If you have switches in client mode, make sure to make all VTP or VLAN configuration changes on a switch in server mode. If the receiving switch is in server mode or transparent mode, the switch configuration is not changed.

Switches in transparent mode do not participate in VTP. If you make VTP or VLAN configuration changes on a switch in transparent mode, the changes are not propagated to other switches in the network.

If you make a change to the VTP or VLAN configuration on a switch in server mode, that change is propagated to all the switches in the same VTP domain.

The vtp transparent command disables VTP from the domain but does not remove the domain from the switch.

The VTP mode must be transparent for you to add extended-range VLANs or for the VTP and the VLAN configurations to be saved in the running configuration file.

If extended-range VLANs are configured on the switch and you attempt to set the VTP mode to server or client, you receive an error message and the configuration is not allowed.

VTP can be set to either server or client mode only when dynamic VLAN creation is disabled.

Follow these guidelines when configuring a VTP domain name:

The switch is in the no-management-domain state until you configure a domain name. While in the no-management-domain state, the switch does not send any VTP advertisements even if changes occur to the local VLAN configuration. The switch leaves the no-management-domain state after receiving the first VTP summary packet on any port that is currently trunking or after configuring a domain name using the vtp domain command. If the switch receives its domain from a summary packet, it resets its configuration revision number to zero. After the switch leaves the no-management-domain state, it can never be configured to reenter it until you clear the nonvolatile RAM (NVRAM) and reload the software.

Domain names are case sensitive.

After you configure a domain name, it cannot be removed. You can reassign it only to a different domain.

Follow these guidelines when configuring a VTP password:

Passwords are case sensitive. Passwords should match on all switches in the same domain.

When the no vtp password form of the command is used, the switch returns to the no-password state.

Follow these guidelines when enabling VTP pruning:

If you enable pruning on the VTP server, it is enabled for the entire management domain.

Only VLANs included in the pruning-eligible list can be pruned.

Pruning is supported with VTP version 1 and version 2.

Follow these guidelines when enabling VTP version 2 (v2-mode):

Toggling the version (v2-mode) state modifies certain parameters of certain default VLANs.

Each VTP switch automatically detects the capabilities of all the other VTP devices. To use VTP version 2, all VTP switches in the network must support version 2; otherwise, you must configure them to operate in VTP version 1 (no vtp v2-mode).

If all switches in a domain are VTP version 2-capable, you need only to enable VTP version 2 on one switch; the version number is then propagated to the other version-2 capable switches in the VTP domain.

If you are using VTP in a Token Ring environment or configuring a Token Ring bridge relay function (TrBRF) or Token Ring concentrator relay function (TrCRF) VLAN media type, VTP version 2 (v2-mode) must be enabled.

If you are configuring a Token Ring or Token Ring-NET VLAN media type, you must use VTP version 1.

Examples

This example shows how to place the switch in VTP transparent mode:

Switch(vlan)# vtp transparent
Setting device to VTP TRANSPARENT mode.

This example shows how to set the administrative domain for the switch:

Switch(vlan)# vtp domain OurDomainName
Changing VTP domain name from cisco to OurDomainName

This example shows how to configure the VTP domain password:

Switch(vlan)# vtp password private
Setting device VLAN database password to private.

This example shows how to enable pruning in the proposed new VLAN database:

Switch(vlan)# vtp pruning
Pruning switched ON

This example shows how to enable V2 mode in the proposed new VLAN database:

Switch(vlan)# vtp v2-mode
V2 mode enabled.

You can verify your settings by entering the show vtp status privileged EXEC command.

Related Commands

Command
Description

show vtp status

Displays the VTP statistics for the switch and general information about the VTP management domain status.

switchport trunk pruning

Configures the VLAN pruning-eligible list for ports in trunking mode.

vtp (global configuration)

Configures the VTP filename, interface, domain-name, and mode.


wrr-queue bandwidth

Use the wrr-queue bandwidth global configuration command to assign weighted round-robin (WRR) weights to the four class of service (CoS) priority queues. Use the no form of this command to disable the WRR scheduler and enable the strict priority scheduler.

wrr-queue bandwidth weight1...weight4

no wrr-queue bandwidth

Syntax Description

weight1...weight4

The ratio of weight1, weight2, weight3, and weight4 determines the weights of the WRR scheduler. Ranges are 1 to 255.


Defaults

WRR is disabled. The strict priority is the default scheduler.

Command Modes

Global configuration

Command History

Release
Modification

12.0(5.2)WC(1)

This command was introduced.


Usage Guidelines

WRR allows bandwidth sharing at the egress port. This command defines the bandwidths for egress WRR through scheduling weights.

Examples

This example shows how to assign WRR weights of 10, 20, 30, and 40 to the CoS priority queues 1, 2, 3, and 4:

Switch(config)# wrr-queue bandwidth 10 20 30 40 

This example shows how to disable the WRR scheduler and enable the strict priority scheduler:

Switch(config)# no wrr-queue bandwidth

You can verify your settings by entering the show wrr-queue bandwidth privileged EXEC command.

Related Commands

Command
Description

wrr-queue cos-map

Assigns CoS values to the CoS priority queues.

show wrr-queue bandwidth

Displays the WRR bandwidth allocation for the four CoS priority queues.

show wrr-queue cos-map

Displays the mapping of the CoS to the CoS priority queues.



wrr-queue cos-map

Use the wrr-queue cos-map global configuration command to assign class of service (CoS) values to the CoS priority queues. Use the no form of this command to set the CoS map to default setting.

wrr-queue cos-map quid cos1...cosn

no wrr-queue cos-map

Syntax Description

quid

The queue id of the CoS priority queue. Ranges are 1 to 4 where 1 is the lowest CoS priority queue.

cos1...cosn

The CoS values that are mapped to the queue id.


Defaults

These are the default CoS values:

CoS Value
CoS Priority Queues

0, 1

1

2, 3

2

4, 5

3

6, 7

4


Command Modes

Global configuration

Command History

Release
Modification

12.0(5.2)WC(1)

This command was introduced.


Usage Guidelines

CoS assigned at the ingress port is used to select a CoS priority at the egress port.

Examples

This example shows how to map CoS values 0, 1, and 2 to CoS priority queue 1, value 3 to CoS priority queue 2, values 4 and 5 to CoS priority 3, and values 6 and 7 to CoS priority queue 4:

Switch(config)# wrr-queue cos-map 1 0 1 2
Switch(config)# wrr-queue cos-map 2 3
Switch(config)# wrr-queue cos-map 3 4 5
Switch(config)# wrr-queue cos-map 4 6 7

This example shows how to map CoS values 0, 1, 2, and 3 to CoS priority queue 2:

Switch(config)# wrr-queue cos-map 2 0 1 2 3

After entering the wrr-queue cos-map 2 0 1 2 3 command, if all other priority queues use their default setting, this is the new mapping:

CoS Value
CoS Priority Queue

Not applied

1

0, 1, 2, 3

2

4, 5

3

6, 7

4



In the previous example, CoS priority queue 1 is no longer used because no CoS value is assigned to the queue.

You can set the CoS values to the default values by entering the no wrr-queue cos-map global configuration command.

You can verify your settings by entering the show wrr-queue cos-map privileged EXEC command.

Related Commands

Command
Description

wrr-queue bandwidth

Assigns weighted round-robin (WRR) weights to the four CoS priority queues.

show wrr-queue bandwidth

Displays the WRR bandwidth allocation for the four CoS priority queues.

show wrr-queue cos-map

Displays the mapping of the CoS to the priority queues.