

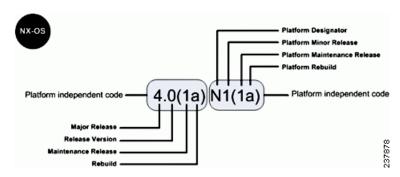
Cisco Nexus 5500 Series NX-OS Software Upgrade and Downgrade Guide, Release 6.0(2)N2(3)

First Published: December 20, 2013 Last Modified: November 7, 2017

This document describes how to upgrade or downgrade Cisco NX-OS software on Cisco Nexus 5500 Series switches and Cisco Nexus 2000 Series Fabric Extenders. Use this document in combination with documents listed in the "Obtain Documentation and Submit a Service Request" section on page 52.

This document includes these sections:

- Information About Software Images, page 2
- Supported Hardware, page 2
- Upgrade Guidelines, page 2
- Using the Install All Command, page 4
- Upgrading the BIOS and Power Sequencer Images, page 5
- Supported Upgrade and Downgrade Paths for Cisco NX-OS Release 6.0(2)N2(3), page 5
- Upgrading Procedures, page 23
- Disruptive Installation Process, page 31
- Forcing an Upgrade, page 32
- Upgrading from Cisco NX-OS Release 5.1(3)N2(1c) and Earlier Releases (Disruptive Upgrade), page 32
- Minimizing the Impact of a Disruptive Upgrade, page 38
- Monitoring the Upgrade Status, page 49
- Downgrading from a Higher Release, page 51
- Troubleshooting ISSUs and Disruptive Installations, page 51
- Obtain Documentation and Submit a Service Request, page 52



Information About Software Images

Cisco Nexus devices are shipped with the Cisco NX-OS software preinstalled on the switches. Before you upgrade or downgrade from an existing image, you should read through the information in this document to understand the guidelines, prerequisites, and procedures for upgrading the software. For updated information about the Cisco NX-OS software for the Cisco Nexus device, see the *Cisco Nexus 5500 Series Release Notes*.

The Cisco NX-OS software consists of the kickstart image and the system image. The system image includes the software for the Cisco Nexus device and the Cisco Nexus Fabric Extenders (FEXs) that are connected to the switch. The images contain a major release identifier, a minor release identifier, and a maintenance release identifier. The images might also contain a rebuild identifier, which can be referred to as a support patch. The following figure shows the version identifiers that are used with a combination of platform-independent and platform-dependent schemes for the Cisco NX-OS software.

Figure 1 Cisco NX-OS Version Identifies

The platform designator is N for the Cisco Nexus device. Applicable features, functions, and fixes in the platform-independent code are present in the platform-dependent release.

Supported Hardware

Cisco Nexus devices are shipped with the Cisco NX-OS software preinstalled.

Cisco Nexus 5500 Platform Switches and Associated Expansion Modules

- Cisco Nexus 5596UP
- Cisco Nexus 5596T
- Cisco Nexus 5548UP
- Cisco Nexus 5548P

Upgrade Guidelines

When upgrading system software, follow these guidelines:

• Configuration changes

You cannot enter global configuration mode during an upgrade. You should save, commit, or discard any active configuration sessions before you upgrade or downgrade the Cisco NX-OS software image. The active configuration session is deleted without a warning during a reload.

Use the **show configuration session summary** command to verify that there are no active configuration sessions.

```
switch# show configuration session summary There are no active configuration sessions
```

For more information on configuration sessions, see the System Management Configuration Guide for your platform.

CLI and SNMP configuration change requests are denied during an in-service software upgrade (ISSU).

- Topology—You should make topology changes, such as Spanning Tree Protocol (STP) or Fiber Channel (FC) fabric changes, that affect zoning, Fabric Shortest Path First (FSPF), or FC domains before you perform an upgrade. You should perform module installations or removals only before or after an upgrade.
- Scheduling—You should upgrade when your network is stable and steady. Ensure that everyone who has access to the switch or the network is not configuring the switch or the network during this time. You cannot configure a switch during an upgrade.
- Space—Verify that sufficient space is available in the location where you are copying the images.
 The internal bootflash requires approximately 200 MB of free space. Also, run the show system
 internal flash command to check that the threshold limit for the filesystems /bootflash/mnt/pss
 /var/tmp and /var/sysmgr are met.
- Bootflash—During ISSU, bootflash must be free. Bootflash can be busy due to open or active SFTP session, file operation, and so on.
- Hardware—Avoid power interruptions during an installation procedure. Power interruptions can corrupt the software image.
- Connectivity to remote servers—Configure the IPv4 address or IPv6 address for the 10/100/1000 BASE-T Ethernet port connection (interface mgmt0). Ensure that the switch has a route to the remote server. The switch and the remote server must be in the same subnetwork if you do not have a router to route traffic between subnets.
- Software image—Ensure that the specified system and kickstart images are compatible with each other as follows:
 - If the kickstart image is not specified, the switch uses the current running kickstart image.
 - If you specify a different system image, ensure that it is compatible with the running kickstart image.
- Retrieve compatible images in one of two ways:
 - Locally—Images are locally available on the switch.
 - Remotely—Images are in a remote location and you specify the destination by using the remote server parameters and the filename to be used locally.
- Command—Use the following commands to prepare for and install the new software:
 - Use the **ping** command to verify connectivity to the remote server.
 - Use the dir command to verify that the required space is available for the image files to be copied.

Use the show install all impact command to identify the upgrade impact. This command displays information that describes the impact of the upgrade on each Cisco Nexus Fabric Extender such as the current and upgrade-image versions. This command also displays if the upgrade is disruptive or the reason why the upgrade is disruptive, if the Cisco Nexus Fabric Extender needs to be rebooted, and the reason why it needs to be rebooted.

We recommend that you log in to the console port to begin the upgrade process. In virtual port channel (vPC) topologies, you should start with the device that is the primary device.

Terminology

Table 1 summarizes the terms used in the **install all** command output to verify module and software image compatibility.

Table 1 show install all impact Command and Output Terminology

Term	Definition	
bootable	Ability of the module to boot or not boot based on image compatibility.	
Impact	Type of software upgrade mechanism—disruptive or nondisruptive.	
install-type reset Resets the module.		
sw-reset Resets the module immediately after a switchover.		
rolling Upgrades each module in sequence.		
copy-only	Updates the software for BIOS, loader, or boot ROM.	
force	Option to force a disruptive upgrade, even when an ISSU is possible.	

Using the Install All Command

The **install all** command triggers an ISSU on Cisco Nexus devices and Cisco Nexus Fabric Extenders. The following images are upgraded during the installation:

- Kickstart image
- · System image
- Fabric Extender image
- System BIOS
- Power sequencers on the system

The **install-all** command provides the following benefits:

- You can upgrade the Cisco Nexus devices and the Cisco Nexus Fabric Extenders using just one command.
- You can receive descriptive information about the intended changes to your system before you continue with the installation. For example, it identifies potential disruptive upgrades.
- You can continue or cancel the upgrade when you see this question (the default is no):
 Do you want to continue (y/n) [n]: y
- You can upgrade the Cisco NX-OS software using a nondisruptive procedure, when supported.

- The command automatically checks the image integrity, which includes the running kickstart and system images. The command sets the kickstart and system boot variables.
- The command performs a platform validity check to verify that a wrong image is not used.
- Pressing Ctrl-C gracefully ends the install all command. The command sequence completes the update step in progress and returns to the EXEC prompt.
- After entering the **install all** command, if any step in the sequence fails, the upgrade ends.
- The following message appears to warn you about the impact of upgrading the power sequencer:

Warning: please do not remove or power off the module at this time. Note: Power-seq upgrade needs a power-cycle to take into effect.

Note

After a successful power sequence upgrade, you must switch off the power to the system and then power it up.

You can enter the **force** keyword to perform a disruptive upgrade. For information on forcing an upgrade, see "Forcing an Upgrade" section on page 32.

Upgrading the BIOS and Power Sequencer Images

Changes to BIOS and power sequencers are rare; however, when they occur, they are included in the Cisco NX-OS system image, and the BIOS and power sequencer are upgraded. The summary displayed by the installer during the installation process indicates the current version of the BIOS and power sequencer and the target version.

Note

After a successful power sequence upgrade, you must switch off the power to the system and then power it up.

Supported Upgrade and Downgrade Paths for Cisco **NX-OS** Release 6.0(2)N2(3)

Cisco NX-OS supports in-service software upgrades (ISSUs) that allow a Cisco Nexus device and any connected FEXs to be upgraded without any traffic disruption (with a brief control plane disruption). A few conditions have to be met for the system to be upgraded through an ISSU process—the access layer topology should be ISSU compliant, the current and target versions should be ISSU capable, and the network should be stable.

If the conditions required for an ISSU are not met or if you intend to downgrade the software version, the installation process is disruptive. For example, the Cisco Nexus device and any connected FEXs are rebooted, which causes a disruption. If Cisco's virtual port channel (vPC) is configured on Cisco Nexus devices, it is possible to achieve an upgrade/downgrade with very minimal traffic disruption to servers/hosts.

Table 2 Supported Upgrade and Downgrade Paths for Cisco NX-OS Release 6.0(2)N2(3)

Current Cisco NX-OS Release	Upgrade to NX-OS Release 6.0(2)N2(3)	Downgrade from NX-OS Release 6.0(2)N2(3)
66.0(2)N2(2)	Nondisruptive upgrade (ISSU)	Disruptive downgrade
6.0(2)N2(1)		
6.0(2)N1(2a)		
6.0(2)N1(2)		
6.0(2)N1(1a)		
6.0(2)N1(1)		
5.2(1)N1(6)	Nondisruptive upgrade (ISSU)	Disruptive downgrade
5.2(1)N1(5)		
5.2(1)N1(4)		

If you want to upgrade from a release, that is not listed in the "Current Cisco NX-OS Release" column in Table 2 under the "Supported Upgrade and Downgrade Paths for a Cisco NX-OS Release" section to the latest Cisco NX-OS release version, then you must first upgrade to a release that is listed in the "Current Cisco NX-OS Release" column and then to the latest release version.

If a supported upgrade or downgrade path is not taken, then certain configurations, especially related to unified ports, Fibre Channel (FC) ports, breakout, and FEX may be lost.

Doing a disruptive upgrade between incompatible images will result in loss of certain configurations such as unified ports, breakout, and FEX configurations. See CSCul22703 for details.

In-Service Software Upgrades

With a single supervisor system such as the Cisco Nexus device, an ISSU on the Cisco Nexus device causes the supervisor CPU to reset and load the new software version. The control plane is inactive, but the data plane keeps forwarding packets that lead to an upgrade with no service disruption. After the CPU loads the updated version of Cisco NX-OS, the system restores the control plane to a previously known configuration and the runtime state and the data plane are synchronized. Because the data plane keeps forwarding packets while the control plane is upgraded, any servers that are connected to the Cisco Nexus device access layer should see no traffic disruption.

ISSU and Layer 3

Cisco Nexus devices support Layer 3 functionality. However, the system cannot be upgraded with the ISSU process (nondisruptive upgrade) when Layer 3 is enabled. You must unconfigure all Layer 3 features, remove the L3 license, and reload the switch, to be able to upgrade in a nondisruptive way with an ISSU.

ISSU Supported Topologies

This section includes the following topics:

- ISSU Support For Cisco Nexus Fabric Extenders, page 7
- ISSU Support for vPC Topologies, page 7
- ISSU Support for vPC Topologies with Fabric Extenders, page 9
- ISSU Support with Fibre Channel and FCoE Topologies, page 9
- Summary of ISSU-Supported Topologies, page 10
- Summary of ISSU Unsupported Topologies, page 13
- Management Services After an ISSU, page 17
- Fibre Channel/FCoE Protocol and Services During an ISSU, page 17
- Layer-2 Protocols Impact, page 19
- Ethernet Interfaces on the Switch and the Fabric Extenders, page 19

ISSU Support For Cisco Nexus Fabric Extenders

Cisco Nexus Fabric Extenders act as line cards to Cisco Nexus devices. The Fabric Extenders add flexibility to the data center networking infrastructure by decoupling the physical and logical (Layer 2) topology, reducing the operation expense by lowering management and troubleshooting points, and building a larger Layer 2 fabric that is loopfree, with a single layer of switching.

The ISSU process initiated on the Cisco Nexus devices upgrades the entire access layer including the switch and the FEXs that are connected to the switch.

An ISSU first upgrades the switches. Once the switch is operational with the upgraded software, the FEXs are upgraded. The FEX upgrades are done one FEX at a time. An upgrade of the Cisco Nexus Fabric Extenders is nondisruptive, which is similar to the upgrade of the switch.

The time required for an ISSU to complete depends on the number of FEXs that are connected. You should plan a maintenance window with the total upgrade time in mind. The entire upgrade is nondisruptive and is not expected to cause any outage to connected servers.

