

Configuring N Port Virtualization

This chapter contains the following sections:

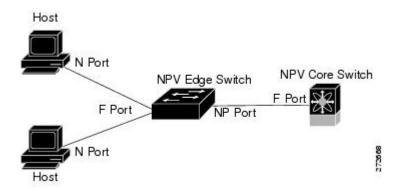
• Configuring N Port Virtualization, page 1

Configuring N Port Virtualization

Information About NPV

NPV Overview

By default, Cisco Nexus devices switches operate in fabric mode. In this mode, the switch provides standard Fibre Channel switching capability and features.


In fabric mode, each switch that joins a SAN is assigned a domain ID. Each SAN (or VSAN) supports a maximum of 239 domain IDs, so the SAN has a limit of 239 switches. In a SAN topology with a large number of edge switches, the SAN may need to grow beyond this limit. NPV alleviates the domain ID limit by sharing the domain ID of the core switch among multiple edge switches.

In NPV mode, the edge switch relays all traffic from server-side ports to the core switch. The core switch provides F port functionality (such as login and port security) and all the Fibre Channel switching capabilities.

The edge switch appears as a Fibre Channel host to the core switch and as a regular Fibre Channel switch to its connected devices.

The following figure shows an interface-level view of an NPV configuration.

Figure 1: NPV Interface Configuration

NPV Mode

In NPV mode, the edge switch relays all traffic to the core switch, which provides the Fibre Channel switching capabilities. The edge switch shares the domain ID of the core switch.

To convert a switch into NPV mode, you set the NPV feature to enabled. This configuration command automatically triggers a switch reboot. You cannot configure NPV mode on a per-interface basis. NPV mode applies to the entire switch.

In NPV mode, a subset of fabric mode CLI commands and functionality is supported. For example, commands related to fabric login and name server registration are not required on the edge switch, because these functions are provided in the core switch. To display the fabric login and name server registration databases, you must enter the **show flogi database** and **show fcns database** commands on the core switch.

Server Interfaces

Server interfaces are F ports on the edge switch that connect to the servers. A server interface may support multiple end devices by enabling the N port identifier virtualization (NPIV) feature. NPIV provides a means to assign multiple FC IDs to a single N port, which allows the server to assign unique FC IDs to different applications.

To use NPIV, enable the NPIV feature and reinitialize the server interfaces that will support multiple devices.

Server interfaces are automatically distributed among the NP uplinks to the core switch. All of the end devices connected to a server interface are mapped to the same NP uplink.

In Cisco Nexus devices, server interfaces can be physical or virtual Fibre Channel interfaces.

Related Topics

Configuring N Port Virtualization, on page 1

NP Uplinks

All interfaces from the edge switch to the core switch are configured as proxy N ports (NP ports).

An NP uplink is a connection from an NP port on the edge switch to an F port on the core switch. When an NP uplink is established, the edge switch sends a fabric login message (FLOGI) to the core switch, and then (if the FLOGI is successful) it registers itself with the name server on the core switch. Subsequent FLOGIs from end devices connected to this NP uplink are converted to fabric discovery messages (FDISCs).

In the switch CLI configuration commands and output displays, NP uplinks are called External Interfaces.

In Cisco Nexus devices, NP uplink interfaces must be native Fibre Channel interfaces.

Related Topics

Fabric Login

FLOGI Operation

When an NP port becomes operational, the switch first logs itself in to the core switch by sending a FLOGI request (using the port WWN of the NP port).

After completing the FLOGI request, the switch registers itself with the fabric name server on the core switch (using the symbolic port name of the NP port and the IP address of the edge switch).

The following table identifies port and node names in the edge switch used in NPV mode.

Table 1: Edge Switch FLOGI Parameters

Parameter	Derived From	
pWWN	The fWWN of the NP port on the edge switch.	
nWWN	The VSAN-based sWWN of the edge switch.	
symbolic port name	The edge switch name and NP port interface string.	
	Note If no switch name is available, the output will read "switch." For example, switch: fc 1/5.	
IP address	The IP address of the edge switch.	
symbolic node name	The edge switch name.	

Note

The buffer-to-buffer state change number (BB-SCN) of internal FLOGIs on an NP port is always set to zero. The BB SCN is supported by the F port on the edge switch.

We do not recommend using fWWN-based zoning on the edge switch for the following reasons:

- Zoning is not enforced at the edge switch (rather, it is enforced on the core switch).
- Multiple devices attached to an edge switch log in through the same F port on the core, so they cannot be separated into different zones.
- The same device might log in using different fWWNs on the core switch (depending on the NPV link it uses) and may need to be zoned using different fWWNs.

Related Topics

Information About Zones

NPV Traffic Management Guidelines

When deploying NPV traffic management, follow these guidelines:

- Use NPV traffic management only when automatic traffic engineering does not meet your network requirements.
- You do not need to configure traffic maps for all server interfaces. By default, NPV will use automatic traffic management.
- Server interfaces configured to use a set of NP uplink interfaces cannot use any other available NP uplink interfaces, even if none of the configured interfaces are available.
- When disruptive load balancing is enabled, a server interface may be moved from one NP uplink to another NP uplink. Moving between NP uplink interfaces requires NPV to relogin to the core switch, causing traffic disruption.
- To link a set of servers to a specific core switch, associate the server interfaces with a set of NP uplink interfaces that all connect to that core switch.
- Configure Persistent FC IDs on the core switch and use the Traffic Map feature to direct server interface traffic onto NP uplinks that all connect to the associated core switch.

