
Configuring Q-in-Q VLAN Tunnels

This chapter contains the following sections:

• Information About Q-in-Q VLAN Tunnels, on page 1
• Licensing Requirements for Q-in-Q Tunnels, on page 4
• Guidelines and Limitations for Q-in-Q VLAN Tunnels, on page 5
• Configuring Q-in-Q Tunnels , on page 6
• Verifying the Q-in-Q Configuration, on page 8
• Configuration Examples for Q-in-Q Tunneling, on page 8

Information About Q-in-Q VLAN Tunnels
A Q-in-Q VLAN tunnel enables a service provider to segregate the traffic of different customers in their
infrastructure, while still giving the customer a full range of VLANs for their internal use by adding a second
802.1Q tag to an already tagged frame.

Q-in-Q Tunneling
Business customers of service providers often have specific requirements for VLAN IDs and the number of
VLANs to be supported. The VLAN ranges required by different customers in the same service-provider
network might overlap, and the traffic of customers through the infrastructure might be mixed. Assigning a
unique range of VLAN IDs to each customer would restrict customer configurations and could easily exceed
the VLAN limit of 4096 of the 802.1Q specification.

Q-in-Q is supported on port channels and virtual port channels (vPCs). To configure a port channel as an
asymmetrical link, all ports in the port channel must have the same tunneling configuration.

Note

Using the 802.1Q tunneling feature, service providers can use a single VLAN to support customers who have
multiple VLANs. Customer VLAN IDs are preserved and the traffic from different customers is segregated
within the service-provider infrastructure even when they appear to be on the same VLAN.

The 802.1Q tunneling expands the VLAN space by using a VLAN-in-VLANhierarchy and tagging the tagged
packets. A port configured to support 802.1Q tunneling is called a tunnel port. When you configure tunneling,
you assign a tunnel port to a VLAN that is dedicated to tunneling. Each customer requires a separate VLAN,
but that VLAN supports all of the customer’s VLANs.

Configuring Q-in-Q VLAN Tunnels
1



Customer traffic that is tagged in the normal way with appropriate VLAN IDs come from an 802.1Q trunk
port on the customer device and into a tunnel port on the service-provider edge switch. The link between the
customer device and the edge switch is an asymmetric link because one end is configured as an 802.1Q trunk
port and the other end is configured as a tunnel port. You assign the tunnel port interface to an access VLAN
ID that is unique to each customer.

Selective Q-in-Q tunneling is not supported. All frames that enter the tunnel port are subject to Q-in-Q tagging.Note

Figure 1: 802.1Q-in-Q Tunnel Ports

Packets that enter the tunnel port on the service-provider edge switch, which are already 802.1Q-tagged with
the appropriate VLAN IDs, are encapsulated with another layer of an 802.1Q tag that contains a VLAN ID
that is unique to the customer. The original 802.1Q tag from the customer is preserved in the encapsulated
packet. Therefore, packets that enter the service-provider infrastructure are double-tagged.

The outer tag contains the customer’s access VLAN ID (as assigned by the service provider), and the inner
VLAN ID is the VLAN of the incoming traffic (as assigned by the customer). This double tagging is called
tag stacking, Double-Q, or Q-in-Q as shown in the following figure.

Configuring Q-in-Q VLAN Tunnels
2

Configuring Q-in-Q VLAN Tunnels
Q-in-Q Tunneling



Figure 2: Untagged 802.1Q-Tagged, and Double-Tagged Ethernet Frames

By using this method, the VLAN ID space of the outer tag is independent of the VLAN ID space of the inner
tag. A single outer VLAN ID can represent the entire VLAN ID space for an individual customer. This
technique allows the customer’s Layer 2 network to extend across the service provider network, potentially
creating a virtual LAN infrastructure over multiple sites.