ISSU Support for vPC Topologies

An ISSU is completely supported when two switches are paired in a vPC configuration. In a vPC configuration, one switch functions as a primary switch and the other switch functions as a secondary switch. They both run the complete switching control plane but coordinate forwarding decisions to have optimal forwarding to devices at the other end of the vPC. Additionally, the two devices appear as a single device that supports EtherChannel (static and 802.3ad) and provide simultaneously data forwarding services to that device.

While upgrading devices in a vPC topology, you should start with the switch that is the primary switch. The vPC secondary device should be upgraded after the ISSU process completes successfully on the primary device. The two vPC devices continue their control plane communication during the entire ISSU process (except when the ISSU process resets the CPU of the switch being upgraded).

This example shows how to determine the vPC operational role of the switch:

```
switch-2# show vpc brief
Legend:
               (*) - local vPC is down, forwarding via vPC peer-link
vPC domain id
                                : 668
                               : peer adjacency formed ok
Peer status
vPC keep-alive status
                              : peer is alive
Configuration consistency status : success
Per-vlan consistency status : success
Type-2 consistency status
                              : success
vPC role
                               : primary
Number of vPCs configured
                               : 70
Peer Gateway
                               : Disabled
Dual-active excluded VLANs
Graceful Consistency Check
                              : Enabled
Auto-recovery status
                              : Enabled (timeout = 240 seconds)
vPC Peer-link status
```

You can monitor the status of an ISSU on the primary device, after the primary switch reloads by using the **show install all status** command.

Any attempt to initiate an upgrade on the vPC peer switch when an ISSU is in progress on the other switch is blocked.

During an upgrade, the configuration on peer switches is locked and the vPC state on vPC peer switches is suspended until the upgrade is complete.

Verifying the vPC Status on a Peer Switch During an Upgrade

To view the vPC status, enter the **show vpc** command on a peer switch as follows:

```
switch-2# show vpc
Legend:
               (*) - local vPC is down, forwarding via vPC peer-link
vPC domain id
                               : 668
Peer status
                               : peer adjacency formed ok
vPC keep-alive status
                               : peer is alive
Configuration consistency status : success
Per-vlan consistency status
                               : success
                              : success
Type-2 consistency status
vPC role
                              : primary
Number of vPCs configured
                              : 70
                              : Disabled
Peer Gateway
Dual-active excluded VLANs
                              : -
Graceful Consistency Check
                              : Enabled
                               : Enabled (timeout = 240 seconds)
Auto-recovery status
vPC Peer-link status
id Port Status Active vlans
   Po501 up 1,40
```

Viewing System Messages on Peer Switches

A keepalive message, such as the following, might appear on a peer switch during an upgrade:

2013 Jan 24 12:31:38 switch %VPC-2-PEER_KEEP_ALIVE_RECV_FAIL: In domain 668, VPC peer keep-alive receive has failed

Installation status messages, such as the following, might appear on peer switches as the primary switch is upgraded.

2013 Jan 24 13:58:20 %SATCTRL-FEX126-2-SATCTRL_IMAGE: FEX126 Image update in progress.

2013 Jan 24 14:06:40 switch %\$ VDC-1 %\$ %SATCTRL-FEX126-2-SATCTRL_IMAGE: FEX126 Image update complete. Install pending

ISSU Support for vPC Topologies with Fabric Extenders

An ISSU is supported in vPC topologies that include FEXs that are connected in dual-homed topologies to a parent switch and when the FEX is in a single-homed topology.

To perform a nondisruptive upgrade, in a vPC environment that has FEXs connected to a switch, perform the following steps:

- 1. Perform a nondisruptive upgrade on the first switch.
- 2. Check the status of FEXs on the second switch prior to performing a nondisruptive upgrade on it. If any of the FEXs are in Active-Active (AA) version mismatch state, shut the corresponding NIF ports of the impacted FEXs.
- 3. Perform a nondisruptive upgrade on the second switch using the **install all** command.
- 4. After the upgrade is complete on the second s witch, bring up the ports that were shut in the Step 2.

After the upgrade procedure, ensure all the FEX ports are in online state, including the Active-Active version mismatch ports.

ISSU Support with Fibre Channel and FCoE Topologies

ISSUs are supported on access layer switches when Fibre Channel and Fibre Channel over Ethernet (FCoE) is enabled. You must ensure that the FC fabric is stable before initiating an ISSU in this topology.

Summary of ISSU-Supported Topologies

Figure 2 shows an access switch topology.

Figure 2 Access Switch Topology

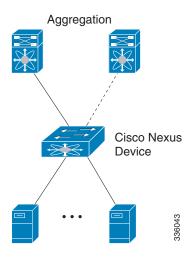


Figure 3 shows a vPC peering topology.

Figure 3 vPC Peering Topology

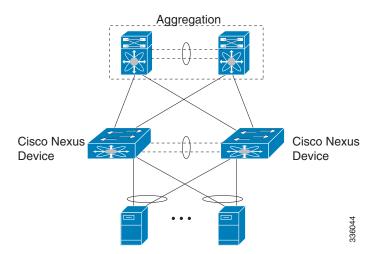


Figure 4 shows a virtual modular system with static fabric connectivity for FEXs.

Figure 4 Virtual Modular System with Static Fabric Connectivity for FEXs

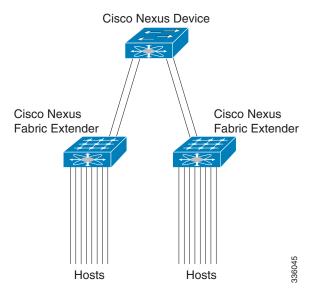


Figure 5 shows a vertical modular system.

Figure 5 Vertical Modular System

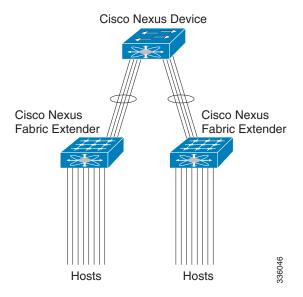


Figure 6 shows a vPC-peered dual-supervisor virtual modular system with dual-homed FEXs.

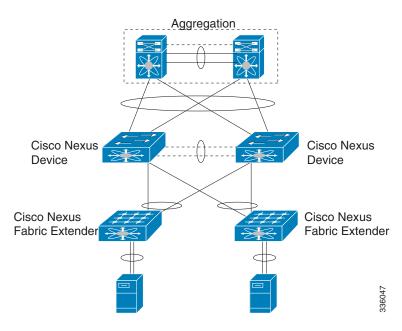


Figure 6 vPC-Peered Dual-Supervisor Virtual Modular System Dual-Homed FEXs

Figure 7 figure shows a vPC-peered dual-supervisor virtual modular system with dual-homed and single-homed FEXs.

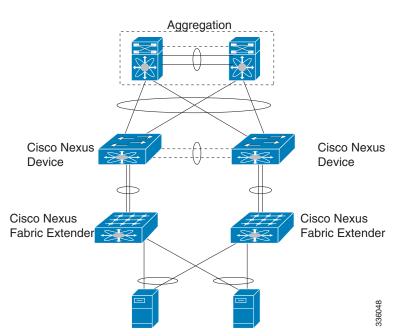


Figure 7 vPC-Peered Dual-Supervisor Virtual Modular System Dual-Homed and Single-Homed FEXs

Figure 8 shows a vPC-peered dual-supervisor virtual modular system with dual-homed FEXs.

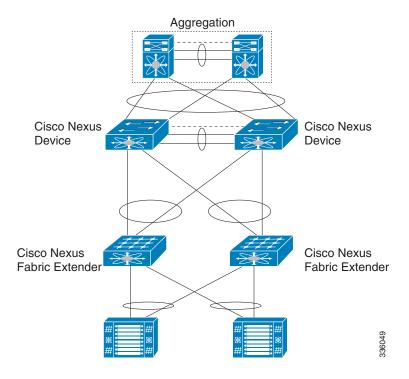


Figure 8 vPC Peered Dual-Supervisor Virtual Modular System Dual-Homed FEXs

Summary of ISSU Unsupported Topologies

Two important spanning tree-related requirements for a Cisco Nexus device that is undergoing an ISSU are as follows:

- STP-enabled switches cannot be present downstream to the switch undergoing an ISSU.
- You cannot configure the STP Bridge Assurance feature except on a vPC peer link. Bridge Assurance is enabled when you configure an interface as a spanning-tree port type network.

A switch that is undergoing an ISSU has an inactive control plane while the switch is reset and the new software version is loaded. Not following these restrictions could render the network unstable if there are any unexpected topology changes

If the STP conditions are not met, the installation check indicates that the upgrade would be disruptive. In this case, you can perform an upgrade at a later time after making the necessary changes to the topology to meet these conditions or perform a disruptive upgrade.

Figure 9 shows a Cisco Nexus device that is connected to a blade switch that is running STP.

Figure 9 Connection to a Blade Switch Running STP

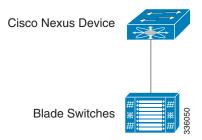


Figure 10 shows a Cisco Nexus device that is connected to a downstream switch that is running STP.

Figure 10 Connection to a Downstream Switch Running STP

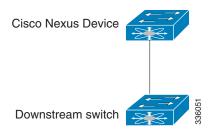


Figure 11 shows a Cisco Nexus device that is running Bridge Assurance with another switch.

Figure 11 Cisco Nexus Device Running Bridge Assurance with Another Switch

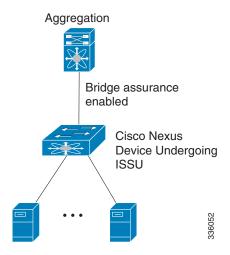


Figure 12 shows dual-homed FEXs connected to a stub switch.

Figure 12 Dual-Homed FEXs Connected to a Stub Switch

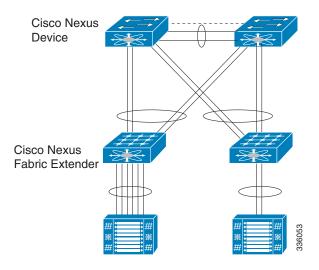


Figure 13 shows a single-homed FEX that is connected to stub switches.

Figure 13 Single-Homed FEX Connected to Stub Switches

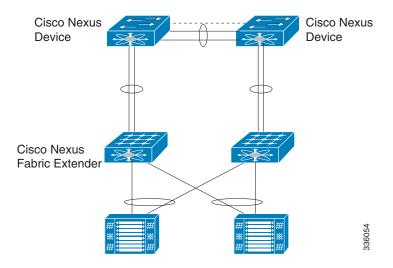
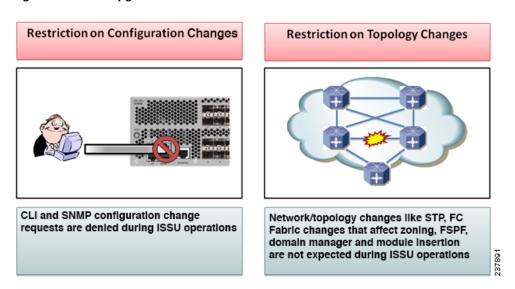


Figure 14 shows a dual-homed FEX that is connected to stub switches.

Cisco Nexus Device

Cisco Nexus Fabric Extender


Figure 14 Dual-Homed FEX Connected to Stub Switches

ISSU Prerequisites

You must follow the upgrade guidelines listed in the "Upgrade Guidelines" section on page 2 in order for ISSU to work correctly. Make sure that the network is stable and no changes are made while an ISSU is in progress. Make sure that you check for feature compatibility between the current running release and the target release.

Figure 15 shows upgrade restrictions.

Figure 15 Upgrade Restrictions

The specific requirements for a nondisruptive upgrade (ISSU) are as follows:

- Topology requirements— A Cisco Nexus device on which an ISSU is being initiated should not be in one of the unsupported topologies listed in the previous figure. No interface should be in a spanning-tree designated forwarding state. Also, do not configure Bridge Assurance on any interface of the Cisco Nexus device. vPC peer-link is an exception to these requirements.
- Layer 2 requirement— The ISSU process aborts if the system has any Link Aggregation Control Protocol (LACP) fast timers configured.
- **FC/FCoE requirements**—Check that the topology is stable for an ISSU to work correctly. You must check the following:
 - **Domain Manager**—As part of the installation process, domain manager checks if the fabric is in a stable state. If the fabric is not stable, the installation aborts.
 - CFS—As part of the installation process, Cisco Fabric Services (CFS) checks if any application (ntp,fsm, rcsn, fctime) is locked. If any application is holding a CFS lock, the installation aborts.
 - Zone Server— The installation process aborts if a zone merge or zone change request is in progress.
 - **FSPF**—As part of the upgrade process, Fabric Shortest Path First (FSPF) verifies if the configured interface dead interval is more than 80 seconds; otherwise, the installation aborts.