NPV Guidelines and Limitations

When configuring NPV, note the following guidelines and limitations:

- In-order data delivery is not required in NPV mode because the exchange between two end devices always takes the same uplink from the edge switch to the core. Upstream of the edge switch, core switches will enforce in-order delivery if configured.
- You can configure zoning for end devices that are connected to edge switches using all available member types on the core switch. For fWWN, sWWN, domain, or port-based zoning, use the fWWN, sWWN, domain, or port of the core switch in the configuration commands.
- Port tracking is not supported in NPV mode.
- Port security is supported on the core switch for devices logged in through the NPV switch. Port security
 is enabled on the core switch on a per-interface basis. To enable port security on the core switch for
 devices that log in through an NPV switch, you must adhere to the following requirements:
 - The internal FLOGI must be in the port security database; in this way, the port on the core switch will allow communications and links.

- All the end device pWWNs must also be in the port security database.
- Edge switches can connect to multiple core switches. In other words, different NP ports can be connected
 to different core switches.
- NPV uses a load-balancing algorithm to automatically assign end devices in a VSAN to one of the NP uplinks (in the same VSAN) upon initial login. If there are multiple NP uplinks in the same VSAN, you cannot assign an end device to a specific NP uplink.
- If a server interface goes down and then returns to service, the interface is not guaranteed to be assigned to the same NP uplink.
- The server interface is only operational when its assigned NP uplink is operational.
- Servers can be connected to the switch when in NPV mode.
- When initiators and targets are assigned to the same border port (NP or NP-PO), then Cisco Nexus 5000 Series switches in NPIV mode do not support hairpinning.
- Fibre Channel switching is not performed in the edge switch; all traffic is switched in the core switch.
- NPV supports NPIV-capable servers. This capability is called nested NPIV.
- Connecting two Cisco NPV switches together is not supported.
- Only F, NP, and SD ports are supported in NPV mode.

Configuring NPV

Enabling NPV

When you enable NPV, the system configuration is erased and the switch reboots.

Note

We recommend that you save your current configuration either in boot flash memory or to a TFTP server before you enable NPV.

To enable NPV, perform this task:

Procedure

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters configuration mode.
Step 2	switch(config)# npv enable	Enables NPV mode. The switch reboots, and it comes back up in NPV mode. Note A write-erase is performed during the initialization.
Step 3	switch(config-npv)# no npv enable	Disables NPV mode, which results in a reload of the switch.

Configuring NPV Interfaces

After you enable NPV, you should configure the NP uplink interfaces and the server interfaces.

Configuring an NP Interface

After you enable NPV, you should configure the NP uplink interfaces and the server interfaces. To configure an NP uplink interface, perform this task:

To configure a server interface, perform this task:

Procedure

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# interface fc slot/port	Selects an interface that will be connected to the core NPV switch.
Step 3	switch(config-if)# switchport mode NP	Configures the interface as an NP port.
Step 4	switch(config-if)# no shutdown	Brings up the interface.

Configuring a Server Interface

To configure a server interface, perform this task:

Procedure

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# interface fc slot/port	Selects an interface that will be connected to the core NPV switch.
Step 3	switch(config-if)# switchport mode F	Configures the interface as an F port.
Step 4	switch(config-if)# no shutdown	Brings up the interface.

Configuring NPV Traffic Management

Configuring NPV Traffic Maps

An NPV traffic map associates one or more NP uplink interfaces with a server interface. The switch associates the server interface with one of these NP uplinks.

If a server interface is already mapped to an NP uplink, you should include this mapping in the traffic map configuration.

To configure a traffic map, perform this task:

Procedure

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.

Enabling Disruptive Load Balancing

If you configure additional NP uplinks, you can enable the disruptive load-balancing feature to distribute the server traffic load evenly among all the NP uplinks.

To enable disruptive load balancing, perform this task:

Procedure

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters configuration mode on the NPV.
Step 2	switch(config)# npv auto-load-balance disruptive	Enables disruptive load balancing on the switch.
Step 3	switch (config)# no npv auto-load-balance disruptive	Disables disruptive load balancing on the switch.

Verifying NPV

To display information about NPV, perform the following task:

Procedure

	Command or Action	Purpose
Step 1	switch# show npv flogi-table [all]	Displays the NPV configuration.

Verifying NPV Examples

To display a list of devices on a server interface and their assigned NP uplinks, enter the **show npv flogi-table** command on the Cisco Nexus device:

```
SERVER
INTERFACE VSAN FCID
PORT NAME
NODE NAME
INTERFACE

vfc3/1
1
0xee0008 10:00:00:00:c9:60:e4:9a 20:00:00:00:c9:60:e4:9a fc2/1
vfc3/1
1
0xee0009 20:00:00:00:00:01 20:00:00:00:c9:60:e4:9a fc2/2
vfc3/1
1
0xee000a 20:00:00:00:00:02 20:00:00:00:c9:60:e4:9a fc2/3
vfc3/1
1
0xee000b 33:33:33:33:33:33:33:33:20:00:00:00:c9:60:e4:9a fc2/4

Total number of flogi = 4
```


For each server interface, the External Interface value displays the assigned NP uplink.

To display the status of the server interfaces and the NP uplink interfaces, enter the **show npv status** command:

To view fcns database entries for NPV edge switches, you must enter the **show fcns database** command on the core switch.

To view all the NPV edge switches, enter the **show fcns database** command on the core switch:

```
core-switch# show fcns database
```

For additional details (such as IP addresses, switch names, interface names) about the NPV edge switches that you see in the **show fcns database** output, enter the **show fcns database detail** command on the core switch:

```
core-switch# show fcns database detail
```

Verifying NPV Traffic Management

To display the NPV traffic map, enter the **show npv traffic-map** command.

To display the NPV internal traffic details, enter the show npv internal info traffic-map command.

To display the disruptive load-balancing status, enter the **show npv status** command:

Verifying NPV