Hierarchical tagging, or multi-level dot1q tagging Q-in-Q, is not supported.Note

Native VLAN Hazard
When configuring 802.1Q tunneling on an edge switch, you must use 802.1Q trunk ports for sending out
packets into the service-provider network. However, packets that go through the core of the service-provider
network might be carried through 802.1Q trunks, ISL trunks, or nontrunking links. When 802.1Q trunks are
used in these core switches, the native VLANs of the 802.1Q trunks must not match any native VLAN of the
dot1q-tunnel port on the same switch because traffic on the native VLAN is not tagged on the 802.1Q
transmitting trunk port.

In the following figure, VLAN 40 is configured as the native VLAN for the 802.1Q trunk port from Customer
X at the ingress edge switch in the service-provider network (Switch B). Switch A of Customer X sends a
tagged packet on VLAN 30 to the ingress tunnel port of Switch B in the service-provider network that belongs
to access VLAN 40. Because the access VLAN of the tunnel port (VLAN 40) is the same as the native VLAN
of the edge-switch trunk port (VLAN 40), the 802.1Q tag is not added to tagged packets that are received
from the tunnel port. The packet carries only the VLAN 30 tag through the service-provider network to the
trunk port of the egress-edge switch (Switch C) and is misdirected through the egress switch tunnel port to
Customer Y.

Configuring Q-in-Q VLAN Tunnels
3

Configuring Q-in-Q VLAN Tunnels
Native VLAN Hazard



Figure 3: Native VLAN Hazard

These are a couple ways to solve the native VLAN problem:

• Configure the edge switch so that all packets going out an 802.1Q trunk, including the native VLAN,
are tagged by using the vlan dot1q tag native command. If the switch is configured to tag native VLAN
packets on all 802.1Q trunks, the switch accepts untagged packets but sends only tagged packets.

The vlan dot1q tag native command is a global command that affects the tagging behavior on all trunk ports.Note

• Ensure that the native VLAN ID on the edge switch trunk port is not within the customer VLAN range.
For example, if the trunk port carries traffic of VLANs 100 to 200, assign the native VLAN a number
outside that range.

Licensing Requirements for Q-in-Q Tunnels
The following table shows the licensing requirements for this feature:

License RequirementProduct

802.1Q-in-Q VLAN tunneling require no license. Any feature not included in a
license package is bundled with the Cisco NX-OS system images and is provided
at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing
scheme, see the Cisco NX-OS Licensing Guide.

Cisco NX-OS

Configuring Q-in-Q VLAN Tunnels
4

Configuring Q-in-Q VLAN Tunnels
Licensing Requirements for Q-in-Q Tunnels



Guidelines and Limitations for Q-in-Q VLAN Tunnels
Q-in-Q tunnels have the following configuration guidelines and limitations:

• Switches in the service-provider network must be configured to handle the increase in MTU size due to
Q-in-Q tagging.

• MAC address learning for Q-in-Q tagged packets is based on the outer VLAN (Service Provider VLAN)
tag. Packet forwarding issues might occur in deployments where a single MAC address is used across
multiple inner (customer) VLANs.

• Layer 3 and higher parameters cannot be identified in tunnel traffic (for example, Layer 3 destination
and source addresses). Tunneled traffic cannot be routed.

• Cisco Nexus devices can provide only MAC-layer ACL/QoS for tunnel traffic (VLAN IDs and src/dest
MAC addresses).

• You should use MAC address-based frame distribution.

• Asymmetrical links do not support the Dynamic Trunking Protocol (DTP) because only one port on the
link is a trunk. Youmust configure the 802.1Q trunk port on an asymmetrical link to trunk unconditionally.

• You cannot configure the 802.1Q tunneling feature on ports that are configured to support private VLANs.
Private VLANs are not required in these deployments.

• Control Plane Policing (CoPP) is not supported.

• You should enter the vlan dot1Q tag native command on the trunk side of the service provider ports
(not the dot1q-tunnel port) to prevent any native VLAN mis-configurations.