Management Services After an ISSU

Before the switch is reset for an ISSU, inband and management ports are brought down and are brought back up after the ISSU completes. Services that depend on the inband and management ports are impacted during this time. Table 3 lists the services that are impacted during an ISSU reset.

Table 3 Inband and Management Ports Services Impacted During ISSU Reset

Service	Description
Telnet/SSH	When an ISSU resets the system to load the target Cisco NX-OS version, all Telnet/SSH sessions are disconnected and need to be reestablished after the ISSU completes.
AAA/RADIUS	Applications that leverage the AAA Service (such as login) are disabled during an ISSU, because all Network Management services are disabled during this time.
HTTP	HTTP sessions to the switch are disconnected during an ISSU reboot. After the reboot, the HTTP is restarted and the switch accepts HTTP sessions.
NTP	NTP sessions to and from the switch are disrupted during an ISSU reboot. After the reboot, NTP session are reestablished based on the saved startup configuration.

Fibre Channel/FCoE Protocol and Services During an ISSU

During an ISSU, the control plane is offline for up to 80 seconds. Any state changes in the network during this time are not processed. Depending on the change, the impact might vary. We recommend that you ensure a stable fabric during an ISSU. See the following table for other ISSU impacts.

Table 4 ISSU Impact to Fibre Channel and FCoE Services

Service	Description		
Name Server	When a new switch in the fabric is brought up and queries the Name Server on the ISSU switch, the ISSU switch cannot respond and does not receive Nx_port information.		
Domain Manager	Domain Manager on a switch undergoing an ISSU does not process any BF/RCF/DIA/RDI caused by topology changes, which might result in traffic disruption in the fabric.		
CFS	During an ISSU upgrade, CFS applications on other switches cannot obtain CFS locks on the ISSU switch, which might result in CFS distribution failures until the ISSU completes.		
N-Port Virtualization	During an ISSU, the NPV process is down. Any FLOGI/fdisc or logon request from a server fails until the ISSU completes.		
Zone Server	During an ISSU, because EPP and merge requests are not processed, the peer switch cannot bring up E and TE ports connected to the ISSU switch until the ISSU completes.		
	A peer switch zone change request is not answered by the switch undergoing an ISSU. Any zone configuration changes on other switches connected to the ISSU switch fails until the ISSU completes.		
FSPF	Before the switch reboots for an ISSU, the switch transmits an FSPF hello on all interfaces to prevent neighbor switches from marking routes to the ISSU switch as down. Any topology changes during this time are also not acted upon until the ISSU completes.		
EPP	During an ISSU process, EPP messages are not received/transmitted on the ISSU switch. New ports in FC port channels are not negotiated until the ISSU completes. Additionally, FC Trunk Mode changes (E port to TE Port and vice versa and the allowed VSAN list) are also not processed.		
FCoE NPV Links	When the NPV/FCoE NPV switch is logged into a core switch through an FCoE NPV link, it punches heartbeats, FIP keepalives (FKA), toward the core switch for its own internal login session and all the host login sessions pinned through this FCoE NPV link. This FKA interval of 8 seconds is less than the ISSU downtime. Enter the disable-fka command on the core switch VFC parameters to ensure that the core switch ignores any FKA events.		

Layer-2 Protocols Impact

Table 5 lists the ISSU impacts to Layer 2 protocols.

Table 5 ISSU Impact to Layer 2 Protocols

Protocol	Description		
LACP	IEEE 802.3ad provides for the default slow aging timers to be transmitted once every 30 seconds in steady state and to expire after 90 seconds. An ISSU should not impact peers that rely on LACP because the recovery time is less than 90 seconds.		
	Fast LACP timers (hello=1 sec, dead=3 sec) are not supported with a nondisruptive ISSU.		
IGMP	IGMP does not disrupt existing flows of multicast traffic that are already present, but new flows are not learned (and are dropped) until an ISSU completes. New router ports or changes to router ports are not detected during this time.		
DCBX and LLDP	DCBX uses LLDP to exchange parameters between peer devices. Because DCBX is a link-local protocol, when the switch undergoes an ISSU, the age time is increased on all ports on the switches and FEXs that are being upgraded.		
	Manual configurations are ignored during this time.		
CDP	During an ISSU, the time-to-live value is increased (180 seconds) if it is less than the recommended timeout value. The configuration is ignored manually specified.		
L2MP IS-IS	Before a switch reboots for an ISSU, the switch transmits Layer 2 IS-IS hellos on all interfaces to prevent neighbor switches from marking routes to the ISSU switch as down. Any topology changes during this time are also not acted upon until the ISSU completes.		

Ethernet Interfaces on the Switch and the Fabric Extenders

To avoid link-down to link-up transitions during the control plane outage time, the laser is turned off for administratively up ports that are operationally down. This situation occurs during the ISSU reboot starting state when the switch and the FEX applications stop communicating with each other. After the ISSU reboot and a stateful restart, the laser is turned back on. This action prevents the link state from transitioning from down to up during an ISSU.

PreInstallation Checks

You should do certain sanity checks to ensure that the system is ready for an ISSU and to understand the impact of ISSU:

- Enter the **show incompatibility** command to verify that the target image is feature-wise compatible with the current image.
- Enter the **show logging level** command to ensure that the severity level for all processes is set to 5 or below.
- Enter the show install all impact command to identify the upgrade impact.

- Enter the **show fex** command to verify that all the FEXs are online.
- Enter the **show vpc role** command to verify the vPC switch role in a vPC topology.
- Enter the **install all** command to update to the latest Cisco NX-OS software.
- Review the installer impact analysis and choose to continue.

The switch might reload at this time and cause a traffic disruption if the upgrade is not an ISSU.

- Monitor the installation progress.
- Verify the upgrade.
- Enter the show install all status command to verify the status of the installation.

The following table lists the **show** commands that identify the impact or potential problems that might occur when performing an ISSU.

Table 6 Upgrade show Commands

Command	Definition
show incompatibility system	Displays incompatible configurations on the current system that impact the upgrade version. You must use the system image file.
show logging level	Displays the facility logging severity level configuration.
	Logging levels for all processes must be set at 5 or below when performing an ISSU. Processes with a logging level greater than 5 do not appear when you enter the show install all impact command.
show install all impact	Displays information that describes the impact of the upgrade on each Fabric Extender, including the current and upgrade-image versions. This command also displays if the upgrade is disruptive or not and if the Fabric Extender needs to be rebooted and the reason why.
show spanning-tree issu-impact	Displays the spanning-tree configuration and whether or not there are potential STP issues.
show lacp issu-impact	Displays the port priority information and whether or not there are potential issues.
show fcoe-npv issu-impact	Checks whether disable-fka is set on any of the FCoE NPV (VNP) ports as a pre-ISSU check.

You can also perform the following tasks to identify potential problems before they occur:

- Ensure that you have enough space to store the images on bootflash:
- Display incompatible configurations on the current system that will impact the upgrade version.

switch# show incompatibility system bootflash:n5000-uk9.5.2.1.N1.3.bin No incompatible configurations

• Display the status of FEXs connected to the system as follows:

switch#	show fex			
FEX		FEX	FEX	FEX
Number	Description	State	Model	Serial

• Display the STP configuration and whether potential STP issues exist as follows:

```
switch# show spanning-tree issu-impact
```

```
For ISSU to Proceed, Check the Following Criteria:

1. No Topology change must be active in any STP instance

2. Bridge assurance(BA) should not be active on any port (except MCT)

3. There should not be any Non Edge Designated Forwarding port (except MCT)

4. ISSU criteria must be met on the VPC Peer Switch as well

Following are the statistics on this switch

No Active Topology change Found!

Criteria 1 PASSED!!

No Ports with BA Enabled Found!

Criteria 2 PASSED!!

No Non-Edge Designated Forwarding Ports Found!

Criteria 3 PASSED!!

ISSU Can Proceed! Check Peer Switch.
```

Use the **show lacp issu-impact** command to display if any port or a peer switch is configured in rate fast mode.

• Verify that an ISSU is nondisruptive. You can display the information about the impact of the upgrade on each FEX and include details such as the upgrade image versions. This command also displays if the upgrade is disruptive/nondisruptive and the reason why.

switch# show install all impact kickstart bootflash:n5000-uk9-kickstart.6.0.2.N2.3.bin
system bootflash:n5000-uk9.6.0.2.N2.3.bin

```
Verifying image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin for boot variable
"kickstart".
[############### 100% -- SUCCESS
Verifying image bootflash:/n5000-uk9.6.0.2.N2.3.bin for boot variable "system".
[################ 100% -- SUCCESS
Verifying image type.
[############### 100% -- SUCCESS
Extracting "system" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Extracting "kickstart" version from image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Extracting "bios" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Extracting "fex" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[################ 100% -- SUCCESS
Extracting "fexth" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[################ 100% -- SUCCESS
```

```
Performing module support checks.
[############### 100% -- SUCCESS
Notifying services about system upgrade.
[############### 100% -- SUCCESS
Compatibility check is done:
Module bootable Impact Install-type Reason
1 yes non-disruptive none
2 yes non-disruptive rolling
3 yes non-disruptive rolling
4 yes non-disruptive rolling
121 yes non-disruptive none
131 yes non-disruptive none
141 yes non-disruptive none
Images will be upgraded according to following table:
Module Image Running-Version New-Version Upg-Required
1 system 6.0(2)N2(3) 6.0(2)N2(3) no
1 kickstart 6.0(2)N2(3) 6.0(2)N2(3) no
1 bios v3.6.0(05/09/2012) v3.6.0(05/09/2012) no
1 power-seg v5.0 v5.0 no
1 SFP-uC v1.0.0.0 v1.0.0.0 no
2 power-seq v1.0 v1.0 no
3 power-seq v1.0 v1.0 no
4 power-seq v1.0 v1.0 no
121 fex 6.0(2)N2(3) 6.0(2)N2(3) no
131 fexth 6.0(2)N2(3) 6.0(2)N2(3) no
141 fexth 6.0(2)N2(3) 6.0(2)N2(3) no
1 microcontroller v1.0.0.2 v1.0.0.2 no
Additional info for this installation:
_____
Remove QoS & ACL config on L3 interfaces and SVIs if any
Service "stp" : Port: Ethernet1/16 in VLAN0801 is Designated. Topology change could occur
during ISSU.
Upgrade needs to be disruptive!!!
Service "vpc" : STP Preupgrade Check failed on VPC peer switch
switch#
• Check whether disable-fka is set on any of the FCoE NPV (VNP) ports as a pre-ISSU check as
   follows:
switch# show fcoe-npv issu-impact
   show fcoe-npv issu-impact
   ______
   Please make sure to enable "disable-fka" on all logged in VFCs
   Please increase the FKA duration to 60 seconds on FCF
   Active VNP ports with no disable-fka set
```

Upgrading Procedures

The ISSU process is triggered when you enter the **install all** command. This section describes the sequence of events that occur when you upgrade a single Cisco Nexus device or a single Cisco Nexus device that is connected to one or more FEXs.

To use the ISSU process for Release 4.2(1)N1(1) through Release 5.1(3)N2(1c), you must first upgrade to Release 5.2(1)N1(1). After that, use the ISSU process to upgrade from 5.2(1)N1(1) to Release 7.0.

The section includes the following topics:

- Installation At-a-Glance, page 23
- Copying the Running Configuration from an External Flash Memory Device, page 24
- Copying the Startup Configuration from an External Flash Memory Device, page 25
- Upgrade Process in a Non-vPC Topology, page 26
- Upgrade Process for a vPC Topology on the Primary Switch, page 29
- Upgrade Process for a vPC Topology on the Secondary Switch, page 30
- Upgrading from Cisco NX-OS Release 5.1(3)N2(1c) and Earlier Releases (Disruptive Upgrade), page 32
- Minimizing the Impact of a Disruptive Upgrade, page 38
- Upgrading a Direct vPC or a Single-Homed FEX Access Layer, page 38
- Monitoring the Upgrade Status, page 49
- Monitoring the Upgrade Status, page 49

Installation At-a-Glance

Table 7 shows an overview of the upgrade process.

Table 7 Upgrade Process At-a-Glance

Task	Steps			
	1.	Log in to the first Cisco Nexus device. We recommend that you log in to the console port. In vPC topologies, the first upgrade can be performed on either the primary or secondary switch in the topology.		
	2.	Log in to Cisco.com to access the Software Download Center. To log in to Cisco.com, go to http://www.cisco.com/ and click Log In at the top of the page. Enter your Cisco username and password.		
	3.	Choose and download the kickstart and system software files to the server.		
	4.	Verify that the required space is available in the bootflash: directory for the image file(s) to be copied.		
	5.	If you need more space in the bootflash: directory, delete unnecessary files to make space available.		
	6.	Copy the Cisco NX-OS kickstart and system images to the bootflash using a transfer protocol such as ftp:, tftp:, scp:, or sftp.		
	7.	Compare the file sizes of the images that were transferred using the dir bootflash command. The file sizes of the images obtained from Cisco.com and the image sizes of the transferred files should be the same.		
Upgrade Preparation	8.	Complete the above steps for each Cisco Nexus device in the topology.		
	1.	Enter the show incompatibility command to verify that the target image is feature-wise compatible with the current image.		
	2.	Enter the show install all impact command to identify the upgrade impact.		
	3.	Enter the show spanning-tree issu-impact command to display the impact of the upgrae impact.		
	4.	Enter the show lacp issue-impact command to display the impact of the upgrade.		
Pre-ISSU Checks	5.	Enter the show fex command to verify that all the FEXs are online.		
	1.	Enter the show vpc role command to verify the vPC switch role.		
	2.	Enter the install all command to update to the latest Cisco NX-OS software.		
	3.	Peruse the installer impact analysis and accept to proceed.		
Upgrade Begins		e Installer for the Cisco Nexus 6000 upgrades the software. The switch 1 now run a new version of the software.		
Upgrade Verification	1.	Enter the show install all status command to verify the status of the installation.		

Copying the Running Configuration from an External Flash Memory Device

You can copy configuration files from an external flash memory device.

This procedure applies to the Cisco Nexus device that is running Cisco NX-OS Release 5.0.2 and later releases.

Before You Begin

Insert the external flash memory device into the active supervisor module.

	Command or Action	Purpose	
Step 1	dir usb1:[directory/]	(Optional) Displays the files on the external flash	
	Example: switch# dir usb1:	memory device.	
Step 2	<pre>copy {usb1:[directory/]filename {bootflash:}[directory/]filename</pre>	Copies the image from an external flash memory device into the bootflash. The <i>filename</i> argument is	
	Example: switch# copy usb1:n5000-uk9.6.0.2.N2.3.bin bootflash:n5000-uk9.6.0.2.N2.3.bin	case sensitive.	
Step 3	copy {usb1:[directory/]filename running-config	Copies the running configuration from an external	
	Example: switch# copy usb1:dsn-config.cfg running-config	flash memory device. The <i>filename</i> argument is case sensitive.	
Step 4	copy {usb1:[directory/]filename running-config	(Optional) Copies the running configuration from an	
	Example: switch# copy usb1:dsn-config.cfg running-config	external flash memory device to the bootflash.	
Step 5	show running-config	(Optional) Displays the running configuration.	
	Example: switch# show running-config		
Step 6	copy running-config startup-config	(Optional) Copies the running configuration to the	
	Example: switch# copy running-config startup-config	startup configuration.	
Step 7	show startup-config	(Optional) Displays the startup configuration.	
	Example: switch# show startup-config		

Copying the Startup Configuration from an External Flash Memory Device

You can recover the startup configuration on your Cisco NX-OS device by downloading a new startup configuration file that was saved on an external flash memory device.

This procedure applies to the Cisco Nexus device that is running Cisco NX-OS Release 5.0.2 and later releases.

Before You Begin

Insert the external flash memory device into the active supervisor module.

	Command or Action	Purpose	
Step 1	dir {usb1: usb2:}[directory/]	(Optional) Displays the files on the external flash memory device.	
	Example: switch# dir usb1:		
Step 2	<pre>copy {usb1: usb2:}[directory/\filename {bootflash:}[directory/\filename</pre>	Copies the image from an external flash memory device into the bootflash. The <i>filename</i> argument is	
	Example:	case sensitive.	
	switch# copy usb1:n5000-uk9.6.0.2.N2.3.bin bootflash:n5000-uk9.6.0.2.N2.3.bin		
Step 3	<pre>copy {usb1: usb2:}[directory/]filename startup-config</pre>	Copies a saved configuration from an external flash	
	Example: switch# copy usb1:dsn-config.cfg startup-config	memory device to the startup configuration. The <i>filename</i> argument is case sensitive.	
Step 4	<pre>copy {usb1: usb2:}[directory/]filename startup-config</pre>	(Optional) Copies a saved configuration from an	
	Example: switch# copy usb1:dsn-config.cfg bootflash-config	external flash memory device to the bootflash. The <i>filename</i> argument is case sensitive.	
Step 5	show startup-config	(Optional) Displays the startup configuration.	
	Example: switch# show startup-config		
Step 6	copy running-config startup-config	(Optional) Copies the running configuration to the	
	Example: switch# copy running-config startup-config	startup configuration.	
Step 7	show startup-config	(Optional) Displays the startup configuration.	
	Example: switch# show startup-config		

Upgrade Process in a Non-vPC Topology

The following list summarizes the upgrade process in a non-vPC topology:

- 1. The install all command triggers the installation upgrade.
- 2. The compatibility checks display the impact of the upgrade.
- 3. The installation proceeds or not based on the upgrade impact.
- 4. The current state is saved.
- **5**. The system unloads and runs the new image.
- **6.** The stateful restart of the system software and application occurs.
- 7. The installer resumes with the new image.
- **8.** The FEXs are upgraded sequentially.
- **9.** The installation completes.

This example shows how to display the ISSU process:

switch# install all kickstart n5000-uk9-kickstart.6.0.2.N2.3.bin system n5000-uk9.6.0.2.N2.3.bin

Verifying image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin for boot variable "kickstart". [###################] 100% -- SUCCESS

Compatibility check is done:

Notifying services about system upgrade. [##############] 100% -- SUCCESS

Module	bootable	Impact	Install-type	Reason
1	yes	non-disruptive	reset	

Images will be upgraded according to following table:

Module	Image	Running-Version	New-Version	Upg-Required
1	system	5.0(3)N2(2b)	6.0(2)N2(3)	yes
1	kickstart	5.0(3)N2(2b)	6.0(2)N2(3)	yes
1	bios	v3.6.0(05/09/2012)	v3.6.0(05/09/2012)	no
1	SFP-uC	v1.0.0.0	v1.0.0.0	no
1	power-seq	v1.0	v1.0	no
1	uC	v1.2.0.1	v1.2.0.1	no

Do you want to continue with the installation (y/n)? [n] y

Install is in progress, please wait.

Performing runtime checks.
[###############] 100% -- SUCCESS

Notifying services about the upgrade. [##############] 100% -- SUCCESS

Setting boot variables.

[############### 100% -- SUCCESS

Performing configuration copy.

[############### 100% -- SUCCESS

Upgrade can no longer be aborted, any failure will result in a disruptive upgrade.

Requesting Line Cards to stop communication. [################# 100% -- SUCCESS

Requesting Sup Apps to stop communication. [############### 100% -- SUCCESS

```
Freeing memory in the file system.
[################ 100% -- SUCCESS
Loading images into memory.
[############### 100% -- SUCCESS
Saving supervisor runtime state.
[############### 100% -- SUCCESS
Saving mts state.
[################ 100% -- SUCCESS
Rebooting the switch to proceed with the upgrade.
All telnet and ssh connections will now be temporarily terminated.
Starting new kernel
Calling kexec callback
Moving to new kernel
Calling into reboot_code_buffer code
\ufffdserial 00:04: unable to assign resources
INIT: I2C - Mezz present
nohup: redirecting stderr to stdout
autoneg unmodified, ignoring
autoneg unmodified, ignoring
Checking all filesystems.... done.
Loading system software
 \textit{Uncompressing system image: bootflash:/n5000-uk9.6.0.2.N2.3.bin Wed Jan 30 14:55:27 PST } \\
2013
Load plugins that defined in image conf: /isan/plugin_img/img.conf
load_plugin: Plugin-swid map exists. Any plugin exists in the map will be assigned from
Loading plugin 0: core_plugin...
load_plugin: Can't get exclude list from /isan/plugin/0/boot/etc/plugin_exclude.conf (rc
0x40ea0017)
Loading plugin 1: eth_plugin...
Loading plugin 2: fc_plugin...
ethernet switching mode
INIT: Entering runlevel: 3
touch: cannot touch `/var/lock/subsys/netfs': No such file or directory
Mounting other filesystems: [ OK
touch: cannot touch `/var/lock/subsys/local': No such file or directory
/isan/bin/muxif_config: fex vlan id: -f,4042
fwm_install....control_vlan: ret: 0
Set name-type for VLAN subsystem. Should be visible in /proc/net/vlan/config
Added VLAN with VID == 4042 to IF -: muxif:-
Continuing with installation process, please wait.
The login will be disabled until the installation is completed.
Performing supervisor state verification.
[############### 100% -- SUCCESS
Supervisor non-disruptive upgrade successful.
Install has been successful.
This example show how to display information about the software version:
switch# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Documents: http://www.cisco.com/en/US/products/ps9372/tsd_products_support_serie
Copyright (c) 2002-2013, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained herein are owned by
```

```
other third parties and are used and distributed under license.
Some parts of this software are covered under the GNU Public
License. A copy of the license is available at
http://www.gnu.org/licenses/gpl.html.
Software
BIOS: version 3.6.0
loader: version N/A
kickstart: version 6.0(2)N2(3)
system: version 6.0(2)N2(3)
Power Sequencer Firmware:
Module 1: version v5.0
Module 2: version v1.0
Module 3: version v1.0
Module 4: version v1.0
Microcontroller Firmware: version v1.0.0.2
SFP uC: Module 1: v1.0.0.0
QSFP uC: Module not detected
BIOS compile time: 05/09/2012
kickstart image file is: bootflash://n5000-uk9-kickstart.6.0.2.N2.3.bin
kickstart compile time: 1/25/2013 1:00:00 [01/25/2013 01:45:51]
system image file is: bootflash://n5000-uk9.6.0.2.N2.3.bin
system compile time: 1/25/2013 1:00:00 [01/25/2013 03:55:04]
Hardware
cisco Nexus 5596 Chassis ("O2 48X10GE/Modular Supervisor")
Intel(R) Xeon(R) CPU with 8262952 kB of memory.
Processor Board ID FOC16133X33
Device name: P1-AC1-96UP
bootflash: 2007040 kB
Kernel uptime is 0 day(s), 2 hour(s), 44 minute(s), 3 second(s)
Last reset at 510979 usecs after Fri Jan 25 12:49:36 2013
Reason: Disruptive upgrade
System version: 6.0(2)N2(3)
Service:
plugin
Core Plugin, Ethernet Plugin
switch#
```

Upgrade Process for a vPC Topology on the Primary Switch

The following list summarizes the upgrade process on a primary switch in a vPC topology. Steps that differ from a switch upgrade in a non-vPC topology are in bold.

In vPC topologies, the two peer switches must be upgraded individually. An upgrade on one peer switch does not automatically update the vPC peer switch.

- 1. The install all command issued on the vPC primary switch triggers the installation upgrade.
- 2. The compatibility checks display the impact of the upgrade.
- 3. The installation proceeds or not based on the upgrade impact.

- **4.** The configuration is locked on both vPC peer switches.
- **5**. The current state is saved.
- **6.** The system unloads and runs the new image.
- 7. The stateful restart of the system software and application occurs.
- **8.** The installer resumes with the new image.
- **9.** The FEXs are upgraded sequentially.
- **10**. The installation is complete.

When the installation is complete, the vPC primary switch and the FEXs that are connected to the primary switch are upgraded. The single-homed FEXs and the dual-homed FEXs are now running the upgraded software.

The dual-homed FEXs are now connected to the primary and secondary switches that are running two different versions of the Cisco NX-OS software. The vPC primary switch is running the upgraded version and the vPC secondary switch is running the original software version. The Cisco NX-OS software has been designed to allow an upgraded dual-home FEX to interoperate with vPC secondary switches running the original version of Cisco NX-OS while the primary switch is running the upgrade version.

Upgrade Process for a vPC Topology on the Secondary Switch

The following list summarizes the upgrade process on a secondary switch in a vPC topology. Steps that differ from a switch upgrade in a non-vPC topology are in bold.

- 1. The install all command issued on the vPC second switch triggers the installation upgrade.
- **2.** The compatibility checks display the impact of the upgrade.
- 3. The installation proceeds or not based on the upgrade impact.
- **4.** The current state is saved.
- **5.** The system unloads and runs the new image.
- **6.** The stateful restart of the system software and application occurs.
- 7. The installer resumes with the new image.
- **8.** The FEXs are upgraded sequentially. The upgrade completes on the single-homed FEXs and a sanity check is performed on the dual-homed FEXs.

Note

The dual-homed FEXs were upgraded by the primary switch.

- **9.** The configuration is unlocked on the primary and secondary switches.
- **10**. The installation is complete.

Disruptive Installation Process

Doing a disruptive upgrade between incompatible images will result in loss of certain configurations such as unified ports, breakout, and FEX configurations. See CSCul22703 for details.