• Within a same forwarding instance, if dot1q tunnel configured on multiple ports is unconfigured then
these ports go into an error-disabled state. The ports have to be flapped a couple of times to recover from
the error-disable state.

• You must manually configure the 802.1Q interfaces to be edge ports.

• Dot1x tunneling is not supported.

• You should perform an EPLD upgrade to newer versions in order for EtherType configuration to take
effect on some Cisco Nexus devices.

• STP is not be supported on inner VLAN.

• No loop detection mechanism in the fabric.

• Cisco Discovery Protocol (CDP) is incompatible with Q-in-Q. When a port is configured as an 802.1Q
tunnel port, CDP must be disabled on the interface.

• Quality of Service (QoS) cannot detect the received Class of Service (CoS) value in the 802.1Q 2-byte
Tag Control Information field.

• On an asymmetrical link, CDP reports a native VLAN mismatch if the VLAN of the tunnel port does
not match the native VLAN of the .1Q trunk. The .1Q tunnel feature does not require that the VLANs
match. Ignore the messages in this configuration.

• In break-out configurations, all the ports in the same forwarding instance are configured with dot1qtunnel
on an all/none basis. Ports lacking a dot1q tunnel configuration are brought down and err-disabled.

Configuring Q-in-Q VLAN Tunnels
5

Configuring Q-in-Q VLAN Tunnels
Guidelines and Limitations for Q-in-Q VLAN Tunnels



• All ports on a FEX are configured as all/none in dot1qtunnel. Those missing dot1qtunnel stay error
disabled.

• All ports in same forwarding instance (4x 10GEs or 1x QSFP+) are required to be in dot1q tunnel mode.

• All members of a port-channel propagate runtime configurations to other ports belonging to same fwm
block.

• Configuring Dot1qtunnel on a FEX HIF on one switch of an AA FEX topology, resets that FEX on the
other switch before bringing it online.

• Q-in-Q VLAN tunnels are supported only on Cisco Nexus 6000 and Cisco Nexus 5600 platforms.

Configuring Q-in-Q Tunnels

Creating an 802.1Q Tunnel Port

Before you begin

You must first configure the interface as a switchport.

Procedure

PurposeCommand or Action

Enters global configuration mode.switch# configure terminalStep 1

Specifies an interface to configure, and enters
interface configuration mode.

switch(config)# interface ethernet slot/portStep 2

Sets the interface as a Layer 2 switching port.switch(config-if)# switchportStep 3

Creates a 802.1Q tunnel on the port. The port
will go down and reinitialize (port flap) when

switch(config-if)# switchport mode
dot1q-tunnel

Step 4

the interface mode is changed. BPDU filtering
is enabled and CDP is disabled on tunnel
interfaces.

Disables the 802.1Q tunnel on the port.(Optional) switch(config-if)# no switchport
mode

Step 5

Exits configuration mode.switch(config-if)# exitStep 6

Displays all ports that are in dot1q-tunnel mode.
Optionally, you can specify an interface or
range of interfaces to display.

(Optional) switch(config)# show dot1q-tunnel
[interface if-range]

Step 7

Clears the errors on the interfaces and VLANs
where policies correspond with hardware

(Optional) switch(config)# no shutdownStep 8

policies. This command allows policy
programming to continue and the port to come

Configuring Q-in-Q VLAN Tunnels
6

Configuring Q-in-Q VLAN Tunnels
Configuring Q-in-Q Tunnels



PurposeCommand or Action

up. If policies do not correspond, the errors are
placed in an error-disabled policy state.

Saves the change persistently through reboots
and restarts by copying the running
configuration to the startup configuration.

(Optional) switch(config)# copy
running-config startup-config

Step 9

Example

This example shows how to create an 802.1Q tunnel port:
switch# configure terminal
switch(config)# interface ethernet 7/1
switch(config-if)# switchport
switch(config-if)# switchport mode dot1q-tunnel
switch(config-if)# exit
switch(config)# exit
switch# show dot1q-tunnel

Changing the EtherType for Q-in-Q

You must set the EtherType only on the egress trunk interface that carries double tagged frames (the trunk
interface that connects the service providers). If you change the EtherType on one side of the trunk, you must
set the same value on the other end of the trunk (symmetrical configuration). This is an optional configuration.