For FEX configurations, prior to the downgrade, the configuration must be converted (if not already used) to use FEX pre-provisioning configuration.

The following lists the situations where a nondisruptive ISSU might not be possible when upgrading a Cisco Nexus device:

- The topology and/or features are not ISSU ready. See the "ISSU Prerequisites" section on page 16 for more information.
- The current release or target release is lower than Release 5.2(1)N1(1). An ISSU can work only when both the current and target releases are equal or later than Release 5.2(1)N1(1).

To use the ISSU process for Release 5.0(2)N1(1) through Release 5.1(3)N2(1c), you must first upgrade to Release 5.2(1)N1(1). After that, use the ISSU process to upgrade to Release 6.0(2)N2(3).

- The installation is a downgrade, such as a higher release to a lower release, unless stated otherwise in the "Upgrade Guidelines" section on page 2.
- You want to do a disruptive upgrade. See the "Forcing an Upgrade" section on page 32.

Restoring the Configuration

Perform the following steps to restore the configuration if the configurations contain interface breakout or unified port configurations:

- 1. Save the configuration to bootflash using the command **copy running-config bootflash:**[directory/]filename.
- 2. Use the **default interface** command to restore the default configurations of the breakout interfaces. Example: **default interface** *e1/49/1-4*, *e2/25/1-4*.
- 3. Save the running configuration to startup configuration using the **copy running-config startup-config** command.
- **4.** Perform software migration using the **install all** command from Cisco NX-OS Release 6.0(2)N2(3) to a lower version. In case of VPC, downgrade the primary switch first and then the secondary switch.
- 5. After the switch is up, power-off and power-on the module for the interface breakout to be effective. If the breakout is configured on Baseboard module, save the running configuration to startup configuration using the **copy running-config startup-config** command and then reload the switch again.
- **6.** If breakout is not configured on the Baseboard, then an additional reload is required if running configuration contains **hardware profile route resource service-template**.
- 7. After the switch is up (with all the modules), copy the saved configuration from **bootflash:** <*filename* > to **running-config**.
- **8.** Verify if all the interfaces are up and traffic is resumed.

Forcing an Upgrade

You can choose to do a disruptive upgrade if one of the ISSU conditions are not met. One additional reason where you might choose to do a disruptive upgrade is when FEXs are upgraded in a rolling fashion (one FEX at a time), which requires a longer maintenance window. With a disruptive upgrade, all the connected FEXs are upgraded simultaneously, so the maintenance window can be shorter. If you need a shorter maintenance window (with traffic disruption), you can force a disruptive upgrade even if an ISSU can be leveraged. It is important to note the possibility of an outage if you do a disruptive upgrade.

```
bootflash:/system_image.bin
Installer is forced disruptive

Verifying image bootflash:/kickstart_image.bin for boot variable "kickstart".
[##################] 100% -- SUCCESS

Verifying image bootflash:/system_image.bin for boot variable "system".
...

You can also add the force keyword at the end of the install all command as follows:
switch # install all kickstart bootflash:/kickstart_image.bin system
bootflash:/system_image.bin force
Installer is forced disruptive

Verifying image bootflash:/kickstart_image.bin for boot variable "kickstart".
```

switch # install all force kickstart bootflash:/kickstart_image.bin system

Upgrading from Cisco NX-OS Release 5.1(3)N2(1c) and Earlier Releases (Disruptive Upgrade)

This section describes how to upgrade from Cisco NX-OS Release 5.1(3)N2(1c) and earlier releases. An upgrade from these releases is disruptive. Upgrading a Cisco Nexus device also upgrades connected Cisco Nexus Fabric Extenders.

To perform a nondisruptive upgrade from Cisco NX-OS Release 5.2(1)N1(1) and later releases, see the CSCul22703 for details. You can upgrade Cisco NX-OS Release 4.2(1)N1(1) through Release 5.1(3)N2(1c) using a two-step ISSU process.

DETAILED STEPS

Step 1

Log in to Cisco.com to access the Software Download Center. To log in to Cisco.com, go to http://www.cisco.com/ and click **Log In** at the top of the page. Enter your Cisco username and password.

Unregistered Cisco.com users cannot access the links provided in this document.

Access the Software Download Center at

http://www.cisco.com/cisco/software/navigator.html?a=a&i=rpm. Navigate to the software downloads for Cisco Nexus devices. Links to the download images for the switch are listed.

- **Step 2** Choose and download the kickstart and system software files to a local server.
- **Step 3** Verify that the required space is available in the bootflash: directory for the image file(s) to be copied.

```
switch# dir bootflash:
61393 Jan 24 16:23:45 2013 P1-AC1-96UP.cfg
246 Jul 02 10:34:07 2012 ac1-el2.lic
262 Jul 02 10:59:59 2012 ac1adv.lic
269 Apr 17 22:10:33 2012 license_FOX1610G7R0_31.lic
34668032 Jan 25 12:16:24 2013 n5000-uk9-kickstart.6.0.2.N2.3.bin
237804247 Jan 25 12:12:18 2013 n5000-uk9.6.0.2.N2.3.bin
1052 Dec 26 12:19:51 2012 n5kupg.tcl
903 Aug 31 14:16:17 2012 rpingv4-oc3.tcl
903 Sep 11 15:21:26 2012 rpingv4.tcl
4096 Dec 31 21:07:09 2008 vdc_2/
4096 Dec 31 21:07:09 2008 vdc_3/
4096 Dec 31 21:07:09 2008 vdc_4/
4096 Aug 20 12:45:19 2012 virt_strg_pool_bf/
23128 Dec 18 12:05:29 2012 vlan.dat
Usage for bootflash://sup-local
390230016 bytes used
1258393600 bytes free
1648623616 bytes total
switch#
```

We recommend that you keep the kickstart and system image files for at least one previous software release to use if the new image files do not load successfully.

Step 4 (Optional) If you need more space on the bootflash, delete unnecessary files to make space available.

```
switch# delete bootflash:n5000-uk9-kickstart.4.1.3.N1.1.bin
switch# delete bootflash:n5000-uk9.4.1.3.N1.1.bin
```

Step 5 Copy the new kickstart and system images to the switch bootflash by using a transfer protocol such as FTP, TFTP, SCP, or SFTP. The examples in this procedure use SCP.

switch# copy scp://jdoe@192.0.2.1//production/images/nexus5000/n5000-uk9.6.0.2.N2.3.bin
bootflash: vrf management

```
The authenticity of host '192.0.2.1 (192.0.2.1)' can't be established. RSA key fingerprint is bc:79:3e:dd:7b:c9:7d:99:c4:56:9b:0b:0f:8a:9e:f5. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added '192.0.2.1' (RSA) to the list of known hosts. jdoe@192.0.2.1's password: n5000-uk9.6.0.2.N2.3.bin 100% 165MB 2.6MB/s 01:04 Copy complete, now saving to disk (please wait)... switch#
```

Step 6 Display the impact of the upgrade.

switch# show install all impact kickstart bootflash:n5000-uk9-kickstart.6.0.2.N2.3.bin system bootflash:n5000-uk9.6.0.2.N2.3.bin

```
Verifying image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin for boot variable
"kickstart".
[##################] 100% -- SUCCESS

Verifying image bootflash:/n5000-uk9.6.0.2.N2.3.bin for boot variable "system".
[###################] 100% -- SUCCESS

Verifying image type.
[######################] 100% -- SUCCESS
```

```
Extracting "system" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[################ 100% -- SUCCESS
Extracting "kickstart" version from image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Extracting "bios" version from image bootflash:/n5000-uk9.5.2.1.N2.3.bin.
[################ 100% -- SUCCESS
Extracting "fex" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Extracting "fexth" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[################ 100% -- SUCCESS
Performing module support checks.
[################ 100% -- SUCCESS
Notifying services about system upgrade.
[############### 100% -- SUCCESS
Compatibility check is done:
Module bootable Impact Install-type Reason
1 yes non-disruptive none
2 yes non-disruptive rolling
3 yes non-disruptive rolling
4 yes non-disruptive rolling
121 yes non-disruptive none
131 yes non-disruptive none
141 yes non-disruptive none
Images will be upgraded according to following table:
Module Image Running-Version New-Version Upg-Required
1 system 6.0(2)N2(3) 6.0(2)N2(3) no
1 kickstart 6.0(2)N2(3) 6.0(2)N2(3) no
1 bios v3.6.0(05/09/2012) v3.6.0(05/09/2012) no
1 power-seq v5.0 v5.0 no
1 SFP-uC v1.0.0.0 v1.0.0.0 no
2 power-seq v1.0 v1.0 no
3 power-seq v1.0 v1.0 no
4 power-seq v1.0 v1.0 no
121 fex 6.0(2)N2(3) 6.0(2)N2(3) no
131 fexth 6.0(2)N2(3) 6.0(2)N2(3) no
141 fexth 6.0(2)N2(3) 6.0(2)N2(3) no
1 microcontroller v1.0.0.2 v1.0.0.2 no
Additional info for this installation:
Remove QoS & ACL config on L3 interfaces and SVIs if any
Service "stp" : Port: Ethernet1/16 in VLAN0801 is Designated. Topology change could occur
during ISSU.
Upgrade needs to be disruptive!!!
Service "vpc" : STP Preupgrade Check failed on VPC peer switch
```

switch#

Step 7 Install the new images, specifying the new image names that you downloaded in the previous step.

```
switch# install all kickstart bootflash:n5000-uk9-kickstart.6.0.2.N2.3.bin system
bootflash:n5000-uk9.6.0.2.N2.3.bin
Verifying image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin for boot variable
"kickstart".
[################ 100% -- SUCCESS
Verifying image bootflash:/n5000-uk9.6.0.2.N2.3.bin for boot variable "system".
[############### 100% -- SUCCESS
Verifying image type.
[############### 100% -- SUCCESS
Extracting "system" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[################ 100% -- SUCCESS
Extracting "kickstart" version from image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Extracting "bios" version from image bootflash:/n5000-uk9.4.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Extracting "fex" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[################ 100% -- SUCCESS
Notifying services about system upgrade.
[############### 100% -- SUCCESS
Compatibility check is done:
Module bootable
                      Impact Install-type Reason
                 -----
   1
           yes
                disruptive
                                     reset Reset due to single supervisor
  100
           yes
                   disruptive
                                     reset Reset due to single supervisor
Images will be upgraded according to following table:
Module
          Image
                       Running-Version
                                                 New-Version Upg-Required
       ______
   1
         system 5.0(3)N1(1c) 6.0(2)N2(3)
                                                               yes
                      5.0(3)N1(1c)
    1 kickstart
                                          6.0(2)N2(3)
                                                              yes
                       v3.6.0(05/09/2012)
        bios
                                            v3.6.0(05/09/2012) no
    1
  100
             fex
                       5.0(3)N1(1c)
                                            6.0(2)N2(3)
Switch will be reloaded for disruptive upgrade.
Do you want to continue with the installation (y/n)? [n] y
Install is in progress, please wait.
Setting boot variables.
[################ 100% -- SUCCESS
Performing configuration copy.
[############### 100% -- SUCCESS
Module 1: Refreshing compact flash and upgrading bios/loader/bootrom.
Warning: please do not remove or power off the module at this time.
[############### 100% -- SUCCESS
Pre-loading modules.
[This step might take up to 20 minutes to complete - please wait.]
```

```
0%2010 Jun 10 18:27:25 N5K1 %$ VDC-1 %$ %SATCTRL-2-SATCTRL_IMAGE:
FEX100 Image update in progress.
[#####
                       2.0%
                     ] 25%2010 Jun 10 18:32:54 N5K1 %$ VDC-1 %$ %SATCTRL-2-SATCTRL_IMAGE:
[#####
FEX100 Image update complete. Install pending
[############### 100% -- SUCCESS
Finishing the upgrade, switch will reboot in 10 seconds.
switch#
switch#
switch# writing reset reason 31,
Broadcast message from root (Thu Jun 10 18:33:16 2010):
INIT: Sending processes the TERM signal
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "stp" (PID 2843) is forced exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "netstack" (PID 2782) is forced
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "Security Daemon" (PID 2706) is
forced exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "Cert_enroll Daemon" (PID 2707) is
forced exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "igmp" (PID 2808) is forced exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "Radius Daemon" (PID 2806) is
forced exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "AAA Daemon" (PID 2708) is forced
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "vshd" (PID 2636) is forced exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "vlan_mgr" (PID 2737) is forced
exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "vdc_mgr" (PID 2681) is forced
exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "urib" (PID 2718) is forced exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "u6rib" (PID 2717) is forced exit.
Jun 10 18:33:17 %TTYD-2-TTYD_ERROR TTYD Error ttyd bad select
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "statsclient" (PID 2684) is forced
exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "smm" (PID 2637) is forced exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "res_mgr" (PID 2688) is forced
exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "licmgr" (PID 2641) is forced
exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "13vm" (PID 2715) is forced exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "icmpv6" (PID 2781) is forced
exit.
```

Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "eth_dstats" (PID 2700) is forced

```
exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "arp" (PID 2780) is forced exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "fs-daemon" (PID 2642) is forced
exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "ascii-cfg" (PID 2704) is forced
exit.
Jun 10 18:33:17 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "adjmgr" (PID 2771) is forced
exit.
Jun 10 18:33:19 Unexporting directories for NFS kernel daemon...done.
Stopping NFS kernel daemon: rpc.mountd rpc.nfsddone.
Unexporting directories for NFS kernel daemon...
done.
Stopping portmap daemon: portmap.
Stopping kernel log daemon: klogd.
Sending all processes the TERM signal... done.
Sending all processes the KILL signal... done.
Unmounting remote filesystems... done.
Deactivating swap...umount: none busy - remounted read-only
done.
Unmounting local filesystems...umount: none busy - remounted read-only
mount: you must specify the filesystem type
Starting reboot command: reboot
Rebooting...
Restarting system.
The switch reboots and restarts with the new image.
For detailed information about the install all command, see Using the install all Command.
Caution
After completing the installation, all traffic through the switch is disrupted while the
switch reboots.
Verify that the switch is running the required software release.
switch# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Documents: http://www.cisco.com/en/US/products/ps9372/tsd_products_support_serie
s_home.html
Copyright (c) 2002-2013, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained herein are owned by
other third parties and are used and distributed under license.
Some parts of this software are covered under the GNU Public
License. A copy of the license is available at
http://www.gnu.org/licenses/gpl.html.
Software
BIOS: version 3.6.0
loader: version N/A
kickstart: version 6.0(2)N2(3)
system: version 6.0(2)N2(3)
Power Sequencer Firmware:
Module 1: version v5.0
Module 2: version v1.0
Module 3: version v1.0
Module 4: version v1.0
```

Step 8

Microcontroller Firmware: version v1.0.0.2

```
SFP uC: Module 1: v1.0.0.0
QSFP uC: Module not detected
BIOS compile time: 05/09/2012
kickstart image file is: bootflash://n5000-uk9-kickstart.6.0.2.N2.3.bin
kickstart compile time: 1/25/2013 1:00:00 [01/25/2013 01:45:51]
system image file is: bootflash://n5000-uk9.6.0.2.N2.3.bin
system compile time: 1/25/2013 1:00:00 [01/25/2013 03:55:04]
Hardware
cisco Nexus 5596 Chassis ("O2 48X10GE/Modular Supervisor")
Intel(R) Xeon(R) CPU with 8262952 kB of memory.
Processor Board ID FOC16133X33
Device name: P1-AC1-96UP
bootflash: 2007040 kB
Kernel uptime is 0 day(s), 2 hour(s), 44 minute(s), 3 second(s)
Last reset at 510979 usecs after Fri Jan 25 12:49:36 2013
Reason: Disruptive upgrade
System version: 6.0(2)N2(3)
Service:
plugin
Core Plugin, Ethernet Plugin
switch#
```

Minimizing the Impact of a Disruptive Upgrade

A non-ISSU upgrade is a disruptive upgrade that results in the reload of the Cisco Nexus device and the Fabric Extenders. The reload is a cold reboot that brings down the control plan and the data plane. The reload causes disruptions to the connected servers and hosts. When a vPC is deployed in the access layer, it is possible to minimize the impact of a non-ISSU upgrade. When one of the vPC switches is being reset during the upgrade process, all the server traffic can flow through its vPC peer.

Upgrading a Direct vPC or a Single-Homed FEX Access Layer

The following figures show topologies in which the access layer includes a vPC configuration to hosts or downstream switches.

Figure 16 Hosts Directly Connected to vPC Peers

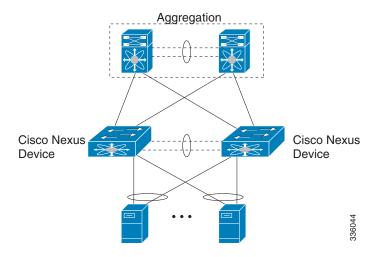


Figure 17 vPC Peered Dual-Supervisor Virtual Modular System Dual-Homed FEXs and Singled-Homed FEXs

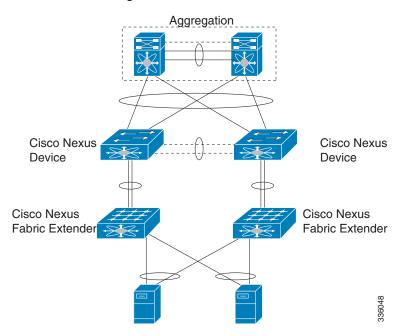
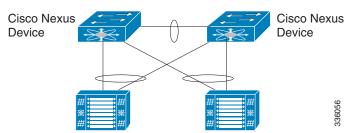



Figure 18 Cisco Nexus Device Connected to Downstream Switches

To upgrade the access layer without a disruption to hosts, follow these tasks:

- Upgrade the first vPC switch (vPC primary switch). During this upgrade, the switch is reloaded. When the switch is reloaded, the servers or the downstream switch detects a loss of connectivity to the first switch and starts forwarding traffic to the second (vPC secondary) switch.
- Verify that the upgrade of the switch has completed successfully. At the completion of the upgrade, the switch restores vPC peering, connected Nexus 2000 Fabric Extenders, and all the links.
- Upgrade the second switch. Repeating the same process on the second switch causes the second switch to reload during the upgrade process. During this reload, the first (upgraded) switch forwards all the traffic to/from servers.
- Verify that the upgrade of the second switch has completed successfully.

Flows that are forwarded to a switch during an upgrade on the switch, will failover to the second switch. Also, flows are redistributed when vPC peers are active. The traffic disruption is limited to the time required for the server or host to detect the link-down and link-up events and to redistribute the flows.

Upgrading a Dual-Homed FEX Access Layer

A disruptive upgrade causes a switch and connected FEXs to reload. The time required for a FEX to reload is less than the time required for a switch to reload. When hosts are connected to a dual-homed FEX, it is possible to keep the traffic disruption of the hosts to same time as required by FEX to reload (approximately 120 seconds), instead of the time required for an upgrade of the entire access layer.

The following figure shows a dual-homed FEX topology in which the access layer includes a vPC configuration to hosts or downstream switches.

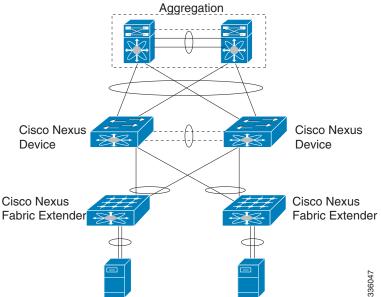


Figure 19 vPC-Peered Dual-Supervisor Virtual Modular System Dual-Homed FEXs

The following dual-homed FEX procedure is supported only for an upgrade and not for a downgrade.

Step 1 Configure FEX module pre-provisioning for all the FEXs connected to both the switches (vPC primary and vPC secondary switches).

Upgrade the vPC primary switch with the new image using the **install all kickstart** *image* **system** *image* command. During the upgrade process, the switch is reloaded. When the switch is reloaded, only singled-homed FEXs connected to the switch are reloaded and dual-homed FEXs are not reloaded. Servers connected to the dual-homed FEXs retain network connectivity through the vPC secondary switch.

- **Step 2** Verify that the upgrade of the vPC primary switch is completed successfully. At the completion of the upgrade, the vPC primary switch restores vPC peering. However, dual-homed FEXs are connected only to the secondary vPC switch.
- **Step 3** Reload the dual-homed FEXs using the **reload fex** command from the vPC secondary switch. Reload the FEXs one-by-one or in a bunch of two or three FEXs. The servers connected to the dual-homed FEXs will lose connectivity.
- **Step 4** Wait for the FEXs to reload. After the reload, the FEXs connect to the upgraded switch (vPC primary switch).
- Step 5 Upgrade the vPC secondary switch with the new image using the install all kickstart image system image command. During the upgrade process, the switch is reloaded. When the switch is reloaded, only singled-homed FEXs connected to the switch are reloaded and dual-homed FEXs are not reloaded.
- **Step 6** Verify that the upgrade of the vPC secondary switch is completed successfully. At the completion of the upgrade, the vPC secondary switch restores vPC peering. Dual-homed FEXs connect to both the peer switches and start forwarding traffic.

Detailed Steps

Step 1 Log in to Cisco.com to access the Software Download Center. To log in to Cisco.com, go to http://www.cisco.com/ and click Log In at the top of the page. Enter your Cisco username and password.

Unregistered Cisco.com users cannot access the links provided in this document.

Access the Software Download Center at

http://www.cisco.com/cisco/software/navigator.html?a=a&i=rpm. Navigate to the software downloads for Cisco Nexus devices. Links to the download images for the switch are listed.

- **Step 2** Choose and download the kickstart and system software files to a local server.
- **Step 3** Verify that the required space is available in the bootflash: directory for the image file(s) to be copied.

switch# dir bootflash: | sec Usage

```
Usage for bootflash://sup-local
1748185088 bytes used
5806157824 bytes free
7554342912 bytes total
```

We recommend that you keep the kickstart and system image files for at least one previous software release to use if the new image files do not load successfully.

- **Step 4** (Optional) If you need more space on the bootflash, delete unnecessary files to make space available.
- **Step 5** Copy the new kickstart and system images to each switch bootflash by using a transfer protocol such as FTP, TFTP, SCP, or SFTP.

switch-1# dir bootflash: inc 6.0

```
35756544
           Feb 18 13:24:46 2013 n5000-uk9-kickstart.6.0.2.N2.3.bin
         Oct 21 10:49:30 2013 n5000-uk9-kickstart.6.0.2.N2.3.bin
35792384
          Feb 18 13:23:22 2013 n5000-uk9.6.0.2.N2.3.bin
325724988
324046051 Oct 21 10:49:10 2013 n5000-uk9.6.0.2.N2.3.bin
```

Step 6 Configure FEX Module pre-provisioning for the type of FEX present in the system. Perform this step on both the switches in a vPC pair. For more information on how to configure FEX module pre-provisioning, refer the Cisco Nexus 5500 Series NX-OS System Management Configuration Guide.

This example shows how to select slot 130 and the N2K-C2348UPQ module to pre-provision.

```
switch# show fex
                      FEX
FEX
          FEX
                                        FEX
                                                        Fex
Number
        Description
                       State
                                        Model
                                                         Serial
                                          N2K-C2348UPQ FOC1818R2MF
130
         FEX0130
                               Online
                               Online N2K-C2332TQ-10GT FOC1910R0R1
198
         FEX0198
switch# configure terminal
switch(config) # slot 130
switch(config-slot)# provision model N2K-C2348UPQ
switch(config-slot)# slot 198
switch(config-slot)# provision model N2K-C2332TQ
```

Step 7 Enter the **show install all impact** command to validate the upgrade process and the components being upgraded.

switch-1# show install all impact kickstart bootflash:n5000-uk9-kickstart.6.0.2.N2.3.bin system bootflash:n5000-uk9.6.0.2.N2.3.bin

```
Verifying image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin for boot variable
"kickstart".
[################ 100% -- SUCCESS
Verifying image bootflash:/n5000-uk9.6.0.2.N2.3.bin for boot variable "system".
[############### 100% -- SUCCESS
Verifying image type.
[############### 100% -- SUCCESS
Extracting "system" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Extracting "kickstart" version from image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Extracting "bios" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Extracting "fex4" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin.
[############### 100% -- SUCCESS
Performing module support checks.
[################ 100% -- SUCCESS
Notifying services about system upgrade.
[############### 100% -- SUCCESS
Compatibility check is done:
----
      -----
                _____
                              _____
           disruptive reset Non-disruptive install not supported if L3 was enabled
1
       ves
2
              disruptive reset Non-disruptive install not supported if L3 was enabled
```

ves

130	yes	disruptive reset	Non-disruptive	install	not	supported	if	L3	was	enabled
198	yes	disruptive reset	Non-disruptive	install	not	supported	if	L3	was	enabled

Images will be upgraded according to following table:

Module	Image	Running-Version	New-Version	Upg-Required
1	system	6.0(2)N2(3)	6.0(2)N2(3)	yes
1	kickstart	6.0(2)N2(3)	6.0(2)N2(3)	yes
1	bios	v2.1.7(06/16/2013)	v2.1.7(06/16/2013)	no
1	power-seq	v4.0	v4.0	no
1	fabric-power-seq	v4.0	v4.0	no
2	power-seq	v4.0	v4.0	no
130	fex4	6.0(2)N2(3)	6.0(2)N2(3)	yes
198	fex4	6.0(2)N2(3)	6.0(2)N2(3)	yes
1	microcontroller	v0.0.0.15	v0.0.0.15	no

Step 8 Enter the **install all kickstart** *image* **system** *image* command on the vPC primary switch.

switch# install all kickstart bootflash:n5000-uk9-kickstart.6.0.2.N2.3.bin system bootflash:n5000-uk9.6.0.2.N2.3.bin

```
Verifying image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin for boot variable "kickstart".
```

[############### 100% -- SUCCESS

Verifying image bootflash:/n5000-uk9.6.0.2.N2.3.bin for boot variable "system". [#################] 100% -- SUCCESS

Verifying image type.