Note

The EtherType value you set affect all the tagged packets that go out on the interface (not just Q-in-Q packets).Caution

Procedure

PurposeCommand or Action

Enters global configuration mode.switch# configure terminalStep 1

Specifies an interface to configure, and enters
interface configuration mode.

switch(config)# interface ethernet slot/portStep 2

Sets the interface as a Layer 2 switching port.switch(config-if)# switchportStep 3

Sets the EtherType for the Q-in-Q tunnel on the
port.

(Optional) switch(config-if)# switchport dot1q
ethertype value

Step 4

(Optional) Resets the EtherType on the port to
the default value of 0x8100.

switch(config-if)# no switchport dot1q
ethertype

Step 5

Exits configuration mode.switch(config-if)# exitStep 6

Configuring Q-in-Q VLAN Tunnels
7

Configuring Q-in-Q VLAN Tunnels
Changing the EtherType for Q-in-Q



PurposeCommand or Action

Clears the errors on the interfaces and VLANs
where policies correspond with hardware

(Optional) switch(config)# no shutdownStep 7

policies. This command allows policy
programming to continue and the port to come
up. If policies do not correspond, the errors are
placed in an error-disabled policy state.

Saves the change persistently through reboots
and restarts by copying the running
configuration to the startup configuration.

(Optional) switch(config)# copy
running-config startup-config

Step 8

Example

This example show how to create an 802.1Q tunnel port:
switch# configure terminal
switch(config)# interface ethernet 7/1
switch(config-if)# switchport
switch(config-if)# switchport dot1q ethertype 0x9100
switch(config-if)# exit
switch(config)# exit
switch# show dot1q-tunnel

Verifying the Q-in-Q Configuration
To display Q-in-Q tunnel configuration information, perform one of the following tasks:

PurposeCommand

Displays a range of interfaces or all interfaces that are
in dot1q-tunnel mode.

show dot1q-tunnel [interface if-range]

Configuration Examples for Q-in-Q Tunneling
This example shows a service provider switch that is configured to process Q-in-Q for traffic coming in on
Ethernet 7/1. The customer is allocated VLAN 10 (outer VLAN tag).
switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# vlan 10
switch(config-vlan)# no shutdown
switch(config-vlan)# no ip igmp snooping
switch(config-vlan)# exit
switch(config)# interface ethernet 7/1
switch(config-if)# switchport
switch(config-if)# switchport mode dot1q-tunnel
switch(config-if)# switchport access vlan 10
switch(config-if)# spanning-tree port type edge

switch(config-if)# no shutdown

Configuring Q-in-Q VLAN Tunnels
8

Configuring Q-in-Q VLAN Tunnels
Verifying the Q-in-Q Configuration



switch(config-if)# exit
switch(config)# exit
switch#

Configuring Q-in-Q VLAN Tunnels
9

Configuring Q-in-Q VLAN Tunnels
Configuration Examples for Q-in-Q Tunneling



Configuring Q-in-Q VLAN Tunnels
10

Configuring Q-in-Q VLAN Tunnels
Configuration Examples for Q-in-Q Tunneling


	Configuring Q-in-Q VLAN Tunnels
	Information About Q-in-Q VLAN Tunnels
	Q-in-Q Tunneling
	Native VLAN Hazard

	Licensing Requirements for Q-in-Q Tunnels
	Guidelines and Limitations for Q-in-Q VLAN Tunnels
	Configuring Q-in-Q Tunnels
	Creating an 802.1Q Tunnel Port
	Changing the EtherType for Q-in-Q

	Verifying the Q-in-Q Configuration
	Configuration Examples for Q-in-Q Tunneling