[############### 100% -- SUCCESS

Extracting "system" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin. [#################] 100% -- SUCCESS

Extracting "kickstart" version from image bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin. [################] 100% -- SUCCESS

Extracting "bios" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin. [#################] 100% -- SUCCESS

Extracting "fex4" version from image bootflash:/n5000-uk9.6.0.2.N2.3.bin. [#################] 100% -- SUCCESS

Performing module support checks.

[############### 100% -- SUCCESS

Notifying services about system upgrade. [###############] 100% -- SUCCESS

Compatibility check is done:

Module	bootable	Impact	Install-type Reason
1	yes	disruptive reset	Non-disruptive install not supported if L3 was enabled
2	yes	disruptive reset	Non-disruptive install not supported if L3 was enabled
130	yes	disruptive reset	Non-disruptive install not supported if L3 was enabled
198	yes	disruptive reset	Non-disruptive install not supported if L3 was enabled

Images will be upgraded according to following table:

Module	Image	Running-Version	New-Version	Upg-Required
1	system	6.0(2)N2(3)	6.0(2)N2(3)	yes
1	kickstart	6.0(2)N2(3)	6.0(2)N2(3)	yes
1	bios	v2.1.7(06/16/2013)	v2.1.7(06/16/2013)	no
1	power-seq	v4.0	v4.0	no
1	fabric-power-seq	v4.0	v4.0	no
2	power-seq	v4.0	v4.0	no
130	fex4	6.0(2)N2(3)	6.0(2)N2(3)	yes
198	fex4	6.0(2)N2(3)	6.0(2)N2(3)	yes
1	microcontroller	v0.0.15	v0.0.0.15	no

Switch will be reloaded for disruptive upgrade. Do you want to continue with the installation (y/n)? [n] y

Install is in progress, please wait.

Performing runtime checks.

[############### 100% -- SUCCESS

Setting boot variables.

[############### 100% -- SUCCESS

Performing configuration copy.

[############### 100% -- SUCCESS

Pre-loading modules.

[This step might take upto 20 minutes to complete - please wait.]

[*Warning -- Please do not abort installation/reload or powercycle fexes*]

[#] 0%2013 Jan 4 11:58:11 switch %\$ VDC-1 %\$

%SATCTRL-FEX130-2-SATCTRL_IMAGE: FEX130 Image update in progress.

2013 Jan 4 11:58:21 switch %\$ VDC-1 %\$ $SATCTRL-FEX198-2-SATCTRL_IMAGE: FEX198 Image update in progress.$

[####] 15%2013 Jan 4 12:03:41 switch %\$ VDC-1 %\$

*SATCTRL-FEX198-2-SATCTRL_IMAGE: FEX198 Image update complete. Install pending

[######] 25%2013 Jan 4 12:05:49 switch %\$ VDC-1 %\$

%SATCTRL-FEX130-2-SATCTRL_IMAGE: FEX130 Image update complete. Install pending [################] 100% -- SUCCESS

Finishing the upgrade, switch will reboot in 10 seconds.

switch# [2007269.320134] Shutdown Ports..

[2007269.329300] writing reset reason 49,

2013 Jan 4 12:06:03 switch %\$ VDC-1 %\$ %KERN-0-SYSTEM_MSG: [2007269.320134] Shutdown Ports.. - kernel

2013 Jan 4 12:06:03 switch %\$ VDC-1 %\$ %KERN-0-SYSTEM_MSG: [2007269.329300] writing reset reason 49, - kernel

2013 Jan 4 12:06:07 switch %\$ VDC-1 %\$ %VPC-2-PEER_KEEP_ALIVE_RECV_FAIL: In domain 572, VPC peer keep-alive receive has failed

Broadcast message from root (Tue Jan 4 12:06:08 2013):

The system is going down for reboot NOW!

INIT: Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "patch-installer" (PID 4196) is forced exit.

 $\hbox{\tt Jan 4 12:06:08 \&LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "u6rib" (PID 4285) is forced exit. } \\$

Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "__inst_001__ospf" (PID 5442) is forced exit.

```
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "__inst_001__ospfv3" (PID 5535) is
forced exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT_Service "bgp" (PID 5549) is forced exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "fs-daemon" (PID 4145) is forced
exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "adjmgr" (PID 4284) is forced
exit.
 \hbox{\tt Jan 4 12:06:08 \&LIBSYSMGR-3-SIGTERM\_FORCE\_EXIT Service "assoc\_mgr" (PID 4927) is forced } \\
exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "arp" (PID 4315) is forced exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "AAA Daemon" (PID 4226) is forced
exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "rib" (PID 4930) is forced exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "Security Daemon" (PID 4223) is
forced exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "vman" (PID 4183) is forced exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "statsclient" (PID 4251) is forced
exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "vshd" (PID 4139) is forced exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "Radius Daemon" (PID 4455) is
forced exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "stp" (PID 4640) is forced exit.
Jan 4 12:06:08 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "Cert_enroll Daemon" (PID 4225) is
forced exit.
Jan 4 12:06:09 %ADJMGR-3-URIB_SEND_TO_ERROR Send to URIB failed: Invalid argument
INIT: Sending processes the KILL signal
Sending all processes the TERM signal...
Jan 4 12:06:15 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "icmpv6" (PID 4324) is forced
exit.
Jan 4 12:06:15 %ICMPV6-3-MTS_RECV icmpv6 [4324] Error returned from mts_recv(), errno:
Interrupted system call
Jan 4 12:06:15 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "arp" (PID 4315) is forced exit.
Jan 4 12:06:15 %LIBSYSMGR-3-SIGTERM_FORCE_EXIT Service "adjmgr" (PID 4284) is forced
exit.
Sending all processes the KILL signal...
Unmounting filesystems...
[2007288.129255] Resetting board
???x????xx???xxx?x???xx????xx???xx???x??x??xx???xxx???xxx???xxx???xxx??xxx???xxx???xxx???xxx???xxx???xxx???xxx
Booting kickstart image: bootflash:/n5000-uk9-kickstart.6.0.2.N2.3.bin
```

```
.....Image verification OK
Booting kernel
         13.413136] val:4, count7 .
INIT: [
[ 13.421467] TCO_TMR val:1023, SMI_EN= 0x42033 NMI_STS_CNT_REG = 0x3d count7.
devmemfd:0x7fbcdc58
phys->virt: 0x7fbcdb9c7fbcdc58-->0x0
devmemfd:0x7fbcdc98
phys->virt: 0xa44000087fbcdc98-->0x0
devmemfd:0x7fbcdc98
phys->virt: 0xa44000087fbcdc98-->0x0
devmemfd:0x7fbcdc98
phys->virt: 0xa44000087fbcdc98-->0x0
Starting system POST.....
P(0x102) board
 Executing Mod 1 1 SEEPROM Test:
...done (0 sec, 194 msec, 38 usec)
 Executing Mod 1 1 GigE Port Test:
....done (16 sec, 86 msec, 824 usec)
 Executing Mod 1 1 PCIE Test:
......done (0 sec, 1 msec, 176 usec)
 Mod 1 1 Post Completed Successfully
POST is completed
can't create lock file /var/lock/mtab~308: No such file or directory (use -n flag to
override)
nohup: redirecting stderr to stdout
autoneg unmodified, ignoring
autoneg unmodified, ignoring
Checking all filesystems.... done.
Loading system software
Tue Jan 4 12:07:54 EDT 2017 BIGSUR SYNC getting started issu = 0
Uncompressing system image: bootflash:/n5000-uk9.6.0.2.N2.3.bin Tue Jan 4 12:08:05 EDT
2013
Load plugins that defined in image conf: /isan/plugin_img/img.conf
Loading plugin 0: core_plugin...
load_plugin: Can't get exclude list from /isan/plugin/0/boot/etc/plugin_exclude.conf (rc
0x40ea0017)
Loading plugin 1: eth_plugin...
ln: creating symbolic link `/lib/libcrypto.so.4': File exists
ln: creating symbolic link `/lib/libssl.so.4': File exists
ethernet switching mode
rm: cannot remove `/isan/bin/bigsursimd': No such file or directory
rm: cannot remove `/isan/bin/bigsursimd_revB': No such file or directory
INIT: Entering runlevel: 3
touch: cannot touch `/var/lock/subsys/netfs': No such file or directory
Mounting other filesystems: [ OK ]
/isan/bin/muxif_config: fex vlan id: -f,4042
Set name-type for VLAN subsystem. Should be visible in /proc/net/vlan/config
Added VLAN with VID == 4042 to IF -: muxif:-
card index: 0x2b58
2013 Jan 4 12:08:49 switch %$ VDC-1 %$ %SYSLOG-2-SYSTEM_MSG : Syslogs wont be logged into
logflash until logflash is online
2013 Jan 4 12:08:50 switch %$ VDC-1 %$ %USER-2-SYSTEM_MSG: CLIS: loading cmd files begin
 clis
2013 Jan 4 12:08:53 switch %$ VDC-1 %$ %KERN-0-SYSTEM_MSG: [ 13.413136] val:4, count7.
- kernel
2013 Jan 4 12:08:53 switch %$ VDC-1 %$ %KERN-0-SYSTEM_MSG: [ 13.421467] TCO_TMR
val:1023, SMI_EN= 0x42033 NMI_STS_CNT_REG = 0x3d count7 . - kernel
2013 Jan 4 12:09:02 switch %$ VDC-1 %$ %USER-2-SYSTEM_MSG: CLIS: loading cmd files end -
clis
2013 Jan 4 12:09:02 switch %$ VDC-1 %$ %USER-2-SYSTEM_MSG: CLIS: init begin - clis
```

```
2013 Jan 4 12:09:02 switch %$ VDC-1 %$ %DAEMON-2-SYSTEM_MSG: <<%XMLMA-2-XMLMACRIT>> XML
master agent: Starting sysmgr handshake.
                                          - xmlma[4313]
2013 Jan 4 12:09:02 switch %$ VDC-1 %$ %DAEMON-2-SYSTEM_MSG: <<%XMLMA-2-XMLMACRIT>> XML
master agent: Done with sysmgr handshake. - xmlma[4313]
2013 Jan 4 12:09:57 switch %$ VDC-1 %$ %PFMA-2-PS_FAIL: Power supply 2 failed or
shutdown(Serial number POG151850HC)
System is coming up ... Please wait ...
System is coming up ... Please wait
System is coming up ... Please wait .
Nexus 5548 Switch
switch login: 2017 Jan 4 12:13:35 switch %$ VDC-1 %$ clis: Enabling feature ospf: and
calling licmgr_resgister
2013 Jan 4 12:13:35 switch %$ VDC-1 %$ clis: Enabling feature bgp: and calling
licmgr_resgister
2013 Jan 4 12:13:36 switch %$ VDC-1 %$ clis: Enabling feature ospfv3: and calling
licmar resaister
2013 Jan 4 12:13:36 switch %$ VDC-1 %$ clis: Enabling feature pim: and calling
licmgr_resgister
2013 Jan 4 12:13:40 switch %$ VDC-1 %$ %VDC_MGR-2-VDC_ONLINE: vdc 1 has come online
2013 Jan 4 12:14:36 switch %$ VDC-1 %$ %VPC-2-VPC_SVI_DELAY_RESTORE_TIMER: Delay restore
timer will be overwritten to 150 sec when 13 is installed. Old value: (150)
2013 Jan 4 12:15:34 switch %$ VDC-1 %$ %PFMA-2-MOD_PWRUP: Module 2 powered up (Serial
number FOC18293WRV)
```

During the software upgrade on the primary switch, you can view the FEX upgrade progress using the vPC secondary switch (see the bold output):

```
switch-2# 2013 Jan 4 11:58:11 switch %$ VDC-1 %$ %SATCTRL-FEX130-2-SATCTRL_IMAGE: FEX130
Image update in progress.
2013 Jan 4 11:58:21 switch %$ VDC-1 %$ %SATCTRL-FEX198-2-SATCTRL_IMAGE: FEX198 Image
update in progress.
2013 Jan 4 12:03:41 switch %$ VDC-1 %$ %SATCTRL-FEX198-2-SATCTRL_IMAGE: FEX198 Image
update complete. Install pending
2013 Jan 4 12:05:49 switch %$ VDC-1 %$ %SATCTRL-FEX130-2-SATCTRL_IMAGE: FEX130 Image
update complete. Install pending
Verify the status of the Fabric Extender from the secondary vPC switch.
switch-2# show fex 130
FEX: 130 Description: FEX0130
                               state: Online
FEX version: 6.0(2)N2(3) [Switch version: 6.0(2)N2(3)]
Extender Serial: FOC1818R2MF
Extender Model: N2K-C2348UPQ, Part No: 73-15489-03
Pinning-mode: static
                      Max-links: 1
Fabric port for control traffic: Eth2/1
FCoE Admin: false
FCoE Oper: false
FCoE FEX AA Configured: true
Fabric interface state:
   Pol30 - Interface Up. State: Active
    Eth2/1 - Interface Up. State: Active
switch-2# show fex 198
FEX: 198 Description: FEX0198
                              state: Online
FEX version: 6.0(2)N2(3) [Switch version: 6.0(2)N2(3)]
Extender Serial: FOC1910R0R1
Extender Model: N2K-C2332TQ-10GT, Part No: 73-16733-04
Pinning-mode: static
                       Max-links: 1
Fabric port for control traffic: Eth2/2
FCoE Admin: false
FCoE Oper: false
```

```
FCoE FEX AA Configured: true
Fabric interface state:
   Po198 - Interface Up. State: Active
   Eth2/2 - Interface Up. State: Active
switch-2# show fex
 FEX
         FEX
                       State
                         FEX
                                        FEX
                                                         Fex
                                       Model
Number Description
                                                        Serial
         FEX0130 Online N2K-C2348UPQ
FEX0198 Online N2K-C2332TO-10GT
130
                                                       FOC1818R2MF
                                     N2K-C2332TQ-10GT FOC1910R0R1
198
         FEX0198
                       Online
```


The Fabric Extender remains online on the vPC secondary switch while the vPC primary switch is reloaded

Step 9 Ensure that the upgrade on vPC primary switch is completed. Use the **show version** command to verify the upgrade on vPC primary switch.

```
switch-1# show version
Software
  BTOS:
           version 2.1.7
  Power Sequencer Firmware:
            Module 1: v4.0
            Module 1: v4.0
  Fabric Power Sequencer Firmware: Module 1: version v4.0
  Microcontroller Firmware:
                                   version v1.2.0.5
  QSFP Microcontroller Firmware:
            Module 1: v1.3.0.0
  CXP Microcontroller Firmware:
            Module not detected
  kickstart: version 6.0(2)N2(3)
  system: version 6.0(2)N2(3)
  BIOS compile time: 06/01/2013
  kickstart image file is: bootflash://n5000-uk9-kickstart.6.0.2.N2.3.bin
  kickstart compile time: 10/6/2013 14:00:00 [10/07/2013 00:07:02]
  system image file is: bootflash:///n5000-uky-kickccc.

10/6/2013 14:00:00 [10/07/2013 00:08:34]
                           bootflash:///n5000-uk9-kickstart.6.0.2.N2.3.bin
```

Step 10 On the vPC primary switch after the upgrade, the FEXs connected to the switch are in Active/Active mismatch state.

```
switch-1# show fex
                                                       Fex
 FEX
           FEX
                         FEX
                                        FEX
Number
        Description
                        State
                                       Model
                                                       Serial
______
         FEX0130 AA Version Mismatch N2K-C2348UPQ FOC1818R2MF FEX0198 AA Version Mismatch N2K-C2332TO-10GT FOC1910R0R1
130
         FEX0198
                      AA Version Mismatch N2K-C2332TQ-10GT FOC1910R0R1
```

Step 11 On the vPC secondary switch, reload the first Fabric Extenders (reload only dual-homed FEXs) one at a time and wait for them to come online on the newly upgraded vPC primary switch before proceeding to the next FEX.

```
switch-2# reload fex 130
reload fex 130
WARNING: This command will reboot FEX 130
Do you want to continue? (y/n) [n] y
2013 Jan 4 13:49:14 switch %$ VDC-1 %$ %ETH_PORT_CHANNEL-5-FOP_CHANGED: port-channel130:
first operational port changed from Ethernet2/1 to none
2013 Jan 4 13:49:14 switch %$ VDC-1 %$ %ETH_PORT_CHANNEL-5-PORT_DOWN: port-channel130:
Ethernet2/1 is down
2013 Jan 4 13:49:14 switch %$ VDC-1 %$ %ETH_PORT_CHANNEL-5-PORT_DOWN: port-channel130:
port-channel130 is down
```

```
2013 Jan 4 13:49:14 switch %$ VDC-1 %$ %FEX-5-FEX_PORT_STATUS_NOTI: Uplink-ID 1 of Fex
130 that is connected with Ethernet2/1 changed its status from Active to Disconnected
2013 Jan 4 13:49:14 switch %$ VDC-1 %$ %NOHMS-2-NOHMS_ENV_FEX_OFFLINE: FEX-130 Off-line
(Serial Number FOC1818R2MF)
2013 Jan 4 13:49:14 switch %$ VDC-1 %$ %PFMA-2-FEX_STATUS: Fex 130 is offline
switch-2# reload fex 198
WARNING: This command will reboot FEX 198
Do you want to continue? (y/n) [n] y
switch# 2013 Jan 4 13:55:35 switch %ETH_PORT_CHANNEL-5-FOP_CHANGED: port-channel198:
first operational port changed from Ethernet2/2 to none
2013 Jan 4 13:55:35 switch %ETH_PORT_CHANNEL-5-PORT_DOWN: port-channel198: Ethernet2/2 is
down
2013 Jan 4 13:55:35 switch %ETH_PORT_CHANNEL-5-PORT_DOWN: port-channel198:
port-channel198 is down
2013 Jan 4 13:55:35 switch %FEX-5-FEX_PORT_STATUS_NOTI: Uplink-ID 1 of Fex 198 that is
connected with Ethernet2/2 changed its status from Active to Disconnected
2013 Jan 4 13:55:35 switch %NOHMS-2-NOHMS_ENV_FEX_OFFLINE: FEX-198 Off-line (Serial
Number FOC1910R0R1)
```


Only the vPC primary switch shows that the Fabric Extender is online because the vPC secondary switch does not have the new image. The secondary switch shows the Fabric Extender in Active/Active version mismatch state.

switch-2	# show fex			
FEX	FEX	FEX	FEX	'ex
Number	Description	n State	Model	Serial
130	FEX0130	AA Version Mismatch	N2K-C2348UPQ	FOC1818R2MF
198	FEX0198	AA Version Mismatch	N2K-C2332TO-10GT	FOC1910R0R1switch-2#

Make sure that the first Fabric Extender comes up before reloading the subsequent Fabric Extenders on the vPC secondary switch.

When all the Fabric Extenders are loaded, go to the next step.

To upgrade the vPC secondary switch, follow Step 2 to Step 9.

Step 12 Verify all the FEXs connected to the vPC secondary switch are online. Use the **show fex** command to view the FEX status.

switch-2# show fex

FEX	FEX	FEX	FEX	Fex
Number	Description	State	Model	Serial
130	FEX0130	Online	N2K-C2348UPQ	FOC1818R2MF
198	FEX0198	Online	N2K-C2332TQ-10GT	FOC1910R0R1

You should do certain sanity checks to ensure that the system is ready for an ISSU and to understand the impact of an ISSU.

Monitoring the Upgrade Status

Table 8 lists the **show** commands that are used to monitor installation upgrades.

Table 8 Monitoring the Upgrade Process

Command	Definition		
show fex	Displays the Fabric Extender status during an ISSU.		
show install all failure-reason	Displays the applications that failed during an installation and why the installation failed.		
show install all status	Displays a high-level log of the installation.		
show system internal log install details	Displays detailed logs of the last installation-related command.		
show system internal log install history	Displays detailed logs of the last five installation-related commands, from the oldest to the newest logs.		
show tech-support	Displays the system and configuration information that you can provide to the Cisco Technical Assistance Center when reporting a problem.		

The following example shows the output from the **show install all status** command:

There is an on-going installation... Enter Ctrl-C to go back to the prompt.

Continuing with installation process, please wait. The login will be disabled until the installation is completed.

Performing supervisor state verification. ${\tt SUCCESS}$

Supervisor non-disruptive upgrade successful.

Pre-loading modules. SUCCESS

Module 198: Non-disruptive upgrading. SUCCESS

 $\begin{tabular}{ll} Module 199: Non-disruptive upgrading. \\ SUCCESS \end{tabular}$

Install has been successful. (hit Ctrl-C here)

The following example shows the output from the **show fex** command on two vPC peer switches where FEX 198 and FEX 199 are upgraded:

switch-1#	show fex			
FEX	FEX	FEX	FEX	
Number	Description	State	Model	Serial
198	FEX0198	Hitless Upg Idle	N2K-C2248TP-1GE	JAF1342ANQP
199	FEX0199	Online	N2K-C2248TP-1GE	JAF1342ANRL
switch-2#	show fex			
FEX	FEX	FEX	FEX	
Number	Description	State	Model	Serial
198	FEX0198	FEX AA Upg Idle	N2K-C2248TP-1GE	JAF1342ANQP
199	FEX0199	Online	N2K-C2248TP-1GE	JAF1342ANRL

Downgrading from a Higher Release

Downgrading from Cisco NX-OS Release 6.0(2)N2(3) to any lower version using the **install all** command is the same as manually setting the boot variables and reloading the switch. Note that the downgrades are disruptive. The ASCII configuration replay for downgrade on Cisco Nexus 6000 Series switches will be enabled. You can use the **show incompatibility system** command to ensure that there are no feature incompatibilities between the current release and the target release.

For FEX configurations, before performing a downgrade, the FEX configurations must be converted to use the FEX pre-provisioning configurations. For pre-provisioning a FEX, use the **slot** *< slot-id>* **provision model** *< model-number>* command.

After FEX pre-provisioning is done, perform the following steps to restore the configuration if the configurations contain interface breakout or unified port configurations:

- 1. Save the configuration to bootflash using the command **copy running-config bootflash:**[directory/]filename.
- 2. Use the **default interface** command to restore the default configurations of the breakout interfaces. Example: **default interface** *e1/49/1-4*, *e2/25/1-4*.
- 3. Save the running configuration to startup configuration using the **copy running-config startup-config** command.
- **4.** Perform in-service software downgrade (ISSD) using the **install all** command from Cisco NX-OS Release 6.0(2)N2(3) to a lower release. In case of vPC, downgrade the primary switch first and then the secondary switch.
- 5. After the switch is up, power-off and power-on the module for the interface breakout to be effective. If the breakout is configured on Baseboard module, save the running configuration to startup configuration using the **copy running-config startup-config** command and then reload the switch again.
- **6.** If breakout is not configured on the Baseboard, then an additional reload is required if running configuration contains **hardware profile route resource service-template**.
- 7. After the switch is up (with all the modules), copy the saved configuration from **bootflash:** < filename > to running-config.
- **8.** Verify if all the interfaces are up and traffic is resumed.

Before you downgrade to a specific release, check the release notes for the current release installed on the switch to ensure that your hardware is compatible with the specific release.

Troubleshooting ISSUs and Disruptive Installations

Some common causes for ISSU failure are as follows:

- ISSU requirements are not met: bridge assurance is active or the switch is not a leaf node in the STP topology. These problems are described in the "PreInstallation Checks" section on page 19.
- bootflash: does not have enough space to accept the updated image.
- The specified system and kickstart are not compatible.

- The hardware is installed or removed while the upgrade is in process.
- A power disruption occurs while the upgrade is in progress.
- The entire path for the remote server location is not specified accurately.

Related Documentation

Documentation for Cisco Nexus 5500 Series Switches and Cisco Nexus Fabric Extenders is available at the following URL:

 $http://www.cisco.com/en/US/products/ps9670/tsd_products_support_series_home.html$

The documentation set includes the following types of documents:

- Licensing Information Guide
- Release Notes
- Installation and Upgrade Guides
- Configuration Guides
- · Configuration Examples and TechNotes
- Programming Guides
- · Operations Guides
- Error and System Message Guides
- · Field Notices
- Security Advisories, Responses and Notices
- Troubleshooting Guide
- Command References
- MIB Reference Guide

Documentation Feedback

To provide technical feedback on this document or to report an error or ommission, please send your comments to nexus5k-docfeedback@cisco.com. We appreciate your feedback.

Obtain Documentation and Submit a Service Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, see *What's New in Cisco Product Documentation*.

To receive new and revised Cisco technical content directly to your desktop, you can subscribe to the What's New in Cisco Product Documentation RSS feed. The RSS feeds are a free service.

© 2013-2017 Cisco Systems, Inc. All rights reserved